
UPPER BOUNDS ON THE NUMBER OF BURSTS

AT THE OUTPUT OF A VITERBI DECODER

A Thesis

Presented to

the Faculty of the Department of Electrical Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Narinder K. Goyal

December 1970

558088

ACKNOWLEDGEMENT

The author wishes to acknowledge the encouragement,

guidance, and counsel received from Dr. N. M. Shehadeh

during the preparation of this thesis.

I would also like to acknowledge the financial support

of this research which was sponsored by NASA, Information

Systems Division through contract NAS 9 9270.

Narinder K. Goyal

December 1970

iii

UPPER BOUNDS ON THE NUMBER OF BURSTS

AT THE OUTPUT OF A VITERBI DECODER

An Abstract of a Thesis

Presented to

the Faculty of the Department of Electrical Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Narinder K. Goyal

December 1970

ABSTRACT

Burst error statistics at the output of a Viterbi

decoder are investigated. Upper bounds on the number of

bursts of any length have been derived analytically for a

hard decision.

A Viterbi decoder for a hard decision has been simulated

on a digital computer. Simulation studies have been made

on decoders of different constraint lengths and for different

probabilities of error for the Binary Symmetric Channel.

Number of bursts of different lengths at the output of these

decoders have been counted. The results from the simulation

study agree with the upper bounds obtained analytically.

TABLE OF CONTENTS

CHAPTER PAGE

I. INTRODUCTION 1

II. CONVOLUTIONAL ENCODING 2

III. THE VITERBI DECODING ALGORITHM , . . 13

IV. DESCRIPTION OF THE COMMUNICATIONS SYSTEM

CONSIDERED FOR PRESENT STUDY 19

V. DERIVATION OF BOUNDS ON THE NUMBER OF BURSTS . . 23

VI. SIMULATION OF THE SYSTEM................... . . . 38

VII. RESULTS AND CONCLUSIONS..................... . . . 44

REFERENCES... 67

APPENDIX—Flow Charts and Listing of Computer Programs . 68

LIST OF FIGURES

FIGURE PAGE

1. Convolutional Encoder , t f , , , . , , , t • 3

2. Determination of Encoded Output Digits

Corresponding to an Input Message for

a Convolutional Encoder 5

3. Tree Structure for a Convolutional Encoder, , . . 6

4. State Diagram , , , ,■ ,• , 8

5. Trellis Structure 10

6. Expanded Version of Trellis Structure and

Encoding of Message Digits by Tracing a

Path Through It................................12

7. Example of Viterbi Decoding............... 16

8. Table for Delta Score and Survivor Sequence

Registers...................................... 18

9. Communications System...................... 20

10. Binary Symmetric Channel......................... 20

11. Wrong Path...25

12. Burst Path............... 25

13. Path Giving a Solid Burst of Length 1 26
n . T ' '2Ne ' 2Ne . , on14. Loops --- or —r m Number............. 29w w'
15. Path of Length 8 Gives Burst of Length 6, , , , , 32

16. Signal Flow Chart for State Diagram 33

17. Block Diagram for the State Diagram 33

FIGURE PAGE

18. Distribution and Density Functions of Random

Numbers Uniformly Distributed Between 0 and 1. 41

19. Performance Curves for Non-systematic and

Systematic Codes of Constraint Length 3. . . . 48

20. Performance Curves for Non-systematic and

Systematic Codes of Constraint Length 5. . . . 49

21-29.Length of Bursts vs Number of Bursts Diagrams

for Systematic and Non-systematic Codes of

Constraint Length 3 and 5 for Different

Probabilities of Error . 58

LIST OF TABLES

TABLE PAGE

1. Data for the Simulation Study of Systematic

and Non-systematic Decoders of Constraint

Length 3 46

2. Data for the Simulation Study of Systematic

and Non-systematic Decoders of Constraint

Length 5 47

3. Comparison of Upper Bounds to the No. of Bursts

in the Simulation Study for Systematic

Decoder of Constraint Length 3........... 50

4. Comparison of Upper Bounds to the No. of Bursts

in the Simulation Study for Non-systematic

Decoder of Constraint Length 3 53

5. Comparison of Upper Bounds to the No. of Bursts

in the Simulation Study for Systematic Decoder

of Constraint Length 5..........................55

6. Comparison of Upper Bounds to the No. of Bursts

in the Simulation Study for Non-systematic

Decoder of Constraint Length 5 57

CHAPTER I

INTRODUCTION

The Viterbi decoding algorithm has received a great deal

of attention recently. This decoding scheme has been shown

to be a maximum likelihood decoding scheme and hence, an

optimum for decoding convolutional codes. This algorithm

performs very well with short constraint lengths.

Simulation results have shown that the errors at the

output of a Viterbi decoder occur in bursts, that is, the
3*errors tend to cluster together. Thus the burst error rate

becomes more important than the bit error rate for a Viterbi

decoder. Longer bursts at the output cannot be tolerated.

In this thesis upper bounds on the number of bursts at the

output of a Viterbi decoder have been derived. The validity

of the results has been proven by simulating a Viterbi de­

coder on a digital computer.

In the second and third chapters basic principles of con­

volutional encoding and Viterbi decoding have been explained.

The fourth chapter deals with the communications system model

considered for this study. The bounds have been derived in

Chapter Five and in Chapter Six the simulation study has

been explained in detail,

*These numbers denote references.

CHAPTER II

CONVOLUTIONAL ENCODING

A convolutional encoder is a K-stage shift register

whose stages are connected to V modulo 2 adders in some

prescribed fashion. There is a commutator at the output of

the modulo 2 adders. A convolutional encoder with K = 3 and

V = 3 is shown in Figure 1. The input digits are shifted

one by one into the shift register and for every input digit

the commutator makes one revolution producing V output digits

per input digit. The rate of the code is then defined as

R = 1/V

The length K of the shift register is called constraint

length of the encoder and is a measure of the duration in

which the encoded output digits are affected by any particular

input digit.

One way of describing a convolutional encoder is to

specify its generator sequence. The generator sequence is

defined as the output sequence which results from transmitting

a K-bit input sequence consisting of "one" followed by all zeros.

Now it is to be noted that if a single "one" is located in

some stage S of the shift register the output digit from any

modulo 2 adder will be "one" if that adder is connected to

stage S or a "zero" otherwise. The length of the generator

3

Convolutional Encoder

Figure 1

4
sequence is KV. The first V digits represent the modulo 2

adders which are connected to the first stage, the second V

digits represent the adders which are connected to the second

stage and so on. For example, the generator sequence of the

encoder in Figure (1) is 111 001 010.

The output sequence corresponding to any input message

can be obtained by using the generator sequence. It employs

the principle of superposition and successive shifts of the

generator sequence are added (modulo 2). An example is

given in Figure 2.

Each bit shifted into the encoder results in one of the

two possible V-bit output sequences. One sequence corresponds

to shifting in a "one" and the other corresponds to shifting

in a "zero". However, the resulting sequence depends on the

previous K-l digits shifted into the encoder. Thus a partic­

ular digit not only affects the immediately resulting sequence

but also the next K-l V-bit output sequences.

A convolutional encoder can best be represented by a

tree structure as in Figure 3. From every node we have two

branches and the digits on the branches represent the output

sequences. The tree is so arranged that the. upper branch

from a node corresponds to shifting in a "zero" and the lower

branch corresponds to shifting in a "one" in the encoder.

The output sequence corresponding to any message can now be

5

Input
Digits

Generator Sequence
(A \

1

0

1

0

1
I
1
1
1
1
1
1
1

111 001

000

010

000

111

000

001

000

010

000

111

000

001 010

Encoded
Dutput
Digits

111 001 101 001 101 ——- — - -----

Determination of encoded output digits

corresponding to an input message

for the convolutional encoder with

generator sequence 111 001 010

Figure 2

6

000

000

000

111

111

0

001

111

1

001

110

010

101

110

Oil

100

Tree structure for convolutional encoder with Generator Sequence

111 001 010

Figure 3

7
found by following the appropriate path through the tree.

STATE DIAGR7\MS

The state of an encoder is defined as the contents of

the first K-l stages in the shift register. As the new digit

is shifted into the encoder the most ancient Kth bit is

shifted out of the register and so it cannot affect any

subsequent sequence. This is the reason that the Kth bit

is not considered for defining a state of an encoder. Now

if the encoder is in a particular state there are only two

possibilities, either we shift in a "zero" or a "one". It means

that we can go into only one of the two possible states from

a given state.

The state diagram for the encoder discussed in the

previous examples is given in Figure 4. As an example, if we

are in a state of 01 we can only go to state of 00 or 10.

The state 00 results, if we send a zero and state 10 results,

if we send a one.

Thus it becomes very easy to determine the output

sequence corresponding to any input message by going through

the state diagram of the encoder. This in fact is a simpli­

fication of the tree structure.

The state diagram can be drawn in a different form which

is more convenient for discussing the Viterbi Algorithm. This

diagram is called a trellis structure. The states are now

8

State Diagram

Figure 4

9
represented as nodes and the transfer from one node to

another is represented by an arrow. The trellis structure

is given in Figure 5. The important points about the trellis

structure are given below. These will be used later on for

deriving the upper bound on the number of bursts out of a

Viterbi decoder.

1. There are only two states that can be reached from

a given state.

2. A given state can be reached only from one of the

two previous states.

3. The moves from state to state are independent of the

particular generator sequence. Thus for all encoders of a

particular constraint length K the shape of the trellis

structure will be the same. However, the output digits on

the branches are dependent on the modulo 2 adders connections

or the generator sequence.

4. The uppermost of the two paths leaving any node cor­

responds to shifting in a "zero" and the lower path corresponds

to shifting in a "one."
K—■ i5. There are in all 2 states. The upper half states

K—2(2) can only be reached if we transmit a zero and the
Kw2lower half states (2) can be reached only if we transmit

a one. This is because we arranged the states in such a way

that all states starting with zero were placed at the top and

10

Upper half
states can
be reached
a "zero" is
transmitted

Lower half
states can
only be
reached if
a "one" is
transmitted

00

01

10

11

Trellis Structure

Figure 5

11

those starting with one were placed below. Since the first

digit of the new encoder state has to be the same as the

message digit that was just shifted in, the upper half states

can only be reached if zero is shifted in and the lower half

states can only be reached if a one is shifted in.

6. If we are in one of the lower half states and we send

K-l zeros, the encoder will come to the all zero state, that

is, the top most state. This property is very obvious because

when the encoder is in one of the lower half states, there

is a one in the first stage of the shift register and sending

in K-l zeros pushes this to the Kth stage and all zeros in

the first K-l stages which corresponds to the all zeros state

of the encoder.

The output sequence for a given message can be found

entirely from the trellis structure. However, for convenience

the structure is expanded to a form given in Figure 6. The

encoding procedure then reduces to only going along a path

through the expanded version of the trellis structure cor­

responding to the input message.

12

Expanded version of trellis structure

and encoding of message digits by tracing a path through it.

Figure 6

CHAPTER III

THE VITERBI DECODING ALGORITHM

The Viterbi decoding algorithm can best be visualized

in terms of the expanded version of the trellis structure.

We already have seen that encoding operation is nothing but

a path through the expanded trellis structure depending on

the input message. The decoding procedure is just the

reverse of this operation. The noise in the channel changes

some of the digits in the encoded sequence' and the Viterbi

decoding algorithm attempts to find a path through the ex­

panded trellis structure which is as close as possible to the

received sequence. The information sequence corresponding

to this path is then taken to be the original input message

sequence. The decoding algorithm is maximum likelihood

decoding and is optimum in the sense that a most probable

transmitted message is selected depending upon the received

sequence. The Viterbi decoder utilizes the state diagram of

the encoder and. the received sequence to find the most' likely

information that was transmitted.

From the trellis structure it can be seen that once any

two paths merge into the same stater both paths have identical

extensions out of that state and after this state.the two paths

will correlate equally well with the received sequence. So

14
we should always be able to discard one of the two paths

entering any state otherwise we shall violate the objective

of finding a path which correlates best with the received

sequence. Thus we discard those paths which can never be

candidates for the highest correlated path. This is the idea

on which the Viterbi algorithm works.

The main steps in the Viterbi algorithm are as follows?

1. A received branch (V-bit long) is shifted into the

decoder. It is compared with each of the two possible branches
K—1out of each 2 states. The delta scores are generated. A

delta score is defined as the number of positions in which

the received branch differs from the branch with which it is

being compared. There are 2 branches in all which are to be

compared with the received sequence,

2. These delta scores for the two paths leaving each

state are added to the previous delta scores (initially zero)

for that state.

3. Delta scores for the two paths terminating in each
K—1of the next 2 states are compared and the path having

lower score is kept while the other is dropped. If the two

scores are equal, one of the paths is arbitrarily dropped.
K”!The delta scores for 2 states are stored in the score

registers.

4. The information sequences corresponding to the

15
paths are called survivor sequences and these are stored in

survivor sequence registers for every state.

There should be a scheme for transfer of entire contents

of one register to another. For example, if the survivor

path terminating in state 00 has come from 01 the new contents

of delta score register for 00 state should be the contents

of state 01 plus the delta score for branch between 01 and 00.

Similarly the contents of survivor sequence register for 01

should go into survivor sequence register of state 00 plus

the new bit which resulted in entering the state of 00. The

operation of the Viterbi algorithm is explained by an example

in Figure 7. The table for the delta score registers and

the survivor sequence registers is also given in Figure 8.

As we go on receiving more and more bits the length of

the survivor sequence registers goes on increasing. The score

registers also have to handle larger numbers. So the question

is at what time we make the decision on information bits and

how to protect overflow of the registers. It has been observed

that if the survivor sequence registers are made B bit long

where B is about 5 or 6 times K (constraint length), all registers,

with high probability, agree as to the initial few bits in

the survivor sequences, even though the channel is too noisy.

Thus the bit decision can be delayed B bits where B = 5K or 6K.

In case the initial bit is not the same in all the registers

Transmitted sequence
Error sequence
Received sequence

111 001 101 001 010 000 000 000 000 000
001 001 000 100 000 000 000 000 000 000
110 000 101 101 010 000 000 000 000 000

Figure 7

17

we shall take the survivor sequence which has the least delta

score. Thus a decoded bit will be shifted out of the

registers and a new bit will be entered making the decoding

process bit by bit and controlling the survivor sequence

registers.

The overflow of the delta score registers is controlled

by subtracting the lowest delta score from all delta score

registers when an overflow condition arises. This is done

because we are interested only in the diffence in the delta

scores rather than their absolute values.

Table for delta score and survivor sequence registers

Step No.

REGISTER CONTENTS

ssoo scoo SS01 SC01 SS10 SC10 SS11 SCh

1 *■ — — —— — — — — — —

2 0 1 0 2 1 1 1 0
3 00 1 10 2 01 4 11 1
4 000 3 110 3 101 2 111 2
5 000 0 5 101 0 3 110 1 3 111 1 3
6 101 00 3 111 10 4 101 01 6 110 11 4
7 101 000 3 110 110 6 101 001 6 110 111 5
8 101 000 0 3 101 001 0 • 7 101 000 1 6 110 111 1 6
9 101 000 00 3 101 000 10 7 101 000 01 6 110 111 11 7

10 101 000 000 3 101 000 010 7 101 000 001 6 101 000 011 8

SC = Delta score register
SS = Survivor sequence register Figure 8

:
81

CHAPTER IV

DESCRIPTION OF THE COMMUNICATIONS

SYSTEM CONSIDERED FOR THE PRESENT STUDY

The conununications system in which we are interested
. . 2can be represented by the block diagram m Figure 9. The

source produces a sequence x of binary digits ”0" and "1".

This we call the information sequence. This information

sequence is sent into the encoder which transforms this

sequence to y. The sequence y is sent through the channel.

The channel disturbs the input sequence y and produces a

sequence r at the output which is noise corrputed version

of sequence y. The purpose of the decoder is to receive

r as input and it tries to reproduce the original information

sequence. Depending on r the decoder produces a sequence

x’ which is taken to be as the original information sequence.

The channel was taken to be as a Binary Symmetric
2Channel. A Binary Symmetric Channel (abbreviated BSC) can

be best represented by a transitional probability diagram of

Figure 10. The input to the channel consists of either "O”

or "I" (Binary Symbols) and the channel produces binary

symbols at its output. Each digit in the input sequence can

be received correctly with some fixed probability (1-e) and

20

Noise

Communications System

Figure 9

Binary Symmetric Channel

Figure 10

21

is altered by noise into the opposite digit with probability

of e where e<l/2. The transitional probabilities are con­

stant and are independent of the value of the symbol being

transmitted. The noise effect is thus to reverse the trans­

mitted digits. The probability of error in a BSC can be

connected to a practical system by an important parameter
. . . 4 7called signal to noise ratio. » For an antipodal binary set

of signals, e is given by
e = 1/2 - erf /2E

J N
n o

where
i x 2 /9 erf(x) = —— J e~^ ' dy

/2tt o

E = Energy per digit.

Nq = One-sided noise spectral density.

E/Nq = Signal to noise ratio.

The plot of e vs E/Nq in dB gives the performance curve.

When the information bits are encoded the number of channel

bits becomes V times the number of information bits and this

reduces the signal to noise ratio V times, for a given

transmitter power.

The encoder is a convolutional encoder and the decoder

is a Viterbi decoder. Different decoders of various con­

straint lengths were tried.

22

The source was supposed to be producing an all ”zeros”

sequence and when this all ”zeros” sequence goes into encoder

we get an all "zeros" encoded sequence. Thus an all "zeros”

sequence was taken to be the correct sequence. This can

always be done because convolutional codes are group codes

and whatever results we get for an all "zeros" sequence should

be valid for any other arbitrary sequence. Thus while deriving

the bounds the all "zeros" path in the expanded trellis

structure was taken to be the correct path.

CHAPTER V

DERIVATION OF UPPER BOUNDS ON THE NUMBER OF BURSTS

As mentioned in Chapter IV the assumption here will be

that an all "zero” sequence is transmitted through the

channel. So a "one" appearing in the decoded sequence will

represent an error in that position. A burst here will be

defined as a set of binary digits Z , Z^Z ,, , in the n n+1 n+b-1
3 decoded sequence, if and only if:

« Zn - Zn+b-l = 1 2

1) ...00010101000... is a burst of length 5

2) ...000111000... is a solid burst of length 3

This particular definition of a burst will be followed

while deriving upper bounds on the number of bursts,

2) (K-l) digits on each side of Z ...Z ,, , are all zeros.n n+b-1
3) There is no consecutive sequence of (K-l) zeros within

the set Z , ZZ where K is the constraint lengthn n+x n+b-x
of the encoder.

The length of the burst is taken as the size of the set

which is equal to b. It is to be noted that all digits in a

burst need not to be errors. When they are all in errors a

burst is called a solid burst.

Example If K = 4

24
• UPPER BOUNDS FOR SOLID BURSTS

For an all zero message if the decoder takes the all

zeros path, it makes no errors. If it takes any other path,

we are making some errors in the decoding process as shown in

Figure 11.

If we decode a particular bit into "I", it means that

we are in one of the branches of trellis structure which

are going downwards and the decoder ends up in one of the

lower half states. This follows from the properties of

trellis structure discussed in Chapter II. A burst always

ends with a "1", so at the end of a burst we should always

be in one of the lower half states. Again a burst must be

followed by (K-l) zeros. Decoding the next (K-l) bits into

zeros puts the decoder in the all zero state, that is, back

to the correct path, as shown in Figure 12. It means that if

at all nother burst occurs it should start at the uppermost

all zero state. So a path which produces a burst separates

itself from the all zeros path at some point and again goes

back to it at some other point. Every path of this kind gives

rise to a particular pattern of burst. For example, for a solid

burst of length one there is only one path as shown in Figure 13.

Again there is only one path which gives rise to a solid burst

of length two and the same is true for any other solid burst

of length b. So if at all a solid burst of length b occurs

25

Figure 11

Figure 12

26

11. 11. 11. 11.

Path giving a solid burst of length 1;

this is the only path which does so.

Figure 13

27

the decoder should have taken that particular path which pro­

duces burst of length b and no other path.

Suppose the weight of the path which corresponds to a

solid burst of length b is w. By weight we mean the total

number of "ones" in the path. This weight can always be

found out from the trellis structure for any solid burst. In

order that we choose this path over the all zero path we must

make w/2 or more errors in the transmission through the channel.

Only then the received sequence will be closer to this path

than the all zero path. The errors should be in symbols in

which this path differs from the all zeros path. So in order

to go into this path we should make w/2 or more errors in

w bits. If e is the probability of error in the BSC, then

the probability of making w/2 or more errors in w digits is

given by
pb - i - V2 (") ew/2(l-e)w/2 (la)

i=w/2 '

when w/2 is an integer.

The second term in the above expression is for the case

when exactly w/2 errors occur resulting in a tie between the

all zero path and weight w path so that errors are made only

one half of the time.
wpb = I <1) e1(l-£)W’‘i

D i=w» 1 (lb)

When w/2 is not an integer^w* is the integer part of (w/2+1).

28
Pb is the probability that a solid burst of length b occurs.

It has been shown that the expression for can be upper
, n 8 ,bounded by

Pb < 2W [e(l-e)]w/2

Suppose we transmit N bits so that N is very large. Then

according to the weak law of large numbers we should expect

Ne errors where e is probability of error in the BSC. Now

a solid burst of length b occurs only if we take the loop or

path of weight w. The maximum number of such loops we can

have (Figure 14) with Ne errors is given by

.T ' Ne ' 2Ns . - .N, = —tx- = --- if w/2 is an integerbmax w/2 w 3

' NeN, = —r if w/2 is not an integer and w* is as bmax w1 '
defined earlier.

A loose upper bound on number of solid bursts of length

b, then, can be written as follows.

Nb — is an integer.

Nb — w//2 nc>t 311 Steger.

This is a very loose upper bound. It is to be noted that while

deriving this bound we apparently assumed that in every w

symbols there will be w/2 errors and that we will always take

the wrong path. This means we assumed that a solid burst of

29

Correct path

Figure 14

30
length b is going to occur with a probability of one. However,

the probability of occuring of a solid burst of length b is

given by as we found out earlier. So weighting this bound

by Pfc will tighten this upper bound and we get

•••Nb — —w— an •i-nteger

■ NePb
Nb — ""w1— not an ^nteger’

Byt P^ is bounded by

Pb < 2W ed-e) w/2

therefore we have the following upper bound for the solid bursts.

Theorem 1:

The upper bound on the number of solid bursts at the

output of a Viterbi decoder is:

.2 (W+1) w/2
, if w/2 = integer

(2)M . 2W [e (1-e)] W/'2£N . . /0 , . .
£ --——------ r w/2 / integer

where

= Number of solid bursts of length b.

w = Weight of the path which gives solid bursts of length b.

£ = Probability of error in the BSC.

N = Number of channel bits transmitted.

w’ = The integer part of (w/2 + 1).

31
' UPPER BOUNDS FOR NON-SOLID' BURSTS

As seen earlier there is only one path which gives rise

to a solid burst of length b. For non-solid burst there

can be more than one path. For example, for K = 4,

...00010101000... is a non-solid burst of length 5 and so

is ...00011011000... . But these two patterns are provided

by different paths in the trellis structure. We have also

noted that a burst always starts at all zero state and ends

in one of the lower half states and after that there should

be (K-l) decoded zeros which puts the decoder back in the all

zero state. For a burst of length b the length of the path

from the point where it separates from all zero path to the

point where the end of the burst takes place should be equal

to b. After this point the path is (K-l) bits long and merges

again with the all zero path. The path that contributes to

a burst of length b should be (b+k-1) bits long. This is shown

in Figure 15. Now any path which is (b+k-1) bits long cannot

have a combination of (K-l) consecutive zeros in the first b

places. if it had (K-l) consecutive zeros anywhere in the

first b bits it should have gone back to the all zero state.

So every path which is (b+k-1) bits long gives rise to a burst

of length b.

Now our purpose is to find the number of such paths

which separate from all zero path and go back to it at some

32

Path of length 8 gives burst of length 6.

Figure 15

Signal Flow Chart for State Diagram
Figure 16

Block Diagram for the State Diagram
Figure 17

34
other point and are (b+k-1) bits in length. Also we are

interested in the weights of these paths. This can be done
g

by considering the state diagram (Figure 4). The state

diagram is opened at the self loop on all zeros state and is

drawn as given in Figure 16. The paths on the diagram are

labelled according to their weights and lengths. The exponent

of D gives the weight of the path and the exponent of L gives

the length of the path. This diagram is drawn as a signal

flow diagram as in Figure 17, and the closed loop transfer

function provides us an enumeration of every path. For example,

the transfer function for the system in Figure 17 is given by

i-dl-d6l3 -d3l2 -d8l2 +d6l4 +d6l4 -d5l3
Expansion of this gives

T(D,L) = D5L3+D8L4+D9L5+D10L6+2D11L6+...

which tells us that the path of length 3 has a weight

one path of length 6 has a weight 10 and the other two have

weight 11. This expression can be expanded further and know­

ledge about longer paths can be obtained very easily. So by

an investigation of equation (4) we can find out the number

of paths of any length and their weights,

Supposing we find from (4) that there are n paths which

give rise to a burst of length b, that is, there are n paths

(3)

(4)

of 5.

35

(b+k-1) bits long. Weights of these n paths can be found by

equation (4). Let the weights of these paths by w^,^'••

These n paths also include a path which gives solid bursts

of length b. So we exclude that path and are left with only

(n-1) paths and their weights are wi^w2’**wn-l

w.J W. . w.-l
Pbj = (i^ e1(l-E) 3 if Wj/2 7? integer

i=w’ j
w! = integer part of (Wj/2+1)

We can go into the

given by

w.

if Wj/2 = integer

jth path only if we make Wj/2 or more

probability that we go into the

i=Wj/2

errors in Wj bits. The

jth path is
w.

Pbj =
w. w./2w.-i 3 jz w./2 e1(l-E) 3 - l/2(wj/2)e (1-e) 3

Again we can upper bound P. . by the expression

w. w./2
Pbj < 2 3[e(1-e)J 3 (5)

Now whenever we go into one of these (n-1) paths we get a

burst of length b. It can happen that two paths are equally

close to the received sequence at the same time and thus

the events are not disjoint. So the probability P^ that we

go into any one of these (n-1) paths is bounded by

36

Pb i
n-1

bj

using the upper bound on P^j given by expression (5) we get

n-1 w. W./2P. < 2 2 3 3
3=1

Pb gives us the probability that a burst of length b will

occur.

If we transmit N channel bits through a BSC with proba­

bility of error = e, we can get at the most loops of the

form in Figure 14. Where wg is the smallest weight among w^z

w2',e,wn j which gives us a loose bound.

N. < if w /2 = integerb — w„ s 3s

NpNb S if ws/2 integer
s

w^ = the integer part of (wg/2+l)

as explained before this can be tightened by weighting it by

The upper bound on the number of non-solid bursts at

Pb-
■ Theorem 2:

the output of a Viterbi decoder is;
n-1 w. w./22Ne £ 2 3 [e(l-e)] 3

N, < ---—L--------- :------ :—
b "— w .s if wg/2 = integer

37
n-1 w. w./2

Ne £ 2 - ..£e(l«e)] . r

s
if ws/2 / integer

where

Nfc = Number of non-solid bursts of length b.

N = Number of channel bits transmitted.

n = Number of paths of length (b+k-1).

Wj = Weight of jth path out of all n paths except the

one giving solid bursts.

e = Probability of error in the BSC.

wg = Smallest weight among • • •wn_i«

w^ = The integer part of (wg/2+l).

CHAPTER VI

SIMULATION OF THE SYSTEM

The communication system of Figure 9 was simulated on a

digital computer. As the all "zeros" sequence is taken to be

the transmitted message, the encoder need not be programmed.

The modulo 2 sum of the noise sequence and the all "zeros"

sequence will give us the noise sequence and so the received

sequence r will be nothing but the noise sequence. For

example, suppose the noise sequence n is given as

n = 0100111000010...

and y = 0000000000000...

then the received sequence r is given as

r = y + n (mod 2)

r = 0100111000010...

which is the noise sequence. So for purposes of simulation

the noise sequence for different probabilities of erros in

the BSC was produced and stored on a tape. This sequence

served as input to the simulated Viterbi decoder.

NOISE SIMULATION

Random noise can be generated in a digital computer by

producing pseudo-random numbers. There are various techniques

for generation of random numbers. Most of the random number

39
. 5generators are based on a congruence raltion of the form

x^+1 = ax^+c(mod m) i = 0,1,2r3,4 ,...

The sequence of integers x^fX2fXgfx^.., is determined by

the choice of Xg,a,c and m, where these four parameters are

non-negative integers. Then the hope is that the sequence

Xy/m, X2/m... will appear to be drawn at random from the

uniform distribution on (0,1). If c = 0 the generator is

called multiplicative type, otherwise it is called a mixed

type. The random number generators of mixed type have their

statistical behaviour unsatisfactory in some cases. As the

noise is simulated using random numbers it is desirable that

the random numbers should have very good random properties.

The random number generator chosen was a multiplicative
3 type. It has the following parameters.

xQ = 47594118

a = 23

c = 0

m = 10001009

The formula has passed the simple distribution and auto-
3 correlation tests.

SIMULATION OF BINARY SYMMETRIC CHANNEL

A Binary Symmetric Channel implies a hard decision. Hard

40
decision means two-level decision, assigning a ’’zero or a

"one". The effect of noise in the channel is to reverse the

transmitted digits corresponding to a given probability of

error in the BSC. For the purpose of simulation we have to

decide the positions of the bits in the encoded sequence which

have to be reversed. If we send N bits (N is very large),

Ne bits out of this should be in error or reversed, where e

is the probability of error in the BSC. One of the methods

used to accomplish this is given below.
WINDOW METHOD4

The random numbers generated are uniformly distributed

between 0 and 1. The distribution and density function of

such numbers are as shown in Figure 18. If we choose an

interval between a and a+e where 0<a<l-e, for a true uniform

distribution the number of random numbers falling in this

interval will be Ne where N is total number of random numbers

generated (N is very large). Also, this number will remain

constant no matter where we choose the interval e between 0

and 1.

In the window method a window is chosen between 0 and 1

and the width of the window is e which is the probability of

error in the BSC. For every input digit sent into the channel

a random number is produced. If the random number falls with­

in the window chosen, the digit being transmitted is reversed.

px(x)

1

41

0 1

Density function of random numbers

uniformly distributed between 0 and 1.

Distribution function of random numbers uniformly distributed

between 0 and 1.

Figure 18

42
otherwise it is left unchanged.

A program for simulation of hard decision noise has been

written. The main program uses' the subroutine Random in order

to produce Random numbers. The flow chart and listing of the

program are given in the appendix,

' SIMULATION OF VITERBI DECODER

The Viterbi decoding program has been written in FORTRAN

IV language. The input to the program consists of the following:

1) Constraint length K.

2) Rate 1/V.

3) The generator sequence.

4) A tape containing the received sequence digits.

For given input values of K and V the program generates the

trellis structure of the encoder. It generates all the

states and also the sequences on the branches of the trellis

structure. These sequences are stored in the memory.

The processing of the input bits is done in blocks. In

every block the computer reads 5001 channel bits. It

compares these bits, V at a time with the branches on the

trellis structure and generates the delta scores. The delta

scores are stored in registers. The survivor sequences are

stored in survivor sequence registers. Two sets of survivor

sequence registers have been provided for every state so that

the transfer of contents from one register to another can be

43

easy. The registers are made 5K bits long so that the

delay in decision on bits is 5K. Thus there is no output

until 5KV channel bits have been processed. Thereafter, the

decoding is bit by bit.

At the end of every block the lowest delta score is

subtracted from every delta score register and it controls

the overflow of the delta score registers.

A listing of the program and a flow chart are given

in the Appendix.

CHAPTER VII

RESULTS AND CONCLUSIONS

For the purpose of simulation systematic and non-systematic

codes of constraint length 3 and 5 were considered. The source

of these codes were references (9) and (10). Each of the four

codes was used with 5 different probabilities of error in the

BSC. For each case 100,000 information bits were run and

the errors in the decoding process were counted. Probability

of error vs signal to noise ratio curves were plotted for

each decoder. (See Figures 19 and 20.) The data has also

been depicted in Table 1 and Table 2. From Figures 19 and

20 it is observed that non-systematic codes are better than

systematic codes. For a constraint length of 3 the gain over

systematic code is about 1.2 dB and for K = 5 this gain is

about 1.75 dB

The number of bursts in the decoding for each case was

counted and also the number of bursts by upper bounds were

calculated. These have been shown in Tables 3 through 6.

The bounds seem to hold in every case.

Number of bursts vs burst length, diagrams, have been

plotted for all decoders in Figures 21 through 29.

The simulation results show that at low probability of

error or high signal to noise ratio the non-systematic codes

45

have very less errors as compared to the systematic codes and

the number of bursts is also less. As we go to low signal to

noise ratio the total number of errors for the non-systematic

codes, of course, remains less than the systematic codes,

but the number of longer bursts increases. So at low signal

to noise ratio the non-systematic codes give more number of

longer bursts than the systematic codes. The number of non­

solid bursts also increases as compared to systematic codes.

The upper bounds derived in this work is the first

attempt of its kind in the literature. They seem to be

reasonably tight. However, it is to be noted that the results

are valid only if the number of transmitted bits is very large.

Also the application of these bounds is good for short con­

straint lengths. For large constraint lengths the computation

of expression (3) and expression (4) becomes a laborious job.

46

TABLE 1

Data for Simulation Study of Systematic and Non-systematic

Decoders of Constraint Length 3

DECODER SYSTEMATIC
. K =■ .3.; v .=■ .3. .(.G...S... .1.11.,.0.0.1., .01.0) . .

Probability S/N Ratio No. of No. of Errors Probability
of error for the channel information in of error for
in BSC information bits trans- bits trans- decoding the informa-

• ■ Pe..... bits. . mitted . mitted'. . tion bits .

0.01 9.1 dB 300,000 100,000 2 -5 2x10 D
0.025 7.78 dB 300,000 100,000 21 2.1xl0-4

0.05 5.9 dB 300,000 100,000 162 1.62xl0-3
0.075 4.78 dB 300,000 100,000 452 4.54xl0-3
0.10 3.8 dB 300,000 100,000 1217 1.217xl0-2

DECODER NON-SYSTEMATIC
K =. .3 . . . V. =. 3 (G. S . .11.1. ,110 ,.ILL)

0.01 9.1 dB 300,000 100,000 0
0.025 7.78 dB 300,000 100,000 0 —

0.050 5.9 dB 300,000 100,000 77 7.7X10-4
0.075 4.78 dB 300,000 100,000 329 3.29xl0“3
0.10 3.8 dB 300,000 100,000 1358 1.358X10-2

47
TABLE 2

Data for the Simulation Study of Systematic and Non-systematic

Decoders of Constraint Length 5

DECODER SYSTEMATIC
K ■= 5.... V ~ 3 (G,S, 111,001,010,010,0001)

Probability
of error in
BSC P e

S/N Ratio
for the
information
bits........

No. of
channel
bits trans­
mitted.....

No. of
information
bits trans-

. mitted.....

Errors
in
decoding

Probability
of error
for the in­
formation
DltS

0.01 9.1 dB 300,000 100,000 0 ——
0.025 7.78 dB 300,000 100,000 5 5xl0"5
0.05 5.9 dB 300,000 100,000 39 3.9xl0~4
0.075 4.78dB 300,000 100,000 167 1.67xl0-3
0.10 3.8 dB 300,000 100,000 708 7.08x10 0

DECODER NON-SYSTEMATIC
........................... K .=. .5. . V. =. 3 (G.S .. Ill,.110,101,110 , 111)

0.01 9.1 dB 300,000 100,000 0 ——
0.025 7.78 dB 300,000 100,000 0 —-
0.05 5.9 dB 300,000 100,000 0 '.
0.075 4.78 dB 300,000 100,000 26 2.6xl0“4
0.10 3.8 dB 300,000 100,000 350 3.50X10"3

Pr
ob

ab
il

it
y

of
 E

rr
or

io“k

48

Uncoded system

Non-systematic
code no good
after this.

cross oyer
point.

About 0.8 dB
gain for
systematic code

_ Systematic
code K=3 V=3

(Refer. Shu Lin)

About 2 dB
gain for
non-systematic code

Non-systematic Decoder
K=3 V=3 -----
(Refer. Odenwalder)

Channel PE

io-5
T -i----- 1----- 1-2 3 4

ti/N Ratio in DBS
(Figure 19)

10

49

i /

। Ui

Uncoded system
p

io5-

o"4

About 3.75
gain for non-
systematic code

S/N Ratio in DBS

Non-systematic code
K=5 V=3
(Refer. Odenwalder)

About 2 DB
gain for
systematic code

(fig>uR.e 20)

Systematic Decoder
K=5 V=3
(Refer. Shu Lin)

1 2 3 4 5 6 7 6 9 to 71 12

:J3

Channel PE

50

TABLE 3

Comparison of Upper Bounds to the No. of Bursts

in the Simulation Study for Systematic Decoder

of Constraint Length 3

SYSTEMATIC DECODER
......... K-= 3•• V - 3.....................

Length
burst

of Type of Number of bursts No. of bursts
burst in simulation by upper bounds

E = 0.01

1 Solid 2 3

e = 0.025

1 Solid 21 29

e = 0.05

1 Solid 125 157
2 Solid 3 5
3 Solid 2 3
4 Solid 2 1
3 Non Solid 2 5
4 Non Solid 2 2
5.....Non..Solid... .. 1.......... 1

Table 3 Continued 51

SYSTEMATIC DECODER
... K =• 3 3-.

Length of Type of Number of bursts No. of bursts
burst burst in-simulation by-upper bounds

....£ - 0.075

1 Solid 352 369
2 Solid 6 30
3 Solid 9 14
4 Solid 4 8
5 Solid 2 3
6 Solid 1 2
7 Solid 1 1
3 Non-Solid 1 1
4 Non-Solid 5 30
5 Non-Solid 2 7

SYSTEMATIC DECODER
K = 3 V = 3

..£ =- 0.10

1 Solid 630 777
2 Solid 30 110
3 Solid 34 60
4 Solid 8 36
5 Solid 5 15
6 Solid 1 10
7 Solid 5 * 6

52

Table 3 Continued

e =0.10
(continued)

3 Non-Solid 16 110

4 Non-Solid 7 34

5 Non-Solid 6 27
6 Non-Solid 6 30

7 Non-Solid 1 15

8 Non-Solid 2 9

53

TABLE 4

Comparison of Upper Bounds to No. of Bursts

in the Simulation Study for Non-Systematic

Decoder of Constraint Length 3

NON-SYSTEMATIC DECODER
K = 3 V = 3

Length of
burst

Type of
burst

No. of bursts
in simulation

No. of bursts by
upper bounds

e = 0.05

1 Solid 7 8
2 Solid 4 8
4 Solid 1 1
5 Solid 1 1
3 Non-Solid 2 3
4 Non-Solid 6 7
5 Non-Solid 1 4
6 Non-Solid 2 2
7 Non-Solid 1 1
8 Non-Solid 1 1
9 Non-Solid 1 1

............................£.=.0.075...........................

1 Solid 59 62
2 Solid 23 62
3 Solid 7 8

54
Table 4 Continued

e = 0,075
7 '.(.cdn.t.inue.d)

3 Non-Solid 7 8
4 Non-Solid .8 10
5 Non-Solid 6 9
6 Non-Solid 5 6
7 Non-Solid 4 5
8 Non-Solid 3 5

e = 0.10

1 Solid 168 181
2 Solid 77 181
3 Solid 16 60
4 Solid 2 ' 36
5 Solid 2 16
3 Non-Solid 27 56
4 Non-Solid 41 45
5 Non-Solid 32 38
6 Non-Solid 17 30
7 Non-Solid 21 30
8 Non-Solid 8 22
9 Non-Solid 7 15

10 Non-Solid 9 11
11 Non-Solid 5 10
12 Non-Solid 1 5

55

TABLE 5

Comparison of Upper Bounds to the No. of Bursts

in the Simulation Study for a Systematic Decoder of

 Constraint. Length. 5

SYSTEMATIC DECODER
K = 5 V = 3

Length of Type of No. of bursts No. of bursts by
burst burst • ... in- simulation .. .upper bounds

E = 0.025

1 Solid 5 6

P =0.05 e

1 Solid 30 58 •
3 Solid 2 2
4 Solid 1 1

Pa = 0.075e

1 Solid 94 132
2 Solid 3 7
3 Solid 5 7
4 Solid 1 1
4 Non-Solid 5 5
5 Non-Solid 1 3
6 Non-Solid 3 3
7 Non-Solid 1 2
9 Non-Solid 1 1

56

Table 5 Continued

SYSTEMATIC DECODER

Length of Type of No. of bursts No. of bursts by
burst ■ burst....... in -simulation • .. upper bounds

E = 0.10

1 Solid 336 348
2 Solid 14 36
3 Solid 19 36
4 Solid 3 15
4 Non-Solid 25 32
5 Non-Solid 18 26
6 Non-Solid 11 21
7 Non-Solid 12 19
8 Non-Solid 7 15
9 Non-Solid 9 12

57

TABLE 6

Comparison of Upper Bounds to the No. of Bursts

in the Simulation Study for a Non-Systematic Decoder

of Constraint Length 5

Non-Systematic Decoder
.................. K - 5 -V =. 3......................

Length of Type of No. of bursts No. of bursts by
burst burst in simulation upper bounds

e = 0.075

1 Solid 4 5
2 Solid 3 5
3 Solid 1 5
7 Non-Solid 2 2

= 0.10 e

1 Solid 10 12
2 Solid 11 12
3 Solid 6 12
4 Solid 5 12
3 Non-Solid 8 12
4 Non-Solid 1 3
5 Non-Solid 8 10
6 Non-Solid 3 5
7 Non-Solid 4 7
8 Non-Solid 9 10
9 Non-Solid 2 10

10 Non-Solid 6 11
11 Non-Solid 4 11

No
.

of
 b

ur
st

s
pe

r
10

0,
00

0
No
.

of
 b

ur
st

s
pe

r
10

0,
00

0 2L0
58

10

Systematic decoder
K = 3 V = 3

P = 0.01 e

1234 56789 lo

Length of burst
----------------------------------- >

A

20'

Systematic decoder
K = 3 V = 3

Pe = 0.025

io

2 3 4 5" 6 7 " 8 9 IO

Length of burst

Figure 21

A
12 5-

20-

1 o ■

। । i
i
i
I
i

59

Systema-tic' decoder
K = 3 V = 3

= 0.05 e

1 2 3 4 5 6 7g9 io

352

20-

(DCU
to +>
to

S

O

O

io-

1 2 3

Length of burst

Systematic decoder
K = 3 V = 3
Pe = 0.075

5 6 7 " 6> 9 io

Length of burst

Figure 22

Length of burst

Figure 23

No
.

of
 b

ur
st

s
pe

r
10

0,
00

0
No
.

of
 b

ur
st

s
pe

r
10

0,
00

0

4^ 61
20-

Non-systematic decoder

K = 3 V = 3
P = 0.050 e

io ■

I I I I I___ 1___ 1___ 1___„
1 2 3 4 5 6 I 8 9 io

Figure 24

Non-systematic decoder

2.6-

10

1 2 3 4

Systematic decoder

K = 5 V = 3
P = 0.025 e

5 6 7 8 S

63

Length of burst

30-

26 -

lo -

Systematic Decoder
K = 5 V = 3

= 0.05 e

1 2 3 4 5 6 7 0 9

Length of burst

Figure 26

No
.

of
 b

ur
st

s
pe

r
10

0,
00

0
No
.

of
 b

ur
st

s
pe

r
10

0,
00

0

io -

64
Systematic decoder

K = 5 V = 3
Pe = 0.075

L Z 3 4 5 6 7 8 9 io

No
,

of
 b

ur
st

s
pe

r
10

0,
00

0

65

Is

Non-systematic decoder

K = 5 V = 3

20- Pe = °-075

lo-

______ ______________1 . _________ 1__________________>

1 2 3 4 5 6_____ 1

Length of burst
--

Figure 28

Length of the burst Figure'29

67

REFERENCES

1. Batson, B. H., "A Description of the Viterbi Decoding
Algorithm," EE70-8008 (U), Manned Spacecraft Center,
Houston, Texas, May 1970.

2. Gallager, Robert G., "Information Theory and Reliable
Communication," John Wiley and Sons, Inc,, New York,
Chapter 1 and 6, 1968.

3. "Potential Applications of Digital Techniques to Apollo
Unified S-Band Communications System," NASA Contract
NAS 9-9852, Martin Marietta Corp., Denver, Colorado,
February 1970.

4. Taqvi, S. Z. H. and Wai-Hung Ng, "The Simulation of Error-
Correction Codes for Space Communication Channels,"
HASD 642D-823239, Lockheed Electronic Company, pp. 16-18,
March 1970.

5. Hull, T. E. and A. R. Dobell, "Mixed Congruential Random
Number Generators for Binary Machines," ■Journal of the
Association for Computing Machinery V-ll, pp. 31-40,
January 1964.

6. Rule, Wilfred P., "Fortran IV Programming," 1968.

7. Papoulis, A., "Probability, Random Variables, and
Stochastic Processes," McGraw-Hill Book Company,
New York, Chapter 3, 1965.

8. Linkabit Corporation, "Convolutional Codes: The Key to
Effective Error Control and Efficient Communication",
Seminar presented by Linkabit Corporation, 10911 Weyburn
Avenue, Los Angeles, California, January 26-29, 1970.

9. Lin, Shu, "Some Results on the Binary Convolutional
Tree Code Generators," Department of Electrical Engineering,
University of Hawaii, Honolulu, Hawaii.

10. Odenwalder, J. P., "Concatenation of Convolutional and
Block Codes," Ph.D. Dissertation, UCLA, 1969.

68

APPENDIX

2.

END

71

40

74

C

75
C

D

76

77

IB

79
G

80H

302.

END

END

84-
Program for Noise Generation by Window Method

DIMENSION IA(5001)
READC 5» 700) NU, PE

700 FORMATCI5»Fl0.3)
I J=0
NERR=0
DO 701 1=1,NU .
DO , 703 J=l,5001 !
CALL RANDOMCIJ,R)
IFCR.GT.PE) GO TO 702
IACJ)=l
NERR=NERR+1
GO TO 703

702
703

IACJ)=O
CONTINUE
WRITEC2) CIACJ),J=l,5001)
END FILE 2
REVIND 2 ... ■
DO 704 1=1,NU
READC 2) C IAC J) , J= 1, 5001)
WRITEC6,705) CIAC J),J=1,5001)

705
704

FORMATC//5012)
CONTINUE ■ •
URITEC6,706) NERR ; . - < ■ ■ ■ ■-

706 FORMATC//////5X,'TOTAL ERRORS IN THIS RUN ARE =*,110)
STOP
END

SUBROUTINE RANDOMC I J, R)
IFCIJ) 10^10^20

10 IJ=47594U8
20 K=23*IJ

□=10001009
IJ=K-J
R=I J
R=0.0000001*H
RETURN
END

85Program for Viterbi Decoding Algorithm

DIMENSION NB1C32»3)#NBOC 32»3)»NR(3)/ ND1(64)»NDOC64)#NSCC64)
DIMENSION NSS(64,35),MSS(64>35)»NDEC2000)#IAC 5001)
DIMENSION NSC 100/10)>NGC10,10)
READC 5/11) K/NV

11 F0BMATC2I5)
D0"160~ 1 = 1,K
READC5>21) CNGC I, J), J=1,NV)

21
160

F0RMATC10I5)
CONTINUE
M=K- 1
L=2**M
DO 10 1=1,M
N=L/C2**I)
NJ=O a

50 J=NJ+1 . n
NU-NJ+N
DO 20 LL=J,NJ
NSCLL,I)=O
KLL=LL

20 CONTINUE
IFCKLL.LT.L)-GU.TO" 30
GO TO 10

30 J=NJ+1
NJ=NJ+N
DO 40 LL=J,NJ ;
NSCLL,I)=1
KLL=LL

40 CONTINUE
IFCKLL.LT.L) GO TO 50

10 CONTINUE
JJ=L
DO 60 1=1,JJ
DO 60 J=1,NV
JJJ=NGC1,J)
DO 70 KK=1,M
MM=KK+1
IFCNSCI,KK).EQ.l) GO TO 80
JJJ=JJJ+O
GO TO 70

80
■ 7O

JJJ=JJJ+NGCMM,J)
CONTINUE
JJJ=M0D2CJJJ)
NB1C I, J) = JJJ

60 CONTINUE
. DO 90 1=1,JJ
DO 90 J«1,NV
JJJ=O
DO 100 KK=1,M
MM=KK+1
IFCNSCI,KK).EQ.1) GO TO 110
JJJ=JJJ+0
GO TO 100

110
100

JJJ=JJJ4-NGCMM, J)
CONTINUE
JJJ=M0D2CJJJ)

f
86

90

41
42

43

NBOCI,J)=JJJ
CONTINUE
DO 41 I=14L
URITEC6442) < NSC I, J)4 J= 14
CONTINUE
F0RMATC//15I2)
DO 43 1=14JJ
WRITEC6442) CNB1CI4J)4J=1
CONTINUE

I

1

i

4NV)

44

DO 44 I=1»JJ
WRITEC 64 42) CNBOCI>J)>J=1
CONTINUE
DO 601 1=1»L
NSCCI)=O

4 NV)

601 CONTINUE
KB=5*K
JK=O
NERR=O
DO 801 NX=l,60
READC 1) CIACV)>J=1>5001)
ME=0
JN=O

ii
i

280 DO 704 J=14NV i

704
NRCJ)=IACJ+ME)
CONTINUE 1

180

DO 410 I=14L
ND1CI)=NSCCI)
NDOCI)=NSCCI)
DO. 410 J= 14 NV
IFC NB1 C 14 J)leEQ»NRC J)) GO*
ND1CI)=ND1CI)+1
IFCNBOCI4J).EQ.NRCJ)) GO
NDOCI)=NDOCI)+l

1
r

TO 180

TO 410

410

210
220

CONTINUE
KM=L-1
DO 190 I=14KM42
LL=CI+l)/2
ML=LL+CL/2)
IFCNDOCI).LE.NDOCI+1)) GO
11=1+1
GO TO 220
II = I
NSCCLL) = NDOC 11)

TO 210

IFCND1CI).LE.ND1C1+1)) GO
KL=I+1

TO 230 :

230
GO TO 240
KL = I ■1 .

—

240 NSCCML)=ND1CKL)
IFCJK.EQ.O) GO TO 260
IFCNKG.EQ.O) GO TO 202

-

B7

DO 270 -
MSSCLL* J)«=NSSC II> J+IM)
MSSCML#J)=NSS(KL>J+IM) '

270 CONTINUE
MSSCLL,MI+1)=0
MSSCML,MI+1)=1
INT=O
GO TO 190 ' '

202 DO 305
NSSCLL,J)=MSS(II^J+IM)
NSS(ML»J)=MSSCKL,J+IM)

305 CONTINUE
NSS(LL»MI+1)=0
NSS(ML,MI+1)=1
INT=1

190 CONTINUE
NKG=INT
IFCJK.GE.KB) GO TO 301
JK=JK+1
IM=O
GO TO 302

301 IM=1
, JN=JN+1
."'DO 304 1 = 1,KM"

. I FC NSCC I) • GEeNSCC 1+1)) GO TO 404
KIK=I
GO TO 304

404 KIK=I+1
304 CONTINUE

IFCNKG.EQ.O) GO TO 307
NDECJN)=NSSCKIK,1)
GO TO 309

307 NDECJN)=MSSCKIK,1)
309 NERR=NERR+NDECJN)
302 MI=JK-IM

ME=ME+NV •
IFCME.EQ.5001) GO TO 290
GO TO 280

290 WRiTEC6>330) (NDECJ),J=1, NV)
330 F0RMATC//50I2")

DO 331 NY=1,L
NSCCNY)=NSCCNY)-NSCCKIK)

331 CONTINUE
801 CONTINUE

VRITEC6,803) NERR ‘
803 F0RMATC/////5X,’TOTAL ERRORS IN THIS RUN ARE =’,110)

STOP
END

88

FUNCTION M0D2CI)
X=I
I=X/2.
X=X/2.
Y=I
IFCX.EQ.Y) GO TO 10
M0D2=l
GO TO 20

10 M0D2=0
20 RETURN

END

