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ABSTRACT

Burst error statistics at the output of a Viterbi 

decoder are investigated. Upper bounds on the number of 

bursts of any length have been derived analytically for a 

hard decision.

A Viterbi decoder for a hard decision has been simulated 

on a digital computer. Simulation studies have been made 

on decoders of different constraint lengths and for different 

probabilities of error for the Binary Symmetric Channel.

Number of bursts of different lengths at the output of these 

decoders have been counted. The results from the simulation 

study agree with the upper bounds obtained analytically.
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CHAPTER I

INTRODUCTION

The Viterbi decoding algorithm has received a great deal 

of attention recently. This decoding scheme has been shown 

to be a maximum likelihood decoding scheme and hence, an 

optimum for decoding convolutional codes. This algorithm 

performs very well with short constraint lengths.

Simulation results have shown that the errors at the 

output of a Viterbi decoder occur in bursts, that is, the 
3*errors tend to cluster together. Thus the burst error rate 

becomes more important than the bit error rate for a Viterbi 

decoder. Longer bursts at the output cannot be tolerated.

In this thesis upper bounds on the number of bursts at the 

output of a Viterbi decoder have been derived. The validity 

of the results has been proven by simulating a Viterbi de­

coder on a digital computer.

In the second and third chapters basic principles of con­

volutional encoding and Viterbi decoding have been explained. 

The fourth chapter deals with the communications system model 

considered for this study. The bounds have been derived in 

Chapter Five and in Chapter Six the simulation study has 

been explained in detail,  

*These numbers denote references.



CHAPTER II

CONVOLUTIONAL ENCODING

A convolutional encoder is a K-stage shift register 

whose stages are connected to V modulo 2 adders in some 

prescribed fashion. There is a commutator at the output of 

the modulo 2 adders. A convolutional encoder with K = 3 and 

V = 3 is shown in Figure 1. The input digits are shifted 

one by one into the shift register and for every input digit 

the commutator makes one revolution producing V output digits 

per input digit. The rate of the code is then defined as

R = 1/V

The length K of the shift register is called constraint 

length of the encoder and is a measure of the duration in 

which the encoded output digits are affected by any particular 

input digit.

One way of describing a convolutional encoder is to 

specify its generator sequence. The generator sequence is 

defined as the output sequence which results from transmitting 

a K-bit input sequence consisting of "one" followed by all zeros. 

Now it is to be noted that if a single "one" is located in 

some stage S of the shift register the output digit from any 

modulo 2 adder will be "one" if that adder is connected to 

stage S or a "zero" otherwise. The length of the generator
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Convolutional Encoder

Figure 1
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sequence is KV. The first V digits represent the modulo 2 

adders which are connected to the first stage, the second V 

digits represent the adders which are connected to the second 

stage and so on. For example, the generator sequence of the 

encoder in Figure (1) is 111 001 010.

The output sequence corresponding to any input message 

can be obtained by using the generator sequence. It employs 

the principle of superposition and successive shifts of the 

generator sequence are added (modulo 2). An example is 

given in Figure 2.

Each bit shifted into the encoder results in one of the 

two possible V-bit output sequences. One sequence corresponds 

to shifting in a "one" and the other corresponds to shifting 

in a "zero". However, the resulting sequence depends on the 

previous K-l digits shifted into the encoder. Thus a partic­

ular digit not only affects the immediately resulting sequence 

but also the next K-l V-bit output sequences.

A convolutional encoder can best be represented by a 

tree structure as in Figure 3. From every node we have two 

branches and the digits on the branches represent the output 

sequences. The tree is so arranged that the. upper branch 

from a node corresponds to shifting in a "zero" and the lower 

branch corresponds to shifting in a "one" in the encoder. 

The output sequence corresponding to any message can now be
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Input 
Digits
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001 010
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111 001 101 001 101 ——- — - -----

Determination of encoded output digits 

corresponding to an input message 

for the convolutional encoder with 

generator sequence 111 001 010 

Figure 2
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found by following the appropriate path through the tree.

STATE DIAGR7\MS

The state of an encoder is defined as the contents of 

the first K-l stages in the shift register. As the new digit 

is shifted into the encoder the most ancient Kth bit is 

shifted out of the register and so it cannot affect any 

subsequent sequence. This is the reason that the Kth bit 

is not considered for defining a state of an encoder. Now 

if the encoder is in a particular state there are only two 

possibilities, either we shift in a "zero" or a "one". It means 

that we can go into only one of the two possible states from 

a given state.

The state diagram for the encoder discussed in the 

previous examples is given in Figure 4. As an example, if we 

are in a state of 01 we can only go to state of 00 or 10. 

The state 00 results, if we send a zero and state 10 results, 

if we send a one.

Thus it becomes very easy to determine the output 

sequence corresponding to any input message by going through 

the state diagram of the encoder. This in fact is a simpli­

fication of the tree structure.

The state diagram can be drawn in a different form which 

is more convenient for discussing the Viterbi Algorithm. This 

diagram is called a trellis structure. The states are now
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State Diagram

Figure 4
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represented as nodes and the transfer from one node to 

another is represented by an arrow. The trellis structure 

is given in Figure 5. The important points about the trellis 

structure are given below. These will be used later on for 

deriving the upper bound on the number of bursts out of a 

Viterbi decoder.

1. There are only two states that can be reached from 

a given state.

2. A given state can be reached only from one of the 

two previous states.

3. The moves from state to state are independent of the 

particular generator sequence. Thus for all encoders of a 

particular constraint length K the shape of the trellis 

structure will be the same. However, the output digits on 

the branches are dependent on the modulo 2 adders connections 

or the generator sequence.

4. The uppermost of the two paths leaving any node cor­

responds to shifting in a "zero" and the lower path corresponds 

to shifting in a "one."
K—■ i5. There are in all 2 states. The upper half states 

K—2(2 ) can only be reached if we transmit a zero and the
Kw2lower half states (2 ) can be reached only if we transmit

a one. This is because we arranged the states in such a way 

that all states starting with zero were placed at the top and
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Upper half 
states can 
be reached 
a "zero" is 
transmitted

Lower half 
states can 
only be 
reached if 
a "one" is 
transmitted

00

01

10

11

Trellis Structure

Figure 5 
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those starting with one were placed below. Since the first 

digit of the new encoder state has to be the same as the 

message digit that was just shifted in, the upper half states 

can only be reached if zero is shifted in and the lower half 

states can only be reached if a one is shifted in.

6. If we are in one of the lower half states and we send 

K-l zeros, the encoder will come to the all zero state, that 

is, the top most state. This property is very obvious because 

when the encoder is in one of the lower half states, there 

is a one in the first stage of the shift register and sending 

in K-l zeros pushes this to the Kth stage and all zeros in 

the first K-l stages which corresponds to the all zeros state 

of the encoder.

The output sequence for a given message can be found 

entirely from the trellis structure. However, for convenience 

the structure is expanded to a form given in Figure 6. The 

encoding procedure then reduces to only going along a path 

through the expanded version of the trellis structure cor­

responding to the input message.
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Expanded version of trellis structure

and encoding of message digits by tracing a path through it.

Figure 6



CHAPTER III

THE VITERBI DECODING ALGORITHM

The Viterbi decoding algorithm can best be visualized 

in terms of the expanded version of the trellis structure. 

We already have seen that encoding operation is nothing but 

a path through the expanded trellis structure depending on 

the input message. The decoding procedure is just the 

reverse of this operation. The noise in the channel changes 

some of the digits in the encoded sequence' and the Viterbi 

decoding algorithm attempts to find a path through the ex­

panded trellis structure which is as close as possible to the 

received sequence. The information sequence corresponding 

to this path is then taken to be the original input message 

sequence. The decoding algorithm is maximum likelihood 

decoding and is optimum in the sense that a most probable 

transmitted message is selected depending upon the received 

sequence. The Viterbi decoder utilizes the state diagram of 

the encoder and. the received sequence to find the most' likely 

information that was transmitted.

From the trellis structure it can be seen that once any 

two paths merge into the same stater both paths have identical 

extensions out of that state and after this state.the two paths 

will correlate equally well with the received sequence. So 
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we should always be able to discard one of the two paths 

entering any state otherwise we shall violate the objective 

of finding a path which correlates best with the received 

sequence. Thus we discard those paths which can never be 

candidates for the highest correlated path. This is the idea 

on which the Viterbi algorithm works.

The main steps in the Viterbi algorithm are as follows?

1. A received branch (V-bit long) is shifted into the 

decoder. It is compared with each of the two possible branches
K—1out of each 2 states. The delta scores are generated. A 

delta score is defined as the number of positions in which 

the received branch differs from the branch with which it is 

being compared. There are 2 branches in all which are to be 

compared with the received sequence,

2. These delta scores for the two paths leaving each 

state are added to the previous delta scores (initially zero) 

for that state.

3. Delta scores for the two paths terminating in each
K—1of the next 2 states are compared and the path having 

lower score is kept while the other is dropped. If the two 

scores are equal, one of the paths is arbitrarily dropped.
K”!The delta scores for 2 states are stored in the score 

registers.

4. The information sequences corresponding to the 
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paths are called survivor sequences and these are stored in 

survivor sequence registers for every state.

There should be a scheme for transfer of entire contents 

of one register to another. For example, if the survivor 

path terminating in state 00 has come from 01 the new contents 

of delta score register for 00 state should be the contents 

of state 01 plus the delta score for branch between 01 and 00. 

Similarly the contents of survivor sequence register for 01 

should go into survivor sequence register of state 00 plus 

the new bit which resulted in entering the state of 00. The 

operation of the Viterbi algorithm is explained by an example 

in Figure 7. The table for the delta score registers and 

the survivor sequence registers is also given in Figure 8.

As we go on receiving more and more bits the length of 

the survivor sequence registers goes on increasing. The score 

registers also have to handle larger numbers. So the question 

is at what time we make the decision on information bits and 

how to protect overflow of the registers. It has been observed 

that if the survivor sequence registers are made B bit long 

where B is about 5 or 6 times K (constraint length), all registers, 

with high probability, agree as to the initial few bits in 

the survivor sequences, even though the channel is too noisy. 

Thus the bit decision can be delayed B bits where B = 5K or 6K. 

In case the initial bit is not the same in all the registers



Transmitted sequence
Error sequence
Received sequence

111 001 101 001 010 000 000 000 000 000
001 001 000 100 000 000 000 000 000 000
110 000 101 101 010 000 000 000 000 000

Figure 7
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we shall take the survivor sequence which has the least delta 

score. Thus a decoded bit will be shifted out of the 

registers and a new bit will be entered making the decoding 

process bit by bit and controlling the survivor sequence 

registers.

The overflow of the delta score registers is controlled 

by subtracting the lowest delta score from all delta score 

registers when an overflow condition arises. This is done 

because we are interested only in the diffence in the delta 

scores rather than their absolute values.



Table for delta score and survivor sequence registers

Step No.

REGISTER CONTENTS

ssoo scoo SS01 SC01 SS10 SC10 SS11 SCh

1 *■ — — —— — — — — — —

2 0 1 0 2 1 1 1 0
3 00 1 10 2 01 4 11 1
4 000 3 110 3 101 2 111 2
5 000 0 5 101 0 3 110 1 3 111 1 3
6 101 00 3 111 10 4 101 01 6 110 11 4
7 101 000 3 110 110 6 101 001 6 110 111 5
8 101 000 0 3 101 001 0 • 7 101 000 1 6 110 111 1 6
9 101 000 00 3 101 000 10 7 101 000 01 6 110 111 11 7

10 101 000 000 3 101 000 010 7 101 000 001 6 101 000 011 8

SC = Delta score register
SS = Survivor sequence register Figure 8

: 
81



CHAPTER IV

DESCRIPTION OF THE COMMUNICATIONS

SYSTEM CONSIDERED FOR THE PRESENT STUDY

The conununications system in which we are interested 
. . 2can be represented by the block diagram m Figure 9. The 

source produces a sequence x of binary digits ”0" and "1". 

This we call the information sequence. This information 

sequence is sent into the encoder which transforms this 

sequence to y. The sequence y is sent through the channel. 

The channel disturbs the input sequence y and produces a 

sequence r at the output which is noise corrputed version 

of sequence y. The purpose of the decoder is to receive 

r as input and it tries to reproduce the original information 

sequence. Depending on r the decoder produces a sequence 

x’ which is taken to be as the original information sequence.

The channel was taken to be as a Binary Symmetric 
2Channel. A Binary Symmetric Channel (abbreviated BSC) can 

be best represented by a transitional probability diagram of 

Figure 10. The input to the channel consists of either "O” 

or "I" (Binary Symbols) and the channel produces binary 

symbols at its output. Each digit in the input sequence can 

be received correctly with some fixed probability (1-e) and
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Noise

Communications System

Figure 9

Binary Symmetric Channel

Figure 10
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is altered by noise into the opposite digit with probability 

of e where e<l/2. The transitional probabilities are con­

stant and are independent of the value of the symbol being 

transmitted. The noise effect is thus to reverse the trans­

mitted digits. The probability of error in a BSC can be 

connected to a practical system by an important parameter 
. . . 4 7called signal to noise ratio. » For an antipodal binary set 

of signals, e is given by 
e = 1/2 - erf /2E 

J N 
n o

where
i x 2 /9 erf(x) = —— J e~^ ' dy 

/2tt o

E = Energy per digit.

Nq = One-sided noise spectral density. 

E/Nq = Signal to noise ratio.

The plot of e vs E/Nq in dB gives the performance curve. 

When the information bits are encoded the number of channel 

bits becomes V times the number of information bits and this 

reduces the signal to noise ratio V times, for a given 

transmitter power.

The encoder is a convolutional encoder and the decoder 

is a Viterbi decoder. Different decoders of various con­

straint lengths were tried.
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The source was supposed to be producing an all ”zeros” 

sequence and when this all ”zeros” sequence goes into encoder 

we get an all "zeros" encoded sequence. Thus an all "zeros” 

sequence was taken to be the correct sequence. This can 

always be done because convolutional codes are group codes 

and whatever results we get for an all "zeros" sequence should 

be valid for any other arbitrary sequence. Thus while deriving 

the bounds the all "zeros" path in the expanded trellis 

structure was taken to be the correct path.



CHAPTER V

DERIVATION OF UPPER BOUNDS ON THE NUMBER OF BURSTS

As mentioned in Chapter IV the assumption here will be 

that an all "zero” sequence is transmitted through the 

channel. So a "one" appearing in the decoded sequence will 

represent an error in that position. A burst here will be 

defined as a set of binary digits Z , Z^Z ,, , in the n n+1 n+b-1
3 decoded sequence, if and only if:

« Zn - Zn+b-l = 1 2

1) ...00010101000... is a burst of length 5

2) ...000111000... is a solid burst of length 3

This particular definition of a burst will be followed 

while deriving upper bounds on the number of bursts,

2) (K-l) digits on each side of Z ...Z ,, , are all zeros.n n+b-1
3) There is no consecutive sequence of (K-l) zeros within

the set Z , Z ......Z where K is the constraint lengthn n+x n+b-x 
of the encoder.

The length of the burst is taken as the size of the set 

which is equal to b. It is to be noted that all digits in a 

burst need not to be errors. When they are all in errors a 

burst is called a solid burst.

Example If K = 4
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• UPPER BOUNDS FOR SOLID BURSTS

For an all zero message if the decoder takes the all 

zeros path, it makes no errors. If it takes any other path, 

we are making some errors in the decoding process as shown in 

Figure 11.

If we decode a particular bit into "I", it means that 

we are in one of the branches of trellis structure which 

are going downwards and the decoder ends up in one of the 

lower half states. This follows from the properties of 

trellis structure discussed in Chapter II. A burst always 

ends with a "1", so at the end of a burst we should always 

be in one of the lower half states. Again a burst must be 

followed by (K-l) zeros. Decoding the next (K-l) bits into 

zeros puts the decoder in the all zero state, that is, back 

to the correct path, as shown in Figure 12. It means that if 

at all nother burst occurs it should start at the uppermost 

all zero state. So a path which produces a burst separates 

itself from the all zeros path at some point and again goes 

back to it at some other point. Every path of this kind gives 

rise to a particular pattern of burst. For example, for a solid 

burst of length one there is only one path as shown in Figure 13. 

Again there is only one path which gives rise to a solid burst 

of length two and the same is true for any other solid burst 

of length b. So if at all a solid burst of length b occurs
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Figure 11

Figure 12
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11. 11. 11. 11.

Path giving a solid burst of length 1; 

this is the only path which does so.

Figure 13 
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the decoder should have taken that particular path which pro­

duces burst of length b and no other path.

Suppose the weight of the path which corresponds to a 

solid burst of length b is w. By weight we mean the total 

number of "ones" in the path. This weight can always be 

found out from the trellis structure for any solid burst. In 

order that we choose this path over the all zero path we must 

make w/2 or more errors in the transmission through the channel. 

Only then the received sequence will be closer to this path 

than the all zero path. The errors should be in symbols in 

which this path differs from the all zeros path. So in order 

to go into this path we should make w/2 or more errors in 

w bits. If e is the probability of error in the BSC, then 

the probability of making w/2 or more errors in w digits is 

given by
pb - i - V2 ( ") ew/2(l-e)w/2 (la)

i=w/2 '

when w/2 is an integer.

The second term in the above expression is for the case 

when exactly w/2 errors occur resulting in a tie between the 

all zero path and weight w path so that errors are made only 

one half of the time.
wpb = I <1) e1(l-£)W’‘i

D i=w» 1 (lb)

When w/2 is not an integer^w* is the integer part of (w/2+1).
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Pb is the probability that a solid burst of length b occurs.

It has been shown that the expression for can be upper 
, n 8 ,bounded by

Pb < 2W [e(l-e)]w/2

Suppose we transmit N bits so that N is very large. Then 

according to the weak law of large numbers we should expect 

Ne errors where e is probability of error in the BSC. Now 

a solid burst of length b occurs only if we take the loop or 

path of weight w. The maximum number of such loops we can 

have (Figure 14) with Ne errors is given by

.T ' Ne ' 2Ns . - .N, = —tx- = --- if w/2 is an integerbmax w/2 w 3

' NeN, = —r if w/2 is not an integer and w* is as bmax w1 '
defined earlier.

A loose upper bound on number of solid bursts of length 

b, then, can be written as follows.

Nb — is an integer.

Nb — w//2 nc>t 311 Steger.

This is a very loose upper bound. It is to be noted that while 

deriving this bound we apparently assumed that in every w 

symbols there will be w/2 errors and that we will always take 

the wrong path. This means we assumed that a solid burst of
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Correct path

Figure 14



30
length b is going to occur with a probability of one. However, 

the probability of occuring of a solid burst of length b is 

given by as we found out earlier. So weighting this bound 

by Pfc will tighten this upper bound and we get

•••Nb — —w— an •i-nteger

■ NePb
Nb — ""w1— not an ^nteger’

Byt P^ is bounded by

Pb < 2W ed-e) w/2

therefore we have the following upper bound for the solid bursts. 

Theorem 1:

The upper bound on the number of solid bursts at the 

output of a Viterbi decoder is:

.2 (W+1) w/2
, if w/2 = integer

(2)M . 2W [e (1-e)] W/'2£N . . /0 , . .
£ --——------  r w/2 / integer

where

= Number of solid bursts of length b.

w = Weight of the path which gives solid bursts of length b. 

£ = Probability of error in the BSC.

N = Number of channel bits transmitted.

w’ = The integer part of (w/2 + 1).
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' UPPER BOUNDS FOR NON-SOLID' BURSTS

As seen earlier there is only one path which gives rise 

to a solid burst of length b. For non-solid burst there 

can be more than one path. For example, for K = 4,  

...00010101000... is a non-solid burst of length 5 and so 

is ...00011011000... . But these two patterns are provided 

by different paths in the trellis structure. We have also 

noted that a burst always starts at all zero state and ends 

in one of the lower half states and after that there should 

be (K-l) decoded zeros which puts the decoder back in the all 

zero state. For a burst of length b the length of the path 

from the point where it separates from all zero path to the 

point where the end of the burst takes place should be equal 

to b. After this point the path is (K-l) bits long and merges 

again with the all zero path. The path that contributes to 

a burst of length b should be (b+k-1) bits long. This is shown 

in Figure 15. Now any path which is (b+k-1) bits long cannot 

have a combination of (K-l) consecutive zeros in the first b 

places. if it had (K-l) consecutive zeros anywhere in the 

first b bits it should have gone back to the all zero state. 

So every path which is (b+k-1) bits long gives rise to a burst 

of length b.

Now our purpose is to find the number of such paths 

which separate from all zero path and go back to it at some
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Path of length 8 gives burst of length 6.

Figure 15



Signal Flow Chart for State Diagram 
Figure 16

Block Diagram for the State Diagram 
Figure 17
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other point and are (b+k-1) bits in length. Also we are 

interested in the weights of these paths. This can be done 
g

by considering the state diagram (Figure 4). The state 

diagram is opened at the self loop on all zeros state and is 

drawn as given in Figure 16. The paths on the diagram are 

labelled according to their weights and lengths. The exponent 

of D gives the weight of the path and the exponent of L gives 

the length of the path. This diagram is drawn as a signal 

flow diagram as in Figure 17, and the closed loop transfer 

function provides us an enumeration of every path. For example, 

the transfer function for the system in Figure 17 is given by

i-dl-d6l3 -d3l2 -d8l2 +d6l4 +d6l4 -d5l3
Expansion of this gives

T(D,L) = D5L3+D8L4+D9L5+D10L6+2D11L6+...

which tells us that the path of length 3 has a weight 

one path of length 6 has a weight 10 and the other two have 

weight 11. This expression can be expanded further and know­

ledge about longer paths can be obtained very easily. So by 

an investigation of equation (4) we can find out the number 

of paths of any length and their weights,

Supposing we find from (4) that there are n paths which 

give rise to a burst of length b, that is, there are n paths

(3)

(4)

of 5.
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(b+k-1) bits long. Weights of these n paths can be found by 

equation (4). Let the weights of these paths by w^,^'•• 

These n paths also include a path which gives solid bursts 

of length b. So we exclude that path and are left with only

(n-1) paths and their weights are wi^w2’**wn-l

w.J W. . w.-l
Pbj = (i^ e1(l-E) 3 if Wj/2 7? integer

i=w’ j
w! = integer part of (Wj/2+1)

We can go into the

given by

w.

if Wj/2 = integer

jth path only if we make Wj/2 or more 

probability that we go into the

i=Wj/2

errors in Wj bits. The 

jth path is
w.

Pbj =
w. w./2w.-i 3 jz w./2 e1(l-E) 3 - l/2(wj/2)e (1-e) 3

Again we can upper bound P. . by the expression

w. w./2
Pbj < 2 3[e(1-e)J 3 (5)

Now whenever we go into one of these (n-1) paths we get a 

burst of length b. It can happen that two paths are equally 

close to the received sequence at the same time and thus 

the events are not disjoint. So the probability P^ that we 

go into any one of these (n-1) paths is bounded by



36

Pb i
n-1

bj

using the upper bound on P^j given by expression (5) we get

n-1 w. W./2P. < 2 2 3 3
3=1

Pb gives us the probability that a burst of length b will 

occur.

If we transmit N channel bits through a BSC with proba­

bility of error = e, we can get at the most loops of the 

form in Figure 14. Where wg is the smallest weight among w^z 

w2',e,wn j which gives us a loose bound.

N. < if w /2 = integerb — w„ s 3s

NpNb S if ws/2 integer
s

w^ = the integer part of (wg/2+l)

as explained before this can be tightened by weighting it by

The upper bound on the number of non-solid bursts at 

Pb-
■ Theorem 2:

the output of a Viterbi decoder is;
n-1 w. w./22Ne £ 2 3 [e(l-e)] 3

N, < ---—L--------- :------ :—
b "— w .s if wg/2 = integer
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n-1 w. w./2

Ne £ 2 - ..£e(l«e)] . r 

s
if ws/2 / integer 

where

Nfc = Number of non-solid bursts of length b. 

N = Number of channel bits transmitted.

n = Number of paths of length (b+k-1).

Wj = Weight of jth path out of all n paths except the 

one giving solid bursts.

e = Probability of error in the BSC. 

wg = Smallest weight among • • •wn_i« 

w^ = The integer part of (wg/2+l).



CHAPTER VI

SIMULATION OF THE SYSTEM

The communication system of Figure 9 was simulated on a 

digital computer. As the all "zeros" sequence is taken to be 

the transmitted message, the encoder need not be programmed. 

The modulo 2 sum of the noise sequence and the all "zeros" 

sequence will give us the noise sequence and so the received 

sequence r will be nothing but the noise sequence. For 

example, suppose the noise sequence n is given as

n = 0100111000010...

and y = 0000000000000...

then the received sequence r is given as

r = y + n (mod 2)

r = 0100111000010...

which is the noise sequence. So for purposes of simulation 

the noise sequence for different probabilities of erros in 

the BSC was produced and stored on a tape. This sequence 

served as input to the simulated Viterbi decoder.

NOISE SIMULATION

Random noise can be generated in a digital computer by 

producing pseudo-random numbers. There are various techniques 

for generation of random numbers. Most of the random number
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. 5generators are based on a congruence raltion of the form

x^+1 = ax^+c(mod m) i = 0,1,2r3,4 ,...

The sequence of integers x^fX2fXgfx^.., is determined by 

the choice of Xg,a,c and m, where these four parameters are 

non-negative integers. Then the hope is that the sequence 

Xy/m, X2/m... will appear to be drawn at random from the 

uniform distribution on (0,1). If c = 0 the generator is 

called multiplicative type, otherwise it is called a mixed 

type. The random number generators of mixed type have their 

statistical behaviour unsatisfactory in some cases. As the 

noise is simulated using random numbers it is desirable that 

the random numbers should have very good random properties.

The random number generator chosen was a multiplicative 
3 type. It has the following parameters.

xQ = 47594118

a = 23

c = 0

m = 10001009

The formula has passed the simple distribution and auto- 
3 correlation tests.

SIMULATION OF BINARY SYMMETRIC CHANNEL

A Binary Symmetric Channel implies a hard decision. Hard 
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decision means two-level decision, assigning a ’’zero or a 

"one". The effect of noise in the channel is to reverse the 

transmitted digits corresponding to a given probability of 

error in the BSC. For the purpose of simulation we have to 

decide the positions of the bits in the encoded sequence which 

have to be reversed. If we send N bits (N is very large), 

Ne bits out of this should be in error or reversed, where e 

is the probability of error in the BSC. One of the methods 

used to accomplish this is given below.
WINDOW METHOD4

The random numbers generated are uniformly distributed 

between 0 and 1. The distribution and density function of 

such numbers are as shown in Figure 18. If we choose an 

interval between a and a+e where 0<a<l-e, for a true uniform 

distribution the number of random numbers falling in this 

interval will be Ne where N is total number of random numbers 

generated (N is very large). Also, this number will remain 

constant no matter where we choose the interval e between 0 

and 1.

In the window method a window is chosen between 0 and 1 

and the width of the window is e which is the probability of 

error in the BSC. For every input digit sent into the channel 

a random number is produced. If the random number falls with­

in the window chosen, the digit being transmitted is reversed.
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0 1

Density function of random numbers 

uniformly distributed between 0 and 1.

Distribution function of random numbers uniformly distributed 

between 0 and 1.

Figure 18 
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otherwise it is left unchanged.

A program for simulation of hard decision noise has been 

written. The main program uses' the subroutine Random in order 

to produce Random numbers. The flow chart and listing of the 

program are given in the appendix,

' SIMULATION OF VITERBI DECODER

The Viterbi decoding program has been written in FORTRAN

IV language. The input to the program consists of the following:

1) Constraint length K.

2) Rate 1/V.

3) The generator sequence.

4) A tape containing the received sequence digits.

For given input values of K and V the program generates the 

trellis structure of the encoder. It generates all the 

states and also the sequences on the branches of the trellis 

structure. These sequences are stored in the memory.

The processing of the input bits is done in blocks. In 

every block the computer reads 5001 channel bits. It 

compares these bits, V at a time with the branches on the 

trellis structure and generates the delta scores. The delta 

scores are stored in registers. The survivor sequences are 

stored in survivor sequence registers. Two sets of survivor 

sequence registers have been provided for every state so that 

the transfer of contents from one register to another can be 
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easy. The registers are made 5K bits long so that the 

delay in decision on bits is 5K. Thus there is no output 

until 5KV channel bits have been processed. Thereafter, the 

decoding is bit by bit.

At the end of every block the lowest delta score is 

subtracted from every delta score register and it controls 

the overflow of the delta score registers.

A listing of the program and a flow chart are given 

in the Appendix.



CHAPTER VII

RESULTS AND CONCLUSIONS

For the purpose of simulation systematic and non-systematic 

codes of constraint length 3 and 5 were considered. The source 

of these codes were references (9) and (10). Each of the four 

codes was used with 5 different probabilities of error in the 

BSC. For each case 100,000 information bits were run and 

the errors in the decoding process were counted. Probability 

of error vs signal to noise ratio curves were plotted for 

each decoder. (See Figures 19 and 20.) The data has also 

been depicted in Table 1 and Table 2. From Figures 19 and 

20 it is observed that non-systematic codes are better than 

systematic codes. For a constraint length of 3 the gain over 

systematic code is about 1.2 dB and for K = 5 this gain is 

about 1.75 dB

The number of bursts in the decoding for each case was 

counted and also the number of bursts by upper bounds were 

calculated. These have been shown in Tables 3 through 6. 

The bounds seem to hold in every case.

Number of bursts vs burst length, diagrams, have been 

plotted for all decoders in Figures 21 through 29.

The simulation results show that at low probability of 

error or high signal to noise ratio the non-systematic codes
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have very less errors as compared to the systematic codes and 

the number of bursts is also less. As we go to low signal to 

noise ratio the total number of errors for the non-systematic 

codes, of course, remains less than the systematic codes, 

but the number of longer bursts increases. So at low signal 

to noise ratio the non-systematic codes give more number of 

longer bursts than the systematic codes. The number of non­

solid bursts also increases as compared to systematic codes.

The upper bounds derived in this work is the first 

attempt of its kind in the literature. They seem to be 

reasonably tight. However, it is to be noted that the results 

are valid only if the number of transmitted bits is very large. 

Also the application of these bounds is good for short con­

straint lengths. For large constraint lengths the computation 

of expression (3) and expression (4) becomes a laborious job.
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TABLE 1

Data for Simulation Study of Systematic and Non-systematic

Decoders of Constraint Length 3

DECODER SYSTEMATIC
. K =■ .3.; v .=■ .3. .(.G...S... .1.11.,.0.0.1., .01.0 ) . .

Probability S/N Ratio No. of No. of Errors Probability
of error for the channel information in of error for
in BSC information bits trans- bits trans- decoding the informa-

• ■ Pe..... bits. . mitted . mitted'. . tion bits .

0.01 9.1 dB 300,000 100,000 2 -5 2x10 D
0.025 7.78 dB 300,000 100,000 21 2.1xl0-4

0.05 5.9 dB 300,000 100,000 162 1.62xl0-3
0.075 4.78 dB 300,000 100,000 452 4.54xl0-3
0.10 3.8 dB 300,000 100,000 1217 1.217xl0-2

DECODER NON-SYSTEMATIC
K =. .3 . . . V. =. 3 (G. S . .11.1. ,110 ,.ILL)

0.01 9.1 dB 300,000 100,000 0
0.025 7.78 dB 300,000 100,000 0 —

0.050 5.9 dB 300,000 100,000 77 7.7X10-4
0.075 4.78 dB 300,000 100,000 329 3.29xl0“3
0.10 3.8 dB 300,000 100,000 1358 1.358X10-2
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TABLE 2

Data for the Simulation Study of Systematic and Non-systematic

Decoders of Constraint Length 5

DECODER SYSTEMATIC
K ■= 5.... V ~ 3 (G,S, 111,001,010,010,0001)

Probability 
of error in 
BSC P e

S/N Ratio 
for the 
information 
bits........

No. of 
channel 
bits trans­
mitted.....

No. of 
information 
bits trans- 

. mitted.....

Errors 
in 
decoding

Probability 
of error 
for the in­
formation
DltS

0.01 9.1 dB 300,000 100,000 0 ——
0.025 7.78 dB 300,000 100,000 5 5xl0"5
0.05 5.9 dB 300,000 100,000 39 3.9xl0~4
0.075 4.78dB 300,000 100,000 167 1.67xl0-3
0.10 3.8 dB 300,000 100,000 708 7.08x10 0

DECODER NON-SYSTEMATIC
........................... K .=. .5. . V. =. 3 (G.S .. Ill,.110,101,110 , 111)

0.01 9.1 dB 300,000 100,000 0 ——
0.025 7.78 dB 300,000 100,000 0 —-
0.05 5.9 dB 300,000 100,000 0 '.
0.075 4.78 dB 300,000 100,000 26 2.6xl0“4
0.10 3.8 dB 300,000 100,000 350 3.50X10"3
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Uncoded system

Non-systematic 
code no good 
after this.

cross oyer 
point.

About 0.8 dB 
gain for 
systematic code

_ Systematic 
code K=3 V=3 

(Refer. Shu Lin)

About 2 dB 
gain for 
non-systematic code

Non-systematic Decoder
K=3 V=3 -----
(Refer. Odenwalder)

Channel PE

io-5
T -i----- 1----- 1-2 3 4

ti/N Ratio in DBS
(Figure 19)
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Uncoded system
p

io5-

o"4

About 3.75 
gain for non- 
systematic code

S/N Ratio in DBS

Non-systematic code
K=5 V=3 
(Refer. Odenwalder)

About 2 DB 
gain for 
systematic code

(fig>uR.e 20)

Systematic Decoder
K=5 V=3
(Refer. Shu Lin)

1 2 3 4 5 6 7 6 9 to 71 12

:J3

Channel PE
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TABLE 3

Comparison of Upper Bounds to the No. of Bursts 

in the Simulation Study for Systematic Decoder 

of Constraint Length 3

SYSTEMATIC DECODER 
......... K-= 3•• V - 3.....................

Length 
burst

of Type of Number of bursts No. of bursts
burst in simulation by upper bounds

E = 0.01

1 Solid 2 3

e = 0.025

1 Solid 21 29

e = 0.05

1 Solid 125 157
2 Solid 3 5
3 Solid 2 3
4 Solid 2 1
3 Non Solid 2 5
4 Non Solid 2 2
5..... .....Non..Solid... ..  1.......... .......... 1



Table 3 Continued 51

SYSTEMATIC DECODER
... K =• 3 3-.

Length of Type of Number of bursts No. of bursts 
burst burst in-simulation by-upper bounds 

....£ - 0.075

1 Solid 352 369
2 Solid 6 30
3 Solid 9 14
4 Solid 4 8
5 Solid 2 3
6 Solid 1 2
7 Solid 1 1
3 Non-Solid 1 1
4 Non-Solid 5 30
5 Non-Solid 2 7

SYSTEMATIC DECODER
K = 3 V = 3

..£ =- 0.10 

1 Solid 630 777
2 Solid 30 110
3 Solid 34 60
4 Solid 8 36
5 Solid 5 15
6 Solid 1 10
7 Solid 5 * 6
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Table 3 Continued

e =0.10 
(continued)  

3 Non-Solid 16 110

4 Non-Solid 7 34

5 Non-Solid 6 27
6 Non-Solid 6 30

7 Non-Solid 1 15

8 Non-Solid 2 9
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TABLE 4

Comparison of Upper Bounds to No. of Bursts 

in the Simulation Study for Non-Systematic 

Decoder of Constraint Length 3

NON-SYSTEMATIC DECODER
K = 3 V = 3

Length of 
burst

Type of 
burst

No. of bursts 
in simulation

No. of bursts by 
upper bounds

e = 0.05

1 Solid 7 8
2 Solid 4 8
4 Solid 1 1
5 Solid 1 1
3 Non-Solid 2 3
4 Non-Solid 6 7
5 Non-Solid 1 4
6 Non-Solid 2 2
7 Non-Solid 1 1
8 Non-Solid 1 1
9 Non-Solid 1 1

............................£.=.0.075...........................

1 Solid 59 62
2 Solid 23 62
3 Solid 7 8
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Table 4 Continued

e = 0,075
7 '.(.cdn.t.inue.d) 

3 Non-Solid 7 8
4 Non-Solid .8 10
5 Non-Solid 6 9
6 Non-Solid 5 6
7 Non-Solid 4 5
8 Non-Solid 3 5

e = 0.10

1 Solid 168 181
2 Solid 77 181
3 Solid 16 60
4 Solid 2 ' 36
5 Solid 2 16
3 Non-Solid 27 56
4 Non-Solid 41 45
5 Non-Solid 32 38
6 Non-Solid 17 30
7 Non-Solid 21 30
8 Non-Solid 8 22
9 Non-Solid 7 15

10 Non-Solid 9 11
11 Non-Solid 5 10
12 Non-Solid 1 5
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TABLE 5

Comparison of Upper Bounds to the No. of Bursts 

in the Simulation Study for a Systematic Decoder of

 Constraint. Length. 5 

SYSTEMATIC DECODER
K = 5 V = 3 

Length of Type of No. of bursts No. of bursts by
burst burst • ... in- simulation .. .upper bounds

E = 0.025

1 Solid 5 ............. 6

P =0.05 e .............................

1 Solid 30 58 •
3 Solid 2 2
4 Solid 1 1

Pa = 0.075e 

1 Solid 94 132
2 Solid 3 7
3 Solid 5 7
4 Solid 1 1
4 Non-Solid 5 5
5 Non-Solid 1 3
6 Non-Solid 3 3
7 Non-Solid 1 2
9 Non-Solid 1 1
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Table 5 Continued

SYSTEMATIC DECODER

Length of Type of No. of bursts No. of bursts by
burst ■ burst....... in -simulation • .. upper bounds

E = 0.10

1 Solid 336 348
2 Solid 14 36
3 Solid 19 36
4 Solid 3 15
4 Non-Solid 25 32
5 Non-Solid 18 26
6 Non-Solid 11 21
7 Non-Solid 12 19
8 Non-Solid 7 15
9 Non-Solid 9 12
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TABLE 6

Comparison of Upper Bounds to the No. of Bursts 

in the Simulation Study for a Non-Systematic Decoder 

of Constraint Length 5

Non-Systematic Decoder 
.................. K - 5 -V =. 3......................

Length of Type of No. of bursts No. of bursts by
burst burst in simulation upper bounds

e = 0.075

1 Solid 4 5
2 Solid 3 5
3 Solid 1 5
7 Non-Solid 2 2

= 0.10 e

1 Solid 10 12
2 Solid 11 12
3 Solid 6 12
4 Solid 5 12
3 Non-Solid 8 12
4 Non-Solid 1 3
5 Non-Solid 8 10
6 Non-Solid 3 5
7 Non-Solid 4 7
8 Non-Solid 9 10
9 Non-Solid 2 10

10 Non-Solid 6 11
11 Non-Solid 4 11
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Program for Noise Generation by Window Method

DIMENSION IA(5001)
READC 5» 700) NU, PE

700 FORMATCI5»Fl0.3) 
I J=0 
NERR=0 
DO 701 1=1,NU .
DO , 703 J=l,5001 !
CALL RANDOMCIJ,R) 
IFCR.GT.PE) GO TO 702 
IACJ)=l 
NERR=NERR+1 
GO TO 703

702
703

IACJ)=O
CONTINUE
WRITEC2) CIACJ),J=l,5001)
END FILE 2
REVIND 2 ... ■
DO 704 1=1,NU
READC 2 ) C IAC J ) , J= 1, 5001 )
WRITEC6,705) CIAC J),J=1,5001)

705
704

FORMATC//5012)
CONTINUE ■ •
URITEC6,706) NERR ; . - < ■ ■ ■ ■-

706 FORMATC//////5X,'TOTAL ERRORS IN THIS RUN ARE =*,110) 
STOP 
END

SUBROUTINE RANDOMC I J, R) 
IFCIJ) 10^10^20

10 IJ=47594U8
20 K=23*IJ

□=10001009 
IJ=K-J 
R=I J
R=0.0000001*H 
RETURN 
END



85Program for Viterbi Decoding Algorithm

DIMENSION NB1C32»3)#NBOC 32»3)»NR( 3)/ ND1(64)»NDOC64)#NSCC64)
DIMENSION NSS(64,35),MSS(64>35)»NDEC2000)#IAC 5001)
DIMENSION NSC 100/10)>NGC10,10)
READC 5/11) K/NV

11 F0BMATC2I5)
D0"160~ 1 = 1,K
READC5>21) CNGC I, J), J=1,NV)

21
160

F0RMATC10I5)
CONTINUE
M=K- 1
L=2**M
DO 10 1=1,M
N=L/C2**I)
NJ=O a

50 J=NJ+1 . n
NU-NJ+N
DO 20 LL=J,NJ
NSCLL,I)=O
KLL=LL

20 CONTINUE 
IFCKLL.LT.L)-GU.TO" 30 
GO TO 10

30 J=NJ+1
NJ=NJ+N
DO 40 LL=J,NJ ;
NSCLL,I)=1
KLL=LL

40 CONTINUE 
IFCKLL.LT.L) GO TO 50

10 CONTINUE 
JJ=L 
DO 60 1=1,JJ 
DO 60 J=1,NV 
JJJ=NGC1,J) 
DO 70 KK=1,M 
MM=KK+1 
IFCNSCI,KK).EQ.l) GO TO 80 
JJJ=JJJ+O 
GO TO 70

80
■ 7O

JJJ=JJJ+NGCMM,J) 
CONTINUE
JJJ=M0D2CJJJ)
NB1C I, J) = JJJ

60 CONTINUE
. DO 90 1=1,JJ 
DO 90 J«1,NV 
JJJ=O
DO 100 KK=1,M 
MM=KK+1
IFCNSCI,KK).EQ.1) GO TO 110 
JJJ=JJJ+0 
GO TO 100

110
100

JJJ=JJJ4-NGCMM, J)
CONTINUE
JJJ=M0D2CJJJ)
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90

41
42

43

NBOCI,J)=JJJ
CONTINUE
DO 41 I=14L
URITEC6442) < NSC I, J)4 J= 14
CONTINUE
F0RMATC//15I2)
DO 43 1=14JJ
WRITEC6442) CNB1CI4J)4J=1
CONTINUE

I

1

i

4NV)

44

DO 44 I=1»JJ
WRITEC 64 42) CNBOCI>J)>J=1 
CONTINUE
DO 601 1=1»L
NSCCI)=O

4 NV)

601 CONTINUE
KB=5*K 
JK=O
NERR=O
DO 801 NX=l,60
READC 1) CIACV)>J=1>5001)
ME=0
JN=O

ii
i

280 DO 704 J=14NV i

704
NRCJ)=IACJ+ME) 
CONTINUE 1

180

DO 410 I=14L
ND1CI)=NSCCI)
NDOCI)=NSCCI)
DO. 410 J= 14 NV
IFC NB1 C 14 J)leEQ»NRC J) ) GO*
ND1CI)=ND1CI)+1
IFCNBOCI4J).EQ.NRCJ)) GO 
NDOCI)=NDOCI)+l

1 
r

TO 180

TO 410

410

210
220

CONTINUE 
KM=L-1 
DO 190 I=14KM42 
LL=CI+l)/2 
ML=LL+CL/2)
IFCNDOCI).LE.NDOCI+1)) GO 
11=1+1 
GO TO 220 
II = I 
NSCCLL) = NDOC 11 )

TO 210

IFCND1CI).LE.ND1C1+1)) GO 
KL=I+1

TO 230 :

230
GO TO 240
KL = I ■1 .

—

240 NSCCML)=ND1CKL)
IFCJK.EQ.O) GO TO 260
IFCNKG.EQ.O) GO TO 202

-
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DO 270 -
MSSCLL* J)«=NSSC II> J+IM) 
MSSCML#J)=NSS(KL>J+IM) '

270 CONTINUE 
MSSCLL,MI+1)=0 
MSSCML,MI+1)=1 
INT=O 
GO TO 190 ' '

202 DO 305 
NSSCLL,J)=MSS(II^J+IM) 
NSS(ML»J)=MSSCKL,J+IM) 

305 CONTINUE 
NSS(LL»MI+1)=0 
NSS(ML,MI+1)=1 
INT=1 

190 CONTINUE 
NKG=INT 
IFCJK.GE.KB) GO TO 301 
JK=JK+1 
IM=O 
GO TO 302

301 IM=1
, JN=JN+1 
."'DO 304 1 = 1,KM" 

. I FC NSCC I ) • GEeNSCC 1+1) ) GO TO 404
KIK=I 
GO TO 304 

404 KIK=I+1 
304 CONTINUE 

IFCNKG.EQ.O) GO TO 307 
NDECJN)=NSSCKIK,1) 
GO TO 309 

307 NDECJN)=MSSCKIK,1) 
309 NERR=NERR+NDECJN)
302 MI=JK-IM

ME=ME+NV •
IFCME.EQ.5001) GO TO 290 
GO TO 280 

290 WRiTEC6>330) (NDECJ),J=1, NV)
330 F0RMATC//50I2") 

DO 331 NY=1,L
NSCCNY)=NSCCNY)-NSCCKIK)

331 CONTINUE .... ....
801 CONTINUE

VRITEC6,803) NERR ‘
803 F0RMATC/////5X,’TOTAL ERRORS IN THIS RUN ARE =’,110)

STOP 
END
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FUNCTION M0D2CI) 
X=I 
I=X/2. 
X=X/2. 
Y=I 
IFCX.EQ.Y) GO TO 10 
M0D2=l 
GO TO 20 

10 M0D2=0
20 RETURN

END


