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ABSTRACT

The interaction between a comet and the solar wind has been 

treated extensively in the literature. Solution of the general 

flow problem, for example, has been considered by Ioffe (1966), 

Kovar and Kern (1966), and Biermann, Brosowski, and Schmidt (196?) 

among others. The general approach in these treatments has been 

that of gas dynamics. Both a shock front (on the sunward side of 

the comet) and a contact discontinuity are thought to form.

In the present treatment, for the region interior to the 

contact discontinuity, an alternate approach is taken..Namely, 

the assumption is made that the ions moving away from the comet's 

nucleus are non-interacting and that these ions are specularly 

reflected back into the region bounded by the contact discontinuity 

by the solar wind's frozen-in magnetic field. A model is developed 

which predicts the size and shape of the contact discontinuity and 

the density of plasma interior to it. Results of this model agree 

well with observational data.
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CHAPTER I

INTRODUCTION

A general introduction to cometary physics is contained in 

Chapter II. Emphasis is placed upon recent work in this field relevant 

to the present thesis and upon pertinent observational data. The 

possible ionization mechanisms, for example, photoionization, charge 

exchange, and "cascade ionization", of neutral molecules ejected 

from the comet's are discussed in detail. Anomolies in the plasma 

density in the coma and tail are pointed out.

• Chapter III presents the model investigated. The two major 

assumptions are discussed in detail. These are: (1) There is no 

magnetic field interior to the interface separating cometary material 

from the solar wind. (2) The ions moving away from the comet's 

nucleus are specularly reflected from this interface. An analytic 

expression for the density of the outflowing ions is also obtained 

in this chapter.
The size and shape of the contact discontinuity are found in 

Chapter IV. The solutions are in terms of familiar functions for two 

limiting cases, but in the general case (due to the non-linear 

nature of the differential equation involved) solutions were obtained 

numerically. The parameters determining the scaling of the cavity 

are discussed and appropriate values are adopted for them.

Chapter V contains the formal solution for the density contours 

inside the contact discontinuity. A unique feature of the ion density 

in this region is a discontinuous jump across a boundary termed the 
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caustic. This curve is investigated in detail. Higher order 

reflections are also investigated in this chapter and are found 

to be insignificant.

Correlations between the model and observational data are 

noted in Chapter VI. It is found that the predicted ion density and 

the size and shape of the cavity agree well with observational data. 

Furthermore, the model predicts the existence of structure in a 

comet's tail which, again, agrees with observational data. Other 

correlations, especially those of a time dependent nature, are 

suggested by the model but are not considered to be conclusive.

Chapter VII summarizes and concludes the thesis.



CHAPTER II

GENERAL CHARACTERISTICS OF CCMETS

A. General Introduction

A comet may be divided into three characteristic parts: a 

solid central body - the nucleus, an atmosphere consisting of gas 

and dust surrounding this nucleus - the coma, and a bounded region 

of gas and/or dust extending away from this nucleus - the tail. 

When first photographically detected, a comet is indistinguishable 

from an asteroid. As the comet approaches the sun, however, it begins 

to develop an atmosphere. The generation of this atmosphere is a 

consequence of the heating of the nucleus by solar radiation. In 

this manner, molecules are sublimated and possibly desorbed from 

the comet's nucleus. In addition, considerable dust is also liberated 

in this process. Resonant scattering of solar photons from the 

gas molecules and non-resonant scattering (reflection) from the 

dust particles in the coma and tail make comets visible when they 

are within 1.5 a. u. of the sun.

B. The Nucleus

The radiation scattered from the coma particles generally 

obscures the comet's nucleus; only rarely can a definite outline 

of the nucleus be seen. Hence, its mass, size, and structure must 

be determined indirectly. Observations of planetary perturbations 
19 of comet orbits place the mass of a typical comet at 10 grams 

(10 times the mass of the Earth). The total mass, along with 
3 

an estimated density of about $ gm/cm , determine an approximate
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radius of the nucleus - about one to ten kilometers.

For some time it was thought that the nucleus was not a single 

body, but rather a localized cluster of particles. A rather detailed 

account of this "sand-bank" model is given, for example, in Beer, 

Lyttleton, and Richter (1963). Whipple (1955) has presented convincing 

arguments against such a structure for the nucleus and has introduced 

new arguments for a single nucleus. He envisions the nucleus as a 

solid, icy-like structure in which considerable dust is embedded.

C. The Goma
I4 6 

Surrounding the nucleus and extending out to about 10 -10 

kilometers is the comet's coma. It is approximately spherical in 

shape and usually exhibits little inhomogeneity. Occasionally, however, 

on the sunward side of the coma, concentric light and dark spaces 

called halos or envelopes appear. These circular regions may either 

remain stationary or expand outward at a typical rate of 1 km/sec 

(Wurm, 1963). Another type of density irregularity manifests itself 

through the phenomenon termed an outburst, which may be described 

as a sudden general increase in the brightness of the coma. Most 

noted for these outbursts is Comet Schwassmann-Wachmann (1925 II)- 

On several occasions this comet has been observed to increase in 
^4

brightness by as much as six magnitudes in a period of several 

hours. Outbursts having Zkm=l or Am=2 have been observed in several 

other comets. At present, the cause of outbursts is not certain. 

However, the expulsion of a large quantity of material from the

’'Changes in magnitude, m, are related to changes in light intensity, 
I, by the equation - m-^ = 2.51og( 1^/12).
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comet's nucleus, with a resulting increase in scattered solar radiation, 

could account for this phenomenon. According to Whipple's "icy- 

conglomerate" model, the sudden expulsion of matter could be due to 

a pressure differential caused by liberation and heating of gas 

in localized pockets within the comet's nucleus.

A spherical, steady-state coma consisting of molecules, free 

radicals, and dust particles is generally observed. Almost all comets 

have atmospheres rich, in C2 and CN. It is these molecules that 

determine the visual extent of most comet atmospheres. In Figure 1 

is reproduced a photoelectric spectral tracing (obtained with the 

Mount Wilson 60 inch reflector) of Comet 19614.f (Ikeya) (Kovar and 

Kovar, 196^) illustrating the prominent CN, C2 bands. Cometary comas

Figure 1
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have also been observed to contain C3, CH, OH, and NH2 in varying 

degrees. In general, the observed molecules are thought to be 

daughter molecules having their origin in larger molecules initially 

sublimated from the comet's nucleus. Suggested parent molecules 

include CH^, 62^, C^H^, H2O2, C^H^, NH^, and HgO (Cheredichenko,

19^9). It has been proposed that hydrated forms of these molecules, 

such as CH^'SHgO, may constitute the nucleus (Whipple, 1963).

As comets approach within about 0.5 a. u. of the sun, atomic 

emissions are seen. Notably, the Sodium D doublet, the forbidden 

lines at XX5577, 6300, and 6363 A of atomic oxygen, and lines from 

nickel and iron have been isolated (Swings, 1965). Lines from neutral 

potassiun, chromium, magnesium, and copper and from ionized calcium 

were recently found in Comet Ikeya-Seki (1965f) (Preston, 1967). The 

presence of the forbidden oxygen lines presents a difficulty. Wurm 

(1963) has noted that these lines cannot be due to resonant excitation 

by solar photons. The abundance of oxygen is many orders of magnitude 

too small. Collisional excitation by electrons is also inadequate 

(Remy-Battiau, 1962). By considering a combination of molecular 

and atomic processes, Kovar and Kovar (1966) have obtained good 

agreement with the observed ratio of line intensities. Warner's 

recent observation of an anomalous ratio of line strengths of the 

Sodium D doublet in Comet 1962 III is yet another anomoly in atomic 

cometary spectra. Once again, the usual resonance excitation mechanism 

fails to provide an explanation for the phenomenon. Optical pumping 

has been invoked as an explanation for the anomalous population 

of the spin states in sodium (Kovar and Kovar, 1968).
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It should be pointed out that several lines appearing in the 

spectra of comets are as yet unidentified. Laboratory identification 

of molecular spectra is not complete enough, to identify these unknown 

lines. Also to be noted is that many molecules may be present whose 

bands are as yet unobserved. In some cases this can be attributed 

to the low abundance of the molecule or weak oscillator strength 

of the transitions. In other cases, a molecule may remain unidentified 

because its bands and those of a more abundant molecule or a telluric 

feature overlap.

In addition to the neutral constituents of the coma, ionized 

molecules are also present. The relative abundances of neutral 

molecules and ions varies from comet to comet. The identified ions 
include C0+, N^, CO2, CH+, and OH4". Comparing these ions with the 

observed neutral molecules, it is apparent that, with the exception 

of the pairs CH-CH4" and OH-OH4", either the neutral or the ionized 

form of a given molecule has been observed but not both. It would 

be of considerable interest to know the ratio of ions to neutrals 

for the various components of the coma. The pairs CH-CH4" and OH-OH4" 

are too weakly present to provide reliable ratios of this type. In the 

remaining more abundant pairs, CO-CO4", CO2-CO2, N2-N2, CN-CN4", and 

C2-C2, only one member of each pair has been observed (Swings, 1965). 

In these cases, the undetected member has its resonant electronic 

transitions in the unobservable ultraviolet.

It should be noted that ionization can be brought about by 

more than one mechanism and that the effectiveness of a given mechanism 

will differ for the different pairs. Photoionization by solar radiation 
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is undoubtedly a significant ionization process. However, Biermann 

(1953) postulated that charge exchange between a stream of ionized 

solar particles and cometary neutrals might also be an effective 

ionization mechanism. Photoionization and charge exchange are now 

generally regarded as the most effective mechanisms leading to 

ionization. Table I (Arpigny, 1965) lists the lifetimes for the two 

processes and the cross section for the case of charge exchange.

TABLE I

Molecule CO N CN

'T(chg. exch.) IxlO6 7 
1x10

7 
1x10

T(photoion.) 7 
O.^xlO O.3xlO7 107

<(cm2) 3xl0~1^ IxlO-1^ -Id 1x10 9

Marochnik (1963) has suggested another mechanism which may 

play a role in ionizing cometary neutrals. He assumes that those 

molecules ionized by photoionization and charge exchange load the 

solar flow so that considerably more massive particles are available 

to bombard the neutrals. Possible collisional reactions include:

C0+ + N2 C0+ + N2 + e

N2 + CO —> N2 + C0+ + e'

N2 + N2 ---> 2N2 + e"
C0+ + CO-- >2C0+ + e"

The advantage of this mechanism is that a given initial ion produces 

two second generation ions which (after they have become frozen 

into the solar wind) are then available to produce yet two more 
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ions. The process has been aptly termed "cascade ionization". Marochnik 

estimates the lifetime for ionization of Ng and CO by this process
3.5 to be about 10 seconds.

Several authors have pointed out the likelihood of the formation 

of a shock front on the sunward side of a comet (Alfven, 19f>7; Marochnik, 

19633 Axford, I96I4). Axford postulates that if such a shock exists, 

heating across it may be sufficient to provide ionization by electron 

collisions. He speculates that electron thermal energies of the 

order of 1-10 KeV may result. At these energies, the cross section
-16 2 ,

for collisional ionization is about 10 cm (only an order of 

magnitude less than the cross section for ionization by charge exchange). 

Even if only a relatively small number of electrons reach these 

energies, this mechanism can be effective since a given electron 

can produce many ions whereas, in the charge exchange process, a 

given proton can produce only one ion.

Hubner (1961), following Fahleson (1961) and Alfven (1961), 

has suggested yet another ionization mechanism. As the solar plasma 

collides with the comet's coma, neutral comet molecules will knock 

out solar wind protons leaving localized pockets of charge imbalance. 

In the presence of the solar wind's frozen-in magnetic field, the 

electrons cannot immediately neutralize this imbalance. The potential 

tending to remove electrons from the region will cause an increase 

in their velocity around and along field lines. The local electron 

temperature may thus rise to a level where the electrons become 

effective in ionizing neutrals.

Wurm (1963) maintains that all of these mechanisms lead to
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inconsistencies. He favors a mechanism inherent to the comet itself 

and not involving the solar -wind or solar radiation. However, he 

does not speculate or define what this mechanism might be.

D. The Tail

Whatever the ionization mechanism may be, its cumulative 

effect is the generation of a plasma tail (generally referred to 

as a type I tail). These tails point almost directly away from the 
6 Q 

sun and reach lengths of 10 -10u kilometers. Characteristic of these 

tails are density fluctuations in the composite plasma. Such terms 

as clouds, condensations, streamers, and rays have been used to 

describe these various irregularties. Some of the density fluctuations, 

especially those of a highly erratic nature, are due to outbursts 

that first appear in the coma and subsequently move into the tail. 

Other variations appear to be intrinsic to the tail. Some of these 

latter variations show quite interesting features. For example, 

Wurm (1963) notes that the rays tend to occur in pairs symmetrical 

to the radius vector connecting the comet and the sun and that they 

rotate inward with a decreasing angular velocity.

The ions in localized regions of type I tails often have 

accelerations 100 times greater than the value of solar gravitational 

acceleration. It should be noted that radiation pressure is entirely 

inadequate to account for these observed accelerations - it is too 

small by two orders of magnitude. Biermann (19^3) attributed the high 

accelerations to collisions between the incoming solar wind electrons 

and the cometary ions. He showed that a stream of particles of 

number density 1CH cm could account for the observed accelerations.
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This figure is now known to be about two orders of magnitude higher 

than the actual solar wind density. Charge exchange with simultaneous 

momentum transfer has also been investigated and found to be inadequate 

to account for the acceleration of tail particles (Biermann and Trefftz, 

I960).

Harwit and Hoyle (1962) invoked the so-called two stream 

instability as a possible means of explaining this phenomenon. In 

this process, translational kinetic energy carried by the in-coming 

solar wind electrons is transferred into an exponentially growing 

wave mode involving the cometary ions. The onset of this type of 

instability depends critically upon the electron temperature. Harwit 

and Hoyle conclude that instability may occur for brief periods, 

but that (in order to conserve energy) as momentum is transferred 

from solar wind electrons to the comet ions, the electron temperature 

becomes so high that stability is restored.



CHAPTER III

THE PROPOSED MODEL

A. Introduction

Much of the most recent work in the area of cometary physics 

has been aimed at analytically solving the problem of the solar wind 

flow past a comet (Ioffe, 1966; Kovar and Kern, 1966; Biermann, 

Brosowski, and Schmidt, 196?). The general approach is that of gas 

dynamics. The continuity of the solar wind flow is effected by its 

frozen in magnetic field. As has been previously noted, the fact 

that the solar wind moves at supersonic velocity has led many 

authors to postulate the formation of a shock upstream from the 

comet (Alfven, 195?i Marochnik, 1963; Axford, I96I4.; Ioffe, 1966).

A particular difficulty in solving the flow problem is the modification 

of the hydrodynamic equations to include source terms. Molecules 

sublimated from the nucleus become ionized and eventually load the 

solar flow. Still another difficulty is that the plasmas considered 

are compressible.

B. Discussion of the Proposed Model

A distinguishing feature of the comet-solar wind interaction 

is the formation of a contact discontinuity which separates purely 

cometary material from solar wind material. This surface acts like 

a blunt object in that the solar wind is forced to flow around it. 

The flow, then, is somewhat analogous to that of the solar wind 

past the earth, for here also a shock front and a contact discontinuity 

-result. Figure 2 shows the orientation of the shock front and the
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contact discontinuity relative to the comet's nucleus.

The purpose of the model investigated here is to find the 

size and shape of this contact discontinuity and the density of 

plasma interior to it. Several assumptions are made in the process 

of developing the model. Two are of sufficient importance to warrant 

detailed discussion, namely, that there is no magnetic field inside 

the contact discontinuity and that ions flowing from the nucleus 

are specularly reflected from this surface.

In previous treatments, the plasma flowing away from the 

comet's nucleus has been regarded as a continuous medium. Since 
the mean free path for collision of ions is very long (*~10^ km), 

this assumption is questionable. To support this approach, the 

argument has been made that magnetic fields present in the comet's 

coma would provide continuity in the flow. However, it is to be 
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noted that, since the outflowing plasma is diamagnetic, it is highly 

that the region interior to the contact discontinuity will be devoid 

of a magnetic field.

If one accepts the existence of a contact discontinuity and 

also that the solar wind's magnetic field is frozen in, then obviously 

no magnetic field can penetrate the cavity since the field will be 

carried by as the solar wind flows past. However, several authors 

(Alfven, 1957j Marochnik, 1963) have speculated that the magnetic 

field carried by the solar wind may become partially trapped in the 

cometary plasma between the shock and the contact discontinuity. 

The problem then is to find the length of time it will take this 

field to diffuse into the plasma inside the cavity. A problem closely 

related to this one has been considered by Piddington (19^9)• He has 

calculated the time required for the earth's magnetic field to relax 

(through outward diffusion) after being compressed by the solar 

wind; he finds a relaxation time of about 18 years. The problem 

to be treated here is the inverse of the one considered by 

Piddington, i. e., in this case the magnetic field is diffusing 

from the solar wind rather than into it. An approximate value for 

the time,T, required for the solar wind's field to diffuse into 

the cavity is given by T=TftTRo, where Ro is the radius of the 

cavity and <T is the conductivity of the plasma inside the cavity. 
Setting (T=10 , and with 1=600* K and Ro=10^ cm, a value

of *17=10 years is obtained.

With no magnetic field present, it can be assumed that the 

outflowing ions move independently of one another. ■ When the ions 



reach the boimdry, the pressure they exert is just sufficient to 

balance the pressure of the solar wind. Exterior to the boundary, 

where magnetic fields are present, a continuous flow will exist. 

Assuming the solar wind's frozen in field to have a direction 

perpendicular to its flow direction, the magnetic field configuration 

will be one of concentric circles around the contact discontinuity. 

The outflowing ions will be deflected by this field back into the 

cavity. Assuming that energy and momentum are conserved, the 

ions will be specularly reflected from this boundary, i. e., their 

angle of incidence and reflection, with respect to a unit normal 

to the surface, will be equal.

Using these two assumptions, the size and shape of the contact 

discontinuity and the ion density interior to it will be determined. 

The contact discontinuity is treated in the following chapter and 

the ion density in Chapter V. The solution of both problems depends 

upon the density of outflowing ions. Thus, calculation of this 

density is now considered.

Inside the contact discontinuity only photoionization can 

be effective in converting the outflowing neutrals into ions. This simplfies 

the problem considerably. The nucleus is here treated as an isotropic 

point source of neutral molecules and the assumption is made that as 

the neutrals are ionized their velocity is unchanged. Thus, the 

net outflow of material, i. e., neutrals plus ions is governed by 

the equation SZ (v)=S&(r), where is the total density - neutrals 

plus ions, v the average ejection velocity of neutrals from the 

comet's nucleus, and S the mass production rate. This equation can
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be integrated to give

= (S/ljifv) (1/r2). (1)

Let be the density of neutrals and the density of ions. Then

(2)

Since the neutrals are being ionized with time constant 'C, the 

density of neutrals is determined byV’(^v) = -^/H. Integration 

of this equation gives

= (S/lffiv) exp(-r/vC)/r2 . (3)

Equations (1), (2), and (3) then give for the density of ions:

p, = (S/Uliv) - exp(-r/vT)]/r2. (h)



CHAPTER IV

THE CONTACT DISCONTINUITY

A. The Pressure Equation

An analytic expression for the contact discontinuity can be 

obtained by balancing solar wind pressure and the pressure exerted 

by the outflowing ions. On the surface where the pressures balance

^vl<^s/v3*n)2 = ^v2^r/^n)2. (5)

The s subscripts refer to the solar wind and n is a unit normal 

pointing in the outward direction. The geometry involved is shown 

in Figure J. In this figure, the variables R,0 are used to locate 

points on the surface.

Let.eF and eQ denote unit vectors parallel and perpendicular to 

the radial direction. Then the following relationships hold:
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v /v = -cos0 e_ + sin0 eQs s 1 y
v/v = er
n =Ce - 1/R dR/d0 el/Jl + (VR dR/d0)2 

L r 6 4

Substituting these into equation (5) gives:

sin0 dR/d0 + Rcos0 = aJ3v/jUir - exp(-R/vx) (6)

where has been expanded according to (U). Note that as 0 ^0, 

equation (6) gives an expression for Ro, the on-axis distance 

where the pressures balance, i. e.,

Ro = <\l sv/^7T^v|] . (7)

Hence, equation (6) can be written

sin0 dR/d0 + Rcos0 = ^1 - exp(-^R) /aJ\. - exp(-^) . (8)

This is the basic equation equation determining the form of the 

contact discontinuity. Ro has been set equal to unity with the 

understanding that it is the unit for measuring distance. The 

parameter is defined by Rc/VT •

B. Calculated Shape of the Cavity

Unfortunately, equation (8) is non-linear and appears to 

have no solution in terms of familiar functions. However, for the 

special cases of ^Z<:1 and ^-^Ij equation (8) reduces to, 

respectively,

sin0 dR/d0 + Rcos0 = 'VR~



19

and

sin0 dR/d0 + Rcos0 = 1.

Both of these equations are soluble in terms of familiar functions.

The solutions, in order, are

2R = 2F (Q)/sin0

and

R = 0/sin0 

where F is Legendre1s elliptic integral of the first kind having 
modulus V2/2 and Q is given by: Q = cos "^/^tan[(7r-0)A] 

(Byrd and Friedman, p. 710).

For the general case, where approximations to the exponential 

term in equation (8) cannot be made, numerical methods must be 

employed. In rectangular co-ordinates the equation to be solved is

dy/dx = y/^x - (x2 + y2)<y[l-exp(-^)J/^-exp(-p 2̂ + y2

In the range 0.0K^3<Cl, the two limiting cases fail. Values of 

in this range were thus chosen and this equation was integrated 

using the Runge-Kutta method.

Figure I4. shows plots of the contact discontinuities for the 

two limiting cases. These curves represent boundries within which 

curves in the intermediate of ^(0< must lie. If R is regarded 

as a function of both 0 and , i. e., R=R(0,^), then as varies 

from 0 to co , all possible contact discontinuities are generated;
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effectively, the outer boundary is rotated into the inner one. As 

can be seen from Figure h, the shape of the contact discontinuity 

is relatively insensitive to the value of . In this figure, for 

comparison purposes, a plot of the surface R=sec(0/2) is included. 

This contour is the continuation of the on-axis streamline (for 

the case of potential flow) of a uniform flux from infinity past 

an isotropic point source. The results of the numerical integration 

are shown in Figure 5- The upper and lower curves in this graph 

were calculated using the limiting cases. Again, the striking 

similarity in form of the surfaces is apparent.

C. Calculated Size of the Cavity

The size of the cavity can be determined as follows. Equation 

(?) for the on-axis stopping distance of the solar wind can be written 
=y|l - exp(-p)], where jT = IT^vIvT^. Here S=Nmn, where N 

is the number of neutrals of mass mn produced per second. If is 

specified, then is determined. Once is fixed, the cross section 

of the cavity at 00, R^, is determined. Thus , the parameter 2T 

determines the scaling of the cavity. In Figure 6 a plot of 

is shown. Now RQ = vT^ and N hence, by adjusting

the scales, this curve also represents Rq = R0(N), i. e., the 

stopping distance as a function of the number of neutrals produced 

per second. To determine the scale factors, values must be assigned 

to the constants involved. The more abundant neutral molecules 

include CN, C2, CO, and N2. These all have molecular masses of 

^JOnip, where m.p is the mass of a proton. The time constant is a 

more uncertain quantity. Its value will depend on the molecular
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Figure 6
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type. Thus rC should be regarded as an average. rC=10^ sec is adopted 

fhom Table I (Chapter II). Note that the scaling is fairly sensitive 

to the value of *T. For example, if 'U=10^ sec, the numbers on the 

scale for N in Figure I4. would be reduced by a factor of 100 with 

corresponding Ro values reduced by a factor of 10. The ejection velocity 
v=10^ cm/sec has been adopted (Wurm, 1963). Values of and vs are 

those corresponding to a distance of 1 a. u. Table II lists these 

various parameters along with their values.

, _______ TABLE II

Parameter V Ts

Value 30 nip 10^ cm/sec 6
10 sec

3 
nip/cm lydO cm/sec

z 32With these values, then, Ro=10° and N=10 If, where Ro is measured 

in kilometers. Figure 7 shows a plot of Ro=Ro(N) in the range of 

most rapid change.

For the limiting case ^%>1 the cross section of the cavity
2at 00 ,R1_, is given by Rn=7®o, while if ^«1, R =2K Rosa6.68Ro, 

where K is Legendre's complete elliptic integral of the first kind 

with modulus V2/2. Figure 8 shows a plot of the ratio Rir/R0=Rir/R0(N).

Values’ in the intermediate range of were obtained by numerical 

integration. Note that the ratio effectively doubles from one limiting 

case to the next. This is to be expected since in the case where

R »1 the ion density falls off as l/r^ whereas in the other limiting case.

the fall off is weaker,!, e.
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Figure 7



Figure 8 tx> 
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CHAPTER V

THE ION DENSITY IN THE COMA AND TAIL

A. The General Problem

The problem of finding the density of ions inside the cavity 

is now considered. At present, only part of the density is known, 

viz., the density due to ionization of the outflowing neutrals. 

However, in the.discussion in Chapter III, the assumption was made 

that the outflowing ions were specularly reflected from the interior 

of the cavity. Hence, to find the total density, the contribution 

from not only the outflowing ions but also the reflected ions must 

be considered. Note that, formally, the reflection process can 

continue indefinitely. For the moment, only the density contribution 

from ions which have been once reflected will be considered. The 

problem of higher order reflections will be treated in Section E.

B. The Density Contribution from First Order Reflections

The density of ions due to first reflections can be found 

as follows. Consider that portion of the contour reached by ions 

flowing directly from the nucleus (but not by ions which have been 

once deflected) as an ion source. Let ions be emitted in a direction 

such that the inner normal to the surface of the cavity bisects 

unit vectors pointing toward the nucleus and along the emission 

direction. Let the intensity of the source be

^7(R) = S/UlTv [1 - exp(-R/vT)J / R2 •

By superposing the density due to this "line source" and the density 
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due to ions flowing directly from the nucleus, the net density is 

obtained.

The geometry involved in the reflection process is shown in 

Figure 9- The angle between the unit vector pointing toward the 

nucleus and the unit vector, ■£, pointing along the emission direction 

is designated by \p . The variables r,Q locate points inside the 

cavity.

•The ion flux, P, v, from the line source must satisfy \7. ( #v)=0,

subject to the boundary condition that ^,(R)=p/R). Expanding the

continuity equation gives

e = 0. (9)

Let the variable s denote distance along an ion trajectory measured 

from the surface. The solution of equation (?) is then
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pl = j’,(R)exp(-£v’.e ds ). (10)

It is convenient to make a change of variables from s to 9. Now 

ds =Vr2“+~(dr/d9)2 d9 . (11)

Using the law of sines in conjunction with Figure 9 gives

rsin(9 - 0 + y/) = Rsinl^. (12)

Equation (12) can be used to reduce equation (11) to

ds = rcsc(9 - 0 +V^) ds. (13)

The unit vector e may be written as

e = (e.er)er + (e.ee)ee . (ill)

From Figure 9 it can be seen that

e«er = -cos(9 - 0 + </') and e'e6 = sin(0 - 0 +/'). (15)

Taking the divergence of equation (lh) and using (15) gives

V» e =^l/r] £-cos(9 - 0 + V7) + cot0 sin(0 - 0 + <//) J • (16)

Substituting equations (13) and (16) into equation (10) and 

integrating gives for the reflected ion density

p ~ P>(R) sin0sin(9 - 0 + 9^)/^inV6in03. (1?)

Using equation (12), equation (17) becomes

p, = ^^(R) Rsin0/^'sin0]. (18)
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C. The Total Density

Thus far, it has been assumed that reflected ions from only 

one surface point can reach a given point inside the cavity. However, 

in general, this condition need not hold. To include the possibility 

of reflected ions from more than one surface point reaching a given 

r,Q, the reflected density must be summed. The total density, , is 

then given by

j sin0 j/^rsinQ-}

where is the set of values such that reflected ions from 

this point on the surface can reach a given r,0 and m is the total 

number of pairs. Expanding the expression for p using (I4.) gives

p = l/r2^(l - exp(-^r)]/|l - exp(-^j]^

1/R^pL - exp(-^R )|/|1 - exp(sin0j/rsin9

where the unit of density is ^(Ro).. For the limiting cases of 

interest here, ^«1 and ^»1, the general solution reduces to, 

respectively,

p = 1/r + sin0j/rsin0 (19)

and
= 1/r^ + sin0^rRjSinQ (20)

Recall that the 0 1s must satisfy equation (12). Now, since 

y,= 2tan“l(l/R dR/d0), once R=R(0) is specified and a point r,0 

chosen, this equation determines a unique set of 0's from which 

the density can be determined.
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D. The Caustics

It should be pointed out that the number of roots of" equation 

(12), i. e., m, depends upon the particular r,9 chosen. Perhaps 

the clearest way of showing the qualitative behavior of m is graphically. 

Note-that in general equation (12) cannot be inverted to give 0 as 

a function of r and 9. However, for 9=7^ this equation reduces to

rcr = Rsin^sin(0 - V^)

where rcr is the distance at which ions reflected from R,0 cross 

the axis. This equation is sufficient to determine the qualitative 

behavior of m. If values are now chosen for 0, a set of trajectories 

for the reflected ions is obtained. This set of trajectories for the 

surface R=sec(0/2) is shown in Figure 10. Inspection of this figure 

indicates that a boundary exists which separates regions where m=l 

and m=3. On the boundary itself, the value of m is not immediately 

obvious.

The problem of finding an analytical solution for the boundary 

is analogous to the optical problem of finding the curve enveloping 

light rays emanating from a point source and reflected from a curved 

mirror. Hence, this boundary will be referred to as the caustic. 

Let (T be the distance from the surface along an ion path to the 

caustic and-/2,Xthe r,9 co-ordinates of the point the trajectory 

and the caustic have in common. Using the notation of Figure 9, the 

distance (T is given by

l/^+ 1/R = 21kl/cos(V'/2) (21)



Figure 10
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(Brand, p. IOI4.). Here k=k(0) is the curvature of the contact 

discontinuity which is given by

k =[^R2 + 2(dR/d0)2 - R d2R/d02J/[R2 + (dR/d0)2p/'2 .

For the surfaces considered here, k>0, hence the absolute value 

sign is dropped in the following treatment. Q" can be eleminated 

from equation (21) by using ^7sin( )6- 0) = R/sin()6- 0 + ^/).

Equation (21) then becomes, after some reduction,

X-= tan ^^sin(0 -V*) + Gsin0j/Jcos(0 -l//) + Gcos0^^ (22) 

where G = 1 - 2kR/cos('$/2), and from equation (12)

XL = RsinV//sin( X- 0 + ^). (23)

Equations (22) and (23) are thus parametric (parameter 0) equations 

for the caustic. Equation (22) can be reduced to

X'= tan--*-^Qlsin0 + Icos0]/[Hsin0 - Icos0"}

where H = 2(1/R dR/d0)2 - 1/R d2R/d02 and I = 1/R dR/d0. Thus 

X*is explicitly determined as a function of 0 once R=R(0) is known.

Investigation of the caustics associated with the two limiting 

cases and ^>?1, reveals the same qualitative behavior as 

illustrated by Figure 10 . In each case the caustic separates two 

regions in which reflected ions from either one or three surface 

points can contribute to the density. This results in a step function 

character for m, i. e., m has the value 1, 2, or 3 depending upon 

whether the point r,0 lies respectively interior to, on, or exterior 
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to the caustic. In Figure 11, plots of the caustics are shown. Two 

of these are cut off at the point of intersection with their 

associated contact discontinuities. The third caustic extends out 

to about R=30 before intersecting its associated contact discontinuity. 

Viewing from right to left, the caustics are associated with the 
surfaces R=sec(0/2), R=0/sin0, and R=2F^/sin0.

It is essential to have an analytic form for the caustic in 

order to solve numerically for the contours of constant density. A 

computer program was employed to find the roots of equation (12) at 

about 300 r-6 lattice points interior to the cavity. On one side of 

the caustic, the program was devised to find only one root whereas 

on the other side three roots were found. Once the roots were found, 

the density was then calculated using equations (19) and (20). 

Contours were then found by linearly interpolating a certain value 

through the lattice of density values. Graphs and detailed discussion 

of these contours will be deferred to Chapter VI.

E. The Effects of Higher Order Reflections

A final problem remains, namely, consideration of the effects 

due to higher order reflections. The modifications involved are 

twofold. First of all, the shape of the contact discontinuity is 

modified. At the point where the caustic intersects the contact 

discontinuity as many as three contributions to the pressure may 

exist. Specifically, on the lower part of the surface, ions reflected 

from two upper surface points plus ions flowing directly from the 

nucleus are now available to exert pressure. One would expect the 

cavity to flare out due to the increased pressure. However,



Figure 11
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since pressure contributions fall off radially (direct ions) or as 

1/y (reflected ions), where y is the distance from the axis, whereas 

the solar wind pressure has a constant value, eventually the boundary 

will tend toward a cylindrical form as was true of the original 

surface. The density inside the cavity is now found by superposing 

the density due to first and second order reflected ions and ions 

flowing directly from the nucleus.

Ideally the reflection process can continue indefinitely, in 

each case changing both, the form of the contact discontinuity and 

the internal density. However, this will not occur for two reasons. 

First of all, it was initially assumed that the outflowing ions 

moved independently of one another since the mean free path, for 

collisions was large. However, the reflection process leads to a 

focusing effect along the axis and the caustic so that the mean free 

path for collisions is drastically reduced. The result of collisions 

will be to reduce the directed mass flux available to exert pressure. 

Higher order reflections cannot be important for another reason. 

Even if collisions are completely neglected, the pressure contribution 

from higher order reflections is negligible compared to the pressure 

exerted by the ions flowing directly from the nucleus.

To support this statement, the equation which, governs the 

shape of the new contact discontinuity if collisions are neglected 

is now investigated. This equation is

Aop/v.n) + (vp n) + ^.(v2-n)2 =^2$(vs. n) .
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The 1,2 subscripts refer to the two possible contributions due 

to reflected ions. The meaning of the constant Aq will be explained 
presently. Expanding this equation gives

1 - exp(-^r
=11- exp(-ft)| (cos9 + sinO/r dr/dQ)^ 

)"J - sin0j/rRjSinQ |1 - exp(-^R.)j DjA=/r2[

where Dj is defined by

D- = cos(0 - 0.+ ^) + sin(9 - 0. + ^')/r dr/d9
J J J J J

For the limiting case ^<<1, the equation reduces to

A0/r - sin0j/rsin9 |j3os(9 - 0j + V^) + sin(9 - 0^ + ^/r dr/d9^j 

= (cos9 + sin9/r dr/d9)^

Rather than attempting to obtain a complete solution of the 

above equations, only the initial flaring of the cavity will be

obtained. The initial point on the new contact discontinuity is

determined by the intersection of the original caustic and contact

discontinuity. For the particular surface R = sec(0/2), equation

(22) can be inverted to give 0 as a function of%- i. e.,

0 = tan(A + B), where

A = ( tanV/lj ( 1 +V 1 - 2tanyt )

and

B =
QtanJ^h ( 1 - Vl - 2tan)4 ) j .

The equation of the caustic can then be written explicitly as a 

function of
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XL = R(0)sin^'/<0)J/sin^y^- 0 + ^0)^ (21;)

where Vp(0)=2tan-"*^jl/^tan(0/2)^. Let the point of intersection of 

the caustic and the contact discontinuity be at r',0'. Thus Q' is 

determined as the root of

sec{0(0')/2*]sin ^^(Q1 = -sec(0'/2)sin^9' - 0(0') + ^|0(0' )]]

Solving gives 0,=2O14°+ 0.1" and r'=l;.81. With this initial point 

determined, it is possible to calculate all quantities in the 

pressure equation to determine dr/d0 at 0',r' and hence the flare 

angle f

f = tan“l(dy/dx) = tan^^fsin©' dr/d0 + cos©)/QosO' dr/d0' - sin©' 

where dr/d0 is evaluated at 0',r'.

In Figure 12 is shown a view of the region of interest.

Figure 12
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Since ion paths are tangent to the caustic and since direct ions 

cannot reach the region below the boundary indicated in Figure 12 , 
(region ©), an upper limit on the initial direction of the cavity 

is determined. That is, the true direction of the vector tangent 

to the initial point of the new contact discontinuity must be 

rotated through some clockwise angle with respect to a vector 

tangent to the extension of the caustic. Two possibilities arise. 

If the vector tangent to the new surface lies in region (2), Ao 

must be set = 0 (direct ions cannot reach this region to exert 

pressure); but if the vector lies in region (1), Ao=l. Calculation 

shows that on the boundary itself (where dr/dO=tX^, at the initial 

point, solar wind pressure is greater than internal pressure by 

a factor of I4 (for the case p«l). Hence the tangent vector lies 

in region (T) where A =1. Further calculation gives the flare 

angle as f=7°. Since this angle is rather small, the radius 

of the cavity at infinity is not changed significantly from the 

value previously found. Actually, this angle should be regarded as 

an upper limit. The calculation was done assuming that the reflected 

ions were fully effective in exerting pressure. However, it has 

already been noted that collisions will tend to disperse the ion 

velocities and thus reduce the directed mass flux available to 

exert pressure.

The question arises as to the value of the angle f for the 

surfaces R=0/sin0 and R=2F^/sin0. The similarity in form of the 

surfaces, caustics and contours of constant density suggests that 

the angle f will not change significantly for the other surfaces.



In any event, an actual calculation for these two cases would only 

give a limiting value since the reduction in effectiveness of the 

reflected ions in exerting pressure is not known.



CHAPTER VI

APPLICATION OF MODEL TO ACTUAL COMETS

A. Shape of the Contact Discontinuity

Empirical curve fitting has shown that the outline of the 

contact discontinuity, on the sunward side, can be approximated 

by either a parabola (Alfven, 1957) or a catenary (Marochnik, 1962). 

Now, the equation of the catenary, x = 2a - acosh(y/a) , can be 

expanded to give

(25)

which, to first order, reduces to a parabola. The catenary, then, 

probably gives a somewhat more accurate fit since it provides a 

second order correction. To compare the contour obtained here with 

these results, the general equation of the contact discontinuity 

in rectangular co-ordinates.

dx/dy

is expanded. To second order the expansion gives

x = Ro - [c2/(2!R0))y2 - [C1|/(h 1R^jA - .. (26)

where

02 = C2(^) = (14 -^)/(6 -6)
c14 = c^^) = ^3(U -6)3 - 66(6 - 2^ - 36)]/[(io -G)(6 - a)3]

G =^exp(-^)/[l - exp(-p)^
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Recall "that is a dimensionless parameter given by =^o/vT.

Note that to first order equation (26) also reduces to a parabola.

Let a=Ro/C2 in equation (26). This equation then becomes

x = aC2 - ^l/(2!a)] y2 - ^^/(liJa^)^ jA - ... (2?) 

where \=C^/c| . As p varies from 0 to^°, varies from 1.3 

to 1.8; hence, to second order, equation (2?) closely approximates 

a catenary for all values of . Figure 13 shows a parabola, 

catenary, and the contour obtained here for the case ^»1.

Note that all terms in equation (25) and (26) are of even • 

order. Hence, to third order, equation (26) will still closely 

approximate the catenary. For large values of x, however, the 

catenary has an infinite width. Observationally, as pointed out 

by Ioffe (1966), at large distances from the nucleus the contact 

discontinuity approaches a cyclindrical form. Hence, only in the 

head region will the catenary fit the true boundary. Equation (26) 

not only provides an accurate fit to the cavity outline on the 

sunward side but also defines a curve with, a finite width, at 

infinity.

B. The Contours of Constant Density

Firures ll; and 15 show the density contours associated with, 

respectively, very small and very large values of (or, equivalently, 

very small and very large mass production rates). Figure 16 shows 

the contours which would result if the form of the boundary were

given by R=sec(0/2). The unit of density, pM), can be found
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Figure 13
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using equation (5) along with values for the physical parameters 

given in Table II. Thus 0,(Ro)=l^OO mp/cm-^ or about £00 ions/cm^. 

Since the production rate and on-axis stopping distance change 

in such, a way that equation (5) always holds, the unit is the same 

for all cases. It agrees reasonably well with, the average value 

of 300 ions/cm^ found by Wurm (1963) for the tail region of Halley's 

Comet.

It is apparent from inspection of the density contours that a 

general similarity exists among the various cases. In the head 

region the contours are roughly circular. As a contour is followed 

into the tail, a gradual straightening occurs. A discontinuity occurs 

across the caustic interior to which, the contours again straighten 

as they are followed still further into the tail.

The most striking feature of the model is the prediction of 

the caustic surface (the dashed curves in Figures II4.-I6). For steady 

state conditions, the distance in units of Ro from the nucleus where 

this surface intersects the axis is given by

Rc = V(2 -e).

Thus Rc decreases monotonically from Li to 2 as ^varies from 0 toco. 

Moreover, as varies through, this same range, the distance from 

the nucleus (in units of Ro) to the point where the caustic intersects 

its associated contact discontinuity decreases from about 30 to 10. 

Since the density has a marked increase across this surface, it 

may correspond to an observable feature in a cornet^ the symmetry with. 
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respect to the axis is highly suggestive of the rays.

C. Time Dependent Phenomena

The model to this point has been developed assuming steady 

state conditions. However, it is well known that the production 

rate of neutrals can vary. Outbursts (discussed in Chapter II) are 

generally regarded as being due to a sudden increase in the production 

rate of neutrals. Furthermore, as noted by Beard (196I4), more uniform 

increases or decreases in the production rate may occur over extended 

periods of time. For example, if more or less stratified layers rich, 

in dust and ice exist, the production rate will decrease as an icy 

layer, rich, in volatile molecules, is depleted.

A sudden increase in the production rate would, according to 

the model developed here, result in the apparent motion of matter 

along the caustic. That is to say, the density along the caustic would 

not increase instantaneously at all points to a new level due to the 

different path lenghts associated with the ion trajectories reaching 

this surface. Rather, the increase would first occur at the point 

closest to the nucleus and move outward. If the outburst were localized 

in a short time interval, there would be an actual motion of the 

increased density along the caustic giving the illusion that matter 

in a localized region was in motion. Clouds or condensations might 

be accountable for by this mechanism.

A final phenomenon the proposed model may explain is the rotation 

of the rays. As previously noted, the distance of the caustic from 

the axis depends upon the on~axis stopping distance which, in turn. 



depends upon the production rate of neutrals. Thus, larger production 

rates correspond to closer distances to the axis. If, indeed, the 

caustic is a ray, an increase or decrease in production rate would 

result in inward or outward rotation respectively. Figure 17 shows 

the successive positions of the rays as the production rate increases 

by integral steps from some initj.al value.



Figure 17
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CHAPTER VII

SUMMARY AND CONCLUSIONS

The major assumptions of the present model are that ions 

move away from a comet's nucleus independently of one another and 

that they are specularly reflected from the interface separating 

cometary material from the solar wind. Utilizing these assumptions, 

a model was developed which, predicted the size and shape of the contact 

discontinuity and the plasma density interior to it. In addition, 

the model predicted the existence of structure in a comet's tail. 

Previous models, which, have treated the outflowing ions as a continuous 

medium, give solutions for the density which show no pronounced 

irregularities.

The present model is able to account for the observed outline 

of the contact discontinuity and for the finite width of the tail. 

The predicted mean ion density agrees well with Wurm's (1963) value 

based upon the intensity of radiation scattered from the tail ions. 

Plausibility arguments (Chapter VI) show that certain time dependent 

phenomena, in particular, the motion of clouds or condensations 

in the tail and the collapsing of the rays, may be explainable in 

terms of the model.

In summary, the conclusions reached are:

1. The observed outline of the cavity around a comet is closely 
approximated by the boundary obtained here.

2. The finite width of type I comet tails is explainable by 
the model.

3. The mean density of ions agrees with, published data within 
observational error.
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1|. The existence of tail structure is predicted by the model 
and, again, this result agrees with, observational data.

5. Certain time dependent phenomena, such, as the rotation of 
rays and the motion of clouds or condensations, may be 
explainable in terms of the model.
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