

Efficient Hydrogen Evolution by Nickel Phosphide Based Nanosheet Arrays Electrocatalyst

COLLEGE of NATURAL SCIENCES & MATHEMATICS

OFFICE OF THE PROVOST

Graduate School

Ishwar Kumar Mishra, Haiqing Zhou and Zhifeng Ren*

Department of Physics and TcSUH, College of Natural Sciences and Mathematics, University of Houston

Background

Current primary energy supply is based on fossil fuels and nuclear sources. However, these sources are non-renewable and more importantly, their toxic byproducts cause severe environmental degradation.

Pollution

Environmentally friendly and feasible energy alternatives are in urgent demand.

Hydrogen energy

Molecular hydrogen produced by water splitting is a potential energy carrier to fulfill the current energy demand.

Why hydrogen?

- Abundance of source
- Highest specific energy
- Renewable
- Non pollutant byproducts

Methodology

Hydrogen from electrolysis of water $2H_2O \longrightarrow 2H_2 + O_2$

Main limitation

Very slow process

Solution

Very active electrocatalyst is required to accelerate the reaction kinetics

Platinum is a very active electrocatalyst for electrolysis of water.

Hindrances of utilizing platinum

- Very expensive (about 1000 times more expensive than nickel)
- Limited amount on the earth's crust (3.7 x 10⁻⁶ %)

Any alternatives?

Highly active and stable electrocatalysts composed of earth abundant materials such as iron, nickel, copper, cobalt etc.

Nickel foam is a reliable starting material.

- ➤ Nickel is abundant on earth's crust
- > Low cost and commercially available

Metal abundancy

(% available on earth's crust)

Nickel foam

- > 3D
- Porous
- Not stable in acid
- Not active for hydrogen evolution

Nickel phosphide foam

- > 3D
- Porous
- Stable in acid
- Highly active for hydrogen evolution

Results

The self-supported nickel phosphide based nanosheet arrays electrocatalyst shows excellent hydrogen evolving efficiency requiring only 30 mV higher potential than that of platinum at benchmark current density of 10 mA cm⁻² in 0.5 M H₂SO₄.

Acknowledgements

This project is supported by U.S. Department of Energy and U.S. Defense Threat Reduction Agency.

