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Abstract

Directed graphs have played a prominent role as a tool for encoding information for

certain classes of C∗-algebras, particularly AF -algebras and Cuntz-Krieger algebras.

These constructions have been generalized to a class of C∗-algebras known as graph

C∗-algebras, which have found applications to several areas of C∗-algebra theory. One

prominent area of investigation has been the application of Elliott’s classification pro-

gram to the class of graph C∗-algebras. Rørdam was able to prove that K-theory

invariants classify certain simple Cuntz-Krieger algebras, and this classification has

been extended to broader classes of graph C∗-algebras, including even certain non-

simple cases. Another avenue for extending these classification results is to consider

Leavitt path algebras, algebraic analogues of the graph C∗-algebras, and ask to what

extent K-theory groups can be used to classify them. This dissertation explores a

specific, but important, aspect of the classification of Leavitt path algebras. In par-

ticular, we investigate the question of whether L(E2) and L(E−2 ) are ∗-isomorphic.

We do this by examining the diagonal of a Leavitt path algebra, and producing meth-

ods to construct endomorphisms of Leavitt path algebras that take a given maximal

abelian subalgebra (MASA) to the diagonal.
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Chapter 1

Introduction

1.1 History

Consider an infinite dimensional Hilbert space H with basis {δi}∞i=1. We can con-

sider dividing up the Hilbert space into two other infinite dimensional subspaces by

considering two maps:

T1 : H → H given by T1(δi) = δ2i−1 and

T2 : H → H given by T2(δi) = δ2i.

Notice T ∗1 T1 = IH , T ∗2 T2 = IH , and T1T
∗
1 + T2T

∗
2 = IH . These maps are isometries,

and one can consider the C∗-algebra O2 generated by {T1, T2}.

More generally, one can consider isometries T1, . . . , Tn satisfying T ∗i Ti = I for all

1 ≤ i ≤ n and
∑n

i=1 TiT
∗
i = I, and define On to be the C∗-algebra generated by

{T1, . . . , Tn}. It turns out that the isomorphism class of this C∗-algebra is indepen-

dent of the choice of the isometries T1, . . . , Tn. The C∗-algebras On for n ≥ 2 are
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called the Cuntz algebras, after Joachim Cuntz who introduced them [5]. These C∗-

algebras turned out to be pervasive in many aspects of C∗-algebra theory, and they

have been generalized in several ways. One generalization was accomplished by Cuntz

and Krieger in which they take a square matrix A with entries in {0, 1}, and define

a C∗-algebra OA, known as the Cuntz-Krieger algebra, which is generated by partial

isometries satisfying relations determined by A. The Cuntz algebra On is equal to

the Cuntz-Krieger algebra of the n × n matrix of all 1s. Cuntz and Krieger pointed

out that OA may be viewed as a C∗-algebra of the directed graph whose adjacency

matrix is A, and that the structure of OA is related to the dynamics of the directed

graph or “topological Markov chain” corresponding to A [7].

The Cuntz-Krieger algebras were later generalized, by several authors, to con-

struct C∗-algebra of any directed graph. In particular, the graph is allowed to have

infinitely many vertices or edges, multiple edges between vertices, sink and sources,

or vertices that emit or receive infinitely many edges. For a (directed) graph E the

graph C∗-algebra C∗(E) is define to be the universal C∗-algebra generated by the col-

lection of projections {pv : v is a vertex in E} and a collection of partial isometries

with mutually orthogonal ranges {se : e is an edge in E} satisfying the Cuntz-Krieger

relations

(1) s∗ese = pr(e) for each edge e.

(2) pv =
∑
s(e)=v

ses
∗
e when the vertex v emits a finite and nonzero number of edges.

(3) ses
∗
e ≤ ps(e) for each edge e.

The graph C∗-algebras have been studied extensively and found applications in

many areas of C∗-algebra theory. A good introduction to graph C∗-algebras can be
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found in Raeburn’s book [11], which is the product of a CBMS conference on the

subject. Graph C∗-algebra encompass a wide variety of C∗-algebras (e.g., the Cuntz

and Cuntz-Krieger algebras, the Toeplitz algebra, all finite-dimensional C∗-algebras,

all AF-algebras up to Morita equivalence, all Kirchberg algebras with free K1-group,

and various quantum spaces). In addition, many operator algebra properties of C∗(E)

correspond to graph properties of E, resulting in a theory in which the graph can be

used to “visualize” C∗-algebraic properties.

Graph C∗-algebras have also been used as tools in the classification program for

C∗-algebras, especially classification of non-simple C∗-algebras. Moreover, graph C∗-

algebras have provided a bridge strengthening the already prevalent connection be-

tween C∗-algebra theory and dynamics. Specifically, C∗-algebraic properties of C∗(E)

are closely related to dynamical properties of the shift space of the graph E, and

results from dynamics have had useful applications in classification of graph C∗-

algebras. Graph C∗-algebras have also been generalized in myriad ways, to produce

more general classes with diverse applications all motivated by the theory and results

developed for graph C∗-algebras.

1.2 Classification of Graph C∗-algebras

It is possible for different graphs to have isomorphic C∗-algebras. In fact, one nice

facet of graph C∗-algebra theory is that graph operations have been developed that

change the graph without changing the associated C∗-algebra. This allows one to

change the graph to a nicer form without altering the associated C∗-algebra, and it

also allows one to gain multiple perspectives on a single C∗-algebra by using different

graphs to represent it.
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Since it is possible for different graphs to have isomorphic C∗-algebras, an im-

portant and natural problem is to determine when two given graphs have the same

C∗-algebra. As mathematicians know, the phrase “the same” could have various

meanings. The most natural version of the problem is to determine necessary and

sufficient conditions for two graphs to have isomorphic C∗-algebras. However, besides

isomorphism, one could also ask variants of the question for other notions of equiva-

lence, which may be stronger or weaker than isomorphism. For example, one could

ask for necessary and sufficient conditions for two graphs to have Morita equivalent

C∗-algebras, or one could ask for necessary and sufficient conditions for two graphs

to have C∗-algebras that are isomorphic via an isomorphism preserving a canonical

subalgebra of the graph C∗-algebra. We state these classification questions here.

THE CLASSIFICATION QUESTION: Given two directed graphs E and F ,

what are necessary and sufficient conditions for C∗(E) and C∗(F ) to be isomorphic?

VARIANTS OF THE CLASSIFICATION QUESTION: Given two directed

graphs E and F , what are necessary and sufficient conditions for C∗(E) and C∗(F )

to be “equivalent”? (Here “equivalent” can have various meanings, but Morita equiv-

alent is probably one of the most important.)

While the isomorphism version of this question is perhaps the most important,

variants for other notions of equivalence are also useful and can give important insights

into the structure of the associated C∗-algebra.

(1) For instance, in certain situations the answer to the isomorphism version of the

question may be unknown, while results for other notions of equivalence are available.

(2) Sometimes a variant of the question has conditions that are easier to verify

or refute, and may be sufficient for certain purposes — for examples, a questions
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about simplicity of ideal structure may only require one to know that a given graph

C∗-algebra is Morita equivalent to another, and the sufficient conditions for Morita

equivalence may be easier to check than the conditions for isomorphism.

(3) In situations where necessary and sufficient conditions for isomorphism are

unknown, comparing results for notions of equivalence that are stronger than iso-

morphism and with results for notions of equivalence that are weaker than isomor-

phism allows one to hone in on conditions that are both necessary and sufficient for

isomorphism. This can be useful for formulating conjectures as well as producing

counterexamples.

A variety of partial answers to special cases of the classification questions have

been found and, under certain hypotheses, necessary and sufficient conditions have

even been obtained. One important achievement has been the classification of simple

C∗-algebras of finite graphs up to Morita equivalence. We describe this result here:

There are conditions on a graph, which are both easy to describe and easy to

verify, that characterize when the associated C∗-algebra is simple. We shall refer to

these graphs as simple graphs. In addition, for any graph E, the vertex (or adjacency)

matrix is defined to a square matrix AE indexed by the vertices with entries

A(v, w) := number of edges in E from v to w.

Among many other applications, the vertex matrix can be used to calculate the K-

theory of C∗(E). If E has n vertices, and we consider the map I − AtE : Zn → Zn,

then the K0(C
∗(E)) ∼= coker(I−AtE). (Recall that coker(I−AtE) := Zn/ im(I−AtE).)

For a finite graph, this cokernel can easily be computed using some elementary Linear

Algebra. Also note that the transpose appearing in AtE makes no difference, since

(I−AE)t = I−AtE so for a finite matrix coker(I−AtE) ∼= coker(I−AE); however, the
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transpose makes a difference for infinite graphs/matrices, so we use it to be consistent

with the general formula.

It turns out that the K0-group of C∗(E) is equal to the Bowen-Franks group

of the shift space associated to E. Using result from symbolic dynamics one can

prove that if E and F are simple graphs with coker(I − AtE) ∼= coker(I − AtF ) and

sign det(I − AtE) = sign det(I − AtF ), then the shift spaces of E and F are conjugate

(i.e. isomorphic in the category of shift spaces) and there exist four graph moves,

called (S), (O), (I), and (R), such that E can be transformed into F via a finite

sequence of these moves. With a little work, one can prove that these moves preserve

Morita equivalence of the C∗-algebra of the graph as well as the sign of det(I −AtE).

Thus we have the following:

Theorem 1.2.1. For finite simple graphs E and F , the following two conditions are

equivalent:

(1) coker(I − AtE) ∼= coker(I − AtF ) and sign det(I − AtE) = sign det(I − AtF ), and

(2) E can be transformed into F via a finite sequence of (S), (O), (I), and (R)

moves.

Moreover, each of these conditions implies C∗(E) is Morita equivalent to C∗(F ).

While these conditions are sufficient for Morita equivalence, they are not neces-

sary. In particular, the sign of the determinant condition is not needed for Morita

equivalence of the graph C∗-algebras. To get around the sign of the determinant

condition, another move on graphs needed to be developed — this move is called the

Cuntz splice. If E is a simple graph and v is a vertex of E that is the base of a cycle,
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the Cuntz splice is the move that attaches a piece of the form

· · · v )) •ll

((��
•hh ee

to the graph E at v.

The effect of the Cuntz splice is that it leaves the cokernel of I − AtE unchanged

while flipping the sign of the determinant; in other words if E is a graph and Ẽ is

the graph formed by attaching a Cuntz splice to E, then coker(I −AtE) ∼= coker(I −

At
Ẽ

) and sign det(I − AtE) = − sign det(I − At
Ẽ

). Rørdam proved that performing a

Cuntz splice to a finite simple graph preserves the Morita equivalence class of the

associated C∗-algebra [12]. This allows for the following classification theorem, which

gives necessary and sufficient conditions for Morita equivalence, both in terms of an

algebraic invariant and in terms of moves performed on the graph.

Theorem 1.2.2. For finite simple graphs E and F , the following conditions are

equivalent:

(1) K0(C
∗(E)) ∼= K0(C

∗(F )),

(2) coker(I − AtE) ∼= coker(I − AtF ),

(3) E can be transformed into F via a finite sequence of (S), (O), (I), and (R)

moves and the Cuntz splice, and

(4) C∗(E) is Morita equivalent to C∗(F ).

Moreover, if sign det(I − AtE) = sign det(I − AtF ) then only the moves (S), (O), (I),

and (R) are needed in Condition (2), and if sign det(I − AtE) = − sign det(I − AtF ),

then one application of the Cuntz splice folowed by a finite sequence of the moves (S),

(O), (I), and (R) are needed in Condition (2). (In particular, at most one application

of the Cuntz splice is necessary.)
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1.3 Leavitt Path Algebras and Motivation

Inspired by the successes of graph C∗-algebras, researches considered algebras (over an

arbitrary field) analogous to graph C∗-algebras. In particular, ifK is a fixed field, then

for any graph E one defines the Leavitt path algebra LK(E) to be the universal algebra

generated by elements {pv, se, s∗e} satisfying the Cuntz-Krieger relations. When the

field is the complex numbers, LC(E) is isomorphic to a dense ∗-subalgebra of C∗(E).

Surprisingly, it has been found that many theorems for graph C∗-algebras have parallel

— often very similar — theorems for Leavitt path algebras, although the proofs of

these results typically have to obtained by very different methods.

Classification of Leavitt path algebras has made impressive strides, and Leavitt

path algebras have provided some of the first examples of algebras (besides operator

algebras) that can be classified by K-theory. It has been the case the classification

for Leavitt path algebras has had more success for infinite graphs (where there is no

sign of the determinant obstruction), but for finite graphs the sign of the determinant

has been a major stumbling block.

As with graph C∗-algebras, one can show that the moves (S), (O), (I), (R) pre-

serves the Morita equivalence class of the Leavitt path algebra of a graph. This allows

one to obtain a version of Theorem 1.2.1 for Leavitt path algebras.

Theorem 1.3.1. Let K be a field. If E and F are finite simple graphs, the following

two conditions are equivalent:

(1) coker(I − AtE) ∼= coker(I − AtF ) and sign det(I − AtE) = sign det(I − AtF ), and

(2) E can be transformed into F via a finite sequence of (S), (O), (I), and (R)

moves.
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Moreover, each of these conditions implies LK(E) is Morita equivalent to LK(F ).

However, it is currently unknown whether the Cuntz splice preserves Morita equiv-

alence of the associated Leavitt path algebra. In fact, this is unknown even in the

easiest situation: the case of the graph E2 with a single vertex and two edges. We let

E−2 denote the graph obtained by adding a Cuntz splice to E2.

•
��

YY

E2

• ))��

YY •ii
))��
•ii ee

E−2

For graph C∗-algebras, C∗(E2) ∼= O2 and the C∗-algebra C∗(E−2 ) is typically

denoted O−2 . Rørdam’s result shows that O2 is Morita equivalent to O−2 ; in fact, it

can be shown that O2 is isomorphic to O−2 . However, the corresponding result for

Leavitt path algebras in currently open.

For a fixed field K, the associated Leavitt path algebras are denoted L2 := LK(E2)

and L−2 := LK(E−2 ). It is known that K0(L2) = K0(L
−
2 ) = 0, and that det(I−AtE2

) =

1 while det(I−At
E−2

) = −1. Two fundamental questions in the classification of Leavitt

path algebras are the following:

QUESTION 1: For a given field, are L2 and L−2 isomorphic?

QUESTION 2: For a given field, are L2 and L−2 Morita equivalent?

These questions are often collectively referred to as the L2-question or the L2-

problem for Leavitt path algebras. The lack of an answer to the L2-problem is cur-

rently a major obstruction to the classification of simple unital Leavitt path algebras.

While several researchers have worked on these problems, very little progress has been

made.

9



Tomforde introduced the notion of a Leavitt path algebra over a ring [14], and

in a very interesting result, Johansen and Sørensen have shown that LZ(E2) is not

isomorphic to LZ(E−2 ) [9]. It is unclear what this means for Leavitt path algebras

over fields or what it means when the field is C (arguably, the most important case

for C∗-algebraists). It remains unknown what the relationship is between L2 and L−2 .

1.4 An Approach to the L2-problem

The purpose of this dissertation is to explore particular aspects of the structure of

Leavitt path algebras motivated by the L2-question(s). In particular, we consider

endomorphisms on Leavitt path algebras and properties of the diagonal subalgebra.

If α := e1 . . . en is a (directed) path in E, we define sα := se1 . . . sen . For a graph E the

diagonal subalgebra of L(E) is the subalgebra DL(E) := span{sαs∗α : α is a path in E}

and the diagonal subalgebra of C∗(E) is the closed subalgebra DL(E) := span{sαs∗α :

α is a path in E}. Note that DC∗(E) = DL(E) when the underlying field of L(E) is

the complex numbers C.

An important piece of Johansen and Sørensen’s proof that LZ(E2) is not isomor-

phic to LZ(E−2 ) relied on applying a theorem of Matsumoto and Matui involving the

diagonal. The following result is a consequence of [10, Theorem 3.6] obtained by

Matsumoto and Matui.

Theorem 1.4.1 (Matsumoto and Matui). Let E and F be finite simple graphs. Let

AE and AF denote the vertex matrices of E and F , respectively, and let uE and uF

denote the vectors of all 1s in the domains of AE and AF , respectively. The following

are equivalent.
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(1) C∗(E) ∼= C∗(F ) and sign det(I − AtE) = sign det(I − AtF ).

(2) There exists an isomorphism Φ : coker(I−AtE)→ coker(I−AtF ) with Φ([uE]) =

[uF ], and sign det(I − AtE) = sign det(I − AtF ).

(3) There exists an isomorphism Φ : K0(C
∗(E))→ K0(C

∗(F )) with Φ([1C∗(E)]0) =

[1C∗(F )]0], and sign det(I − AtE) = sign det(I − AtF ).

(4) There exists an isomorphism φ : C∗(E)→ C∗(F ) with φ(DC∗(E)) = DC∗(F ).

Inspired by Johansen and Sørensen’s work, we describe an approach to the L2-

question that motivates the work done in this dissertation.

Suppose that there is an isomorphism ψ : L2 → L−2 . We can show DL−2
is a

MASA in L−2 , and hence we may conclude M := ψ−1(DL−2
) is a MASA in L2. If there

exists an automorphism φ : L2 → L2 with φ(DL−2
) = M , then ψ ◦ φ : L2 → L−2 is a

diagonal-preserving isomorphism. One can argue that this extends to an isomorphism

φ : C∗(E2)→ C∗(E−2 ) with φ(DC∗(E2)) = DC∗(E−2 ), and because sign det(I −AtE2
) = 1

and sign det(I − At
E−2

) = −1, this contradicts the equivalence of (1) and (4) in the

above result of Matsumoto and Matui.

Therefore, if we can find an automorphism of L2 that takes the diagonal DL2 onto

the MASA M := ψ−1(DL−2
), we may conclude that L2 is not isomorphic to L−2 .

Thus, we wish to verify some of the claims asserted in the argument above, and

ask about the existence of an automorphism of a Leavitt path algebra that carries the

diagonal onto a specified MASA. Specifically, after some preliminaries in Chapter 2

we address the following.

(1) In Chapter 3, we examine the structure of the diagonal DL(E) for a general

11



Leavitt path algebra L(E), compute the commutant of DL(E), and determine

necessary and sufficient conditions for DL(E) to be a MASA.

(2) In Chapter 4, we consider the problem of lifting a morphism between Leavitt

path algebras φ : LC(E) → LC(F ) to the enveloping C∗-algebras φ : C∗(E) →

C∗(F ) and make rigorous our claims regarding our approach to the L2-problem.

(3) In Chapter 5, we study endormorphisms of L(E). We prove there is a bijective

correspondence between endomorphisms fixing vertex projections and unitaries

that commute with vertex projections. We deduce results in which we describe

properties of the endormorphism in terms of the property of the associated

unitary.

(4) In Chapter 6, we study endomorphisms of L(E) with the goal of constructing

endormorphisms (and automorphisms) that map the diagonal DL(E) onto a

given MASA in L(E).

Although we are unable to answer the L2-problem at this point, we hope that

the insights we produce will help with its solution in the future. We are also opti-

mistic that further investigations along these avenues will produce results useful for

examining other questions related to the structure of Leavitt path algebras. Even

though our motivating example is L2, because of our desire to create a theory with

many potential applications, we strive to obtain results for Leavitt path algebras in

as much generality as possible.
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Chapter 2

Preliminaries

In this chapter we establish notation and terminology that we shall use throughout

future chapters.

2.1 Graphs

When we refer to a graph, we shall always mean a directed graph E := (E0, E1, r, s)

consisting of a countable set of vertices E0, a countable set of edges E1, and maps

r : E1 → E0 and s : E1 → E0 identifying the range and source of each edge.

Definition 2.1.1. Let E := (E0, E1, r, s) be a graph. We say that a vertex v ∈ E0

is a sink if s−1(v) = ∅, and we say that a vertex v ∈ E0 is an infinite emitter if

|s−1(v)| =∞. A singular vertex is a vertex that is either a sink or an infinite emitter,

and we denote the set of singular vertices by E0
sing. We also let E0

reg := E0 \ E0
sing,

and refer to the elements of E0
reg as regular vertices ; i.e., a vertex v ∈ E0 is a regular

vertex if and only if 0 < |s−1(v)| <∞. We say a graph is row-finite if no vertex emits

infinitely many edges.
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Definition 2.1.2. If E is a graph, a path is a sequence α := e1e2 . . . en of edges with

r(ei) = s(ei+1) for 1 ≤ i ≤ n − 1. We say the path α has length |α| := n, and we

let En denote the set of paths of length n. We consider the vertices in E0 to be

paths of length zero. We also let E∗ :=
⋃∞
n=0E

n denote the paths of finite length,

and we extend the maps r and s to E∗ as follows: For α := e1e2 . . . en ∈ En, we set

r(α) = r(en) and s(α) = s(e1).

Definition 2.1.3. If E is a graph, a cycle is a path α ∈ E∗ with r(α) = s(α). A

cycle α = e1 . . . en is called a simple cycle if s(ei) 6= s(ej) for i 6= j. Furthermore, if

α := e1 . . . en is a cycle, we say that an edge f ∈ E1 is an exit for the cycle α if there

exists i ∈ {1, . . . , n} such that s(f) = s(ei) and f 6= ei. We say a graph satisfies

Condition (L) if every cycle in the graph has an exit. Note that in any graph every

cycle has an exit if and only if every simple cycle has an exit.

2.2 Graph C∗-algebras and Leavitt Path Algebras

If E is a graph, a Cuntz-Krieger E-family in a C∗algebra A is a collection {pv, se :

v ∈ E0, e ∈ E1} such that the elements of {pv : v ∈ E0} are mutually orthogonal

projections, the elements of {se : e ∈ E1} are partial isometries with pairwise orthog-

onal range projections (i.e., s∗esf = 0 when e 6= f) and the collection satisfies the

Cuntz-Krieger conditions:

(CK1) s∗ese = pr(e) for all e ∈ E1,

(CK2) pv =
∑

s(e)=v ses
∗
e for all v ∈ E0

reg, and

(CK3) ps(e)se = se for all e ∈ E1.

The graph C∗-algebra C∗(E) is a defined to be the C∗-algebra generated by a

14



Cuntz-Krieger E-family {pv, se : v ∈ E0, e ∈ E1} with the following universal prop-

erty: If A is a C∗-algebra and {qv, te :: v ∈ E0, e ∈ E1} is a Cuntz-Krieger E-family

in A, then there exists a ∗-homomorphism φ : C∗(E) → A with φ(pv) = qv for all

v ∈ E0 and φ(se) = te for all e ∈ E1. It is a consequence of the universal property

that C∗(E) is unique up to isomorphism. A proof of the existence of C∗(E) and basic

facts about graph C∗-algebras can be found in [11].

Inspired by the usefulness of graph C∗-algebras in functional analysis, algebraists

created analogues known as Leavitt path algebras. If E is a graph, and A is an

algebra over a field K, a Cuntz-Krieger E-family is a collection {pv, se, s∗e : v ∈

E0, e ∈ E1} in A such that the elements of {pv : v ∈ E0} are mutually orthogonal

idempotents, the elements of {se : e ∈ E1} satisfy s∗esf = 0 when e 6= f , and the

collection satisfies the Cuntz-Krieger conditions (CK1)–(CK3) above. The Leavitt

path algebra is defined to be the K-algebra LK(E) generated by a Cuntz-Krieger

E-family {pv, se, se : v ∈ E0, e ∈ E1} with the following universal property: If A

is a K-algebra and {qv, te, t∗e :: v ∈ E0, e ∈ E1} is a Cuntz-Krieger E-family in A,

then there exists a K-algebra homomorphism φ : LK(E)→ A with φ(pv) = qv for all

v ∈ E0 and with φ(se) = te and φ(s∗e) = t∗e for all e ∈ E1. It is a consequence of the

universal property that LK(E) is unique up to isomorphism. A proof of the existence

of LK(E) and basic facts about Leavitt path algebras can be found in [1]. When the

field is fixed, it is common to simplify notation and to simply write L(E) := LK(E)

for the Leavitt path algebra of E.

The following table lists some common graphs and the associated graph C∗-

algebras and Leavitt path algebras.
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Graph C∗-algebra Leavitt path algebra

• C K

• C(T) K[z, z−1]

•
(n edges)

...

On Ln

•1 •2 . . . •n Mn(C) Mn(K)

For a path α = e1 . . . en, we define sα := se1 . . . sen . If a path α has length zero; i.e.,

α = v for some vertex v, we define sv := pv. Note that s∗α = (se1 . . . sen)∗ = s∗en . . . s
∗
e1

.

For paths α and β with r(α) = s(β), we have sαsβ = sαβ and s∗βs
∗
α = (sαsβ)∗ = s∗αβ.

Using the Cuntz-Krieger relations, it is straightforward to show that the following

multiplication rule holds: For any α, β, γ, δ ∈ E∗, we have

(sαs
∗
β)(sγs

∗
δ) =



sαγ′s
∗
δ if γ = βγ′

sαs
∗
δ if β = γ

sαs
∗
δβ′ if β = γβ′

0 otherwise.

As a consequence, any nonzero word in the symbols se and s∗f may be rewritten as

sαs
∗
β for α, β ∈ E∗ with r(α) = r(β). Consequently,

C∗(E) = span{sαs∗β : α, β ∈ E∗ with r(α) = r(β)}

and for any field K

LK(E) = spanK{sαs∗β : α, β ∈ E∗ with r(α) = r(β)}.
16



One can show that if {se, pv : e ∈ E1, v ∈ E0} is a generating Cuntz-Krieger

family for C∗(E), then the subalgebra spanC{sαs∗β : α, β ∈ E∗ with r(α) = r(β)}

contained in C∗(E) has the universal property for LC(E) and hence is isomorphic to

LC(E). Thus LC(E) is (isomorphic to) a dense subalgebra of C∗(E).

Furthermore, suppose K is given an involution z 7→ z. For the complex numbers

C the standard choice for z is complex conjugation. For any field, we are always

free to choose the involution to be the identity z = z, so every field has such an

involution. We may then define a ∗-operation on LK(E) as follows: For a typical

element x =
∑n

i=1 zisαi
s∗βi ∈ LK(E) we set

x∗ :=
n∑
i=1

zis
∗
βi
s∗αi
∈ LK(E).

This ∗-operation is conjugate-linear (zx)∗ = zx∗), involutive (x = x), and anti-

multiplicative (xy = y x). It is therefore a ∗-operation making LK(E) into a ∗-

algebra. Furthermore, for LC(E) this ∗-operation agrees with the adjoint operation

on the C∗-algebra C∗(E). This ∗-operation allows us to discuss projections (elements

with p = p2 = p∗), isometries (elements with v∗v = 1), and unitaries (elements with

uu∗ = u∗u = 1) in Leavitt path algebras.

Definition 2.2.1. If R is a ring, we say R is Z-graded if there is a a collection of

additive subgroups {Rn}n∈Z of R with the following two properties.

1. R =
⊕

n∈ZRn.

2. RmRn ⊆ Rm+n for all m,n ∈ Z.

The subgroup Rn is called the homogeneous component of R of degree n.

All Leavitt path algebras have a natural Z-grading. If E is a graph, then we may
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define a Z-grading on the associated Leavitt path algebra LK(E) by setting

LK(E)n :=

{
N∑
i=1

λisαi
s∗βi : αi, βi ∈ E∗ and |αi| − |βi| = n for 1 ≤ k ≤ N

}
.

Note that, in fact, each LK(E)n is closed under scalar multiplication by elements of

K. Hence LK(E) is actually a graded algebra.

2.3 The Diagonal Subalgebra of a Leavitt Path Al-

gebras

If E is a graph and K is field, let L(E) := LK(E) be the associated Leavitt path

algebra, and let {se, pv : e ∈ E1, v ∈ E0} be a generating Cuntz-Krieger E-family.

For each α ∈ E∗ define

Qα := sαs
∗
α.

Each Qα is a projection, and the elements of {Qα : α ∈ E∗} satisfy the following

multiplication:

QαQβ = QβQα =



Qα if α = βα′

Qβ if β = αβ′

0 otherwise.

In particular, Qα and Qβ commute and the product is nonzero if and only if either α

or β extends the other, and in this case, the product is the Q-projection corresponding

to the longer path.

The diagonal subalgebra of L(E) is defined to be

DL(E) := spanK{Qα : α ∈ E∗}.

18



One may observe that DL(E) is an abelian ∗-subalgebra of L(E) that resides inside of

LK(E)0, the zero grade of L(E).

19



Chapter 3

MASAs and the Diagonal

In this chapter we introduce the notion of a MASA (Maximal Abelian SubAlgebra)

and establish basic results concerning them. We compute the commutant of the

diagonal DL(E) in a general Leavitt path algebra L(E), and we prove that the diagonal

is a MASA if and only if the graph E satisfies Condition (L) (i.e., every cycle in E

has an exit).

3.1 Definition and Basic Results for MASAs

If A is an algebra, a subalgebra B ⊆ A is a maximal abelian subalgebra (or MASA

for short) if B is abelian and whenever C is an abelian subalgebra of A with B ⊆ C,

then B = C.

If A is an algebra and S ⊆ A, the commutant of S is the collection

S ′ := {a ∈ A : as = sa for all s ∈ S}

of all elements of A that commute with each element of S.
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Proposition 3.1.1. Let A and B be algebras.

(1) If S and T are subsets of A, then S ⊆ T implies T ′ ⊆ S ′.

(2) If S ⊆ A, then S ′ is a subalgebra of A.

(3) If A is a ∗-algebra and S is a selfadjoint subset of A (i.e., x ∈ S implies x∗ ∈ S),

then S ′ is selfadjoint.

(4) If φ : A→ B is an algebra homomorphism and S ⊆ A, then φ(S ′) ⊆ φ(S)′.

(5) If φ : A→ B is a surjective algebra homomorphism and S ⊆ B, then φ−1(S)′ ⊆

φ−1(S ′).

Proof. (1) If S ⊆ T , then whenever x ∈ A commutes with every element of T , then

x commutes with every element of S. Hence T ′ ⊆ S ′.

(2) If x, y ∈ S ′, then for any s ∈ S we have (x+y)s = xs+ys = sx+sy = s(x+y)

so x+ y ∈ S ′, and (xy)s = x(ys) = x(sy) = (xs)y = (sx)y = s(xy) so xy ∈ S ′. Also,

if x ∈ S ′ and λ is a scalar, then for any s ∈ S we have (λx)s = λ(xs) = λ(sx) = s(λx)

so λx ∈ S ′. Hence S ′ is an algebra.

(3) Let x ∈ S ′. For any s ∈ S, the fact S is selfadjoint implies s∗ ∈ S, and we

have x∗s = (s∗x)∗ = (xs∗)∗ = sx∗ so that x∗ ∈ S ′.

(4) If y ∈ φ(S ′), then y = φ(x) for some x ∈ S ′. Hence for any z ∈ φ(S), we may

write z = φ(s) for s ∈ S, and then yz = φ(x)φ(s) = φ(xs) = φ(sx) = φ(s)φ(x) = zy,

so y ∈ φ(S)′.

(5) Since φ is surjective, we have φ(φ−1(S)) = S. Therefore, if x ∈ φ−1(S)′, then

applying the result of (4) we conclude that φ(x) ∈ φ(φ−1(S)′) ⊆ φ(φ−1(S))′ = S ′, so

that x ∈ φ−1(S ′).
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Proposition 3.1.2. Let A be an algebra, and let B ⊆ A be a subalgebra of A. Then

the following are equivalent:

(1) B is a MASA.

(2) B′ = B.

Proof. Suppose (1) holds. Since B is abelian, it follows that B ⊆ B′. If x ∈ B′, then

x commutes with every element of B, and if we let C denote the subalgebra of A

generated by B ∪ {x}, then C is abelian. Since B ⊆ C, the maximality of B implies

that B = C, so that x ∈ B and B′ ⊆ B. Thus B′ = B, and (2) holds.

Conversely, suppose that (2) holds. Since B′ = B, we conclude that B is abelian.

In addition, if C is any abelian subalgebra of A with B ⊆ C, then every element of

C commutes with each element of B, so that C ⊆ B′. Hence B ⊆ C ⊆ B′, and the

fact that B′ = B implies B = C. Thus B is a MASA.

Proposition 3.1.3. Let A and B be algebras, and let φ : A → B be an injective

algebra homomorphism. If C is a MASA in B with C ⊆ imφ, then φ−1(C) is a

MASA in A.

Proof. Since φ is an algebra homomorphism, φ−1(C) is a subalgebra of A. In addition,

if a, b ∈ φ−1(C), then φ(a), φ(b) ∈ C, and since C is abelian, φ(ab) = φ(a)φ(b) =

φ(b)φ(a) = φ(ba). By the injectivity of φ, we conclude that ab = ba. Hence φ−1(C)

is an abelian subalgebra.

If D is an abelian subalgebra of A with φ−1(C) ⊆ D, then φ(φ−1(C)) ⊆ φ(D), and

using the fact that C ⊆ imφ, we obtain C ⊆ φ(D). Since D is an abelian subalgebra

of A and φ is an algebra homomorphism, φ(D) is an abelian subalgebra of B. By the

22



maximality of C we conclude C = φ(D), and hence by the injectivity of φ we have

φ−1(C) = φ−1(φ(D)) = D.

3.2 The Commutant of DL(E)

In this section we calculate the commutant of the diagonal subalgebra DL(E) and give

necessary and sufficient conditions for DL(E) to be a MASA.

Lemma 3.2.1. Let E be a graph and let K be a field. If α1, . . . , αm are distinct paths

in E, and β1, . . . , βn are distinct paths in E (with each βj not necessarily distinct from

the αis), then {sα1 , . . . , sβm , s
∗
β1
, . . . , , s∗βn} is a linearly independent subset of LK(E).

Proof. Suppose a1, . . . , am, b1, . . . , bm ∈ K with
∑n

i=1 aisαi
+
∑m

j=1 bjs
∗
βj

= 0. Using

the grading on LK(E), we may conclude that each graded component of this linear

combination is equal to zero. Hence it suffices to prove the result in the following two

cases: when the paths are all αi of the same length (and there are no βj terms), and

when the paths are all βj of the same length (and there are no αi terms). For the

first case, suppose that
∑n

i=1 aisαi
= 0 and |αi| = N for all 1 ≤ i ≤ n. Because these

paths have the same length, no αi can extend αj for i 6= j, and hence for any k we

have

akpr(αk) = aks
∗
αk
sαk

=
n∑
i=1

ais
∗
αk
sαi

= s∗αk

n∑
i=1

aisαi
= 0

and since pr(αk) is a nonzero projection, ak = 0.

The second case is similar: suppose
∑m

j=1 bjs
∗
βj

= 0 and |βj| = N for all 1 ≤ j ≤

m. For each i we multiply each side of the equation on the right by sβi to obtain(∑m
j=1 bis

∗
βj

)
sβi = 0, and bipr(βj) = 0. Hence bi = 0.
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Lemma 3.2.2. Let E be a graph, K be a field, and L(E) := LK(E). If x ∈ D′L(E),

then

(i) xQβ = Qβx ∈ D′L(E) for all β ∈ E∗, and

(ii) s∗βxsβ ∈ D′L(E) for all β ∈ E∗.

Proof. The result in (i) follows from the fact that Qβ ∈ DL(E) and DL(E) is com-

mutative. To obtain the result in (ii), it suffices to show that s∗βxsβ commutes with

Qα := sαs
∗
α for all α ∈ E∗. If α ∈ E∗ with s(α) 6= r(β), then (s∗βxsβ)sαs

∗
α =

0 = sαs
∗
α(s∗βxsβ). If α ∈ E∗ with s(α) = r(β), then (s∗βxsβ)sαs

∗
α = s∗βxsβαs

∗
α =

s∗βxsβαs
∗
βαsβ = s∗βsβαs

∗
βαxsβ = sαs

∗
βαxsβ = sαs

∗
α(s∗βxsβ).

The next two lemmas give a decomposition of elements in the commutant of DL(E)

that will give specific characteristics that we may look for in the graph E itself to

determine the maximality of DL(E).

Lemma 3.2.3. Let E be a graph, K be a field, and L(E) := LK(E). Suppose

x ∈ D′L(E). Then x may be written in the form

x =
n∑
i=1

aisµis
∗
νi

+
m∑
j=1

bjsγjs
∗
γj

for a1, . . . , an, b1, . . . , bm ∈ K \ {0} and paths µ1, . . . , µn, ν1, . . . νn, γ1, . . . , γm with

the property that there exists N ∈ N for which |νi| = N for all 1 ≤ i ≤ n.

Proof. Suppose that x ∈ D′L(E). As with any element of L(E) we may write x =∑
i∈I cisαi

s∗βi for a finite set I. Whenever α, β ∈ E∗ are paths with v := r(α) = r(β) ∈

E0
reg, then (CK3) implies sαs

∗
β = sαpvs

∗
β = sα

(∑
s(e)=v ses

∗
e

)
s∗β =

∑
s(e)=v sαes

∗
βe. If

we let N := max{|βi| : i ∈ I}, we may use repeated applications of (CK3) to rewrite
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x in the form

x =
∑
j∈J

djsαj
s∗βj +

∑
k∈K

eksγks
∗
δk

with r(αj) = r(βj) and |βj| = N for all j ∈ J , and with r(γk) = r(δk) ∈ E0
sing and

|δk| ≤ N − 1 for all k ∈ K.

Since sαs
∗
α ∈ D′L(E) for any α ∈ E∗, we may subtract any such terms off of x (note

that if x, y ∈ D′L(E), then x− y ∈ D′L(E)), and thus

x′ := x− y =
∑
j∈J ′

djsαj
s∗βj +

∑
k∈K′

eksγks
∗
δk
∈ D′L(E)

for some y ∈ DL(E) and some subsets J ′ ⊆ J and K ′ ⊆ K satisfying αj 6= βj for all

j ∈ J ′ and γk 6= δk for all k ∈ K ′.

To obtain the result, it suffices to show that K = ∅. For the sake of contradiction,

suppose K ′ 6= ∅. Choose δ to be a path of minimal length from the set {δk : k ∈ K ′}.

Likewise, choose k0 ∈ K ′ so that γk0 has minimal length among the set {γk : δk = δ}

(and observe this implies δk0 = δ) and define γ := γk0 . Note that the paths δ = δk0

and γ = γk0 have the the property that |δ| ≤ |δk| for all k ∈ K ′ and |γ| ≤ |γk| for all

k ∈ K ′ with δk = δ.

Since r(δ) ∈ Esing, either r(δ) ∈ E0
sink or r(δ) ∈ E0

inf. We shall now define paths

η and θ based on each of these two cases: If r(δ) ∈ E0
sink define η := δ and θ := γ.

If r(δ) ∈ E0
inf we may choose an edge e ∈ E1 with s(e) = r(δ) such that e does not

appear as an edge in any of the paths of {αj, βj : j ∈ J ′} ∪ {γk, δk : k ∈ K ′}, and in

this case we define η := δe and θ := γe.

Let j ∈ J ′. Since η is either equal to δ with r(δ) a sink or equal to δe with e not in

any βj, and since |δ| ≤ N − 1 < N = |βj|, we conclude that neither η nor βj extends
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the other. Hence

QβjQη = 0 for all j ∈ J ′. (3.2.3.1)

In addition, since γ 6= δ and since either η and θ have ranges equal to a sink or

contain e as their last edge, neither η nor θ extends the other, and

QθQη = 0 (3.2.3.2)

Similarly, by the minimality in the choice of δ, for any k ∈ K ′ we see that either

δk = δ or neither of η and δ extend each other. Additionally, if k ∈ K ′ with δk = δ,

then by the minimality in the choice of γ either γk = γ or neither of θ and γ extend

each other. Consequently, for any k ∈ K ′ we have

Qθsγks
∗
δk
Qη =


Qθsγks

∗
δQη if δk = δ

0 otherwise

(3.2.3.3)

=


Qθsγs

∗
δQη if δk = δ and γk = γ

0 otherwise

=


sθs
∗
η if δk = δ and γk = γ

0 otherwise.

=


sθs
∗
η if k = k0

0 otherwise.

Putting these equations together, we obtain

0 = QθQηx
′ (by (3.2.3.2))

= Qθx
′Qη (since x′ ∈ D′L(E))
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= Qθ

(∑
j∈J ′

djsαj
s∗βjQη

)
+
∑
k∈K′

ekQθsγks
∗
δk
Qη

= 0 +
∑
k∈K′

ekQγesγks
∗
δk
Qδe (by (3.2.3.1))

= ek0sθs
∗
η (by (3.2.3.3))

which contradicts the fact that ek0 6= 0.

Thus K ′ = ∅, x′ := x− y =
∑

j∈J ′ djsαj
s∗βj with |βj| = N for all j ∈ J ′, and x has

the claimed form.

Lemma 3.2.4. Let E be a graph, K be a field, and L(E) := LK(E). Suppose

x ∈ D′L(E) and

x =
n∑
i=1

aisµis
∗
νi

for a1, . . . , an ∈ K and paths µ1, . . . , µn, ν1, . . . νn ∈ E∗ with the property that there

exists N ∈ N for which |νi| = N for all 1 ≤ i ≤ n. Then x has the form

x =
k∑
i=1

bisαi
s∗αi

+
l∑

i=1

cisβiσis
∗
βi

+
m∑
i=1

disγis
∗
γiθi

where b1, . . . , bk, c1, . . . , cl, d1, . . . , dm ∈ K are elements of K, α1, . . . , αk, β1, . . . , βl,

γ1, . . . , γm are paths in E, and σ1, . . . , σl, θ1, . . . , θm are cycles with no exits in E.

Proof. For each ν ∈ {ν1, . . . , νn}. Let xν := xQν . Note that since all the νi have the

same length, no νi can extend a νj unless µi = µj. Hence

xν =
∑
{i:νi=ν}

bisµis
∗
ν

and x =
∑

ν xν where the sum ranges over the distinct values of {νi}ni=1.

For the remainder of the proof, fix ν ∈ {ν1, . . . , νn}. By Lemma 3.2.2(i), we have

that xν := xQν ∈ D′L(E). Moreover, we see that s∗νsµi is zero unless one of ν and µi
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extends the other by the following computation:

xν = xQν = xQ2
ν = QνxQν = sνs

∗
ν

(
n∑
i=1

aisµis
∗
νi

)
sνs
∗
ν =

∑
{i:µi=νi}

aisν(s
∗
νsµi)s

∗
ν .

Any zero terms may be discarded, and for the remaining terms we partition them

into three sets: We let S1 be the set of indices for which µi = ν, we let S2 be the

set of indices for which µi strictly extends ν, in which case we write µi = νσi for a

nontrivial path σi, and we let S3 be the set of indices for which ν strictly extends µi,

in which case we write ν = µiθi for a nontrivial path θi. Thus

xν =
∑
i∈S1

aisν(s
∗
νsν)s

∗
ν +

∑
i∈S2

aisν(s
∗
νsνσi)s

∗
ν +

∑
i∈S3

aisν(s
∗
µiθi

sµi)s
∗
ν

=
∑
i∈S1

aisνs
∗
ν +

∑
i∈S2

aisνσis
∗
ν +

∑
i∈S3

aisνs
∗
νθi
. (3.2.3.4)

Since µi = νσi, we see that s(σi) = r(ν) and r(σi) = r(µi) = r(ν). Hence θi is a cycle.

Likewise, since ν = µiθi , we have r(θi) = r(ν), and s(θi) = r(µi) = r(ν), so that θi is

a cycle. We shall show that the cycles σi and θi are all cycles with no exits.

Since xν ∈ D′L(E), it follows from Lemma 3.2.2 that s∗νxνsν ∈ D′L(E). Also, since

DL(E) is commutative,
∑

i∈S1
aisνs

∗
ν ∈ DL(E) ⊆ D′L(E). Since D′L(E) is closed under

differences, we conclude

∑
i∈S2

aisσi +
∑
i∈S3

ais
∗
θi

= s∗ν

(∑
i∈S2

aisνσis
∗
ν +

∑
i∈S3

aisνs
∗
νθi

)
sν

= s∗ν

(∑
i∈S1

aisνs
∗
ν +

∑
i∈S2

aisνσis
∗
ν +

∑
i∈S3

aisνs
∗
νθi

)
sν −

∑
i∈S1

aisνs
∗
ν

= s∗νxνsν −
∑
i∈S1

aisνs
∗
ν

∈ D′L(E).
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Fix j ∈ S2 and consider the cycle σj. For the sake of contradiction, suppose that

σj has an exit. Write σi = e1 . . . erη where e1, . . . , er are the edges of a simple

cycle and η ∈ E∗ is a path. Then there exists an exit f ∈ E1 with s(f) = ek

for some 1 ≤ k ≤ r and f 6= ek. Let ξ := e1 . . . er and let λ := e1 . . . ek−1f .

Since neither of ξ and λ extends the other, we have QξQλ = 0. Using the fact that∑
i∈S2

aisσi +
∑

i∈S3
ais
∗
θi
∈ D′L(E) we obtain

∑
i∈S2

ais
∗
ξsσiλ +

∑
i∈S3

ais
∗
θiξ
sλ

= s∗ξ

(∑
i∈S2

aisσi +
∑
i∈S3

ais
∗
θi

)
sλ = s∗ξQξ

(∑
i∈S2

aisσi +
∑
i∈S3

ais
∗
θi

)
Qλsλ

= s∗ξ

(∑
i∈S2

aisσi +
∑
i∈S3

ais
∗
θi

)
QξQλsλ = 0 (3.2.3.5)

If we consider
∑

i∈S2
ais
∗
ξsσiλ, we observe that for each i ∈ S2, ξ cannot strictly

extend the cycle σi because ξ is a simple cycle. Thus the only nonzero terms in this

sum occur when σi extends ξ in which case we write σi = ξσ′i.

Furthermore, since |λ| ≤ |ξ|, for each i ∈ S3 the term s∗θiξsλ is either equal to zero

or equal to s∗ρi for some path ρi ∈ E∗. Hence (3.2.3.5) becomes

∑
{i:σi=ξσ′i}

aisσ′i +
∑
i

ais
∗
ρi

= 0.

The fact that the σi are distinct implies that the σ′i are distinct. Furthermore, from

our prior choice of j we know that σj extends ξ, and hence j is one of the indices

appearing in the left sum in the above equation. It follows from Lemma 3.2.1 that

aj = 0, which is a contradiction. (As stated earlier, if aj = 0, we could simply discard

that term.) Hence σj is a cycle without exits for all j ∈ S2.

A very similar argument shows that the cycle θi has no exits for all i ∈ S3. Since

x =
∑

ν xν and each xν has the form shown in (3.2.3.4), the claim holds.
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Theorem 3.2.5. Let E be a graph, let K be a field, and write L(E) := LK(E). The

commutant of DL(E) is equal to the set of all elements of L(E) of the form

x =
k∑
i=1

bisαi
s∗αi

+
l∑

i=1

cisβiσis
∗
βi

+
m∑
i=1

disγis
∗
γiθi

where b1, . . . , bk, c1, . . . , cl, d1, . . . , dm ∈ K are elements of K, α1, . . . , αk, β1, . . . , βl,

γ1, . . . , γm ∈ E∗ are paths in E, and σ1, . . . , σl, θ1, . . . , θm ∈ E∗ are cycles with no

exits in E.

Proof. It is straightforward to verify that elements of the above form commute with

each element of DL(E), so that these elements are in D′L(E). Conversely given an

element in D′L(E) Lemma 3.2.3 combined with Lemma 3.2.4 shows that the element

has the above form.

Corollary 3.2.6. Let E be a graph, let K be a field, and write L(E) := LK(E). Then

DL(E) is a MASA in L(E) if and only if E satisfies Condition (L).
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Chapter 4

Lifting Morphisms and the

L2-problem

In this chapter, we consider how morphisms between Leavitt path algebras can be

lifted to morphisms between graph C∗-algebras, and we verify claims that we have

described in our approach to the L2-problem.

4.1 Lifting ∗-homomorphisms from L(E) to C∗(E)

If C∗(E) is a graph C∗-algebra with generating Cuntz-Krieger E-family {pv, se, v ∈

E0, e ∈ E1}, then the elements {pv, se, s∗e : v ∈ E0, E1} satisfy the defining relations

for the Leavitt path algebra L(E) and hence by the universal property there exists

a ∗-homomorphism iE : L(E) → C∗(E) mapping the generators of L(E) onto the

generators of C∗(E). A straightforward application of the graded uniqueness theorem

[13, Theorem 4.8] shows that iE is injective. Hence L(E) is isomorphic to im iE =

span{sαs∗β : α, β ∈ E∗}. Rather than repeatedly referencing the map iE, we shall
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simply identify L(E) with the dense ∗-subalgebra span{sαs∗β : α, β ∈ E∗} sitting

inside of the graph C∗-algebra C∗(E) so that

C∗(E) = span{sαs∗β : α, β ∈ E∗}.

Proposition 4.1.1. Let E and F be graphs, and let L(E) := LC(E) and L(F ) :=

LC(F ). If φ : L(E)→ L(F ) is a ∗-homomorphism, then there exists a ∗-homomorphism

Φ : C∗(E) → C∗(F ) such that Φ|L(E) = φ. Furthermore, if φ is injective, then Φ is

injective; and if φ is surjective, then Φ is surjective.

Proof. Since φ is a ∗-homomorphism, the set {φ(pv), φ(se) : v ∈ E0, e ∈ E1} is

a Cuntz-Krieger E-family in C∗(F ), and hence by the universal property of C∗(E)

there exists a ∗-homomorphism Φ : C∗(E)→ C∗(E) with Φ(pv) = φ(pv) for all v ∈ E0

and Φ(se) = se for all e ∈ E1. Since Φ|L(E) and φ are ∗-homomorphisms on L(E)

that agree on generators, we conclude Φ|L(E) = φ.

If φ is injective, then φ : L(E)→ imφ is a ∗-isomorphism. Let φ−1 : imφ→ L(E)

be the inverse of this ∗-isomorphism. Let γ : T → AutC∗(E) denote the standard

gauge action on C∗(E). For each z ∈ T, we have γz(se) = zse and γ(pv) = pv, so we

conclude that γz(L(E)) ⊆ L(E). For each z ∈ T define βz := φ◦γz◦φ−1 : imφ→ imφ.

Since φ is the restriction of the ∗-homormorphism Φ and φ is inejctive, it follows that

φ is isometric. Likewise γz is isometric. Hence βz is bounded and extends to a ∗-

homomorphism βz : imφ→ imφ. It is easy to verify that βz is an inverse of βz, and

thus βz ∈ Aut imφ. Hence z 7→ βz gives a gauge action on imφ. Moreover, we see

that φ ◦ γz = φ ◦ γz ◦ φ−1 ◦ φ = βz ◦ φ. Thus Φ ◦ γz = βz ◦Φ, since the maps on each

side of the equals sign agree on generators. Since φ is injective, Φ(pv) = φ(pv) 6= 0.

The gauge-invariant uniqueness theorem implies that Φ is injective.

If φ is surjective, then im Φ ⊇ Φ(L(E)) = φ(L(E)) = L(F ). Since im Φ is closed,

32



im Φ contains L(F ) = C∗(F ), and hence Φ is surjective.

Definition 4.1.2. Let E and F be graphs, let K be a field, and define L(E) := LK(E)

and L(F ) := LK(F ). We say that a subset M ⊆ L(E) is an L(F )-diagonal if there

exists a ∗-isomorphism ψ : L(F )→ L(E) with ψ(DL(F )) = M .

Note that Corollary 3.2.6 implies that when E satisfies Condition (L), any L(F )-

diagonal is a MASA.

Proposition 4.1.3. Let E and F be finite graphs with the property that L(E) :=

LC(E) and L(F ) := LC(F ) are simple algebras. If there exists an L(F )-diagonal M ⊆

L(E) and a ∗-automorphism φ ∈ AutL(E) with φ(DL(E)) = M , then sign det(I −

AtE) = sign det(I − AtF ).

Proof. Since M is an L(F )-diagonal, there exists a ∗-isomorphism ψ : L(F )→ L(E)

with ψ(DL(F )) = M . Thus λ := φ ◦ ψ−1 : L(E) → L(F ) is a ∗-isomorphism with

ρ(DL(E)) = DL(F ). By Proposition 4.1.1 there exists a ∗-isomorphism Λ : C∗(E) →

C∗(F ) with Λ|L(E) = λ. Consequently, Λ : C∗(E)→ C∗(F ) is a ∗-isomorphism with

Λ(DC∗(E)) = Λ(DL(E)) = Λ(DL(E)) = λ(DL(E)) = DL(F ) = DC∗(E).

It follows from Theorem 1.4.1 that sign det(I − AtE) = sign det(I − AtF ).

Corollary 4.1.4. Let E be a finite graph for which L(E) := LC(E) is a simple

algebra. If L(E) has the property such that whenever M is a MASA in L(E) there

exists a ∗-automorphism φ ∈ AutL(E) with φ(DL(E)) = M , then whenever F is a

graph and L(E) is ∗-isomorphic to L(F ), we have sign det(I−AtE) = sign det(I−AtF ).

In fact, one may impose a weaker condition on the above corrollary due to sim-

plicity implying injectivity for ∗-homomorphisms between Leavitt path algebras.
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Corollary 4.1.5. Let E be a finite graph for which L(E) := LC(E) is a simple

algebra. If L(E) has the property such that whenever M is a MASA in L(E) there

exists a ∗-automorphism φ ∈ AutL(E) with φ(DL(E)) = M , then whenever F is a

graph and there exists a surjective ∗-homomorphism from L(E) to L(F ), we have

sign det(I − AtE) = sign det(I − AtF ).
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Chapter 5

Automorphisms

In this chapter, we consider methods of constructing endormorphisms and automor-

phisms for a Leavitt path algebra.

5.1 Endormophisms and Unitaries in Leavitt Path

Algebras

If L(E) is a unital Leavitt path algebra, an element U ∈ L(E) is called a unitary if

U∗U = U∗U = 1. We let U(L(E)) := {U ∈ L(E) : UU∗ = U∗U = 1} denote the set

of unitaries in L(E), and we let

Uv(L(E)) := {U ∈ U(L(E)) : Upv = pvU for all v ∈ E0 }

denote the unitaries in L(E) that commute with each vertex projection. Note that if

U ∈ Uv(L(E)), then UpvU
∗ = U∗pvU = pv for all v ∈ E0.
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Let EndL(E) := {φ : L(E) → L(E) : φ is a ∗-homomorphism} denote the endo-

morphisms on L(E), and let

Endv L(E) := {φ ∈ EndL(E) : φ(pv) = pv for all v ∈ E0}

denote the endomorphism that fix vertex projections. Note that if φ ∈ Endv L(E),

then φ(1) = φ(
∑

v∈E0 pv) =
∑

v∈E0 φ(pv) =
∑

v∈E0 pv = 1, so any φ ∈ Endv L(E) is a

unital endomorphism.

Proposition 5.1.1. Let E be a finite graph with no sinks, let K be a field, and

let L(E) := LK(E). If U ∈ Uv(L(E)), then there exists a unique endomorphism

αU ∈ Endv L(E) with αU(se) = U∗se for all e ∈ E1. If α ∈ Endv L(E), then there

exists a unique Uα ∈ Uv(L(E)) such that α(se) = U∗αse for all e ∈ E1.

Proof. Let U ∈ Uv(L(E)). If {se, pv : e ∈ E1, v ∈ E0} is a generating Cuntz-Krieger

E-family for L(E), then {U∗se, pv : e ∈ E1, v ∈ E0} is also a Cuntz-Krieger E-

family. All the relations are straightforward to verify, and the fact that U commutes

with vertex projections gives (CK2):
∑

s(e)=v(U
∗se)(U

∗se)
∗ =

∑
s(e)=v U

∗ses
∗
eU =

U∗(
∑

s(e)=v ses
∗
e)U = U∗pr(e)U = pr(e). By the universal property of L(E), there

exists a ∗-homomorphism αU : L(E)→ L(E) with αU(se) = U∗se for all e ∈ E1 and

αU(pv) = pv for all v ∈ E0. Thus αU ∈ Endv(L(E)) with αU(se) = U∗se for all e ∈ E1.

Moreover, α is unique because its values on the generators {se, pv : e ∈ E1, v ∈ E0}

is prescribed.

If α ∈ Endv L(E), we define Uα :=
∑

e∈E1 seα(se)
∗. Then

UαU
∗
α =

∑
e∈E1

seα(se)
∗
∑
f∈E1

α(sf )s
∗
f =

∑
e,f∈E1

seα(s∗esf )s
∗
f =

∑
e∈E1

seα(pr(e))s
∗
e

=
∑
e∈E1

sepr(e)s
∗
e =

∑
e∈E1

ses
∗
e =

∑
v∈E0

pv = 1
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and

U∗αUα =
∑
e∈E1

α(se)s
∗
e

∑
f∈E1

sfα(sf )
∗ =

∑
e,f∈E1

α(se)s
∗
esfα(sf )

∗ =
∑
e∈E1

α(se)pr(e)α(se)
∗

=
∑
e∈E1

α(se)α(pr(e))α(se)
∗ =

∑
e∈E1

α(sepr(e)se)
∗ = α(

∑
e∈E1

ses
∗
e) = α(1) = 1.

Hence Uα is a unitary. Moreover,

U∗αpvUα = (
∑
e∈E1

α(se)s
∗
e)pv(

∑
f∈E1

sfα(sf )
∗ =

∑
s(e)=v

α(se)s
∗
eseα(se)

∗

=
∑
s(e)=v

α(se)pr(e)α(se)
∗ =

∑
s(e)=v

α(se)α(pr(e))α(se)
∗ =

∑
s(e)=v

α(sepr(e)s
∗
e)

=
∑
s(e)=v

α(ses
∗
e) = α(

∑
s(e)=v

ses
∗
e) = α(pv) = pv.

Thus Uα ∈ Ue(L(E)). Moreover, if V is another unitary with V se = se for all e ∈ E1,

then Uαse = V se for all e ∈ E1, and Uα = Uα1 = Uα
∑

e∈E1 ses
∗
e =

∑
e∈E1 Uαses

∗
e =∑

e∈E1 V ses
∗
e = V

∑
e∈E1 ses

∗
e = V 1 = V . Hence the unitary Uα is unique.

Proposition 5.1.1 shows that there is a bijective correspondence between the ∗-

endomorphisms of L(E) that fix vertex projections and unitaries of L(E) that com-

mute with vertex projections. The map α 7→ Uα is a bijection from Endv L(E) onto

Uv(L(E)) with inverse given by U 7→ αU .

Notice that when a graph E has a single vertex (such as the graph E2 for the

Leavitt path algebra L2), then the only vertex projection is equal to the multiplica-

tive identity 1, and Proposition 5.1.1 gives a bijective correspondence between unital

endomorphisms of L(E) and unitaries in L(E).
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5.2 Properties of Endomorphisms and Automor-

phisms

Although Proposition 5.1.1 shows that the map α 7→ Uα is a bijective correspon-

dence between Endv L(E) and Uv(L(E)), this map does not preserve the standard

operations; i.e., composition on Endv L(E) does not correspond to multiplication in

Uv(L(E)). In particular, if U, V ∈ Uv(L(V )), then αU ◦ αV is not equal to αUV .

Instead, we see that for each e ∈ E1

αU ◦ αV (se) = αU(V ∗se) = αU(V ∗)αU(se) = αU(V ∗)U∗se = (UαU(V ))∗se

so that

αU ◦ αV = αUαU (V ).

Using this relation, we may define an operation ? on Uv(L(E)) by

U ? V := UαU(V ).

This may be viewed as a multiplication satisfying a “cocycle condition”. With this

operation on Uv(L(E)), the map α 7→ αU becomes a bijective, operation-preserving

morphism from Endv L(E) onto Uv(L(E)). In particular, since Endv L(E) is a monoid

under the operation of composition, Uv(L(E)) is also a monoid under the ? opera-

tion. Moreover, invertible elements (i.e., automorphisms) in Endv L(E) correspond

to unitaries in Uv(L(E)) that are invertible with respect to the ? operation.

Proposition 5.2.1. Let E be a finite graph, let K be a field, and let L(E) := LK(E).

(1) If U ∈ Uv(L(E)), then αU is surjective if and only if U ∈ imαU .

(2) If E satisfies Condition (L), then for every U ∈ Uv(L(E)) the endomorphism

αU is injective.
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Proof. If αU is surjective, then we trivially have U∗ ∈ imαU . Conversely, if U∗ ∈

imαU , then there exists V ∈ L(E) with αU(V ) = U∗. For each e ∈ E1, we have

αU(V se) = αU(V )αU(se) = U∗Use = se

so that se ∈ imαU . Since the set {se : e ∈ E1} generates L(E), it follows that imαU

contains L(E), and hence αU is surjective.

If E satisfies Condition (L), then for each U ∈ Uv(L(E)) the endomorphism αU

fixes vertex projections, so that αU(pv) = pv 6= 0 for all v ∈ E0. The Cuntz-Krieger

uniqueness theorem then implies that αU is injective.

39



Chapter 6

Endomorphisms and Subalgebras

In this chapter we study the image of the diagonal under an endomorphism αU .

6.1 Inner Automorphisms

Definition 6.1.1. Let E be a finite graph, let K be a field, and let L(E) := LK(E).

Define Ψ : L(E)→ L(E) by

Ψ(x) :=
∑
e∈E1

sexs
∗
e.

For k ∈ N ∪ {0}, we let Ψk denote the k-fold composition of Ψ; i.e., Ψ0 := id, and

Ψk := Ψ ◦Ψk−1 for k ∈ N.

Lemma 6.1.2. The map Ψ : L(E) → L(E) is linear and ∗-preserving. In addition,

if x, y ∈ L(E), and at least one of x and y is in the commutant of {pv : v ∈ E0},

then Ψ(xy) = Ψ(x)Ψ(y). (In particular, if x ∈ Uv(L(E)) or y ∈ Uv(L(E)), then

Ψ(xy) = Ψ(x)Ψ(y).)

Proof. It is straightforward to verify Ψ is linear and ∗-preserving. If either x or y is
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in the commutant of {pv : v ∈ E0}, then Ψ(x)Ψ(y) =
∑

e∈E1 sexs
∗
e

∑
f∈E1 sfys

∗
f =∑

e,f∈E1 sexs
∗
esfys

∗
f =

∑
e∈E1 sexs

∗
eseys

∗
e =

∑
e∈E1 sexpr(e)ys

∗
e =

∑
e∈E1 sexys

∗
e =

Ψ(xy).

Lemma 6.1.3. Let E be a finite graph, let K be a field, and let L(E) := LK(E). If

U ∈ Uv(L(E)), then Ψ(U) ∈ Uv(L(E)),

Ψ(U∗)se = seU
∗ for all e ∈ E1,

and for k ∈ N

Ψk(U∗)se = seΨ
k−1(U∗) for all e ∈ E1.

Proof. It follows from Lemma 6.1.2 that Ψ(U)Ψ(U)∗ = Ψ(UU∗) = Ψ(1) = 1 and

Ψ(U)∗Ψ(U) = Ψ(U∗U) = Ψ(1) = 1, so that Ψ(U) is a unitary. Furthermore, for each

v ∈ E0 we have

Ψ(U)pv =
∑
e∈E1

seUs
∗
epv =

∑
s(e)=v

seUs
∗
e =

∑
e∈E1

pvseUs
∗
e = pv

∑
e∈E1

seUs
∗
e = pvΨ(U)

so that Ψ(U) ∈ Uv(L(E)). In addition,

Ψ(U∗)se =
∑
f∈E1

sfU
∗s∗fse = seU

∗s∗ese = seU
∗pr(e) = sepr(e)U

∗ = seU
∗.

For the final claim, let k ∈ N. Then V := Ψk−1(U) is a unitary in Uv(L(E)), and

Ψ(U∗)se = seU
∗ implies Ψk(U∗)se = seΨ

k−1(U∗).

Definition 6.1.4. An endomorphism α : L(E) → L(E) is inner if there exists a

unitary V ∈ L(E) such that α(x) = V xV ∗. For a unitary V ∈ L(E) we define

Ad(V ) : L(E)→ L(E) by Ad(V )(x) := V xV ∗.

Theorem 6.1.5. Let E be a finite graph, let K be a field, and let L(E) := LK(E).

An endomorphism αU ∈ Endv(L(E)) is inner if and only if there exists V ∈ Uv(L(E))

such that U = Ψ(V )V ∗. Moreover, in this situation αU = Ad(V ).
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Proof. If U = Ψ(V )V ∗ with V ∈ Uv(L(E)), then for all e ∈ E1 we apply Lemma 6.1.3

to obtain αU(se) = U∗se = VΨ(V )∗se = VΨ(V ∗)se = V seΨ
0(V ∗) = V seV

∗. There-

fore, if α = e1 . . . en and β = f1 . . . fm, we have

αU(sαs
∗
β) = αU(se1) . . . αU(sen)αU(sfm)∗ . . . αU(sf1)

∗

= V se1V
∗ . . . V senV

∗V s∗fmV
∗ . . . V s∗f1V

∗

= V se1 . . . sens
∗
fm . . . s

∗
f1
V ∗

= V sαs
∗
βV
∗.

Since L(E) = span{sαs∗β : α, β ∈ E∗}, by linearity we obtain αU(x) = V xV ∗ for all

x ∈ L(E). Thus αU is inner.

If αU is inner, there exists a unitary V ∈ L(E) such that αU(x) = V xV ∗. For any

v ∈ E0, we have V ∗pvV = V ∗αU(pv)V = V ∗V pvV
∗V = pv, so that V ∈ Uv(L(E)).

Moreover, for every e ∈ E1, we apply Lemma 6.1.3 to obtain

U∗se = αU(se) = V seV
∗ = VΨ(V ∗)se.

Thus

U∗ = U∗1 = U∗
∑
e∈E1

ses
∗
e =

∑
e∈E1

U∗ses
∗
e =

∑
e∈E1

VΨ(V )ses
∗
e

= VΨ(V )
∑
e∈E1

ses
∗
e = VΨ(V )1 = VΨ(V ∗)

which implies U = Ψ(V )V ∗.

6.2 The Fixed-Point Algebra

Definition 6.2.1. Let E be a graph with no sinks. We define the fixed-point algebra

of L(E) to be the algebra

FL(E) := span{sαs∗β : α, β ∈ E∗ and |α| = |β|}.
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For each k ∈ N ∪ {0} we define

FL(E),k := span{sαs∗β : α, β ∈ E∗ and |α| = |β| = k}.

When E is row-finite with no sinks, an application of (CK2) shows

sαs
∗
β = sαpr(α)s

∗
β = sα

 ∑
s(e)=r(α)

ses
∗
e

 s∗β =
∑

s(e)=r(α)

sαes
∗
βe

and hence

FL(E),0 ⊆ FL(E),1 ⊆ FL(E),2 ⊆ . . .

We also see that

FL(E) =
∞⋃
k=0

FL(E),k.

When the graph E is understood, we shall often write F := FL(E) and Fk :=

FL(E),k to make the notation easier to use.

Lemma 6.2.2. Let E be a finite graph, let K be a field, and let L(E) := LK(E). Let

x ∈ F . Then there exists k ∈ N such that x ∈ Fk, and

αU(x) = Ad(U∗Ψ(U∗) . . .Ψk(U∗))(x).

Proof. By linearity, it suffices to prove the result when x has the form sαs
∗
β for α, β ∈

Ek. We shall prove this by induction on k ∈ N. If k = 1, then for any e, f ∈ E1

we have αU(ses
∗
f ) = αU(se)(αU(sf ))

∗ = U∗se(U
∗sf )

∗ = U∗ses
∗
fU = Ad(U∗)(ses

∗
f ) and

(1) holds. Assuming that the result holds for k − 1, let α, β ∈ Ek. Then α = eα′

and β = fβ′ for e, f ∈ E1 and α′, β′ ∈ Ek−1. Hence, using repeated applications of

Lemma 6.1.3, we have

αU(sαs
∗
β) = αU(se)αU(sα′s

∗
β′)(αU(sf ))

∗

= U∗seU
∗Ψ(U∗) . . .Ψk−1(U∗)sα′s

∗
β′Ψ

k−1(U) . . .Ψ(U)Us∗fU
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= U∗Ψ(U∗)seΨ(U∗) . . .Ψk−1(U∗)sα′s
∗
β′Ψ

k−1(U) . . .Ψ(U)s∗fΨ(U)U

...

= U∗Ψ(U∗)Ψ2(U∗) . . .Ψk(U∗)sesα′s
∗
β′s
∗
fΨ

k(U) . . .Ψ(U)U

= Ad(U∗Ψ(U∗) . . .Ψk(U∗))(sαs
∗
β).

Definition 6.2.3. Let S ⊆ L(E). We say that an element a ∈ L(E) conjugates S if

a∗Sa ⊆ S, and we say a normalizes S if a∗Sa ⊆ S and a∗Sa ⊆ S.

Lemma 6.2.4. Let E be a finite graph with no sinks, let K be a field, and let L(E) :=

LK(E).

(1) If a conjugates S and b conjugates S, then ab conjugates S.

(2) For any e ∈ E1, se normalizes DL(E); i.e., s∗eDL(E)se ⊆ DL(E) and seDL(E)s
∗
e ⊆

DL(E).

(3) If a conjugates DL(E), then Ψ(a) conjugates DL(E).

(4) If a conjugates FL(E), then Ψ(a) conjugates FL(E).

Proof. (1) Suppose a and b both conjugate S. Then (ab)∗S(ab) = b∗(a∗Sa)b ⊆ b∗Sb ⊆

S. Thus ab conjugates S.

(2) For any α ∈ E∗ write α = e1 . . . en. Then sesαs
∗
αs
∗
e = sαes

∗
αe ∈ DL(E).

In addition, s∗esαs
∗
αse is nonzero if and only if e = e1, in which case s∗esαs

∗
αse =

se2...ens
∗
e2...en

∈ DL(E). Since DL(E) = span{sαs∗α : α ∈ E∗}, we have by linearity that

seDL(E)s
∗
e ⊆ DL(E) and s∗eDL(E)se ⊆ DL(E).
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(3) Suppose a conjugates DL(E). Let x = sαs
∗
α with α ∈ E∗, and write α =

α1 . . . αn with αi ∈ E1 for 1 ≤ i ≤ n. Then (2) and the fact that a conjugates DL(E)

implies sα1a
∗sα2...αns

∗
α2...αn

as∗α1
∈ DL(E). Thus

Ψ(a)∗xΨ(a) =

(∑
e∈E1

sea
∗s∗e

)
sαs

∗
α

∑
f∈E1

sfas
∗
f

 = sα1a
∗s∗α1

sαs
∗
αsα1as

∗
α1

= sα1a
∗sα2...αns

∗
α2...αn

as∗α1
∈ DL(E)

By linearity, Ψ(a)∗DL(E)Ψ(a) ⊆ DL(E).

(4) Suppose a conjugates FL(E). Let x = sαs
∗
β with α, β ∈ E∗ and |α| = |β|.

Write α = α1 . . . αn and β = β1 . . . βn with αi, βi ∈ E1 for 1 ≤ i ≤ n. Since a

conjugates FL(E), we have a∗sα2...αns
∗
β2...βn

a ∈ FL(E). Thus sα1a
∗sα2...αns

∗
β2...βn

as∗β1 ∈

FL(E). Consequently,

Ψ(a)∗xΨ(a) =

(∑
e∈E1

sea
∗s∗e

)
sαs

∗
β

∑
f∈E1

sfas
∗
f

 = sα1a
∗s∗α1

sαs
∗
βsβ1as

∗
β1

= sα1a
∗sα2...αns

∗
β2...βn

as∗β1 ∈ FL(E)

By linearity, Ψ(a)∗FL(E)Ψ(a) ⊆ FL(E).

Definition 6.2.5. Let E be a finite graph, let K be a field, and let L(E) := LK(E).

Define Υ : L(E)→ L(E) by

Υ(x) :=
∑
e,f∈E1

sexs
∗
f .

Lemma 6.2.6. Let E be a finite graph with no sinks, let K be a field, and let L(E) :=

LK(E).

(1) DL(E) is generated as an algebra by the set {ses∗e : e ∈ E1} ∪Ψ(DL(E)).

(2) If U ∈ Uv(L(E)), then Ad(U) ◦Ψ ◦ αU = αU ◦Ψ.
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(3) FL(E) is generated as an algebra by the set {ses∗f : e, f ∈ E1} ∪Υ(FL(E)).

(4) If U ∈ Uv(L(E)), then Ad(U) ◦Υ ◦ αU = αU ◦Υ.

Proof. (1) It suffices to prove that for each k ∈ {2, 3, . . . } and α ∈ Ek we have sαs
∗
α

is in the algebra generated by {ses∗e : e ∈ E1} ∪Ψ(DL(E)). Given α ∈ Ek with k ≥ 2,

write α = fα′ with f ∈ E1 and α′ ∈ Ek−1. Then Ψ(sα′s
∗
α′) =

∑
e∈E1 sesα′s

∗
α′s
∗
e.

Hence

sfs
∗
fΨ(sα′s

∗
α′)sfs

∗
f =

∑
e∈E1

sfs
∗
fsesα′s

∗
α′s
∗
esfs

∗
f = sfsα′s

∗
α′s
∗
f = sαs

∗
α.

Thus sαs
∗
α is in the algebra generated by {ses∗e : e ∈ E1} ∪Ψ(DL(E)).

(2) For any x ∈ L(E) we have

U∗Ψ(αU(x))U = U∗

(∑
e∈E1

seαU(x)s∗e

)
U =

∑
e∈E1

U∗seαU(x)s∗eU

=
∑
e∈E1

αU(se)αU(x)αU(s∗e) = αU

(∑
e∈E1

sexs
∗
e

)
= αU(Ψ(x)).

(3) It suffices to prove that for each k ∈ {2, 3, . . . } and α, β ∈ Ek we have sαs
∗
β

is in the algebra generated by {ses∗f : e, f ∈ E1} ∪ Υ(FL(E)). Given α, β ∈ Ek

with k ≥ 2, write α = gα′ and β = hβ′ with g, h ∈ E1 and α′, β′ ∈ Ek−1. Then

Υ(sα′s
∗
β′) =

∑
e,f∈E1 sesα′s

∗
β′s
∗
f . Hence

sgs
∗
gΨ(sα′s

∗
β′)shs

∗
h =

∑
e∈E1

sgs
∗
gsesα′s

∗
α′s
∗
fshs

∗
h = sgsα′s

∗
α′s
∗
h = sαs

∗
β.

Thus sαs
∗
β is in the algebra generated by {ses∗f : e ∈ E1} ∪Υ(FL(E)).

(4) For any x ∈ L(E) we have

U∗Υ(αU(x))U = U∗

 ∑
e,f∈E1

seαU(x)s∗f

U =
∑
e,f∈E1

U∗seαU(x)s∗fU
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=
∑
e,f∈E1

αU(se)αU(x)αU(s∗e) = αU

 ∑
e,f∈E1

sexs
∗
f

 = αU(Υ(x)).

Theorem 6.2.7. Let E be a finite graph with no sinks, let K be a field, and let

L(E) := LK(E). If U ∈ Uv(L(E)), we have the following.

(1) If U∗DL(E)U ⊆ DL(E), then αU(DL(E)) ⊆ DL(E).

(2) If αU(DL(E)) = DL(E), then U∗DL(E)U ⊆ DL(E).

Proof. (1) Suppose U∗DL(E)U ⊆ DL(E). To establish αU(DL(E)) ⊆ DL(E), it suffices

to show αU(sµs
∗
µ) ∈ DL(E) for any µ ∈ E∗. Let x = sµs

∗
µ with µ ∈ E∗ and |µ| = k.

Then x = sµs
∗
µ ∈ Fk. Since U conjugates DL(E), it follows from Lemma 6.2.4(3), that

each of U,Ψ(U),Ψ2(U), . . . ,Ψk(U) conjugates DL(E). By Lemma 6.2.4(1), the unitary

V := UΨ(U)Ψ2(U) . . . ,Ψk(U) conjugates DL(E). Therefore, applying Lemma 6.2.2

we have αU(x) = Ad(V )(x) = V xV ∗ ∈ DL(E). Hence αU(DL(E)) ⊆ DL(E).

(2) Suppose αU(DL(E)) = DL(E). By Lemma 6.2.6(1) DL(E) is generated as an

algebra by the set {ses∗e : e ∈ E1} ∪ Ψ(DL(E)). Since U is a unitary, to show U

conjugates DL(E), it suffices to prove that U conjugates both S := {ses∗e : e ∈ E1} and

Ψ(DL(E)). If e ∈ E1, then U∗ses
∗
eU = αU(se)αU(s∗e) = αU(ses

∗
e) ∈ DL(E), so U∗SU ⊆

S. Furthermore, using Lemma 6.2.6(2) and the fact that Ψ(DL(E)) ⊆ DL(E), we have

U∗Ψ(DL(E))U = U∗Ψ(αU(DL(E)))U = αU(Ψ(DL(E))) ⊆ αU(DL(E)) = DL(E).

Theorem 6.2.8. Let E be a finite graph with no sinks, let K be a field, and let

L(E) := LK(E). If U ∈ Uv(L(E)), then we have the following.

(1) If U∗FL(E)U ⊆ FL(E), then αU(FL(E)) ⊆ FL(E).
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(2) If αU(FL(E)) = FL(E), then U∗FL(E)U ⊆ FL(E).

Proof. (1) Suppose U∗FL(E)U ⊆ FL(E). To establish αU(FL(E)) ⊆ FL(E), it suffices

to show αU(sµs
∗
ν) ∈ FL(E) for any µ, ν ∈ E∗ with |µ| = |ν|. Let x = sµs

∗
ν with

µ, ν ∈ E∗ and |µ| = |ν| = k. Then x = sµs
∗
ν ∈ Fk. Since U conjugates FL(E),

it follows from Lemma 6.2.4(4), that each of U,Ψ(U),Ψ2(U), . . . ,Ψk(U) conjugates

FL(E). By Lemma 6.2.4(1), the unitary V := UΨ(U)Ψ2(U) . . . ,Ψk(U) conjugates

FL(E). Therefore, applying Lemma 6.2.2 we have αU(x) = Ad(V )(x) = V xV ∗ ∈

FL(E). Hence αU(FL(E)) ⊆ FL(E).

(2) Suppose αU(FL(E)) = FL(E). By Lemma 6.2.6(3) FL(E) is generated as an

algebra by the set {ses∗f : e, f ∈ E1} ∪ Ψ(FL(E)). Since U is a unitary, to show U

conjugates FL(E), it suffices to prove that U conjugates both S := {ses∗f : e, f ∈ E1}

and Υ(FL(E)). If e, f ∈ E1, then U∗ses
∗
fU = αU(se)αU(s∗f ) = αU(ses

∗
f ) ∈ FL(E), so

U∗SU ⊆ S. Furthermore, using Lemma 6.2.6(4) and that Υ(FL(E)) ⊆ FL(E), we have

U∗Υ(FL(E))U = U∗Υ(αU(FL(E)))U = αU(Υ(FL(E))) ⊆ αU(FL(E)) = FL(E).

Theorem 6.2.9. Let E be a graph that satisfies Condition (L), and let U ∈ Uv(L(E)).

The following are equivalent.

(1) U conjugates DL(E).

(2) U normalizes DL(E).

(3) U∗DL(E)U = DL(E).

Moreover, each of these conditions implies αU(DL(E)) ⊆ DL(E).

Proof. (3) =⇒ (2): If U∗DL(E)U = DL(E), then UDL(E)U
∗ = U(U∗DL(E)U)U∗ =

DL(E), so U normalizes DL(E).
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(2) =⇒ (1): This follows trivially from the definitions.

(1) =⇒ (3): Since E satisfies Condition (L), it follows from Corollary 3.2.6 thatDL(E)

is a MASA. Since U conjugates DL(E) se have U∗DL(E)U ⊆ DL(E). Hence DL(E) =

UU∗DL(E)UU
∗ ⊆ UDL(E)U

∗. Since U is a unitary and DL(E) is an abelian subalgebra,

UDL(E)U
∗ is an abelian subalgebra. Because UDL(E)U

∗ contains DL(E), the fact DL(E)

is a MASA implies UDL(E)U
∗ = DL(E). Thus U∗DL(E)U = U∗(UDL(E)U

∗)U = DL(E).

If any of conditions (1), (2), or (3) holds, then (3) holds, and αU(DL(E)) ⊆ DL(E)

by Theorem 6.2.7.
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