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ABSTRACT

All participating processes in a distributed system often have to reach agree

ment of some kind. The presence of malicious faults can cause a faulty process 

to send conflicting messages to different processes, making it difficult for nonfaulty 

processes to reach agreement. This problem, often called Byzantine agreement, 

Byzantine generals problem, or interactive consistency, is important in both the 

theory and practice of distributed computing and has been the subject of intense 

research in recent years.

This thesis presents a comprehensive study of this problem and its various 

applications. The Mostly Byzantine agreement is proposed as a less restrictive 

model for process-control applications. It can achieve a high degree of fault tolerance 

with a relatively low cost.
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CHAPTER 1

Introduction

Computer systems are used in a great variety of applications today. As more 

and more complex applications have been automated and we have become increas

ingly dependent on computing systems, the reliability of computers has become a 

major concern. At one extreme, a wrong output may cause minor inconvenience; at 

the other end of the spectrum, where human lives and/or vast sums of money may 

be at stake, no failures can be tolerated. Enhancing the reliability of computing 

systems is not a new topic; since the 1950’s fault tolerance techniques have been 

adopted in order to achieve highly reliable hardware operation. Considerable effort 

has been devoted to the development of techniques to tolerate failures in hardware 

as well as software.

The motivation of this thesis is to study techniques to cope with a type of 

failure that is often overlooked—namely, a faulty component which sends conflicting 

information to different parts of the system. The problem of coping with this type 

of failure is known as the Byzantine generals problem, or Byzantine agreement. 

The major part of this thesis is devoted to a study of various algorithms to solve 

the Byzantine generals problem and the application of these algorithms to fault 

tolerance.

1.1 Fault Tolerance

Following the terminology suggested in [AND 82], the reliability of a system 

is usually characterized by a function which is the probability that no failure of 

the system would occur in a certain period of time. A failure of a system is an 

externally observed event that occurs when the behavior of the system deviates
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from its specification. An erroneous state is an internal state which would lead to 

a failure. An error is part of an erroneous state and caused by faults which are the 

presence of defects in a component or in the design of the system.

The most straightforward way to construct reliable computing systems would 

be to use only reliable components, and put them together following only correct 

designs. In practice, however, one often has to try to achieve reliability despite the 

unreliability of the hardware and software components. So, this simple approach, 

aiming at fault avoidance and removal, can not guarantee that the overall system is 

free from faults and must be complemented by techniques of fault tolerance, which 

attempts to intervene and prevent occurring faults from causing system failures.

In the early days of computer development, hardware was a dominating factor 

both in the cost and complexity of a computer system. Early research in fault 

tolerance focussed on hardware faults, for example, circuit testing and fault diag

nosis. Hardware faults can be transient or permanent. A transient fault exists in a 

system for only a limited period of time (less than some threshold) and disappears 

from that system spontaneously from the system after that period. A transient 

fault may be intermittent if it appears more than once, A permanent error is a 

fault which is present for a period longer than a threshold. Unlike a transient fault, 

which is usually due to physical deterioration, a permanent fault is often the result 

of some design or manufacturing errors, such as misunderstanding of specifications 

or incorrect connections of circuits.

As software has gained a dominating position, software faults have also be

come the major factor contributing to the failure of computing systems. Unlike 

hardware, software is not physical and not subject to deterioration with time. So 

software faults are usually permanent and are the result of design errors. Such 

design errors often arise from some exceptional cases where special attention is re

quired. Sometimes it may not be possible to precisely classify whether a fault is a 
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hardware or a software one. For example, in some data structure oriented computer 

systems, the faults in that data structure can induce either hardware or software 

faults, or both. Often, a failure of such a kind of system can not be merely counted 

as a hardware or software fault; rather it is a combination of both faults.

The faults discussed here are assumed to be unmalicious in the sense that 

they are caused by some random process, either due to design errors or physical 

deterioration. Generally, a fault can be malicious with a purpose to prevent the 

system from meeting its specification. We will discuss those kinds of faults in later 

chapters.

All fault tolerant systems depend on the effective deployment and utilization of 

redundancy to compensate for the effect of faults in the system. By redundancy, we 

mean extra time or extra components which would not be required in a system free 

from faults. Time redundancy requires extra executions of the same computation, 

perhaps using different methods. Component redundancy involves the use of extra 

physical components, such as memory cells, bus lines, functional modules, etc., to 

provide the extra information needed to guard against failures. Generally, four 

phases can be identified for a fault tolerant implementation to prevent faults from 

causing to system failures. They are error detection, damage assessment, error 

recovery, and fault treatment and continued system services. Though most faults 

may not be directly detected, they can often introduce some detectable erroneous 

states. When an error is detected, the first step is to assess the extent to which the 

system state is damaged. It is desirable to limit the effect of fault to one area of 

the system, thus, preventing contamination of other areas. Error recovery attempts 

to transform the current erroneous system state into a well defined and error free 

state from which the system operation can continue. Techniques include masking 

of faults, retrying of operation reconfiguration of the system, and isolation of faulty 

components. In the fault treatment and continued service phase, techniques are used 
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to enable the system to continue to provide the services required by its specification, 

by ensuring that the fault is not repeated soon. For example, the system can start 

from the roll back point, the failed module can be replaced, etc.

Nearly all hardware fault tolerance techniques employ only component redun

dancy. Usually, hardware redundancy provides no recovery mechanism, rather it 

tries to mask the error. One frequently used method is to replace a single module 

by several identical or functionally equivalent modules. These modules are assumed 

to perform the same task and their outputs are sent to a voting circuit that would 

select the majority as the result. Errors can be detected as long as there is at least 

one properly functional component. Errors can be masked as long as a majority of 

them are correct. One classical example is the so called Triple Modular Redundancy 

(TMR), where three identical modules are provided to tolerate one failure. Another 

approach is to use structurally redundant components. One fine example is an error 

correcting code used in the memory system. In this scheme several redundant bits 

are used to summarize information about the data bits and a simple computation 

would indicate the existence and position of error in data bits.

Software fault tolerance techniques include both time and component redun

dancy. Error recovery is a kind of time redundancy. Recovery can be backward, 

restoring the computation to a prior correct state of the system regardless of the 

current erroneous state, or forward, manipulating some parts of the current state 

to produce a new one which would hopefully be error free. Recovery block is a well 

studied recovery scheme. A recovery block consists of a primary module, an accep

tance test and a set of alternatives which are supposed to fulfill the same task as 

the primary module, but in a probably less efficient way. Before entering the block, 

a recovery point is set up to save all the state information that might be changed 

during the execution of the primary module or any of the alternatives. The primary 

module is executed first and the result directed to an acceptance test that would 
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check its correctness. If the result is acceptable, the whole block is finished. Oth

erwise the recovery point is restored and the first alternative is invoked, running 

like the primary module, and so on, until either the acceptance test is passed or 

all the alternatives have been tried. In the latter case, a failure is declared. An 

example of component redundancy is the N-version programming scheme. In this 

scheme, N different programs are developed to fulfill a single task. Each program 

can run independently (perhaps in parallel) and the results are compared to invoke 

appropriate actions.

1.2 Overview of the Thesis

The main theme of this thesis is to investigate techniques for tolerating ar

bitrary faults, especially malicious faults, in a distributed computing system. In 

such a system, every processor has its own memory and clock, and processors can 

communicate with each other through various communication lines. Some of the 

motivations to build distributed systems are to share resources, to speed up com

putation, to enhance reliability and to facilitate communication, etc.

While it is difficult to program a distributed system, to tolerate faults in such 

a system is even harder. Many techniques of fault tolerance in a distributed system 

assume a model in which a process fails only cleanly, by just terminating, without 

sending any bad data to corrupt other processes in the system. However, this 

assumption is not generally true. In general, the behavior of a faulty process is 

unpredictable. In the extreme case, it might intentionally subvert the effort of 

other processes. In this thesis, we are especially interested in Byzantine failure. In 

this fault model, the faulty process can send conflicting message to other processes, 

or unfaithfully relay other processes’ messages.

In chapter 2, we will present a comprehensive survey of Byzantine agreement. 
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This problem serves as the theoretical basis of techniques to tolerate malicious 

faults. Suppose in a distributed system, every process has some initial value. The 

goal of Byzantine agreement is to enable all reliable processes to reach a decision 

in spite of the arbitrary malicious behavior by some faulty processes, such that all 

reliable processes should reach the same decision and if all reliable processes have 

the same initial value, they should all decide on that value. While easy to formulate, 

the problem is surprisingly hard to solve.

Chapter 3 presents a survey of applications of Byzantine agreement, such as 

clock synchronization, fail-stop processor, state machine, and distributed database 

system. Essential to these applications is reliable broadcasting, which can be easily 

implemented by using solutions to Byzantine agreement. We shall see that for some 

applications, Byzantine agreement presents an elegant and powerful solution, while 

for other applications like distributed data processing the power is limited.

In Chapter 4, we propose a variation of Byzantine agreement, namely the 

Mostly Byzantine agreement. Unlike Byzantine agreement, which requires reaching 

agreement every time, the Mostly Byzantine agreement does not. Rather, agreement 

is an overall property. In the Mostly Byzantine agreement, there can be only a finite 

number of disagreements in an infinite number of attempts to reach agreement. We 

present a general framework for Mostly Byzantine agreement using the techniques 

of self-stabilization and two algorithms with different convergence speeds.

Chapter 5 summarizes this thesis and outlines some research areas.



CHAPTER 2

Byzantine Agreement

2.1 Introduction

In a distributed system, each participating process often has to reach agree

ment of some kind. If all processes are reliable, or all faulty processes die cleanly, 

a simple round of message exchanges will enable all reliable processes to reach 

agreement. But when faulty processes can have arbitrary failures, such as send

ing conflicting messages to others, the problem gets very difficult. This problem, 

reaching agreement in the presence of malicious faults, is often called Byzantine 

agreement, Byzantine generals problem, or interactive consistency problem.

Imagine that several divisions of a Byzantine army, each commanded by its 

own general, are camped outside an enemy city. The Byzantine generals have to 

reach a common agreement on whether or not to attack the enemy city at dawn. 

It is crucial that all the generals agree since an attack by only some divisions 

would result in defeat. The generals can communicate with each other only by 

messengers running from camp to camp. Further, suppose that messengers will not 

be caught by the enemy or tell lies. (We shall see later why this assumption is 

reasonable.) Unfortunately, some generals are traitors, trying to prevent the loyal 

ones from reaching agreement by sending conflicting messages to other generals. 

This is exactly the situation we encounter in distributed systems.

To state the problem more formally, consider a set of directly connected pro

cesses pi, P2, • • •, Pm some of which may be faulty. Each process p, has an initial 

value v,. The goal is that, after a number of message exchanges, each process pt 

has to decide one value d,. that satisfies [PEA 80]:

(1) Agreement: Every reliable process should decide on the same value, i.e., dt -

7
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dj, for any two reliable processes pt and pj.

(2) Validity: If all reliable processes have the same initial value v, then for every 

reliable process dt■ = v.

The messages used are two-party, non-authenticated, or oral messages, for 

which we make the following assumptions [LAM 82] [PEA 80] [DOL 82]: 

Al: Every message that is sent is delivered correctly.

A2: The sender of a message can be identified.

A3: The absence of a message can be detected.

By Al, a faulty process can not change the message sent by another process. 

A2 makes it impossible for a faulty process to introduce spurious messages under the 

name of another process. The combination of Al and A2 prevents a faulty process 

from interfering with the communication between two other processes. A3 ensures 

that a faulty process can not prevent agreement by simply not sending messages to 

some processes. We assume that links in the network are free from failures, since 

it is indistinguishable, in case of corruption or omission of a message, whether the 

sender or the link delivering the message is faulty. This is also the reason why we 

assume that the messengers for the Byzantine generals would not be caught by the 

enemy or tell lies.

In the discussion of Byzantine agreement, we will also use a slightly modified 

model of this problem. In this model, instead of each process having its own initial 

value, only one process, the commander, has a value. All other processes will 

obtain the value of the commander. The values obtained by processes must satisfy 

[LAM 82]:

(1) Agreement: Every reliable process should get the same value.

(2) Validity: If the commander is non-faulty, then all reliable processes should get 

the commander’s value.

In this version of the problem, after sending its value to all the other processes, 
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the commander will not participate in the procedure any more. In the original 

version, no special assumption is made about the commander. In particular it could 

be a possibly unreliable data source that sends a value to each of the n processes 

in the system before the procedure begins and all processes will participate in the 

whole procedure. These two versions are essentially identical. For an algorithm for 

the latter one to solve the first version, we can repeatedly run the algorithm by 

letting each process act as the commander in turn, resulting in each reliable process 

having the same vector holding the private values of all the processes in the system. 

To solve the latter version by using a solution to the original version, we can simply 

add an initial round in which the commander sends its value to every other process.

In this chapter, we will present a comprehensive survey of various algorithms 

for Byzantine agreement. The algorithms we study are primarily for Byzantine 

agreement for binary values and in Section 2.5 we shall see how a binary value 

solution can be extended to the multivalue case. The processes in the system 

are supposed to be fully connected and the messages are non-authenticated and 

synchronized, unless explicitly stated. A discussion of partially connected networks, 

authenticated messages, and asynchronous communication can be found in Section 

2.6, which will address some related topics of Byzantine agreement.

2.2 Impossibility Results

Here, we will discuss some impossibility results concerning the Byzantine agree

ment (generals) problem without formally proving them. Detailed proofs can be 

found in [FIS 82], [DOL 83] and [LAM 82].

The first result is about the redundancy required in the system. If we define 

redundancy as (n — l)/t, where n and t are the number of processes and the number 

of faulty processes respectively, this theorem states that a redundancy of at least 3 
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is required to reach Byzantine agreement.

Theorem 2.1.  Byzantine agreement can not be assured for n processes, of which 

at most t are faulty, if n < 3t + 1.

Just to gain some intuitive feeling about the difficulty of Byzantine agreement 

and why at least a redundancy of 3 is required, consider the scenario in which 

there are three processes, A,B, and C, of which, say C is faulty. Maliciously, C is 

trying to prevent .A’s and B’s effort to obtain consistency. In particular, C can send 

messages to A, suggesting that C’s private value is 0 and B is faulty. Similarly, C’s 

messages to B may suggest to B that C’s private value is 1 and A is lying. If C lies 

consistently, A will not be able to tell whether B or C is faulty. To insure validity, 

A will thus have to select 0 as C’s private value. A similar argument shows that B 

must select 1 as C’s private value, thus defeating the agreement requirement. On 

the other hand, if the reliable processes are programmed to select one value in case 

of conflicting values, we can always construct scenarios to defeat validity. Thus, we 

have shown that there is no solution to the three generals, one traitor Byzantine 

generals problem. By reducing the 3i generals, t traitors Byzantine generals problem 

to the one traitor case, we can get the above result.

In synchronous systems, it is customary to measure time complexity in terms 

of rounds consisting of message exchanges and computation steps, such that during 

a round every process can communicate with all others in the system. The messages 

sent by a process in a given round can not depend on the messages it receives during 

the same round. An important result about the lower bound of complexity of any 

solutions to Byzantine agreement states that at least t + 1 rounds are required to 

reach agreement.

Theorem 2.2.  Byzantine agreement can not be assured within t or fewer rounds 

for n processes and t faulty ones, provided n > t + 1.
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Here, we require that there are at least two reliable processes, since it would 

be trivial to reach agreement when the number of reliable processes is fewer than 

two.

2.3 Deterministic Algorithms

In an early paper on Byzantine generals problem, Lamport, et al. [LAM 82] 

gave a recursive solution. The algorithm is not efficient in complexity and difficult 

to program; however, it served as an existence proof that agreement can be reached 

through t + 1 rounds of message exchanges. The algorithm uses a majority function 

that will be used by each process to decide a value for a given set of values it receives 

from all processes in the system (including itself). For those sets that do not have 

a majority, a predefined default value is used instead. The algorithm BG(t,c,L) 

(Fig. 2.1), which is essentially a solution to the modified version of the Byzantine 

agreement problem, would return to the caller the selected commander’s value, 

given that t is bounded by the number of faulty processes, c is the commander, L 

is the set of processes excluding the commander, and t < |L|. During the process, 

only the initial call of L) implies that there are at most t faulty processes

in the set {c} + L, and in the successive recursive call BG(t',c',L'), t* < t, there 

may be more than t* faulty processes in the set {c} + Lf\ Byzantine agreement 

can be obtained by the method discussed before, letting each process act as the 

commander in turn.

The recursive procedure jBG(t, c,L) involves n — 1 separate executions of the 

procedure BG(t—1, c', L'), each of which invokes n—2 executions of BG(t—2, c", L"), 

in turn. Thus, a process may send many separate messages to each other processes. 

One way to distinguish among these different messages is for each process i to prefix 

its index z to each of the message it sends in step (2). As the recursion unfolds,



12

procedure BG(t, c, L);
begin
(1) The commander c sends its value to every other process;
(2) if t > 0 then

for every process i other than c, let be the value it receives from 
the commander, or DEF AU LT if it receives no value. Processes 
t acts as the commander c in the procedure BG(t — 1, i, L — {»}), 
sending the value to each process in L — {»'}.

(3) For each process t 6 L, let V = {vi,..., vc-i> Vc+1> • • • > Vn}, 
where each i>j,j + t, is the value process t receives from j in 
step (2) (using J3G(t — 1, j, L — {j}), if t > 0, or V = {«»}, other
wise. In both case, is the value process i receives directly from 
the commander c. Process t returns the majority of the set V as 
the decided value for BG(t, c, L).

end;

Fig. 2.1 A recursive algorithm for Byzantine generals problem.

BG(0, c,L) will be called (n — l)(n — 2) • • • (n — i) times to send a value prefixed 

by a sequence of t processes’ name, which can be encoded in length O(logt) bits. 

So the total number of message bits exchanged will be in the order of (logf)(n — 

l)(n — 2) • • • (n — t), which is exponential to t, the number of faulty processes. The 

correctness of the algorithm BG is established by Theorem 2.3.

Theorem 2.3.  For at most t faulty processes, algorithm BG(t,c,L) solves the

Byzantine generals problem, if |L + {c}| > 3t.

To prove the theorem, we first prove the following two lemmas, which establish 

the agreement and validity requirements, respectively.

Lemma 2.1. For any t and at most k faulty processes, BG(t,c,L) satisfies the 

validity condition if \L + {c}| > 2k + t.

PROOF. We will prove, by induction on t, that every reliable process will

get commander c’s value, if c is reliable. By condition Al, every process

will get the value correctly from the commander, so validity is true for

t = 0. We assume that it is true for t — 1, and prove it for t.
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In step (1), the reliable commander sends its value to all 3t other pro

cesses in the system. Every reliable processes will apply BG^t — l,i, Z/), 

with L* = L —= |£| — 1 > 2A:+(t — 1). By induction hypothesis, reli

able process i would get vy = v for each reliable process j. Since there are at 

most k faulty processes, a majority of 2/c + t values received would be equal 

to v. So, process i obtains v = majority{vi, V2, • • •, uc-i> yc+i, • • • i yn} in 
step (3). ।

Lemma 2.2. For at most t faulty processes, BG(t,c, L) satisfies the agreement 

condition, if |£ + {c}| > 3t.

PROOF. If the commander c is reliable, Lemma 2.1 guarantees the validity 

condition; therefore the agreement is satisfied. So we just need a proof for 

the case that the commander is faulty. We prove it by induction on t. For 

t = 0, this is trivially true. We assume it is true for t — 1, and show it is 

also true for t > 0.

There are at most t faulty processes, and c is one of them, so there 

are at most t — 1 faulty processes in L. In step (2), each process i acts 

as the commander in BG(t — l,i,L — {i}). Since \L — {t}| > 3t — 1 > 

3(t —1), by induction hypothesis, every reliable process will get the same set 

{i>i, V2,..., Vc-1> Uc+1> • • •, Vn}, and therefore, obtain the same majority 

value in step (3), proving the lemma in case of a faulty commander. ।

To understand the algorithm better, we informally describe how the algorithm 

works from a non-recursive point of view. Essentially, the algorithm consists of two 

parts, expanding and shrinking the witness tree. The witness tree is expanded level 

by level, each level corresponding to one round of message exchanges. A witness 

tree for process pt in a t faulty processes, n processes Byzantine generals problem 

is a tree which has one node at level 1, n — 1 nodes at level 2, (n — l)(n — 2) nodes 
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at level 3, • • •, (n — l)(n — 2) • • • (n — t) nodes at level t + 1. Level 1 represents 

the messages that pt gets at round 1. Let p0 be the commander, and let all other 

processes be Pi,---,pre-i> each node in the witness tree for pt can be labeled as 

vo»i*3...»fc>0 < k < t, with v0 being the root, vot,^...^ is interpreted as the value 
that pik tells pi that told plfc that • • • p,, told pt3 that p0 told ptl.

To build a witness tree, each process sends all the values at the leaf nodes of 

its current witness tree and expands its witness tree by one level using the messages 

it receives from all other processes. For example, the Vot^i^...!,. node of pt- would 

be expanded by using the values of voi1i2...ik nodes of all the py’s such that j 

{0, • • • > resulting in new nodes voi1i2...ifcy’s- After the witness tree is built,

each process can get its agreement value by shrinking the tree level by level from 

bottom to top until only one node is left, taking the value of that node as the 

agreement value. To shrink a witness tree of depth k, k > 1, the value of each k — 1 

level node is replaced by the majority of the values of that node and all its k level 

children which are also leaf nodes. Fig. 2.2 shows how 2 witness trees for reliable 

processes pi and P2 might be expanded in a 2 faulty processes, 7 processes scenario 

in which the commander j?o and process pc are faulty. Specificallyv po sends value 

0 to odd numbered processes and value 1 to even numbered processes, pg lies to 

even numbered processes in round 2 and to odd numbered processes in round 3. 

Fig. 2.3 shows the shrinking of the witness trees constructed in Fig. 2.2. It also 

shows that agreement is actually satisfied since both pi and p2 have the same set 

of values before applying the last majority function.

As we pointed before, the algorithm uses messages “witnessed” by up to t pro

cesses, with the combination of such (-witness messages in the order of exponential 

to t in total. So this method is very expensive in term of the message bits used, 

although it reaches the t + 1 rounds lower bound for any solution to this problem. 

Also, it is very hard to program this algorithm even if we can devise a non-recursive
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Pl P2

(c)
Fig. 2.2 The construction of witness tree for two processes (a) 
after the first round, (b) after the second round, (c) after the 
third round.

version. The reason lies in the fact that no structure is imposed on the information 

exchanged in the algorithm in which every process just simply broadcasts everything 

it receives, and applies certain decision functions to get the final result [LYN 82].
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Fig. 2.3 The shrinking of the witness trees in Fig. 2.2 by one 
level. Note the difference with Fig. 2.2 (b).

Dolev and Strong [DOL 82b] gave the first algorithm that needs only a polyno

mial amount of message bits. By cleverly summarizing the information and sending 

only what is relevant, they got a solution using 4t + 4 rounds and O(n4 logn) mes

sage bits. The messages used can be thought of as 1-witness messages, since each 

process can confirm another process’s initial value by consulting what other pro

cesses get from that process. Lynch et al. [LYN 82] developed the ideas of Dolev 

and Strong and gave another solution, using 2t + 4 rounds and O(fn + t3 log f) mes

sage bits. The algorithm presented below is taken from [LYN 82] with some minor 

modifications.

Let the number of processes be n > 3f, with each process having an index 

ranging from 1 to n. The only message items are process indices and a special 

value ’V, i.e., the set of message items is / — 1,2,... ,n}. Messages are sets of

message items, thus, each Mt h 2/. Also, we define LOW = t + 1, and HIGH ~ 

2t + 1.

Each process p maintains the witness set each for message item z, and 

the confirmed process set C(p). ^(p) is defined as:

k^x(p) = {j' | P has received message item i from process j}

Letting wz(p) — |IVz(p)|, we define

C(p) --- {fc [^(p) HIGH} 
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and c(p) = |C(p)|.

The algorithm (Fig. 2.4) is organized in t + 2 epochs. Trivially, we suppose 

that there is an epoch 0 in which each process gets its initial value. Each epoch 

consists of two rounds of message exchanges. In the first round, a process will send 

a **’ to every other process (including itself) if it initiates in that epoch. A process 

p initiates

11. in epoch 0, if it has initial value 1, or

12. in epoch e > 0, if it has ce_i(p) > LOW + e — 1, and has not initiated before.

Here, we use IFIie(p), Ce(p) to refer to the set Hz1.(p),C(p) at the end of epoch 

e. In the second round, a process will broadcast the index i if it witnesses (directly 

or indirectly) the initialization of process i. A process p commits in epoch e, if 

ce(p) > HIGH, agreeing on value 1.

procedure JC(t,p);
begin

for e := 0 to t + 2 do
begin

roundl:
broadcast^*') if p initiates in epoch e;
receive l*'s, if any;
W* (p) := {j |p receives * *' from j in epoch e};

round*! :
for x := 1 to n do

if x £ ^.(p) or IVx(p) > LOW then broadcast(z);
receive messages;
for every message item received do

if x is sent by process j then Wx(p) := IVI(p) + {j};
for i := 1 to n do

if Wxlp) > HIGH then C(p) := C(p) + {x} 
end;
if c(p) > HIGH then (decide vp — 1)
else (decide vp = 0)

end;

Fig. 2.4 Algorithm using polynomial message bits and 2t + 4 
rounds.

Theorem 2.4. Algorithm IC solves the Byzantine agreement problem, if n > 3t.

To prove the theorem, we prove the following lemmas which establish the cor
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rectness of the algorithm. All the lemmas refer to the computation of at most t 

faulty process and n > 3t processes. We denote T as the set of all reliable processes.

The first lemma states that C(p) and Wz(p) increase monotonically.

Lemma 2.3. Let 0 < e < e' < t + 2, then Ce(p) C C'(p), and WZ|e(p) C WI)ei (p), 

for all x, p.

PROOF. The proof is trivial, since in the algorithm, no statement takes 

any element away from C(p) and Wz(p). I

Lemma 2.4 says that whenever a reliable process initiates, it is confirmed by 

all reliable processes one epoch later.

Lemma 2.4. Let i € T, if i initiates in epoch e, 0 < e < t = 2, then i E Ce+l(j), 

for all j ET.

PROOF. Since i initiates in e, it announces its initialization in the first 

round of epoch e + 1, and all reliable processes will witness its initialization 

by broadcasting i to every other process in the second round. Thus any 

j E T will get message i from all the reliable processes, so > T >

2t + 1, which implies that t € Ce+i(j). I

The next lemma shows whenever all reliable processes initiate, all reliable pro

cesses will commit one epoch later.

Lemma 2.5. For 0 < e < t + 2, if all i E T initiate in epoch e, then all j E T 

commit in epoch e + 1.

PROOF. For any j E T, by Lemma 2.4, i E Ce-vi^j) for any i E T. The 

lemma follows since |Ce+i(j)| > |7^| > HIGH. I

The following lemma says that whenever a process is confirmed by another 

reliable process, it will be confirmed by all the reliable processes one epoch later.
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Lemma 2.6. For 0 < e < t + 2, i,j € T, if k € C'e(t'), then k € Ce+i(j).

PROOF. Since k E Ce(i), it has been witnessed by at least HIGH pro

cesses, at least LOW of which are reliable. So every reliable process 

has seen at least LOW witnesses of A:. By the algorithm, every reli

able process will broadcast k in the second round of epoch e + 1, so 

|PPA;,e+i(j)| > |r| > HIGH, and the lemma follows. g

Next, we show that when a reliable process initiates in some epoch e, e > 0, 

then all the reliable processes will get initiated one epoch later.

Lemma 2.7. For 0 < e < t + 2, if i E T initiates in epoch e, then all j E T will 

initiate in epoch e + 1, provided they have not initiated before.

PROOF. Since i initiates in epoch e,e > 0, it can only be initiated by 

rule 12, so ce(i) > LOW + e — 1. By Lemma 2.6, Ce(i) C Ce+i(j), for 

all j E T, and by Lemma 2.4, i E Ce+i(j). Since t had not initiated 

before, so no reliable process has ever witnessed it, i.e., wlie(h) < LOW, 

for any h ET, which implies that i CetJxY In particular, i Ce(i). So 

Ce-n(j) — |Ce(l) + {i}| = ce(i) 4-1 > LOW + e. By 12, j initiates in epoch 

e + 1, if it has not initiated before. I

The following lemmas form the backbone for Theorem 2.4. They show that as 

soon as LOW reliable processes have initiated, an avalanche of initialization begins 

which result in all reliable processes initiating and committing two epochs later.

Lemma 2.8. For 0 < e < t = 2, if there is a set of reliable processes A, |^4[ = LOW, 

such that all i E A has initiated at the end of epoch e, then all j E T will get initiated 

at the end of epoch e + 1.

PROOF. Let e* be the least number epoch such that all i E A have initiated 

at the end of epoch e*, we show that all j E T will get initiated at the end
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of epoch e' + 1. If e* = 0, the ci(j') > |A| = LOW + 1 — 1, thus all j get 

initiated in epoch 1. If e* > 0, then at least one i E T gets initiated in e*, 

but not in e* — 1. By Lemma 2.7, all the non-initiated reliable processes 

will initiate in epoch e* + 1, proving the lemma. I

Lemma 2.9. For 0 < e < t, if there is a set A, A cT and |A| = LOW, such that 

all i E A have initiated at the end of epoch e, then all j E T commit at the end of 

epoch e + 2.

PROOF. By Lemma 2.8, all j" E T will be initiated at the end of epoch 

e + 1, thus all j E T commits at the end of e + 2, following lemma 2.4. ।

Now, we can prove Theorem 2.4 by showing that algorithm IC satisfies agree

ment and validity properties.

Lemma 2.10. Either all i E T commit in epoch t + 2, or no i E T commits in 

epoch t + 2.

PROOF. If there is a set A, A C T and |j4| = LOW, such that all j E A 

get initiated at the end of epoch t, then all i E T would commit at the end 

of epoch t + 2, by Lemma 2.9. If there is no such a set, then no k E T, not 

initiated before, would initiate in epoch t + 1, or # + 2, since c(A:) < t + LOW 

in these two rounds, which implies that the confirmed reliable processes 

are at most t. Thus, for any i E T, 61+2(1) < 2t < HIGH, which means 

that it is impossible for i to commit. I

Lemma 2.11. Let i E T,

(a) if all j E T has initial value 0, then Vi —- 0.

(b) if all 3 E T has initial value 1, then Vi = 1.

PROOF, (a) We prove by induction on e that no 3 E T will ever initiate 

in epoch e. This is trivially true for e — 0. Now, suppose that no 3 E T 
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initiates in epoch e or less and there is some k 6 T initiates in epoch e +1, 

then, by 12, ce+i(fc) > LOW. It follows that there is at least one h G T, 

such that tVfeie+i(A:) > HIGH, this can happen only if h get initiated in 

epoch e or before, a contradiction.

(b) All reliable processes initiate in epoch 0, thus all i G T commit at 

the end of epoch 1, by Lemma 2.5. I

Thus, we have shown that after t + 2 epochs, Byzantine agreement can be 

assured. The following theorem states that the bound of t + 2 epochs is tight for 

this algorithm.

Theorem 2.5. The Byzantine agreement can not be assured by IO through fewer 

than t + 2 epochs.

PROOF. Scenarios can be constructed to show that faulty processes mali

ciously send conflicting messages to let some, but not all, reliable processes 

commit in epochs ranging from 1 to t + 1. The construction is tedious, so 

we omit it here. I

Since |Z| = n + l^jeach message item can be coded by O(logn) bits. In this 

algorithm, each process sends at most n messages in each epoch, and each message 

contains potentially, but no more than, n +1 message items. So totally, there would 

be O(n2(f + 2)(n+ 1) logn) = O(t4 logt) message bits. Compared with the original 

algorithm by Lynch, the algorithm presented here would save half of the message 

bits. On the other hand, if we make a process i send a message item at most once 

to other processes, both algorithm would use the same amount of message bits, that 

is O(n2(n + 1) log n) = O(i3 log <).

The initialization, or the initial value of a reliable process is actually witnessed 

by the other processes once, so this algorithm can be thought of as a 1-witness 

algorithm. Recall that the recursive algorithm uses t + 1 rounds of message ex



22

changes and exponential message bits. A question arises concerning the relations 

between the message structure, the number of rounds, and the amount of message 

bits. Another question is whether t + 2 epochs, or 2t + 4 rounds is an optimum 

value for an algorithm using 1-witness messages. We, as well as other researchers, 

have been trying, unsuccessfully, to reduce the number of rounds, hoping to remove 

the factor 2.

2.4 Randomized algorithms

We have seen that the number of rounds used to reach agreement in deter

ministic algorithms is obtained based on the worst case analysis, while the average 

expected number of of rounds is appreciably less. The reason is that the worst 

case analysis presupposes a particular probability distribution on the space of in

stances of a problem, while the relative frequency of instances of such problem may 

be changing in an appreciable and unmanageable way [RAB 76] [KAR 77]. The 

sample of instances actually appearing in a given application is often statistically 

biased in a manner not confirming to the assumption made in the analysis of our 

algorithms. In contrast to deterministic algorithms, randomized algorithms do not 

assume anything about the distribution of the instances of the problem to be solved. 

Rather, they incorporate randomization into the algorithms.

In a randomized Byzantine agreement algorithm, each process can use ran

domly chosen numbers in the course of reaching agreement. The property and 

efficacy of those randomly chosen numbers do not depend on the random behav

ior assumption of the faulty processes [RAB 83]. Usually, there are two kinds of 

such algorithms. One is to achieve Byzantine agreement with a small probability 

of error. More precisely, given e > 0, we say that a randomized algorithm is a 

1 — e reliable Byzantine agreement algorithm, if the reliable processes will reach 
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Byzantine agreement with probability of at least 1 — e. Another way is to reach 

Byzantine agreement without error after an expected number, some constant c, of 

rounds of message exchanges.

In Ben-Or’s algorithm [BEN 83], each process tosses a coin independently until 

a large number of individual outcomes coincide. This algorithm works well when 

the redundancy is high but when the redundancy is low, the number of rounds and 

message bits may be exponential to n, the number of processes in the system.

Rabin [RAB 83] produces a global coin toss using Shamir’s technique for sharing 

secrets [SHA 79], In Shamir’s method of sharing a secret S among n participants, 

every k or more cooperating participants can reconstruct 5, but fewer than k par

ticipants can not do so. In this scheme, before the Byzantine agreement algorithm 

is first started, a trusted dealer, D, a reliable process, would randomly and indepen

dently choose a sequence of bits, b1, b2,..., bm. The dealer computes n pieces secret 

item p^, P21,... ,p^*, using 6m, authenticates all the pj" with digital signatures, and 

then distributes the secret item, s™, the digitally signed pj”, to process pt-. During 

the m-th lottery, Lottery^m), each p, requests 2t other processes’ secrets, Sy1, and at 

least t of them will answer. Using these (at least) t + 1 pieces of secret, p^ can reveal 

the secret bm. Fig. 2.5 is an algorithm given by Perry [PER 85], which is essentially 

the same as Rabin’s except that it does not use authenticated communication.

In the algorithm, process pi invokes Eichange^R^ resulting in message^-Y 

being sent to all processes, c = [(n + 2i)/2] for n > 6t + 1 asynchronous processes, 

or c = [(n + ^)/2] for n > 3f + 1 synchronous processes. The Lottery^R') procedure 

enables process i to get to know the R-th secret secret^. Invoking Lottery^R^ 

after Exchange(R) guarantees that sR is not revealed prematurely, even in the 

asynchronous case. LastRound is determined by a concurrently running procedure 

CloseFinish which detects whether agreement has been reached in a certain round. 

message^astRound will be the decision value for process i. The algorithm can reach
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procedure Dectston(fi); 
begin

if Count® (0) > Count® (1) 
then majority := 0; 
else majority := 1;

if Count® (majority) > c 
then message® := majority; 
else message® := secret® 

end;

procedure RandomBAl;
begin

R :=0;
while (R LastRound) do
begin

R *— R 4* 1;
Exchange(R);
Lottery(R);
Decision(R)

end
end;

Fig. 2.5 A randomized Byzantine agreement algorithm that reach 
agreement with probability 1 — 2~® in H rounds.

agreement in R rounds with probability 1 — 2-fl. If all the reliable processes have 

the same initial value, the algorithm terminates in the first round with message^ 

being equal to that value for all reliable process i. For a detailed proof, see [PEA 85].

Chor and Coan [CHO 85] gave another randomized algorithm which terminates 

in an average O^t/logn) rounds for n > 3t + 1 synchronous processes (Fig. 2.6). In 

their algorithm, a small group of g processes is assigned the task of coin tossing at 

each epoch. Thus, it differs from Rabin and Perry’s centralized tossing by a trusted 

dealer. Each process in this selected group tosses its own coin and broadcasts its 

result. Every process takes the majority of those tosses as the correct coin toss. 

If more than half of the tossing processes are faulty, they can bias the coin toss 

maliciously. However, if fewer than half are faulty, all the reliable processes in that 

group can produce the same toss with a sufficiently high probability if the group 

size, g, is relatively small, which enables all reliable processes to reach agreement
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procedure RandomBGl1,
begin

current := init-value;
for e := 1 to oo do
begin

roundl:
broadcast message (e, 1, current)
receive message (e, 1, *)
if for some v, Count^e, 1, u) > n — t 

then current := v;
else current

if Group^p) = e mod [n/gj 
then Toss := Toss-Coin^); 
else current

roundl:
broadcast message (e, 2, current, toss);
receive message (e, 2, *, *);
ANS := value v such that Count^e, 2, v, *) is largest;
num := Count^e, 2, ANS, *);
if num > n — t then (decide vp = ANS)
else if num > t + 1 then current := ANS
else current majority tosses from the group e mod [n/yj 

end
end;

Fig. 2.6 A randomized Byzantine agreement algorithm with an 
average O{t/ log n)rounds.

in one more round.

In this algorithm, if all the reliable processes have the same initial value, they 

would decide on that value in the second round of first epoch. The algorithm 

certainly would terminate since for any epoch e, there is at least one value which 

would cause all the reliable processes to decide in the second round of epoch e + 1. 

Agreement is guaranteed by the fact that if one reliable process decides on a value 

in epoch e, all other reliable processes would decide on that value in epoch e + 1. 

This also makes it possible to detect the termination of the algorithm. If the process 

failures are uniformly distributed and the size of a group is 1. agreement is expected 

to be reached in 4 epochs, or 8 rounds.

Both Rabin/Perry’s and Chor’s algorithms use only O(n2) message bits.

2.5 Multivalue Byzantine Agreement
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Except for the recursive algorithm (Fig. 2.1), all the algorithms presented so 

far can only solve binary valued Byzantine agreement problem. In this section, we 

show how to extend the binary valued solution to a multivalued one.

The simplest way to do so is to encode the original data in a binary bit string 

and run multiple copies of the binary solution in parallel, as suggested in [LYN 82]. 

While theoretically sound, this approach suffers from the great amount of mes

sage bits exchanged (6 times of what a binary solution has, where b is the length 

of the binary string). Further, it may introduce undefined values in case not all 

strings of a certain length are meaningful. This is especially true in some real time 

environments.

In [TUR 84] and [PER 85], a clever method is used in which the binary solution 

is extended to a multiple one by prepending two rounds of message exchanges. 

The prepended two rounds will produce, before the start of the binary Byzantine 

agreement algorithm, a binary value for each process that serves as the initial binary 

value for that process. Fig. 2.7 is a solution, for n > 3t + 1, proposed by Turin and 

Coan. It is very similar to that of Perry. In the algorithm, BinaryBA is any binary 

Byzantine agreement solution with Alerti as the initial value and Finali as the 

decision value for process p,.

It is not hard to see that if all the reliable processes have the same initial value, 

then none of them will get perplexed, i.e., Perplexedi — 0 for every reliable process 

pt. So all their Alert^s are 0, thus all the Finales, making them decide on that 

value.

So, what we need to show is that in case every reliable process pt gets 

Finali = 0, all the reliable processes will get the same majority value. In this 

case, at least one reliable process has Alerti — 0, which implies that there are at 

least 2t + 1 unperplexed processes for process pt, the majority of them, at least t + 1 

processes, is reliable. These unperplexed reliable reliable processes are also in the
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procedure MultiBA1,
begin
roundl:

broadcast message (Zntt<);
receive messages
3, := Initj};
if |Sj| > [(n — t)/2] then Perplexedi := 1;
else Perplexedi := 0;

round2:
broadcast message (Perplexedi);
receive messages (Perplexed*);
Pi := {jIPerplexedy = 1};
if |Pj| > n — 2t then Alerti := 1
else Alerti := 0;

BinaryBA;
if Finali = 0 then (decide = majority(^j\j P,}) 
else (decide t>i =* default value') 

end;

Fig. 2.7 A multivalue Byzantine agreement solution for process 
Pi-

unperplexed set of every other reliable process. So the majority of every reliable 

process’s unperplexed process set are reliable. We claim that all those unperplexed 

processes have the same initial value. Thus every reliable process will get the same 

decision value when some majority function is applied to the values of processes in 

its unperplexed set.

To see why all the unperplexed reliable processes have the same initial value, 

consider a set A of reliable processes, such that all the processes in A have the same 

initial value and all reliable processes having that value belong to A. |4| must be 

greater than (n — t)/2, since otherwise all the processes in A are perplexed, and so 

is every process not in A, which is a contradiction to the fact that there are at least 

t + 1 unperplexed reliable processes. Further, suppose that a reliable process j A 

is unperplexed and has a different value. But this is impossible since |A| > (n —1)/2, 

which implies that j is perplexed! Thus all unperplexed reliable processes belong 

to A.

2.6 Related Topics
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2.6.1 Authenticated Message. If in addition to A1-A3, every message must be 

signed before it is sent, we add the following

A4 (a): A reliable process’s signature can not be forged, and any alteration of the 

contents of its signed message can be detected.

(b): Any process can verify the authenticity of another process’s signature.

A4 restricts a faulty process’s ability to lie by making a reliable process’s signa

ture unforgeable by a faulty process. Thus, a message signed by a reliable process 

may either be relayed correctly or absorbed by a faulty process. Here, we make 

no assumption about a faulty process’s message. In particular, a faulty process’s 

message can be altered and signature be forged.

With authenticated messages, it it not necessary to have at least 3t + l processes 

to cope with t faulty processes. Actually, no requirement is needed on the number of 

processes in the system. But generally, we still assume that at least t + 2 processes 

are required in case of t faulty processes, since it is trivial when there are fewer than 

t + 2 processes. But t + 1 rounds are still required to assure agreement [DOL 82b]. 

Fig. 2.8 is an algorithm given in [LAM 82]. Here, we assume that processes are 

named by 0,1,... n, and process 0 acts as the commander.

The validity property is obvious, since no other message is received by reliable 

processes. For reliable processes t and j', i j, we have I', - V’7, since every i’ *t.

will be sent to i by j, and vice versa; so the agreement holds.

2.6.2 Asynchronous Byzantine Agreement. So far, we have been mainly con

cerned with synchronous Byzantine agreement. In this model, it is assumed that 

there is a finite bounded delay on the operation of the processes and their intercom

munications. Thus, unannounced process death as well as long delay are considered 

to be faults.

In asynchronous systems, this assumption no longer holds since in such systems,
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procedure Authenticated.BG\
begin

Vi := 4>;
while more-messages do 
begin

receive message (m);
if m is of the form v : 0 then 
begin

Vi := {«};
send v : 0 : t to every processes other than o and t 

end 
else

if m is of the form v : 0 : ji and v V, then
begin

:= Vi + {v};
if k < t then send v : 0 : ji :,.. : jk : t to every processes 

other than 0, ji,..., jk, t 
end 

end 
(decide = majority^Vi'^') 

end

Fig. 2.8 Algorithm using authenticated messages.

a very slow process can not be distinguished from a dead process. Our algorithms, 

except for that of Rabin/Perry with c = f(n + 2t)/2] for n > 6t + l, do not work with 

asynchronous systems. The reason is that there is no predefined finite bound on 

the time of message exchange due to the uncoordinated progress of each individual 

process. If there are t faulty processes, each process can only be guaranteed to 

receive n — t messages. If some predefined default value is used for the slow, possibly 

dead, processes, even some reliable processes may behave inconsistently to other 

reliable processes, making the problem even harder. It is shown in [DOL 86] and 

[FIS 85] that no deterministic algorithm exists to assure exact agreement in a finite 

number of rounds, even with only one faulty process. However, exact agreement 

can be reached with any given probability p < 1 after a finite number of rounds 

[RAB 83] [BRU 85] [PER 85]. Another kind of agreement, approximate agreement, 

can also be reached after a finite number of rounds.

2.6.3 Weak Byzantine Agreement. If, in the second version of Byzantine agree
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ment, we replace the validity requirement by:

Weak Validity: If all the processes are reliable, then every process obtains the 

value of the commander.

We get a weaker version of the Byzantine generals problem [LAM 83], An instance 

of the weak Byzantine generals problem is the transaction commit problem for a 

distributed database system. In such a system, the transaction coordinator acts 

as the commander and the all the participating sites act as the generals. The 

transaction coordinator issues a command indicating whether a transaction should 

be committed or aborted. To achieve consistency among the participating sites, all 

sites should agree on the whether to commit or abort the transaction (agreement), 

but the failure of any site is allowed to abort the transaction (weak validity).

Lamport has shown that at least 3 redundancy is required to reach weak Byzan

tine agreement. A solution to an ordinary Byzantine agreement certainly solves the 

weak one. But the weaker validity requirement suggests that simpler and less costly 

algorithms may exist.

2.6.4 Approximate Agreement. If the set of values V is not finite, but in

stead is drawn from an interval of real space, such as in clock synchronization, it 

is more desirable to reach approximate agreement satisfying the following require

ments [DOL 86]:

(1) agreement: All non-faulty processes eventually halt with output values that 

are within e of each other.

(2) validity: The values output by each reliable process must be in the range of 

the initial values of the reliable processes.

Solutions to approximate Byzantine agreement usually consist of a series of 

message exchanges. After each round of exchange, each process produces a new 

message item for the next round, hoping that the new message item will be some-
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what “closer” to the desired value. The number of rounds is determined by the 

initial range, the desired ranged, and the way to produce new items. The key to 

those solutions is the way to generate new items. In [DOL 86], an averaging function 

is applied to V, the set of message items received by a process during some 

round, to generate the next message. Given a set V of real numbers, some of which 

may be identical, /*,t(V‘).is obtained by first eliminating the highest and lowest t 

elements, resulting in a set U, |17| = m — jV'] — 2i, and uq < ui < ... < um-i 

are the elements of U, then taking the mean value of the smallest element of U 

and every Hh element thereafter, i.e., = (u0 + ut + ... + Uj^/c, where

c = [(m — 1)/A:J + 1 and j = c — 1. For example, let V = {2,2,3,4,5,6,7,8,8,9}, 

/2,2(kr) — (3 + 5 + 5)/3 = 5, where U = {3,4,5,6,7,8}, c = 3, and j = 2.

procedure ApproximateBA(t, e);
begin

broadcast message
receive messages into V,-;

:= ft,t(Vi);
c := [(n - 2t - l)/tj + 1;
Hi := [logc(max(Vi) — min(Vi))/e] + 1;
for h. := 2 to Hi do
begin

broadcast message (v^);
receive messages (v*) into V,;
v. == /t.t(Vi);

end
broadcast message ((vi,halt));
output (v^);

end

Fig. 2.9 An algorithm for approximate agreement in synchronous 
system with n > 3t + 1.

The algorithm of Dolev et al. is shown in Fig. 2.9. Hi is the process p^’s 

estimated number of rounds to reach agreement. For those processes terminating 

earlier, having broadcasted (v, halted) to other processes, the terminating value v 

will be used as the message broadcasted in the rounds after termination. A similar 

algorithm for the asynchronous case is also given for n > 5t + 1, except that no 



32

predefined timeout is used. Each process stops collecting values when it has received 

messages from n — t processes, and the averaging function is

2.6.5 Early Stopping of Algorithms. In deterministic algorithms, committing 

happens like an avalanche, i.e., if one reliable process commits, all other reliable 

processes will commit one or two rounds later. This makes it possible to detect 

whether agreement has been reached and stop the algorithm earlier. This is es

pecially helpful when agreement can be obtained through one or two rounds, e.g., 

in the case of a reliable commander, and will save significantly compared with the 

rounds needed for the worst case. It is also very useful in randomized algorithms 

to detect the termination of the algorithm. For example, Rabin [RAB 83] uses 

a procedure CloseFinish, running in parallel with the agreement procedure, to 

detect whether agreement has been reached and dynamically set the Last Round 

parameter to stop the algorithm.

The implementation is not complicated. In algorithm IC (Fig. 2.4), we can 

add a third round to each epoch, in which each process p will send a message “I 

have committed” to other processes, if c(p) > HIGH. When a process receives 

t + 1 copies of “I have committed’^, it implies that at least one reliable process has 

committed. So that process can stop in the next epoch, knowing that agreement, 

will be reached by that time.

2.6.6 Missing Communication Paths. So far, we have been assuming that, 

each process can directly communicate with all the other processes, i.e., the corre

sponding graph is fully connected. This is not necessary, and the algorithms can be 

extended to more general cases.

Lamport et al. [LAM 82] extended their algorithm to the so called p-regular 

network. In such a network, each node i has a regular set of neighbors consisting 

of p distinctive nodes, such that for a node k other than z, there exist paths, p7ifc, 
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where j is in the regular set of t, not passing through i, and two different such paths 

have no node in common other than j and k. For t faulty processes and n > 3f 4-1 

processes, Lamport et al. define a 3<-regular graph, select 3/4-1 nodes including the 

commander and run the ordinary algorithm. After the ordinary algorithm stops, 

every non-participating process can get 2/4-1 copies of the decision from those 

participants, and a simple majority function will give the correct answer. But when 

n = 3/ 4- 1, this is just the ordinary algorithm.

Dolev |DOL 82] has shown that agreement is achievable if and only if the 

connectivity of the graph is 2/ 4-1, in the case of / faulty processes. In graph theory, 

Monger’s theorem [HAR 72] states that if the connectivity of a graph is k, then 

there exist k disjoining paths between every pair of nodes. Thus, a process i can let 

its value be known to process j by sending its value along 2/4-1 disjoining paths 

between z and j. Since at most / paths may have faulty processes, the number of 

copies that may be be corrupted is at most /, and a majority of those received value 

should reveal the real value of z. The implementation of this method requires that 

each process know in advance the network topology and transmit route information 

along with the values being sent.



CHAPTER 3

Applications of Byzantine Agreement

3.1 Clock Synchronization

Keeping the logical times of processes in a distributed system close enough 

in the presence of arbitrary faults is crucial in many situations. This task, clock 

synchronization, was one of the first initial motivations in proposing the Byzantine 

agreement. During the development of the SIFT fault-tolerant computer system, 

researchers at SRI first assumed that a simple majority voting scheme could be de

vised to treat such situations as clock synchronization, stabilization of input from 

sensors, and agreement on results. Gradually, they realized that simple major

ity voting is not enough, leading to the formulation of the interactive consistency 

problem [PEA 80].

Almost all the proposed clock synchronization algorithms run in rounds, resyn

chronizing periodically to prevent clocks from drifting too far away. However, these 

algorithms differ from each other in the dependency of the closeness of synchroniza

tion and size of adjustment on the number of processes and faulty processes, the 

authentication of message used, and the number of message bits exchanged.

Here, we present a simple and straightforward implementation. This algorithm 

shares the same spirit with the one by Lundelius and Lynch [LUN 84]. In fact, 

we have directly used some lemmas in their proof. The one presented here can be 

considered as a special case of the model in [LUN 84], but we think it fits with 

most of today’s digital clocks. The logical clock is assumed to be p-bounded, i.e., 

over time period T, the difference between the logical clock and the real clock (a 

conceptual one for comparison) is at most pt, for a very small constant p. Unlike 

the approach in [LUN 84], where the logical clock is the sum of the value of a 

34
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read-only physical clock and a corrective value, we do not distinguish between the 

logical clock and the physical clock. The clock here is just like a quartz oscillator 

controlled counter. The counter increases by one with each pulse of the oscillator. 

The oscillating frequency would guarantee the p-bounded property of the clock. 

A process can either read the value of its logical clock or adjust it by adding a 

corrective value. The adjustment would not change the p-bounded property.

In the rest of this section, we will represent real time in lower case letters 

and logical times in upper case letters. Also, we use upper case letters to denote 

mappings from real time to logical time and user lower case letters for the reverse 

mappings. Thus, the p-bounded property can be represented as

(1 — p)(<2 — ^i) < 1/(1 + p)(^2 — h) < C(^2 ~ ^i)

< (1 + P)M'2 ~ <1) < 1/(1 — p)(<2 — tlY 

The reverse also holds

(1 - p)(T2 - TJ < .1/(1 + p)(T2 - TJ < c(T2 - TJ

< (1 + pHTt - Tx) < 1/(1 - p)(T2 - Tx).

Suppose in a distributed system, there are n fully connected processes of which 

there are at most t faulty processesT where n > 3t + 1. Each process maintains its 

own logic clock which is supposed to be p-bounded. Processes can communicate 

via messages over reliable connections. The message delay for every message is in 

the range of [6 — e, 6 + e], for some nonnegative constants 5 and e with 6 > e. All 

the reliable processes are synchronized enough at the initial time. Suppose for each 

process p the initial time is T° on its own clock C® and the corresponding real time 

is tp, then the initial synchronization can be represented as \tp — < 0, for some

fixed 0 and all nonfaulty p and q. Let

tmax0 = max^tp |p is nonfaulty}

and
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tmin0 = min{tp |p is nonfaulty}.

The object of the clock synchronization is to satisfy the following two requirements.

1. 7-Agreement: all the nonfaulty processes are synchronized within 7, i.e., for 

all t > tmin and all nonfaulty p and q.

|Cp(i) - <7,(01 <

2. (oi, 02; asj-validity: the logical time of a nonfaulty process increases in some 

relation to real time, i.e.,

cti(t — tmaz0’) + T° — 03 < Cp(t) < — tmm0) + T° + 03.

The algorithm given in Fig. 3.1 executes in rounds in a time-driven manner. 

In the algorithm T*+1 = T* + P, and U1 = T* + (1 + p)(/? + 6 + s), where P is 

the period we are trying to determine. A process enters the fth round when it 

is triggered by its logical clock time reaching the value T*. By selecting a proper 

value P, all the logical clocks can reach T* within real time (3 of each other, i.e., 

|^p — <q| < /?, for reliable processes p and q. When a process p reaches T1, it is 

interrupted to broadcast a Tl message which indicates that p has reached Tl on its 

own logical clock. At the same time, it sets another timer to interrupt it at time 

Ul on its own logical time. During the time period from T* to IP, p collects all the 

Tl messages from as many processes as possible (including itself) and records their 

arrival time (for those faulty processes whose message is not received, Ul is used 

instead). The selection of [7* ensures that all T* messages from nonfaulty processes 

can be received. When the timer interrupts at U1, p applies a fault tolerant majority 

function , similar to the one in Section 2.5.4, to the set of arriving time of those 

received Tx messages to calculate a corrective value. This corrective value is used 

to adjust the current clock C*, resulting in a new clock C*+1. Here, we assume
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procedure ClockSyn-,
begin

T := some initial value;
C7 = T+(l+/,)(6 + ^ + e);
for i := 0 to oo do
begin

if Interrupted by Clock = T then
begin

broadcast(t);
set-timer(U);
while Clock £ [T, C/j do

if receive message from process q then ARRq := Clock;
/* Clock = U */

AV := mid^reduce^(ARR))-,
ADJ :=T + 6-AV-,
Clock := Clock + ADJ;
T-.= T + P;
U :=T+(l + /,)(6+^ + e);
set-timer(T)

end 
end

end;

Fig. 3.1 A clock synchronization algorithm.

that 6 — € > [3 to simplify the analysis. The analysis can be easily generalized to 

cases of 8 — e < (3, in which each process can start to collect T1 messages at time 

T1 + (5 - e - /?).

In the following analysis, we will explore the conditions under which the fol

lowing three statements are valid for all i > 0:

51 17* + Adjp < T1 + P, for all nonfaulty processes p.

52 tp + 6 — e > u*, for all nonfaulty processes p an q.

53 |ip — Z* | < /?, for all nonfaulty processes p and q.

The first statement ensures that timers are set in the future. This prevents 

timer for T*"1"1 from being set to a time on a clock which has already passed. The 

second statement tries to guarantee that the J1**1 messages from other processes for 

the (z + l)th round can arrive only after the zth round for any process has finished. 

This makes it impossible for a process to receive more that one T* message from 

any nonfaulty process during the period from 71* to 77*. The third requirement 
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states that the separation of any two nonfaulty processes’ clock is bounded by /? 

in real time. This is an important and useful property in distributed systems. 

If two processes initiate some events at the same time with respect to their own 

logical clock, these two event can be considered happening almost at the same time, 

differing at most by P in real time.

We use ARRlp^ to represent the time, measured on process p’s logical clock, 

when process p receives process q’s Tl message. By S3 and the p-bounded property, 

we have the first lemma about the arrival time of T* messages.

Lemma 3.1. For nonfaulty processes p and q.

(1) ARR^q) <T* + (l+p)(<5 + e + /3).

(2) ARR^q')>T‘ + <l-pK6-E-9').

The above property can be used to bound the range of the adjustment.

Lemma 3.2. For any nonfaulty process p, |A7?J*| < (1 + p)(P + e) + p6.

PROOF. By the algorithm

ADJ* = r + 6- AV*.

The fault tolerant averaging function ensures that for nonfaulty pro

cesses q and r

ARR],(9) < AV* < ARR^r'l

So, we get

T* + 6 - ARR?p (9) < ADJ*p < T*: + 8 - ARR^

for some nonfaulty processes q and r.
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By Lemma 3.1, the above inequality implies

adj; > r + 5 - (r + (1 + + <s + e))

= — (1 4- + e) — p6

and

adj; < t* + 6 - (r - (i + />)(/?- 5 + e)) 

= (l-p)(J5 + e)4-p<$.

The lemma follows. I

Now, we can see under what condition Si holds. The following lemma gives a 

lower bound on P, the period.

Lemma 3.3. If

P > 2(1 + /9)(/3 + e) + (1 + p)<5 + p6

then

ui + adj; < r+1.

for any nonfaulty process p.

PROOF. By Lemma 3.2, we have

L7* + adj; < (71' + (1 + p)(/? + e) + p8

< j-t'+i

= U* + P — (1 + /?) (/? + 6 + e)

So, we get the lower bound on P. I

This lower bound of P also ensures S2.

Lemma 3.4. If

P > 2(1 + p)(/3 4- e) + (1 + /))<5 4- p6 
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then

1-+1 + 6 - e > u'p.

PROOF. Since t*+1 + 6 — e > <p+1 — /? + 6 — e, by S3, it suffices to show 

that

<p+1 - up > 9 - 6 + e-

Since the clock is p-bounded, we have

- «* > (P - (1 + PH0 + 6 4- e) - ylDJ*)/(l + p)

By Lemma 3.3 and 8 — e > 0

P > 2(1 + p)(/? + e) + (1 + p)6 + p6

> 3(1 + p)(/? + c) + p6.

By Lemma 3.2

ADJp < (1 + p)(/? + e) + p<5.

So, we get

£p+1 — > (3(1 + p)(/? + e) + p6

— (1 + p)(/? + 6 + e)

— (1 + pH0 + e) — P<5)/(1 + p)

= 0 - 6 + E.

I

To prove the third statement and to determine the upper bound of the period 

P, we need several more lemmas. The following lemma bounds the error in a 

process’s estimate of the difference in real time between its own clock and another 

nonfaulty process’s clock reaching T*.
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Lemma 3.5. For nonfaulty processes p and q,

\(ARR;(q) - (r + 6)) - (<* - ij,)| < e + p(/? + 6 + e).

PROOF. Suppose <* — txp = A, |A| < 0. If A > 0, then

ARR^(g) - (F + 6) - A < (1 + p)(6 + e + A) + T* - (F + 5) - A

= e + p(A + 6 + e)

< E + p^P + 8 + e).

If A < 0, then

ARR^q) - (F + 6) - A > (1 - p)(<5 - e + A) + T - (F + 8) - A

= e — p(A + 6 + e)

> -E - p(P + 6 + e).

The lemma follows. I

The essence of the clock synchronization algorithm presented here is to try to 

reduce the distance between the clocks from 0 to /?/2. Central to this reduction is 

the halving property of the fault tolerant averaging function used in the algorithm. 

Consider three multisets, and IV, with = |K-| = n and |IV^ = n — f. If there 

are injections c and c',c:W —> V, c* : IV —> V, such that under these mappings, 

there is no w E IV with |w — c(w)| > x or |w — c'(w)| > x, for some constant 

i, then |mzd(reduce^([7)) — mtd(reduce^(V))| < diam^W) + 2x, where mid(U) 

is the midpoint of the set Uv reduce^U^ returns the set U with the / highest 

and / lowest elements removed, and diam(IV) is defined as mux(IV) — min(IV). 

Using this halving property, we can prove the following lemmas, which indicate 

how adjustments are related to the clocks.

Lemma 3.6. For nonfaulty processes p and q,

1(4 - 4) - (APj; - ADJ^\ < 312 + 2e + 2p(8 + 0 + e).
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PROOF. We define multisets

i7 = {t;-(r+ <5) + ^r;(s)}.

v = -(r + s) + ^i?*(5)}.

W = {t*|r is non faulty^.

Here, |[/| = |V| = n and |W| = n - /. By S3, diam(W) = /?.

Let i = e + p(5 + 3 + e). Define injection c from W to V as c(t*) = 

t* — (T1 + 5) + ARRp(r) and injection c* from W to V as </(£*) = t* — 

(T1 + 5) + ARRg(r). By Lemma 3.5, we can not find any nonfaulty r such 

that

or

- (T* + 5) - (t<-<‘)| > x.

Thus we can use the halving property discussed above, resulting in

|mid(reduce^(?7)) — mid(reduce^(V'"))| < ^9/2 + 2e: + (5 + /? + e).

Since

mid^reduce^U^ =■ mid^reduce^t1p — + 5) + ARR^

= tip-ADJj,.

and

7ntd(reduce^(V')) = mid(reduce^(tg — (T* + 6) + ARRlq^

= tiq-ADrq.

The lemma follows. I

Lemma 3.7. For nonfaulty processes p and q,

|(U; - - (ADJlp - ADJlq)\ < 3/2 + 2s + 2p(2 + p)(<5 + /? + s).
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PROOF. Relating u* to t‘, we can get

104 - uj) - (.ADJ* - A»J')| < 1(4 - 4) - (ADJ-p - ADJ<)1

+ !(„• - <)-(4-4i.

By Lemma 3.6, the first item is < /?+2e+2p(6+/3+e). The p-bounded 

property implies that

(1 — p)(l + p)(6 + 0 + e) < u* — t* < (1 + p)(l + p)(t> + 0 + e).

So, the second item is < 2p(l + p)(5 + 0 + e). Thus, we have

|(u; - u*) - (adj; - ADj;)l < /?/2 + 2e + 2p(6 + 0 + e)

+ 2p(l + p)(6 + 0 + e)

= 0 + 2e + 2p(2 + p)(<5 + 0 + e).

I

The next lemma bounds the distance in real time between the new clock at 

17*. This distance must be appreciably less than 0 in order to accommodate their 

relative drift during the interval between t7* and T*+1. This lemma also implies 

that 0 should be bounded from below by the inequality

0 > 4e + 4p(30 + 6 + 3e) + 8p2(5 + 0 + e).

Lemma 3.8. For nonfaulty processes p and q, 

l4+107i)-4+‘(i7')|

5 0+ 2p(2j3 + 26 + Se) + 4p^(6 + 0 + e).

PROOF. Since C"+1(uj,) = U' + ADJ*, we have

u- = 4+1(V' + ADj;(

= 4+1(v) + (I + p'jADj;,, |/| < p.
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Similarly,

«• = c*+,(t7') + (i+,»")adj;, i/i<p.

So, we have

l4+1(i7i)-4+I(c/i)i

= KXp - <) - UDJ* - ADJ-) - (.p'ADj; - p"ADj‘,)\

< l(^ - 4) - VADJ-, - A£>4)| + Ip'ylPjjl + l,"ADj;l

By Lemma 3.7, the first item is < /?/2 + 2e + 2p(2 + p)(6 4- /3 + e), 
while the sum of the second and third items

< 2p((l + p)(/3 + e) + p6)

by Lemma 3.2.

The result follows by combining these bounds. I

Now, we can determine the upper bound of period, P.

Lemma 3.9. If

P < Pl^P — eJp — pM> -V (3 -V — 2(3 — 6 — 2e

then

|^+1-^+1| </?

for nonfaulty processes p and q.

PROOF. By definition

4+1 ~ (i+1i = I4+I(r+1) - 4+1(I”+1)i
< l(4+1(r<+1) - 4+,(r+1)) - (4+1(tf’+1) - 4+1(^+,)l •

+ l4+1(pi+1)-c;+1(c/i+1i
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Using the same reasoning as in the proof of Lemma 3.7, the first item

is less than 2p(F — (1 + p)(6 + /? + c)). The bound on the second item is 

given by Lemma 3.8. So, we have

0 '> — (1 + p)(5 + /? + e)) + 01*2, + 2c

+ 2p(3/? + 28 + Sc) + 4p2(6 + 0 + e).

The lemma follows. I

Now, we have obtained the most important results concerning the correctness 

of the clock synchronization algorithm. Based on these results, the ^-agreement is 

satisfied with

-7 = 0 + e + p(70 + 36 + 7e) + 8p2(5 + 0 + e) + 4p3(<5 + 0 + e)

and the (on, 02, Q!3)-validity is satisfied with

«! = 1 - p - e/<p

a2 = 1 + p + e/<p

a3 = e

where

= (P - (1 + p)(/? + e) - P<5)/(1 + p)

A detailed proof can be found in [LUN 84].

3.2 Fail-Stop Processor

As mentioned in the previous chapter, the Byzantine generals problem was 

first proposed to cope with arbitrary malicious faults in a distributed system. In

terestingly enough, the solution to the Byzantine generals problem can be used to 

implement a special processor that has an extremely simple failure behavior, namely 
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fail-stop. Such a processor stops executing when a failure is encountered, instead 

of producing an erroneous output. This is a very attractive failure model since 

arbitrary failures, such as generation of erroneous outputs or loss of state informa

tion, often makes the design and programming of fault tolerant systems extremely 

difficult. Besides, many approaches to implementing fault tolerant systems assume 

that processors in the system are either fail-stop or something equivalent.

Ideally, a fail-stop processor (fsp) should have the following properties [SCH 84]:

(1) Halt on Failure Property: A processor will halt instead of performing an erro

neous state transformation visible to other processors.

(2) Failure Status Property: Any processor can detect whether any other processor 

has failed, and thus halted.

(3) Stable Storage Property: The storage of a processor is partitioned into stable 

storage and volatile storage. The contents of stable storage are not affected by 

any failure and can always be read by any processor. The contents of volatile 

storage are not accessible to other processors and are lost as a result of a failure. 

Of course, the problem of designing fault tolerant systems can not be completely

solved by fail-stop processors; however it is greatly simplified since the designer is 

free to consider arbitrary failure behavior. For example, to construct a fault tolerant 

system for an application requiring N processors when no failure exists, N + f fail

stop processors are able to tolerate up to / failures. Whenever a fail-stop processor 

halts, its failure will be detected and the job will be taken over by other working 

fsp’s using the information in stable storage. In [SCH 83], Schlichting and Schneider 

proposed a methodology to program an fsp. In their approach, a recovery protocol 

R is associated with an action statement A, a sequence of statements, to form a 

fault-tolerant action FTA as follows

FTA: action

A



47

recovery

R

end

Normally, the execution of an FTA starts by running action A. Recovery 

protocol R is in effect only if the execution of A is interrupted by a failure. R 

also serves as its own recovery protocol for subsequent failures occurring during the 

execution of R. The execution of an FTA terminates if either A or R is executed 

entirely without failure. A special case of an FTA is the restartable action in which 

an action statement is also the recovery protocol.

Using Hoare-like logic [HOA 69], the correctness of an FTA can be written as

{P}FTA{Q}

where P and Q are the assumed precondition and postcondition respectively. Sup

pose that {P'jAfQ'} and are established. Then ^P^FTA^Q^ can be

established, provided

(1) P => P* and Q* => Q.

(2) Q"^Q.

(3) All program variables named in P" must be in stable storage.

(3) P" is satisfied whenever the action is restarted. This requires that P" be deriv

able from any internal assertion appearing in the proof outline of {P'jAlQ'} 

and {P'^R^Q"^ and these assertions do not use variables in volatile storage 

on other processors.

One interesting thing is that while this Hoare-like logic can be used to validate 

an FTA action, a fault tolerant program can be developed by combining a sequence 

of FTA’s with proofs leading the way.

Just as a completely fault tolerant computing system can not be built with a 

finite amount of hardware, it is also impossible to implement a truly fail-stop pro
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cessor using a finite amount of hardware, since error detection capabilities provided 

by a finite hardware would be easily disabled by a sufficient number of failures. 

However, a fail-stop processor can be approximated in the sense that a processor 

behaves like a fail-stop processor as long as there are no more than k failures within 

its components. Such a A:-fail-stop processor can be implemented by 3k + 2 proces

sors, each with its own storage, interconnected by a communication network. The 

implementation consists of:

(1) k + 1 p-processes (p for program), {pi,... ,Pfc+i}, each running on its own 

processor.

(2) 2k + 1 s-processes (s for storage), {si,... ,82*4-1}. It is required that the s- 

processes of one fsp run on different processors. However, a simple processor 

can run several s-processes for different fsp’s.

All of the k + 1 p-processes in one fsp run the same program. The contents 

of the stable storage of a fsp are duplicated at each site of the 2k + 1 s-processes. 

Each p-process interacts with 2k + 1 s-processes by issuing either a read or a write 

request for stable storage. Each request r contains such information as the issuing 

time at p-process’s local clock, T.time\ the type of request (read or write), r.type; 

variable in the stable storage to be read, or written, r.var; the value of the variable 

in case of a write request, r.val. Since all the p-processes run the same program, 

they should issue the same request at the same logical time. When an s-process 

receives a request, it will record the receiving time on its own local clock, r.rectime. 

A solution to Byzantine generals problem using authenticated messages is used to 

implement a reliable broadcasting of requests such that

IC1: If pi is nonfaulty, then every nonfaulty s-process su in the same fsp receives 

the request within 6 (as measured on su’s clock).

IC2: If s-process su and sv in the same fsp are nonfaulty, then both of them agree 

on every request from pi.
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Also, a clock synchronization method is used to ensure

ICS: For all the p-processes in any fsp, their clocks are synchronized.

Fig. 3.2 is a program run by each s-process in a fsp. Each s-process maintains 

a variable Failed in stable storage to indicate whether the fsp has failed or not. 

Stable^ Var] denotes the variable Far in that s-process’s copy of the stable storage. 

Let p(FSP{) denote all the p-processes belonging to fail-stop processor FSP{ and 

orfg'(r) denote the p-process issuing the request r. Each s-process assumes that 

requests with the same issuing time (according to each p-process’s local clock) 

should be the same request and they arrive within A. Failure is detected when a 

write request is not from exactly k + 1 distinct processes or the contents of those 

k + 1 requests are not the same.

A p-process interacts with s-processes in the following way:

(1) A p-process can only write to the stable storage in its own fsp by initiating a 

Byzantine protocol for a write request with all the s-processes in that fsp.

(2) A p-process can read from stable storage in any fsp by broadcasting the read 

request to all the s-processes in that fsp and take majority of the values received.

(3) A p-process determines whether any fsp has failed by reading the variable 

Failed from the stable storage in that fsp.

Since there are 2k 4- 1 s-processes in each fsp, the majority of those copies of 

the stable storage are correct as long as the failures of s-processes are no more than 

k. Also, the implementation of s-process enforces that only nonfaulty fsp with all 

its p-processes issue the same write request can write to its stable storage, and any 

fsp can read from stable storage in any other fsp, even from a halted fsp. This 

implies that the above implementation satisfies the stable storage property. Failure 

status property is implemented by letting each s-process maintain in stable storage 

a Failed variable which can be read by any fsp. Halt on failure is obtained as long 

as in any fsp, the number of faulty p-processes is at most k. Failure is detected if
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procedure Storage-Maneger\
begin

owner := »;
failed :=false;
repeat

for s := 1 to N do
begin

T := CLOCK-,
D := {r | ort<7(r) e p(FSP,)};
while D <j) do

begin
minT := minfr.time [ r 6 £>};
minRecT := minfr.rectime | r € D&tr.time = minT}; 
if minRecT < T — A then
begin

R ;= {r | r 6 D&Lr.time = minTy, 
D:=D- R -,
if Vr : r 6 R : r.type = read then 

for for r G R do
send Sta6Ze[r.vaZ] to oriy(r)

else if (Vr, r* : distinct r, r' € R :
m = m'&z.m.type = write&orig(m) orig^m'y&.
|Af| - - k + l&s = owner4t-ifailed) then 

begin
choose an r E R‘,
Sta6Ze[r.vaZ] := r.vaZ;

end
else if s := owner& failed then 

begin
failed := true;
for all p E p^FSPi) do send “halt” to p

end
end

end
end

forever
end;

Fig. 3.2 Program for s-process in a A-fail- 
stop processor FSP{.

the write requests issued by the k p-processes in a fsp are not the same or some 

p-processes fail to issue the write requests. A more restricted measure may require 

that all the k + 1 requests be the same, irrespective of whether they are read or 

write requests. The one adopted here is under the belief that a read failure would 

not corrupt the stable storage but eventually would cause a write failure.
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3.3 State Machine Method

Another general methodology to design fault tolerant distributed systems is the 

state machine approach proposed by Lamport [LAM 84], In this method, a program 

is viewed as a state machine driven by events (input), such as the arrival of a message 

or the reaching of a certain time, to generate actions (output). A reliable system is 

constructed by replicating these state machines and running them in parallel. The 

innovative distinction about this approach is that absolute time, instead of timeout, 

is used to achieve fault tolerant synchronization in distributed system.

For the state machine to be effective, the underlying distributed system should 

satisfy the following assumption:

Al: For any event e that causes process i to send a message to process j, the delay of 

such a message is at most 6, a constant. This time is either measured according 

to process i’s clock or measured according to process j’s clock.

A2: The clocks of any two nonfaulty processes are synchronized within e.

A3: Any process can identify the source of any message it receives.

Al and A2 imply that if process i sends a message at time T on f’ clock, 

process j would receives that message by T + 6 + e on its own clock, provided 

that the communication link between them is nonfaulty. Combined with A3, this 

property further implies that if i sends j a message timestamped T on i’s clock and 

does not send another one until T + 6 + e, j would receive it by time T + 6 + e on its 

own clock and knows that it is the one sent by i at time T if the communication link 

between them is nonfaulty. One of the essential idea in the state machine method 

is to let each process broadcast a message at every time unit with the unit long 

enough for some processing to be done. Thus a process i can send a null message to 

process j at time T by sending nothing so that process j receives nothing by time 

T + 6 + e on j’s clock. Also, if more than one message is received from process i in 
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the interval [T, T + 6 + e] (suppose that 6 > e), process t is considered to be faulty 

and the null message is taken as a default. This property can be easily generalized to 

cases where no direct links exist between i and j, instead the message has to be sent 

through the path i = ko, ki,... ,kn = j. A message timestamped by T is sent to ko 

by i at time T on :’s clock, relayed by every intermediate processes, and received 

by j by the time T + n6 + e on j’s clock, if all the intermediate nodes and links 

are nonfaulty. A Byzantine protocol is used to implement a reliable broadcasting 

satisfying the following requirement:

IC: If process £ initiates the broadcast of a message at time T on its clock, then

1) if i is nonfaulty, then every nonfaulty process j receives that message by 

T + A on j’s clock.

2) if both j and jr are nonfaulty, then each of them receives the same message 

(may be null) by T + A on its own clock, where A is some unspecified 

constant depending on the communication network and the Byzantine pro

tocol used.

Now, we can describe the general idea of the state machine algorithm (Fig. 3.3). 

At every instant of time T, each process i issues a command Ctir by broadcasting it 

to all the processes in the system, using a protocol satisfying IC. At time T +A (the 

time Clock in Fig. 3.3), the command Ci^,..., Cn,Ti some of which may be null, 

are executed in order. Any “timeout” action that is supposed to occur is performed 

by executing a special timeaction command. Here, a command is a subroutine with 

arguments of a state, a time, and a process number in case of a Ci,T command. 

The execution of these commands forms the time T execution step. As a result of 

the time T execution step, the state is changed from statey-i to state-p and some 

outputs are generated. After it finishes, the state machine goes to the time T + 1 

execution step, and so on.

If we regard the output as a message from a process to itself, then the time need
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procedure statemachine;
begin

repeat
for » := 1 to N do
execute CjiCi0Ct_A (state, clock — A, t);
execute timeaction^state, clock — A);
generate command CiiCiock and initiate its broadcast

to all processes;
clock := clock 4- 1

until false
end;

Fig. 3.3 State machine algorithm.

to executed the time T execution step is at most 6. Thus every process can finish 

the time T execution step by time T -V A + <5. This implies that the time unit should 

be appreciably larger that A + 6 in order to do some meaningful processing. The 

fault tolerant synchronization property is established by the following assertions, 

which are guaranteed by condition IC.

(1) If process i has not failed by time T + A + 6 on its own clock, it would by that 

time have executed the time T execution step, using the command it generated 

at time T as the command

(2) Any two processes that have not failed by time T + A + 6 would have executed 

the identical sequences of state machine execution steps though time T.

Now, consider the implementation of a distributed semaphore as an example of 

the state machine method. In the implementation, the state has four components— 

the value of the semaphore, a queue of waiting processes, a queue of granted pro

cesses with their granting time. A P command issued by process i adds i to the 

end of the waiting queue, and a V command issued by i deletes i from the granted 

queue (in any position). The timeaction command effectively executes a V com

mand when a process has been in the granted queue for too long. (A process is 

assumed to stay in the granted queue for at most cu, and take an extra A' for itself 

to be notified that it had been granted.) A process at the head of the waiting queue 
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can enter the critical section if the value of the semaphore is greater than zero and 

is notified by the appropriate output.

procedure P(state, T,i);
begin

state.value := state.value — 1;
if state.value > 0 then
begin

state.gqueue := insert((i, T), state.gqueuey,
output “t granted”

end else state.wqueue := insert^i, state.wqueue)
end;
procedure VEstate, T, i);
begin

if i is in state.gqueue then
begin

state.gqueue := deZeteft, state.gqueue);
if state.wqueue is empty then state.value := state.value + 1;
else begin

output eh.ead(state.wqueue) granted”;
state.wqueue := tail^state.queue);
state.gqueue := insert^i, T), state.gqueue)

end
end;

end;
procedure timeaction^state, T);
begin

while T > h.ead\state.gqueue).time + w + A'
begin

state.gqueue := tail{state.gqueue);
if state.wqueue is empty then state.value := state.value + 1;
else begin

output “head^state.wqueue) granted”;
state.gqueue := insert^head^state.wqueue), T), state.gqueue);
state.wqueue := tail^state.queue)

end
end;

end;

Fig. 3.4 Command definitions for the distributed semaphore
problem.

The commands (procedures) are defined in Fig. 3.4, where insert^item, queue) 

returns the new queue by inserting item at the end of the queue, delete^i, gqueue) 

returns the new queue by deleting the (t,ttme) pair from the gqueue, tail^queue) 

returns the new queue obtained by deleting the head of queue, and head^queue) 
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returns the head of the queue. Each process executes the state machine algorithm 

in Fig. 3.3. Process i enter the critical section from the time it generates the “i 

granted” output until it either executes an V command or fails. Note the output of 

the state machine is only used to notify the process of the result of executing the 

state machine. It is not sent from one processes to another. Fig. 3.5 describes how 

the algorithm can be implemented by a more practical “interrupt-driven” program. 

In such a scheme, each process performs an action only in response to events of 

receipt of a message, a clock interrupt, a process’s desire to issue a P or V command.

Condition Actions

1. (c/ocA: = T + A) and 
(there is a message in the buffer) 

timestamped T)

for j 1 to N do
if ttT : j : *” message is in buffer then 

begin
remove the message from the buffer;
if the message is “T : j : P” then 

execute Ptstate, T, j);
if the message is “T : j : V” then 

execute V Estate, T, j)
end;

2. ^clock = j.time + w + A') 
for some process j in state.gqueue

delete the (j, time) pair form state.gqueue;
if state.wqueue is empty

then state.value := state.value + 1;
else begin

output “/iead(state.wqueue) granted”;
state.gqueue := insert((head(state.wqueue), 

T), state.gqueue);
state.wqueue := tail(state.queue);
output “head^state.wqueue) granted”

end;

3. (wants to enter the critical section) 
and (cZocfc = T)

initiate broadcast of “T : i : P” 
message to all processes;

4. (wants to exit from the critical section) 
and (cZocA: = T)

initiate broadcast of “T : i : V” 
message to all processes;

Fig. 3.5 Process t’s interrupt-driven program for distributed 
semaphore.

It is easy to verify that the above implementation satisfies the mutual exclusion, 
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progress and bounded waiting time requirements of critical regions. Compared to 

the implementations in [THE 83], the state machine method does not need such 

special hardware operations as decrement (increment) and test, or read and clear. 

This implementation is somewhat similar to solutions using time stamp and event

ordering [LAM 78] [RIC 81]. Since in the state machine, absolute time is used and 

the absence of message is counted as a null message, the number of message required 

per critical section entry is only half of the minimum number required in [RIC 81].

3.4 Distributed Database

Several papers have addressed the applications of Byzantine agreement to dis

tributed database system [LAM 82] [LAM 84] [GAR 84]. Generally speaking, the 

scope of applying Byzantine agreement techniques here is relatively small. Almost 

all the applications try to use reliable broadcasting, implemented by the Byzantine 

agreement, to assure that transactions are properly executed by reliable sites in the 

system.

In the following discussion, we usually assume that each transaction originates 

from some single user. In case the requests for a transaction are from several users, 

the reliable broadcasting can be executed in parallel so that whenever a process 

receives the request from the required number of users, the target request can be 

executed. Another assumption is that the processing nodes are, generally, not the 

input/output nodes. Although this is usually true, especially when the database 

is fully replicated, we want to emphasize here that it is the main reason for using 

reliable broadcasting. Here, we assume that each node can play the dual roles as 

an input node and a processing node.

The correctness of such an ideal fault tolerant distributed database system can 

be defined as follows:
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(1) Users should get the same results from the system that they would obtain from 

an ideal system where no failures occur.

(2) If a transaction is submitted at a reliable input node, that transaction will be 

in the resulting schedule.

(3) The time to commit a transaction is bounded.

The first requirement is natural since it just enforces that a fault tolerant system 

should fulfill the same task as the ideal system. The second requirement may not 

be preferable from the point of view of the users, who would like the system to 

guarantee the correct execution of all the transactions. We choose that requirement 

since we feel it is unreasonable to assume that the input nodes are faulty free. The 

third requirement is essential, too, since it would be absurd to let the user wait, 

say, one year, to get a transaction finished.

Given these assumptions and requirements, we can discuss the construction 

of such a system. It is obvious that if each piece of data has only one copy, the 

database can be easily destroyed in case the single copy of some data item happens 

to be stored on a faulty node. So, it is necessary to replicate the database here. If 

there are t faulty processes in the system, at least t + 1 copies are needed to ensure 

that at least one reliable node handles the data correctly. Unfortunately, there is no 

general method to tell whether some node is reliable or not. So, we actually need to 

store at least 2t +1 copies of the database so that the correct database can be drawn 

from the majority of the copies. In case the database is not fully replicated, we just 

let every node participate in the reliable broadcasting process, when a transaction 

is issued, and only let those nodes where the required data reside response. In 

the following discussion, we identify two major applications of Byzantine agreement 

to distributed data processing: the distribution of input request and transaction 

commitment.

It is obvious that the input node is critical. It would be unreasonable to move 
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the distribution function to the user by asking the user to submit the request at 

different locations. So, we would like the input node to take the request for a 

transaction and distribute it to all the processing nodes. In case the input nodes 

are perfect, all the processing nodes can agree on the same request without using 

Byzantine agreement. In order to guarantee that all the processing nodes have 

the same “final” state, each processing node should have its execution schedule 

equivalent to a serial schedule. This can be done by letting each input i node 

number the transactions it generates as Ti,i,Tti2, • ■. The processing nodes will then 

process the transaction in the order of Tij, ..., Tnii, Ti^, ..., Tni2,... In 

this way, all the processing nodes will receive the same sequence of transactions. 

This method satisfies the three correctness requirements. But one question with 

this scheme is that transaction processing will proceed at the rate of the slowest 

input node. The state machine method can be used here to let all the requests be 

issued periodically. If a processing node does not receive a request from some input 

node i at some period, then i is considered to have issued a null request. As pointed 

out in Section 3.3, this solution requires all the clocks to be synchronized.

Next, we relax the assumption for the input node. We assume that the input 

node may fail to send the transaction to some or all processing nodes, may wait an 

arbitrary amount of time between transmissions, and may send transactions in any 

order. However, if a processing node receives a transaction from some input node, 

this transaction is the one actually issued by the user. In this model, an input node 

can hold a transaction arbitrarily long before it broadcasts it, violating the bounded 

time requirement. To avoid this, we can attach to each transaction a timestamp, 

storing its arrival time, which the input node can not modify by our assumption. 

This timestamp can be used by processing nodes to discard transactions which are 

delayed for too long. However, in this model, there is no way to guarantee the 

first correctness requirement since an input node may fail to broadcasting it, or 
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hold it for too long so that it will be discarded by the processing nodes. Since an 

input node may send a transaction to only some of the processing nodes, Byzantine 

agreement is required to ensure that all the processing nodes receive the same se

quence of transactions. In the following scenario, processing nodes agree to perform 

a Byzantine protocol every T time units, ta is the guaranteed network delivery time, 

tT is the time taken by an input node to process the incoming transaction, tg is the 

time taken to reach Byzantine agreement and e is the maximum clock drift.

(1) Each processing node collects transaction from input nodes.

(2) At time iT, each node selects transactions with timestamp ts € [(i — 1)T — (e + 

ta-Vty^iT— (e-Kd-|-tr)]. Transactions with timestamp ts < (i — 1)T— (e+td+tr) 

are discarded.

(3) At time iT, each processing node initiates a Byzantine Agreement with trans

actions selected in step (2).

(4) At time iT + e + ty, the Byzantine agreement is complete. Each reliable 

processing node has the same set of transactions. These transactions are then 

executed in the same order by the reliable processing nodes.

In this scenario, similar to the state machine approach, each transaction waits 

for at most 2e + ta + tr + ty time units before it is being processed.

Now, we relax the assumption further such that the input nodes can be arbi

trarily faulty, even maliciously. Unfortunately, we can not come up with a more 

innovative way to apply Byzantine agreement. What we have is still the strategy 

above. While we can still guarantee that all processing nodes execute the same 

sequence of transactions, the bounded time requirement can no longer be satisfied, 

since a faulty input node can even change the timestamp of a transaction to make 

an old transaction look new.

Another application of Byzantine agreement to distributed database systems 

is the transaction commit problem. We have two cases here. In the first case, there
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is a transaction coordinator which decides whether to commit or abort a transac

tion and initiates a Byzantine protocol to broadcast its decision to its subordinates. 

In another case, one process issues a transaction complete request, whereupon ev

ery other process issues either a commit or abort request. If all processes issue a 

commit request, then the transaction must be committed, otherwise it is aborted. 

Again, in this scheme, processing has to proceed at the rate of the slowest pro

cess, even worse, a faulty process could never response. One solution presented in 

[LAM 84] is to use the state machine method. In the state machine solution, each 

state consists of a mapping from transaction identifier to time, status pair. For 

a transaction I, state{I).time is the time at which a transaction complete request 

is issued, state^I).status is an n-tuple whose /th component is equal to commit 

or undecided-depending on whether process i has issued a commit request. The 

definitions of these commands are given in Fig. 3.6. Initially, state(J).time equals 

to oo, for any transaction J. A transactioncomplete request issued at time 7* must 

be responded to before T + fl, otherwise the timeaction is taken to abort that 

transaction.

With this algorithm, any single failure will result in the abortion of all transac

tions. The solution can be modified to commit a transaction despite some failures. 

This is an elegant solution. There is no “window of vulnerability” and processes 

and communication lines may fail at any time without delaying the system. Again, 

this approach can only satisfy the second correctness requirement.

Although not applications of Byzantine agreement, there are two other prob

lems concerning arbitrary failures of faulty nodes in the system. One problem is 

with the output nodes. The output nodes are crucial here since users have to get 

the results from the output nodes. If an output node happens to be a faulty node, 

then the user can not be assured to get the correct result. Since there is no way 

to know which nodes are faulty in advance, at least 2t + 1 copies of data should be



61

procedure tranaaction-complete^I, state, T, t);
begin

state^I).time := T;
state(I).status := (“undecided”,..., “undecided”);
state(I).status.i := “commit”

end;
procedure commit(I, state, T,i);
begin

if state(I).time oo
then state(I).status.i := “commit”;

if state(I).status = (“commit”,..., “commit”) then
begin

output “transaction I committed”;
state(r).time := oo

end
end;
procedure abort(I, state, T, i);
begin

if state(I).time oo then
begin

output “transaction I aborted”;
state(I).time := oo

end
end;
procedure timeaction(state, I)
begin

for all transaction I do
if state(I).time < T — f2 then
begin

output “transaction I aborted”;
state(I).time := oo

end
end;

Fig. 3.6 Command definitions for transaction commit problem.

collected to reveal the correct result when there are t faulty nodes. It is obvious that 

no solution may exist if the output node is also a processing node. One solution is 

to move the duty of output node to users such that users directly check the 2t + 1 

copies and choose the. majority. This approach is not satisfactory also, because this 

merely moves the burden from the system to the users.

Another problem is error recovery and reintegration of faulty nodes. In case of 

arbitrary failure, this problem is extremely difficult if not totally insolvable. One 

reason is that in a long term system, we can can not assume there will be at most 
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t faulty nodes forever. This condition can be relaxed by assuming that at any 

instant, the number of faulty nodes is at most t and reliable nodes are always in 

a majority. Another reason is that the local stable storage may be fully corrupted 

after a maliciously failure so the whole database should be recovered. Suppose at 

some instant T, there are p reliable nodes, t faulty nodes, and r recovered nodes 

being reintegrated into the system. To cover that state information, those recovering 

nodes should obtain data from nodes which ware alive before time T. If we assume 

that all the recovering nodes are reliable, then the recovering nodes can recover 

data from the majority of those collected if p > t. In case r' of the recovering nodes 

are faulty, p should be greater than t + r*. This scheme works only if the whole 

database is recovered in that recovering procedure and no reliable process fails in 

between. This is not practical because it imposes a large overhead on the system. 

Also, not all the data items may be required in the future. A better method is to 

try to recovery a data item when it is required. In this scheme, a recovering node 

collects such a data item from nodes with a longer life time where that data item 

resides. This requires that a majority of those originally reliable nodes be kept alive 

before the whole database is recovered.



CHAPTER 4

Self-stabilization and Byzantine Agreement

4.1 Self-stabilization

In his classical paper on self-stabilization [DIJ 74], Dijkstra defined a system 

to be self-stabilizing if “it is guaranteed to arrive at some legitimate state in a finite 

number of steps”, regardless of its initial state and if it remains so forever. Here, 

the property that “the system is in a legitimate state” should be kept invariant as a 

consequence of the synchronization between processes. This problem can be solved 

simply and systematically if there is a common store where the “the current system 

state” is recorded and can be accessed by different processes in a mutually exclusive 

way.

However, the problem gets harder when there is no such common store and the 

state information is stored in variables distributed over the various processes. If 

the state information in each process can fully reveal the state of the whole system 

or each process can get information from every other process in the system, the 

situation is similar to having a common storage. Further, suppose that each pro

cess’s knowledge about the system is not complete and the communication facilities 

are limited such that a process can exchange information only with its “neighbors” 

which constitute only a small subset of all the processes in the system. In this case, 

the solution is no longer trivial.

In his paper, Dijkstra gives a small yet elegant and convincing example to 

illustrate the self-stabilizing technique. Consider a system built from N + 1 finite 

state machines numbered 0 through N. The machines are arranged in a ring. 

Machine i, 0 < i < TV, has machine (i — l)mod (TV + 1) as its left-hand neighbor and 
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machine (i + l)mod (JV + 1) as its right-hand neighbor. In the center of the ring 

stands a demon that gives the command “adjust yourself” to one of the machines in 

“fairly random order". Here, the “fairly random order” means that in each infinite 

sequences of successive commands issued by the demon, each machine receives the 

commands infinitely often. Upon “adjustment”, a machine goes into a new state, 

which must be a function of its own state and the states of its two neighbours.

For each machine, a “privilege” is defined as a function of its own state and the 

state of its neighbours. The legitimate states are defined as those states such that: 

(1) exactly one privilege will be present; (2) each possible move from a legitimate 

state will bring the system again into a legitimate state; and (3) for any pair of 

legitimate states there exists a sequence of moves transforming the state of the 

system from one into another.

In Dijkstra’s solution, each machine has K states so each state can be repre

sented as a number between 0 and K — 1. A machine i, 1 < i < n is privileged when 

its state differs from that of £ — 1, i.e., x[t] x\i — 1]. There is an exception for 

machine 0. (The problem is generally not solvable if all the machines are identical.) 

Machine 0 is privileged if its state is the same as machine TV, i.e., $[0] = x[7V], An 

adjustment on a privileged machine would cause that machine to lose its privilege 

and pass the privilege to its right neighbour. A non-privileged machine is said to 

“fire” if it becomes privileged. No effect would result from an adjustment on a 

non-privileged machine. So, the adjustment of machine i other than 0 means

if x[z] 7^ x\i. — 1] then x[£] := x\i, — 1] fi.

For the exceptional machine 0, this would be

if x[0] = x[7V] then x[0] := (x[0| + 1) mod K fi.

It is easy to see that if system is already in a legitimate state any move will 

transform the system into another legitimate state since in this case any adjustment 

either has an effect to let the privileged machine pass its privilege to its right-hand 
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neighbor or results in no changes at all. To see that any legitimate state can be 

reached from one legitimate state, we just need to show that the exceptional machine 

will continue forever to get the chance to be privileged. In this way, the privilege is 

guaranteed to rotate around the ring and the loss of privilege of process 0 would let 

all processes enter another state. Suppose the exceptional machine is not privileged, 

i.e., z[0] 7^ 2:[7V], then in a finite number of adjustment it will become so. For let j 

be the smallest number such that x[j] 7^ x[Oj. Since j is the smallest such number, 

then z[j — 1] = x[0], i.e., z[j] 7^ z[j — 1], which means that j is privileged. Since the 

demon is “fairly random”, it will point to j in a finite number of commands and 

increasing j if j < N or making z[7V] = z[0] if j = N, i.e. firing the exceptional 

machine. This is true even when the system is not in a legitimate state.

Let us now suppose that system is in an arbitrary state, we show that after 

a finite number of steps the system will enter a legitimate state. Suppose when 

the exceptional machine is fired for the first time, it is marked blue and all other 

nodes are marked white. From then onwards every state created by the exceptional 

machine or copied from a normal blue machine will also be blue. Since there are at 

most TV — 1 other white states which machine N can get from the copying actions 

along the chain of normal processes, the number of times that the the exceptional 

machine fires while machine N is still in a white state is at most N. Without loss of 

generality, suppose initially z[0] = K — 1. If K > TV, then the first TV firings of the 

exceptional machine would have created blue states from 0 though TV — 1. These 

blue values form a non-increasing sequence starting from the exceptional machine 

0. At the next firing of the exceptional machine we would have z[0] = TV — 1 and 

z[TV] = TV — 1. Since machine TV must be blue as well, thus all the blue states must 

be TV — 1, which means that the system is in a legitimate state. So, the legitimate 

state is reached from an arbitrary state after at most TV firings of the exceptional 

machine.
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The above reasoning uses a centralized powerful demon process. Dijkstra also 

showed that this methods works even if each machine can adjust itself with a finite 

speed and a finite frequency.

Although a good example for self-stabilization, some requirements in this prob

lem are not necessarily essential to all self-stabilizing system. Here we want to em

phasize that by self-stabilizing we mean any procedure that would lead the system 

into a legitimate state. In particular, a system need not to be in a legitimate state 

forever since in case not all machines in the system are reliable, it is highly probable 

that the system would enter a non-legitimate state as a consequence of failures in 

the system. However, it is required that the system should have the capability of 

stabilizing itself to enter a legitimate state again whenever it is in a non-legitimate 

state. Also, it is not necessary for a machine to get information only from its neigh

bors or a small subset of the processes in the system. Rather a machine can get 

information from a majority, even all, of the machines in the system whenever it is 

convenient or necessary. The latter case is justified as a meaningful self-stabilization 

since if there are arbitrary failures in the system, a machine will not be able to get 

the state of the whole system even if it collects state information from all other 

machines in the system. This is just what happens in Byzantine agreement.

4.2 The Mostly Byzantine Agreement

Results in Chapter 2 show that protocols to reach Byzantine agreement are 

often very expensive, both in the time required and the number of messages ex

changed. On the other hand, it is quite acceptable for some applications not to 

have to reach agreement every time; rather, agreement is an overall property. For 

example, in controlling the trajectory of an object, the object may be under the 

control of several controllers, each with its own sensors which would monitor some 
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aspects of the environment. From time to time, each controller has to gather infor

mation about the environment to make some adjustment, if necessary. It is ideal for 

all the controllers to get the same information so that the object would traverse the 

exact trajectory. But there might be some disagreements from time to time, causing 

the actual trajectory to deviate from the ideal one. However, as long as there is 

agreement most of the time, the effect of a disagreement need not cause irreversible 

changes in the state of the environment; rather, it may cause a slight deviation from 

the ideal trajectory, which can be compensated for by the next adjustment. So, we 

can eventually get an actual trajectory which is roughly the same as the ideal one 

within tolerable limits. This suggests that a relaxed Byzantine agreement may be 

more practical.

Consider a set of processes running indefinitely. Periodically, at times T\ 2T, • • •, 

they try to reach Byzantine agreement based on their current values at that time. 

They may fail to reach agreement at some time NT, but they should reach agree

ment almost every time. This “almost” property can be represented as

number of disagreements from 0 to nT 
hm --------------------------------------------------- = 0

n—►oo n

Note, in the above statement of the “almost” property, the number of dis

agreement can also be infinite. In this paper, we shall consider a more restrictive 

problem, namely, the Mostly Byzantine agreement. Its requirement can be stated 

cis follows:

(1) Validity: if all the reliable processes have the same value at time T, then all 

the reliable processes should agree on that value at time T.

(2) Finite Disagreement: the number of times that reliable processes agree on 

different values is at most C, a constant depending on n and t only, where n 

and t are the total number of processes and the number of faulty processes
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respectively.

This requirement naturally suggests that self stabilizing techniques can be used 

to solve the problem. In our approach, self stabilization is achieved by starting with 

a fully connected network and gradually disconnecting those processes suspected of 

being faulty from the system. The behavior of faulty processes can be arbitrary 

and even malicious. The messages used are still oral messages, as in the original 

Byzantine agreement, which satisfies the following assumptions [LAM 82]: 

Al: Every message that is sent is delivered correctly.

A2: The sender of a message can be identified.

A3: The absence of a message can be detected.

4.3 Framework of the Algorithm

Before working on the algorithm, we give the following theorem which states 

that a redundancy of at least 3 is required to solve the Mostly Byzantine agreement.

Theorem 4.1.  Mostly Byzantine agreement can not be assured for n processes, of 

which at most t are faulty, if n < 3t + 1.

PROOF. The proof is similar to the impossibility proof on assuring agree

ment for 3t generals and t traitors in [LAM 82]. The only thing that needs 

to be pointed out is that in addition to the impossibility to assure agree

ment, it is also impossible to detect which processes are faulty. We omit 

the proof here. I

The framework of such self stabilizing algorithms is given in Fig. 4.1. It works 

synchronously. At every time T, 2T, • • •, they try to reach agreement by two rounds 

of message exchanges. In the first round, each process broadcasts its own value 

and receives values from other processes. There are two special values, “halt” and 

“absent”. If a process thinks that some process is faulty, i.e., in its traitor set,
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procedure Sei f Stablizing.BA(p, n,t);
begin

TraitorSetp := 4>",
repeat /* at time, • • ■, — T, 0, T, 2T, • • •, */ 
roundl

broadcast^ypY, 
receive^) *y, 
Vp := (vi,...,vn);

/* Vj = “halt”, ift 6 TraitorSetp */
(* = “absent”, if p can not receive i’s message of that round */

round2
broadcast(Vpy,
receive(V*);
for t := 1 to n do
begin

di := Select_Majorit^ViWi • • •, Vi+1(i),, Vn(t));
sP(t) := {;|vP(i)#v>(*)};
Judge_Reliable^p, t);

end
(decisionp := majority^di,..., dn)) 

forever 
end;
procedure Judge-Reliable^p, i)
begin

if |Sp(t)| > t + 1 then
TraitorSetp := TraitorSetp + {i}

end;
Fig. 4.1 A framework for self stabilizing Byzantine Agreement 
algorithms.

it uses “halt” as that process’s value, “absent” is taken as the default value for 

those processes whose values can not be received by some specified time. In the 

second round, each process broadcasts the values it has received in the first round. 

Based on the values received in the second round, each process p construct the set 

»?(•') = 0' I Vpl-') KX1)}- ^p(l) refers the tth element of vector Vp. This set 
contains the processes which are considered to have been “cheated” by process t. 

Judge-Reliable determines if a process is faulty by looking at how many processes 

are cheated by that process. If a process is judged by process p to be faulty because 

it cheated too much, it is placed in the set TraitorSetp. Each process chooses di, 

any other process i’s value at that time, by applying the Select-Majority function 

to the set {V"i(z),..., ^(z)}, which are i’s value relayed by processes in the system. 
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The agreement value is obtained by applying some kind of majority function to the 

set

In the algorithm, we leave function Select_Majority unspecified. When choos

ing Select-Majority, we can either let “halt” and “absent” be replaced by some 

default value and allow each process to use the same threshold for majority, or let 

“halt” and “absent” be omitted and permit each process to use a different threshold. 

A process is determined to be faulty if it has cheated too many processes and/or 

it fails to send messages at some time. One interesting thing about this algorithm 

is that, depending on the redundancy in the system, we can get various different 

converging speeds, by properly designing the function Select-Maj ority.

4.4 Two Algorithms

The definition of Select_Ma,jority in Fig. 4.2 is for n > 4t. It “converges” very 

fast in the sense that if a faulty process is so “ill” that it would cause disagreement, 

it would then be judged by all reliable processes to be faulty and disconnected from 

every reliable process.

function Select-Majoritylvi, t>2, ■ ■ ■, Vn-1);
begin

for t := 1 to n do
if Vj = “halt" or v, = “absent" then w := DEFAULT-,
if 3v : v £ {vi,..., vn_i, DEF AU LT} &. count(v) > [n/2]

then Select-Majority := v
else Select .Majority := DEFAULT

end;
Fig. 4.2 Select-Majority definition for n > At.

Theorem 4.2.  The algorithm in Fig. 4.1 and Fig. 4.2 assures Mostly Byzantine 

agreement, if n > 4t.

PROOF. First, we claim that by Judge-Reliable, no reliable process would 

ever be disconnected from the system. To see this, observe that a reliable 
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process »*s value would be wrongly relayed by at most t processes. So, any 

reliable process p would get at least n — t identical copies of that process’s 

value. This implies that |Sp(i)| < t, which means no reliable process would 

ever determine that another reliable process is faulty.

The validity property is easy to prove. Since any reliable process t’s 

value will be relayed by at least n — t reliable processes, and each reliable 

process will get at least n — t identical copies of that value, well beyond 

[n/2] for n > At, it thus gets the same d,. Because all the reliable processes 

have the same value, each process would get the same majority based on 

the set (d j,.. >, d^ j.

Now, we prove that if no agreement is reached at some time, then at 

least one faulty process will be disconnected by all the reliable processes. 

By the algorithm in Fig. 4.1, the only possible reason that causes disagree

ment is that two reliable processes can not agree on some faulty process 

t’s value, i.e., they have different dt. This happens only if there is no value 

which appears at least [n/2] times in the set {Vp(t) |p is reliable}. This 

implies for every reliable process p,

|5p(t)| > n - t - [n/2] + 1

> t + 1, for n > At

So, i will be judged by every reliable process to be faulty and disconnected 

from the system.

If a faulty process is disconnected from every reliable process, it would 

not cause disagreement any more, since every reliable process would use 

the same default value for that faulty process. Since any disagreement 

at any time would cause at least one faulty process to be removed from 

the system and there is a finite number of faulty processes, the number of 

disagreements is certainly finite. I
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It is delightful to see what we have right now. At each time, only two rounds 

of message exchanges are needed to guarantee that either agreement is reached or 

at least one faulty process is removed. The removal of a faulty process ensures 

that a faulty process can not invert the agreement any more and therefore makes 

agreement easier. Also, there is no limit on the possible values of message items. 

A multi-value agreement can use exactly the same algorithm as a binary value 

agreement, except they need a different DEFAULT value. If a binary value is used, 

we can let each process just send a vector of binary values in the second round, 

by using a default value (0 or 1) for those considered to be faulty, instead of using 

“halt” and “absent”. A process sends n bits in the first round, and n2 bits in the 

second round. So at most n(n2 + n) message bits are transmitted in total.

One limitation of this algorithm is that it works for n > 4t, which is quite large 

compared to those required by algorithms for the original Byzantine agreement 

problem, namely n > 3i + l. However, in our algorithm, the convergence speed is fast 

enough that there are at most t disagreements in case of t faulty processes. In other 

words, a faulty process can invert the agreement at most once before it is removed 

from the network. This suggests that there might be some gradual detection of 

faulty processes when 3t + 1 < n < 4t, such that if there is a disagreement, at 

least one faulty process will get disconnected from at least one reliable process. In 

a system of n processes and t faulty processes, the number of connections between 

a reliable process and a faulty process is at most t(n — t). By assuring at least 

one break of such connections per disagreement, the number of disagreements must 

be finite. Fig. 4.3 presents such an algorithm that assures the Mostly Byzantine 

agreement for n > 3t + 1.

Theorem 4.3.  The algorithm in Fig. 4.1 and Fig. 4.3 assures Mostly Byzantine 

agreement, if n > 3t + 1.
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function Select-Majoritylyi, vi,..., vn-i);
begin

H := {v, | = “fea/t”};

/ := \HV,
if / > 2t + 1 then Select-Majority := DEFAULT1,
else if 3v : v 6 V&count(v) > f(n — /)/2] then

Select-Majority := v
else Select-Majority := DEFAULT

end;
Fig. 4.3 Select-Majority definition for n > 3t + 1.

PROOF. Using the same arguments as in the proof of Theorem 4.2, we 

can show, under the Judge-Reliable procedure, that no reliable process 

would ever be disconnected from another reliable process and validity is 

achieved by the definition of Select-Majority.

To prove the finite disagreement property, we just need to prove that if 

some reliable processes do not agree on some faulty process i, then at least 

one more connection between a reliable process and i would be broken. 

Suppose at some time T, there are m reliable processes which have broken 

their connection with i, 0 < m. Cases for m > t + 1 are trivial, since in 

these cases, at least t + 1 of the reliable processes would relay “halt” as 

the value of process i. If any process p has a value of i other than “halt”, 

i.e., it has a connection with i, then |S^p(£) | > county halt”) > t + 1, so all 

the reliable processes would break their connection with i.

Now, consider the case of 0 < m < t. Let r = n — t, the number 

of reliable processes. Any reliable processes p and q, which still have 

connection with i will receive at least r — m non-“halt” values of i relayed 

by other reliable processes, but no more than r — m + t. If all those r — m 

values relayed by reliable processes have the same value, then they should 

agree on that value, since r — m > [(r — m + t)/2], for r > 2t + 1 and 

m < t. Otherwise, there must be an mi > 0, such that mi of those r — m 
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reliable processes have the same value and the rest r — m — mi have some 

other values. We claim that

r — m — mi > t — m + 1

or

mi > t — m + 1

Since county halt”') > m for any process p of those r —m reliable processes, 

the above implies either mi or r —m —mi of those r —m processes will have 

|S(t)| > t — m A-1 A-county halt”) > t — count(uhalt”)A-lA- county halt”) > 

t + 1, thus disconnecting i.

To see why the above claim holds, suppose

r — m — mi < t — m + 1

and

mi < t — m + 1.

This implies
mi + r — m — mi = r — m

< 2t — 2m + 1.

Contradicting to r > 2t + 1. I

If binary values are used, the above algorithm uses at most n(n2 + n) message 

bits in total.

The converging speed can be analysed in the following way. Let denote the 

number of reliable processes having connection with process p after i disagreements 

have been caused by process p, the number of reliable processes disconnecting 

from process p at that time, h^ the threshold, and new-d^ the number of reliable 

processes that have newly disconnected p after the :'th disagreement caused by p.1
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For n > 3t + 1, we have the following relations

d(0) = 0

r(°) = n - t

[(n-i)/2] < < |-n/2-|

and

new_d^ > r^'1) + 1

+ new_d^

— new-d^

[(n - d^ - t)/2] < < |-(n _ d(*))/2]

The number of disagreements that can be caused by any faulty process is the small

est s + 1, such that 
8

new_d^ > t + 1
i=i

for t faulty processes and s is less than t/2, for t > 8. When n > 4t, this algorithm 

has the same convergence speed as the first algorithm.

It might be helpful at this point to construct some scenarios to explain how 

this algorithm works. First, we give an example to show that the Mostly Byzantine 

agreement can not reached by this algorithm if n < 3t + 1. Consider 30 processes, 

10 of which are faulty. Suppose faulty process 1 sends 1 to group A of 10 reliable 

processes and 0 to group B of the other 10 reliable processes. Then all faulty 

processes relay 1 to group A and relay 0 to group B. In this case, Group A will 

agree on 1 and group B will agree on 0, a disagreement. But no reliable process 

could ever detect that process 1 is faulty.

Now, assume there are 31 processes in total and the number of faulty processes 

is still 10. By our argument above, at least 6 reliable processes would disconnect 

from process 1 at the first disagreement caused by process 1. Similarly, we can get
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at the 2nd disagreement, 3 reliable processes will disconnect process 1;

at the 3rd disagreement, 2 reliable processes will disconnect process 1;

at the 4th disagreement, all reliable processes are disconnected from process 1.

After the third disagreement, there are 11 processes disconnected from process 

1, therefore, it will be disconnected by all the reliable processes. After the fourth 

disagreement, all reliable processes will agree on some default value for that faulty 

process. Thus, any process can invert an agreement at most 4 times in this case.

4.5 Extensions

4.5.1 Reducing the Number of Messages. The above two algorithms require 

n message exchanges per round for n processes. When n > 4t, we may have two 

choices. One is to let every process participate in the whole procedure and have a 

fast convergence speed. The other one is to just let 3t + l processes participate in the 

decision procedure and add a third round each time in which 2Z + 1 of those processes 

broadcast their decisions to the bystanding processes. The latter one may have a 

slower convergence speed. So, we have a tradeoff between the number of messages 

exchanged per round, the number of rounds each time and the convergence speed. 

If n >> t, the saving of messages in the second choice is significant. Another 

consideration is that in case the distances between the processes are not balanced, 

it may be more practical to just let those closely connected processes to make the 

decision after each process has broadcast its value. In this way, a group of those 

closely connected processes forms the kernel of the system and when any process in 

this kernel is identified as faulty, it may be replaced by a process not in the kernel.

In the above algorithms, each process requires at least 3i messages, one directly 

from a particular process while 3t — 1 are relayed by other processes, to make a 

decision on that process. We do not know whether this amount is minimal. In
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the case of only 3t processes or if every process has the 3t — 1 messages relayed by 

the same set of processes (consider the one received directly from the transmitting 

process as relayed by itself), then it is possible that no process is able to detect 

the failure of the transmitting process while there is a disagreement. However, 

if each process has a different set of 3t — 1 relaying processes, then at least one 

process can detect the failure of a process that causes a disagreement. To see this, 

consider a system in which process pn-i is faulty, each process p, collects pn-i’s 

value from processes pt-,p,+i,... ,p,+3t_2 (all the additions here are mod n — 1). 

Suppose that there is a disagreement, though no reliable process has detected that 

Pn-i is faulty. In this case, there must two reliable processes such that they decide 

on different values and are separated by faulty processes only. Without lost of 

generality, suppose that p, decides on 0 (receiving at least [3t/2] 0’s) and pj decides 

on 1, j = t + ti + 1, ti < t, and processes pl+i,pt+2,... ,py-i are faulty. Further, 

suppose that n is large enough, which means that there are a sufficient number of 

processes on the path from py to p,-. Since pi agrees on 0 and does not detect that 

pn-i is faulty, then it receives at most t 1’s, i.e., at least 2t — 1 of the messages 

it receives are 0, among them at least 2t — 2 — ti — <2 will also be received by py, 

where <2 is the number of faulty processes between py and In order for py

to decide on 1 and not to detect that pn_iis faulty, 2t — 2 — f i — ti must be less than 

t + 1. This implies that ti +<2 > t —2. So, there is at most one faulty process on the 

path from pt4-3t+i to pt-. In the process set {pt+3t-i,... ,Pi+4t}, there must be two 

reliable processes pk and p;, which are separated by at most one faulty process, such 

that they relay different values. Otherwise some reliable process in {py,..., pi^st-i^ 

would detect that process pn-i is faulty. Then it comes out that either pk or p<, 

or both, would detect that pn-i is faulty, as long as i + 6t + 1 < i mod(n — 1) for 

n > 6t + 3, a contradiction.
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4.5.2 Error Recovery. The algorithms presented above assume that the reliable 

processes will be reliable forever. This assumption is not always true in the sense 

that if the system is assumed to run for an infinite time, any process would have 

a sufficiently high probability of becoming faulty. This makes rapid detection and 

repair of faulty processes mandatory. Practically, it should be allowable that in some 

period one group of processes is faulty and in another period another group becomes 

faulty while all the previously faulty processes have been repaired or replaced by 

reliable processes, as long as the required redundancy is maintained at any time. 

Our self stabilizing approach would ease the detection of faulty processes. In the 

algorithm, whenever a reliable process identifies that some process is faulty, it breaks 

its connection with that faulty process. By properly inspecting the topology of the 

connections in the system, a faulty process can be easily detected. For example, 

in a process control system, where manual intervention is possible, a process can 

break its connection with another process simply by switching to ground. A human 

operator inspects the connection from time to time and removes some process when 

its active connection is below certain threshold (n — t in our case). A repaired 

process can be reintegrated into the system by letting all the other process switch 

their connection back.

In the case where manual intervention is not feasible, we can let each process 

be backed up by several processes. When a process detects that another process 

is faulty, it switches its connection with that process to the spare process. The 

algorithm in Fig.4.4 assumes that each process is backed by s spare processes. 

When a reliable process exhausts all the spare processes for process p, it declares 

that p is a faulty process and takes “halt” as the default value for p afterwards. If 

some kind of self-repair is provided in each process, the repaired process could be 

recycled and used as a spare process for the currently active process. Again, we 

have to assume that each time the algorithm is activated, a minimal redundancy of
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procedure SelfStablizing-BA-Witk-Spares^p, 
begin

TraitorSetp :=
repeat /* at time, • • ■, — T, 0, T, 2T, • • •, */ 
roundl

broadcast^mpY,
receive(mt)',
Mp :=

/* mj.value = uhalt”,ifi E TraitorSetp */
I* mi.num = oo,ifi E TraitorSetp */
/* v, = “absent”, if p can not receive i’s message of that round */ 

round2
broadcast(Mp);
receive(M.);
for » := 1 to n do
begin

di := Select-Majority (Afi(t),...,
Mi+1 («),.. ..,Mn(i)Y,

Sp(t) := {y | (Afp(i).vaZue Afy(i).vaZue&jWp(i).num
= Afy(i).nuni or Afy(i).num > Mp(i).num};

Judge-Reliable^p, i);
I'decisionp := majority^di,..., dn))

end 
forever 

end;
procedure Judge-Reliable^p, i) 
begin

if |Sp(i)| > t + 1 then
if Mp^iYnum < s then switch to tnum+i
else TraitorSetp TraitorSetp + {*} 

end;
function Select -Majority (mi, m2,..., mn-i); 
begin

H {m,- I mi.value = “halt”};
V := {mi,... ,mn_i} - H;

if / > 2t + 1 then Select-Majority := DEFAULT;
else if Bv, i,: m.value = v&m.num = i&m E V

&count(m^ > [(n — /)/2"] then Select-Majority := m.value 
else Select-Majority := DEF AU LT

end;
Fig. 4.4 A stabilizing Byzantine Agreement algorithms with s 
spares for each process.

3 is required.
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CHAPTER 5

Summary

The main focus of this thesis is on techniques for tolerating arbitrary failures 

in distributed computing systems. Central to this theme are solutions to Byzantine 

agreement and their various applications. There is no doubt that a truly fault toler

ant system can not be built by using a finite amount of hardware. However, among 

various failure models used to design fault tolerant systems, the one considered in 

the Byzantine agreement problem is the least restrictive and most powerful.

It has been a traditional approach to implement a reliable system by duplicating 

the processors to compute the same result and then to perform a majority voting 

on their output values to obtain a single value. An important assumption in this 

approach is that all nonfaulty processors will produce the same output. This is true 

as long as all reliable processors use the same input. However, if the input datum 

is from a single physical component and this component happens to be faulty, it 

is quite possible that each processor may get a different input value. Further, 

different processors can get different values even from reliable components if the 

input values change with time. For example, if two processors are reading a clock 

which is advancing then one may get the old time and the other the new time.

In order for majority voting to yield a reliable system, the following two con

ditions should be satisfied:

(1) All reliable processors should use the same input value.

(2) If the input component is reliable, then all reliable processors should use the 

value of the input component.

These are precisely the requirements in the Byzantine generals problem with 

the input device acting as the commander.
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Another assumption used in the majority voting method is that every voting 

processor has the same set of values to work with. For a nonfaulty processor this 

poses no problems. However, if a faulty processor’s value will be distributed to all 

other processors, there is no way to guarantee that every nonfaulty processor will 

receive the same value. Byzantine generals strike again in situations like this.

One might question the justification of Byzantine agreement by circumventing 

the problem with a “hardware” solution. For example, one may try to ensure that 

all processors obtain the same input value by having them all read it from the 

same wire. However, a faulty wire may place a marginal signal along the wire 

such that different processors may interpret the value differently. In this case, 

different processors must still communicate with each other to agree on that value 

by solving the Byzantine generals problem. Another more tempting attempt is to 

use a broadcast network, such as Ethernet, for the input component to distribute 

the value. Such a network assumes that 1) there exists a single route between any 

given processor and all other processors and 2) messages never need to be forwarded 

(except by repeaters at gateways). In this way, the behavior of a faulty process is 

limited. When a processor tries to send one value to all the other processors, it 

simply places it on the outgoing channel and and every other processor can read the 

value from that channel. In this way, the problem of unanimity seems to disappear. 

However, we still have reasons to justify the importance of Byzantine agreement. 

First, such a network may have failures itself. For example, the channel may break 

and leave the network partitioned, the link between a processor and the channel 

may break or even corrupt the message it gets from the channel when delivering 

the message to the connected processor. To enhance the reliability, one might try 

to duplicate the channels and the links so that any pair of processors are connected 

by at least one nonfaulty path of channels and links. In this case, we encounter 

another kind problem, although simpler than the Byzantine agreement, that is the 
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transmitter may place different values on different channels and it is possible for the 

links to corrupt the messages. Solutions to these problem are discussed in [BAB 85], 

Second, Byzantine agreement does not require any special “hardware”. It simply 

requires a point to point communication network and failures in the underlying 

network are modeled as a failure of the connected processor. Solutions to Byzantine 

agreement can be considered as a “pure” software solution.

Of course, the model in Byzantine agreement can not fully characterize the 

behavior of faulty processes in a system. In the study of Byzantine agreement, a 

process is assumed to be faulty if it behaves inconsistently to different processes, 

and is considered to be reliable otherwise. So, an inherently faulty process is taken 

as reliable as long as if it behaves consistently. The Byzantine agreement can do 

nothing to faulty processes like this. However, a protocol for Byzantine agreement 

enables all processes in the system to have the same view of the faulty process. This 

would ease the design of redundancy at higher levels. For example, if the input is an 

important one, there should be several separate input devices providing redundant 

values. Each input device initiates a Byzantine protocol so that every processing 

devices will receive the same set of input values. If the majority of the input devices 

are nonfaulty, then the reliable processing devices will use the correct values and 

produce the same output.

If the input device is nonfaulty but gives different values because it is read while 

the value is changing, it is still desirable that all nonfaulty processors should obtain 

a reasonable input value such that the values obtained by nonfaulty processors lie 

within a tolerable range if the input unit produces a reasonable range of values. 

This is exactly the case for the approximate Byzantine agreement wherein each 

process’s initial value is taken as the value read from the changing input device.

The authenticated Byzantine agreement uses a more restrictive model. It re

quires that processors be able to sign their messages in such a way that a nonfaulty 
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processor’s signature can not be forged by any faulty processor. This is a property 

that can never be guaranteed, since a signature is merely a data item and a faulty 

processor is free to generate any data item. This makes solutions using digital sig

natures more like randomized algorithms. However, we can make the system as 

reliable as we wish by making the probability of forging a nonfaulty processor’s 

signature as small as we wish. Suppose that the faulty processor malfunctions ran

domly, then the probability that a random malfunction in a processor generates a 

correct signature is essentially equal to the probability of its doing so through a 

random choice procedure, i.e., the reciprocal of the number of possible signatures. 

If the faulty processor is being guided by a maliciously intelligent entity—for exam

ple, a perfectly good processor being operated by a human who is trying to disrupt 

the system— the problem of constructing the signature becomes a cryptography 

problem.

The application of Byzantine agreement is largely due to the implementation of 

reliable broadcasting. Such a kind of broadcasting requires that whenever a message 

is sent, either all or none of the receiving processes will receive that message. This is 

just the requirement for the Byzantine generals problem. Previous implementations 

of reliable broadcasting can only tolerate failures of omission, i.e., a process can only 

fail by not sending a message. A reliable broadcasting implemented using Byzantine 

agreement can tolerate arbitrary failures. In Chapter 3, we have reviewed some of 

the typical applications of Byzantine agreement. Clock synchronization was one 

of the first applications and has been frequently cited as an example of Byzantine 

agreement. The implementation of fail-stop processor adds another fine account on 

Byzantine agreement. The “clean” failure behavior of fail-stop processors can be 

expected to facilitate design and programming of fault tolerating systems. The state 

machine method, another design methodology, is also an application of Byzantine 

agreement. Due to the expensiveness of Byzantine agreement, this method may 
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not be used widely in some system, but it can implement a very reliable kernel at 

moderate cost. The applications of Byzantine agreement in distributed database 

system are somewhat limited. Due to the criticality of input/output nodes, there 

is always a tradeoff between reliability and user friendliness.

The Mostly Byzantine agreement is presented in the belief that protocols to 

reach Byzantine agreement are too expensive to be used in some real time systems 

where fast response is preferable to a totally failure free but inefficient system. When 

constructing a reliable system, the self stabilizing approach may not be suitable if 

each agreement is crucial or if there are only a few attempts to reach agreement in 

the whole process. However, if reaching agreement is a consecutive procedure and 

each disagreement is not too irreversible to cause the failure of the whole system, 

say, it only produces a defective product, this approach achieves a high degree of 

fault tolerance with relatively low cost. Also, the finite number of disagreements 

during the whole process of Byzantine agreement suggests that the method in this 

paper is applicable even to crucial applications if some high level design redundancy 

is deployed to tolerate a certain number of disagreements.

In a sense, the Mostly Byzantine agreement can be considered as a kind of 

randomized Byzantine agreement since there is no guarantee that agreement could 

be reached at some specific time. However, unlike randomized Byzantine agreement 

algorithms where a disagreement probability of e exists each time when trying to 

reach agreement, no matter how many disagreements have occurred before, the self 

stabilizing approach assures, at least in theory, that the chance of having disagree

ment at each time becomes smaller, whenever a disagreement occurs, and eventually 

becomes zero. The reason is that in randomized algorithms, as well as in determin

istic algorithms, no measures are taken to detect the presence of faulty processes, 

while in the self stabilizing method, the detection of faulty processes is carried out 

at the same time as trying to mask their illness.
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For the handful of algorithms presented in previous chapters, we feel the one by 

Lynch et al. is certainly the best available deterministic one. This algorithm requires 

a relatively large number of rounds. If early-stopping techniques are used, a better 

performance can be expected. Although the one by Lamport et al. has reached the 

t + 1 lower bound of rounds for t + 1 faulty processes, it requires an exponential 

number of messages to be exchanged, and hence usually serves as an existence proof. 

For randomized algorithms, the one proposed by Chor and Coan seems best since 

it does not use any additional resources and can terminate in a constant expected 

number of rounds. But it fails to cope with asynchronous systems. Rabin/Perry’s 

algorithms can work with asynchronous systems, but require an additional trusted 

dealer to distribute the random coin tosses in advance. If reaching agreement is in 

consecutive attempts, the Mostly Byzantine agreement algorithm is certainly the 

best one for achieving a high degree of fault tolerance at a relatively low cost.
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