A Thesis
Presented to
the Faculty of the Department of Electrical Engineering University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering

by
Narinder K. Goyal December 1970

ACKNOWLEDGEMENT

The author wishes to acknowledge the encouragement, guidance, and counsel received from Dr. N. M. Shehadeh during the preparation of this thesis.

I would also like to acknowledge the financial support of this research which was sponsored by NASA, Information Systems Division through contract NAS 99270.

Narinder K. Goyal

December 1970

UPPER BOUNDS ON THE NUMBER OF BURSTS
 AT THE OUTPUT OF A VITERBI DECODER

An Abstract of a Thesis Presented to the Faculty of the Department of Electrical Engineering University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering

by

Narinder K. Goyal
December 1970

ABSTRACT

Burst error statistics at the output of a Viterbi decoder are investigated. Upper bounds on the number of bursts of any length have been derived analytically for a hard decision.

A Viterbi decoder for a hard decision has been simulated on a digital computer. Simulation studies have been made on decoders of different constraint lengths and for different probabilities of error for the Binary Symmetric Channel. Number of bursts of different lengths at the output of these decoders have been counted. The results from the simulation study agree with the upper bounds obtained analytically.

TABLE OF CONTENTS

CHAPTER PAGE
I. INTRODUCTION 1
II. CONVOLUTIONAL ENCODING 2
III. THE VITERBI DECODING ALGORITHM 13
IV. DESCRIPTION OF THE COMMUNICATIONS SYSTEM
CONSIDERED FOR PRESENT STUDY 19
V. DERIVATION OF BOUNDS ON THE NUMBER OF BURSTS 23
VI. SIMULATION OF THE SYSTEM 38
VII. RESULTS AND CONCLUSIONS. 44
REFERENCES 67
APPENDIX--Flow Charts and Listing of Computer Programs 68

LIST OF FIGURES

FIGURE PAGE

1. Convolutional Encoder 3
2. Determination of Encoded Output Digits
Corresponding to an Input Message for a Convolutional Encoder 5
3. Tree Structure for a Convolutional Encoder. 6
4. State Diagram 8
5. Trellis Structure 10
6. Expanded Version of Trellis Structure andEncoding of Message Digits by Tracing aPath Through It12
7. Example of Viterbi Decoding 16
8. Table for Delta Score and Survivor Sequence
Registers 18
9. Communications System 20
10. Binary Symmetric Channel. 20
11. Wrong Path. 25
12. Burst Path. 25
13. Path Giving a Solid Burst of Length 1 26
14. Loops $\frac{2 N \varepsilon}{W}$ or $\frac{2 N \varepsilon}{W^{\top}}$ in Number. 29
15. Path of Length 8 Gives Burst of Length 6 32
16 Signal Flow Chart for State Diagram 33
16. Block Diagram for the State Diagram 33
17. Distribution and Density Functions of Random
Numbers Uniformly Distributed Between 0 and 1. 41
18. Performance Curves for Non-systematic and Systematic Codes of Constraint Length 3. . . . 48
19. Performance Curves for Non-systematic andSystematic Codes of Constraint Length 5. . . . 49
21-29. Length of Bursts vs Number of Bursts Diagramsfor Systematic and Non-systematic Codes ofConstraint Length 3 and 5 for DifferentProbabilities of Error 58

LIST OF TABLES

TABLE

PAGE

1. Data for the Simulation Study of Systematic and Non-systematic Decoders of Constraint Length 3 46
2. Data for the Simulation Study of Systematic and Non-systematic Decoders of Constraint Length 547
3. Comparison of Upper Bounds to the No. of Bursts in the Simulation Study for Systematic Decoder of Constraint Length 3 50
4. Comparison of Upper Bounds to the No. of Bursts in the Simulation Study for Non-systematic Decoder of Constraint Length 353
5. Comparison of Upper Bounds to the No. of Bursts in the Simulation Study for Systematic Decoder of Constraint Length 5 55
6. Comparison of Upper Bounds to the No. of Bursts in the Simulation Study for Non-systematic Decoder of Constraint Length 5 57

CHAPTER I

INTRODUCTION

The Viterbi decoding algorithm has received a great deal of attention recently. This decoding scheme has been shown to be a maximum likelihood decoding scheme and hence, an optimum for decoding convolutional codes. This algorithm performs very well with short constraint lengths.

Simulation results have shown that the errors at the output of a Viterbi decoder occur in bursts, that is, the errors tend to cluster together. ${ }^{3 *}$ Thus the burst error rate becomes more important than the bit error rate for a Viterbi decoder. Longer bursts at the output cannot be tolerated. In this thesis upper bounds on the number of bursts at the output of a viterbi decoder have been derived. The validity of the results has been proven by simulating a Viterbi decoder on a digital computer.

In the second and third chapters basic principles of convolutional encoding and Viterbi decoding have been explained. The fourth chapter deals with the communications system model considered for this study. The bounds have been derived in Chapter Five and in Chapter Six the simulation study has been.explained..in.detail.....

[^0]
CHAPTER II

CONVOLUTIONAL ENCODING

A convolutional encoder is a K-stage shift register whose stages are connected to V modulo 2 adders in some prescribed fashion. There is a commutator at the output of the modulo 2 adders. A convolutional encoder with $\mathrm{K}=3$ and $\mathrm{V}=3$ is shown in Figure 1. The input digits are shifted one by one into the shift register and for every input digit the commutator makes one revolution producing V output digits per input digit. The rate of the code is then defined as

$$
R=1 / V
$$

The length K of the shift register is called constraint length of the encoder and is a measure of the duration in which the encoded output digits are affected by any particular input digit.

One way of describing a convolutional encoder is to specify its generator sequence. The generator sequence is defined as the output sequence which results from transmitting a K-bit input sequence consisting of "one" followed by all zeros. Now it is to be noted that if a single "one" is located in some stage S of the shift register the output digit from any modulo 2 adder will be "one" if that adder is connected to stage S or a "zero" otherwise. The length of the generator

Convolutional Encoder
Figure 1
sequence is $K V$. The first V digits represent the modulo 2 adders which are connected to the first stage, the second V digits represent the adders which are connected to the second stage and so on. For example, the generator sequence of the encoder in Figure (1) is 111001010.

The output sequence corresponding to any input message can be obtained by using the generator sequence. It employs the principle of superposition and successive shifts of the generator sequence are added (modulo 2). An example is given in Figure 2.

Each bit shifted into the encoder results in one of the two possible V-bit output sequences. One sequence corresponds to shifting in a "one" and the other corresponds to shifting in a "zero". However, the resulting sequence depends on the previous K-l digits shifted into the encoder. Thus a particular digit not only affects the immediately resulting sequence but also the next $\mathrm{K}-1 \mathrm{~V}$-bit output sequences.

A convolutional encoder can best be represented by a tree structure as in Figure 3. From every node we have two branches and the digits on the branches represent the output sequences. The tree is so arranged that the upper branch from a node corresponds to shifting in a "zero" and the lower branch corresponds to shifting in a "one" in the encoder. The output sequence corresponding to any message can now be

Determination of encoded output digits corresponding to an input message for the convolutional encoder with generator sequence 111001010

Figure 2

Tree structure for convolutional encoder with Generator Sequence 111001010 "

Figure 3
found by following the appropriate path through the tree. STATE DIAGRAMS

The state of an encoder is defined as the contents of the first $\mathrm{K}-1$ stages in the shift register, As the new digit is shifted into the encoder the most ancient Kth bit is shifted out of the register and so it cannot affect any subsequent sequence. This is the reason that the kth bit is not considered for defining a state of an encoder. Now if the encoder is in a particular state there are only two possibilities, either we shift in a "zero" or a "one". It means that we can go into only one of the two possible states from a given state.

The state diagram for the encoder discussed in the previous examples is given in Figure 4. As an example, if we are in a state of 01 we can only go to state of 00 or 10 . The state 00 results, if we send a zero and state 10 results, if we send a one.

Thus it becomes very easy to determine the output sequence corresponding to any input message by going through the state diagram of the encoder. This in fact is a simplification of the tree structure.

The state diagram can be drawn in a different form which is more convenient for discussing the Viterbi Algorithm. This diagram is called a trellis structure. The states are now

State Diagram
Figure 4
represented as nodes and the transfer from one node to another is represented by an arrow. The trellis structure is given in Figure 5. The important points about the trellis structure are given below. These will be used later on for deriving the upper bound on the number of bursts out of a Viterbi decoder.

1. There are only two states that can be reached from a given state.
2. A given state can be reached only from one of the two previous states.
3. The moves from state to state are independent of the particular generator sequence. Thus for all encoders of a particular constraint length K the shape of the trellis structure will be the same. However, the output digits on the branches are dependent on the modulo 2 adders connections or the generator sequence.
4. The uppermost of the two paths leaving any node corresponds to shifting in a "zero" and the lower path corresponds to shifting in a "one."
5. There are in all $2^{\mathrm{K}-1}$ states. The upper half states $\left(2^{\mathrm{K}-2}\right)$ can only be reached if we transmit a zero and the lower half states $\left(2^{K-2}\right)$ can be reached only if we transmit a one. This is because we arranged the states in such a way that all states starting with zero were placed at the top and

Trellis Structure

Figure 5
those starting with one were placed below. Since the first digit of the new encoder state has to be the same as the message digit that was just shifted in, the upper half states can only be reached if zero is shifted in and the lower half states can only be reached if a one is shifted in.
6. If we are in one of the lower half states and we send K-l zeros, the encoder will come to the all zero state, that is, the top most state. This property is very obvious because when the encoder is in one of the lower half states, there is a one in the first stage of the shift register and sending in $\mathrm{K}-1$ zeros pushes this to the K th stage and all zeros in the first K -l stages which corresponds to the all zeros state of the encoder.

The output sequence for a given message can be found entirely from the trellis structure. However, for convenience, the structure is expanded to a form given in Figure 6. The encoding procedure then reduces to only going along a path through the expanded version of the trellis structure corresponding to the input message.

Expanded version of trellis structure and encoding of message digits by tracing a path through it. Figure 6

CHAPTER III

THE VITERBI DECODING ALGORITHM

The Viterbi decoding algorithm can best be visualized in terms of the expanded version of the trellis structure. We already have seen that encoding operation is nothing but a path through the expanded trellis structure depending on the input message. The decoding procedure is just the reverse of this operation. The noise in the channel changes some of the digits in the encoded sequence and the Viterbi decoding algorithm attempts to find a path through the expanded trellis structure which is as close as possible to the received sequence. The information sequence corresponding to this path is then taken to be the original input message sequence. The decoding algorithm is maximum likelihood decoding and is optimum in the sense that a most probable transmitted message is selected depending upon the received sequence. The Viterbi decoder utilizes the state diagram of the encoder and. the received sequence to find the most likely information that was transmitted.

From the trellis structure it can be seen that once any two paths merge into the same state, both paths have identical extensions out of that state and after this state the two paths will correlate equally well with the received sequence. So
we should always be able to discard one of the two paths entering any state otherwise we shall violate the objective of finding a path which correlates best with the received sequence. Thus we discard those paths which can never be candidates for the highest correlated path. This is the idea on which the Viterbi algorithm works.

The main steps in the Viterbi algorithm are as follows:

1. A received branch (V-bit long) is shifted into the decoder. It is compared with each of the two possible branches out of each $2^{\mathrm{K}-1}$ states. The delta scores are generated. A delta score is defined as the number of positions in which the received branch differs from the branch with which it is being compared. There are 2^{K} branches in all which are to be compared with the received sequence.
2. These delta scores for the two paths leaving each state are added to the previous delta scores (initially zero) for that state.
3. Delta scores for the two paths terminating in each of the next $2^{\mathrm{K}-1}$ states are compared and the path having lower score is kept while the other is dropped. If the two scores are equal, one of the paths is arbitrarily dropped. The delta scores for $2^{\mathrm{K}-1}$ states are stored in the score registers.
4. The information sequences corresponding to the
paths are called survivor sequences and these are stored in survivor sequence registers for every state.

There should be a scheme for transfer of entire contents of one register to another. For example, if the survivor path terminating in state 00 has come from 01 the new contents of delta score register for 00 state should be the contents of state 01 plus the delta score for branch between 01 and 00 . Similarly the contents of survivor sequence register for 01 should go into survivor sequence register of state 00 plus the new bit which resulted in entering the state of 00 . The operation of the Viterbi algorithm is explained by an example in Figure 7. The table for the delta score registers and the survivor sequence registers is also given in Figure 8.

As we go on receiving more and more bits the length of the survivor sequence registers goes on increasing. The score registers also have to handle larger numbers. So the question is at what time we make the decision on information bits and how to protect overflow of the registers. It has been observed that if the survivor sequence registers are made B bit long where B is about 5 or 6 times K (constraint length), all registers, with high probability, agree as to the inftial few bits in the survivor sequences, even though the channel is too noisy. Thus the bit decision can be delayed B bits where $B=5 \mathrm{~K}$ or 6 K . In case the initial bit is not the same in all the registers

Transmitted sequence
Error sequence
Received sequence

111001101001010000000000000000
$001001000100 \quad 000 \quad 000 \quad 000 \quad 000 \quad 000 \quad 000$
$110000101101010000 \quad 000 \quad 000 \quad 000 \quad 000$

Example for Viterbi Decoding
Figure 7
we shall take the survivor sequence which has the least delta score. Thus a decoded bit will be shifted out of the registers and a new bit will be entered making the decoding process bit by bit and controlling the survivor sequence registers.

The overflow of the delta score registers is controlled by subtracting the lowest delta score from all delta score registers when an overflow condition arises. This is done because we are interested only in the diffence in the delta scores rather than their absolute values.

Table for delta score and survivor sequence registers
SC = Delta score register
SS = Survivor sequence register

CHAPTER IV

DESCRIPTION OF THE COMMUNICATIONS

SYSTEM CONSIDERED FOR THE PRESENT STUDY

The communications system in which we are interested can be represented by the block diagram in Figure 9.2 The source produces a sequence \bar{x} of binary digits "0" and "I". This we call the information sequence. This information sequence is sent into the encoder which transforms this sequence to \bar{y}. The sequence \bar{y} is sent through the channel. The channel disturbs the input sequence \bar{y} and produces a sequence \bar{r} at the output which is noise corrputed version of sequence \bar{Y}. The purpose of the decoder is to receive $\overline{\mathbf{r}}$ as input and it tries to reproduce the original information sequence. Depending on \bar{r} the decoder produces a sequence $\overline{\mathrm{X}}$ ' which is taken to be as the original information sequence. The channel was taken to be as a Binary Symmetric Channel. ${ }^{2}$ A Binary Symmetric Channel (abbreviated BSC) can be best represented by a transitional probability diagram of Figure 10. The input to the channel consists of either "0" or "1" (Binary Symbols) and the channel produces binary symbols at its output. Each digit in the input sequence can be received correctly with some fixed probability (1-ع) and

Communications System
Figure 9

Binary Symmetric Channel
Figure 10
is altered by noise into the opposite digit with probability of ε where $\varepsilon<1 / 2$. The transitional probabilities are constant and are independent of the value of the symbol being transmitted. The noise effect is thus to reverse the transmitted digits. The probability of error in a BSC can be connected to a practical system by an important parameter called signal to noise ratio. ${ }^{4}, 7$ For an antipodal binary set of signals, ε is given by

$$
\varepsilon=1 / 2-\operatorname{erf} \sqrt{\frac{2 E}{N_{O}}}
$$

where

$$
\begin{aligned}
\operatorname{erf}(x)= & \frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-y^{2} / 2} d y \\
E & =\text { Energy per digit. } \\
N_{O} & =\text { One-sided noise spectral density. } \\
E / N_{O} & =\text { Signal to noise ratio. }
\end{aligned}
$$

The plot of ε vs E / N_{o} in $d B$ gives the performance curve. When the information bits are encoded the number of channel bits becomes V times the number of information bits and this reduces the signal to noise ratio V times, for a given transmitter power.

The encoder is a convolutional encoder and the decoder is a Viterbi decoder. Different decoders of various constraint lengths were tried.

The source was supposed to be producing an all "zeros" sequence and when this all "zeros" sequence goes into encoder we get an all "zeros" encoded sequence. Thus an all "zeros" sequence was taken to be the correct sequence. This can always be done because convolutional codes are group codes and whatever results we get for an all "zeros" sequence should be valid for any other arbitrary sequence. Thus while deriving the bounds the all "zeros" path in the expanded trellis structure was taken to be the correct path.

CHAPTER V

DERIVATION OF UPPER BOUNDS ON THE NUMBER OF BURSTS

As mentioned in Chapter IV the assumption here will be that an all "zero" sequence is transmitted through the channel. So a "one" appearing in the decoded sequence will represent an error in that position. A burst here will be defined as a set of binary digits $z_{n}, z_{n+1} \cdots z_{n+b-1}$ in the decoded sequence, ${ }^{3}$ if and only if:

1) $Z_{n}=z_{n+b-1}=1$
2) ($K-1$) digits on each side of $Z_{n} \ldots Z_{n+b-1}$ are all zeros. 3) There is no consecutive sequence of (K-l) zeros within the set $Z_{n}, Z_{n+1} \cdots Z_{n+b-1}$, where K is the constraint length of the encoder.

The length of the burst is taken as the size of the set which is equal to b. It is to be noted that all digits in a burst need not to be errors. When they are all in errors a burst is called a solid burst.

Example \quad If $K=4$

1) ...00010101000... is a burst of length 5
2) ...000111000... is a solid burst of length 3

This particular definition of a burst will be followed while deriving upper bounds on the number of bursts,

For an all zero message if the decoder takes the all zeros path, it makes no errors. If it takes any other path, we are making some errors in the decoding process as shown in Figure 11.

If we decode a particular bit into "1", it means that we are in one of the branches of trellis structure which are going downwards and the decoder ends up in one of the lower half states. This follows from the properties of trellis structure discussed in Chapter II. A burst always ends with a "l", so at the end of a burst we should always be in one of the lower half states. Again a burst must be followed by ($K-1$) zeros. Decoding the next ($K-1$) bits into zeros puts the decoder in the all zero state, that is, back to the correct path, as shown in Figure 12. It means that if at all nother burst occurs it should start at the uppermost all zero state. So a path which produces a burst separates itself from the all zeros path at some point and again goes back to it at șme other point. Every path of this kind gives rise to a particular pattern of burst. For example, for a solid burst of length one there is only one path as shown in Figure 13. Again there is only one path which gives rise to a solid burst of length two and the same is true for any other solid burst of length b. So if at all a solid burst of length b occurs

Correct path

Figure 11

Correct path

Figure 12

Path giving a solid burst of length 1 ;
this is the only path which does so.

Figure 13
the decoder should have taken that particular path which produces burst of length b and no other path.

Suppose the weight of the path which corresponds to a solid burst of length b is w. By weight we mean the total number of "ones" in the path. This weight can always be found out from the trellis structure for any solid burst. In order that we choose this path over the all zero path we must make $w / 2$ or more errors in the transmission through the channel. Only then the received sequence will be closer to this path than the all zero path. The errors should be in symbols in which this path differs from the all zeros path. So in order to go into this path we should make $w / 2$ or more errors in w bits. If ε is the probability of error in the BSC, then the probability of making $w / 2$ or more errors in w digits is given by

$$
\begin{equation*}
P_{b}=\sum_{i=W / 2}^{W}\binom{W}{i} \varepsilon^{i}(1-\varepsilon)^{W-i}-1 / 2\binom{W}{W / 2} \varepsilon^{W / 2}(1-\varepsilon)^{w / 2} \tag{la}
\end{equation*}
$$

when $w / 2$ is an integer.
The second term in the above expression is for the case when exactly w/2 errors occur resulting in a tie between the all zero path and weight w path so that errors are made only one half of the time.

$$
\begin{equation*}
P_{b}=\sum_{i=W^{\prime}}^{W} \quad\binom{W}{i} \varepsilon^{i}(1-\varepsilon)^{W-i} \tag{lb}
\end{equation*}
$$

When $w / 2$ is not an integer, w^{\prime} is the integer part of $(w / 2+1)$.
P_{b} is the probability that a solid burst of length b occurs. It has been shown that the expression for P_{b} can be upper bounded ${ }^{8}$ by

$$
P_{b}<2^{W} \cdot[\varepsilon(1-\varepsilon)]^{W / 2}
$$

Suppose we transmit N bits so that N is very large. Then according to the weak law of large numbers we should expect $N \varepsilon$ errors where ε is probability of error in the BSC. Now a solid burst of length b occurs only if we take the loop or path of weight w. The maximum number of such loops we can have (Figure 14) with $N \varepsilon$ errors is given by

$$
\begin{aligned}
& N_{\mathrm{bmax}}=\frac{N \varepsilon}{\mathrm{~W} / 2}=\frac{2 N \varepsilon}{\mathrm{~W}} \text { if } \mathrm{w} / 2 \text { is an integer } \\
& N_{\mathrm{bmax}}=\frac{N \varepsilon}{W^{\prime}} \text { if } \mathrm{w} / 2 \text { is not an integer and } \mathrm{w}^{\prime} \text { is as }
\end{aligned}
$$

defined earlier.
A loose upper bound on number of solid bursts of length b, then, can be written as follows.

$$
\begin{aligned}
& N_{b} \leq \frac{2 N \varepsilon}{W} \text { if } w / 2 \text { is an integer. } \\
& N_{b} \leq \frac{N \varepsilon}{w^{T}} \text { if } w / 2 \text { is not an integer. }
\end{aligned}
$$

This is a very loose upper bound. It is to be noted that while deriving this bound we apparently assumed that in every w symbols there will be w/2 errors and that we will always take the wrong path. This means we assumed that a solid burst of

Figure 14
length b is going to occur with a probability of one. However, the probability of occuring of a solid burst of length b is given by P_{b} as we found out earlier. So weighting this bound by P_{b} will tighten this upper bound and we get

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{b}} \leq \frac{\because \frac{2 N \varepsilon \mathrm{P}_{\mathrm{b}}}{\mathrm{~W}} \text { if } \mathrm{w} / 2 \text { is an integer }}{} \\
& \mathrm{N}_{\mathrm{b}} \leq \frac{\mathrm{N} \varepsilon \mathrm{P}_{\mathrm{b}}}{\mathrm{~W}^{\prime}} \quad \text { if } \mathrm{w} / 2 \text { is not an integer. }
\end{aligned}
$$

Byt P_{b} is bounded by

$$
\mathrm{P}_{\mathrm{b}}<2^{\mathrm{W}} \varepsilon(1-\varepsilon)^{\mathrm{W} / 2}
$$

therefore we have the following upper bound for the solid bursts. Theorem 1:

The upper bound on the number of solid bursts at the output of a Viterbi decoder is:

$$
\begin{align*}
& N_{b} \leq \frac{2^{(w+1)}[\varepsilon(1-\varepsilon)]^{w / 2} \varepsilon N}{w}, \text { if } w / 2=\text { integer } \\
& N_{b} \leq \frac{2^{W}[\varepsilon(1-\varepsilon)]^{W / 2} \varepsilon N}{w^{\top}}, \text { if } w / 2 \neq \text { integer } \tag{2}
\end{align*}
$$

where
$N_{b}=$ Number of solid bursts of length b.
$w=$ Weight of the path which gives solid bursts of length b.
$\varepsilon=$ Probability of error in the BSC.
$N=$ Number of channel bits transmitted.
$w^{\prime}=$ The integer part of (w/2+1).

UPPER BOUNDS FOR NON-SOLID BURSTS
As seen earlier there is only one path which gives rise to a solid burst of length b. For non-solid burst there can be more than one path. For example, for $K=4, \ldots$...00010101000... is a non-solid burst of length 5 and so is ...00011011000... . But these two patterns are provided by different paths in the trellis structure. We have also noted that a burst always starts at all zero state and ends in one of the lower half states and after that there should be ($K-1$) decoded zeros which puts the decoder back in the all zero state. For a burst of length b the length of the path from the point where it separates from all zero path to the point where the end of the burst takes place should be equal to b. After this point the path is ($\mathrm{K}-1$) bits long and merges again with the all zero path. The path that contributes to a burst of length b should be $(b+k-1)$ bits long. This is shown in Figure 15. Now any path which is $(b+k-1)$ bits long cannot have a combination of $(K-1)$ consecutive zeros in the first b places. If it had (K-l) consecutive zeros anywhere in the first b bits it should have gone back to the all zero state. So every path which is (b+k-l) bits long gives rise to a burst of length b .

Now our purpose is to find the number of such paths which separate from all zero path and go back to it at some

[^1]

Signal Flow Chart for State Diagram Figure 16

Block Diagram for the State Diagram Figure 17.
other point and are $(b+k-1)$ bits in length. Also we are interested in the weights of these paths. This can be done by considering the state diagram ${ }^{8}$ (Figure 4). The state diagram is opened at the self loop on all zeros state and is drawn as given in Figure 16. The paths on the diagram are labelled according to their weights and lengths. The exponent of D gives the weight of the path and the exponent of L gives the length of the path. This diagram is drawn as a signal flow diagram as in Figure 17, and the closed loop transfer function provides us an enumeration of every path. For example, the transfer function for the system in Figure 17 is given by

$$
\begin{equation*}
T(D, L)=\frac{\cdots D^{8} L^{4}-D^{6} L^{4}+D^{5} L^{3} \cdots}{1-D L-D^{6} L^{3}-D^{3} L^{2}-D^{8} L^{2}+D^{6} L^{4}+D^{6} L^{4}-D^{5} L^{3}} \tag{3}
\end{equation*}
$$

Expansion of this gives

$$
\begin{equation*}
T(D, L)=D^{5} L^{3}+D^{8} L^{4}+D^{9} L^{5}+D^{10} L^{6}+2 D^{11} L^{6}+\ldots \tag{4}
\end{equation*}
$$

which tells us that the path of length 3 has a weight of 5 , one path of length 6 has a weight 10 and the other two have weight 11. This expression can be expanded further and knowledge about longer paths can be obtained very easily. So by an investigation of equation (4) we can find out the number of paths of any length and their weights.

Supposing we find from (4) that there are n paths which give rise to a burst of length b, that is, there are n paths
($b+k-1$) bits long, Weights of these n paths can be found by equation (4). Let the weights of these paths by $w_{1}, w_{2}, \ldots w_{n}$. These n paths also include a path which gives solid bursts of length b. So we exclude that path and are left with only $(n-1)$ paths and their weights are $w_{1}, w_{2} \ldots w_{n-1}$.

We can go into the j th path only if we make $w_{j} / 2$ or more errors in w_{j} bits. The probability $P_{b j}$ that we go into the jth path is given by

$$
\begin{aligned}
& \text { if } \mathrm{w}_{\mathrm{j}} / 2=\text { integer }
\end{aligned}
$$

$$
\begin{aligned}
& w_{j}^{\prime}=\text { integer part of }\left(w_{j} / 2+1\right)
\end{aligned}
$$

Again we can upper bound $P_{b j}$ by the expression

$$
\begin{equation*}
P_{b j}<2^{W_{j}}[\varepsilon(1-\varepsilon)]^{W_{j} / 2} \tag{5}
\end{equation*}
$$

Now whenever we go into one of these ($n-1$) paths we get a burst of length b. It can happen that two paths are equally close to the received sequence at the same time and thus the events are not disjoint. So the probability P_{b} that we go into any one of these ($n-1$) paths is bounded by

$$
P_{b} \leq \sum_{j=1}^{n-1} P_{b j}
$$

using the upper bound on P_{bj} given by expression (5) we get

$$
P_{b}<\sum_{j=1}^{n-1} 2^{w_{j}}[\varepsilon(1-\varepsilon)]^{w_{j} / 2}
$$

P_{b} gives us the probability that a burst of length b will occur.

If we transmit N channel bits through a BSC with probability of error $=\varepsilon$, we can get at the most $\frac{2 N \varepsilon}{w_{S}}$ loops of the form in Figure 14. Where w_{s} is the smallest weight among w_{1}, $\mathrm{w}_{2}, \ldots \mathrm{w}_{\mathrm{n}-1}$ which gives us a loose bound.

$$
\begin{array}{ll}
N_{b} \leq \frac{2 N \varepsilon}{w_{s}} & \text { if } w_{s} / 2=\text { integer } \\
N_{b} \leq \frac{N \varepsilon}{w_{S}^{\prime}} & \text { if } w_{s} / 2 \neq \text { integer } \\
& w_{s}^{\prime}=\text { the integer part of }\left(w_{s} / 2+1\right)
\end{array}
$$

as explained before this can be tightened by weighting it by P_{b}.
Theorem 2:
The upper bound on the number of non-solid bursts at the output of a Viterbi decoder is:

$$
N_{b} \leq \frac{2 N \varepsilon \cdot \sum_{j=1}^{n-1} 2_{j}^{w_{j}}[\varepsilon(1-\varepsilon)]^{w_{j}} / 2}{w_{s}} \quad \text { if } w_{s} / 2=\text { integer }
$$

$$
N_{b} \leq \frac{N \sum_{j=1}^{N-1}{ }^{W_{j}}[\varepsilon(1-\varepsilon)]_{j}^{w_{j} / 2}}{{ }^{W_{s}^{\prime}}}
$$

where
$N_{b}=$ Number of non-solid bursts of length b. $\mathrm{N}=$ Number of channel bits transmitted.
$n=$ Number of paths of length ($b+k-1$).
$w_{j}=$ Weight of j th path out of all n paths except the one giving solid bursts.
$\varepsilon=$ Probability of error in the BSC.
$\mathrm{w}_{\mathrm{s}}=$ Smallest weight among $\mathrm{w}_{1}, \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}-1}$.
$w_{s}^{\prime}=$ The integer part of $\left(w_{s} / 2+1\right)$.

CHAPTER VI

SIMULATION OF THE SYSTEM

The communication system of Figure 9 was simulated on a digital computer. As the all "zeros" sequence is taken to be the transmitted message, the encoder need not be programmed. The modulo 2 sum of the noise sequence and the all "zeros" sequence will give us the noise sequence and so the received sequence \bar{r} will be nothing but the noise sequence. For example, suppose the noise sequence $\overline{\mathrm{n}}$ is given as

$$
\overline{\mathrm{n}}=0100111000010 \ldots
$$

and $\quad \bar{y}=0000000000000 \ldots$
then the received sequence $\overline{\mathrm{r}}$ is given as

$$
\begin{aligned}
& \bar{r}=\bar{y}+\bar{n}(\bmod 2) \\
& \bar{r}=0100111000010 \ldots
\end{aligned}
$$

which is the noise sequence. So for purposes of simulation the noise sequence for different probabilities of erros in the BSC was produced and stored on a tape. This sequence served as input to the simulated Viterbi decoder. NOISE SIMULATION

Random noise can be generated in a digital computer by producing pseudo-random numbers. There are various techniques for generation of random numbers. Most of the random number
generators are based on a congruence raltion of the form ${ }^{5}$

$$
x_{i+1}=a x_{i}+c(\bmod m) \quad i=0,1,2,3,4, \ldots
$$

The sequence of integers $x_{1}, x_{2}, x_{3}, x_{4} \ldots$ is determined by the choice of x_{0}, a, c and m, where these four parameters are non-negative integers. Then the hope is that the sequence $x_{1} / m, x_{2} / m \ldots$ will appear to be drawn at random from the uniform distribution on $(0,1)$. If $c=0$ the generator is called multiplicative type, otherwise it is called a mixed type. The random number generators of mixed type have their statistical behaviour unsatisfactory in some cases. As the noise is simulated using random numbers it is desirable that the random numbers should have very good random properties. The random number generator chosen was a multiplicative type. It has the following parameters. ${ }^{3}$

$$
\begin{aligned}
& \mathrm{x}_{0}=47594118 \\
& \mathrm{a}=23 \\
& \mathrm{c}=0 \\
& \mathrm{~m}=10001009
\end{aligned}
$$

The formula has passed the simple distribution and autocorrelation tests. ${ }^{3}$

SIMULATION OF: BINARY SYMMETRIC CHANNEL
A Binary Symmetric Channel implies a hard decision. Hard
decision means two-level decision, assigning a "zero or a "one". The effect of noise in the channel is to reverse the transmitted digits corresponding to a given probability of error in the BSC. For the purpose of simulation we have to decide the positions of the bits in the encoded sequence which have to be reversed. If we send N bits (N is very large), $N \varepsilon$ bits out of this should be in error or reversed, where ε is the probability of error in the BSC. One of the methods used to accomplish this is given below. WINDOW METHOD ${ }^{4}$

The random numbers generated are uniformly distributed between 0 and 1. The distribution and density function of such numbers are as shown in Figure 18. If we choose an interval between a and $a+\varepsilon$ where $0<a<l-\varepsilon$, for a true uniform distribution the number of random numbers falling in this interval will be $N \varepsilon$ where N is total number of random numbers generated (N is very large). Also, this number will remain constant no matter where we choose the interval ε between 0 and 1.

In the window method a window is chosen between 0 and 1 and the width of the window is ε which is the probability of error in the BSC. For every input digit sent into the channel a random number is produced. If the random number falls within the window chosen, the digit being transmitted is reversed,

Density function of random numbers uniformly distributed between 0 and 1 .

Distribution function of random numbers uniformly distributed between 0 and 1 .
otherwise it is left unchanged.
A program for simulation of hard decision noise has been written. The main program uses the subroutine Random in order to produce Random numbers. The flow chart and listing of the program are given in the appendix. SIMULATION OF: VITERBI DECODER

The Viterbi decoding program has been written in FORTRAN IV language. The input to the program consists of the following:

1) Constraint length K.
2) Rate $1 / V$.
3) The generator sequence.
4) A tape containing the received sequence digits. For given input values of K and V the program generates the trellis structure of the encoder. It generates all the states and also the sequences on the branches of the trellis structure. These sequences are stored in the memory.

The processing of the input bits is done in blocks. In every block the computer reads 5001 channel bits. It compares these bits, V at a time with the branches on the trellis structure and generates the delta scores. The delta scores are stored in registers. The survivor sequences are stored in survivor sequence registers. Two sets of survivor sequence registers have been provided for every state so that the transfer of contents from one register to another can be
easy. The registers are made 5 K bits long so that the delay in decision on bits is 5 K . Thus there is no output until 5 KV channel bits have been processed. Thereafter, the decoding is bit by bit.

At the end of every block the lowest delta score is subtracted from every delta score register and it controls the overflow of the delta score registers.

A listing of the program and a flow chart are given in the Appendix.

CHAPTER VII

RESULTS AND CONCLUSIONS

For the purpose of simulation systematic and non-systematic codes of constraint length 3 and 5 were considered. The source of these codes were references (9) and (10). Each of the four codes was used with 5 different probabilities of error in the BSC. For each case 100,000 information bits were run and the errors in the decoding process were counted. Probability of error vs signal to noise ratio curves were plotted for each decoder. (See Figures 19 and 20.) The data has also been depicted in Table 1 and Table 2. From Figures 19 and 20 it is observed that non-systematic codes are better than systematic codes. For a constraint length of 3 the gain over systematic code is about 1.2 dB and for $\mathrm{K}=5$ this gain is about 1.75 dB

The number of bursts in the decoding for each case was counted and also the number of bursts by upper bounds were calculated. These have been shown in Tables 3 through 6 . The bounds seem to hold in every case.

Number of bursts vs burst length, diagrams, have been plotted for all decoders in Figures 21 through 29.

The simulation results show that at low probability of error or high signal to noise ratio the non-systematic codes
have very less errors as compared to the systematic codes and the number of bursts is also less. As we go to low signal to noise ratio the total number of errors for the non-systematic codes, of course, remains less than the systematic codes, but the number of longer bursts increases. So at low signal to noise ratio the non-systematic codes give more number of longer bursts than the systematic codes. The number of nonsolid bursts also increases as compared to systematic codes. The upper bounds derived in this work is the first attempt of its kind in the literature. They seem to be reasonably tight. However, it is to be noted that the results are valid only if the number of transmitted bits is very large. Also the application of these bounds is good for short constraint lengths. For large constraint lengths the computation of expression (3) and expression (4) becomes a laborious job.

TABLE 1

Data for Simulation Study of Systematic and Non-systematic
Decoders of Constraint Length 3

		DECODER	MATIC		
	: . : . .	-3..V.	G.S... $111 ., 001$	10)	
Probability	S/N Rat	No. of	No. of	Errors	Probability
of error	for the	channel	information	in	of error for
in BSC	informa	bits tr	bits trans-	decoding	the informa-
$\ldots \mathrm{P}_{\mathrm{e}}$	bits.	mitted	mitted		tion bits
0.01	9.1 dB	300,000	100,000	2	2×10^{-5}
0.025	7.78 dB	300,000	100,000	21	2.1×10^{-4}
0.05	5.9 dB	300,000	100,000	162	1.62×10^{-3}
0.075	4.78 dB	300,000	100,000	452	4.54×10^{-3}
0.10	3.8 dB	300,000	100,000	1217	1. 217×10^{-2}

DECODER NON-SYSTEMATIC

$$
K=3 \ldots V=3 \text { (G.S. . } 111,110,111 \text {) }
$$

0.01	9.1 dB	300,000	100,000	0	--
0.025	7.78 dB	300,000	100,000	0	--
0.050	5.9 dB	300,000	100,000	77	7.7×10^{-4}
0.075	4.78 dB	300,000	100,000	329	3.29×10^{-3}
0.10	3.8 dB	300,000	100,000	1358	1.358×10^{-2}

TABLE 2
Data for the Simulation Study of Systematic and Non-systematic Decoders of Constraint Length 5

DECODER NON-SYSTEMATIC

$$
K=5 . \mathrm{V}=3 .(\mathrm{G} . \mathrm{S} .111,110,101,110,111)
$$

0.01	9.1 dB	300,000	100,000	0	--
0.025	7.78 dB	300,000	100,000	0	--
0.05	5.9 dB	300,000	100,000	$0:$	--
0.075	4.78 dB	300,000	100,000	26	2.6×10^{-4}
0.10	3.8 dB	300,000	100,000	350	3.50×10^{-3}

Non-systematic code $\mathrm{K}=5 \quad \mathrm{~V}=3$ (Refer. Odenwalder)

TABLE 3

Comparison of Upper Bounds to the No. of Bursts in the simulation Study for Systematic Decoder of Constraint Length 3

SYSTEMATIC DECODER$K=3 . . V=3 \ldots$			
Length of burst	Type of burst	Number of bursts in simulation	No. of bursts by upper bounds
$\varepsilon=0.01$			
1	Solid	2	3
$\varepsilon=0.025$			
1	Solid	21	29
$\varepsilon=0.05$			
1	Solid	125	157
2	Solid	3	5
3	Solid	2	3
4	Solid	2	1
3	Non Solid	2	5
4	Non Solid	2	2
5	Non . Solita	1...	1

SYSTEMATIC DECODER

$$
. \mathrm{K}=. .3 \quad . \mathrm{V} \cdot=\mathrm{C}=3
$$

Length of burst	Type of burst	Number of bursts in..simulation	No. of bursts by.upper bounds
.	$\varepsilon=0.075$	
1	Solid	352	369
2	Solid	6	30
3	Solid	9	14
4	Solid	4	8
5	Solid	2	3
6	Solid	1	2
7	Solid	1	1
3	Non-Solid	1	1
4	Non-Solid	5	30
5	Non-Solid	2	7

SYSTEMATIC DECODER

$$
K=3 \quad V=3
$$

$$
\varepsilon=0.10
$$

1	Solid	630	777
2	Solid	30	110
3	Solid	34	60
4	Solid	8	36
5	Solid	5	15
6	Solid	1	10
7	Solid	5	6

Table 3 Continued
$\varepsilon=0.10$
(continued)

3 Non-Solid $16 \quad 110$
4
Non-Solid
7
34
5
Non-Solid
6
27
6
Non-Solid
6
30
7
Non-Solid
1
15

8
Non-Solid
2 9

TABLE 4
Comparison of Upper Bounds to No. of Bursts in the simulation Study for Non-Systematic Decoder of Constraint Length 3

NON-SYSTEMATIC DECODER

$$
K=3 \quad V=3
$$

Length of burst	Type of burst	No. of bursts in.simulation	No. of bursts by upper bounds

$$
\varepsilon=0.05
$$

1	Solid	7	8
2	Solid	4	8
4	Solid	1	1
5	Solid	1	1
3	Non-Solid	2	3
4	Non-Solid	6	7
5	Non-Solid	1	4
6	Non-Solid	2	2
7	Non-Solid	1	1
8	Non-Solid	1	1
9	Non-Solid	1	1

$$
\varepsilon=0,075
$$

1	Solid	59	62
2	Solid	23	62
3	Solid	7	8

Table 4 Continued

$\varepsilon=0.075$ (continued)			
3	Non-Solid	7	8
4	Non-Solid	$\because 8$	10
5	Non-Solid	6	9
6	Non-Solid	5	6
7	Non-Solid	4	5
8	Non-Solid	3	5
$\varepsilon=0.10$			
1	Solid	168	181
2	Solid	77	181
3	Solid	16	60
4	Solid	2	36
5	Solid	2	16
3	Non-Solid	27	56
4	Non-Solid	41	45
5	Non-Solid	32	38
6	Non-Solid	17	30
7	Non-Solid	21	30
8	Non-Solid	8	22
9	Non-Solid	7	15
10	Non-Solid	9	11
11	Non-Solid	5	10
12	Non-Solid	1	5

TABLE 5

Comparison of Upper Bounds to the No, of Bursts in the Simulation Study for a Systematic Decoder of Constraint. Length. 5

SYSTEMATIC DECODER

$$
K=5 \ldots V=3
$$

Length of burst	Type of burst	No. of bursts in. simulation	No. of bursts by upper bounds
		$\varepsilon=0.025$	
1	Solid	5	6
		$P_{e}=0.05$	
1	Solid	30	58
3	Solid	2	2
4	Solid	1	1

$$
P_{e}=0.075
$$

1	Solid	94	132
2	Solid	3	7
3	Solid	5	7
4	Solid	1	1
4	Non-Solid	5	5
5	Non-Solid	1	3
6	Non-Solid	3	3
7	Non-Solid	1	2
9	Non-Solid	1	1

Table 5 Continued

SYSTEMATIC DECODER

Length of burst	Type of burst.	No. of bursts in simulation	No. of bursts by upper bounds
		$\varepsilon=0.10$	
1	Solid	336	348
2	Solid	14	36
3	Solid	19	36
4	Solid	3	15
4	Non-Solid	25	32
5	Non-Solid	18	26
6	Non-Solid	11	21
7	Non-Solid	12	19
8	Non-Solid	7	15
9	Non-Solid	9	12

TABLE 6

Comparison of Upper Bounds to the No. of Bursts in the Simulation Study for a Non-Systematic Decoder of Constraint Length 5

Non-Systematic Decoder

$$
K=.5 \quad .7 . .=. .3
$$

Length of burst

Type of burst.

No. of bursts in simulation No. of bursts by upper bounds

$$
\varepsilon=0.075
$$

1	Solid	4	5
2	Solid	3	5
3	Solid	1	5
7	Non-Solid	2	2
$\mathrm{P}_{\mathrm{e}}=0.10$			
1	Solid	10	12
2	Solid	11	12
3	Solid	6	12
4	Solid	5	12
3	Non-Solid	8	12
4	Non-Solid	1	3
5	Non-Solid	8	10
6	Non-Solid	3	5
7	Non-Solid	4	7
8	Non-Solid	9	10
9	Non-Solid	2	10
10	Non-Solid	6	11
11	Non-Solid	4.	11

No. of bursts per 100,000

Systematic decoder
$K=3 \quad V=3$
$P_{e}=0.025$

Figure 22

$$
\begin{gathered}
\text { Systematic Decoder } \\
K=3 \quad \mathrm{~V}=3 \\
\mathrm{P}_{\mathrm{e}}=0.10
\end{gathered}
$$

Length of burst

Figure 23

Non-systematic decoder

$$
K=3 \quad V=3
$$

$$
\mathrm{P}_{\mathrm{e}}=0.10
$$

Length of burst

Length of burst

Figure 28

REFERENCES

1. Batson, B. H., "A Description of the Viterbi Decoding Algorithm," EE70-8008(U), Manned Spacecraft Center, Houston, Texas, May 1970.
2. Gallager, Robert G., "Information Theory and Reliable Communication," John Wiley and Sons, Inc., New York, Chapter 1 and 6, 1968.
3. "Potential Applications of Digital Techniques to Apollo Unified S-Band Communications System," NASA Contract NAS 9-9852, Martin Marietta Corp., Denver, Colorado, February 1970.
4. Taqvi, S. Z. H. and Wai-Hung Ng, "The Simulation of ErrorCorrection Codes for Space Communication Channels," HASD 642D-823239, Lockheed Electronic Company, pp. 16-18, March 1970 .
5. Hull, T. E. and A. R. Dobell, "Mixed Congruential Random Number Generators for Binary Machines," Journal of the Association for Computing Machinery V-11, pp. 31-40, January 1964.
6. Rule, Wilfred P., "Fortran IV Programming," 1968.
7. Papoulis, A., "Probability, Random Variables, and Stochastic Processes," McGraw-Hill Book Company, New York, Chapter 3, 1965.
8. Linkabit Corporation, "Convolutional Codes: The Key to Effective Error Control and Efficient Communication", Seminar presented by Linkabit Corporation, 10911 Weyburn Avenue, Los Angeles, California, January 26-29, 1970.
9. Lin, Shu, "Some Results on the Binary Convolutional Tree Code Generators," Department of Electrical Engineering, University of Hawaii, Honolulu, Hawaii.
10. Odenwalder, J. P., "Concatenation of Convolutional and Block Codes," Ph.D. Dissertation, UCLA, 1969.

APPENDIX

Program for Noise Generation by Window Method

```
700
    FORMAT(I5,F1O.3)
    I J=0
    NERR=0
    DO 701 I=1;NU
    DO.703 J=1,5001
    CALL RANDOM(IJ,R)
    IF(R.GT.PE) GO TO 702
    IA(J)=1
    NERH=NERF+1
    GO TO 703
    IA(J)=0
703 CONTINUE
    WRITE(2) (IA(J),J=1,5001)
    END FILE 2
    REWIND 2
    DO 704 I=1,NU
    READ(2) (IA(J), J=1,5001)
    WRITE(6,705) (IA(J),J=1,5001)
705 FOKMAT(//50I2)
704 CONTINUE
    URITE(6,706) NERR
706 FORMAT(//////5X,'TOTAL ERRORS IN THIS FUN ARE =*,I10)
    STOP
    END
```

 DIMENSION IA(5001)
 READ (5,700) NU, PE
 SUBROUTINE RANDOM (IJ,R)
 IF(IJ) \(10,10,20\)
 $10 \quad I J=47594118$
$20 \quad K=23 * I J$
$J=10001009$
I $\mathrm{J}=\mathrm{K}-\mathrm{J}$
$\mathrm{F}=\mathrm{I} \mathrm{J}$
$R=0.0000001 * \mathrm{H}$
RETURN
END

```
    DIMENSION NBI(32,3),NBO(32,3),NR(3),ND1(64),NDO(64),NSC(64)
    DIMENSION NSS(64,35),MSS(64,35),NDE(2000),IA(5001)
    DIMENSION NS(100,10),NG(10,10)
    READ(5,11) K,NU
    11". FOBMAT(2I5)
    DO 160 I=1,K
    READ(5,21) (NG(I,J),J=1,NV)
21 FORMAT(10I5)
160 CONTINUE
    M=K-1
    L=2**M
    D0 10 I=1,M
    N=L/(2**I)
    NJ=0
50 J=NJ+1
    Ny=NJ+N
    DO 20 LL=J,NJ
    NS(LL,I)=0
    KLL=LL
    20 CONTINUE
    IF(KLL-LT.IN)CU:IOS 30
    GO TO 10
    30 J=NJ+1
    NJ=NJ+N
    DO 40 LL=J,NJ
    NS(LL,I)=1
    KLL=LL
    40 CONTINUE
    IF(KLL.LT.L) GO TO 50
    10 CONTINUE
    JJ=L
    DO 60 I=1,JJ
    DO 60 J=1,NU
    JJJ=NG(1,J)
    DO 70 KK=1,M
    MMI}=\textrm{KK}+
    IF(NS(I,KK).EQ.1) GO TO 80
    JJJ=JJJ+0
    GO TO 70
    80 JJJ=JJJ+NG(MM,J)
    70 CONTINUE
    JJJ=MOD2(JJJ)
    NBL(I,J)=JJJ
    60 CONTINUE
    DO 90 I=1,JJ
    DO 90 Jm1,NV
    JJJ=0
    DO 100 KK=1,M
    MM=KK+1
    IF(NS(I,KK).EQ.1) GO TO 110
    JJJ=JJJ+0
    GO TO 100
    110 JJJ=JJJ+NG(MM, J)
    100 CONTINUE
    JJJ=MOLZ(JJJ)
```


$M I=J K-I M$ $M E=M E+N V$ IF (ME.EQ.5001) GO TO 290 GO TO 280 WRITE $(6 ; 330)(\operatorname{MDE}(J), J=1, N U)$
330 FORMAT(//50I2)
DO $331 \mathrm{NY}=1, \mathrm{~L}$
NSC(NY) $=$ NSC(NY)-NSC(KIK)
CONTINUE
801 CONTINUE
WRITE(6,803) NERR
803 FORMAT $/ / / / / / 5 X$, 'TOTAL ERRORS IN THIS RUN ARE $=1, I 10$) STOP
END

FUNCTION MOD2(I)
$X=I$
$I=X / 2$.
$X=X / 2$ 。
$Y=I$
IF(X.EQ.Y) GO TO 10
MOD2 $=1$
GO TO 20
$10 \quad$ MOD2 $=0$
20 RETURN
END

[^0]: *These numbers denote references.

[^1]: Path of length 8 gives burst of length 6 .
 Figure 15

