
Copyright c© Shunlin Liang, 2016

ALL RIGHTS RESERVED



ESSAYS ON DISASTER RISK AND EQUITY RETURN PREDICTABILITY

A Dissertation

Presented to

The Faculty of the C.T. Bauer College of Business

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Shunlin Liang

May, 2016



ESSAYS ON DISASTER RISK AND EQUITY RETURN PREDICTABILITY

APPROVED:

Kris Jacobs, C.T. Bauer Professor of Finance

Seung Min Yae, Assistant Professor of Finance

Rauli Susmel, Associate Professor of Finance

Tong Lu, Associate Professor of Accounting

Latha Ramchand, Dean C.T. Bauer College of Business



ACKNOWLEDGMENTS

I would like to express my deep gratitude to my advisor, Dr. James (Seung Min)

Yae, and my co-chair Dr. Kris Jacobs, for their invaluable guidance and suggestions.

Without their care and support, I would not be able to complete this dissertation.

Under their guidance, I gain not only valuable knowledge but passion and confidence

in finance research. Their insight and enthusiasm always inspire me.

I thank my dissertation committee members, Dr. Rauli Susmel, and Dr. Tong

Lu, for their time and valuable advice. Their continuous support also contributes to

the success of this dissertation.

I would also like to express my gratitude to Dr. Praveen Kumar, Dr. Ronald

Singer, Dr. Stuart Turnbull, Dr. Thomas George, Dr. Nisan Langberg, Dr. Hitesh

Doshi, Dr. Sang Byung Seo, and other faculties at the Department of Finance. They

taught me fundamental knowledge and skills at the early stage of my PhD study, and

were always supportive when I approach them for advice.

Many thanks go to Che-Kuan Chen, Xin Gao, Guanglian Hu, Rui Liu, and

other PhD students at the Department of Finance for their friendship, discussion,

encouragement, and companion. Grateful thanks to all of my friends in Houston,

who have been very supportive of me.

My deepest thanks to my parents for their endless love and timely encouragement,

my wife, Wei, for her love and unwavering support, and my daughters , Xinyue and

Xindan, for bringing me joy.

iii



ESSAYS ON DISASTER RISK AND EQUITY RETURN PREDICTABILITY

Abstract

Shunlin Liang

May, 2016



This dissertation consists of two essays on disaster risk and equity return

predictability. The first essay proposes new measures of firm-level and market-

level disaster risk from deviation of put-call symmetry, which is free from being

contaminated by the asymmetry between option traders and equity investors.

Compared with other known measures of disaster risk, the market-level disaster risk

measure robustly predicts aggregate market returns, with out-of-sample (R2 = 6.86%)

for the next twelve months. The cross-sectional analysis shows that firm-level disaster

risk also explains variations in expected stock returns. Stocks with high firm-level

disaster risk earn an annual four-factor subsequent alpha 8.0% higher than stocks

with low firm-level disaster risk. I explore potential mechanisms giving rise to these

asset pricing facts.

The second essay finds that the investor’s learning of higher moments can account

for the time-variation, size, and volatility of equity premium. I estimate the investor’s

belief on skewness and kurtosis of consumption and dividend growth, and assume

investor’s Bayesian learning about a skew student’s t-distribution with unknown fixed

parameters. The predictive regressions show that more negative skewness and higher

kurtosis predict higher subsequent market excess returns, which implies the investor’s

learning generates the time-variation of equity premium although the true distribution

is static. The calibrated asset pricing model shows that the investor’s learning also

explains the size and volatility of the equity premium observed in the data when the

investor has a preference for early resolution of uncertainty.
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Chapter 1

The Cross-Section and Time-Series of
Disaster Risk Implied by Options

1.1 Introduction

Many of the most influential papers commonly use macroeconomic data (e.g.

consumption, dividend price ratio, treasury bills) to predict asset returns, offering

links between asset returns and the real economy. Mehra and Prescott (1985) show

that fluctuations in the consumption growth over U.S. history can predict an equity

premium that is far too small, assuming reasonable levels of risk aversion. Rietz

(1988) proposes that the return on equities is high to compensate investors for the

rare disaster risk. To test whether the risk is sufficiently high and whether the rare

disaster is sufficiently severe, Barro (2006) collects annual data on aggregate GDP

growth and asset prices for twenty countries over the 20th century, and shows that the

world economy has indeed experienced mayor and rather frequent depressions, which

are capable to explain the high equity risk premium and the behavior of the risk-free

rate. Rietz-Barro hypothesis, which assumes a constant probability of a disaster over

time, led to a fast growing literature on disaster risk models that focus on a number

of extensions associated with the stochastic properties of the size and the probability

of an economic disaster.
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Extending the hypothesis proposed by Rietz (1988) and Barro (2006) to allow

for a time-varying disaster probability increases the ability of the model to match

the observed behavior of asset prices in many dimensions, Gabaix (2012) proposes

a disaster risk model that a disaster reduces the fundamental value of stocks by a

time-varying amount, which in return generates a time-varying stock risk premia.

Gabaix’s model provides a mechanism to explain ten puzzles in asset pricing: (i) the

equity premium puzzle of Mehra and Prescott (1985); (ii) the risk-free rate puzzle

of Weil (1989); (iii) the excess volatility puzzle of Shiller (1981); (iv) the aggregate

stock market returns predictability puzzle of Campbell and Shiller (1988); (v) the

cross-section predictability of stocks by stock characteristics vs. covariance with risk

factors puzzle of Daniel and Titman (1997); (vi) the yield curve slope puzzle of

Campbell (2003); (vii) the long term bond return predictability puzzle of Macaulay

(1938), Fama and Bliss (1987) and Campbell and Shiller (1991); (viii) the credit

spread puzzle of Almeida and Philippon (2007); (ix) the deep out-of-the money put

prices vs. Black-Scholes’ implied put prices of Jackwerth and Rubinstein (1996); and

(x) the positive relation between high put option prices and their high future returns

of Bollerslev, Tauchen, and Zhou (2009).

In this paper, following the disaster risk model in Gabaix (2012), I propose

new measures of firm and market level disaster risk from option prices. Firm-

level disaster risk measure is constructed as the deviation from put-call symmetry.

The expression of deviation from put-call symmetry captures the stochasticity of

disaster probability, consumption growth shock, and the stock recovery rate. Market-

wide disaster risk measure is extracted from the firm-level disaster risk measure and

explains the disaster risk probability induced by consumption shocks. Although firm-

level disaster risk measure is a noisy measure as it includes dividend recovery rate

and consumption shock, cross-sectionally, it captures only the dividend recovery risk,

2



not the consumption shock risk.

A deviation from put-call symmetry (Carr and Chesney 1996)1 is a simple

relationship between put and call option prices, and provides a new channel to capture

the investors’ fear about the potential for a disaster in near future. When investors

believe a high probability of disaster in the near future, they buy high amounts of put

option to protect their equity holdings or to generate profit on option, which in turn

increases the out-of-money put prices. Deviation from put-call symmetry is consistent

with Bates (1991) that out-of-the-money puts became unusually expensive during

the year preceding the crash of October 1987. Therefore, the magnitude of deviation

from put-call symmetry represents the investors’ belief in the disaster probability.

Put-call symmetry is different from put-call parity in that put-call symmetry only

depends on option prices, while put-call parity depends both on stock prices and

option prices. When option traders have prior information than equity investors, the

underlying stock price temperately deviates from the stock price implied from put-

call parity. Therefore, deviation from put-call parity captures not only the investors’

belief about the disaster probability, but also the asymmetry information between

option traders and equity investors. It is difficult to separate these two effects from

deviation from put-call parity. My firm-level disaster risk measure is constructed

from put-call symmetry, which captures only the investors’ belief about the disaster

probability, and is free from the information asymmetry concern.

The firm-level disaster risk measure is constructed from the deviation from put-call

symmetry. This approach takes advantage of the information contain in the cross-
1Under the standard model of frictionless markets and no arbitrage, put-call symmetry is the

relationship holding for an American call and an American put when the “moneyness", time to
maturity and the volatility structure happen to be the same. Carr and Lee (2009) further relax
these assumptions to generalize to unified local/stochastic volatility models and time-changed Lévy
processes. In contrast to put-call parity, put-call symmetry allows the underlying asset price, and
strike price to differ for the call and the put. This extension can be applied to compare the values
of an American call and put at a future date.
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section of option. Option prices encode investors’ ex-ante assessment of the expected

disaster risk, and thus contain forward-looking information that expected to be related

to the stock prices. My option-implied firm-level disaster risk is a forward looking

measure of stock performance and does not requires the realization of a disaster to

occur. Santa-Clara and Yan (2010) argue that the ex-ante disaster risk perceived

by investors may be quite different from ex-post realized disaster risk in stock prices

since even high probability disaster jumps may fail to materialize in sample. In the

direction of option information predicting stock returns, I find that stocks with high

firm-level disaster risk over the past month tend to have high returns over the next

month. The strength and persistence of this predictability for stock returns from the

cross section of firm-level disaster risk are remarkable for several reasons. First, based

on Gabaix’s model, the firm-level disaster risk reflects the time-varying dynamics of

consumption and dividend growths. Second, the predictability is statistically strong

and economically large. Decile portfolios formed on firm-level disaster risk have a

spread of approximately 0.72% per month in both raw returns and alphas computed

using common systematic factor models. From the t-statistics, the predictability of

firm-level disaster risk on future returns persists up to three months. After three

months, the economic and statistical significance of firm-level disaster risk portfolios

disappears, which indicates that the information asymmetry dissipates, on average,

within three months. There exists a U-shaped curve across different deciles returns

for four-month and up holding periods.

From the expression of the firm-level disaster risk, market-level disaster risk can

be extracted by eliminating the idiosyncratic component of firm-level disaster risk.

Market-level disaster risk represents the common fluctuation in the disaster risk

among individual stocks. This identifying assumption is that the firm-level disaster

risk shares similar dynamics. I find that this time-varying market-level disaster risk

4



varies substantially over time with monthly AR(1) coefficient of 0.32. Empirical

analysis shows that the market-level disaster risk measure has strong predictive power

for aggregate market returns both in-sample and out-of-sample. In the cross-section,

stocks with high loadings on past market-level disaster risk earn a monthly three-

factor alpha 0.75% higher than stocks with low market-level disaster risk loadings.

The predictability from option-implied firm-level disaster risk to stock returns is

consistent with economies where informed traders choose the option market to trade

first, such as those developed by Chowdhry and Nanda (1991) and Easley, O’Hara,

and Srinivas (1998), which cause the option market to lead the stock market. My

findings are also related to a recent literature showing that option prices contain

predictive information about stock returns. Cao, Chen, and Griffin (2005) find that

merger information hits the call option market prior to the stock market, but focus

only on these special corporate events. Ang, Hodrick, Xing, and Zhang (2006) show

that idiosyncratic volatility is inversely related to future stock returns. Bali and

Hovakimian (2009), Cremers and Weinbaum (2010), Xing, Zhang, and Zhao (2010),

Chang, Christoffersen and Jacobs (2013), Conrad, Dittmar, and Ghysels (2013), and

An, Ang, Bali, and Cakici (2014) use information in the cross section of options

including the difference between implied and realized volatilities, deviations from

put-call parity, slope of volatility smirk, innovation in implied market skewness, risk-

neutral skewness, and innovations in put and call volatility, respectively. My firm and

market level disaster risk measures are also closely related to other tail risk measures

in the following literatures. Backus, Chernov, and Martin (2011) use a constant

disaster probability version of the Barro-Rietz hypothesis and S&P 500 index options

to estimate the parameters of the risk-neutral and physical distribution of equity index

returns. Bollerslev and Todorov (2011) use short-dated OTM options on the S&P

500 to estimate a risk-neutral tail measure. Du and Kapadia (2012) create an S&P
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500 tail risk index, which capitalizes on the idea that the difference between quadratic

variation and integrated variance should isolate the risk-neutral jump intensity in a

general class of jump-diffusion models. Kelly and Jiang (2014) apply a power law

of extreme value theory on the cross-section of historical equity returns to derive a

time-varying measure of tail risk. This paper controls for all of these variables in

examining the predictability of stock returns by the firm and market level disaster

risk measures.

The remainder of this Chapter 1 is organized as follows. Section 1.2 presents the

model to construct firm and market level disaster risk measures. Section 1.3 describes

option price data and CRSP stock return data. Section 1.4 shows the empirical

analysis for the stock return predictability by firm and market level disaster risk

measures. Section 1.5 concludes.

1.2 Model of Rare Disasters

In this section, I first briefly summarize the rare disaster model by Gabaix (2012),

and then describe how to construct the firm and market level disaster risk measures

from stock option prices.

1.2.1 Gabaix’s Rare Disaster Model

In line with Rietz (1988) and Barro (2006), Gabaix (2012) adds a stochastic

probability and severity of disasters. Assume a representative agent with utility

U = E0[Σ∞t=0e
−ρtC

1−γ
t − 1

1− γ
] (1.1)

where γ ≥ 0 is the coefficient of relative risk aversion, ρ > 0 is the rate of time

preference, and Ct is the consumption endowment at t.

At each period t + 1, a disaster may happen with a probability pt. If a disaster
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does not happen, Ct+1

Ct
= egC , where gC is the constant normal-time growth rate of

the economy. If a disaster happens, Ct+1

Ct
= egCZt+1, where 0 < Zt+1 < 1 is a random

variable. For example, if Zt+1 = 0.7, consumption falls by 30%.

Ct+1

Ct
= egC ×

{
1 if there is no disaster at t+ 1 with probability 1− pt,
Zt+1 if there is a disaster at t+ 1 with probability pt,

(1.2)

Given the pricing kernel, the marginal utility of consumptionMt = eρ tC−γt follows

Mt+1

Mt

= e−δ ×

{
1 if there is no disaster at t+ 1 with probability 1− pt,
Z−γt+1 if there is a disaster at t+ 1 with probability pt,

(1.3)

where δ = ρ + γ gC is the risk-free rate in an economy that would have a zero

probability of disasters. Z−γt+1 measures the effect of disaster on the risk-free rate.

Assume a typical stock i with a claim on a stream of dividends (Di,t)t≥ 0, the

dividend process is given by

Di,t+1

Di,t

= egi,D(1 + εDi,t+1)×

{
1 if no disaster at t+ 1 with probability 1− pt,
Fi,t+1 if a disaster at t+ 1 with probability pt,

(1.4)

where εDi,t+1 > −1 is a mean-zero shock that is independent of the disaster event. It

matters only for the calibration of dividend volatility. If a disaster does not happen,

Di,t grows at an expected rate of gi,D. If a disaster happens, the dividend of stock i

is partially wiped out by a random variable 0 ≤ Fi,t+1 < 1, which is the dividend

recovery rate in Longstaff and Piazzesi (2004) and Barro (2006). When Fi,t+1 = 0,

the dividend is completely destroyed or expropriated, and when Fi,t+1 = 1, there is

no dividend loss.

1.2.2 Risk Premium and Disaster Risk Measures

In this subsection, I introduce why disaster risk commands risk premium (Gabaix

2012), and how to construct the disaster risk measures from option prices.
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1.2.2.1 Risk Premium

Rietz (1988) proposes that the possibility of rare disasters, such as economic

depressions or wars, is a major determinant of asset risk premia. Based on

international market, Barro (2006) shows that disasters have been sufficiently frequent

and large to make Rietz’s proposal viable and account for the high risk premium on

equities. Gabaix (2012) further allows the stochasticity to come both from movements

in the probability of disasters and from the expected recovery rate of assets to

explain puzzles in stock market, bond, and option. To test whether rare disaster

risk commands risk premium, we first derive the expected stock returns as following:

From the Euler equation, 1 = Et[(1 + ri,t+1)Mt+1/Mt], and Eq (1.3), we let

1 = e−δ (1− pt)END
t (1 + ri,t+1) + e−δ ptE

D
t [Z−γt+1(1 + ri,t+1)], (1.5)

where the first and second terms in the RHS are the no disaster (ND) term and

disaster (D) term, respectively. Rearranging the Eq (1.5), we can connect asset i’s

return ri,t+1 at t + 1, and expected return rei,t = END
t (ri,t+1) at t conditional on no

disaster as follows:

rei,t = END
t (ri,t+1) =

1

1− pt
(eδ − ptED

t [Z−γt+1(1 + ri,t+1)])− 1 (1.6)

In the limit of small time intervals:

rei,t = δ − ptED
t [Z−γt+1(1 + ri,t+1)− 1] = rf − ptED

t [Z−γt+1 ri,t+1] (1.7)

where rf = δ − ptE
D
t [Z−γt+1 − 1] is the real risk free rate in the economy. Eq (1.7)

indicates that only the behavior in disasters (the second term on the RHS) creates a

risk premium. It is equal to the risk free rate that adjusted by the expected capital

loss if there is a disaster.
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If a disaster occurs, dividends are multiplied by Fi,t. Comparing resilience of stock

i Hi,t = ptE
D
t [Z−γt+1Fi,t+1−1] (see Appendix A) and Eq (1.7), we have 1+ri,t+1 = Fi,t+1

as Ĥi,t does not change,

rei,t = δ − ptED
t [Z−γt+1 Fi,t+1 − 1] = δ −Hi,t, (1.8)

and

rei,t − rf = ptE
D
t [Z−γt+1 (1− Fi,t+1)]. (1.9)

Eq (1.9) shows that the expected excess stock returns are high with large consumption

drops, and are low with high recovery rates. It indicates that consumption and firm-

level disaster risk reduce the fundamental value of a stock by a time-varying amount,

and in turn generates time-varying risk premia.

1.2.2.2 Firm-level Disaster Risk Measure

Within the disaster risk model, option prices have a “volatility smirk", where

out-of-the-money puts have high prices and implied volatility. Inline with Gabaix’s

findings, I show that deviation from put-call symmetry represents the risk premium

driven by disasters, and thus is a good proxy for firm-level disaster risk.

Deviation from put-call symmetry is a better measure for disaster risk than

other option-implied measures (e.g. the slope of volatility smirk, and risk neutral

skewness) since deviation from put-call symmetry only requires option prices, while

other measures require stock prices as well as options prices. Therefore, a potential

information asymmetry between option traders and equity investors can contaminate

those measures, while deviation from put-call symmetry is free from such concern.

Under the standard model of frictionless markets and no arbitrage, put-call symmetry

is the relationship holding for an American call and an American put when the

“moneyness", time to maturity and the volatility structure happen to be the same

9



(Carr and Chesney 1996). For example, it implies that if a forward price M follows

geometric Brownian motion under an appropriate pricing measure, M0 = 100, then

a 200-strike call on M has time-0 price equal to two times the price of the 50-strike

put at the same expiry, which indicates OP put(k, σ) = k OP call(k−1, σ), where k is

the moneyness.

Following the approach in Gabaix (2012), we derive the put and call option prices

with or without disaster (see Appendix A) as follows:

OP put
i,t (K) = OPND,put

i,t (K) +OPD,put
i,t (K)

= (1− pt) eµi,t−δ END
t [(K e−µi,t − eσiui,t+1−σ2

i /2)+]

+(1− pt) eµi,t−δ OPBS,put(K e−µi,t , 1, σi) (1.10)

OP call
i,t (K) = OPND,call

i,t (K) +OPD,call
i,t (K)

= (1− pt) eµi,t−δ END
t [(eσiui,t+1−σ2

i /2 −K e−µi,t)+]

+pt e
µi,t−δ ED

t [Z−γt+1(Fi,t+1 −K e−µi,t)+] (1.11)

where OPBS,call(put)(1, K, σi) is the Black-Scholes value of a call (put) with strike K,

volatility σi, initial price 1, maturity 1, and interest rate 0.

Next, the firm-level disaster risk is derived as deviation from put-call symmetry

as follows:

FDRi,t(k) = OP put
i,t (k)− k OP call

i,t (k−1)

= eµi,t−δ (1− pt)[OPBS,put(k e−µi,t , σi)− k OPBS,call(k−1 e−µi,t , σi)]

+eµi,t−δ ptE
D
t [Z−γt+1 ((k e−µi,t − Fi,t+1)+ − k (Fi,t+1 − k−1 e−µi,t)+)]

= eµi,t−δ ptE
D
t [Z−γt+1 ((k e−µi,t − Fi,t+1)+ − (k Fi,t+1 − e−µi,t)+)] (1.12)

where moneyness k = K/1, and OPBS,put(k e−µi,t , σi)−k OPBS,call(k−1 e−µi,t , σi) = 0.

Under the assumption that in the limit of small time intervals and k e−µi,t > Fi,t+1,
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the firm-level disaster risk FDRi,t can be deduced as

FDRi,t(k) = eµi,t−δ ptE
D
t [Z−γt+1 (k e−µi,t − Fi,t+1)] (1.13)

where δ = ρ+γ gc is the risk-free rate in an economy that would have a zero probability

of disasters, µi,t = gi,D + ln [
a+b e−φH Ĥi,t

a+bĤi,t
] is the expected dividend growth of firm i.

The FDRi,t depends on economy-wide variables of disaster probability pt,

consumption jump Zt+1, and firm-level recovery rate Fi,t+1. To derive the effects of

above variables on firm-level disaster risk measure, we take the first order derivative

of Eq (1.13) for all variables. (∂ FDR/∂ δ) < 0 represents low firm-level disaster risk

at the time of high risk-free rate. (∂ FDR/∂ µi,t) < 0 shows that stocks with high

expected dividend growth will have low firm-level disaster risk. (∂ FDR/∂ Fi,t+1) < 0

shows that stock with high recovery rate will have low firm-level disaster risk. At

the time of large consumption drops (low Zt+1), there is high firm-level disaster

risk. Therefore, the firm-level disaster risk measure captures not only the market

effects from risk-free rate and consumption growth, but also the firm-level effects from

dividend growth and recovery rate. Although this firm-level disaster risk measure is

a noisy measure since it includes firm and market level disaster risk, but in the cross-

section, it represents the firm-level disaster risk, not the market-level disaster risk.

1.2.2.3 Market-wide Disaster Risk Measure

The expression of firm-level disaster risk in Eq (1.13) suggests a way to extract key

structural parameters of disasters, such as market-level disaster risk (MDR). Suppose

there are two firm-level disaster risks, FDRi,t(k1) and FDRi,t(k2) for stock i with

moneyness k1 and k2, respectively,

FDRi,t(k1)− FDRi,t(k2) = e−δ (k1 − k2)ED
t [pt Z

−γ
t+1], (1.14)
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then we can have

MDR = ED
t [pt Z

−γ
t+1] =

FDRi,t(k1)− FDRi,t(k2)

e−δ (k1 − k2)
, (1.15)

where δ = ρ+γ gc is the risk-free rate in an economy that would have a zero probability

of disasters. I calibrate time preference ρ = 6.57%, risk aversion γ = 4 and the

normal-time growth rate of the economy gc as the average consumption growth rate

over past 36 months.

After the market-level disaster risk is derived, the firm-level expected recovery

rate ED
t [pt Z

−γ
t+1 Fi,t+1] can be estimated by

ED
t [pt Z

−γ
t+1 Fi,t+1] = eδ−µi,t

k2 FDRi,t(k1)− k1 FDRi,t(k2)

k1 − k2

(1.16)

where the firm-level expected recovery rate can capture the effects of disaster risk

probability, consumption jump, and firm’s recovery rate. I will leave this for future

research.

1.3 Data

In this section, I describe the sources of the data used in this paper. The data

includes option data from OptionMetrics, underlying stock return data from CRSP,

and accounting and balance sheet data from COMPUSTAT.

1.3.1 Option Data

The option data originates from OptionMetrics. This database provides end-

of-day bid and ask quotes, trading volume, open interest, and option-specific data

(e.g., implied volatility, maturity, strike price, delta) for all call and put options

on stocks, exchange traded funds (ETFs), and index traded on U.S. exchanges. It

also provides the stock price and dividends of the underlying stocks and zero-coupon
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interest rates. All optionable stocks and ETFs have American-style options. Among

the broad-based indices, only limited indices such as the S&P 100 have American-style

options. Major broad-based indices, such as the S&P 500, have very actively traded

European-style options. Owners of American-style options may exercise at any time

before the option expires, while owners of European-style options may exercise only

at expiration. American index options cease trading at the close of business on the

third Friday of the expiration month. European index options stop trading one day

earlier, at the close of business on the Thursday preceding the third Friday.

I use data for options with 10-180 days to expiration on S&P 500 index and stocks

from January 1996 to August 2013. I form option pairs that are used to construct

the synthetic stock. An option pair consists of an OTM put option with moneyness

k ∈ (0.80 ∼ 0.95) on the underlying stock matched with a call option with moneyness

k−1 ∈ (1.05 ∼ 1.25). I discard option pairs where the quotes for either the call or the

put option are locked or crossed. I keep only those option pairs for which the volume

for both the call and put is greater than zero and the implied volatility (calculated

using the binomial option pricing model) for the call and put is defined. The option

prices are taken as the midpoints of the bid and ask quotes, which are the best closing

prices across all exchanges on which the option trades.

Table 1.1 contains descriptive statistics for the sample. This table reports the

average number of stocks per month for each year from 1996 to 2013. There are 1,455

stocks per month in 1996, and increase to 2,165 stocks per month in 2013. I report

the average, standard deviation and the quantiles (e.g. 1%, 25%, 50%, 75% and

99%) of the end-of-day derivation from OTM (moneyness = k) put price and OTM

(moneyness = k−1) call price, which is the firm-level disaster risk measure. This

firm-level disaster risk measure is high during 2002 and 2003, which coincides with

the large decline in stock prices, particularly of technology stocks. During the recent
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financial crisis in 2008 to 2009, there is a significant increase in average firm-level

disaster risk to 8.80, which means the option price of an OTM put is 8.80% more

expensive than that of an OTM call.

Figure 1.1 shows the value-weighted firm-level disaster risk across firms. Firm-

level disaster risk is expressed in daily terms with 25%, 50%, and 75% quantiles,

respectively. The firm-level disaster risk across firms is highly persistent, with a

monthly AR(1) coefficient of 0.95. Figure 1.2 shows the market-level disaster risk

measure, corresponding to different crisis events in financial markets. This market-

level disaster risk can be viewed as the conditional probability that the market has

its worst return realizations conditional on previous month market return. Compared

with the time series of market returns, higher market-level disaster risk commands

with higher subsequent market returns. Figure 1.3 shows the time series of four

disaster risk: FDR (average stock) a cross-sectional average of firm-level disaster risk;

FDR (market) derived from the S&P 500 index options; MDR (average stock) a cross-

sectional average of firm-level market-level disaster risk; and MDR (market) derived

from the S&P 500 index options.

1.3.2 Stock Return Data and Other Predictive Variables

I obtain underlying stock return data from CRSP, and accounting and balance

sheet data from COMPUSTAT. I also construct the following factor loadings and

firm characteristics associated with underlying stock markets that are widely known

to forecast the cross section of stock returns.

SIZE: Firm size is measured as the natural logarithm of the market value of

equity, which is equal to stock price multiplied by the number of shares outstanding

in millions of dollars at the end of the month for each stock.

Book to Market Ratio (BM): Following Fama and French (1992), I compute a
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firm’s book-to-market ratio in month t using the market value of its equity at the end

of December of the previous year and the book value of common equity plus balance-

sheet deferred taxes for the firm’s latest fiscal year ending in the prior calendar year.

Momentum (MOM): Following Jegadeesh and Titman (1993), I compute the

momentum variable for each stock in month t as the cumulative return on the stock

over the previous 6 months starting two months ago to avoid the short term reversal

effect, that is, momentum is the cumulative return from month t-7 to month t-2.

Short-Term Reversal (REV): Following Jegadeesh (1990), I obtain the short-term

reversal for each stock in month t as the return on the stock over the previous month

from t-1 to t.

Realized Volatility (RVOL): Realized volatility of stock i in month t is defined as

the standard deviation of daily returns over the past month t.

Implied Volatility Innovations (∆PIVOL and ∆CIVOL): Following An, Ang, Bali,

and Cakici (2014), I compute the implied put (call) volatility innovations as the change

in OTM put (call) implied volatilities from previous month.

Call/Put Volume (C/P-VL): This measure is defined as the ratio of call/put option

trading volume at the same month for each stock.

Call/Put Open Interest (C/P-OI): This measure is defined as the ratio of the open

interest of call options to that of put options at the same month.

Realized-Implied Volatility Spread (RIVOL): I control for the difference between

the monthly realized volatility (RVOL) and the average of the at-the money call and

put implied volatilities (IVOL). Bali and Hovakimian (2009) and Goyal and Saretto

(2009) show that stocks with high RVOL-IVOL spreads have low future stock returns.

Slope of Volatility Smirk (VOLSKEW): Following Xing, Zhang, and Zhao (2010),

I control for slope of volatility smirk, defined as the difference between the out-

of-the-money put implied volatility (with moneyness of 0.80-0.95) and the average
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of the at-the-money call and put implied volatilities (with moneyness of 0.95-1.05),

both using maturities of 7-60 days. Xing, Zhang, and Zhao show that stocks with

high VOLSKEW tend to have low returns over the following month. In contrast,

Conrad, Dittmar, and Ghysels (2013) report the opposite relation using a more general

measure of risk-neutral skewness based on Bakshi, Kapadia, and Madan (2003), which

is derived using the whole cross section of options.

Risk Neutral Skewness and Kurtosis: Following Bakshi, Kapadia, and Madan

(2003), I control for a more general measure of risk-neutral skewness and kurtosis,

which are derived from the S&P 500 index options.

Tail Risk (Tail-KJ): Following Kelly and Jiang (2014), I control for common

fluctuations in the cross section of stock returns. Kelly and Jiang show that this

tail risk has strong predictive power for aggregate market returns. I thank Bryan

Kelly for providing the monthly tail risk data.

Investor Fears Index (IFI-BT): Following Bollerslev and Todorov (2011), I control

for the Investor Fears Index, which are based on 5-minute S&P 500 futures prices

and options. Investor Fears Index IFI = V RP−t (k) − V RP+
t (k), where V RP−t (k)

(V RP+
t (k))is the negative (positive) jump variance risk premium. Bollerslev and

Todorov show that this investor fears index reveals large time-varying compensation

for fears of disasters.

Predictors in Goyal and Welch (2008): Following Goyal and Welch, I control for

other predictors as default return spread, default yield spread, dividend payout ratio,

dividend price ratio, earnings price ratio, inflation, long-term bond return, long-term

yield, net equity expansion, term spread, and treasury-bill rate. The data is from

Amit Goyal’s Website.
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1.4 Empirical Analysis

In this section, I first investigate whether market-level disaster risk can forecast

market returns in-sample and out-of-sample, and whether market-level disaster risk

can help explain differences in future returns across stocks. Then, I study the firm-

level disaster risk across firms, and show how this firm-level disaster risk may help

explain differences in expected returns across stocks.

1.4.1 Market Return Predictability by Market-wide Disaster
Risk

I test whether market-level disaster risk can forecast aggregate market returns.

All regressions are conducted at the monthly frequency and the analyses are for one-,

three-, six-, and twelve-month horizons. The dependent variable is the return on

the CRSP value-weighted index at the monthly frequency. To illustrate economic

magnitudes, all reported predictive coefficients are scaled to be interpreted as the

effect of one-standard-deviation increase in the regressor on future annualized returns.

Table 1.2 shows that market-level disaster risk has significant forecasting power

over one to twelve months. A one-standard-deviation increase in lower market-level

disaster risk predicts an increase in future excess returns of 1.73%, with a t-statistic

of 4.67 at one-month horizon. Table 2 also compares the forecasting power of market-

level disaster risk with a large set of forecasting variables studied in a survey by

Goyal and Welch (2008), and other risk measures, as well as the investor fear index

(Bollerslev and Tauchen 2011), risk-neutral skewness and kurtosis based on S&P 500

index options (Bakshi, Kapadia, and Madan 2003), and tail risk from cross-sectional

stock returns (Kelly and Jiang 2014). The long-term bond return and stock volatility

strongly predict up to three-month and nine-month returns, respectively. The effects

of tail risk, investor fear index and market-level disaster risk can persist up to twelve
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months.

Table 1.3 reports results of bivariate predictor performance from monthly

predictive regressions of market returns on market-level disaster risk over one, three,

six, and twelve-month horizons. The predictive ability of market-level disaster risk is

unaffected by including alternative regressors. For one-month forecasts, the market-

level disaster risk predictive coefficient remains above 1.3% when combined with

each of other predictive variables, with a t-statistic above 3.2 in all cases. At

longer horizons, the performance of market-level disaster risk is less strong, but still

statistically significant, except the one that at twelve-month horizon and combined

with net equity expansion.

Next, I investigate the out-of-sample predictive ability of market-level disaster

risk. Using data only through month t (beginning at t = 80 to allow for sufficiently

large initial estimation period), I run univariate predictive regressions of market

returns on market-level disaster risk. This coefficient is used to forecast the t + 1

market return. The estimation window is then extended by one month to obtain

a new predictive coefficient, and an out-of-sample forecast of the following month’s

return is constructed. This procedure is repeated until the full sample has been

exhausted. Since coefficients are based only on data through t, this procedure mimics

the information set that an investor would update with in real time. Using the forecast

errors from this approach, I calculate the out-of-sample R2 as

R2 = 1−
∑
t

(rm,t+1 − r̂m,t+1|t)
2/

∑
t

(rm,t+1 − r̄m,t)2, (1.17)

where r̂m,t+1|t is the out-of-sample forecast of the t + 1 return based only on data

through t, r̄m,t is the historical average market return through t. A negative R2

indicates that the predictor performs worse than setting forecasts equal to the

historical mean. This out-of-sample forecast approach is applied using each of the
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alternative predictors. Table 1.4 shows the results that market-level disaster risk

forecasts demonstrate similar predictive success out-of-sample. At the one-, three-

, six-, and twelve-month horizons, the market-level disaster risk out-of-sample R2 is

0.67%, 1.34%, 2.80%, and 6.86% versus 2.69%, 2.03%, 6.36%, and 4.07% in-sample. A

negative R2 implies that the predictor performs worse than setting forecasts equal to

the historical mean. A star next to out-of-sample R2 is based on significance of MSE-F

statistic by McCracken (2004), which tests for equal MSE of the unconditional forecast

and the conditional forecast. We can see that market-level disaster risk has significant

out-of-sample R2. Other predictors, such as BM, net equity expansion, IFI-BT, and

Tail-KJ, also have positive out-of-sample R2. Specially, IFI-BT, and Tail-KJ have

significant out-of-sample R2 for twelve-month holding period. In summary, predictive

regressions suggest that market-level disaster risk is positively and significantly related

to aggregate market returns.

1.4.2 Cross-section Stock Return Predictability by Market-
wide Disaster Risk

In the next, I test whether market-level disaster risk (MDR) can help explain

differences in future returns across stocks. This is consistent with the hypothesis that

investors are averse to market-level disaster risk, stocks with high predictive loadings

on market-level disaster risk will be discounted more steeply and thus have higher

future returns, and stock with low predictive loadings on market-level disaster risk

will have comparatively higher prices and thus have lower future returns.

I then estimate the market-level disaster risk sensitivities of individual stocks

with regressions of Et[Ri,t+1] = µi+βiMDRt. Stocks with high values of βi are those

that are most sensitive to market-level disaster risk, and thus steeply discounted

when market-level disaster risk is high and have higher future return. On the other
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hand, stocks with low values of βi are those that are less sensitive to market-level

disaster risk, and thus have comparatively higher prices and have lower future returns.

In each month, I estimate the market-level disaster risk loading for each stock in

regressions that use the most recent 24 months of data. Stocks are sorted into quintile

portfolios based on their estimated market-level disaster risk loadings. Then, the

average monthly value-weighted (equal-weighted) quintile portfolio returns is derived

in a one-month post-formation window.

Panel A of Table 1.5 reports the value- and equal-weighted average out-of-sample

one-month holding period portfolio returns. Stocks in the highest market-level

disaster risk loading quintile earn value-weighted average monthly returns 0.65%

higher than stocks in the lowest quintile, with a Newey-West t-statistic of 2.57, where

lag length equal to the number of month in each horizon. Average portfolio return

demonstrate a monotonic pattern that is increasing in MDR. To consider alternative

priced factors, I report alphas from regressions of portfolio returns on CAPM, Fama-

French three factor model, Fama-French-Carhart four factor momentum model, and

Fama-French-Carhart plus the Pastor and Stambaugh (2003) traded liquidity five

factor model. Alphas of the value-weighted high-minus-low MDR portfolio are large

and statistically significant for each of these models. For CAPM model, the alpha

is 0.73% per month (t=2.49). For the three-factor model, the alpha is 0.75% per

month (t=2.57). For the four-factor model, the alpha is 0.70% per month (t=2.61).

For the five-factor model, the alpha is 0.76% per month (t=2.56). Portfolio alphas

also demonstrate a monotonic pattern that was observed for average portfolio returns.

Panel B report the out-of-sample twelve-month holding period portfolio returns, which

show that long horizon portfolio returns have the same qualitative behavior as those

of short horizons.

To test the effect of innovation of market-level disaster risk on future returns
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across stocks, I estimate the4MDR sensitivities of individual stocks with Et[Ri,t+1] =

µi + βi4MDRt, where 4MDRt = MDRt −MDRt−1. Stocks with high values of

βi are those that are most sensitive to 4MDR, and thus steeply discounted when

4MDR is high and have higher future return. On the other hand, stocks with low

values of βi are those that are less sensitive to 4MDR, and thus have comparatively

higher prices and have lower future returns.

1.4.3 Cross-Section Stock Return Predictability by Firm-level
Disaster Risk

In this subsection, I study the cross-section stock return predictability by firm-level

disaster risk measure. I estimate the differences in returns between deciles sorted by

firm-level disaster risk, study the longer-term predictive power of firm-level disaster

risk, and examine whether firm-level disaster risk can predict the next month’s returns

while controlling for firm characteristics and other known disaster risk measures.

1.4.3.1 Portfolios Sorted by Firm-level Disaster Risk

To investigate whether firm-level disaster risk (FDR) may help explain differences

in expected returns across stocks, I sort firm-level disaster risk into 10 portfolios.

Portfolio 1 (Low FDR) contains stocks with the lowest individual FDR in the previous

month and Portfolio 10 (High FDR) includes stocks with the highest individual firm-

level disaster risk in the previous month. The decile portfolios are rebalanced every

month, and stocks in each decile portfolio are value-weighted.

Table 1.6 shows that the average raw return of stocks in decile 1 with the lowest

firm-level disaster risk is 0.31% per month and this monotonically increases to 1.03%

per month for stocks in decile 10. The difference in average raw returns between

deciles 1 and 10 is 0.72% per month, with a highly significant Newey-West t-statistic

of 3.46. This result translates to a monthly Sharpe ratio of 0.17 and an annualized
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Sharpe ratio of 0.61 for an investment strategy taking a long position in high firm-level

disaster risk stocks and a short position in low firm-level disaster risk stocks. The

differences in returns between deciles 1 and 10 are very similar if I risk-adjust using the

CAPM, at 0.68% per month (t-statistic of 3.32), and the Fama-French (1993) three-

factor model including market, size, and book-to-market factors, at 0.72% per month

(t-statistic of 3.19). I also report alphas from regressions of portfolio returns on the

Fama-French-Carhart four-factor momentum model and the Fama-French-Carhart

model plus the Pastor and Stambaugh (2003) traded liquidity factor as a fifth control.

Alphas of the equal-weighted high minus low firm-level disaster risk portfolio are large

and statistically significant for each of these models. Portfolio alphas demonstrate

a monotonic pattern that was observed for average portfolio returns. The results

indicates that stocks that have high firm-level disaster risk over the past month tend

to have high returns in the next month.

1.4.3.2 Long-Term Predictability of Portfolios Sorted by Firm-level
Disaster Risk

I further investigate the longer-term predictive power of firm-level disaster risk up

to twelve months by constructing portfolios with overlapping holding periods following

Jegadeesh and Titman (1993). In a given month t, the strategy holds portfolios that

are selected in the current month as well as in the previous N -1 months, where N

is the holding period (N=1 to 12 months). At the beginning of each month t, I

perform dependent sorts on firm-level disaster risk over the past month. Based on

these rankings, 10 portfolios are formed for firm-level disaster risk. In each month t,

the strategy buys stocks in the high firm-level disaster risk decile and sells stocks in

the low firm-level disaster risk decile, holding this position for N months. In addition,

the strategy closes out the position initiated in month t-N . Hence, under this trading
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strategy, I revise the weights on 1/N of the stocks in the entire portfolio in any

given month and carry over the rest from the previous month. The profits of the

above strategies are calculated for a series of portfolios that are rebalanced monthly

to maintain value weights.

I report the long-term predictability results in Table 1.7. The average raw and

risk-adjusted return differences between high firm-level disaster risk and low firm-

level disaster risk portfolios are statistically significant for one to three month holding

periods. There is a pronounced drop in the magnitude of the average holding return,

which is reduced by 40% between holding period one-month and two-month from

0.72% per to 0.44%. There is a further reduction to 0.18% for four-month holding

period. From the t-statistics, the predictability of firm-level disaster risk on future

returns persists up to three months. After three months, the economic and statistical

significance of firm-level disaster risk portfolios disappears, which indicates that the

information asymmetry dissipates, on average, after three months. Holding the firm-

level disaster risk portfolios longer than 4 months, there exists a U-shaped returns

across low to high firm-level disaster risk portfolios deciles.

1.4.3.3 Firm Characteristics of Portfolios Sorted by Firm-level Disaster
Risk

To highlight the firm characteristics, risk, volatility spread, and skewness

attributes of stocks in the portfolios of firm-level disaster risk, Table 1.8 presents

descriptive statistics for the stocks in the various deciles. The decile portfolios in

Table 1.8 are formed by sorting stocks based on firm-level disaster risk. In each

month, I record the median values of various characteristics within each portfolio.

These characteristics are all observable at the time the portfolios are formed. Table

1.8 reports the average of the median characteristic values across months of market
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beta (BETA), log market capitalization (SIZE), book-to-market (BM), the cumulative

return over the 6 months prior to portfolio formation (MOM), the return in the

portfolio formation month (REV), the slope of volatility smirk (VOLSKEW), the

realized volatility (RVOL), the realized minus implied volatility (RIVOL), the implied

volatility spread (IVOL-S), and innovation of out-of-the-money put (call) volatility

∆PIVOL (∆CIVOL).

From Table 1.8, the low firm-level disaster risk to the high firm-level disaster risk

decile, the average return on firm-level disaster risk portfolios increases from 0.31% to

1.03%. The return spread between the extreme decile portfolios is 0.72% per month,

with a t-statistic of 3.46. There are no discernible patterns of market beta, size, book-

to-market and momentum across the portfolios. I investigate whether the skewness

or volatility spread attributes of stocks provide an explanation for the high returns of

stocks with large firm-level disaster risk. There is a pronounced pattern of decreasing

the slope of volatility smirk (VOLSKEW) moving from 6.21 for the Low1 FDR decile

to 3.56 for the High10 FDR decile. While there is a significant pattern of increasing

implied volatility spread (IVOL-S) moving from 2.15 for the Low1 FDR decile to 8.46

for the High10 FDR decile. Note that VOLSKEW is computed as the spread between

the implied volatilities of out-of-the-money puts and the average of at-the-money

put and calls, and IVOL-S is computed as the spread between implied volatilities

of out-of-the-money puts and out-of-the-money calls. Decreasing VOLSKEW across

the FDR deciles is equivalent to these stocks experiencing simultaneous increases in

put volatilities as firm-level disaster risk increases. This is consistent with informed

trading whereby informed bearish investors with a high degree of confidence in future

price depreciation buy puts and sell calls. In cross-sectional regressions, I control for

VOLSKEW and IVOL-S along with other regressors in examining firm-level disaster

risk predictability.
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1.4.3.4 Cross-Sectional Regressions with Firm-level Disaster Risk and
Other Predictors

Finally, I illustrate that the firm-level disaster risk predicts underlying equity

returns. I argue that firm-level disaster risk reflects investors’ expectation of a

downward price jump. If informed traders choose the options market to trade in first

and the stock market is slow to incorporate the information embedded in the options

market, then I should see the information from the options market predicting future

stock returns. While the analysis in Table 1.8 shows that most firm characteristics

measures are unlikely to play a role in predictability of the cross section of stock

returns sorted by firm-level disaster risk, it does not control simultaneously for

multiple sources of risk. I conduct a Fama-MacBeth (1973) regression to examine

whether firm-level disaster risk can predict the next month’s returns, while controlling

for different firm characteristics. I run the following cross-sectional regression:

Re
i,t+1 = β0,t + β1,t FDRi,t + β′2,tCONTROLSi,t + εi,t+1 (1.18)

where Re
i,t+1 is the realized excess return on stock i in month t+1 and CONTROLSi,t

is a collection of stock-specific control variables observable at time t for stock i, which

includes information from the cross section of stocks and the cross section of options.

I estimate the regression in this equation across stocks i at time t and then report the

cross-sectional coefficients averaged across the sample. The cross-sectional regressions

are run at the monthly frequency from January 1996 to August 2013. To compute

standard errors, I take into account potential autocorrelation and heteroscedasticity

in the cross-sectional coefficients, and then compute Newey-West (1987) t-statistics

on the time series of slope coefficients. The Newey-West standard errors are computed

with twelves lags.

Table 1.9 reports the average firm-level cross-correlations of stocks’ firm-
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level disaster risk (FDR), innovation of firm-level disaster risk (∆FDR), market

capitalization (SIZE), book-to-market (BM), the cumulative return over the 6 months

prior to portfolio formation (MOM), the return in the portfolio formation month

(REV), implied volatility spread (IVOL-S), realized volatility (RVOL), realized minus

implied volatility (RIVOL), slope of volatility smirk (VOLSKEW), innovation of

implied put (call) volatility ∆PIVOL (∆CIVOL), ratio of put call open interest

(P/C-OI), ratio of put call volumn (P/C-VL), tail risk (Tail-KJ) by Kelly and

Jiang (2014), and investor fear index (IFI-BT) by Bollerslev and Todorov (2011).

Table 1.9(continues) reports the average firm-level cross-correlations of stocks’ FDR

measure, and the other predictors in Goyal and Welch (2008).

Table 1.10 presents firm-level cross-sectional regressions with firm-level disaster

risk, together with controls for firm characteristics and risk factors. In the presence

of risk loadings and firm characteristics, regression (1) in Table 1.11 shows that the

average slope coefficient on FDR is 0.158, which is highly significant with a t-statistic

of 3.26. In regression (2), the average slope coefficient on ∆FDR is 0.027 with a

t-statistic of 2.88. In regression (3), the average slope coefficient on IVOL-S is 0.043

with a t-statistic of 3.12. In regression (4), the average slope coefficient on VOLSKEW

is 0.096 with a t-statistic of 3.50. In regression (5), the average slope coefficients on

∆CIVOL (∆PIVOL) is -0.133 (0.084) with a t-statistic of -2.42 (0.92). In regression

(6), the average slope coefficient on Tail-KJ is 0.074 with a t-statistic of 1.98. In

regression (7), the average slope coefficient on IFI-BT is -0.051 with a t-statistic of

-2.30. Regression (8,9,10) shows that the average slope coefficient on FDR is positive

and significant. Table 1.10 provides no evidence for a significant link between trading

volume P/C-VL (or open interest P/C-OI) and the cross-section of expected returns,

which is consistent with Pan and Poteshman (2006), who show that publicly available

option volume information contains little predictive power. In regression (1), implied
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volatility spread (RIVOL) carries a negative and statistically significant coefficient,

consistent with Bali and Hovakimian (2009).

1.5 Conclusion

Following the hypothesis that a disaster reduces the fundamental value of stock by

a time-varying amount (Gabaix 2012), I construct new measures of consumption and

firm-level disaster risk by using the cross-section of deviation from put-call symmetry.

Stocks with high firm-level disaster risk over the previous month tend to have high

subsequent returns. From the t-statistics, the predictability of firm-level disaster risk

on future returns persists up to three months. After three months, the economic and

statistical significance of firm-level disaster risk portfolios disappears, which indicates

that the information asymmetry dissipates, on average, after three months. Holding

the firm-level disaster risk portfolios longer than 4 months, there exists a U-shaped

returns across different deciles.

I further show that market-level disaster risk has strong predictive power for

aggregate market returns with out-of-sample. Compared with known measures

of disaster risk, the market-level disaster risk measure robustly predicts aggregate

market returns. In the cross-section, stocks with high loadings on past market-level

disaster risk earn a monthly three-factor alpha 0.75% higher than stocks with low

market-level disaster risk loadings. These finding suggests that market-level disaster

risk is priced in predicting aggregate market returns and cross-sectional stock returns.
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Appendices

A. Option Prices
In the following, I briefly summarize the the approach used in Gabaix (2012) to derive
the option prices. During the process, we need to derive variables of stock resilience,
stock prices, and then option prices.

A1. Resilience
The notion of resilience Hi,t of stock i is introduced with the time variation in the
stock’s recovery rate Fi,t+1,

Hi,t = ptE
D
t [Z−γt+1Fi,t+1 − 1], (1.19)

where ED
t (END

t ) is the expected value conditionally on a disaster (no disaster)
happening at t + 1. The stock that with high recover rate (as of high resilience)
is expected to do well in a disaster. In the cross-section, stocks with high resilience
are safer, and then command low risk premia.

To specify the dynamics of Hi,t, resilience Hi,t is split into a constant part Hi∗ and
a variable part Ĥi,t as follows

Hi,t = Hi∗ + Ĥi,t, (1.20)

and the variable part Ĥi,t follows a linearity-generating (Gabaix 2009) process,

Ĥi,t+1 =
1 +Hi∗

1 +Hi,t

e−φHĤi,t + εHi,t+1, (1.21)

where EtεHi,t+1 = 0, and εHi,t+1 is uncorrelated with εDt+1. As Hi,t hovers around Hi∗,
1+Hi∗
1+Hi,t

is close to 1. It implies that Ĥi,t+1 ' e−φHĤi,t + εHi,t+1, which means Ĥi,t

mean-reverts to 0 at a speed of φH , and innovates at each period.
A2. Stock Prices

A linear generating (LG) process is introduced by Gabaix (2009), and keeps all
expressions for stocks and bonds in closed form, which is a linear function of an
arbitrary number of factors. The LG class and the affine class yield have the same
expression to a first order approximation.

LG processes are given by MtDi,t, a pricing kernel Mt times a dividend Di,t,
and Ĥi,t, an n-dimensional vector of factors. For instance, for bonds, the dividend
is Di,t = 1. By definition, a process MtDi,t(1, Ĥi,t) is LG if and only if there are
constant α ∈ R, γ, δ ∈ Rn and Γ ∈ Rn×n, such that the following relations hold at
all t ∈ N ,

Et[
Mt+1Di,t+1

MtDi,t

] = α + δ′ Ĥi,t, (1.22)

Et[
Mt+1Di,t+1

MtDi,t

Ĥi,t+1] = γ + Γ Ĥi,t. (1.23)
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where higher moments need not be specified. MtDi,t(1, Ĥi,t) is an LG process with
generator Ω = [α, δ′; γ,Γ]. Take a natural logarithm, ω = ln(Ω) = [δi,−1; 0, δi + φH ],
where δi = δ − hi∗ − gi,D as the stock’s effective discount rate and hi∗ = ln(1 +Hi,∗).

Et[
Mt+1Di,t+1

MtDi,t

Ĥi,t+1] = (1, 0)ΩT (1, Ĥi,t)
′. (1.24)

In the limit of small time intervals:

Et[
Mt+1Di,t+1

MtDi,t

] ≈ 1

1− e−δi
(1 +

e−δi−hi∗Ĥi,t

1− e−δi−φH
) (1.25)

To derive the stock prices Pi,t = Et[
Mt+1Di,t+1

Mt
] with its resilience Hi,t,

Pi,t = Et[
Mt+1Di,t+1

Mt

] = Di,t
1

1− e−δi
(1 +

e−δi−hi∗Ĥi,t

1− e−δi−φH
) (1.26)

In the limit of short time period, Pi,t =
Di,t
δi

(1 +
Ĥi,t
δi+φH

). We can have the price to
dividend ratio as Pi,t

Di,t
= 1

δi
+ 1

δi(δi+φH)
Ĥi,t = a+ bĤi,t.

The return Pi,t+1/Pi,t at t+ 1 is given by

Pi,t+1

Pi,t
=

Pi,t+1/Di,t+1

Pi,t/Di,t

Di,t+1

Di,t

=
a+ bĤi,t+1

a+ bĤi,t

egi,D(1 + εDi,t+1)×

{
1 if no disaster at t+ 1

Fi,t+1 if a disaster at t+ 1

= eµi,t ×

{
eσiui,t+1−σ2

i /2 if no disaster at t+ 1

Fi,t+1 if a disaster at t+ 1
(1.27)

where µi,t = gi,D + ln [
a+b e−φH Ĥi,t

a+bĤi,t
], is the expected dividend growth rate of firm i, and

ui,t+1 is a standard Gaussian variable.
A3. Option Prices

We consider the price of a European one-period put on a stock i with strike K
expressed as a ratio to the initial price: OPi,t = Et[

Mt+1

Mt
max (0, K − Pi,t+1

Pi,t
)]. In the

following, I derive the put and call option price with or without disaster. The value
of a put with strike K and a one-period maturity is OP put

i,t (K) = OPND,put
i,t (K) +

OPD,put
i,t (K) with OPND,put

i,t and OPD,put
i,t corresponding to the events with no disaster
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(ND) and with disaster (D), respectively,

OPND,put
i,t (K) = (1− pt) e−δ END

t [(K − eµi,t+σiui,t+1−σ2
i /2)+]

= (1− pt) eµi,t−δ END
t [(K e−µi,t − eσiui,t+1−σ2

i /2)+]

= (1− pt) eµi,t−δ OPBS,put(K e−µi,t , 1, σi) (1.28)

OPD,put
i,t (K) = pt e

−δ ED
t [Z−γt+1(K − eµi,tFi,t+1)+]

= pt e
µi,t−δ ED

t [Z−γt+1(K e−µi,t − Fi,t+1)+] (1.29)

where OPBS,put(K, 1, σi) is the Black-Scholes value of a put with strike K, volatility
σi, initial price 1, maturity 1, and interest rate 0 (See the proof in Appendix B).

The value of call option OP call
i,t (K) = OPND,call

i,t (K) +OPD,call
i,t (K) can be derived

in the same way:

OPND,call
i,t (K) = (1− pt) e−δ END

t [(eµi,t+σiui,t+1−σ2
i /2 −K)+]

= (1− pt) eµi,t−δ END
t [(eσiui,t+1−σ2

i /2 −K e−µi,t)+]

= (1− pt) eµi,t−δ OPBS,call(1, K e−µi,t , σi) (1.30)

OPD,call
i,t (K) = pt e

−δ ED
t [Z−γt+1(eµi,tFi,t+1 −K)+]

= pt e
µi,t−δ ED

t [Z−γt+1(Fi,t+1 −K e−µi,t)+] (1.31)

where OPBS,call(1, K, σi) is the Black-Scholes value of a call with strike K, volatility
σi, initial price 1, maturity 1, and interest rate 0 (See the proof in Appendix B).

B. Proof of Eq (1.28 and 1.30)
We follow the derivations in Farhi and Gabaix (2014) and derive the discrete-time
Girsanov theorm to prove Eq (1.28, 1.30). Suppose that (x, y) are jointly Gaussian
distributed under the physical probability measure P. Consider the measureQ defined
by dQ/dP = exp(x − E[x] − V ar(x)/2). Then, under Q, y is Gaussian, with
distribution

y ∼Q N(EP[y] + CovP(x, y), V arP(y)), (1.32)

where E[y], Cov(x, y), and V ar(y) are calculated under P.
Proof: Calculate the moment generating function (MGF) of y under Q using the

Radon-Nikodym derivative,

EQ[emy] = EP[
dQ
dP

emy]

= E[emy+x] e−E[x]−V ar(x)/2

= emE[y]+mCov(y,x)+m2 V ar(y)/2 (1.33)
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We start with the equation of

END
t [(eσiui,t+1−σ2

i /2 −K e−µi,t)+] = EQ
t [(eσiui,t+1−σ2

i /2 −K e−µi,t)+] (1.34)

where u ∼Q N(0, 1), and eσiui,t+1−σ2
i /2 is log-normal with mean −σ2

i /2 and variance
σ2
i under measure Q.
Define a new measure Q such that x = σiui,t+1 ∼Q N(0, σ2

i ), and the Radon-
Nikodym derivative is dQ/dP = exp(x − E[x] − V ar(x)/2) = exp(σiui,t+1 − σ2

i /2).
Then, under the new measure Q, y = σ2

i /2 − σiui,t+1 is Gaussian with the following
distribution:

y ∼Q N(EP[y] + CovP(x, y), V arP(y)) (1.35)

where EP[y] = E[σ2
i /2−σiui,t+1] = σ2

i /2, CovP(x, y) = Cov(σiui,t+1, σ
2
i /2−σiui,t+1) =

−σ2
i , and V arP(y) = V ar(σ2

i /2− σiui,t+1) = σ2
i . Thus, we have y ∼Q N(−σ2

i /2, σ
2
i ).

The MGF of y under Q using the Radon-Nikodym derivative

EQ[ey] = EP[
dQ
dP

ey] = E[eσiui,t+1−σ2
i /2eσ

2
i /2−σiui,t+1 ] = 1 (1.36)

Hence,

END
t [(ey −K e−µi,t)+] = EQ[(ey −K e−µi,t)+]

= EP
t [
dQ
dP

(ey −K e−µi,t)+]

= EP
t [(
dQ
dP

ey − dQ
dP

K e−µi,t)+]

= EP
t [(eσiui,t+1−σ2

i /2 eσ
2
i /2−σiui,t+1 − eσiui,t+1−σ2

i /2K e−µi,t)+]

= EP
t [(1− eσiui,t+1−σ2

i /2K e−µi,t)+]

= OPBS,call(1, K e−µi,t , σi) (1.37)

where OPBS,call(1, K e−µi,t , σi) is the Black-Scholes value of a call with strike K e−µi,t ,
volatility σi, initial price 1, maturity 1, and interest rate 0.

Applying the same approach, we can derive the proof for Eq (1.28) as

END
t [(K e−µi,t − ey)+] = EP

t [(eσiui,t+1−σ2
i /2K e−µi,t − 1)+] = OPBS,put(K e−µi,t , 1, σi)

(1.38)
where OPBS,put(K e−µi,t , 1, σi) is the Black-Scholes value of a put with strike K e−µi,t ,
volatility σi, initial price 1, maturity 1, and interest rate 0.
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Figure 1.1 Firm-level disaster risk measure
This figure shows the quantiles of firm-level disaster risk across firms. Firm-level
firm-level disaster risk is defined as deviation from OTM put and OTM call option
symmetry. Firm-level disaster risk are expressed in daily terms with 25%, 50%, and
75% quantiles. The sample period is from January 1996 to August 2013.
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Figure 1.2 Market-wide disaster risk and subsequent market returns
This figure shows the market-level disaster risk (MDR). Assume there are two firm-
level disaster risks: FDRi,t(k1) and FDRi,t(k2) for stock i at moneyness k1 and k2

respectively, MDR = ED
t [pt Z

−γ
t+1] =

FDRi,t(k1)−FDRi,t(k2)

e−δ (k1−k2)
. Then, I plot the average

value (value weighted) of market-level disaster risk across stocks, and the realized
subsequent one-month market returns. To emphasize comparison, the market-level
disaster risk time series have been scaled to have same mean and variance as those of
subsequent market returns time series. The sample period is from January 1996 to
August 2013.
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Figure 1.3 Average firm and market level disaster risk
This figure shows the average firm-level disaster risk (FDR) and market-level disaster
risk (MDR). FDR (average stock) is a cross-sectional average of firm-level FDR,
FDR (market) is derived from the S&P 500 index options, MDR (average stock) is
a cross-sectional average of firm-level MDR, and MDR (market) is derived from the
S&P 500 index options. The sample period is from January 1996 to August 2013.
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Table 1.1 Descriptive Statistics for Firm-level Disaster Risk Measure

This table reports the average number of stocks per month for each year from 1996

to 2013. I report the average, standard deviation and the quantiles (e.g. 1%, 25%,

50%, 75% and 99%) of the end-of-day cross-firm firm-level disaster risk.

date # of stocks 1% 25% 50% 75% 99% Average Stdev

1996 1455 -8.70 -2.43 -0.87 0.12 7.48 -1.20 2.93

1997 1728 -8.70 -2.46 -0.87 0.13 6.79 -1.23 2.85

1998 1920 -8.74 -2.08 -0.56 0.50 10.64 -0.67 3.38

1999 1959 -8.53 -2.18 -0.60 0.46 8.04 -0.87 3.01

2000 1941 -9.03 -2.78 -0.83 0.36 7.59 -1.22 3.21

2001 1813 -5.80 -0.27 0.86 3.23 20.16 2.20 4.71

2002 1761 -1.51 0.88 2.81 8.30 34.10 5.99 7.78

2003 1747 -1.38 0.92 2.85 7.76 31.63 5.55 7.00

2004 1958 -2.51 0.44 1.82 5.38 24.28 3.74 5.30

2005 1990 -6.41 -0.46 0.60 2.59 24.08 1.78 4.94

2006 2165 -8.07 -1.62 -0.17 1.06 18.37 0.17 4.28

2007 2383 -8.46 -1.42 0.07 1.84 23.29 0.90 5.26

2008 2350 -2.82 1.00 3.63 9.22 34.72 6.46 7.98

2009 2261 -0.82 2.03 5.81 13.55 35.97 8.86 8.77

2010 2357 -1.08 1.71 5.22 12.78 35.36 8.30 8.56

2011 2351 -1.29 1.87 6.02 14.22 37.04 9.27 9.39

2012 2161 -1.02 1.99 6.30 14.55 36.99 9.38 9.18

2013 2165 -1.16 1.59 5.36 11.65 32.98 7.76 7.87

Average 2026 -4.78 -0.18 2.08 5.98 23.86 3.62 5.91
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Table 1.2 Market Return Predictability: Univariate Predictor Performance
This table reports results of univariate predictor performance from monthly predictive regressions of CRSP value-weighted market index return over one-, three-, six-,

and twelve-month horizons. The first row reports forecasting results based on market-level disaster risk (MDR (average stock)) time series. Next are the results from

MDR (market) from S&P 500 index options, predictors studies in Goyal and Welch (2008), the investor fear index (Bollerslev and Tauchen 2011), risk-neutral skewness

and kurtosis based on S&P 500 index options (Bakshi, Kapadia, and Madan 2003), and tail risk from cross-section stock returns (Kelly and Jiang 2014). For comparison,

reported predictive coefficients are scaled as the percentage change in annualized expected returns resulting from a one-standard-deviation increase in each predictor variable.

Newey-West t-statistics are given in parentheses, where lag length equal to the number of month in each horizon.

One-Month Three-Month Six-Month Twelve-Month

Coeff. t-stat. R2 Coeff. t-stat. R2 Coeff. t-stat. R2 Coeff. t-stat. R2

MDR (average stock) 1.73 4.67 2.69 1.08 4.28 2.03 1.41 3.75 6.36 1.18 2.07 4.07

MDR (market) 1.50 4.81 2.04 0.89 3.46 2.47 1.23 3.25 4.84 1.00 1.75 2.64

Book to Market -0.35 -1.05 0.53 0.19 0.71 0.24 1.16 3.05 4.31 3.06 5.73 6.70

Default return spread 0.90 2.80 1.22 0.36 1.36 0.88 0.01 0.02 0.00 -0.25 -0.44 0.09

Default yield spread -0.45 -1.39 0.93 -0.32 -1.20 0.69 0.14 0.37 0.07 1.16 2.05 1.98

Dividend payout ratio -0.01 -0.01 0.00 0.17 0.64 0.20 0.71 1.83 1.59 1.39 2.46 2.83

Dividend price ratio -0.38 -1.15 0.63 0.39 1.48 1.05 1.38 3.65 2.05 3.42 6.55 7.15

Earnings price ratio -0.20 -0.60 0.17 0.01 0.05 0.00 -0.07 -0.19 0.02 0.23 0.41 0.08

Inflation 0.13 0.40 0.08 0.26 1.00 0.48 -0.50 -1.29 0.80 -1.23 -2.17 2.23

Long-term bond return -1.03 -3.21 1.74 -0.51 -1.96 1.42 -0.34 -0.88 0.37 -0.35 -0.61 0.18

Long-term yield -0.07 -0.23 0.02 -0.30 -1.15 0.64 -0.86 -2.23 2.35 -1.62 -2.88 3.85

Net equity expansion 0.51 1.56 0.58 0.68 2.60 1.57 1.58 4.24 5.99 2.68 4.93 6.51

Stock volatility -1.74 -5.70 2.72 -1.12 -4.45 3.72 -1.03 -2.69 3.37 -0.13 -0.23 0.03

Term spread -0.06 -0.19 0.02 -0.30 -1.13 0.61 -0.84 -2.19 2.25 -1.48 -2.62 3.21

Treasury-bill rate -0.14 -0.42 0.08 -0.26 -1.00 0.48 -0.75 -1.95 1.81 -2.10 -3.78 4.45

RN-skewness -0.13 -0.37 0.09 -0.38 -1.35 1.28 -0.52 -1.36 1.30 0.06 0.10 0.01

RN-kurtosis 0.50 1.36 1.29 0.42 1.48 1.53 0.55 1.42 1.42 0.19 0.29 0.06

IFI-BT 0.37 1.96 1.68 0.17 2.57 0.80 0.43 2.30 0.66 1.03 2.61 4.64

Tail-KJ 0.88 2.53 1.59 0.47 1.68 1.48 0.81 1.96 1.99 2.29 3.94 5.58

39



Table 1.3 Market Return Predictability: Bivariate Predictor Performance
This table reports results of bivariate predictor performance from monthly predictive regressions of CRSP value-weighted market index return over one-, three-, six-, and

twelve-month horizons. For each horizon, the first two columns are the coefficient and t-statistic for market-level disaster risk (MDR) time series, whereas the third and

fourth columns are the coefficient and t-statistic for the alternative predictors in Goyal and Welch (2008), the investor fear index (Bollerslev and Tauchen 2011), risk-neutral

skewness and kurtosis based on S&P 500 index options (Bakshi, Kapadia, and Madan 2003), and tail risk from cross-section stock returns (Kelly and Jiang 2014). For

comparison, reported predictive coefficients are scaled as the percentage change in annualized expected returns resulting from a one-standard-deviation increase in each

predictor variable. Newey-West t-statistics are given in parentheses, where lag length equal to the number of month in each horizon.

One-Month Three-Month

MDR MDR MDR MDR

Coeff. t-stat. Coeff. t-stat. R2 Coeff. t-stat. Coeff. t-stat. R2

Book to Market 1.80 4.59 0.22 0.68 1.14 1.27 3.80 0.58 2.21 2.57

Default return spread 1.66 4.46 0.74 2.43 1.32 1.06 3.16 0.25 0.98 2.14

Default yield spread 1.76 4.47 0.11 0.33 1.12 1.09 3.09 0.03 0.12 2.03

Dividend payout ratio 1.74 4.68 0.13 0.44 1.13 1.10 3.35 0.26 1.01 2.15

Dividend price ratio 1.74 4.52 0.02 0.08 1.12 1.24 3.83 0.67 2.63 2.78

Earnings price ratio 1.73 4.64 -0.14 -0.46 1.13 1.08 3.27 0.05 0.19 2.04

Inflation 1.73 4.64 -0.01 -0.02 1.12 1.07 3.21 0.18 0.70 2.09

Long-term bond return 1.77 4.97 -1.09 -3.68 1.56 1.10 3.39 -0.55 -2.20 2.56

Long-term yield 2.05 5.31 -0.85 -2.60 1.35 1.40 4.21 -0.83 -3.10 3.05

Net equity expansion 1.71 4.42 0.11 0.35 1.12 0.98 2.78 0.45 1.73 2.36

Stock volatility 1.30 3.21 -1.32 -4.25 1.70 0.80 2.08 -0.86 -3.30 3.18

Term spread 2.02 5.24 -0.80 -2.46 1.33 1.37 4.15 -0.80 -2.99 2.99

Treasury-bill rate 2.05 5.35 -0.87 -2.71 1.37 1.35 4.07 -0.75 -2.81 2.88

RN-skewness 2.83 6.37 0.01 0.05 2.78 1.28 3.30 -0.31 -1.18 3.20

RN-kurtosis 2.81 6.23 0.11 0.35 2.79 1.26 3.17 0.24 0.90 3.11

IFI-BT 3.36 5.25 0.58 1.79 3.43 1.85 4.84 0.37 1.63 4.62

Tail-KJ 1.92 5.00 0.62 1.93 1.57 1.21 3.47 0.31 1.15 2.74

40



Table 1.3. (Continues)

Six-Month Twelve-Month

MDR MDR MDR MDR

Coeff. t-stat. Coeff. t-stat. R2 Coeff. t-stat. Coeff. t-stat. R2

Book to Market 1.97 4.21 1.78 4.71 7.73 2.37 4.40 3.80 7.06 12.11

Default return spread 1.43 2.76 -0.14 -0.36 3.21 1.22 2.13 -0.38 -0.66 2.24

Default yield spread 1.62 3.10 0.66 1.66 3.80 1.72 2.92 1.71 2.90 5.88

Dividend payout ratio 1.48 2.94 0.82 2.20 4.25 1.30 2.31 1.49 2.66 5.28

Dividend price ratio 1.83 3.97 1.80 4.90 8.06 2.08 4.01 3.90 7.52 13.13

Earnings price ratio 1.41 2.73 -0.03 -0.08 3.18 1.19 2.08 0.27 0.48 2.14

Inflation 1.46 2.88 -0.62 -1.64 3.78 1.28 2.28 -1.33 -2.37 4.63

Long-term bond return 1.43 2.78 -0.39 -1.04 3.42 1.19 2.09 -0.39 -0.69 2.26

Long-term yield 2.02 4.16 -1.62 -4.14 6.77 2.08 3.52 -2.41 -4.07 9.32

Net equity expansion 1.10 1.92 1.33 3.51 5.82 0.58 1.04 2.54 4.55 10.98

Stock volatility 1.21 2.04 -0.64 -1.61 3.76 1.27 2.11 0.28 0.46 2.14

Term spread 1.98 4.07 -1.56 -4.00 6.55 1.98 3.34 -2.20 -3.72 8.19

Treasury-bill rate 1.94 3.94 -1.45 -3.70 6.10 2.22 3.86 -2.90 -5.03 12.76

RN-skewness 1.90 3.73 -0.42 -1.18 7.45 2.78 4.07 0.21 0.34 10.59

RN-kurtosis 1.88 3.61 0.29 0.79 7.21 2.80 4.06 -0.20 -0.33 10.59

IFI-BT 2.98 5.55 1.02 1.48 11.04 3.63 5.06 1.46 2.33 14.60

Tail-KJ 1.66 3.13 0.59 1.46 5.08 1.48 2.56 2.09 3.61 10.69
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Table 1.4 Market Return Predictability: out-of-sample R2

This table reports the out-of-sample forecasting R2 in percent from univariate predictive regressions of market returns

on market-level disaster risk MDR (average stock), MDR (market), the alternative predictors in Goyal and Welch

(2008), the investor fear index (Bollerslev and Tauchen 2011), risk-neutral skewness and kurtosis based on S&P

500 index options (Bakshi, Kapadia, and Madan 2003), and tail risk from cross-section stock returns (Kelly and

Jiang 2014). Using data only through month t (beginning at t=80 to allow for sufficiently large initial estimation

period), coefficient is used to forecast the t + 1 return. The estimation window is then extended by one month to

obtain a new predictive coefficient, and an out-of-sample forecast of the following months’ return is constructed.

This procedure is repeated until the full sample has been exhausted. I calculate the out-of-sample R2 as R2 =

1 −
∑
t(rm,t+1 − r̂m,t+1|t)

2/
∑
t(rm,t+1 − r̄m,t)2, where r̂m,t+1|t is the out-of-sample forecast of the t + 1 return

based only on data through t, and r̄m,t is the historical average market return through t. A negative R2 implies

that the predictor performs worse than setting forecasts equal to the historical mean. A star next to out-of-sample

R2 is based on significance of MSE-F statistic by McCracken (2004), which tests for equal MSE of the unconditional

forecast and the conditional forecast. Significance levels at 90%, 95%, and 99% are denoted by one, two, and three

stars, respectively.

One-Month Three-Month Six-Month Twelve-Month

MDR (average stock) 0.67 1.34 2.80 6.86*

MDR (market) 0.76 1.53 2.26 4.03

Book to Market -0.23 1.12 1.53 3.05

Default return spread -0.15 -0.93 -1.44 -0.90

Default yield spread -0.60 -2.88 -5.36 -9.87

Dividend payout ratio -0.67 -1.96 -1.42 -2.85

Dividend price ratio -0.98 -4.59 -10.10 -17.20

Earnings price ratio -0.59 -1.12 -0.80 -1.60

Inflation -0.14 -0.48 -2.25 -4.22

Long-term bond return -0.20 -0.68 -4.79 -7.84

Long-term yield -0.77 -2.97 -4.89 -9.78

Net equity expansion -0.32 -0.46 0.75 3.76

Stock volatility -0.68 -1.24 -7.04 -14.08

Term spread -0.63 -2.24 2.45 -10.10

Treasury-bill rate -0.20 -0.83 -0.74 -1.47

RN-skewness -0.84 -3.31 -4.17 -7.60

RN-kurtosis -0.37 -1.57 -3.56 -7.13

IFI-BT 0.31 0.59 1.77 4.10*

Tail-KJ 0.42 0.84 2.11 4.86*
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Table 1.5 MDR-sorted Portfolio Returns
This table reports monthly stock return (value-weighted) statistics for portfolios formed on the basis of market-level

disaster risk (MDR) beta βi, (Et[Ri,t+1] = µi + βiMDRt.). Each month, stocks are sorted into quintile portfolios

based on market-level disaster risk loadings that are estimated from monthly data over the most current 36 months.

Panel A reports the value- and equal-weighted average out-of-sample one-month holding period portfolio returns. Panel

B report the out-of-sample twelve-month holding period portfolio returns. To consider alternative priced factors, I

report alphas from regressions of portfolio returns on Fama-French three factor model, Fama-French-Carhart four

factor momentum model, and Fama-French-Carhart plus the Pastor and Stambaugh (2003) traded liquidity five

factor model. Newey-West t-statistics are given in parentheses, where lag length equal to the number of month in

each horizon.

Low 2 3 4 High High-Low t-stat.

Panel A: One-month returns

Value-weighted

Average return 0.43 0.65 0.81 0.94 1.08 0.65 2.57

CAPM alpha -0.07 0.25 0.46 0.58 0.66 0.73 2.49

FF alpha -0.10 0.28 0.35 0.56 0.65 0.75 2.57

FF+Carhart alpha -0.09 0.23 0.39 0.47 0.61 0.70 2.61

FF+Carhart+Liq alpha -0.12 0.21 0.33 0.53 0.64 0.76 2.56

Equal-weighted

Average return 0.52 0.74 0.87 1.05 1.20 0.68 2.65

CAPM alpha 0.13 0.37 0.55 0.67 0.80 0.67 2.55

FF alpha 0.16 0.35 0.52 0.69 0.85 0.69 2.54

FF+Carhart alpha 0.12 0.33 0.48 0.72 0.79 0.67 2.42

FF+Carhart+Liq alpha -0.04 0.29 0.45 0.74 0.81 0.85 2.46

Panel B: Twelve-month returns

Value-weighted

Average return 0.46 0.65 0.83 0.94 1.11 0.65 2.58

CAPM alpha -0.08 0.28 0.43 0.59 0.64 0.72 2.49

FF alpha -0.11 0.26 0.37 0.54 0.68 0.79 2.61

FF+Carhart alpha -0.02 0.29 0.36 0.51 0.65 0.67 2.65

FF+Carhart+Liq alpha -0.17 0.23 0.35 0.57 0.73 0.90 2.61

Equal-weighted

Average return 0.52 0.74 0.85 1.03 1.26 0.74 2.63

CAPM alpha 0.13 0.36 0.52 0.63 0.78 0.65 2.60

FF alpha 0.10 0.38 0.57 0.66 0.83 0.73 2.61

FF+Carhart alpha 0.09 0.35 0.51 0.70 0.76 0.67 2.46

FF+Carhart+Liq alpha -0.07 0.27 0.47 0.73 0.80 0.87 2.45
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Table 1.6 Decile Returns for Portfolios Sorted by Firm-level Disaster Risk
Portfolio 1 (Low FDR) contains stocks with the lowest monthly firm-level disaster risk measure in the previous month

and Portfolio 10 (High FDR) includes stocks with the highest monthly firm-level disaster risk measure in the previous

month. I value-weight stocks in each decile portfolio and rebalance monthly. For each decile of firm-level disaster risk,

the columns report the average raw returns, the CAPM, three-factor Fama-French (FF) alphas, extended four-factor

(FF+Carhart) alphas, and five-factor (FF+Carhart+Liquidity) alphas (Pastor and Stambaugh 2003). The row 10-1

Diff. reports the difference in average raw and risk-adjusted returns between the High FDR and Low FDR deciles.

Newey-West t-statistics are given in parentheses with twelve lags.

Return CAPM Alpha FF Alpha FF+Carhart Alpha FF+Carhart+Liq Alpha

Low FDR 0.31 0.08 0.08 0.11 0.10

2 0.56 0.22 0.21 0.25 0.26

3 0.68 0.37 0.27 0.29 0.33

4 0.72 0.40 0.33 0.33 0.39

5 0.80 0.44 0.40 0.36 0.47

6 0.82 0.49 0.46 0.48 0.51

7 0.86 0.56 0.53 0.53 0.57

8 0.89 0.60 0.62 0.64 0.65

9 0.95 0.67 0.69 0.71 0.76

High FDR 1.03 0.77 0.80 0.86 0.90

10-1 Diff. 0.72 0.68 0.72 0.75 0.80

t-stat (3.46) (3.32) (3.19) (3.24) (3.35)
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Table 1.7 Decile Returns for Holding FDR Portfolios for Long Term
Portfolio 1 (Low FDR) contains stocks with the lowest monthly firm-level disaster risk measure in the previous month

and Portfolio 10 (High FDR) includes stocks with the highest monthly firm-level disaster risk measure in the previous

month. I value-weight stocks in each decile portfolio and rebalance monthly. For each decile of firm-level disaster

risk, the columns report the average raw returns for holding these portfolios for one to twelve months. The row 10-1

Diff. reports the difference in average raw and risk-adjusted returns between the High FDR and Low FDR deciles.

Newey-West t-statistics are given in parentheses, where lag length equal to the number of month in each horizon.

1-Month 2-Month 3-Month 4-Month 5-Month 6-Month 9-Month 12-Month

Low FDR 0.31 0.52 0.57 0.75 0.78 0.79 0.83 0.81

2 0.56 0.60 0.60 0.70 0.72 0.72 0.77 0.74

3 0.68 0.60 0.62 0.64 0.64 0.67 0.69 0.71

4 0.72 0.60 0.60 0.60 0.59 0.60 0.58 0.60

5 0.80 0.66 0.64 0.65 0.63 0.62 0.66 0.64

6 0.82 0.73 0.72 0.74 0.74 0.74 0.72 0.73

7 0.86 0.83 0.81 0.79 0.79 0.79 0.80 0.79

8 0.89 0.88 0.91 0.89 0.89 0.89 0.87 0.87

9 0.95 0.95 0.94 0.91 0.91 0.92 0.90 0.87

High FDR 1.03 0.97 0.95 0.93 0.95 0.94 0.95 0.95

10-1 Diff 0.72 0.44 0.38 0.18 0.17 0.15 0.12 0.14

t-stat (3.46) (2.73) (2.51) (1.54) (1.33) (1.22) (1.02) (1.32)
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Table 1.8 Descriptive Statistics for Decile Portfolios Sorted by FDR
This table shows that decile portfolios are formed by sorting the stocks based on firm-level disaster risk (FDR). Then, within each FDR decile, stocks are sorted into decile

portfolios ranked based on the monthly FDR measure, so that FDR1 (FDR10) contains stocks with the lowest (highest) FDR. This table reports the average across months

in the sample of the median values within each month of various characteristics for the stocksâĂŤone-month-ahead return (Return), innovation of FDR measure (∆FDR),

market capitalization (SIZE), book-to-market (BM), the cumulative return over the 6 months prior to portfolio formation (MOM), the return in the portfolio formation

month (REV), implied volatility spread (IVOL-S), realized volatility (RVOL), realized minus implied volatility (RIVOL), innovation of implied put (call) volatility ∆PIVOL

(∆CIVOL), and the slope of volatility smirk (VOLSKEW). VOLSKEW is defined as the difference between out-of-the-money put implied volatility and the average of

at-the-money call and put implied volatilities. Newey-West t-statistics are given in parentheses with twelve lags.

FDR ∆FDR Return IVOL-S RVOL RIVOL VOLSKEW ∆PIVOL ∆CIVOL BETA SIZE BM MOM REV

Low FDR -3.53 -7.55 0.31 2.15 43.32 -1.60 6.21 1.31 1.06 1.24 7.71 0.67 10.47 1.85

2 -1.12 -5.49 0.56 3.57 43.56 -1.53 5.80 -0.45 0.98 1.07 7.62 0.65 10.51 1.80

3 -0.04 -4.56 0.68 4.04 43.77 -1.71 5.38 -0.62 0.33 1.13 7.57 0.67 10.60 1.89

4 0.92 -3.69 0.72 4.43 43.69 -1.53 5.16 -0.59 0.04 1.16 7.61 0.68 10.37 1.70

5 2.00 -2.68 0.80 4.71 43.30 -1.72 5.00 -0.37 -0.01 1.18 7.70 0.69 10.50 1.80

6 3.34 -1.27 0.82 5.02 42.58 -1.77 4.89 -0.76 -0.76 1.11 7.88 0.68 10.50 1.74

7 5.02 0.35 0.86 5.42 42.70 -1.59 4.69 -0.50 -0.85 1.35 8.07 0.67 10.80 1.80

8 7.25 2.61 0.89 5.98 42.14 -1.74 4.50 -0.36 -1.23 1.20 7.93 0.67 10.68 1.76

9 10.54 5.93 0.95 6.70 41.86 -1.76 4.22 0.13 -1.26 1.22 7.66 0.69 9.92 1.59

High FDR 13.62 7.10 1.03 8.46 41.96 -1.80 3.56 2.22 -1.10 1.20 7.49 0.69 10.27 1.62

10-1 Diff 17.15 14.65 0.72 6.31 -1.36 -0.21 -2.65 0.91 -2.15 -0.04 -0.22 0.02 -0.20 -0.23

t-stat (3.19) (3.00) (3.46) (3.61) (-1.85) (-1.99) (-3.46) (0.93) (-2.44) (-0.51) (-1.20) (1.64) (-0.85) (-2.35)
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Table 1.9 Average Firm-level Correlations
This table reports the average firm-level cross-correlations of stocks’ firm-level disaster risk (FDR), innovation of FDR (∆FDR), market capitalization (SIZE), book-to-

market (BM), the cumulative return over the 6 months prior to portfolio formation (MOM), the return in the portfolio formation month (REV), implied volatility spread

(IVOL-S), realized volatility (RVOL), realized minus implied volatility (RIVOL), slope of volatility smirk (VOLSKEW), innovation of implied put (call) volatility ∆PIVOL

(∆CIVOL), ratio of put call open interest (P/C-OI), ratio of put call volumn (P/C-VL), tail risk (Tail-KJ) by Kelly and Jiang (2014), and investor fear index (IFI-BT) by

Bollerslev and Todorov (2011).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

FDR (1) 1.000

∆FDR (2) 0.570 1.000

IVOL-S (3) 0.424 0.200 1.000

RVOL (4) -0.064 -0.016 0.154 1.000

RIVOL (5) -0.005 -0.003 -0.001 0.609 1.000

VOLSKEW (6) -0.126 -0.139 -0.282 0.144 0.006 1.000

∆PIVOL (7) 0.004 0.009 0.188 0.365 -0.030 0.125 1.000

∆CIVOL (8) -0.046 -0.077 0.030 0.370 -0.024 0.041 0.967 1.000

SIZE (9) -0.059 -0.074 -0.008 0.199 0.026 -0.113 -0.299 -0.314 1.000

BM (10) 0.062 0.017 0.033 0.005 0.018 0.023 -0.010 -0.011 -0.058 1.000

MOM (11) -0.069 -0.012 -0.097 -0.075 -0.053 -0.090 0.003 0.003 0.015 -0.092 1.000

REV (12) -0.028 -0.005 -0.034 -0.059 -0.056 -0.028 -0.005 -0.007 0.001 -0.040 0.305 1.000

P/C-OI (13) 0.019 0.005 0.014 -0.025 -0.003 0.004 -0.010 -0.012 0.025 0.005 0.018 0.018 1.000

P/C-VL (14) 0.039 0.016 0.034 -0.022 -0.008 0.021 -0.009 -0.015 0.038 0.007 -0.010 -0.003 0.055 1.000

Tail-KJ (15) 0.075 0.000 0.021 -0.221 -0.041 0.027 0.000 0.000 0.009 -0.011 -0.057 0.005 0.011 0.011 1.000

IFI-BT (16) -0.223 0.000 -0.274 -0.361 -0.198 -0.222 0.000 0.000 0.017 -0.042 0.192 0.147 0.009 -0.013 0.102 1.000
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Table 1.9 Average Firm-level Correlations (Continue)
This table reports the average firm-level cross-correlations of stocks’ firm-level disaster risk (FDR), and the other predictors in Goyal and Welch (2008).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

FDR (1) 1.000

Treasury bills (2) -0.505 1.000

Long term yield (3) -0.439 0.771 1.000

Net equity expansion (4) -0.141 0.171 0.412 1.000

Inflation (5) -0.090 0.120 0.114 0.031 1.000

Long term rate of return (6) 0.024 0.012 -0.090 0.028 -0.241 1.000

Dividend price ratio (7) 0.345 -0.577 -0.563 -0.493 -0.165 0.025 1.000

Dividend yield (8) 0.344 -0.584 -0.571 -0.467 -0.163 -0.024 0.978 1.000

Earning price ratio (9) -0.023 0.027 -0.247 0.093 0.061 0.058 -0.101 -0.110 1.000

Dividend payout ratio (10) 0.166 -0.268 -0.026 -0.290 -0.123 -0.039 0.513 0.511 -0.906 1.000

Default yield spread (11) 0.328 -0.497 -0.416 -0.545 -0.287 0.006 0.689 0.666 -0.512 0.735 1.000

Term spread (12) 0.383 -0.843 -0.308 0.092 -0.082 -0.094 0.387 0.389 -0.248 0.379 0.391 1.000

Default return spread (13) -0.173 0.254 0.426 0.116 0.259 -0.940 -0.217 -0.174 -0.137 0.026 -0.148 -0.020 1.000
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Table 1.10 Cross-sectional Equity Returns by FDR, and other Predictors
This table shows the Fama-MacBeth (1973) regression (Rei,t+1 = β0,t+β1,t FDRi,t+β′2,t CONTROLSi,t+ εi,t+1) to examine

whether firm-level disaster risk (FDR) can predict the next month’s realized excess returns (Rei,t+1), while controlling for a

collection of stock-specific control variables observable at time t for stock i. Control variables include innovation of firm-level

disaster risk (∆FDR), market beta (BETA), market capitalization (SIZE), book-to-market (BM), the cumulative return over

the 6 months prior to portfolio formation (MOM), the return in the portfolio formation month (REV), implied volatility spread

(IVOL-S), realized volatility (RVOL), realized minus implied volatility (RIVOL), innovation of implied put (call) volatility

∆PIVOL (∆CIVOL), the slope of volatility smirk (VOLSKEW), Tail risk (Tail-KJ) by Kelly and Jiang (2014), and Investor

Fear Index (IFI-BT) by Bollerslev and Todorov (2011). Newey-West t-statistics are given in parentheses with twelve lags.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

FDR 0.158 0.186 0.212 0.190

(3.26) (2.97) (3.10) (2.74)

∆FDR 0.027 0.032

(2.88) (2.63)

IVOL-S 0.043 0.039 0.031

(3.12) (3.00) (2.64)

VOLSKEW -0.096 -0.075 -0.072

(-3.50) (-2.69) (-2.44)

∆CIVOL -0.133 -0.16 -0.152

(-2.42) (-2.26) (-2.05)

∆PIVOL 0.084 0.066 0.073

(0.92) (0.85) (0.62)

Tail-KJ 0.074 0.069 0.08

(1.98) (1.95) (1.75)

IFI-BT -0.051 -0.0634 -0.056

(-2.30) (-2.55) (-2.17)

BETA -0.0076 -0.0064 -0.007 -0.0082 -0.0058 -0.0073 -0.0045 -0.0052 -0.008 -0.0038

(-0.48) (-0.45) (-0.54) (-0.23) (-0.60) (-0.37) (-0.33) (-0.40) (-0.74) (-0.32)

SIZE -0.043 -0.047 -0.039 -0.05 -0.046 -0.053 -0.047 -0.034 -0.038 -0.035

(-1.27) (-1.20) (-1.10) (-1.24) (-1.31) (-1.36) (-1.25) (-1.07) (-1.12) (-1.05)

BM 0.064 0.08 0.077 0.072 0.076 0.065 0.083 0.057 0.064 0.066

(1.85) (2.01) (1.91) (1.73) (1.96) (1.88) (1.99) (1.71) (1.65) (1.70)

MOM -0.0021 -0.0018 -0.0024 -0.0016 -0.0023 -0.002 -0.0024 -0.0026 -0.0023 -0.0024

(-0.80) (-0.64) (-0.75) (-0.54) (-0.48) (-0.50) (-0.68) (-0.73) (-0.36) (-0.33)

REV -0.026 -0.023 -0.024 -0.02 -0.028 -0.025 -0.024 -0.021 -0.018 -0.019

(-2.30) (-2.42) (-2.68) (-2.55) (-2.64) (-2.37) (-2.26) (-2.31) (-2.43) (-2.35)

RVOL -0.0075 -0.0114 -0.0096 -0.0103 -0.0085 -0.00132 -0.0099 -0.0086 -0.007

(-1.90) (-1.72) (-1.96) (-1.66) (-1.74) (-1.87) (-2.05) (-1.97) (-1.71)

RIVOL -0.338

(-1.96)

P/C-OI 0.072 0.074 0.077 0.068 0.073 0.081 0.069 0.075 0.072 0.061

(1.36) (1.48) (1.13) (1.20) (1.25) (1.42) (1.29) (1.25) (1.10) (0.97)

P/C-VL 0.0065 0.0058 0.0074 0.007 0.0068 0.0062 0.0085 0.0072 0.0061 0.0063

(0.34) (0.31) (0.35) (0.39) (0.36) (0.45) (0.41) (0.38) (0.27) (0.29)

R2 8.86% 7.72% 7.47% 7.69% 8.25% 7.21% 7.37% 9.43% 8.98% 9.60%

(9.29) (10.04) (9.85) (8.63) (9.12) (9.43) (10.21) (9.42) (9.75) (9.49)
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Chapter 2

Higher Moments, Parameter

Uncertainty, and Equity Return

Predictability

2.1 Introduction

Many empirical research indicate the evidence of predictability in asset returns.

However, three major asset pricing puzzles still capture the attention of macroeco-

nomic finance: the equity premium, risk free rate and equity volatility puzzles. The

equity premium puzzle refers to the failure of rational expectations equilibrium (REE)

model to explain a historical difference of ∼ 6% between the average return from a

representative stock market portfolio and the average return from a representative

portfolio of relatively safe bond of value (Mehra and Prescott 1985). The risk free

rate puzzle refers to the ∼ 4% discrepancy between the risk free rate that predicted

by the REE Ramsey formula and actually observed (Weil 1989). The equity volatility

puzzle refers to the empirical fact that actual returns on a representative stock market
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index have a variance some two orders of magnitude larger than the variance of

consumption and dividend (LeRoy and Porter 1981, Shiller 1981, Campbell 1996). A

common explanation of these three asset pricing puzzles is that markets are behaving

as if the investors fear some unknown hidden randomness that isn’t obviously obtained

from the data. This unknown hidden randomness is linked to rare risk.

To incorporate the risk into the model, Bansal and Yaron (2004) propose a long

run risk model which adds a small persistent expected growth rate component and a

conditional volatility component. They find that changes in these fundamentals drive

the risks and volatility in asset prices, and any adverse movements in the long-run

growth components lower asset prices and concomitantly the wealth and consumption,

making investors a high equity risk compensation for holding risky equity. Barro

(2006), Gabaix (2012) and Wachter (2013) consider the discrete or continuous time

rare disasters by introducing a downward jump to create negative skewness on normal

distribution, and find low probability (∼ 2% per year) disasters explain the equity

premium puzzle along with other asset market puzzles. Weitzman (2007), Bakshi and

Skoulakis (2010), and Gvozdeva and Kumar (2012) study the subjective expectations

on structural distribution with parameter uncertainty. Boguth and Kuehn (2014) use

consumption volatility to predict future returns, generating a spread across quintile

portfolios in excess of 7% annually.

During a macroeconomic disaster, aggregate consumption growth falls by a time

varying amount and generates a rare risk. The investor requires a high compensation

for bearing time varying risk due to the shocks and the likelihood of rare disasters. We

can see that there are three important features of dividend and consumption growths:

stochastic, skewness and fat-tail. The exact distribution of consumption and dividend

growths is still subject to considerable debate. Rietz (1988), Longstaff and Piazzesi

(2004), Barro (2006), Weitzman (2007), and Colacito, Ghysels and Meng (2012) agree
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the effects of macroeconomic disasters on consumption growth, GDP growth and

asset returns. However, they use different distributions about these fundamental

variables. Rietz simply chooses an arbitrary distribution and illustrates its impact.

Longstaff and Piazzesi argue that a distribution based on U.S. experience cannot

match the equity premium with modest degrees of risk aversion. Barro studies broader

collections of countries, which in principle can tell us about alternative histories the

United States might have experienced. In the panel of international macroeconomic

data, the frequency and magnitude of disasters are significantly larger than those we

have seen in U.S. history. Weitzman proposes a thickened posterior predictive left tail

to represent the structural uncertainty about bad events. Colacito, Ghysels and Meng

use an unconditional skew normal distribution of GDP growth to predict equity excess

returns. From those studies, the distribution of consumption and dividend growths is

still under debate. This paper uses a skew student’s t-distribution, which can capture

the tail risk and asymmetric growth prospects in asset pricing models.

Earlier studies by Barsky and DeLong (1993), Timmerman (1993), Bossaerts

(1995), Cecchetti, Lam and Mark (2000), Veronesi (2000), Brennan and Xia (2001),

Abel (2002), Brav and Heaton (2002), Lewellen and Shanken (2002), Weitzman

(2007), Bakshi and Skoulakis (2010) and Gvozdeva and Kumar (2012) indicate that

the need for Bayesian learning about structural parameters, which reduces the degree

of one or another equity anomaly. However, Geweke (2001) applies a Bayesian

framework to the most standard model prototypically used to analyze behavior

towards risk and then demonstrates the extraordinary fragility of the existence of

finite expected utility itself. Therefore, potential problems of using student’s t-

distribution are the representative investor’s expected utility is negative infinity and

then the moment generating function (MGF) is undefined (Weitzman 2007). To

solve this problem, we apply higher (up to 4th) moments method to approx the exact

52



distribution.

Asset pricing theories commonly assume a particularly strong form of knowledge

by the investors: they know the true model and true parameter values. However,

parameter uncertainty is intuitively important, especially in asset pricing models with

numerous parameters and increasingly complex dynamics. Statistical learning and

its implications for asset pricing have attracted an enormous amount of attention.

A recent survey has been provided by Pastor and Veronesi (2009). One of the key

implications is that Bayesian learning generates persistent and long-term changes

to the agents’s beliefs, which have important influence on stock valuation, risk

measures, and time series predictability. Among others, Timmerman (1993, 1996) and

Lewellen and Shanken (2002) show that learning may generate excess volatility and

predictability in stock returns. Johannes, Korteweg, and Polson (2014) investigate

sequential learning and return predictability. Johannes, Lochstoer, and Mou (2014)

focus on learning about consumption dynamics. Collin-Dufresne, Johannes, and

Lochstoer (2013) study parameter learning in a general equilibrium setup and its

implications for asset pricing. Fulop, Li, and Yu (2014) concurrently learn about

parameters and state variables.

In this paper, investors learn about consumption and dividend simultaneously

(Gvozdeva and Kumar 2012), not like previous literatures focus on the learning about

either consumption (e.g. Bakshi and Skoulakis 2010) or dividend (e.g. Timmermann

1993), or forces dividends and consumption to be equal or as two separate processes

(Campbell 1996, Bansal and Yaron 2004). Simultaneously modeling the parameter

uncertainty with respect to consumption and dividend growths can reinforce each

other, and generate a sizeable risk premium. Similar evidence is shown by Bansal,

Dittmar, and Lundblad (2005) that aggregate consumption risks embodied in cash

flows (e.g dividends) can account for the puzzling differences in risk premia across
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book-to-market, momentum, and size-sorted portfolios.

We further embed the subjective beliefs into a formal equilibrium model assuming

Epstein-Zin preferences. The estimated subjective beliefs reflect a high amount of

uncertainty over consumption and dividend dynamics and, over time, the beliefs

ÂĞfluctuate and drift substantially. Shocks to the beliefs over the long-run properties

of consumption dynamics are highly volatile and strongly counter-cyclical, due to

parameter uncertainty. For example, at each time t, we price a levered claim to

future consumption and dividend given beliefs over parameters and states, computing

quantities such as ex-ante expected returns. Then, at time t + 1, the representative

investor updates beliefs using new macroeconomic realizations at time t + 1, and

recomputes expected returns and risk free rate. From this time series of prices, we

compute realized asset returns, risk free rate, volatilities, skewness, kurtosis, etc. In

the learning channel, the timing of belief revisions is important. If the investors

subjective beliefs change, then asset prices should change at the same time. We also

find that these realistic and difficult learning problems generate subjective beliefs

about consumption and dividend dynamics that differ substantially and in important

ways from beliefs generated using the standard implementations of the same models,

which ÂĚfix parameters at the most likely full-sample values and assumes the model

is known.

The main findings of this paper can be summarized as follows: (a) Learning the

skewness and fat-tail determines an increase in the average equity risk premium,

which is around 50% higher than the skew-normal and student’s t-distribution, and

even 90% higher than the normal distribution. (b) the skewness and kurtosis have

predictive power for the conditional equity premium. (c) By comparing 3 cases: (1)

learning with parameter uncertainty, (2) learning without parameter uncertainty, and

(3) no learning, we determine the effects of learning and parameter uncertainty on
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determining the expected return.

The rest of Chapter 2 is structured as follows. Section 2.2 presents the annual

aggregate data in long term and its’ descriptive statistics. Section 2.3 describes the

consumption and dividend dynamics and the general equilibrium model (e.g. equity

premium and risk free rate). Section 2.4 provides the estimation by Bayesian learning.

Section 2.5 concludes.

2.2 Data

To obtain the longest possible data series on annually aggregate consumption,

dividend, stock index prices and risk free rates, we take annually data on consumption,

risk free interest rates, Standard and Poor’s Composite Stock Price Index values, and

dividend from Robert Shiller’s website, starting from 1890 to 2010. We update the

data using the personal consumption series from the national economic accounts of

the Bureau of Economic Analysis (BEA), population estimates from the U.S. Census

Bureau, and interest rate series from the Federal Reserve Board. We deflate all

nominal quantities using the Consumer Price Index (CPI). Our data on consumption

and dividend growth rates covers 1890-2010 while our market returns data covers

1891-2010, which will therefore be the period we simulate in the model.

Table 2.1 shows the summary statistics for these data. For the entire period 1891-

2010, the average annual equity premium is 5.53%, the average risk-free rate is 1.91%,

the volatility of the market return is 18.67%, the risk-free rate volatility is 1.33%, and

the Sharpe ratio is 0.30. Consumption growths, dividend growths and equity returns

exhibit negative skewness (≈ -0.35, -0.65, and -0.065 respectively), which indicates

investor’s fear of occasional disasters.
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2.3 Preferences

A representative investor in the economy exhibits recursive preferences as in

Epstein and Zin (1989) and Weil (1989). The key feature of these preferences

is that they allow agents to be risk averse in future utility in addition to future

consumption. The single period utility separates risk aversion and intertemporal

elasticity of substitution (IES) in the following form:

Ut = [(1− β)C
1−γ
θ

t + β(Et[U
1−γ
t+1 ])

1
θ ]

θ
1−γ (2.1)

where the parameter 0 < β < 1 is the time discount factor, γ ≥ 0 is the risk aversion

coefficient, ψ ≥ 0 is the IES, and θ is defined by 1−γ
1− 1

ψ

. The sign of θ is determined by

the magnitudes of the risk aversion and IES.

We assume the assets are traded in a frictionless market. Conditional on the

information set at date t, Φt, the representative investor faces the following first-

order condition, or the Euler’s equation:

E[βθG
− θ
ψ

c,t+1R
(θ−1)
a,t+1Ri,t+1|Φt] = 1 (2.2)

where Gc,t+1 = Ct+1/Ct is the aggregate gross growth rate of per-capita consumption,

Ra,t+1 is the gross return on an asset that delivers aggregate consumption as its

dividends each period, and Ri,t+1 is the gross returns on any asset i. Φt is the

representative consumers’ information set, which includes the observed history of

aggregate consumption and dividend growth rates up to t: Gt
c and Gt

d.

As in Campbell (1996), the return to the aggregate consumption claim, Ra,t+1, is

not observed in the data while the return on the dividend claim corresponds to the

observed return on the market portfolio Rm,t+1. The levels of market dividends and
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consumption are not equal, aggregate consumption is much larger than aggregate

dividends. The difference is financed by labor income. In the model, aggregate

consumption and aggregate dividends are treated as two separate processes and

the difference between them implicitly defines the investor’s labor income process.

In order to price any individual asset, we alternatively replace Ri,t+1 in the above

equation with either the aggregate consumption portfolio returns Ra,t+1, or with the

market portfolio returns Rm,t+1 that pay the aggregate market dividend, or with the

risk free asset returns Rf,t+1 that pay one unit of consumption good as dividends every

period. We characterize the average market risk premium E(Rm,t−Rf,t), the average

risk free rate E(Rf,t − 1), the market volatility σm, the volatility of the risk-free rate

σf , and the Sharpe ratio of the equity premium S = E(Rm,t−Rf,t)/σ(Rm,t−Rf,t). We

will henceforth use lowercase letters to denote the logarithm of associated variables.

We derive the asset prices using the logarithm form

Et[exp(θ ln β − θ

ψ
gc,t+1 + (θ − 1) ra,t+1 + ri,t+1)|Φt] = 1 (2.3)

where gc,t+1 = log (Gc,t+1), ra,t+1 = log (Ra,t+1), and ri,t+1 = log (Ri,t+1). We first

start by solving the special case where ri,t+1 = ra,t+1 and then solve for the market

return rm,t+1 and the risk-free rate rf .

Et[exp(θ ln β − θ

ψ
gc,t+1 + θ ra,t+1)|Φt] = 1 (2.4)

To derive these solutions for the model, we use the standard approximations utilized

in Campbell and Shiller (1989),

ra,t+1 = kc,0 + kc,1zc,t+1 − zc,t + gc,t+1 (2.5)
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where zc,t = log (Pt/Ct) is the log price-consumption ratio, and kc,0 and kc,1 are

approximating constants that both depend only on the average level of zc.

Et[exp(θ ln β + θ kc,0 + θ(kc,1zc,t+1 − zc,t) + θ(1− 1

ψ
)gc,t+1)|Φt] = 1 (2.6)

As in Equation (2.5), we can express rm,t+1 in terms of the price-dividend ratio,

zm,t = log (Pm,t/Dt) and dividend growth rate, gd,t+1 = log (Dt+1/Dt); i.e.,

rm,t+1 = km,0 + km,1zm,t+1 − zm,t + gd,t+1 (2.7)

We apply the the projection method to relate the logarithm of price to

consumption ratio zc,t and the logarithm of price to dividend ratio zm,t to the growth

rate gc,d,t in the next subsection. Then, given the distribution of gc,d,t, we can solve

gc,d,t+1, ra,t+1 and rm,t+1.

Et[exp(θ ln β + (θ − 1)(kc,0 + kc,1zc,t+1 − zc,t) + km,0 + km,1zm,t+1 − zm,t + (θ − 1− θ
ψ

) gc,t+1 + gd,t+1)|Φt] = 1

(2.8)

In a similar fashion, we solve for the risk-free rate:

rf,t+1 = ln [(Et[exp(θ ln β+(θ−1− θ
ψ

)gc,t+1+(θ−1)(kc,0+kc,1zc,t+1−zc,t))|Φt])
−1] (2.9)

Projection Method

As Cochrane (2008) notes, if both returns and dividend (or consumption)

growth are unforecastable, then the price to dividend (or consumption) ratio is

constant. However, the price/dividend and price/consumption ratio from 1891 to

2010, demonstrates that this is not the case. Other studies (e.g. Bansal and Yaron

2004) conjecture a solution for the price/dividend and price/consumption ratio as a
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linear function of a state variable, which is the expected growth rate of consumption

xt. However, Beeler and Campbell (2012) argue that U.S. data do not show as much

univariate persistence in consumption or dividend growth as implied by the model.

Therefore, we apply the projection method (Judd 1992) to conjecture the price-

to-consumption (or dividend) ratio. Projection method is widespread used in the

sciences to approximate the solution function by a member of a class of parameterized

functions. This makes projection methods equivalent to parameterized expectations

for the asset pricing model where the integral and the solution function are the same

object.

zc,t =
N∑
k=1

N∑
l=1

ϕ1,klTk−1(2
gc,t − gc,max
gc,max − gc,min

+ 1)Tl−1(2
gd,t − gd,max
gd,max − gd,min

+ 1) (2.10)

zm,t =
N∑
k=1

N∑
l=1

ϕ2,klTk−1(2
gc,t − gc,max
gc,max − gc,min

+ 1)Tl−1(2
gd,t − gd,max
gd,max − gd,min

+ 1) (2.11)

where ϕj,kl are vectors of coefficients, and Tk−1 is the (k−1)th Chebyshev polynomial

(e.g. T0(x) = 1, T1(x) = x, and Tk(x) = 2xTk−1(x) − Tk−2(x) for k ≥ 2).

We use polynomials of order N = 4 in our computations. The order of the

polynomial approximation and the convergence criteria are important. We then use

this polynomial approximation in Equations (2.5,2.7,2.8,2.9) to solve the ra,t, rm,t and

rf,t

59



2.4 Dynamics of Consumption and Dividend

2.4.1 Skew Student’s t-distribution

For the growing interest in the literature on parametric families of multivariate

distributions which represent some degree of departures from the multivariate normal

family, we introduce skewness into a student’s t-distribution. Hansen (1994) was the

first to consider a skew student’s t-distribution to model skewness in conditional

distributions of financial returns. Since then, several skew extensions of the student’s

t-distribution have been proposed for financial and other applications (Fernandez and

Steel 1998, Theodossiou 1998, Branco and Dey 2001, Jones and Faddy 2003, Sahu et

al. 2003, Azzalini and Capitanio 2003, Bauwens and Laurent 2005, and Aas and Haff

2006). Following the extension model by Sahu et al. (2003), and letting Ct and Dt to

be the aggregate consumption and dividend at time t respectively, the logarithms of

consumption growth (gc,t = log(Ct/Ct−1)) and dividend growth (gd,t = log(Dt/Dt−1))

follow a bivariate process

 gc,t

gd,t

 =

µc,t
µd,t

 +

 εc,t

εd,t

 (2.12)

where the first part [µc,t, µd,t]
′ is constant, the second part [εc,t, εd,t]

′ are shocks, which

have i.i.d bivariate skew student’s t-distribution ST2(0,Σt,Λt, vt) (see more details in

Sahu et al. (2003)), with scale covariance matrix Σt = [σ2
c,t, σcd,t ; σcd,t, σ

2
d,t], skewness

matrix Λt = Diag{λ1,t, λ2,t}, and degree of freedom vector vt = [vc,t, vd,t]
′.

For simplicity, we assume σcd,t = 0. The density of the multivariate skew-t
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distribution is given by

f(gt|µt,Σt,Λt, vt) = 22t2,vt(gt|µt,Ωt, vt)T2,vt+2((
vt +Q(gt)

vt + 2
)−1/2 Λt

Σ
1/2
t

(gt − µt)

|Ωt|1/2
)

(2.13)

where Ωt = Σt + Λ2
t , Q(gt) = (gt − µt)

′Ω−1
t (gt − µt) and

t2(gt|µt,Ωt, vt) =
Γ((vt + 2)/2)

|Ωt|(π vt)Γ(vt/2)
(1 +

Q(gt)

vt
)−(vt+2)/2 (2.14)

is the density function of a 2-dimensional t-distribution with degree of freedom vector

vt, and T2,vt+2(·) denotes the cumulative density function (CDF) of t2,vt+2(0, I).

Three interesting particular cases of the multivariate skew student’s t-distribution

are (i)the multivariate student’s t-distribution t(µt,Σt, vt) obtained when Λ = 0;

(ii)multivariate skew normal distribution SN(µt,Σt,Λt) obtained when vt →∞; and

(iii) the multivariate normal distribution N(µt,Ωt) obtained when Λt = 0 and vt →

∞.

2.4.2 Moments

The recent meltdown in financial markets were hit by catastrophic events whose

ex-ante probabilities were considered negligible. Only considering low distribution

moments can hardly account for rare and disaster events, since this rare effect is

multiplied by a very small probability. Considering high distribution moments, the

rare and extremely negative effect can be raised to a higher power, making its effect

substantial regardless of the small probability associated with it. Therefore, if relying

on the first two distribution moments, the performance evaluation will underestimate

the effects of rare disasters. There is a large body of work in asset pricing suggests

that investors favor right skewness (e.g., Kraus and Litzenberger 1976, Kane 1982,
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and Harvey and Siddique 2000), but are averse to tail-risk and rare disasters (e.g.,

Barro 2006), and Chen, Joslin, and Tran 2012).

In the literature of market volatility risk, Ang et al. (2006) use the option

implied volatility index (VIX) to show that innovations in aggregate market volatility

carry a negative price of risk in the cross-section. Adrian and Rosenberg (2008) use

a GARCH-inspired model to decompose market volatility into short and long run

components and show how each of the two components affects the cross-section of

asset prices. These papers use measures of stock market volatility.

There are also research of finding structural asset pricing interpretations of

skewness. For example Damodaran (1985) suggests skewed distributions of asset

returns are caused by investors reacting asymmetrically to good and bad company

news. Chen, Hong and Stein (2001) argue that differences of opinion among investors

combined with short-sale constraints generate skewed returns. Chabi-Yo, Ghysels,

and Renault (2010) show that allowing for heterogeneity in investors’ preferences

and beliefs can give rise to additional factors related to skewness and kurtosis in the

pricing of nonlinear risks, whereas Mitton and Vorkink (2007) show that allowing

for heterogeneity in investors’ preferences for skewness can also lead to right skewed

securities having higher prices.

Preference for the fourth moment, kurtosis, has both a utility-based and an

intuitive rationale. Kurtosis can be described as the degree to which, for a given

variance, a distribution is weighted toward its tails (Darlington 1970). That is,

kurtosis measures the probability mass in the tails of the distribution. Thus, kurtosis

is distinguished from the variance, which measures the dispersion of observations from

the mean, in that it captures the probability of outcomes that are highly divergent

from the mean. In a multivariate distribution, random variables may also exhibit co-

kurtosis. This measure captures the sensitivity to extreme states. Moments beyond
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the fourth are difficult to interpret intuitively and are not explicitly restricted by

standard preference theory.

We derive the first four moments for the multivariate distribution ST (µt,Σt,Λt, vt):

Mḡ(t) = 2mΦm,t(Λt t) exp[tµt ∓ t′ (Σt ∓ Λ2
t )t/2] (2.15)

where Φm,t is the cumulative density function of the dimensional t-distribution with

mean 0, covariance matrix identity, and degree freedom vt. Let Λt = λt I and ct =

(vt/π)1/2 Γ((vt−1)/2)
Γ(vt/2)

, the order m moment can be written as

µgt = E[gt] = µt + ctλt, if (vt > 1) (2.16)

σ2
gt = E[(gt − E[gt])

2] = [vt/(vt − 2)]Ωt − c2
tΛ

2
t , if (vt > 2) (2.17)

s3
gt = E[(gt − E[gt])

3]

= [vt/(vt − 2)][Ωt ⊗ µt + µt ⊗ Ωt + vec(Ωt)⊗ µ′t] + µt ⊗ µ′t ⊗ µt

+[ctvt/(vt − 3)][λt ⊗ Ωt + vec(Ωt)λ
′
t + (I2 ⊗ λt)Ωt − λt ⊗ λ′t ⊗ λt]

+ct[λt ⊗ µ′t ⊗ µt + µt ⊗ λ′t ⊗ µt + µt ⊗ µ′t ⊗ λt], if (vt > 3) (2.18)

k4
gt = E[(gt − E[gt])

4], if (vt > 4) (see details in Appendix A) (2.19)

where µgt , σ2
gt , s

3
gt , and k

4
gt are the mean, volatility, skewness and kurtosis, respectively.

2.4.3 Likelihood Inference

For numerical computation of the maximum likelihood estimation (MLE), it is

advantageous to make use of the expressions of the derivatives of the log-likelihood.

Let θq = (µ,Σ,Λ, v), and g = (gc, gd) of size 2, the log-likelihood function for a
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regression model of type (Equation 2.13) and ST error terms is given

lT (θq|g) =
T∑
t=1

ln f(gt|θq)

= 2T ln 2 +
T∑
t=1

[ln t2(gt;µt,Ωt, vt)

+ ln T2,v+2((
vt +Q(gt)

v + 2
)−1/2 Λ

Σ1/2

(gt − µt)

|Ω|1/2
)] (2.20)

The likelihood function conditions on the predictor variable. We can derive the

derivatives of the log-likelihood respect to θq. Maximization of the log-likelihood

function must be accomplished numerically. To improve efficiency, the derivatives of

the log-likelihood can be supplied to an optimization algorithm.

2.4.4 Taylor Series Approximation

Base on the above approximation that zc and zm depend both on gc and gd, the

equilibrium functions in Equations (2.6 and 2.8) can be written as Et[f(gt+1)|Φt] = 1,

where f(gt+1) is a complicated nonlinear function (see Appendix B), which depends

on the posterior probability of p(gt+1|gt). Using the Taylor series approximation with

time-varying coefficients, f(gt+1) can be written as

f(gt+1) ≈ f(ḡt) + f ′(ḡt)(gt+1 − ḡt) + f ′′(ḡt)
2

(gt+1 − ḡt)2 + f ′′′(ḡt)
3!

(gt+1 − ḡt)3 + f ′′′′(ḡt)
4!

(gt+1 − ḡt)4 +O(g4
t+1)

(2.21)

where ḡt ≈ 1
t

∑t
ω=1 gω and O(g4) is the Taylor remainder. The Euler equation

Et[f(gt+1)|gt] = 1 can be expressed as

f(ḡt) + f ′(ḡt)Et[(gt+1 − ḡt)] + f ′′(ḡt)
2

Et[(gt+1 − ḡt)2] + f ′′′(ḡt)
3!

Et[(gt+1 − ḡt)3] + f ′′′′(ḡt)
4!

Et[(gt+1 − ḡt)4] = 1

(2.22)
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where Et[(gt+1 − ḡt)m], (m = 1, 2, 3, 4) are the first to fourth moments (e.g. µg, σ2
g ,

s3
g and k4

g ) in Equations (16,17,18 and 19), respectively. For simplicity, we assume

there is no cross sections between moments in the expectation.

2.5 Parameter Learning

2.5.1 Prior Distribution

Learning begins with initial beliefs on the prior distribution. We consider the

problem of an investor who takes into account the predictability of returns but

is uncertain about the parameters of the return model given by Equation (2.22),

which is based on the investor’s subjective posterior joint distribution reflecting the

information contained in the historical data and the investor’s prior beliefs about

the parameters. The Bayesian learning approach can employ useful prior information

about quantities of interest, account for estimation risk and uncertainty, and facilitate

the use of fast, intuitive, and easily implementable numerical algorithms to simulate

the complex economic quantities. Three main building blocks are in underlying

Bayesian learning approach. The first block is to form prior beliefs, which are

typically represented by a probability density function on the stochastic parameters.

The prior density can reflect information about events, historical data, and asset

pricing theories. The second block is to formulate the law of motion governing the

evolution of asset returns. The third block is to recover the predictive distribution

of future asset returns, analytically or numerically, incorporating prior information,

as well as risk and uncertainty. The predictive distribution, which integrates out the

parameter space, characterizes the entire uncertainty about future asset returns. The

Bayesian optimal rule is obtained by maximizing the expected utility with respect to
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the predictive distribution.

One of the key implications of learning is that the representative investor’s beliefs

are non-stationary. For example, the investor may gradually learn that one model

provides a better fit for the data than an other model or that a parameter value is

higher or lower than the previously thought, both of which generate nonstationarity

in beliefs. One easy way to understand this is to note that the posterior mean of

a parameter, E[θq|gt], where gt = (g1, ..., gt) denote the observed history of growth

rate at time t, is trivially a martingale. Then, revisions in beliefs represent permanent

and nonstationary shocks, which is an important implication in asset pricing theories.

Nonstationary dynamics can generate a quantitatively gap between ex-post outcomes

and ex-ante beliefs, which provides an alternative explanation for asset pricing

quantities such as the observed equity premium or excess return predictability. Thus,

learning is difficult, and it is harder to learn the parameters governing the state

dynamics when states (e.g. recessions or depressions) are unobserved.

We assume that the representative investor does not know the location vector

µ, scale covariance matrix Σ, skewness matrix Λ and degree of freedom vector v.

However, the investor can learn about these parameters by observing the realized

values of the growth rates over time. Based on a three-stage hierarchical specification,

the skew student’s t-distribution in Equation (2.13) can be derived as a Gaussian

mixture model.

g|(Z, τ) ∼ N2(µ+ ΛZ,Σ/τ) (2.23)

Z|τ ∼ TN2(0, I2/τ) (2.24)

τ ∼ Γ(v/2, v/2) (2.25)
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It’s probability density function is given by:

p(g;Z, τ) ∼
∫ ∫

p(g|Z, τ)p(Z|τ)p(τ |v)dτ dZ (2.26)

When the prior information is not available, a convenient strategy of avoiding

improper posterior distribution is to use diffuse proper priors. The prior distributions

are adopted as follows:

µ ∼ N2(µ0, κ
−1), B ∼ W2(2B0, (2H)−1), log(1/v) ∼ U2(−10, 10) (2.27)

Σ−1|B ∼ W2(2a0, (2B)−1), λ ∼ N2(0,Γ) (2.28)

where (µ0, κ, a0, B0, H,Γ) are fixed as appropriate quantities to yield the proper

posterior distributions. We choose the initial values: µ0 = (0.02, 0.01),

κ = (0.001, 0; 0, 0.01), a0 = (0.05, 0.03; 0.03, 0.08), B0 = (0.2, 0; 0, 0.5), H =

(0.07, 0.08; 0.08, 0.04) and Γ = 4. Thus, the joint prior density function of θq =

(µ,Σ,Λ, v) and B is

π(θq, B) ∝ |B|µ0+(2B0−2−1)/2|Σ|(2µ0−2−1)/2 exp {−1

2
(µ− µ0)′κ(µ− µ0)}

× exp {−tr ((Σ−1 +H)B)− 1

2
λ′Γ−1λ}Jv (2.29)

where Jv = v−1 (0 < v <∞) is the Jacobian of transformation log(1/v) to v.

2.5.2 Posterior Distribution

We apply the learning process of a general equilibrium model by embedding the

subjective beliefs. The investor’s expected utility is a function of the economic state

as summarized by the posterior distribution. The investor updates his prior beliefs to
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form the posterior distribution upon seeing the data. The posterior of the parameters

conditional on the return predictability, and the posterior probability of that returns

are predictable. The joint posterior density can be obtained by

p(θq, B, τ, Z, gt+1|gt) ∝ π(θq, B)p(gt+1|gt, τ, Z, θq)p(τ |gt, Z, θq)p(Z|gt, θq)p(θq|gt)(2.30)

This joint distribution is the posterior in our model. The joint learning problem

is a difficult and high-dimensional problem, as posterior beliefs depend in a

complicated and non-analytic manner on past data and vary substantially over time.

Characterizing this type of learning is difficult for a number of reasons, most notably

the presence of confounding effects. Confounding occurs when uncertainty about

one quantity makes learning about other quantities more difficult. We can use the

Gibbs sampler to sample from the joint distribution if we knew the full conditional

distributions for each parameter, which is conditional on the known information and

all the other parameters. The full conditional posterior densities are described as

follows:

P (gt+1|gt, τt, Zt, θq,t) ∼ N2(µt, τ
−1
t Σt)

p(τt|gt, Zt, θq,t) ∼ Γ(
2× 2 + vt + 1

2
,
(Zt − Πt)

′∆t(Zt − Πt) +Qt + vt
2

)

p(Zt|gt, θq,t) ∼ Tt2(Πt,
vt +Qt

vt + 1
∆t, vt + 1)

p(µt| · ··) ∼ N2(µ∗, κ∗)

p(B| · ··) ∼ W2(2Z∗, (2H∗)−1)

p(Σ−1
t | · ··) ∼ W2(2a0 + t, B∗−1)

p(λt| · ··) ∼ N2(δ∗,Γ∗)

p(vt| · ··) ∝ [
(vt/2)vt/2

Γ(vt/2)
]tτ

vtt/2
t exp(−vtt

2
τt)Jvt (2.31)
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where ∆t = (I2 + Λ′tΣ
−1
t Λt)

−1, Πt = ΛtΩ
−1
t (gt − µt), κ∗ = (τΣ−1 + κ)−1, µ∗ =

κ∗(Στ(gt − ΛZ) + κµ0), Z∗ = a0 + Zt, H
∗ = H + Σ−1, B∗ = 2B + τ(gt − µt −

ΛZt)(g
t − µt − ΛZt)

′, Γ∗ = (Γ−1 + Σ−1τ ZZ ′)−1, and δ∗ = Γ∗(Σ−1τ Z(gt − µt)′).

E-M steps by Gibbs sampler simulation are presented as follows: (1)Generate τ

from Γ(2×2+vt+1
2

, (Zt−Πt)′∆t(Zt−Πt)+Qt+vt
2

); (2)Generate Zt from Tt2(Πt,
vt+Qt
vt+1

∆t, vt +

1), (3) Generate µt from N2(µ∗, κ∗), (4) Generate Bt from W2(2Z∗, (2H∗)−1), (5)

Generate Σt from W2(2a0 + t, B∗−1), (6) Generate λt from N2(δ∗,Γ∗), (7) Generate

vt from [ (vt/2)vt/2

Γ(vt/2)
]tτ

vtt/2
t exp(−vtt

2
τt)Jvt .

Finally, we obtain the investor’s posterior distribution of the data on next period

by integrating the conditional (e.g. on the consumption and dividend growth and

unknown parameters) distribution as Equation (2.31). The likelihoods conditional on

parameters are integrated over the prior distribution of the parameters.

2.5.3 Calibration and Estimation

In Equation (2.22), there are 48 parameters (e.g. β, γ, ψ, kc,0 kc,1, km,0, km,1,

ϕ2,4∗4, µ, Σ, Λ, and v). We start from t = (48/2) + 1 = 25th observations and

forecast one period ahead. Based on the first 25 data (from 1891 to 1915), we have

the baseline calibration for these 48 parameters and present the main parameters in

Table 2.2, where risk aversion γ = 8, intertemporal elasticity of substitution (IES)

ψ = 1.2, discount factor β = 0.988, consumption growth volatility Σ1,1 = 0.0015,

dividend growth volatility Σ2,2 = 0.013, correlation between consumption growth and

dividend growth ρ = 0.35, skewness for consumption growth λc = −0.32, skewness for

dividend growth λd = −0.68, the degree freedom for consumption growth vc = 9 and

the degree freedom for dividend growth vd = 11. The value of discount factor indicates

a reasonably patient representative investor, and is consistent with the business cycle
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and asset pricing literatures. The value of risk aversion is below 10, which is consistent

with Mehra and Prescott (1985), Kocherlakota (1996), and Bansal and Yaron (2004).

However, Brandt et al (2004) and Ljungqvist and Sargent (2004) argue for lower

values than 4. The IES parameter in our paper is slightly larger than 1, which is

consistent with Bansal and Yaron (2004).

Table 2.3 shows the estimated moments of consumption and dividend growths

using skew student’s t-distribution. This table reports the unconditional mean,

volatility, skewness, and kurtosis for real U.S log-consumption growth (in Panel A)

and log-dividend growth (in Panel B) computed using annual data from 1915 to 2010,

and using the model of skew student’s t-distribution (simulating the model 1000 times

with sample size 96 years). Our estimated moments are consistent with the data.

After solving Equation (2.22), we obtain the estimated values for the parameters in

the skew student’s t-distribution, and the expected returns Et(ra,t+1), Et(rm,t+1), and

Et(rf,t+1) in Equations (2.5, 2.7 and 2.9).

2.5.4 Effects by Skewness and Fat-Tail

We investigate the effects by skewness and fat tail by comparing the results from

the benchmark model (skew student’s t-distribution) with those from skew normal

distribution (v → ∞), student’s t-distribution (λ = 0), and normal distribution

(v → ∞ and λ = 0). Several results ought to be noticed in Table 2.4. First of

all, the introduction of skewness and fat-tail determine an increase in the average

equity risk premium, which is around 50% higher than the skew normal or student’s

t-distribution, and even 90% higher than that in the absence of skewness and fat-tail

dynamics. Second, the average risk free rate seems to be almost unaffected by the

introduction of skewness and fat-tail dynamics. We also find that the result derived
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from the skew student’s t is more consistent to the data.

2.5.5 Model Comparison and Parameter Learning

We compare four models with different distributions of the consumption and

dividend dynamics: (1)the multivariate normal distribution N(µt,Ωt) obtained when

Λt = 0 and vt →∞; (2) the multivariate student’s t-distribution t(µt,Σt, vt) obtained

when Λ = 0; (3) the multivariate skew normal distribution SN(µt,Σt,Λt) obtained

when vt →∞; and (4)the multivariate skew student’s t-distribution.

To get a better sense of the role of learning about parameter uncertainty on

return predictability, we compare three different return problems corresponding to

three different subjective data generating processes. (1) Learning with parameter

uncertainty. It is important to take the uncertainty (or estimation risk) in the

estimation into account. A natural way to do this is to use the Bayesian concept

of a posterior distribution p(θq|gt), which summarizes the uncertainty about the

parameters given the data observed so far. Integrating over this distribution, we

obtain the predictive distribution for dividend and consumption growths. This

distribution is conditioned only on the sample observed, and not on any fixed

θq = (µ,Σ,Λ, v). With learning, the conditional joint posterior distribution of

growths changes from one period to the next, as new information is incorporated

into the investor’s beliefs each period. (2) Learning without parameter uncertainty

(anticipated utility). We estimate the parameters θq = (µ,Σ,Λ, v) by incorporating

the skew student’s t-distribution into the data observed so far. We then have θ̂q, which

are known and fixed at their estimated values at each period. The Euler function can

be written as Et[f(gt+1) p(gt+1|gt, θ̂q)] = 1. (3) No learning where we assume the

representative investor know the true parameter values, which are estimated from
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the whole sample period. Figure 2.1 shows the estimated sequential consumption

growths’ conditional return, volatility, skewness, and kurtosis, respectively. From

these results, the introduction of learning and parameter uncertainty provide better

explanations for equity premium puzzles than those neither learning nor parameter

uncertainty.

2.5.6 Predictive Power of Moments on Actual Equity Pre-

mium

In order to study the predictive power of higher moments on actual equity

premium, we regress the actual equity premium on the expected mean, variance,

skewness, and kurtosis of consumption growth.

rep,t+1 = α0+α1Et[(gt+1−ḡt)]+α2Et[(gt+1−ḡt)2]+α3Et[(gt+1−ḡt)3]+α4Et[(gt+1−ḡt)4]+ε

(2.32)

where the real equity premium rep,t+1 = rm,t+1 − rf,t+1. α0, α1, α2, α3, and α4 are

the coefficients for the intercept, mean, variance, skewness and kurtosis. From

the R2 in Table 2.5, we see that under the almost- normal case, both the mean-

variance criterion and the one adding the third and fourth moments provide poor

predictability for the future equity premium. Under large departure from normality

case, the mean-variance criterion still fail to predict future equity premium. But

considering the third and fourth moments, the optimization process provides a better

predictability for future equity premium. We also find that the coefficients of first and

third moments have negative signs and the second and fourth moments have positive

signs in the regression. The possible explanation is that better average forecast and

increased upside potential will decrease the future equity premium. Skewness has
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a strong negative relation with subsequent returns, which indicates investors prefer

positive skewness. In contrast, more uncertain growth (volatility) and fatter tail

(kurtosis) will require an increase in future equity premium. We further consider

different combinations of moments in Table 2.6. By comparing the R2 for different

combinations of moments, we can see that the third and fourth moments have higher

predictive power about equity premium than that of second moment.

2.6 Conclusion

We incorporate skewness into a student’s t-distribution to model the dynamics

of consumption and dividend growth, and this setting can yield reasonable equity

premium, risk-free rate, and excess volatility. Higher moments method is used to solve

the undefined MGF of student’s t-distribution. We further consider the parameter

uncertainty and use Bayesian learning to update investor’s beliefs. We find that

(1) the introduction of skewness and fat-tail determine an increase in the average

equity risk premium, which is around 50% higher than the skew normal or student’s

t-distribution, and even 90% higher than that in the absence of skewness and fat-tail

dynamics, (2) the average risk free rate seems to be unaffected by the introduction

of skewness and fat-tail dynamics, (3) the coefficients of first and third moments

have negative signs, while the second and fourth moments have the positive sign in

the regression, (4) the skewness and kurtosis have significant predictive power about

equity premium, and (5) introduction of learning and parameter uncertainty provide

better explanations for equity premium puzzles.
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Appendix A: Kurtosis of Growth Dynamics

We derive the 4th moment (kurtosis) for the growth dynamics:

k4
g = E[(g − E[g])4]

= [v/(v − 2)][Ω⊗ µ⊗ µ′ + µ⊗ Ω⊗ µ′ + vec(Ω)⊗ µ′ ⊗ µ′ + µ′ ⊗ Ω⊗ µ

+µ⊗ µ⊗ vec(Ω)′ + µ⊗ µ′ ⊗ Ω] + µ⊗ µ′ ⊗ µ⊗ µ′

+[v2/(v − 2)/(v − 4)][(I4 +K4)(Ω⊗ Ω) + vec(Ω)vec(Ω)′]

+c[λ⊗ µ′ ⊗ µ⊗ µ′ + µ⊗ λ′ ⊗ µ⊗ µ′µ⊗ µ′ ⊗ λ⊗ µ′ + µ⊗ µ′ ⊗ µ⊗ λ′]

+[cv(v − 3)][λ⊗ Ω⊗ µ′ + vec(Ω)⊗ λ′ ⊗ µ′ + I2 ⊗ λ′ ⊗ Ω⊗ µ

+λ′ ⊗ Ω⊗ µ+ λ⊗ vec(Ω)′ ⊗ µ+ Ω⊗ (I2 ⊗ λ′)⊗ µ+ µ′ ⊗ λ⊗ Ω

+µ′ ⊗ (vec(Ω)⊗ λ′) + µ′ ⊗ (I2 ⊗ λ)⊗ Ω + µ⊗ λ′ ⊗ Ω + µ⊗ λ⊗ vec(Ω)′

+µ⊗ (Ω(I2 ⊗ λ′))− λ⊗ λ′ ⊗ λ⊗ µ′ − λ′ ⊗ λ⊗ λ′ ⊗ µ− µ′ ⊗ λ⊗ λ′ ⊗ λ

−µ⊗ λ′ ⊗ λ⊗ λ′]. if (v > 4)

Appendix B: Nonlinear Function f (gt+1)

We derive the nonlinear function form of f(gt+1) corresponding to Et[f(gt+1)|Φt] = 1.

With respect to Equations (2.6 and 2.8), we have

ln f1(gt+1) = θ ln β + θ kc,0 + θ(kc,1zc,t+1 − zc,t) + θ(1− 1

ψ
)gc,t+1

ln f2(gt+1) = θ ln β + (θ − 1)(kc,0 + kc,1zc,t+1 − zc,t) + km,0 + km,1zm,t+1 − zm,t

+(θ − 1− θ

ψ
) gc,t+1 + gd,t+1

Assuming that the consumption/price and dividend/price can be approximated as a

class of parameterized function by projection methods in Equations (2.10 and 2.11),

74



we can derive the nonlinear functions ln f1(gt+1) and ln f2(gt+1) as following:

ln f1(gt+1) = θ ln β + θ kc,0 + θ(1− 1

ψ
)gc,t+1

+θ kc,1

N∑
k=1

N∑
l=1

ϕ1,klTk−1(2
gc,t+1 − gc,max
gc,max − gc,min

+ 1)Tl−1(2
gd,t+1 − gd,max
gd,max − gd,min

+ 1)

−θ
N∑
k=1

N∑
l=1

ϕ1,klTk−1(2
gc,t − gc,max
gc,max − gc,min

+ 1)Tl−1(2
gd,t − gd,max
gd,max − gd,min

+ 1)

ln f2(gt+1) = θ ln β + (θ − 1)kc,0 + km,0 + (θ − 1− θ

ψ
) gc,t+1 + gd,t+1

+(θ − 1)kc,1

N∑
k=1

N∑
l=1

ϕ1,klTk−1(2
gc,t+1 − gc,max
gc,max − gc,min

+ 1)Tl−1(2
gd,t+1 − gd,max
gd,max − gd,min

+ 1)

−(θ − 1)
N∑
k=1

N∑
l=1

ϕ1,klTk−1(2
gc,t − gc,max
gc,max − gc,min

+ 1)Tl−1(2
gd,t − gd,max
gd,max − gd,min

+ 1)

+km,1

N∑
k=1

N∑
l=1

ϕ2,klTk−1(2
gc,t+1 − gc,max
gc,max − gc,min

+ 1)Tl−1(2
gd,t+1 − gd,max
gd,max − gd,min

+ 1)

−
N∑
k=1

N∑
l=1

ϕ2,klTk−1(2
gc,t − gc,max
gc,max − gc,min

+ 1)Tl−1(2
gd,t − gd,max
gd,max − gd,min

+ 1)
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Figure 2.1 Sequential equity premium, conditional volatility, skewness and
kurtosis of consumption growths
Sequential equity premium, conditional volatility, skewness and kurtosis of
consumption growths estimated by models of (1) learning with parameter uncertainty,
(2) learning without parameter uncertainty, and (3) no learning and no parameter
uncertainty. The period is from 1915 to 2010.
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(b) Conditional volatility of consumption
growths.

1920 1940 1960 1980 2000
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 Learning with uncertainty
 Learning without uncertainty
 No learning

 

 

S
ke

w
ne

ss

Year

(c) Conditional skewness of consumption
growths.

1920 1940 1960 1980 2000
0

2

4

6

8

10
 Learning with uncertainty
 Learning without uncertainty
 No learning

 

 

K
ur

to
si

s

Year

(d) Conditional kurtosis of consumption
growths.

80



Table 2.1 Summary Statistics
Entries are statistics computed from annual observations for the U.S. economy
(1891-2010). Mean is the sample mean, Std is the standard deviation, Skewness
is the standard measure of skewness, and Kurtosis is the standard measure of
excess kurtosis. Consumption growth is log(Ct/Ct−1), where C is real per capita
consumption. Dividend growth is log(Dt/Dt−1), where D is real dividend. Returns
are gross real returns and the excess return is the difference between the returns on
equity and the 1-year bond. The 1-year bond is the Treasury security of maturity
closest to 1 year. Equity is the S&P 500. Consumption and dividend data are from
Shiller (2010).

Mean(%) Std (%) Skewness Kurtosis
Consumption growth 2.00 3.52 -0.3519 4.09
Dividend growth 1.06 11.60 -0.6512 7.13
Risk free rate 1.91 1.33 1.1392 5.37
Return on equity 7.44 18.67 -0.0654 2.98
Excess return on equity 5.53 18.73 0.0085 2.98

Table 2.2 Baseline Calibration
Based on the first 25 observations, we calibrate 48 parameters in Equation (2.22) and
list the main parameters.

Value
Risk aversion γ 8
Intertemporal elasticity of substitution ψ 1.2
Discount factor β 0.988
Average consumption growth µc 0.025
Average dividend growth µd 0.012
Average consumption growth volatility Σ1,1 0.0015
Average dividend growth volatility Σ2,2 0.013
Correlation between consumption and dividend growth ρ 0.35
Skewness for consumption growth λc -0.32
Skewness for dividend growth λd -0.68
Degree freedom for consumption growth distribution vc 9
Degree freedom for dividend growth distribution vd 11
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Table 2.3 Moments of Consumption and Dividend Growths
This table reports the unconditional mean, volatility, skewness, and kurtosis for
real U.S log-consumption growth (in Panel A) and log-dividend growth (in Panel
B) computed using annual data from 1915 to 2010, and using the Model of skew
student’s t-distribution (simulating the model 1000 times with sample size 96 years).
The column labeled S.E reports the standard errors of these moments.

Panel A: Consumption Growth
Data Data Model Model

Estimate S.E Mean S.E
E(gc)(%) 1.97 0.78 1.80 1.23
σ(gc)(%) 3.13 0.58 4.40 0.64
skew(gc) -0.37 0.14 -0.30 0.04
kurt(gc) 4.86 0.49 4.22 0.67

Panel B: Dividend Growth
Data Data Model Model

Estimate S.E Mean S.E
E(gd)(%) 0.77 0.65 0.80 0.40
σ(gd)(%) 11.45 7.36 9.70 6.30
skew(gd) -0.70 0.37 -0.62 0.40
kurt(gd) 7.83 1.64 6.45 0.88

Table 2.4 Effects by Skewness and Fat-Tail
The first column reports the statistics of interest calculated using annual U.S data
from 1915 to 2010. The second to fifth column reports the results by using skew
student’s t (SST), skew normal (SN), student’s t (ST), and normal (NM) distribution
models, respectively.

Data SST SN ST NM
E[rm − rf ] 5.74 6.20 3.85 4.04 2.97

[4.55,7.85] [3.14,4.56] [3.25,4.83] [1.74,4.20]
σ[rm − rf ] 19.7 17.6 12.4 11.0 8.7

[13.1,22.1] [9.2,15.6] [8.1,13.9] [5.9,11.5]
E[rf ] 1.91 1.73 1.70 1.68 1.75

[1.24,2.22] [1.36,2.04] [1.27,2.09] [1.38,2.12]
σ[rf ] 1.48 1.54 1.20 1.25 0.96

[1.25,1.83] [0.97,1.43] [1.03,1.47] [0.70,1.24]
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Table 2.5 Predictability of Higher Moments
This table shows the predictive power of higher moments on the equity premium
in different distributions. For each column, the depend variable is the subsequent
equity premium rep,t+1. α0−4 are the coefficients for the interception and the first
to fourth moments of the consumption growth. In Model A of almost normal,
we fix (λc=0

λd=0)(vc=100
vd=100). In Model B of moderate normal, we fix (λc=−0.16

λd=−0.34)(vc=20
vd=20). In

Model C of highly non-normal, we fix (λc=−0.32
λd=−0.68)(vc=10

vd=10). The regression is described as
rep,t+1 = α0 +α1Et[gt+1]+α2Et[(gt+1− ḡt)2]+α3Et[(gt+1− ḡt)3]+α4Et[(gt+1− ḡt)4]+ε.

Model A Model B Model C
Coeff. Coeff. Coeff. Coeff. Coeff. Coeff.

Mean -0.173 -0.180 -0.176 -0.185 -0.192 -0.190
[0.078] [0.082] [0.074] [0.093] [0.076] [0.080]

V ariance 0.048 0.037 0.057 0.060 0.054 0.058
[0.062] [0.043] [0.042] [0.047] [0.039] [0.044]

Skewness -0.120 -0.150 -0.132
[0.092] [0.085] [0.048]

Kurtosis 0.65 0.77 0.83
[0.73] [0.51] [0.35]

Adj. R2 1.6% 2.2% 2.0% 2.7% 2.4% 4.8%
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Table 2.6 Predictive Regressions
For each column, the depend variable is the subsequent equity premium rep,t+1.
α0−4 are the coefficients for the intercept and the first to fourth moments of the
consumption growth. The moments are obtained by using skew student’s t model.
The regression is described as
rep,t+1 = α0 +α1Et[gt+1]+α2Et[(gt+1− ḡt)2]+α3Et[(gt+1− ḡt)3]+α4Et[(gt+1− ḡt)4]+ε.

Coefficient [1] [2] [3] [4] [5] [6] [7]
Mean -0.243 -0.212 -0.196 -0.190

[0.065] [0.077] [0.075] [0.080]
V ariance 0.080 0.074 0.067 0.058

[0.054] [0.043] [0.049] [0.044]
Skewness -0.184 -0.163 -0.130

[0.053] [0.065] [0.048]
Kurtosis 0.96 0.85

[0.42] [0.34]
Adj. R2 1.5% 0.9% 1.4% 1.2% 2.4% 3.5% 4.8%

Table 2.7 Learning and Parameter Uncertainty
This table shows the results between actual data and that obtained by learning and
parameter uncertainty. [1] the case with learning and parameter uncertainty. [2] the
case with learning, but no parameter uncertainty. [3] the case with neither learning
nor parameter uncertainty. The period is from 1915 to 2010.

Data [1] [2] [3]
E[rm − rf ] 5.74 6.20 3.90 2.70

[4.55,7.85] [2.70,5.10] [2.20,3.20]
σ[rm − rf ] 19.7 17.9 8.4 6.3

[13.1,22.1] [6.2,11.0] [4.0,8.6]
E[rf ] 1.91 1.73 1.84 1.88

[1.24,2.22] [1.35,2.34] [1.27,2.49]
σ[rf ] 1.48 1.54 1.64 2.12

[1.25,1.83] [0.97,2.31] [1.42,2.82]
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