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ABSTRACT

This thesis examines a first order linear sensitivity and state 

regulator to illustrate system performance when changes in the plant 

parameter take place suddenly. It is shown that using a closed loop 

sensitivity and state feedback design approach to reduce trajectory 

deviations can result in significant savings in total control effort 

when compared to the state feedback design approach which neglects 

sensitivity.
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I. INTRODUCTION

The objective of this thesis is to investigate the performance of 

a first-order linear sensitivity and state regulator when changes in 

plant parameters take place suddenly. A comprehensive introduction to 

the class of systems where nominal values for the parameters are known, 

but their exact values are unknown and unmeasurable is given by 

Dougherty, Lee, and DeRusso [1].

When the optimal controller is designed using standard time-domain 

optimization techniques [2] for a set of nominal plant parameters, and 

these parameters are subject to uncertainties, the control in most cases 

will not be optimal. Present approaches to introduce parameter sensi

tivity constraints consist of reformulating the problem by including 

sensitivity functions in the cost function to be minimized along with 

functions of state and control variables. Several papers [1] [3] [4] 

[5] have been published demonstrating results of this approach.

Higginbotham in his paper [6] has pointed out that it is not pos

sible to obtain a closed form solution without neglecting or omitting 

certain sensitivity terms. As an alternate approach to synthesizing an 

optimal controller, Higginbotham has proposed the introduction of a 
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sensitivity forcing function term in the cost function to replace those 

terms which are not computationally realizable [7]. The resulting system 

is closed loop and attempts to compensate for uncertainties in both 

state and control coefficient matrices. The state sensitivity problem 

is formulated so that independent sensitivity variable control vectors 

are determined along with finding the conventional state control vector 

u(t) that minimizes a specified performance functional. This technique 

results in closed-loop state and sensitivity control laws. Some work 

[7] [8] has already been done to illustrate the performance of the 

system using this approach. This work has only considered the case when 

the uncertain parameter, although different from the assumed value, was 

constant over the time of system operation.

This thesis presents an analysis of the closed loop sensitivity 

and state feedback approach for the case when a plant parameter is 

subject to an abrupt change in value during system operation. Three 

first-order examples are analyzed to show trends resulting from the use 

of the combined sensitivity and state feedback approach. The examples 

are as follows:

Example 1 - Several abrupt changes occur in the plant 
parameter during the time of highest 
system sensitivity.

Example 2 - One abrupt change occurs in the plant 
parameter at peak system sensitivity.

Example 3 - The plant parameter is exactly known and 
is constant during system operation.
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The combined sensitivity and state feedback approach is compared 

with the state feedback approach which neglects sensitivity to illustrate 

system performance which results when system sensitivity is controlled. 

In addition, the analysis determines tradeoff's between control effort 

required and trajectory error reduction for each of the examples.
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II. MATHEMATICAL DEVELOPMENT OF PROBLEM

The problem is to find optimal state and sensitivity control laws 

which will keep the state of a given plant near the origin during real

time operation, while at the same time reduce trajectory deviations 

resulting from abrupt changes in a plant parameter. This objective is 

to be accomplished with minimum control effort.

The plant to be controlled is a deterministic first order linear 

regulator, represented by,

x(t) = ax(t) + bu(t); x(tQ) = xQ (1)

where the parameters "a" and "b" are subject to uncertainty.

The sensitivity dynamics are determined from the sensitivity function 

[9]. There will be a sensitivity term for each uncertain parameter. 

Therefore the two sensitivity terms will be

for an uncertain "a" v, = (2)1 ofl

for an uncertain "b" v0 = -^ (3)
2 sb

4



Differentiating Equations (2) and (3) wi th respect to time and using

Equation (1) the sensitivity equations become

(4)0

(5)0

respectively.

both state and sensi-

yieldand

(6)

(7)+

’ V2VV 

of a and b

dV2
9b-

9 V, 
ITa

9U, 
9V2

d U tivity, expansions of the terms b^T— Oda^ 0

lKUo

+
9V-]

. 9U _ . r9U u bo9a " bo *-dx V1

. 9U _ . [-9U „bo9b b0 *-dx v2

, h 9U+ bO9b 

values

+ b 
oaa

Anticipating a control which will be functions of

. du 
o3bo

vn = a v, + x
I o I

Vo = a v, + u 2 o I
where aQ and bQ are the nominal

au . 3v2 , 
9V2 da -I

- 9V.dU . 1 1
dvi "dKJ

The terms involving the partial derivatives of sensitivity with 

respect to the uncertain parameters which appear in Equations (6) and 

(7) have been neglected by some authors [3] [10]. The approach suggested 

by Higginbotham [7] is to treat these computationally unrealizable 

terms as sensitivity forcing functions and include them in the cost 

function to be minimized along with state and control functions.

By defining

4 ail 3v, ... dv9
ml^t^ = dTj" ' da- + dv^ ’da”

5



m m - _2 . 9U . dVl

m2(tj " dv2 db 9V1 1b (9)

and combining Equations (6), (7), (8), and (9) with Equations (4) 

and (5) the sensitivity differential equations become

= [a + b oJt) + x(t) + bnm,(t) ; a,(t ) = 0 (10)
I U U d A I U I I u

^(t) = [a0 + bo|^] a2(t) + u(t) + bom2(t) ; o2(t0) = 0 (11)

An augmented system z(t) can be written by letting

z(t) = [xT(t), o/d), O2T(t)]T

(1), (10) and (11)where T denotes transpose. Equations then becan

written as

0

0

or

(13)

where

(14)

z (t) = A]z(t) + B^^t) ; z(tQ) zo

u-|(t) = [uT(t), m1T(t), m2T(t)] T

6



A quadratic functional is chosen as the performance index. Thus

rtfJ = 2 I + S]0"!2^) + s2a22(t) + r]u2(t) + ^^(t) + r3m22(t)] dt (15)

o

or in terms of the augmented system z(t)

1 /•^'f T T
3 = I I Qz + U1 R1U]^ dt 06)

Jo

where the terminal time t^ is fixed and specified. The problem is to 

find the control u^(t) that minimizes the performance index (16) and thus 

determine the optimal state control u(t) and the sensitivity controls 

m-](t) and m2(t).
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III. PROBLEM SOLUTION

Using the technique outlined in Athens and Falb [2], Chapter 9, 

the solution proceeds as follows.

The Hamiltonian H for the system (13) and the cost J of Equation 

(16) is

H = 1 [zT(t)Qz(t) + u1T(t)R1u1(t)]+ XT(t) [A1z(t) + B1u1(t)] (17)

The costate vector x(t) is the solution of the vector differential 

equation

x(t) = - (18)

which reduces to

A(t) = - Qz(t) - A/ x(t) (19)

Along the optimal trajectory, we must have

^TtT=0 <2°)
which implies that

B/xlt) = 0 (21)
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or

1 T
u^t) = -R" B^xd) (22)

Assuming x(t) in the form

X(t) = K(t) z(t) (23)

Then
J T

U1(t) = -R1 B1lK(t)z(t) (24)

Athens and Falb [2] show that K(t) must satisfy the matrix differential 

equation

T -1 T
K(t) = -K(t)A] - A 1K(t) + K(t)B1R1 B^K(t) - Q (25)

where A^ Contains (t). Equation 25 has the boundary conditions of

K(tf) = 0.

The state of the optimal system is then the solution of the linear 

differential equation

z(t) = [A1 - B1R1 B1*K(t)] z(t) ; z(tQ) = zQ (26)

To simulate the system dynamics, it will be necessary to expand the 

vector matrix equations into their components.
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Expansion of the optimal control vector u-j(t) yields

Ul(t) = -Ri1B1TK(t)z(t)

u(t) 

m.|(t) 

m2(t)

=

-7-0 0
rl

0 - F- 0
r2 1

0 0 " r3

bA 0 1

0 b 00

0 0bL 0 —

kll k12 k13

k21 k22 k23

_k31 k32 k33-

X

°1

_a2-

(27)

u(t) = " [bo(kllX + k12al + k13°2) + k31x +k32al + k33a2] (28)

m-|(t) =
b

" r^ tk12x + k22°l + k23°2^ (29)

m2(t) =
b

" r| *-k13 X + k23yl + k33°2^ (30)

3 UNext the -r— term may be evaluated

ax " " ^bokll + k31

The expanded state equations then become

bbn h bb h
x(t) = [a - -F— - — k31] x(t) + [- ^-5- k]2 - p^S^l^

bb .
+ [- — k-|3 - — k33Jo2(t) ; x(tQ) = xQ (32)
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bn bn b L
= [a0 - — - — k]3 - — + [1- k12]x(t)

r2 k23a2 ; " 0 (33)

b 2 b b 2 ,
d2(t> ' [% - V kll - 2 k13 " k33 - Fj" k33^<t)

b 2 b 1
+*- " TT" k23 " FT" k12 " r? k23^ CT1

b 2 b q
+ " ^7" K13 " r^- kll " rj" k13^ ’ a2^to) = 0 (34)

Expansion of the gain matrix K(t) yields

kn

k21

k31

0 k12 k13
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b 9
+ 77ki3 -q <35)

b 2 b b
k12(t) = - 2aQk12 + 2 k^k^ + 2 k12k13 - k22+

1 bn2 b 2

+ rj" k13k33 + r^" k12k22 + k13k23 (36)

b bn b
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13' o 13 r-j 11 13 13 23 r-j 11 23

1 bn2 b 2

+ rj k13k33 + r^" k12 k23 + rs" k13k33 ^37>>
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k22(t) =

k23(t) =

k33(t)

The

Figure 1 

gulating 

obtained

bn2 b b 2 b

" 2aok22 + 2 rf kHk22 + 2 r“ k13k22 + 7^" k12 + 2 rj- k12k23

b 2 b 2
+ ry k232 + r^k222 + r|"k232 " S1 (38)

b 2 b b 2 b
- 2a k9- + 2 -2- k^ky. + 3 -2- k,,k99 + k19k19 + k19k„

o 2J r-| 11 23 r-| 13 23 r-j 12 13 r-| 12 33

1 bn2 bo2

+ r] k23k33 + r^-k22k23 + r^~k23k33

2 2
b b b 9 , 9

"2aok33 + 2 rp kllk33 + 4 k13k33 + rj- k13 + k33

bo2 2 bo2
+ r2 k23 + r3 k33 " s2 (40)

k]2(t) = k2](t)

k]3(t) = k31(t) 

k23(t) - k32(t)

(41)

(42)

(43)

computation of the gain matrix K(t) is reviewed in Appendix A. 

shows the structure of the closed loop sensitivity and state re

system. The "thickened" part outlines the solution which is 

from the conventional approach.
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LINEAR PLANT

Figure 1. Structure of the Optimal Linear Sensitivity 
and State Controlled Regulator



IV. SYSTEM PERFORMANCE ANALYSIS

This section presents the system performance of the closed loop 

sensitivity and state feedback design for the reduction of trajectory 

deviations resulting from a suddenly changing plant parameter. The 

system studied in this thesis has the state coefficient 'a* subject to 

abrupt changes which occur when the plant sensitivity is the greatest. 

The combined sensitivity and state feedback approach is compared with 

the approach of using only state feedback to determine tradeoffs 

between control energy requirements and trajectory deviation reduction. 

For the state feedback approach, trajectory error was investigated with 

weighting on state in the cost functional as a parameter. In the com

bined approach, the weightings on sensitivity and the sensitivity forcing 

function in the cost functional are the parameters which are varied.

The analysis was performed with the following numerical values. 

The plant equation is

x(t) = ax(t) + u(t) ; x(tQ) = 1.0

with the assumed value a = -2.0 and b = b =1.0 o o

The cost functional for the state feedback approach is

1 4 2 9
J = 2" f Eqx^(t) + u^(t)J dt

•'o

15



with the weighting on state, q varying from 0.2 to 8.0.

The cost functional for the combined sensitivity and state feedback 

approach is

4
1 f o o 9 9

J = - J [0.2qx (t) + u (t) + s1o1 (t) + r2m1d(t)]dt
2 0

with the weighting on sensitivity s-j varying from 0.0 to 100.0 and the 

weighting on the sensitivity forcing function, r2 varying from 0.2 to 

500.0. The value of s2 and r^ are zero because the control coefficient 

'b'for this analysis is assumed to be known and constant. Three examples 

have been analyzed with different parameter time histories. For Example 

1 the state coefficient 'a' has several abrupt changes during the 

sytem operation.

The state response of the system for Example 1 using only state 

feedback is shown in Figure 2. Also given in Figure 2 is the time 

history of the plant parameter 'a1 for example 1. As the weighting on 

state q is increased the trajectory deviation from a perfectly model 

system with constant parameters is reduced. The state response of the 

combined sensitivity and state feedback approach for Example 1 is given 

in Figure 3. When the sensitivity weighting s-, is zero, sensitivity is 

not considered and the state response for both approaches with q = 0.2 are 

identical. Using a weighting on the sensitivity forcing function m(t) of 

10, and increasing the sensitivity weighting s-j the trajectory error is 

decreased. The responses shown in Figure 3 were chosen to demonstrate 

that it is possible to have comparable trajectories between the two

16
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Figure 2. Example 1 - State Response Using 
State Feedback Only
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approaches. Figure 4 shows the corresponding total control effort 

required to reduce trajectory error for both the state feedback approach 

and the combined sensitivity and state feedback approach.

The results given in Figure 4 show for Example 1 that significant 

saving in total control effort can be realized if a combined sensitivity 

and state controller is used to reduce trajectory deviations. In the 

event it was desirable to reduce the trajectory error to that of a 

perfectly modeled system with constant plant parameters, the sensitivity 

and state feedback design would require 67 percent less control energy 

than if only state feedback was used.

In Example 2, the state coefficient 'a' has only one abrupt change 

during system operation. This example was chosen to see if the combined 

sensitivity and state approach would still require less control energy 

if the plant parameter had a less active time listing. The state response 

using only state feedback is shown in Figure 5. Also given in Figure 5 

is the time history of the plant parameter 'a* for Example 2. Notice 

that a lower value of state weighting, q, is required in this example 

to achieve a reduction in trajectory error than was required in Example 1. 

The state response for the combined sensitivity and state feedback 

approach is given in Figure 6. Figure 7 shows the corresponding total 

control effort required to reduce trajectory for both' the state feed

back approach and the combined sensitivity and state feedback approach.

Figure 7 shows that the combined sensitivity and state feedback 

approach is only slightly better than the state feedback only approach.
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This might be expected, because as the plant behaves more closely to 

the model, less trajectory error results. Consequently, the amount of 

sensitivity feedback required is less and the two systems approach 

each other.

For Example 3, the state coefficient ‘a1 has only one abrupt 

change during system operation. Figure 8 presents the tradeoff between 

trajectory error reduction and total control effort for both approaches 

when the actual and assumed plant parameters are the same. For this 

perfectly modeled system, both approaches require approximately the 

same control effort for a given state error reduction. This would 

indicate that if a plant parameter was expected to change abruptly as in 

Example 1 or 2 but, in fact, remained constant, the combined sensitivity 

and state feedback approach would not require more control effort than 

the state feedback approach. Yet, if the plant parameter did change 

suddenly, the combined sensitivity and state feedback approach would be 

able to more effectively reduce the trajectory error with less control 

effort than if the state feedback approach was used.

It is interesting to note the difference between the state control, 

u(t) for the two approaches. Figure 9 shows the form of the state control 

for both the state feedback design and the combined sensitivity and state 

feedback design. For the system with only state feedback, the control 

starts with a greater value than the combined approach and decays 

exponentially. The system sensitivity of the unforced system begins 

at zero and rises to a peak early in the system operation and then goes

24
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to zero as time increases. In figure 9, note how the combined sensitivity 

and state feedback control starts lower (sensitivity is small) and remains 

higher until sensitivity peaks and then quickly goes to zero. The fact 

that the combined approach state control is greater during high system 

sensitivity enables it to better compensate for the changing parameter. 

The following section discusses some of the practical limitations of 

implementing the optimal control for the combined sensitivity and state 

feedback design.
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V. COMPUTER MEMORY REQUIREMENTS

The combined sensitivity and state feedback design will have 

greater computer storage requirements than the state feedback alone 

approach. This is due to the fact that there are inherent difficulties 

in the real-time calculation of the optimal control because the forward 

time numerical solution of the differential gain equations are subject 

to computational instability. Presently, it is required to first solve 

off-line the gains backward in time and then store them in memory to be 

used at the appropriate time. For higher order systems, with the potential 

of a large number of uncertain parameters, the computer memory require

ments may become excessive to store the required time varying gains.

However, a computational technique has been proposed which will 

allow the gains to be computed in an on-line manner [11]. This technique 

uses a recursive algorithm which can integrate the differential gain 

equations forward in time without the associated computational instability, 

thereby eliminating costly memory storage. Further investigation needs 

to be done in this area to develop the full potentiality of implementing 

this computational technique with the state and sensitivity feedback 

gain requirements.
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VI. SUMMARY AND CONCLUSIONS

In this thesis, an approach for the reduction of trajectory devia

tion resulting from a parameter with abrupt changes has been studied 

and compared to the conventional state feedback approach. The new 

approach was a system which had feedback of a sensitivity measure as 

well as state feedback. Three first order examples were analyzed. It 

was shown that the combined sensitivity and state feedback approach 

has the potential for using substantially less control energy to reduce 

trajectory error than an approach using only state feedback where the 

plant parameter has several abrupt changes. In addition, it was demon

strated that for the case where the parameters are known exactly, both 

approaches require essentially the same control energy to effect a reduc

tion in trajectory error.
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APPENDIX A

COMPUTATION OF THE GAIN MATRIX, K(t) AND THE 

STATE AND SENSITIVITY EQUATIONS

The analysis of the state and sensitivity system requires the 

solution of several non-linear differential equations. The technique 

for solving these equations will be to use the method of Runge-Kutta.

First the feedback gains (Equations 35 through 39) will have to 

be solved backward in time because only the final conditions on K(t) are 

known. The feedback gains solutions will be stored forward in time 

and used in the calculation of the state and sensitivity Equations 32, 33, 

and 34.

After the state and sensitivity are known, the integral squared 

performance indices are computed by using Simpson's integration rule.

The flow chart for the computer simulation follows.
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APPENDIX B

PROGRAM VERIFICATION

Athans and Falb [1] page 777, equation 9-155, gives a closed form 

solution for the feedback gain for the first-order system without 

sensitivity considerations.

Program verification will consist of comparing the Runge-Kutta 

solution of k-|-|(t) with the closed form solution.

The optimal state gain is given by

k^tt) = - --------------------------------------------------

i f/r - a - B 2g(t -T) 
1 " f/r - a + b

The system constants are for the fixed time case, t^ = 1 sec

a = -1 f

2

A = 1

r = 1

f = 0

t = 0

T = 1



Equation (1) becomes

yr--1 + (vT +1) i -/r
1 + 2

e

k11(0) =
! 1 - V2 o-2 V2

" i +72

i "C. v c 
k^CO) =  

1 +J2- (1 - J2 )e"2^

e"2^2 = .059487

1 +yr = 2.414214

Vz - A = .4142.4

L fn) - 1 ~ .059487_________________ - QQKQiy
K1VU; " 2.4.42.4 + .414214 (.059487)

The program calculated value for k^^O) = .385818

For the infinite time case Equation (1) becomes

k11(0) = \/r - 1 = .414214

The program calculated value of k^yo) for the time infinite case is .414214.

The results of the Runge-Kutta solution of the feedback gain are considered

acceptable.
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APPENDIX C

PROGRAM LISTING

In this Appendix, the computer program used to perform the calcu

lations described in this thesis is given.

C ********************************
C *
C * DESIGN OF SENSITIVITY AND STATE VARIABLE FEEDBACK OPTIMAL
C * CONTROL SYSTEMS.
C *
C * SYSIEM -
C * XDOT = A*X + B*U
C * V1DOT = X + (AO -(B0/Rl)*(B0*KlHhK12))*Vl + BO*M1
C * V2DOT = (AO -(BO/R1)*(8O*K1 1I4-K12) ) *V2 + U + B0*M2 *
C * *
Q ******** X-- ********* * *************
C.... NN = THE NUMBER 3F SI AND S2 WEIGHTINGS. 
C N = THE NUMBER OF ITERATIONS

DIMENSION AK IK 300 ),BK11( 300 ) , AK1 2 ( 300) t BK1 2 ( 300 ) , AK1 3 ( 300 I ,
1 BK13( 300),AK22(3G0)fBK22(300),AK23(300) ,BK23(300) ,
2 AK33(300),BK33(300),XT(300),V1T(300)»V2T(300),
3 AXT(300),AV1T(300),AV2T(300) , AUTO 00) , BUT (300),
4 AM1T(300),BM1T(300),AM2T(300),BM2T(300) 

COMMON AO, A , BO ,B, Rl, R2, R3 , Q
READ (5,90) NCASE 

90 FORMAT( 14) 
READ(5, 100) DELTAT, TF, AKllC, AK120, AK130, AK220, AK23C, AK33O, 

1 N, NN
100 FORMAT! 8F8.0,215 ) 

READ(5,102) XTO, VITO, V2T0 
SAVETF = TF 
SAKU0 = AK11G 
SAK120 = AK120 
SAK130 = AK13C 
SAK220 = AK220 
SAK230 = AK23G 
SAK330 = AK330 
SAVXT0= XTO 
SAV1T0 = VITO 
SAV2T0 = V2TC 
DO 30 LLLL = 1, NCASE 
READ(5,1C2) AC,A, BO, B, Rl, R2, R3, Q 

102 FORMAT!10F8.C) 
TF = SAVETF 
WRITE(6,200) TF, DELTAT, N

200 FORMAT! 1H1/ 10X,18HFINAL TIME.................F7.3/
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1 1CX,18HTIME INCREMENT....,F7.3/
2 10X,18HNO. OF ITERATIONS. , 14 )

WRITE(6,203) AO, A, BO, B, Rl, R2, R3, Q
203 FORMAT! ///// 10X, 9HC0NSTANTS/ 10X,3HAO=,F6.2,2X,2HA= ,F6.2,

1 2X,3HB0=,F6.2,2X,2HB=,F6.2,2X /10X,3HR1=,F6.2,2X,
2 3HR2=,F6.2,2X,3HR3=F6.2,2X,2HQ=,F6.2 ) 

DO 20 LLLLL = 1, NN
READ(5,101) SI, S2 

101 FORMAT! 2F10.0) 
TF = SAVETF 

C.... SOLUTION OF FEEDBACK GAINS.
AK110 = SAK110
AK120 = SAK120
AK130 = SAK130
AK220 = SAK220
AK230 = SAK230
AK330 = SAK330
AIO AK11D!AK110,AK120,AK130)
AJO x AK12D!AK110,AK120,AK130,AK220,AK230)
AKO AK13D! AKUO, AK 120 , AK130 , AK2 30 , A K3 30)
ALO = AK22D! AK110,AK120,AK130,AK220,AK230,SI)
AMO AK23D!AK110,AK 120,AK130,AK220,AK230,AK330)
ANG = AK33D! AKUO, AK 130, AK 230, AK330, S2)
Al 1 = AK11D! AKU0+AIC*DELTAT/2. , AK12C+A J0*DELTAT/2. ,

1 AK130+AKC*DELTAT/2. )
AJ1 AK12D! AKU0 + A10*DELTAT/2. , AK120+AJ0*DELTAT/2.,

1 AK130+AK0*DELTAT/2., AK220+AL0*DELTAT/2.,
2 AK23O+AM0*DELTAT/2. I

AK1 AK13D! AKU0 + AI0*DELTAT/2. , AK120+AJ0*DELTAT/2. ,
1 AK13O+AKO*DELTAT/2. , AK23 0+AM0*DELTAT/2. ,
2 AK330+ANO*DEL TAT/2. )

All AK22D! AKU0+AI0*DELTAT/2., AK120+AJ0*DELTAT/2.,
1 AK130+AK0*DELTAT/2., AK220+ALO*DELTAT/2.,
2 AK230+AM0*DELTAT/2., SI )

AMI ■= AK23D! AKU0+AI0*DELTAT/2. , AK120+AJ0*DELTAT/2. ,
1 AK 130+AK0*DELTAT/2. , AK220+AL0*DELTAT/2.,
2 AK230 + AM0*DELTAT/2. , AK330+AN0*DELTAT/2.)

AN1 = AK33D! AKU0 + AI0*DELTAT/2. , AK13 0+AK0*DELTAT/2. ,
1 AK230+AM0*DELTAT/2., AK330+AN0*DELTAT/2. , S2)

AI2 AK11D! AKU0 + AI l*DELTAT/2. , AK120+AJl*DELTAT/2.,
1 AK130+AKl*DELTAT/2.)

AJ2 AK12D!AK110+AIl*DELTAT/2., AK120+AJl*DELTAT/2.,
1 AK130+AKl*DELTAT/2., AK220+ALl*DELTAT/2.,
2 AK230+AMl*DELTAT/2.)

AK2 — AK 13D( AKUO + AI l*DELTAT/2. , AK120+AJl*DELTAT/2.,
1 AK130+AKl*DELTAT/2., AK230+AMl*DELTAT/2.,
2 AK330+ANl*DELTAT/2. )

AL2 AK22D! AKUO+AI l*DELTAT/2. , AK120+AJl*DELTAT/2.,
1 AK130+AKl*DELTAT/2., AK220+AL1*DELTAT/2.,
2 AK230+AMl*DELTAT/2., SI)

AM2 AK23D! AKU0+AU*DELTAT/2., AK120+AJl*DELTAT/2.,
1 AK130+AKl*DELTAT/2., AK220+ALl*DELTAT/2.,
2 AK2 30+AMl*DELTAT/2. , AK330+ANl*DELTAT/2.)
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201 FORMATl 1H1 f 10X , 42HvJE IGH TI NG ON SENSITIVITY COEFFICIENT 1....,
1 F7.3,/ 1IX ♦ 42HW E IGHT ING ON SENSITIVITY COEFFICIENT 2...., F7.3/
2 3X,1HT,7X,5HK(11),8Xf5HK(12),8X,5HK(13),8X,5HK(22),8X,5HK(23),
3 8X,5HK(331/1X, F6.3,2X,E11.6,2X,E11.6,2X,E11.6,2X,El 1.6,2X,
4 E11.6,2X,E11.6 )

AN2 = AK33D(AK110+AI1*DELTAT/2 AK130+AKl*DELTAT/2.,
1 AK230 + AM l*DELTAT/2 AK33O*ANl*DELTAT/2., S2)

AI3 = AK11D(AK110+AI2*DELTAT, AK120<-AJ2*DELTAT,
1 AK130+AK2*DELTAT)

AJ3 = AK12D(AK110+AI2*DELTAT, AK120+AJ2*DELTAT,
1 AK130+AK2*DELTAT, AK220+AL2*DELTAT,
2 AK230+AM2*DELTAT)

AK3 = AK13D(AK 110+AI2*DELTAT, AK120+AJ2«DELTAT,
1 AK130+AK2*DELTAT, AK230+AM2*DELTAT,
2 AK330+AN2*DELTAT)

AL3 = AK22D(AK110+AI2*DELTAT, AK120+AJ2*DELTAT,
1 AK130+AK2*DELTAT, AK220+AL2*DELTAT,
2 AK230+AM2*DELTAT, SI)

AM3 = AK23D(AK110+AI2*DELTAT, AK120+AJ2*DELTAT,
1 AK130+AK2*UELTAT, AK220+AL2*OELTAT,
2 AK230+AM2*DELTAT, AK330+AN2*DELTAT)

AN3 = AK33D(AK110+AI2*DELTAT, AK130+AK2*DELTAT,
1 AK230+AM2*DELTAT, AK330+AN2*DELTAT, S2)

WRITE(6,201) SI, S2, TF, AK110 , AK120, AK130, AK220, AK230,AK330

8K131N) = AK13C
BK22(N) = AK220

DO 10 1 = 1, N
AK1KI) = AK110 + (DELTAT/6.)#(AIO+2.*(AI1 + AI2)+AI3)
AK12(I) = AK120 + (DELTAT/6.)*(AJO+2.*(AJ1+AJ2)+AJ3)
AK13( I) = AK130 + (DELTAT/6.)*(AKO«-2.*(AK1+AK2) + AK3)
AK22(I) = AK220 + (DELTAT/6.)♦(AL0+2.*(AL1+AL2)+AL3)
AK23(I) = AK230 ♦ (DELTAT/6.)*(AMO+2.♦(AM1+AM2)+AM3)
AK33(I) = AK330 + (DELTAT/6.)*(ANO+2.*(AN1+AN2)+AN3)
TF= TF + DELTAT
IF(I-l) 7, 6, 7
BKll(N) = AK110
BK12(N) = AK120

BK23(N)
BK33(N)

= AK230
= AK330

7 IF(N-I) 2, 1, 2
1 BKllO = AK1K I)

BK120 = AK12(I)
BK13G = AK13( I )
BK220 = AK22(I)
BK230 = AK23( I )
BK33C = AK33( I )
GO TO 3

2 BK1KN-I ) = AK1K I) 
BK12(N-I) = AK12( I) 
BK13(N-I ) = AK13( I) 
BK22(N-I ) = AK22(I) 
BK23(N-I) = AK23(I> 
BK33(N-I) = AK33(I)
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3

1

1
2

1
2

1
2

1
2

1

1

1
2

1
2

1
2

1
2

1

1

1
2

1
2

1
2

1
2

1

AIO = AK11D(AKH( I), AK12(I), AK13(I ) )
AJO = AK12D(AK11(I), AK12(I), AK13(I), AK22(I), AK23(I))
AKO = AK13D( AK IK I ), AK12(I), AK13(I), AK23(I), AK33(D)
ALO = AK22D(AK11(I), AK12(I), AK13(I), AK22(I), AK23(I), SI)
AMO = AK23D(AK11(I), AK12(I), AK13(I), AK22(I), AK23(I), AK331I))
ANO = AK33D( AK1K I ), AK13(I>, AK23(I), AK33(I), S2)
AU = AK11D( AK1K I )+AIC*OELTAT/2. , AK 12 ( I ) + A J O*DELTAT/2 . , 

AK13(I)+AKO*DELTAT/2.)
AJ1 = AK12D(AK1K I ) <-A10* DEL TA T/2 . , AK 12 ( I)+AJ0*DELTAT/2 . , 

AK13(I)+AK0*DELTAT/2., AK22(I)+ALG*DELTAT/2., 
AK23(I)+AM0*DELTAT/2.)

AK1 = AK13D(AK11(I)+AI0*DELTAT/2., AK12(I)+AJO*DELTAT/2., 
AK13(I)+AK0*DELTAT/2., AK23(I)+AMO*DELTAT/2., 
AK33( I )+AN O*DEL TA T/2 . )

All = AK22D( AK1K I) + AI O*DEL TA T/2. , AK 12 ( I) + A JO*DE LTAT/2 . , 
AK13(I)*AKO*DELTAT/2.» AK22(I)+AL0*DELTAT/2., 
AK23(I)+AM0*DELTAT/2.f SI)

AMI = AK23D( AKU( I ) + AI0*DELTAT/2. , 
AK13(I)+AK0*DELTAT/2.f 
AK23( I )<-AM0*DELTAT/2. ,

AN1 = AK33D(AK11( I )+AIO*DELTAT/2., 
AK 23 ( I )+AM0*DELTAT/2. ,

AI2 = AK11D(AK11(I)+AIl*DELTAT/2., 
AK13(I)+AK1*DELTAT/2.)

AJ2 = AK 12D( AK.1K I )+A 11*DEL TA T/2. , 
AK13(I)+AK1*DELTAT/2., 
AK23(I)+AMl*DELTAT/2.)

AK2 = AK13D(AKU( I )+A 11*DEL TAT/2. ♦ 
AK13( I )+AKl*DELTAT/2. , 
AK33( I )+ AN1*DEL TA T/2. )

AL2 = AK22D(AK1KI)+AI1*DELTAT/2 
AK 13( I ) + AKl*DELTAT/2 
AK23(I )+AMl*DELTAT/2

AM2 = AK23D( AK IK I ) + AI l*DELTAT/2 
AK 13( I )+AKl*DELTAT/2 
AK23( I ) + AMl*DELTAT/2

AN2 = AK33D(AK11( I )+AI 1*DELTAT/2 
AK23( I )+AMl*DELTAT/2

AI3 = AKUD( AK1K I )+AI 2*DELTAT, 
AK13( I ) + AK2*DELTAT )

AJ3 = AK12D( AK1K I )+A12*DEL TAT, 
AK13( I ) + AK 2*DELTAT, 
AK23( I )+AM2*DELTAT)

AK3 = AK13D( AK IK I )+AI 2*DELTAT, 
AK 13( I )+AK2*DELTAT, 
AK33(I)+AN2*DELTAT)

AL3 = AK22D(AK11(I)+AI 2#DEL TAT, 
AK 13( I ) + AK2*DELTAT, 
AK23( I )+AM2*DELTAT,

AM3 = AK23D( AK IK I )+AI 2* DEL TAT, 
AK13( I )+AK2* DELTATt 
AK23( I ) + AM2*DELTAT,

AN3 = AK33D( AKUl I )+ A I 2* DELTA T, 
AK23( I )+AM2*DELTAT,

AK12(I)+AJ0*DELTAT/2., 
AK22(I)+AL0*DELTAT/2.t 
AK33(I)+ANO*DELTAT/2.) 
AK13( I )+AKO*DELTAT/2., 
AK33U)+AN0*DELTAT/2.f S2) 
AK12(I)+AJl*DELTAT/2.,

AK12(I)+AJl*DELTAT/2., 
AK22(I)+ALl*DELTAT/2.,

AK12(I)+AJl*DELTAT/2., 
AK23(I)+AMl*DELTAT/2.,

AK12(I)+AJ1*DELTAT/2., 
AK22(I)+ALl*0ELTAT/2., 
SI)
AK12(I)+AJl*DELTAT/2., 
AK22(I)+AL1*DELTAT/2., 
AK33(I)+ANl*DELTAT/2.) 
AK13(I)+AKl*DELTAT/2., 
AK33(I)+ANl*DELTAT/2., S2) 
AK12(I)+AJ2*DELTAT,

AK12(I)+AJ2*DELTAT, 
AK22(I)+AL2*DELTAT,

AK12(I)+AJ2*DELTAT, 
AK23(I)+AM2*DELTAT,

AK12(I)+AJ2*DELTAT, 
AK22(I)+AL2*DELTAT, 
SI)
AK12(I)+AJ2*DELTAT, 
AK22(I)+AL2*DELTAT,

AK33(I)+AN2*DELTAT )
AK13(I)+AK2*DELTAT, 
AK33(I)*AN2*DELTAT1 S2)

• »
• , 

• ,
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WRITE(6,204) TF, AKllII), AK12(I), AK13(I), AK22(I), AK23U), 
1 AK33(I)

204 FORMAT!IX,
1 F6.3,2X,E11.6,2X,E11.6,2X,E11.6,2X,E1L.6,2X,E11.6,2X
1 Ell.6 )

AK110= AK1K I > 
AK120= AK12(I) 
AK130= AK13(I) 
AK220= AK22(I) 
AK230= AK23(I) 
AK330= AK33(I) 

10 CONTINUE 
42 T=O. 

DELT=-DELTAT 
XTO= SAVXTO 
V1TO= SAV1T0 
V2TC= SAV2T0
810 = XDOT(BK110,BK120,BK130,BK23O,BK330, XTO, VITO, V2T0) 
BJO =V1DOT(BK110,BK120,BK130,BK220,BK230, XTO, VITO, V2T0) 
BKO =V2D0T(BK110,BK120,BK130,BK230,BK330, XTO, VITO, V2T0)
811 = XDOT(BK110,BK120,BK130,BK230,BK330,

1 XT0+BI0*DELT/2., V1TO+BJO*DELTZ2., V2TO+BKO*DELT/2. )
BJ1 =V1DOT(BK110,BK120,8K130,BK220,BK230, 

1 XT0+BI0*DELT/2. , V IT 0+B JO*DE L T/2 . , V2 T0+BKO*DE LT/2 . 1
BK1 =V2D0T( BKU0,BK120,BK130,BK230,BK33 0, 

1 XT0+BI0*DELT/2., V1TO+BJO*DELT/2., V2T0+BKC*DELT/2. )
812 = XDOT(BK110,BK120,BK130,BK230,BK330,

1 XT0+BIl*DELT/2., V1T0+BJ1*DELT/2., V2T0+BKl*DELT/2. )
BJ2 =V1DOT(BK110,BK120,BK130,BK220,BK230, 

1 XTC + BIl*DELT/2., V 1T0+BJ1*DELT/2., V2T0+BKl*DELT/2. )
BK2 =V2D0T(BK110,BK120,BK130,BK230,BK330, 

1 XTO+BIl*DELT/2., V 1T0+BJ1*DELT/2., V2TC + BK1*DELT/2. )
813 = XDOT(BK110,BK120,BK130,BK230,BK330,

1 XT0+BI2*DELT, V1T0+BJ2*DELT, V2T0+BK2*DELT )
BJ3 =V1DOT(BK110,BK120,BK130,BK220,BK230, 

1 XT0+BI2*DELT, V 1TO+BJ2*DELT, V2T0+BK2*DELT )
BK3 =V2D0T(BK110,BK120,BK130,BK230,BK330, 

1 XTC+BI2*DELT, V1T0+BJ2*DELT, V2T0+BK2*DELT )
BUT0=LT( BK110,BK120,BK130,BK23G,BK330, XTO, VITO, V2T0 ) 
AUTO= BUTO * BUTO 
AXTO= XTO * XTO 
AV1TO= VITO * VITO 
AV2T0= V2TC * V2T0 
BM1TO=W1T( BK120, BK220, BK230, XTO, VITO, V2T0 ) 
AM1TO= 8M1T0 * BM1T0
BM2T0 = W2T( BK130, BK230, BK330, XTO, V1T0, V2T0 ) 
AM2T0 = BM2T0 * BM2T0

WRITE(6,2C5) T, XTO, VITO, V2T0, BUTO, BM1T0, BM2T0
205 FORMAT! INI/1IX,22HSYSTEM TIME RESPONSE,/ 3X,1HT,7X,4HX(T),

1 8X, 5HVKTI ,8X, 5HV2! T) , 8X,4HU(T) ,9X,5HM1 (T) ,8X,5HM2 IT)/
2 IX, F6.3,2X,E11.6,2X,E11.6,2X,E11.6,2X,E11.6,2X,E11.6,
3 2X,E11.6 )

DO 15 1 = 1,N
XT(I>= XTO + DELT/6. * ( BIO +2.*(811 + BI2) + BI3 )
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V1T(I)=V1TO + DELT/6. * ( BJO +2.*(BJ1 + BJ2) + BJ3 ) 
V2T(I)=V2TO + DELT/6. ♦ ( BKO >2.*(BK1 + BK2) + BK3 ) 
AXT( I)= XT( I ) ♦ XT(I> 
AV1T(I)= V1T(I) ♦ V1T([) 
AV2T(I)= V2T(I) * V2T(I) 
BUT( I > = UT(BK11( IhBK12( I)#BK13( I) ,BK23(I ) ,BK33( I) , 

1 XT(I), VLT(I), V2T(I) )
AUT(I) = BUT(I) * BUT(I) 
BM1T1 I )=W1T(BK12( I ) ,BK22( I ),BK23( I) , XT (I) , V1T(I), V2T(D) 
AM1T(I) = BM1T(I) * BMIT(I)
BM2T(I)=W2T(BK13(I),BK23(I),8K33(I),XT(I), V1T(I), V2T(I) ) 
AM2T(I) = BM2T(I) * BM2T(I)
T= T + DELT
810 = XDOTtBKIK I),BK12( I),BK13(I ) f BK23 (I) , BK33 ( I) ,

1 XT(I), V1T(I), V2T(I) )
BJO =V1DOT( BK1K I ),BK12( I ) ,BK13( I ) , BK22 (I ) , BK23 ( I ) , 

1 XT(I), V1T(I), V2T(I) )
BKO =V2DOT(BK11( I ),BK12(I),BK13(I)t8K23(I),BK33(I), 

1 XT(I), V1T(I), V2T(I> )
811 = XDOTtBK1KI),BK12(I),BK13(I),BK23(I),BK33(I),

1 XT(I)+BIO*DELT/2.»V1T(I)+BJ0*DELT/2.,
2 V2T(I)+BKO*DELT/2. )

BJ1 =V1DOT(BK11( I),BK12( I),BK13(I),BK22(I> ,BK23(I),
1 XT(I)+BIO*DELTZ2.»V1T(I)+BJ0*DELT/2.,
2 V2T(I)+8K0*DELT/2. )

BK1 =V2DOT(BK11( I), BK 12( I ) , BK 13 (I ) ,BK23( I ) ,BK33( I ) ,
1 XT(11+BIO*DELT/2.»V1T(I)+BJO*DELT/2.,
2 V2T( I )4-BKO*DELT/2. )

812 = XDOTt BK1K I ),8K12( I ) ,BK13(I ) ,BK23( I ) ,BK33( I ) ,
1 XT( I)4-BI1*DELT/2.,VLT(I )4-BJl*DELT/2.,
2 V2T( I )*BKl*DELT/2. )

BJ2 =V1DOT( BK1K n,BK12( I ) tBK13(I ) ,BK22( I ) ,BK23( I ) ,
1 XT(I)*BI1*DELT/2.,V1T(I)+BJl*DELT/2.,
2 V2T(I)*BKl*DELT/2. )

BK2 =V2DOT( BK1K I ),BK12( I),BK13( I ) ,BK23( I ) ,BK33( I) ,
1 XT( I)-f-B11*DELT/2. ♦ VLTt I )+8 J1*DELT/2. ,
2 V2T( I )+BKl*DELT/2. )

813 = XDOTtBKIK I), BK12( I), BK 13 (I ) , BK 23 ( I ) ,BK33tI) ,
1 XTtI)+BI2*DELTt VLTtI)+BJ2*DELT,
2 V2T( I )+BK2*DELT )

BJ3 =V1DOT(BKlltI),BK12(I),BK13tI),BK22(I),BK23(I),
1 XTt I)+BI2*DELT, VITt I ) +8J2*DELT,
2 V2T( I )+BK2*DELT )

BK3 =V2DOT(BK1It I),BK121 I),BK13(I),BK23(I)tBK33(I)♦
1 XTtI)*BI2*DELT, VITtI)+BJ2*DELT»
2 V2T(I)+BK2*DELT I
WRITE(6, 206) T, XTtI ), VIT(I), V2T(I), BUT(I), BMIT(I), BM2T(I) 

206 FORMATtIX,
1 F6.3, 2X, E11.6,2X,E11.6,2X,E11.6,2X,E11.6,2X,El 1.6,2X
1 Ell.6 )

XTO= XTtI) 
V1TO= VITtI) 
V2T0= V2T(I) 

15 CONTINUE
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NM2= N-2 
AREAX=O . 
AREAV1=O. 
AREAV2=0 .

AREAVV = O .
AREAU=O.
AREAM1=O.
AREAM2=0.

COSTF=O.
COSTF1=O.
WRITE( 6,207) S1,S2, T, ARE AX , ARE AVI , ARE AV2 , ARE AW, ARE AU ,

1 AREAM1, AREAM2, COSTF, COSTF 1
207 FORMAT! 1H1/ 10X,42HWEIGHTING ON SENSITIVITY COEFFICIENT 1....,

1 F7.3/10X,42HWEIGHTING ON SENSITIVITY COEFFICIENT 2....,
2 F7.3/ 3X,1HT,5X, 9HINT. X**2,3X,1OHINT. V1**2,3X,
3 10HINT. V2**2,4X,9H VI * V2 ,4X,9HINT. U**2,3X,LOH INT. Ml**2
4 3X,10HINT. M2**2,3X,LOHCOST FUNT.,3X,13HSEN.C0ST FUNT/
5 IX, F6.3,2X,E11.6,2X,E1Le6,2X,E11e6,2X,E11.6,2X,EL1.6,
6 2X,E11.6,2X,E11.6,2X,E11.6,2X,E11.6 )
T=T+2.*DELT
AREAX = DELT/3. * ( AXTO +4.* AXT! 1) +AXT(2) )
AREAV1= DELT/3. * ( AV1T0 +4 .* AVLT!1) + AV1T12) )
AREAV2 = DELT/3. * ( AV2T0 + 4.* AV2T(1) +AV2T(2) )
AREAVV= AREAV1 + AREAV2
AREAU = DELT/3. * ( AUTO + 4.* AUT! 1) +AUT(2) >
AREAM1= DELT/3. * ( AM1T0 +4.* AMlT(l) + AM1T(2) )
AREAM2= DELT/3. * ( AM2T0 +4.* AM2T! 1) +AM2T(2) )
COSTF= .5 * ( Q*AREAX +R1*AREAU ) 
COSTF1=.5 * ( Q*AREAX +R1*AREAU +R2*AREAM1 +R3*AREAM2 

1 +S1*AREAV1 +S2*AREAV2 )
WRITE(6,208) T, AREAX,AR EAV1,AREAV2,AREAVV,AREAU,AREAM1, 

1 AREAM2, COSTF, COSTF1
208 FORMAT!IX,

1 F6.3,2X,E11.6,2X,E11.6,2X,E11.6,2X,E11.6,2X,E11.6,
1 2X, E 11 e 6, 2X , E 11 eb, 2X, E 11 < 6,2 X, E11 .6 )

DO 25 I = 2,NM2,2 
T=T+2.*DELT 
AREAX = AREAX +DELT/3.*! AXT(I) +4.*AXT(I+1) +AXT(I+2) )
AREAV1= AREAV1 +DELT/3.*! AV1T(I)+4.*AV1T(I+1)+AVIT(I+2) ) 
AREAV2= AREAV2 +0ELT/3.*! AV2T(I)+4.*AV2T(I+1)+AV2T!I+2) ) 

AREAVV= AREAV1 + AREAV2
AREAU = AREAU +DELT/3.*! AUT(I) +4.*AUT(I-H) +AUT(I + 2) I 
AREAM1= AREAM1 +DELT/3.*! AMIT(I)*4.*AMIT(1+1)+AMIT(1+2) ) 
AREAM2= AREAM2 +DELT/3.*! AM2T(I)+4.*AM2T(I+1)+AM2T(I+2) ) 

COSTF= .5 * ( Q*AREAX +R1*AREAU ) 
COSTF1=.5 * ( Q*AREAX +R1*AREAU +R2*AREAM1 +R3*AREAM2

1 +S1*AREAVL +S2*AREAV2 )
WRITE(6, 208) T, AR EAX , ARE A V1, AREA V2 , ARE AW, AR EAU, AREAM1,

1 AREAM2, COSTF, COSTF1
25 CONTINUE
20 CONTINUE
30 CONTINUE 

STOP 
END
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FUNCTION AK11D1 AK 11, AK12, AK 13 )
COMMON AOt A, BO, B, Rl, R2, R3, Q 
AK11D=-2.*AO*AK11 -2.*AK12*BO*BO/R1*AK11*AKL1 +2.*dO/Rl*AKll*

1 AK13 +1./R1*AK13*AK13 ♦B0*B0/R2*AK12*AK12 +B0*B0/R3*
2 AK13*AK13 -Q 

RETURN
END 
FUNCTION AK12D( AK11,AK12,AK13,AK22,AK23 ) 
COMMON AO, A, BO, B, Rl, R2, R3, Q 
AK12D=-2.*A0*AK12 +2.♦80*B0/R1*AK11*AK12 +2.*BO/R1*AK12*AK13

1 -AK22 +BC/R1*AK11*AK23 +1./R1*AK13*AK23 +B0*B0/R2*AK12
2 *AK22 *B0*B0/R3*AK13*AK23

RETURN 
END 
FUNCTION AK13D( AK11, AK12, AK13, AK23, AK33 ) 
COMMON AO, A, BO, B, Rl, R2, R3, Q
AK13D=-2*A0*AK13 +2.*BO*BO/R1*AK11*AK13 +2.*BO/R1*AK13*AK13

1 -AK23 4-BO/R 1*AK11*AK33 +1./R1*AK13*AK33 +B0*B0/R2*
2 AK12*AK23 +B0*B0/R3*AK13*AK33

RETURN 
END 
FUNCTION AK22D( AK11,AK12,AK13, AK22, AK23, SI ) 
COMMON AO, A, BO,B ,R1, R2, R3, Q 
AK22D=-2.*A0*AK22 +2.*BO*BO/R1*AKI1*AK22 +2.*BO/R1*AK13*AK22

1 +BO*BO/R1*AK12*AK12 +2. *BO/R1*AK12 *AK23 ♦l./Rl*AK23*
2 AK23 +B0*B0/R2*AK22»AK22 +BO*BO/R3*AK23*AK23 -SI

RETURN 
END 
FUNCTION AK23D( AK11, AK12, AK13, AK22 , AK23, AK33 )
COMMON AO, A, BO, B, Rl, R2, R3, Q
AK23D=-2.*A0*AK23 +2,*BO*BO/R1*AK11*AK23 +2.*30/Rl*AK13*AK23

1 +BO*BO/R1*AK12*AK 13 +B0ZR1*AK12*AK33 +BO/Rl*AK23*AK13
2 +1./R1*AK23*AK33 +B0*B0/R2*AK22*AK23 +B0*B0/R3*AK23*AK33

RETURN 
END 
FUNCTION AK33D( AK11, AK13, AK23, AK33, S2 ) 
COMMON AO, A, BO, B, Rl, R2, R3, Q 
AK33D=-2.*A0*AK33 +2.*BO*BO/R1*AK11*AK33 +3.*B0/R1*AK13*AK33

1 +BO*BO/R1*AK13*AK13 +B0/R1*AK13*AK33 +1./Rl*AK33*AK33
2 +BC*B0/R2*AK23*AK23 +B0*B0/R3*AK33*AK33 -S2

RETURN 
END 
FUNCTION UT( AK11, AK12, AK13, AK23, AK33, X, VI , V2 ) 
COMMON AO, A, BO, B, Rl, R2, R3, Q 
UT = -l./Rl*( BO*(AK11*X +AK12*V1 +AK13*V2) +AK13*X +AK23*V1 

1 +AK33*V2 )
RETURN
END 
FUNCTION W1T( AK12 , AK22 , AK23, X, VI , V2 ) 
COMMON AO, A, BO, B, Rl, R2, R3, Q
WIT = -BC/R2*( AK12*X +AK22*V1 <-AK23*V2 ) 
RETURN 
END
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FUNCTION W2T ( AK13, AK23, AK33, X, VI , V2)
COMMON AO, A, BO, B, Rl, R2, R3, Q
W2T =-BO/R3*( AK13*X +AK23*V1 +AK33*V2 )
RETURN
END
FUNCTION XDOT( AK11,AK12, AK13, AK23, AK33, X, VI, V2 )
COMMON AC, A, BO, B, Rl, R2, R3, Q
XDOT = A*X -B/R1*( BO*(AK11*X +AK12*V1 +AK13*V2 ) +AK13*X

1 +AK23*V1 +AK33*V2 )
RETURN
END
FUNCTION VIDOTI AK11, AK12, AK13, AK22, AK23 , X, VI, V2 )
COMMON AC, A, BO, B, Rl, R2, R3, Q
V1DOT= ( AO -BO*BO/R1*AKU -BO/R1*AK13 -B0*B0/R2*AK22) *V1

1 +( 1•-B0*BD/R2*AK12)*X -B0*80/R2*AK23*V2
RETURN
END
FUNCTION V2D0T ( AK11, AK12,AK13, AK23, AK33, X, VI, V2)
COMMON AO, A, BO, B, Rl, R2, R3, Q
V2DOT= (AC -BO*BO/R1*AK11 - 2.*BO/R1*AK13 -B0*B0/R3*AK33

1 -I./RISAK33)*V2 +(-B0*B0/R3*AK23 ~BO/R1*AK12 -l./Rl*AK23)
2 *V1 +(-BC*BO/R 3* AK 13 -BO/R1*AK11 -1. / R1 *AK13 ) *X

RETURN
END
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