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ABSTRACT

This thesis examines a first order linear sensitivity and state
regulator to illustrate system performance when changes in the plant
parameter take place suddenly. It is shown that using a closed loop
sensitivity and state feedback design approach to reduce trajectory
deviations can result in significant savings in total control effort
when compared to the state feedback design approach which neglects

sensitivity.
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I. INTRODUCTION

The objective of this thesis is to investigate the performance of
a first-order linear sensitivity and state regulator when changes in
plant parameters take place suddenly. A comprehensive introduction to
the class of systems where nominal values for the parameters are known,
but their exact values are unknown and unmeasurable is given by

Dougherty, Lee, and DeRusso [1].

When the optimal controller is designed using standard time-domain
optimization techniques [2] for a set of nominal plant parameters, and
these parameters are subject to uncertainties, the control in most cases
will not be optimal. Present approaches to introduce parameter sensi-
tivity constraints consist of reformulating the problem by including
sensitivity functions in the cost function to be minimized along with
functions of state and contrel variables. Several papers [1] [3] [4]

[5] have been published demonstrating results of this approach.

Higginbotham in his paper [6] has pointed out that it is not pos-
sible to obtain a closed form solution without neglecting or omitting
certain sensitivity terms. As an alternate approach to synthesizing an

optimal controller, Higginbotham has proposed the introduction of a



sensitivity forcing function term in the cost function to replace those
terms which are not computationally realizable [7]. The resulting system
is closed loop and attempts to compensate for uncertainties in both
state and control coefficient matrices. The state sensitivity problem
is formulated so that independent sensitivity variable control vectors
are determined along with finding the conventional state control vector
u(t) that minimizes a specified performance functional. This technique
results in closed-loop state and sensitivity control laws. Some work
[7] [8] has already been done to illustrate the performance of the
system using this approach. This work has only considered the case when
the uncertain parameter, although different from the assumed value, was

constant over the time of system operation.

This thesis presents an analysis of the closed Toop sensitivity
and state feedback approach for the case when a plant parameter is
subject to an abrupt change in value during system operation. Three
first-order examples are analyzed to show trends resulting from the use
of the combined sensitivity and state feedback approach. The examples
are as follows:

Example 1 - Several abrupt changes occur in the plant
parameter during the time of highest
system sensitivity.

Example 2 - One abrupt change occurs in the plant
parameter at peak system sensitivity.

Example 3 - The plant parameter is exactly known and
is constant during system operation.



The combined sensitivity and state feedback approach is compared
with the state feedback approach which neglects sensitivity to illustrate
system performance which results when system sensitivity is controlled.
In addition, the analysis determines tradeoff's between control effort

required and trajectory error reduction for each of the examples.



I11. MATHEMATICAL DEVELOPMENT OF PROBLEM

The problem is to find optimal state and sensitivity control laws
which will keep the state of a given plant near the origin during real-
time operation, while at the same time reduce trajectory deviations
resulting from abrupt changes in a plant parameter. This objective is

to be accomplished with minimum control effort.

The plant to be controlled is a deterministic first order linear

regulator, represented by,
x(t) = ax(t) + bu(t); x(to) = X, (1)

where the parameters "a" and "b" are subject to uncertainty.

The sensitivity dynamics are determined from the sensitivity function
[9]. There will be a sensitivity term for each uncertain parameter.

Therefore the two sensitivity terms will be

> [}] 1] - ax
for an uncertain "a Vi = 55 (2)
for an uncertain "b" v, = X (3)
2 b



Differentiating Equations (2) and (3)with respect to time and using

Equation (1) the sensitivity equations become

<
—
1l

a vy + X + boaa ; v](t ) =0 (4)

. u -
Vo = a vy tut b o3b v2(t ) =0 (5)
where a0 and b0 are the nominal values of a and b respectively.

Anticipating a control which will be functions of both state and sensi-

tivity, expansions of the terms b éE__ and bogg yield

oV
au du
0 [§§'V] * SV& © 53 T AV, 53 | (6)

ou _
bosa-— b

Vv
du _ ou au . + v . 1
boab - bo 3x V2 + 3V, 3b aVy ob ] (7)

The terms involving the partial derivatives of sensitivity with
respect to the uncertain parameters which appear in Equations (6) and
(7) have been neglected by some authors [3] [10]. The approach suggested
by Higginbotham [7] is to treat these computationally unrealizable
terms as sensitivity forcing functions and include them in the cost

function to be minimized along with state and control functions.

By defining

m(e) = 2 ol 4 20 (8



ne

au V2 L au LY
3V

m,(t) ) " 3 3V, b (9)

and combining Equations (6), (7), (8), and (9) with Equations (4)

and (5) the sensitivity differential equations become

o,(t) = [a, + b, 2x] oq(t) + x(t) + bm (t) 5 o;(t,) =0 (10)
5,(t) = [a, + b 2] o, (t) + u(t) + bmy(t) 5 op(t) =0  (11)

An augmented system z(t) can be written by letting

where T denotes transpose. Equations (1), (10) and (11) can then be

written as
L1 [ 101 1 177
X a 0 0 X b 0 0 u
6] - |1 [a0+b0%%] 0 o] 4|0 bo 0 m (12)
_&2_ 0 0 [<a\0+b0-2—§‘L oo |10 5| [m
or
z (t) = Agz(t) + Byuy(t) 5 z(to) =z, (13)
where
uy(t) = [uT (), m T (), m, (£)] T (14)



A quadratic functional is chosen as the performance index. Thus

t

f
J = %..’. [qx2(t) + s]olz(t) + szczz(t) + r]uz(t) + rémlz(t) + r3m22(t)] dt (15)
0

or in terms of the augmented system z(t)

t

=1
I=3 Jr
0

where the terminal time tf is fixed and specified. The problem is to

f 2Tz + u]TR1u]] dt (16)

find the control u](t) that minimizes the performance index (16) and thus
determine the optimal state control u(t) and the sensitivity controls

m](t) and mz(t).



ITI. PROBLEM SOLUTION

Using the technique outlined in Athens and Falb [2], Chapter 9,

the solution proceeds as follows.

The Hamiltonian H for the system (13) and the cost J of Equation
(16) is

Ho= 5 [21(£)Qz(t) + up (£Rup ()1 AT(8) [Az(t) + Buy(©)] (17)

The costate vector A(t) is the solution of the vector differential

equation
Mt) = - 570y (18)
which reduces to
T

A(t) = - Qz(t) - A, A(t) (19)

1

Along the optimal trajectory, we must have

=0 (20)

which implies that

o _ = Ryup(t)+ B, Ta(t)

au,(t 1 0 (21)



or

uy(t) = -R7 B,"a(t) (22)
Assuming A(t) in the form
A(t) = K(t) z(t) (23)
Then
u(t) = -R;]B]TK(t)z(t) (24)

Athens and Falb [2] show that K(t) must satisfy the matrix differential
equation

T 1

() = K(t)A) - A TK(E) + K(6)8,Ry 8!

Tk(t) - q (25)

where A] Contains k]](t).Equation 25 has the boundary conditions of

The state of the optimal system is then the solution of the linear
differential equation
1

z(t) = [A] - B]R] B

T )
1 K(8) T z(t) 5 z(t)) = z, (26)
To simulate the system dynamics, it will be necessary to expand the

vector matrix equations into their components.



Expansion of the optimal control vector u](t) yields

1
uy(t) = =R} B, TK(t)z(t)

~ Bl Aar [ —W'__‘
u(t) o 0 b, 0 1 ||k, Ky Kkyg || X
m(t)| = 1

1( | I L | 0 |lkyy Kpp Kpg || oy f27)
m,(t - —
| 20 |00 ra [0 0 by ||kgy kg kg3 _||op |
= _ 1
u(t) = =g Dhglkpx + Kypoq + kqg05) + kg +gp 0y + ky00,]  (28)

1

_ 0

m (t) = - T [kyox + kppoq + Kpgo,] (29)
bO

mz(t) = - Fg-[k]3 X+ kpgoq ¥ k3302] (30)

Next the %%- term may be evaluated

du _ 1
Tox T T 7w ok * K (31)

The expanded state equations then become
bb bb

y - 0 b 0 b
M) = Lo - = kyp - 5 kgD () + Lo 27 Kgp = 7kagloy (t)

bb,, b
+ [— -r—_]— k-l3 - F]— k33]02(t) 3 X(t

) = x (32)

0 0

10



, b02 b, bo2 b02
oq(t) = [ay - T =kqq = - kg3 = 5 koplog(t) + [1- = kqpIx(t)
1 1 2 2
b02
- E ko305 3 o](to) =0 (33)
bo2 bo bo2 1
5,(t) = [a, - 2N Kq1 - Z'F; ki3 - Ty k33 G k3glo,(t)

b, by 1
- T ko - v kqp - 7o kgl og (1)
3 1 1
2 b
0 0 L1 x(t) 5 on(t) =0 (34)
*L e Kyz - Y Kyp - v <13t X oplty) =
Expansion of the gain matrix K(t) yields
B 1T 1T i
kit kK2 K3 STRERSPEER SR NN ) 0 0
. . . b b
- . _o, _ 2o 0
Koy kap kp3| = -lkpy ko kyg |1 [ag m K1 r SEY )
. , . b b
0 0
k3p  k3p ka3 k31 Kgp  Kgg E 0 [ao'f;'kll'f;k13]
a, , ! 0 Kir k2 K3
bO bO
- |0 Qe roKn ‘?}‘k13] 0 ko kpp  Kpg
b02 b,
L? 0 [a,- T K37l [k31 K32 K33
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2 2
. b, b, b, b,
kpp(t) = - 2a k,, + 2 ?;“k11k22 +2 ?}"k13k22 * ?;"k12 t 2 2 K12ko3
b 2 b 2 )
1. 2 5, 2. b
P kog Koy Y rKag -5y (38)
1 2 3
. b02 b, bo2 b,
kps(t) = - 2a kg + 2 ?]"kllkzs *3 ?}"klskzs * ?}"k12k13 * ?;"k12k33
K k. + ngk Kpq + Eka k (39)
ry Kesfas T v, *eokes T v askas
) 2

b

. b b

33 r 11%33 r 13733 7 rT I3 r, 33
bo2 2 bo2
* FE"k23 f e k33 = S5 (40)
k]z(t) = kz](t) (41)
ki3(t) = kgq(t) (42)
kps(t) = kgy(t) (43)

The computation of the gain matrix K(t) is reviewed in Appendix A.
Figure 1 shows the structure of the closed loop sensitivity and state re-
gulating system. The "thickened" part outlines the solution which is

obtained from the conventional approach,

13
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Structure of the Optimal Linear Sensitivity
and State Controlled Regulator



IV. SYSTEM PERFORMANCE ANALYSIS

This section presents the system performance of the closed loop
sensitivity and state feedback design for the reduction of trajectory
deviations resulting from a suddenly changing plant parameter. The
system studied in this thesis has the state coefficient 'a' subject to
abrupt changes which occur when the plant sensitivity is the greatest.
The combined sensitivity and state feedback approach is compared with
the approach of using only state feedback to determine tradeoffs
between control energy requirements and trajectory deviation reduction.
For the state feedback approach, trajectory error was investigated with
weighting on state in the cost functional as a parameter. In the com-
bined approach, the weightings on sensitivity and the sensitivity forcing

function in the cost functional are the parameters which are varied.

The analysis was performed with the following numerical values.

The plant equation is

x(t) = ax(t) + u(t) ; x(t) =1.0

with the assumed value 3, = -2.0and b = bO = 1,0

The cost functional for the state feedback approach is

4
I= 3 f [ax’(t) + u¥(t)] dt
(¢}

15



with the weighting on state, q varying from 0.2 to 8.0.

The cost functional for the combined sensitivity and state feedback

approach is
4
1=1 [ 10.20(1) + wE(t) + 510,20 + rm ()Tt
0

with the weighting on sensitivity $1 varying from 0.0 to 100.0 and the
weighting on the sensitivity forcing function, ro varying from 0.2 to
500.0. The value of P and ry are zero because the control coefficient
'b'for this analysis is assumed to be known and constant. Three examples
have been analyzed with different parameter time histories. For Example
1 the state coefficient 'a' has several abrupt changes during the

sytem operation.

The state response of the system for Example 1 using only state
feedback is shown in Figure 2. Also given in Figure 2 is the time
history of the plant parameter 'a' for example 1. As the weighting on
state q is increased the trajectory deviation from a perfectly model
system with constant parameters is reduced. The state response of the
combined sensitivity and state feedback approach for Example 1 is given
in Figure 3. When the sensitivity weighting S1 is zero, sensitivity is
not considered and the state response for both approaches with q = 0.2 are
identical. Using a weighting on the sensitivity forcing function m(t) of
10, and increasing the sensitivity weighting S the trajectory error is
decreased. The responses shown in Figure 3 were chosen to demonstrate

that it is possible to have comparable trajectories between the two

16
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approaches. Figure 4 shows the corresponding total control effort
required to reduce trajectory error for both the state feedback approach

and the combined sensitivity and state feedback approach.

The results given in Figure 4 show for Example 1 that significant
saving in total control effort can be realized if a combined sensitivity
and state controller is used to reduce trajectory deviations. In the
event it was desirable to reduce the trajectory error to that of a
perfectly modeled system with constant plant parameters, the sensitivity
and state feedback design would require 67 percent less control energy

than if only state feedback was used.

In Example 2, the state coefficient 'a' has only one abrupt change
during system operation. This example was chosen to see if the combined
sensitivity and state approach would still require less control energy
if the plant parameter had a less active time listing. The state response
using only state feedback is shown in Figure 5. Also given in Figure 5
is the time history of the plant parameter 'a' for Example 2. Notice
that a lower value of state weighting, q, is required in this example
to achieve a reduction in trajectory error than was required in Example 1.
The state response for the combined sensitivity and state feedback
approach is given in Figure 6. Figure 7 shows the corresponding total
control effort required to reduce trajectory for both the state feed-

back approach and the combined sensitivity and state feedback approach.

Figure 7 shows that the combined sensitivity and state feedback

approach is only slightly better than the state feedback only approach.

19
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This might be expected, because as the plant behaves more closely to
the model, less trajectory error results. Consequently, the amount of
sensitivity feedback required is less and the two systems approach

each other.

For Example 3, the state coefficient 'a' has only one abrupt
change during system operation. Figure 8 presents the tradeoff between
trajectory error reduction and total control effort for both approaches
when the actual and assumed plant parameters are the same. For this
perfectly modeled system, both approaches require approximately the
same control effort for a given state error reduction. This would
indicate that if a plant parameter was expected to change abruptly as in
Example 1 or 2 but, in fact, remained constant, the combined sensitivity
and state feedback approach would not require more control effort than
the state feedback approach. Yet, if the plant parameter did change
suddenly, the combined sensitivity and state feedback approach would be
able to more effectively reduce the trajectory error with less control

effort than if the state feedback approach was used.

It is interesting to note the difference between the state control,
u(t) for the two approaches. Figure 9 shows the form of the state control
for both the state feedback design and the combined sensitivity and state
feedback design. For the system with only state feedback, the control
starts with a greater value than the combined approach and decays
exponentially. The system sensitivity of the unforced system begins

at zero and rises to a peak early in the system operation and then goes

24
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to zero as time increases. In figure 9, note how the combined sensitivity
and state feedback control starts lower (sensitivity is small) and remains
higher until sensitivity peaks and then quickly goes to zero. The fact
that the combined approach state control is greater during high system
sensitivity enables it to better compensate for the changing parameter.
The following section discusses some of the practical limitations of
implementing the optimal control for the combined sensitivity and state

feedback design.
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V. COMPUTER MEMORY REQUIREMENTS

The combined sensitivity and state feedback design will have

greater computer storage requirements than the state feedback alone
approach. This is due to the fact that there are inherent difficulties

in the real-time calculation of the optimal control because the forward
time numerical solution of the differential gain equations are subject

to computational instability. Presently, it is required to first solve
off-Tine the gains backward in time and then store them in memory to be
used at the appropriate time. For higher order systems, with the potential
of a large number of uncertain parameters, the computer memory require-

ments may become excessive to store the required time varying gains.

However, a computational technique has been proposed which will
allow the gains to be computed in an on-line manner [11]. This technique
uses a recursive algorithm which can integrate the differential gain
equations forward in time without the associated computational instability,
thereby eliminating costly memory storage. Further investigation needs
to be done in this area to develop the full potentiality of implementing
this computational technique with the state and sensitivity feedback

gain requirements.
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VI. SUMMARY AND CONCLUSIONS

In this thesis, an approach for the reduction of trajectory devia-
tion resulting from a parameter with abrupt changes has been studied
and compared to the conventional state feedback approach. The new
approach was a system which had feedback of a sensitivity measure as
well as state feedback. Three first order examples were analyzed. It
was shown that the combined sensitivity and state feedback approach
has the potential for using substantially less control energy to reduce
trajectory error than an approach using only state feedback where the
plant parameter has several abrupt changes. In addition, it was demon-
strated that for the case where the parameters are known exactly, both
approaches require essentially the same control energy to effect a reduc-

tion in trajectory error.
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APPENDIX A

COMPUTATION OF THE GAIN MATRIX, K(t) AND THE
STATE AND SENSITIVITY EQUATIONS

The analysis of the state and sensitivity system requires the
solution of several non-Tinear differential equations. The technique

for solving these equations will be to use the method of Runge-Kutta.

First the feedback gains (Equations 35 through 39) will have to
be solved backward in time because only the final conditions on K(t) are
known. The feedback gains solutions will be stored forward in time
and used in the calculation of the state and sensitivity Equations 32, 33,

and 34,

After the state and sensitivity are known, the integral squared

performance indices are computed by using Simpson's integration rule.

The flow chart for the computer simulation follows.



‘ START ’

’READ
INITIALIZATION
DATA

O—

¢ READ
SYSTEM
CONSTANTS

WRITE

FINAL TIME

TIME INCREMENT
SYSTEM CONSTANTS

READ
SENSITIVITY
WEIGHTINGS

CALCULATION OF FEEDBACK GAINS

CALCULATE INITIAL
RUNGE-KUTTA COEFFICIENTS
USING FINAL CONDITIONS ON
FEEDBACK GAINS

WRITE FINAL
VALUE OF
FEEDBACK
GAINS, TIME

(O—

SOLVE FOR NEXT
VALUE OF FEED-
BACK GAINS
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CALCULATE RUNGE-
KUTTA COEFFICIENTS
USING FEEDBACK
GAIN VALUES JUST
CALCULATED

EXCHANGE FEEDBACK
GAIN VALUES WITH
PREVIOUSLY CALCULATED
VALUES

WRITE VALUES
OF FEEDBACK
GAINS, TIME

STORE FEEDBACK
GAIN VALUES
FOREWARD IN TIME

NO

YES

BEGIN SOLtiThI‘%N OF STATE
SENSITIVITY EQUATION

JCALCULATE INITIAL RUNGE-|
KUTTA COEFFICIENTS USING
INITIAL CONDITIONS ON
ISTATE, SENSITIVITY, AND
FEEDBACK GAINS

WRITE INITIAL
VALUE OF

STATE, SENSITIVITY,
AND TiIME

CALCULATE
STATE CONTROL AND
SENSITIVITY CONTROL
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WRITE
STATE CONTROL
SENSITIVITY CONTROL

] |

SOLVE FOR NEXT .

VALUE OF STATE XDOT
AND SENSITIVITY

SOLVE FOR
STATE CONTROL
SENSITIVITY CONTROL

EXCHANGE STATE

AND SENSITIVITY
VALUES WITH
PREVIOUSLY CALCULATED
VALUES

WRITE STATE
SENSITIVITY,
STATE CONTROL,
SENSITIVITY
CONTROL

NO

YES

CALCULATION OF INTEGRAL PERFORMANCE MEASURES

INITALIZE INTEGRALS

CALCULATE
INTEGRAL SQUARED
QUANTITIES USING
SIMPSON'S RULE
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WRITE
INTEGRAL
SQUARED
QUANTITIES

ARE ALL
SENSITIVITY
WEIGHTING
PROCESSED
?

ARE ALL
CASES PROCESSED

?
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APPENDIX B
PROGRAM VERIFICATION

Athans and Falb [1] page 777, equation 9-155, gives a closed form
solution for the feedback gain for the first-order system without

sensitivity considerations.

Program verification will consist of comparing the Runge-Kutta

solution of k]](t) with the closed form solution.

The optimal state gain is given by

f/r - a - Be26(t-T)

5+a+(8-a)m—?—a—1-—8

kqp(t) = %

f/r - a - B eZe(t -T)

1- f/r - a+3g

The system constants are for the fixed time case, tf = 1 sec

a = -] _

N
q=1

r=1

f=20

t=0

T =1
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Equation (1) becomes

1+ 2
ka,(0) =
N Lo 1-V2 22
TV 2
-]_e"2\/2—
ky7(0) =

14T - (1242 )2V

e2V2 459487

1+/2
V2 -1

]

2.414214

.4142.4

.059487

- -
k100) = 2747 0 + aTaoTa (osoasry - 385837

The program calculated value for k]](O) = ,385818

For the infinite time case Equation (1) becomes
ky7(0) =V2 - 1= 414214

The program calculated value of k]](O) for the time infinite case is .414214.
The results of the Runge-Kutta solution of the feedback gain are considered

acceptable.
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APPENDIX C
PROGRAM LISTING

In this Appendix, the computer program used to perform the calcu-

lations described in this thesis is given.

* % &% % ok & ok X k k Kk %k %k %k % %k ¥k k Kk x ¥k % ¥k Kk ¥ k¥ % %k Kk %k ¥k Xk %k
* *
* DESIGN OF SENSITIVITY AND STATE VARIABLE FEEDBACK OPTIMAL *
* CONTROL SYSTEMS. *
* *
* SYSTEM -

* XDOT = A%X + B*U *
* VIDOT = X + (AO -(BO/RLI)®(BO*K11+K12))%Vl + BO%M] =
* V2DOT = (AC =(BO/RLI*(B80%K11)1+K12))*V2 + U + BO%M2 *
* %
k % %k ok & ko ok & ok ook ok o ok ok ok oo & ok &k oA Ak ok ok K OF oo X% X% ok &k K ¥ XK

eees NN = THE NUMBER JF S1 AND S2 WEIGHTINGS.

N = THE NUMBER OF ITERATIONS
DIMENSIUN AK11(330)+8K11(300),AK12(30C) 8K12(320C),AK13(320),
BK13(300),AK22(3CQ)8K22(300),AK23(30C),8K23(300),
AK33(300)yBK33(300)4XT(30C),VLT(300),V2T(300),
AXT(300),AVIT(300),AV2T(3C0) ,AUT(300) 4BUT(300),
AM1T(300),BM1T(300),AM2T(300) ,8M2T{(300)
COMMUN A0y A 4y BO 4By R1ly R2y R3 » Q
READ (5,9C) NCASE
90 FORMAT!( 14)
READ(5, 100) DELTAT, TF, AK11C, AK120, AK130, AK220, AK23C, AK330,
1 Ns NN
100 FORMAT( 8F8.04,215 )
READ(5,102) XT0, V1TO, V2TO
SAVETF = TF

SWN o~

SAK110 = AK110
SAK120 = AK120C
SAK130 = AK13C
SAK220 = AK220
SAK230 = AK230
SAK330 = AK330
SAVXTO= XTO
SAVITO = VITC
SAV2TO = V2T¢

DO 3C LLLL = 1y NCASE
KEAD(5,1C2) AC,A, BOy By R1ly R2y R3y Q@
102 FORMAT(1CF8.C)
TF = SAVETF
WRITE(6,4200) TFy DELTAT, N
200 FORMAT( 1H1/ 10Xy 1BHFINAL TIMEceeesassFT7.3/
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2 10X, 18HNO., OF ITERATIONS.,14 )
WRITE(6,203) ACy Ay BOy By R1ly R2y R3, Q
203 FORMAT( ///// 10X, 9HCONSTANTS/ 10X,3HAO=,F6.2,2X92HA=,F6.2,
1 ZX, 3H80=y F602, 2X, 2HB=,F6.292X /].OX’ 3HR1=,F6.2 yZXy
2 3HR2=,F6.2,2X,3HR3=F6.292X12HQ=9F6.2 ’
DO 20 LLLLL = 1y NN
READ(5,101) S1, S2
101 FORMAT( 2F10.0)
TF = SAVETF
Ceeee SOLUTION OF FEEDBACK GAINS.

AK110 = SAK110
AK120 = SAK120
AK130 = SAK130
AK220 = SAK220
AK230 = SAK230
AK330 = SAK330

AIO = AK11D(AK110,AK120,AK130)

AJO = AK12D(AK110,AK120,AK130,AK220,AK23C)

AKN = AK13D(AK110,AK120,AK130,AK230,AK330)

ALO = AK22D(AK110,AK120,AK130,AK220,AK230,51)

AMO = AK23D(AK110,AK120,AK130,AK220,AK230,AK330)

ANG = AK33D(AK110,AK1304AK230,AK330,52)

AIl = AK11D(AKL1O+AIC*DELTAT/2., AKL2C+AJO*DELTAT/2.,
1 AK130+AKC*DELTAT/2.)

AJ1 = AK12D(AK110+AlO*DELTAT/2., AK120+AJOXDELTAT/2.,
1 AK130+AKO*DELTAT/2., AK22C+ALO%*DELTAT/2.,
2 AK 2304 AMO*DELTAT/2.)

AK1 = AK13D(AK110+AIO%DELTAT/2., AKL20+AJO*DELTAT/2.,
1 AK130+AKC*DELTAT/ 2., AK230+AMO*DELTAT/2.,
2 AK330+ANO*DELTAT/2.)

ALl = AK22D(AK110+AIO*DELTAT/2., AK120+AJO*DELTAT/2.,
1 AK 130+AKO%DELTAT/2.y AK220+ALO*DELTAT/2.,
2 AK230+AMO*DELTAT/ 2.y S1)

AM1 = AK23D(AK110+AIO*DELTAT/2., AK120+AJOXDELTAT/2.,
1 AK130+AKO*DELTAT/2., AK220+ALO*DELTAT/2.,
2 AK230+AMO%*DELTAT/2., AK330+ANO*DELTAT/2.)

AN1 = AK33D(AK110+AIO*DELTAT/2., AK130+AKO*DELTAT/2.,
1 AK230+AMO*DEL TAT/ 2., AK330+ANOXDELTAT/2., S2)

AI2 = AK11D(AK1LO+AIL*DELTAT/2., AK120+AJ1*DELTAT/2.,
1 AK1304+AK1%DELTAT/2.)

AJ2 = AK12D(AK110+AI1%DELTAT/2.y AK120+AJI*DELTAT/2.,
1 AK130+AK1*DELTAT/2., AK220+ALL*DELTAT/2.,
2 AK230+AM1*DELTAT/2.)

AK2 = AK13D(AK1ID+AI1%*DELTAT/2., AK120+AJ1*DELTAT/2.,
1 AK1304AK1*¥DELTAT/ 2.y AK230+AML*DELTAT/2.,
2 AK330+AN1*DELTAT/2.) :

AL2 = AK22D(AK110+AI1%DELTAT/2., AK120+AJ1*DELTAT/24,
1 AK130+AK1%*DELTAT/2., AK220+4AL1*DELTAT/2.,
2 AK230+AM1%DELTAT/2., S1) _

AM2 = AK23D(AK110+AI1*DELTAT/2., AK120+AJL*DELTAT/2.,
1 AK130+AK1*DELTAT/ 2., AK220+AL1*DELTAT/2.,
2 AK230+AM1%DELTAT/ 2., AK330+ANL*DELTAT/2.)
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1

AN2 =

AK33D(AK110+ATI1*DELTAT/ 2.9 AK130+AKL*DELTAT/2.,

AK230+AM1*DELTAT/ 2.9 AK330+ANL*DELTAT/249 S2)

AI3 = AK11D(AK110+AI2*DELTAT, AK120+AJ2*DELTAT,
AK130+AK2*DELTAT)

AJ3 = AK12D(AK110+AI2%DELTAT, AK120+AJ2*DELTATY,
AK130+AK2*DELTAT, AK220+AL2*DELTAT,
AK230+AM2%DELTAT)

AK3 = AK13D(AK110+AI2*DELTAT, AK120+AJ2%DELTAT,
AK130+AK2*DELTAT, AK230+AM2*DELTAT,
AK330+AN2%DELTAT)

AL3 = AK22D(AK110+AI2%DELTAT, AK120+AJ2*DELTAT,
AK130+AK2*DELTAT, AK220+AL2*DELTAT,
AK230+AM2*DELTAT, S1)

AM3 = AK23D(AK110+AI2*%DELTAT, AK120+AJ2*DELTAT,
AK13C+AK2*DELTAT, AK220+ AL2*DELTAT,
AK230+AM2%DELTAT, AK330+AN2*DELTAT)

AN3 = AK33D(AK110+AIZ2*DELTAT, AK130+AK2%DELTAT,
AK23J0+AM2*DELTAT, AK330+ANZ*DELTAT, S2)

WRITE(6,4201) S1, S2y TFy AK110y AK120, AK130, AK220, AK230,AK330

201 FORMAT{

S W

F7.3y/ 11X942HWEIGHTING ON SENSITIVITY COEFFICIENT 2400ey

1H1y 10Xy 42HWEIGHTING ON SENSITIVITY COEFFICIENT lecess

F7.37

3X g LHT 9y TX9 SHK(11) 38Xy SHK(12) 48Xs SHK{13) y8Xy5HK {22} 48X,5HK(23),

8Xy5HK(33)/1X,
Ellcb,ZX’Elloé

D0 12 I=

AK11(1)
AK12(1)
AK13(1)
AK22(1)
AK23 (1)
AK33(1)
TF=
IF(I-1)
BKL1(N)
BK12(N)
BK13(N)
BK22(N)
BK23(N)
BK33(N)
IF(N-1)
BK110
BK 120
BK13G
BK220
BK230
BK33C
GG TU

[ T T I { O L |

1+ N

AK110
AK120
AK130
AK220

AK 230
AK330

TF + DELTAT

Ty 69 1
AK110
AK120
AK 130
AK22C
AK 230
AK330
29y 1y 2
AK11( 1)
AK12(1)
AK13(1)
AK22( 1)
AK23(1)
AK33(1)

F6e392XeELl1eb692X9E1Lleby2X9bElleb92XyELL.6492Xy

)

++ ++ ++

(DELTAT/6.)*(AIQ+2., % (AI1+AIZ2)+AI3)
(DELTAT/6.)*%(AJO+2.%(AJ1+AJ2)}+AJ3)
(DELTAT/6.)*(AKO+2.% (AK1+AK2)+AK3)
(DELTAT/6)*(ALO+2.%(AL1+AL2)+AL3)

(DELTAT/6 )% (AMO+2.¥ (AM1I+AM2)+AM3)
(DELTAT/64)%(ANO+2. % (ANL+AN2 ) +AN3)

BKI1{N=1I)
BK12(N-1)
BK13{N~1)
BK22(N-1)
BK23(N-1)
BK33(N-1)

AK11(I)
AK12(1)
AK13(1)
AK22(1)
AK23(1)
AK33( 1)
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AlOQ AK11D(AK11(I)y AKl2{T1), AK13(I))

AJO = AK12D(AK11(I)y AK12(I)y AK13(I)y AK22(I), AK23(I))

AKO = AKI13D(AKL11(I)y AK12(I), AK13(I), AK23(I), AK33(I))

ALO = AK22D(AK11(I)y AK12(I)y AK13(I), AK22(I1), AK23(I), S1)

AMC = AK23D(AK11(I), AK12(I), AKL3(I), AK22(I), AK23(I), AK33(I))
ANO = AK33D(AK11l(I)y AK13(I), AK23(I), AK33(I), S2)

AIl = AK11D(AKI1(I)+AIC*DELTAT/2.y AK12(I)+AJO%XDELTAT/2.,

AK13(I)+AKO*DELTAT/2.)

AK12D(AKLII(TI)+AIO*DELTAT/2.y AK12(I)+AJC*DELTAT/ 24,

AK13(I)+AKO*DELTAT/2.y AK22(I)+ALC*DELTAT/2.,
AK23( I )+AMO%DELTAT/2.)

AK1l = AK13D{AK11(I)+AIC*DELTAT/2.y AKLI2(I)+AJO*DELTAT/2.,
AK13{I)+AKO*DELTAT/2.y AK23(I)}+AMOXDELTAT/2.,
AK33(I)+ANO*DELTAT/2.)

ALl = AKZ22D(AK1L1(IV+AIO*DELTAT/2.y AK12([)+AJO*DELTAT/2.4y
AK13(I)+AKO*DELTAT/2.y AK22(I)+ALO*DELTAT/2.,
AK23(TI)+AMO*DELTAT/2.y S1)

AM1 = AK23D(AKLI1(I)+AIO*DELTAT/2.,» AK12(I)+AJOXDELTAT/2.,
AK13(I)+AKO*DELTAT/2.y AK22(I)+ALO*DELTAT/2.,
AK23(1)+AMO*DELTAT/ 2.y AK33(I)+ANOXDELTAT/2.)

AN1 = AK33D(AK11(I)+AIO*DELTAT/2.9+ AK13(I)+AKGC*DELTAT/2.,
AK23(1)+AMO*DELTAT/2.y AK33{(I)+ANOXDELTAT/2.y S52)

Al2 = AK11D(AK1L(I)+AI1*DELTAT/2.y AK12(I)+AJ1*DELTAT/2.,
AK13(1)+AK1*DELTAT/2.)

AJ2 = AKI12D(AK11(I)+AI1*DELTAT/2+y AK12(I)+AJL*DELTAT/2.4,y
AK13 (I )+AK1*DELTAT/2.y AK22(I)+ALL1*DELTAT/2.,
AK23{ I )+AM1*DELTAT/2.)

AK2 = AK13D(AK11{I)+AIL*DELTAT/2.y AK12(I)+AJ1*DELTAT/2.,
AK13{1)+AK1*DELTAT/2.» AK23(1)+AMLI*DELTAT/2.,
AK33(I)+ANL*DELTAT/2.)

AL2 = AK22D(AK1L(I)+AI1*DELTAT/2.y AK12(I)+AJ1*DELTAT/2.,
AK13(T)+4AK1*DELTAT/2+y AK22(I)+AL1*DELTAT/2.,
AK23(T1)+AMI*DELTAT/2., Sl)

AM2 = AK23D(AK11(I)+AI1*DELTAT/2.y AK12(I)+AJL*DELTAT/2.,
AK13{I)+AK1*DELTAT/2.y AK22{I)+ALL*DELTAT/2.,
AK23(T)+AM1*DELTAT/2., AK33(I)+ANL*DELTAT/2.)

AN2 = AK33D(AK11(I)+AIL1*DELTAT/2.y AKI3(I)+AK1*DELTAT/2.,
AK23(1)+AM1*DELTAT/2.9y AK33(I)+AN1*DELTAT/2., S2)

AJl

AI3 = AK11D(AK11(I)+AI2*%DELTAT, AK12 (I)+AJ2%DELTAT,
AK13(T)+AK2*DELTAT )

AJ3 = AK12D(AK11(I)+AI2*DELTAT, AK12 (I)+AJ2*DELTAT,
AK13(I)+AK2*DELTAT, AK22 (I )+AL2*DELTAT,
AK23(1)+AM2%DELTAT)

AK3 = AK13D(AK11(I)+AIZ*DELTAT, AK12(T)+AJ2%DELTAT,
AK13(I)+AK2*DELTAT, AK23 (1) +AMZ2*DELTAT,
AK33(I)+AN2*DELTAT)

AL3 = AK22D(AK1I{I)+AI2*DELTAT, AK12 (1) +AJ2*DELTAT,
AK13(I)+AK2*DELTAT, AK22 (1) +AL2*DELTAT,
AK23( 1) +AM2%DELTAT, S1)

AM3 = AK23D(AK11{(I)+AI2%DELTAT, AK12(I)+AJ2*DELTAT,
AK13({1)+AK2%DELTAT, AK22{T)+AL2*DELTAT,
AK23( I )+AM2%DELTAT, AK33(I)+AN2*DELTAT )

AN3 = AK33D(AK1l{I)+AIZ2*DELTAT, AKL13 (1) +AK2*DELTAT,

AK23(T1)+AM2*DELTAT) AK33(I)+AN2*DELTAT, S2)
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WRITE(6,204) TF, AK11(I), AK12(I), AK13(I1), AK22(1}, AK23(I),
1 AK33(1)
204 FORMAT{(1X,
FOE392X9E1le692X)EL11a692X9ELlLe692X9ELLe692X9ELL06,42X

1 Ell.6 )
AK110= AK1l1(I)
AK120= AK12(1I)
AK130= AK13(1I)
AK220= AK22(1I)
AK230= AK23(1)
AK330= AK33(1)

10 CONTINUE
42 T=0.

DELT=-DELTAT
XTO= SAVXTO
V1T0= SAV1TO
v2TC= S5AV270
BIO = XDOT(BK110,8K120,BK1304BK230,48K330, XTO, V1TO, V2T0)
BJO =V1DOT(BK110,BK12048K130,BK2204BK230y XTOy V1ITOy V2TO)
BKO =v2DOT(BK11lC,BK120,8K130,BK230,BK330y XTO, V1TO, V270)
BI1l = XDOT(BK11CyBK120,8K13G,BK230,8K330,

1 XTC+BIOXDELT/2.y VITO+BJOXDELT/2.y V2TO+BKOX*DELT/2.
BJ1 =V1DOT(BK110,8K120,48K130,BK220,BK230,

1 XTO+BIC*DELT/2.9y VITO+BJO*DELT/2.y V2TO+BKOX*DELT/2.
BK1 =v2DOT(BK110,8K120,8K130,8K230,8BK330,

1 XTC+BIO*DELT/2.y VITO+BJOXDELT/2.4 V2TO+BKC*DELT/2.
BI2 = XDOT(BK11048K120,B8K130,BK230,8K330,

1 XTO4BI1*%DELT/24y VITO+BJL1*DELT/2.9 V2TO+BKLI*DELT/2.
8J2 =Vv1DOT(BK110,8K120,BK130,8K220,8BK230,

1 XTC+BI1*DELT/2.y VITC+BJL*¥DELT/2.y V2TO+BKLI*DELT/2.
Bk2 =v2DOT(BK11C,B8K120,BK130,8K230,8K330,

1 XTO+BI1%DELT/24y VITO+BUL*DELT/2.y V2TC+BK1*DELT/2.
BI3 = XDOT(BK110,BK120,BK130,BK230,BK330,

1 XTO+BI2*DELT, VITO+BJ2*DELT, V2TO+BK2*DELT
BJ3 =v1DOT(BK110,8K1204BK130,BK2204BK230,

1 XTO+BI2*DELT, V1ITO+BJ2*DELT, V2TO+BK2*DELT
BK3 =V2DOT(BK11C,BK120,8K130,BK230,BK330,

1 XTC+BIZ2*DELT, VITO+BJ2*DELT, V2TO+BK2*DELT

BUTO=LT( BK110,8KX120,8K130,8BK230,8K330, XTO, VLT3, V270 )
AUTO= BUTO * BUTO
AXTC= XTO * XTO
AV1TO= VITC * VITO
AV2TGC= V2TC * V2T0
BML1TC=W1T( BK120, BK220y BK230, XTJy» V170, V270 )
AM1TO0= BMI1TO * BM1TO
BM2TO=W2T{ BK130, BK230, BK330y XTOy V1TO, V270 )
AM2T0O = BM2TO *  BMZ2TO :
WRITE(6,2C5) Ty, XTO, V1TO, V270, BUTG, BMITO, BM2TO
205 FORMAT( 1H1/11X,22HSYSTEM TIME RESPONSEs/ 3Xs1lHTy7Xy4HX(T),
1 8XySHV1I(T)g8XySHV2(T) yBXy4HU(T) 39Xy 5HML(T) s8Xe5HM2(T)/
2 11Xy FOa392X9E11e692X9EL1e692X9ELL1e692X9E11e692XyELLab)
3 2XyElle6 )
DO 15 I=14N
XT(I)= XTO + DELT/4%. * ( BIO +2.*(BIl + BI2) + BI3 )
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VIT{I)=VITO + DELT/6. * ( B8JC +2.*(B8J]1 + BJ2) + B8J3 )
V2T(I)=V2TO + DELT/6. * ( BKO +2.%{BK1l + BK2) + BK3 )
AXT(I)= XT(1l) * XT{(I)
AVIT(I)= VIT(I) * Vv1T(I)
AV2T(I)= V2T(I) * v2T{(I)
BUT(I)=UT(BK11(I)yBK12(1),BK13(I),BK23(1),BK33(1),

1 XT({I), VIT(I), V2T(I) )
AUT(I) = BUT(I) * BUT(I)
BMIT(I)=W1T(BK12(1),BK22{1),BK23(I), XT{I), VIT(I), V2T{I))
AMLIT(I) = BMIT(I) * BMIT(I)
BM2T(I)=W2TIBKL3(I1)+yBK23({TI)yBK3I3(I)yXT(I)y VIT(I), V2T(I) )
AM2T(I) = BM2T(I) * BM2T{I)

= T 4+ DELT

BIO = XDOT(BK11(I),B8K12(1),BK13(I),BK23(1),BK33(1),
1 XT(I)y VIT(I), V2T(I) )

BJO =V1DOT(BK11(I)yBKL2(I)yBK13(I)yBK22(I)BK23(I),’
1 XT(I)y VIT(I),y, V2T(I) )

BKO =V2DOT(BK11(I)yBK12(T1)4BK13(1),8K23(I),8K33(1),
1 XT(I)y VIT(I), V2T(I) )

BI1 = XDOT{BK11{I),BK12(I),BK13(I),BK23(1),BK33(I),
1 XT(I)+BIO*DELT/2.9yVIT(I)+BJOXDELT/ 2.,
2 V2T(1)+BKO*XDELT/2. )

BJ1 =VIDOT({BKI1(1)yBK12(T1),BK13(I1)yBK22(1)BK23(1),
1 XT(I)4+BIO*DELT/2.9yVIT(I)+BJO*DELT/ 2.,
2 V2T(1)+BKO*DELT/2. )

BK1 =V2DOT(-BK11{T1)yBKL12(I)¢BK13(I),BK23(1),BK33(1),
1 XT{I)+BIO*DELT/2.4VIT(I)+BJO*DELT/2.,
2 V2T(I1)+BKO*DELT/2. )

BI2 = XDOT(BK11{I),BK12(1)yBK13(I)yBK23(I),BK33(I),
1 XT(I)+BIL*DELT/2.9VIT(I)+BJ1*DELT/2.,
2 V2T{1)+BK1*DELT/2. )

BJ2 =V1DOT(BK11(1)yBKL12(I),BK13(I),BK22(1),BK23(1),
1 XT(ID4BIL*DELT/2.yVIT{I)+BJI*DELT/2.,
2 V2T(1)+BK1*%DELT/2. )

BK2 =V2DOT(BK11(I)yBK12(1)yBKL13(I)yBK23(I)yBK33(I),
1 XT(I)+BI1*DELT/2.4VIT(I)4BJL1*DELT/2.,
2 V2T{I)+BK 1*DELT/2,. )

BI3 = XDOT(BK11{I)yBK12(1)yBK13{I),BK23(I)BK33(I),
1 XT(I)+B12*DELT, VIT(I)+BJ2%DELT,
2 V2T(I)+BK2%DELT )

B8J3 =V1DOT(BK11(I),BK12(1),BK13(I),BK22(I)4BK23(1),
1 XT(I)4BI2*DELT, VIT(I)+BJ2*DELT,
2 V2T( 1) +BK2*DELT )

BK3 =V2DOT(BK11{I),BK12(I)yB8K13(I)yBK23(I)4BK33(I),
1 XT(I)+BI2%DELT, VIT(TI)+BJ2*DELT,
2 V2T(1)+BK2*DELT )

WRITE(6,206) Ty XT(I)y VIT(I), V2T(I),y BUT(I), BMIT(I}, BM2T(I)
206 FORMAT(1X,

1 F60392X9E11e692X9EL110692X9EL10692X9EL11e692Xy9EL1Le642X
1 Ell.6 )
XT0= XT(I)

V1iT0= VIT(I)
V2T0= V2T(I)
15 CONTINUE
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T=0.
NM2= N-=-2
AREAX=0.,
AREAV1=0.
AREAVZ2=0.,
AREAVV=0,
AREAU=0.
AREAM1=0.
AREAM2=0,
COSTF=1.
COSTF1=0,
WRITE(6,4207) S1452y Ty AREAX,AREAV1,AREAV2,AREAVV,AREAU,
1 AREAM1l, AREAM2, COSTF, COSTF1
207 FORMAT( 1H1/ 10X, 42HWEIGHTING ON SENSITIVITY COEFFICIENT laecseey
F7.3/10Xy42HWEIGHTING ON SENSITIVITY COEFFICIENT 2.0ee9
FTe3/7 3Xy1HT 95Xy 9HINT. X%x%x2,3X,10HINT. V1%%2,3X,
10HINT, V2%%2 434Xy 9H V1 + V2 44X 9HINT. U%%2,3X,10HINT. M1%%*2,
3X9y 10HINT. M2%%2,3X, 10HCOST FUNT.»3X,y13HSEN.COST FUNT/
1Xy F6Ee392X3E11e692XeE11e692X9EL11.692X3E11e692X9ELL L6

2X9E11e692X9E11.692X9EL110642X9ELLle6 )
T=T+2.%DELT

o NS W

AREAX = DELT/3., * ( AXTO +4.% AXT(1) +AXT(2) )
AREAV1I= DELT/3. * ( AVITO +4.% AVIT(1) +AVIT(2) )
AREAVZ2=  DELT/3. * ( AV2TO +4.%* AV2T(1) +AV2T(2) )

AREAVV= AREAV1 + AREAV2

AREAU = DELT/3. * ( AUTO +4.% AUT(1) +AUT(2) )

AREAM]I= DELT/3. * ( AMITO +4.% AMIT(1) +AMIT(2) )

AREAMZ2= DELT/3. * ( AM2TO +4.* AM2T(1) +AM2T(2) )

COSTF= .5 * ( Q*AREAX +R1*AREAU )

COSTFl=.5 * ( Q*AREAX +R1*AREAU +R2%AREAM1 +R3*AREAM2

1 +S1*%AREAV]1 +52%AREAVZ )

WRITE(69208) Ty AREAX,AREAVI,AREAV2,AREAVV,AREAUyAREAMI,

1 AREAMZ2, COSTF, COSTF1

208 FORMAT( 1X,

1 FHa392X9EL1.692XgELLe692X9ELLe692X9E11e692X9ELLl.by

1 2X9Ell.69 2XyE11l. b,ZX,Ell 692X4E11e6 )

DU 25 1=2yNM2,2
T=T+2.%DELT :
AREAX = AREAX +DELT/34%( AXT{I) +4.¥AXT(1+1) +AXT(I+2) )
AREAV1= AREAV] +DELT/3.*( AVIT{I)+4.*AVIT(I+1)+AVIT(I+2) )
AREAV2= AREAV2 +DELT/3.*( AV2T(I)+4.%AV2T(I+1)+AV2T(I+2) )
AREAVV= AREAV1 + AREAV2
AREAU = AREAU +DELT/3.%( AUT(I) +4.%AUT(I+1) +AUT(I+2) )
AREAM1= AREAM]1 +DELT/3.%( AMIT(I)+4.,*AMIT(I+1)+AMIT(I+2) )
AREAM2= AREAM2 +DELT/3.*( AM2T(I)+4.¥AM2T(I+1)+AM2T(I+2) )
COSTF= .5 * ( Q*AREAX +R1*AREAU )

COSTF1l=.5 * ( Q¥AREAX +R1*AREAU +R2¥AREAM]1 +R3*AREAM2

1 +S1*AREAV]1 +S2*%AREAVZ )
WRITE(6y228) T, AREAX,AREAVI,AREAVZ,AREAVV,AREAU,AREAMI9
1 AREAM2, COSTF, COSTF1

25 CONTINUE
20 CONTINUE
30 CONTINUE
~STOP
END
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FUNCTION AK11D( AK11,AK12,AK13 )

COMMON A0y A, BOy By R1ly R2y R3, Q

AK11D==2.%A0%AK11l ~-2.%AK12+BO0*BO/R1*AK11%AKl1l +2.*80/R1*AK]11*
1 AK13 +1./R1%AK13%AK13 +BO*BO/R2*%AK12*AK12 +BO*BO/R3*
2 AK13%AK13 -Q

RETURN

END

FUNCTION AK12D( AK11,AK12,AK13,AK22yAK23 )

COMMON A0y Ay BOy By R1ly R2, R3, Q

AK12D==-2 . %A0%AK12 2 .%BO*BO/R1%AK11%AK12 +2.%BO/R1*AK12*AK13
1 ~AK 22 +BC/R 1*¥AK11%AK23 +1./R1*¥AK13%AK23 +BO*BO/R2*AK12
2 *AK22 +BO*BO/R3%AK13%AK23

RETURN

END

FUNCTION AK13D{ AK1ll, AK12, AK13, AK23, AK33 )

COMMON  AO, Ay BCy By R1ly R2y R3, Q :
AK13D=-2%A0%AK 13 +2.#B0O*BO/R 1*¥AK11%AK13 +2.%¥BO/R1*AK13*AK13
1 -AK23 +BO/R 1*¥AK11*%AK33 +1./R1*AK13%AK33 +B0*BO/R2*

2 AK12*AK23 +B0*BO/R3*AK13%AK33

RETURN

END

FUNCTION AK22D{ AK11,AK12,AK13, AK22, AK23, S1 )

COMMON A0, Ay, BCyB 4R1y RZ2y R3, Q

AK22D==-2 .*A0¥AK 22 +2.%BO*¥BO/R1*AK11%AK22 +2.*B0/R1*AK13%AK22
1 +BO*BC/R1%AK12%AK 12 +2. *B0/R1*AK12 *AK23 +1./R1*¥AK23%
2 AK23 +BO*BO/R2%AK22%AK2?2 +BO*%BO/R3*AK23%AK23 =Sl
RETURN

END

FUNCTION AK23D( AK1ll, AK12, AK13, AK22, AK23, AK33 )
COMMON  AQy A, BO, B, Rly R2y R3, Q

AK23D==2 ,*A0%AK23 +2 . *BO%BO/R1*AK11%*AK23 +2.*%30/R1*AK13%AK23

+BO*BO0/R1I*AK12%AK 13 +BO/R 1*%AK12%AK33 +BO/R1*AK23%AK13
+1./R1%AK23%AK33 +BO*BO/R2*AK22%AK23 +B0*BO/R3I*AK23%AK33

RETURN

END

FUNCTION AK33D( AK1ll, AK13, AK23, AK33, S2 )
COMMON AOQ, A, BOy By Rly RZ2y R3, Q

AK33D==2.%A0%AK33 42 .%BO%BO/R1*AK11%AK33 +3,%BO/R1*AK13%AK33

1 +B80*%B80/R1*%AK 13%xAK13 +BO/R1*AK13%AK33 +1./R1%AK33%AK33
2 +BC*BO/R2*AK23%AK23 +BO*B0/R3%AK33%AK33 -S2

RETURN

END

FUNCTION UT( AK1ll, AK12, AK13, AK23, AK33, X,y V1 , V2 }

CUOMMON ADy Ay BOy By R1ly R2y R3, Q

N -

UT = =1./R1%{ BO*(AKL11*X +AK12%V] +AK13%V2) +AK13*%X +AK23%V]
1 +AK33%V2 )

RETURN

END

FUNCTION WI1T( AK12 , AK22 , AK23, X, V1 , V2 )
COMMON AOy Ay, 80, By Rly R2, R3, Q

WlT = -BC/R2*( AK12%X +AK22*%V1 +AK23%Vv2 )
RETURN

END
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FUNCTION W2T ( AK13, AK23, AK33, X, V1 , V2)

COMMGN  AQOy Ay BOy B, R1ly R2y R3, Q

W2T =-BO/R3*( AK]13*X +AK23%V]l +AK33%xv2 )

RETURN

END

FUNCTION XDOT( AK11,AK12, AK13, AK23, AK33, X, V1, V2 )
COMMON AC, A, BO, By Rly R2y R3y Q

XDOT =  AxX -B/R1*{ BO*({AK11*X +AK12%*V1 +AK13*V2 } +AK13%X
1 +AK23%V]1l +AK33%V2 )

RETURN

END

FUNCTION VI1DOT( AK1l1l, AK12, AK13y, AK22, AK23 , Xs V1s V2 )
COMMON  ACy A, B0, By R1ly R2y R3, Q

ViDOT= { A0 -BO*BO/R1*AK11l -BD/R1*AK13 -BO*BO/R2%AK22) *V1
1 +{ 1.-BO*BI/R2*¥AK12)%X —-BO¥BO/R2¥AK23*V2

RETURN

END

FUNCTION Vv2DOT ( AK1ll, AK12,AK1l3, AK23, AK33, X, V1, V2)

C OMMON AO, Ay BO, B, R1ly R2y R3, Q

v2DOT= (AC -BO*BO/R1*AK1]l =-2.,%*BO/R1%AK13 -pBO*BO/R3I%AK33
1 -1./R1%AK 33)%V2 +(~-BO*BO/R3*AK23 -BO/R1%*AK12 -1./R1*AK23)
2 *V1 +{=-BC*¥BRO/R3*%AK13 -BO/RI1¥AK1l -1l./R1%AK13)=*X
RETURN

END
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