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Inertial waves and mean velocity profiles in a rotating pipe and a circular annulus with axial flow
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In this paper we solve the inviscid inertial wave solutions in a circular pipe or annulus rotating constantly
about its axis with moderate angular speed. The solutions are constructed by the so-called helical wave functions.
We reveal that the mean velocity profiles must satisfy certain conditions to accommodate the inertial waves at
the bulk region away from boundary. These conditions require the axial and azimuthal components of the mean
velocity to take the shapes of the zeroth and first order Bessel functions of the first kind, respectively. The theory
is then verified by data obtained from direct numerical simulations for both rotating pipe and circular annulus,
and excellent agreement is found between theory and numerical results. Large scale vortex clusters are found
in the bulk region where the mean velocity profiles match the theoretical predictions. The success of the theory
in rotating pipe, circular annulus, and streamwise rotating channel suggests that such inertial waves are quite
common in wall bounded flow with background rotation.
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I. INTRODUCTION

Flows with background rotation are ubiquitous in nature
and engineering environments. For example, the large scale
motions in atmosphere and ocean are inevitably under the
influences of Earth rotation, and rotary machine is very
common in modern engineering. A unique characteristic of
rotating fluids is that it carries inertial waves (IWs), such as
the planar IWs in infinite domains [1]. In confined domains, the
boundary introduces new constrains for the existence of IWs
and therefore modify their properties. IWs may be reflected
by the wall and change wave numbers after the reflection [2].
The IWs have been detected in many experiments, such as
rotating grid turbulence [3—-5] and spherical Couette flow [6,7],
to name a few. For rotating grid turbulence, the IWs have large
scales and resonate at characteristic frequencies of the tank [3],
which quantitatively match the theoretical predictions given
by Batchelor [8] and Maas [9]. In the recent experiment of
a rotating water-filled cylinder [10], the vortical structures
associated with the IWs were illustrated using flow fields
obtained by particle image velocimetry.

IWs have also been investigated in many theoretical works,
such as the asymptotic properties of inertial modes in a
rotating spherical shell [11] and the elliptic instability of
a Rankin vortex with axial mean flow [12]. The inertial
mode solutions have been constructed semianalytically for a
rectangular parallelepiped [9,13]. When a background current
is added to the system, IWs may show different behaviors. For
the simplest case, Greenspan discussed the IWs in a uniform
current with constant velocity [1]. The uniform current induces
a Doppler effect, and thus changes the frequency and the phase
velocity. The group velocity, which indicates the direction
of energy transfer, may even be against the current direction
provided the wave number meets certain conditions [1].
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In our recent paper [14], we studied the IWs in a channel
rotating around a streamwise axis. The inviscid IW solutions
were constructed by the so-called helical wave functions. We
showed that IW solutions may still exist even when there is a
mean flow. And IWs can be strong enough to modify the profile
of the mean streamwise velocity and induce a secondary mean
flow in the spanwise direction. Using the concept of IWs, we
successfully explained the shapes of the mean velocity profiles.
The numerical results support our theoretical predictions and
the existence of IWs in streamwise rotating channel flow. The
flow visualization reveals large-scale vortical structures for
moderate rotating rate, which are associated with the IWs [14].

Here we will investigate the IWs in a rotating circular pipe
or annulus with an axial mean flow. The methodology used
here is similar to that for channel flow [14]. We mainly focus
on the existence of the IWs and the associated mean velocity
profiles. The paper is organized as follows. In Sec. II we
will provide the theoretical formulation of the IW solutions
in cylindrical domain. In Sec. IIT we will validate the theory
by the numerical results of rotating pipe and circular annulus.
And finally the conclusions are given in Sec. IV.

II. THEORETICAL FORMULATION

A. Inviscid inertial wave solution without axial mean flow

We now construct the inertial wave solution from the helical
wave functions. Suppose the pipe or annulus rotates around its
axis with a constant angular velocity £ = Qe.. In the rotating
frame of reference, the incompressible Navier-Stokes equation
may be written as

ou

ot
in which u is velocity, w = V x u is vorticity, and v is the kine-
matic viscosity, respectively. P, = p/p + |u|*/2 + T1. with p
being pressure, p the density, and I1. = [(Q - r)? — Q2r2]/2
the centrifugal potential. The nonlinear term ! = @ X u is also
known as the Lamb vector. By taking the curl of (1), one gets

+oXxu+22xu=—-VPy,+vViu, (1)
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the vorticity equation

aa—(:+Vxl:2Sl-Vu+vV2w. )
Two important nondimensional parameters are the rotation
number Ro = 2QR /U and the Reynolds numberRe = UR /v.
Here U is some characteristic velocity. The rotation number
measures the ratio of the Coriolis force to the inertial term.
The larger Ro is, the faster the domain rotates.

The helical wave functions have long been used to construct
the inviscid IW solution in the infinite domain; cf. Refs. [1,15].
Here we apply them to the cylindrical domain. A brief
description of the helical wave functions in the cylindrical
domain is given in the Appendix. Let us first consider the
inviscid inertial oscillation with no background flow, i.e.,
the wave-form solution of (1) and (2) with v = 0. Assume the
inertial oscillation has form

u = @;expli(md + k,z — fit)l, 3
® = skogexpli(mb + k.z — ft)],

where f, is the frequency to be determined, k* = k> + k2
with k, and &, being the wave numbers in the radial and axial
directions, and s = %1 is the polarity index of the function,
respectively. Note that such a choice of (u,®) ensures I = 0.
So that the inviscid form of (2) reduces to

9
% _29.vu. 4)
a1

By substituting (3) into (4) one obtains the dispersion relation
as

fs == : (&)

The phase velocity has azimuthal and axial components,
which are

cpo(r) = — o (6a)
252
sz = —T (6b)

cpe 1s proportional to r so that the phase keeps constant in
every meridian plane as the wave transfers in the azimuthal
direction. The group velocity is

= 25 QL 7)

The IWs (3) share several common properties with the
planar ones in the infinite domain. For instance, the dispersion
relation indicates that the frequency depends on the angle
between the wave-number vector and the rotating axis, but
is independent with the magnitude of the wave-number vector.
Equation (6b) implies that long waves with smaller k travel
faster in the axial direction than short waves with larger k. One
difference is that IWs propagate energy along the pipe axis as
they travel in the (6,z) plane since the group velocity only has
an axial component, while for planar IWs the group velocity
is always perpendicular to the wave-number vector [1].
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B. Effects of axial mean flow

Now consider the flow driven by an external constant mean
pressure gradient 3 P /dz along the axis. Hereafter an overline
stands for averaging in z and 6 directions and over time. Based
on the existing experiments and numerical simulations, it is
reasonable to assume that the mean flow has the velocity and
vorticity profiles

u(r) = (0,uq(r),uz(r)),
@(r) = (0,04(r),@,(r)) ®
= (0,—8rﬁz,8r(rﬂ9)/r),

which depend solely on r and have zero radial components. 9,
represents the derivative with respect to r.

We denote the fluctuating velocity and vorticity by #’ and
@', respectively. Following the methodology of Refs. [15,16],
we seek the traveling wave solution of the inviscid fluctuating
vorticity equation,

0w’ , _ , _
E—i—VxL—i—u -Vo—w -Vu

=29 -Vu +o-Vu' —u-Vu, )

where L = @' x u’ — @’ x u’. We have made the assumption
that Re is large so that the viscous effect may be neglected at
the bulk region away from the wall boundary.

At moderate rotation rate with Ro ~ 1, in Eq. (9) the
terms containing mean quantities have comparable order of
magnitude with the Coriolis term, thus they are not negligible.
However, one can still seek the IW solutions of the equation.
Assume that the formal wave solution (3) exists, then for such
velocity and vorticity fields one has @' = sku’ and L = 0.
Eq. (9) can be rewritten as

96/ , ,
a—“t’ F2 VRN = 2R+ 99). Va, (10)

with 29 = @ — sk u being an added system rotation intro-
duced by the mean flow. Note that £2¢ only has azimuthal and
axial components and is a function of r. The component form
of (10) reads

ow’

a—t’ =2(Q+ Q). Vu/, (11a)
3 / ad,,’
%+2u’~VQ§d = 2R+ 2 Vi, + 2 (11b)
- r
30); / d d /
v +2u' - VM =22 + QY) - Vil (11c)

If the two terms with underline vanish, i.e., the mean flow
satisfying the IW condition

v = v =0, (12)

Eq. (11) reduces to the same form as (4) with 2 being replaced
by an effective rotation rate ° = @ + 224, Meanwhile, (12)
implies immediately that ¢ is independent of r, then ¢ is
also constant. For the IW with axial mean flow, the dispersion
relation and the expression for phase and group velocity have
the same forms as (5)—(7), only with Q being replaced by Q°F.
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Equation (12) also determines the profiles of the mean
velocity. Recall that both Q3¢ and Q‘Z‘d only depend on r, thus
by (8) the explicit form of (12) reads

8,~59 = SKarﬁg,

3,@. = sKo,1,.

(13a)
(13b)

Here we use K to denote the wave number which satisfies the
condition (12). For the flow in pipe or between two concentric
cylinders, it is reasonable to assume that z, has a maximum,
which we denote as u, at radial location ry. Then by (8) one
has wy(r9) = 0. Suppose the azimuthal velocity at ry is ugo,
then one may further choose a rotating frame of reference
so that uy(rg) = 0, which is easily achieved by setting Q* =
Q — ugo/ro. In this new frame of reference, (13a) is equivalent
to wy = sKuy. And by combining (8) and (13) one has

0%y 19wy , 1
7 K ——\u, = O, 14
3r2+r 8r+< rz)ue (14)
which gives
up = sAJ1(KT), (15)

where 7 = r — rg and J; is the first order Bessel function of
the first kind. A > 0 is the amplitude of the IWs. We notice
that (15) has the same form as the Kelvin mode of zero wave
number in the axial direction; e.g., see [8]. The profile of the
streamwise mean velocity is then readily derived from (13) as

u, = AJo(KF)+u— A, (16)

where Jj is the zeroth order Bessel function of the first kind.
Finally, by transferring back to the original rotating frame of
reference with angular speed €2, the mean velocity profiles
read

ﬂ(.) = SAJ](K?)—{-MQ()I’/F(),
u, = AJy(KF)+uy— A,

(17a)
(17b)

which will be tested against numerical results in the following
section.

III. APPLICATION TO NUMERICAL RESULTS
A. Rotating pipe

To test the above theoretical predictions for rotating pipe
flow, we employ the data from the direct numerical simulation
(DNS) done by Orlandi’s group [17-19]. Let R, v, U,, and Q
be the pipe radius, the kinematic viscosity, the streamwise
mean velocity at centerline, and the background rotation,
respectively. The Reynolds number is Re = U, R/v, and the
rotation numberisRo = 2QR /U ,. For details of the numerical
methods please see Refs. [17-19]. Here we shall use two sets
of simulations with different Reynolds numbers, and for each
Re we consider several different rotation rates; see Table I.
The corresponding grid number N, in the radial direction is
also listed.

The mean velocity profiles obtained by DNS are plotted
in Figs. 1 and 2 for low and high Re’s, respectively. A
secondary mean flow develops in the azimuthal direction. We
now validate the theory with these mean velocity profiles.
First, u, reaches maximum at the centerline, where uy is
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TABLE I. Summary of the flow parameters for rotating pipe and
corresponding K, A, and u,. Re is the Reynolds number, Ro is the
rotation number, and N, is the radial grid number, respectively. For
the case name in the first column, the letter indicates low (L) or high
(H) Re, and the same digit indicates the same Ro.

Case Re Ro N, Uz K A

L1 4900 0.5 48 0.716 391 0.095
L2 4900 1.0 48 0.753 3.60 0.168
L3 4900 2.0 96 0.810 3.67 0.265
L4 4900 5.0 96 0.903 3.82 0.402
H2 10000 1.0 192 0.752 3.68 0.196
H3 10000 2.0 192 0.802 3.56 0.297
H4 10000 5.0 192 0.910 3.95 0.426

zero. Thus rop = 0 and Q* = Q. Then one can directly apply
Egs. (15) and (16). u o can be set to the mean axial velocity
at the centerline. uy is negative in the bulk region and reaches
minimum around r & 0.5. Thus s = —1 and the IWs have
negative polarity. The amplitude A and wave number K can be
determined by the magnitude and location of the uy minimum.
Those parameters are also listed in Table I. The theoretical
curves so obtained are compared with the DNS results in the
same figures for uy and u,.

Uy L2
1t T Ty
Ll\
0.5k TR
0 1 1 1 1 ]
0
-0.1 B
Up

-0.2

FIG. 1. Velocity profiles of DNS results and the predictions
of IW theory in the bulk region for low Reynolds-number cases.
(a) u; (symbols) compared to Eq. (16) (lines). For clarity the curves
are shifted upward from the previous one by 0.5. (b) uy (symbols)
compared to Eq. (15) (lines).

013015-3



YANG, OSTILLA-MONICO, WU, AND ORLANDI

. (a)
sk < H4 |
T, 4l H3
H2
0.5F
0

0 0.2 0.4 0.6 0.8 1

-0.1

-0.2

0 0.2 0.4 0.6 0.8 1

FIG. 2. The same curves as in Fig. 1 for high Reynolds-number
cases.

Figures 1 and 2 indicate that (15) and (16) are quite accurate
in the bulk region for two small rotation rates. As Ro increases,
e.g., for Ro = 2 and 5, the discrepancy between the theory and
the simulations increases. It is well known that for very large
Ro the Coriolis term in Eq. (9) dominates the momentum
balance and the equation may be reduced to, by neglecting the
viscous term in the bulk region,

/
o’ =29 -Vu'.
ot
Then (3) with any wave number k is an IW solution. No
dominant wave number exists and the previous argument fails.
When Ro is around unity, however, the linear term with mean
quantities cannot be neglected. The IW solutions can only
survive at certain wave number K, and the mean flow evolves
into certain profiles and satisfies the IW condition (12).

Another fact which can be observed from these two figures
is that for a fixed Ro the theory becomes less accurate as Re
increases, especially for high rotation number. A conclusive
explanation about this needs more simulations with different
parameters. One possible reason is that for higher Re the
viscous effect becomes weaker in the bulk region. Therefore,
more inertial modes can be excited and the dominant wave
number may vanish sooner as Ro increases from 1.

The agreement between the DNS results and the theory
strongly suggests that IW exists for Ro around 1. It should
be pointed out that K for different rotation numbers are very
close to each other. As explained in Ref. [8], the wave number
of the inertial oscillation in a confined container is determined
by the global properties, e.g., the geometry of the container.
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For the axial rotating pipe the wave number K should be
related to the diameter of the pipe, which is the same for all
cases. Therefore, the value of K should not vary too much for
different Ro’s, as listed in Table I. Recall that the secondary
flow in the azimuthal direction is mainly induced by the inertial
waves, a similar value of K may also explain why the radial
location where uy reaches its minimum is almost the same for
all cases with Ro near unit. Moreover, near the pipe boundary
the viscous effect becomes dominant and the theory does not
apply anymore. Thus as r increases from the location of ug
minimum towards pipe boundary, the discrepancy between the
theory and simulations grows.

B. Rotating circular annulus

We now turn to the rotating circular annulus with an
axial flow. Denote the radial gap of the annulus by 4 and
the axial bulk velocity by U,, respectively. The annulus
rotates around its axis with a constant angular speed 2. The
Reynolds number and rotation number are then defined as
Re = Uph/v and Ro = 2Qh/U,. The flow is driven by an
axial mean pressure gradient. The numerical solver is the
same as those in Ref. [20]. To save computation cost we
only simulate one-third of the whole annulus in the azimuthal
direction, and periodic conditions are applied to both the axial
and azimuthal directions. We fixed the Reynolds number at
Re = 5000 and simulated three different rotation numbers,
which are Ro = 0.5, 1.0, and 2.0, respectively.

In Fig. 3 we plot the mean velocity profiles obtained by
the numerical simulations. For all three cases, the mean axial
velocity u, reaches a maximum at similar location, ry & 1.44.
uy(ro) is not equal to zero but a negative value. All those
quantities are given in Table II. In the bulk region #y has an
inner maximum at r < ry and an outer minimum at r > ry
respectively. Near each boundary there is another peak which
is in the opposite direction than the adjacent bulk peak. The
overall shape of uy is very similar to that in the streamwise
rotating channel flow [14].

To apply the theory to the current flow, we follow the same
procedure as for pipe flow. However, extra care needs to be
taken because now uy(rg) is not zero. Furthermore, the distance
between the inner maximum of u#y and rg is not the same as
that between the outer minimum and ry. This suggests that the
IW wave numbers are different for » < ry and r > ry. Thus
by the inner maximum and the outer minimum we fix two
sets of wave number and amplitude, i.e., (K;,A;) and (K,,A,),
which are listed in Table II. With these parameters we compute
the theoretical predictions of the mean velocity profiles in
the bulk region and compare to the numerical results, which
are shown in Fig. 3. The agreement between the theory and the
simulations is extremely good around r(. Again, this strongly
implies that IWs exist in such flow.

The flow structures associated with IWs are shown in Fig. 4
for case C2, where the vortices are depicted in the region
1.2 < r < 1.8 by the Q criterion [21]. The yellow (or the light
grey) color marks the vortices at the region » > r( and the blue
(or the dark grey) color at the region r < ry, respectively. The
mean axial flow is from the upper-left corner to the lower-right
corner. Clearly, the vortices at r > ry form very large clusters
which tilt away from the axis by a small angle. The vortices
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FIG. 3. The mean velocity profiles in rotating circular annulus.
The symbols are numerical results and the curves are given by
Eq. (17). The short vertical lines mark the locations r( of each case.
The curves on the left of r( are computed by (K;,A;) and on the right
of ro by (K,,A,), respectively. (a) Profiles of mean axial velocity, and
(b) profiles of mean azimuthal velocity. In (b) for clarity each curve
is shifted upward by 0.2 from the previous one.

at r < rg also form some weak clusters, which tilt towards the
opposite direction to those clusters atr > ry. Since we employ
the periodic conditions in both azimuthal and axial directions,
those clusters are actually helixlike and rotate around the inner
boundary of the annulus. These structures share the same
nature as those in the streamwise rotating channel flow [14], in
which two sets of large scale clusters locate at each side of the
centerline where the mean axial velocity reaches maximum.
This is expectable since the streamwise rotating channel can
be treated as an annulus with infinity large radius.

TABLE II. The parameters for the flow in a circular annulus.
For all cases Re = 5000 and the radial grid number is 256. Ro is
the rotation number, ry is the radial location of u,-maximum, u.
and uy are the mean axial and azimuthal velocity at ry, (K;,A;) and
(K,,A,) are the wave number and amplitude for inner and outer IWs,
respectively.

Case Ro ry Ugo Uz K; A; K, A,

Cl 05 1434
C2 1.0 1439
C3 20 1.439

—0.0495 0.59 12.51 0.0343 10.92 0.0395
—0.0368 1.15 13.84 0.0396 11.64 0.0460
—0.0917 227 2722 0.0117 12.92 0.0363
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FIG. 4. (Color online) Vortices depicted by Q criterion in the
region 1.2 < r < 1.8 for case C2. Blue color (dark grey) marks the
vortices inregion 1.2 < r < r( and yellow color (light grey) in region
ro < r < 1.8, respectively. The main axial flow is from upper-left
corner to lower-right corner.

IV. CONCLUSIONS

In summary, we have found the inviscid IW solutions for
circular pipe or annulus which constantly rotates around its
axis with a moderate angular speed. Our analysis shows that
even when there is an axial mean flow, the IW solutions can still
exist in the bulk region provided that the mean velocity profiles
satisfy certain IW conditions. Namely, the mean azimuthal
velocity profile obeys the zeroth-order Bessel function of the
first kind and the mean axial velocity profile takes the shape
of the first-order Bessel function of the first kind, respectively.
The mean velocity acts as a modulation of the background
rotation.

The theory is then validated against the numerical results
of rotating pipe and annulus flow. Indeed in the bulk region
the mean velocity profiles exhibit the exact shapes which the
theory predicts for both flows. Compared to the nonrotating
case, the existence of IWs induces a mean azimuthal flow
and modifies the mean axial flow, so that the mean velocity
profiles evolve into certain shapes and satisfy the IW condition.
Flow visualization reveals that these IWs are associated with
large scale vortex clusters, which is very similar to that in
streamwise rotating channel flow [14]. All these findings for
different domains suggest that such IWs are quite common in
rotating wall bounded flow with rotation axis being parallel to
the main flow direction. And these IWs are strong enough to
modify the mean velocity profiles.
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APPENDIX: HELICAL WAVE FUNCTIONS IN
CYLINDRICAL COORDINATES

We denote the radial, azimuthal, and axial coordinates
by (r,0,z) and the corresponding unit vectors by (e,,eq,e;),
respectively. In the axial direction, periodicity is used. The
helical wave functions ¢, are the eigenfunctions of the curl
operator with nonpenetrating condition at wall boundary, i.e.,

V x ¢s(k, x) = sk¢,(k, x),
(7 ¢s(kv x) =0,

(Al)
at wall boundary.

Here s = +£1 is the polarity index, k is the wave number,
and sk is the eigenvalue associated with ¢,(k, x), respec-
tively. These functions possess interesting properties. Each
of them is a Beltramian field with its curl parallel to itself
everywhere. Thus they are steady solutions of the inviscid
Euler equation. These functions have been previously applied
to three dimensional incompressible flow as the “Beltramian
spectrum” [22]. Moreover, Yoshida and Giga [23] have proved
that for single-connected domain D, these functions form a
complete basis set for any divergence-free field and satisfy the
functionally orthogonal relationship

/;)¢s(p) 97 (q)dV = 85184 (A2)
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with § being the Kronecker delta. The helical wave functions
are functionally orthogonal to each other for both different
polarities and wave numbers.

The analytical solutions of (A1) may be derived for some
simple domains by using the construction formula [24]

b =V x (e-) + %V X V x (e.1), (A3)

where i satisfies the Helmholtz equation
V2 + k> = 0.
We can readily find that [25]
¥ = Ju(k,r)expli(m6 + k.21,

where i = /—1,m =0,1,2, ...k, is the axial wave number,
and k? = k? — kf, respectively. J,, is the mth order Bessel
function of the first kind. The boundary condition for i can be
determined by ensuring e, - ¢, = 0 at the wall boundary. For

cylinder or circular annulus, the helical wave functions take
the form

b5 = @(r; k,m,k;)expli(mb + k.2)]. (A4)
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