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~ ABSTRACT .

A theoretical treatment is presented for the heat
transfer rates over spheres and cylinders in forced convec-
tion film boiling when the liquid bulk is subcooled to any
degree. With the help of éuitable assumptions, solutions
for temperature profiles in liquid and vapour boundary layers
are obtained which are then used to formulate a total energy
balance on the sphere surface. The resulting equation is
solved numerically to determine vapour film thickness at
every point on the sphere body. Dimensionless Nusselt
numbers are then computed for any given system parameters
kl and k2 (dimensionless), which can be looked upon as a
general solution to the probiem. It is confirmed that sub-
.cooling of the liquid bulk raises the heat transfer sub-
stantiglly.

A number of comparisons with experiment are made
which in general show a reasonably good match between the
theory and the experimental trend. Theorefical fluxes

obtained are about one half the experimental values.
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NOTATION

surface area
cross-~sectional area of vapour film
specific heat capacity
diameter

heat transfer coefficient
heat transfer coefficient
thermal conductivity
dimensionless numbers
dimensionless numbers
2Ra/3U_

Nusselt number

pressure

Prandtl number

heat flow rate

' heat flux

axisymmetric radial coordinate
radial coordingte

radiﬁs of sphere/cylinder
radius of spherical vapor region
temperature

temperature difference

velocity in x-direction

average velocity in x-direction
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velocity

velocity in y direction

mass flow rate

coordinate measured along surface
coordinate measured normal to surface
thermal diffusivity

vapour film thickness

dimensionless film thickness
transformation variable

latent heat of vaporization

effective latent heat of vaporization
viscosity

density

shear stress

angle measured relative to the free stream velocity

~ transformation variable

Subscripts

bulk liquid
cross-section
experimental
liquid

radial
saturation

vapour
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angular

free stream

x1i



CHAPTER 1
INTRODUCTION

Film boiling is the type of boiling phenomenon where
the heated surface is separated from the liquid by a continu-
ous vapour blanket. 1In the classical boiling curve for lig-
uids, the film boiling regime is marked by very high surface
temperatures and relatively low heat fluxes. However this
classical behavior is substantially changed if the liquid
bulk is subcooled to some extent, i.e., if the liguid bulk
temperature is kept below its saturation temperature at the
given system préssure. Various experimental studies [1-5]1*%*
for subcooled film boiling have revealed that it is possible
to obtainhlarge heaf transfer rates if the liquid bulk is
below its saturation temperature; the heat flux will of
course depend upon the degree to which the liquid is subcooled.

This circumstance may be used to advantage in several
film boiling heat transfef situations; e.g., the operation of
Jets and rockets frequently involves the contact of a boiling
liquid with hot surfaces and film boiling occurs. In thermal
cracking operations, it might be desirable sometimes to use
high temperatures and short contact times giving rise to the
film boiling mode of heat transfer. Again in a boiling slurry

reactor where the fuel particles generating heat are suspended

* Numbers in brackets indicate references.
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in a liquid moderator and coolant, the heat transferred from
particles to the liquid is restricted by the presence of a
vapour blanket.

In all these cases the heat transfer characteristics
can be considerably improved by suitably subcooling the.
liquid. It is thus important to develop a theory which would
reasonably predict the heat transfer rates in subcooled film
boiling.

The problem of film boiling of saturatéd liquids over
a cylinder was analyzed by Bromley first for the free con-
vection case [6] and then for forced convection [7]. The
case of the sphere was then treated by Fréderking [81,
Kobayashi [9] and Witte [10]. These studies, however, do not
include tﬁe effect 6f subcooling of the bulk liquid. Sparrow
and Cess [11l, 12] presented an exact boundary layer solution
for subcooled forced convection £ilm boiling over a flat
plate,

In the present study it is attempted to explain theo-
retically some of the observed heat transfer rates for the
subcooled film boiling from spherical and cylindrical geo-
metries in fofced convection. The basic assumption under-
lying the formulation of the problem is that there exists
a continuous and smooth vapour film over the entire solid

surface. Boundary layer equations are written for vapour
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and liquid phases separately. . The analysis is simplified

by neglecting the inertia forces and energy convection terms
thus linearizing the equations. These effects are éccounted
for reasonably well by replacing the latent heat of vaporiza-
tion in the final result by an ‘effective' latent heat [13].

For the flow of liquid over the sphere the velocity
gradient in the liquid is taken to be negligibly small. This
permits the use of potential flow theory for the calculation
of velocity field in the liquid. This greatly simplifies the
Problem and a solution can be obtained which without thié
assumption might have been impossible.

The formulation of an energy balance at the interface
provides a nonlinear differential relationship between the
. £ilm thickness and the angular position on the sphere/cyl-
inder, which is solved by a numerical technique. Dimension-
less Nusselt numbers are then obtained for specific values
of a set of dimensionless numbers, k) and k,, thus providing
a general solution to the problem.

Unfortunately, only a very limited amount of data
exists for this particular situation and that too is either
not in a usable form or the experimental conditions are too
uncertain. A comparison with Bromley's data [3] shows the
theoretical values of flux about 2.5 times too low and that

with Witte [2] about 2.5 times too high.



To take into account the effect of surface irre-
gularities, a different treatment, the 'roughness' model
was proposed. Though this model makes use of very simpli-

fied assumptions, it improves the results by about 20%.



_CHAPTER IIL

LIQUID AND VAPOUR BOUNDARY LAYER SOLUTIONS

OVER THE SPHERE

‘Physical‘Model'and‘GoVérning'Equations

Film boiling is normally characterized by the exist-
ence of a vapour film completely surrounding the heated sur-
face. At some distance from the solid surface an interface
exists between the vapour film and the surrounding liquid.
Since the liquid is forced past the sphere, relative motion
between the sphere, the vapour and the ligquid will occur.

The model used for this phenoménon is shown in Figure 1.

The problem may be thought of as one of two boundary
. layer systems occurring simultaneously. First, the vapour
film moves past the solid sphere surface and is influenced
in its motion by the presence of the sphere surface and also
by the presence of the liquid at the liquid-vapour interface.
Second, the liquid layer overriding the vapour film actually
feels the influence of the vapour layer only. It cannot
actually 'see' the sphere surface. Mass crosses the liquid-
vapour interface from one boundary layer system to the other
as the liquid flows past the sphere.

The problem is further complicated because of the fact

that the liquid bulk is below its boiling temperature. This



liquid

AA / vapour

Fig. 1 Model for forced-convection film
boiling around a sphere.



condition of the liquid allows heat to be transferred away
from the liquid—vapoﬁr interface into the liquid bulk.

The problem has now been formulated and consists of
two phases of a fluid flowing past a sphere with a simultane-
ous heat transfer occurring in both phase regions. The
boundary layer treatment will be applied to both the vapour
boundary layer and the liquid boundary layer to obtain the

solution.

Liquid Boundary Layer

The liquid will be assumed to move around the sphere
inpotential flow. As stated previously it shall be assumed
that the liquid feels only the influence of the vapour film.
If it is assumed that the liquid-vapour interface is smooth
and in dynamic equilibrium, then the shearing stress acting
on the liquid-vapour interface in the liquid must be equal
in magnitude to-the shear stress acting upon the liquid-
vapour interface in the vapour. The following relation can

be written:

T, = "y (2.1)

where & and v refer to conditions in the liquid and vapour

respectively, and Tt stands for shear stress. Alternatively,

- o au
Mo 351 = g w5) (2.2)
% 9y 2 v 9y v
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This above equation relates the product of viscosity

au
4

interface to the corresponding produc£ in the vapour. The

u and velocityAgradienf in the liquid at the liquid-vapour

velocity gradient in the liquid then may be written as,

— = 2.3
v, =T, (2.3)

For conditions sufficiently far from the critical
u

point the ratio of wviscosities H% is quite small. For water
at 1 atm. and its boiling point, the ratio is .039. Further
the velocity gradient g%o will be assumed small so that
%% remains small. -Thoﬁ;h this assumption gets progress-—
iveiy worse as the vapour film thickness goes down, it per-
mits the use of poténtial flow theory for the calculation of
the velocity field in the liquid bulk.

By using spherical coordinates, assuming axial symme-
try and neglecting conduction in the ¢ direction as compared
to convection in that direction, the differential equation

‘describing the temperature distribution around the spherical

vapour film becomes

L 2 ' ~
3T 19T 3T . 20 3T :
ur* ar* + u¢ rr——s* —-——a¢ = Q ""'ar*z + ‘r* ar* (204)

where T is temperature and o is the thermal diffusivity of

the liquid. The velocity components U, and u¢ in accordance



9

with the assumption of frictionless flow can be written as

CykeR

W

u = n3Um

*. cos¢, U, = 5 U_Sing

¢

N

These are obtained directly by differentiating the
stream and potential functions for frictionless flow around
a sphere.

Sideman [14] showed that if the assumption is made
that the heat transfer takes place in a thin layer near the

interface, the term {g%;'BT

ar*) may be neglected in comparison
2

with the termA-a;g in the energy equation. This further
implies that tgz product of the Reynolds number and the
Prandtl number called the Peclet number is much larger than
unity. The Reynolds number and the Prandtl number are de-

fined by the equations.

where p is density, U is velocity D is sphere diameter, ﬁ is
viscosity, Cp is specific heat capacity and k is the thermal
conductivity of the liéuid.

The energy equation is then reduced to

2

u —?.—?_-{—u'—]q'—-va—-'l—‘:an
r* ar* 6 x* 3¢ ar*z

The boundary conditions are
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- T = Ty r* = '¢;9;
T = TSat r R $>Q; 7
T = Tg ©>r*>R! $=0 ‘ (2.5)

Ty represents the temperature in the bulk liquid flowing past

the spherical region, T is the saturation temperature of

sat
the liquid and R'is the radius of the spherical region. If
the vapour film thickness is assumed thin, the radius of the
solid sphere may be used for R\

Defining y by y = r*-R one may write

= - Y =3 ;
L 3u_ R cos¢, u¢ 5 U_Sin¢

Transformation variables can be defined as

AT

T-T

sat .
v =y sin’ (2.6)
and b
n = J sin’eds
o
The energy equation under these transformations be-
comes .
CaaT _ o a2aT . '
Y
= Z Ra
where M= 30
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The boundary conditions become

AT = Tp =~ T oo Yy = o« n>0
AT = 0 , p =0 n>0 .
AT = Tp =~ T o w>Ph>0 n=0 (2.'8)

This system of equations is similar to the heat con-
duction equations for which solutions are known. A solution
is [15];

. T-T

B _ Y
T T = exrfe ( )

sat B 2vMn

(2.9)

Where the éomplimentary error function is defined by

a
: - 2
erfc(a) = 1 - erfla) = 1 ~ -2 J e A dA
43
o
The temperature gradient %g can be written as
3T _ 9T 9y . 3T 3n
'3Y% 0y 9y on 3y
However,‘%%-is zero and the gradient becomes

AT AT
R
or
2T _ 28T _ 24T 2y
3y oy 8y 9y



12

the terﬁ ﬁ;r~is evaluated as
—a-—A—T—-—.-—-——Ai:EB—v—-— where AT = T - T
o T T a2 o B “sat B
and
W gin?
3y = 8in ¢
The temperaﬁure gradient thus becomes
. 2
. AT _Sin™¢
LI ——7—B (2.10)
24 (nMn)l 2

we shall later use this gradient to make an energy balance

at the interface.

The boundary layer equations for axisymmetric flow

of a fluid past a sphere are as follows [16].

. .a.(au}'(r) . -ag\;r) =0 (2.11)
AL g _1..33+1J—Y-3i‘i (2.12)
X Ay Py X Py ay2
ar am a2 |
ug‘f*"%‘i‘“v;;f (2.13)

These are the equations of conservation of mass, mo-

mentum and energy, respectively; r, x and y are measured as



AsA vapour

liquid

Fig. 2 Coordinate system for the vapour
boundary layer.

13



14

shown in Fig, 2, u is the velocity in x-direction and v in
y~direction., P is the pressure. These equations assume
that vapour £ilm thickness is much smaller than the sphere
radius.
The following additional assumptions are made:
1. The vapour is incompressible.
2. The sphere surface is isothermal.
3. The average vapour temperature éan be
taken as the arithmatical mean of the
Twall and TSat and the vapour properties
can be evaluated at this temperature.
4. The liquid-vapour interface is continuous
and smooth.
5. Inertia effects and energy convection
effects in the vapour film can be
neglected.
6. Heat is transferred across the vapour
film only by conduction; i.e., radiative
hgaﬁ transfer is neglected,
7. The velocity of the liquid-vapour inter-
face can be calculated from potential
flow theory.
8. The liquid~vapour interface is at the

saturation temperature,
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‘The applicable boundary conditions are

<
1
‘©
o
il
o

T ='Tw . (2.14)

i

u(x) T T

sat

ja!
n
o
o
i

Where § is the film thickness and u(x) = 3/2 U_Sin¢.
The assumption that inertia effects and energy convection in
the vapour boundary layer are negligible enables one to write

the momentum and energy equations as

. o2

oP 3’ u

— = u._ — (2.15)

X v ay2

and

W2 .
aT 3: 0 (2.16)
oy '

The solution to the last equation is

T =Cyy +C, (2.17)

Evaluation of constants ¢, and C, from the boundary

conditions, Equation (2.14), gives

T =T, t (Tgoe ™ TLe/6 (2.18)
Rearranging,
TToae
" =1-y/s (2.19)
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The solution to the momentum equation is

) T p 2
u~v2—ﬁ:;3§y +C3Y+C4 (2.20)

Cy is zero from the condition that u = 0 at y = 0.
Evaluation of C3 gives
u=357U_(Sing)t + EE;'ax(Y y§) (2.21)

If it is assumed that the pressure in the liquid layer is

impressed upon the vapour layer, the pressure gradient term

%g-can be replaced by a velocity gradient term. Neglecting

height changes, Bernoulli's equation for the vapour is

Po = P +.%-p u2 = const.

differentiating with respect to x,

=~ o u 4
pV X

XI5

where u is the velocity at liquid-~vapour interface given by

_ 3 R
u = 7Um Sing

Differentiating this with respect to ¢ and making use of
x = Rd¢, one obtains for the pressure gradient

2
3P L 32 'U....._°°
2! Py R

= cos¢ Sin¢ (2.22)
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Substituting this into the expression for velocity, Equation
(2,21) gives the velocity distribution in the vapour film as
u = 3 U_sing [6 t 7 Tgﬁj(cos¢)(y6~y 1] (2.23)

The average vapour velocity in the film is obtained

from
_ §
— 1
T =3 J u dy
o
$
. : o~ 0. U
1 (3 . 3 Py e
= = J E-Uw81n¢[y/6 + 7 i R
o
' 2
* (cos¢) (yé-y™) ] dy
Evaluation of this integral gives
U 3
~_ 13 .3 Pye 5 5
T=3F [7 Uw81n¢{z 7;;{ cos¢ & + 5}] (2.24)

Thus we have solved for the temperature and velocity

profiles.



CHAPTER III

ENERGY BALANCE AND NUMERICAL SOLUTION FOR

NUSSELT NUMBERS

By writing an energy balance on a differential ele-

ment of the vapour film shown in Figure 3, one obtains,

dqc = dqvap + qu (3.1)

This equation states that the energy conducted through
the vapour film arrives at the interface; is used partially
to form vapour and is partially transferred to the bulk
liquid. If the buik liquid is at saturation temperature
then all the energy arriving at the liquid-vapour interface
-goes into forming vapour and the last term qu is not neces-
sary. The energy used to vaporize liquid at the liquid-
vapour'interface can be written as the product of the effect-
ive heat of vaporization and the increase in the mass flow

rate in the differential film element.

=“ ‘
Aqy,p = A'dw (3.2)

The increase in the mass flow rate in the film element
must come from the vapour which is formed at the liquid-vapour
interface, Bromley [13] showed for laminar film condensation

that the assumption of a linear temperature profile is valid



Fig. 3 Energy balance on an elemental
area of sphere surface.

19



20
as long as an ‘effective' latent heat of vaporization is used
in an energy balance on an elément of the film., He also used
this concept in film boiling analyses with good success. The
expression for the effective latent heat of vaporization A"
as derived by Bromley is

. .« 4C_AT

A=+ —E " (3.3)

where AT = Tw'Tsat' This expression accounts for the heat
capacity of the superheated vapour.

The increase in mass flow rate dw can be written as

dw = d(vac u) (3.4)

where Ac is the flow cross-section of the film. Ac can be
written in terms of the film thickness and angular position

as

Ac = 27R§Sing¢

The average velocity u as previously determined by
Equation (2.24) is now used to write

"3 03 PyUs 83 s
dw = dlp_ 2rR (Sin¢) 3 U_Sin¢{p TR (coselg t Ml (3.5)
. v

The energy balance, Equation (3.,1) becomes
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g dA —“A‘ZHRPV ag*[§~UmSln¢{z~Waﬁi{cos¢)?r-+ 5}]d¢
ki’
+ A

'ATB da
Y mMn

where dA refers to the area element on the sphere surface

adjacent to the f£ilm element. dA can be written as

aa = 2wR2Sin¢ do

Substituting this into the above equation and simplifying,

one obtains,

K AT 5 o UA" o U 3
v- _ 3 v d . 2.3 v e ) 8
5= 2 Rsiny ag i g g leese) + gl
. 2
k,Sin“p AT,

Y 7TMn

This differential equation describes the variation
of £ilm thickness § with angle ¢. A solution of this equa-
tion for § permits one to compute the heat transfer rate at
any angle ¢.

The equation is put in the derivative form as fol-

lows:

‘ U 3
v B 3 -4 .23 .p.v © S . _§_
+.k281n ¢ ATB
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.3p.U.X‘ .o, U
Let v = M and -l~¥14: =M
2R 1 8 }JVR T2
kAT ) '
vom M a 3 s
5 = Sing dg My sin® pcos¢ + & sin?s]
+‘kzs;p:¢.ATB
Y 1Mn
M 2as , .34
= 5T [M {Sln ¢cos¢36 as + & a5 (Sln ¢cosd)}
: k Sin ¢ AT
i . . 2 das L B
+ 2{2681n¢cos¢ + Sin ¢}] + 173

(7Mn)

M
1 s 2 2 ds
= Sing [Mz{Sln bcos¢$ 36 a5 + 8 (281n¢cos ¢+Sln )

.2
2 k Sln ¢ AT
* (-Sin¢)} + &Singcos¢ + Slg ¢ %i] + 1/2B
¢ (nMn)°
. - as
Solving for T one obtains
kV Sln ¢AT
gé_ _ (S + Mle(S (l 3COS ¢)'—M GCOS(b k W
d¢ 2

M181n¢{3M26 Cos¢ + 5}

3 2 R
"'kV§T +,¥26.(153Cos o) _ §cos _4k28;n¢ATB
g - ThSsIme T T Sme L R Ty
de (3M262cos¢ + =)
(3.7)
- kAT kAT,
Let C = e P C - M ' C = R
1 My 2 2 3 Mz/Fﬁ
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‘ 2 1
(3c25 Cos¢ + 3)

A solution to this equation in closed form was

not found. However, the equation can be solved numerically

for given values of constants, Cl, C2 and C3.

The fourth order system frequently called the ‘Runge-
Kutta-Simpson' [17] method was employed for the numerical

solution of the problem. The method in brief is as follows:

Let.g%-= f(6§,4)at any known point n, then find

m, = h f(dn, ¢n) where h is an increment in 4.

Then find’
N "h my
m2 = h f(q)n + ‘i‘, 6n + 7) r
. . m
_ h 2
m3 = h f(¢n + -2-, (Sn + "'z—) 4

"

my =h £(¢, + hy 6, mal).

§,41 1s then computed és,

-

§ .= 6+

ntl = Sn {ml + 2m2 + 2m3 + m4}

The process is then carried on to 6n+2 .. and so on.
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We can thus compute the vapour thickness & for the entire
periphery and then determine the heat transfer rates, How~
ever, since the differential Equation (3.8) contains three
constants Cl’ C2 and C3, the results cannot be put in a
convenient form., This difficulty is overcome by making a
further assumption that the velocity profile in the vapour
film is linear. Because of the very small vapour thickness,
this assumption is seen to introduce very little error in
the final results.

The vapour velocity at any distance y is now given

as

o
]
Nl w

u_(sing) L (3.9)
The average velocity becomes

T = 2 U_sing (3.10)

ENTR)

The mass of vapour generated in the differential

volume of vapour is

dw

o ur )

= dlp, 7 U.Sing2R Sing+é) (3.11)

Energy per unit area of sphere surface required to

generate this much vapour is,
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LAl
—5 d(p —w2nR Sln ¢ §)
27R"Sin¢d¢ '
or '
2 AW o g
37 Ty
T R Sing a¢ (s5in%4)
The energy balance now becomes
k AT AU o .k Sin2¢AT
. v =. 3 ..... o v d (681n ¢) + 2 . . N B
- 3. )\.'U.mpv
Let IR ° Z
‘ . 2
then .kvﬁT ='Sii¢'d (681n 0 + k281n.¢ATB
¢ " Y1aMn
.2
as k£81n ¢ATB
= {§28in¢Cos¢ + Sln b a—& +
Sln¢ ¢ Ya¥n
k,Sin2¢AT
. < A ¢4Tp
= 2Z6Cos¢ + Z Sindg a$‘+
v aMn
. 2
kVAT kQSLn ¢ATB
or z Sin¢ 35-— —F " 2%28Cos¢ = -
YtMn
or as _ SNAT ascoss k,Sin¢aTy
de¢ ZGSln¢ Sin¢ 2/ TMn

By putting back the value of Zz and for M =

win

R
U_

4
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one obtains

as =.A.‘_.4k RAT . 26c089 _ (8 e lel]l/z
d¢ 3§A'Umvain¢ Sing 3 U
AT e
o SIne (3.12)
A °v '

Upon dividing by D to put the equation in dimensionless form,

one gets
- des/p) 4kVRAT..‘ - § Cosé 8 plc le2 1/2
d¢ 8 s~ 25 Sing (3 51
BBA'UmpVD Sing 3x2mU_D
. ATB Sing
]
Moy o
Let §/D = §!
as' _ 2k, AT _ 28Cosp _ (4 °chzkz]1/2
de¢ 6'3A'UprDSin¢ Sing¢ 3 nU0_D
AT .
¢ o BXDY (3.13)
Py /m
. kvAT ' .
Let kl =-§iXTﬁ:3;ﬁ‘ (Dimensionless) (3.14)
g Sk W2y .
k2 = [3 70_D ] By (Dimensionless) (3.15)

v
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so that Equation (3.13) becomes

.a&; ) ”.k;. _'26iCO§§ -Ak2$ih¢ (3.16)
d¢ §'Sing Sing I
/n 1is evaluated as
o= j sin3¢ds1 /2
o
e il L conginy s 61172
= [{~ 3 COS¢f2)}o]
='(3 - Cos¢+'29§ii)1/2
3 3
We have finally,
as' _ k1 _‘26'Cbs¢ _ _ szsin¢ o
a3 575ing Sing | 3
(% - Cos¢ + Cog ¢)l/2
(3.17)

- A solution to this equation by the previously de-
scribed Runge-Kutta-Simpson method brings out an interesting
property of the equation; that for a given kl and k2' it has
a unique limit cycle as the solution. In other words the
solution does not depend upon the initial value of §'. What-
ever value of 6' is chosen as an initial condition, the
solution rapidly approaches the fixed limit cycle. Many
nonlinear systems (such as the well-known Vander Pole Equa-

tion [18,19]Xare known to exhibit such behaviour where the
/
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solution is fixed due to the inherent properties of the
system.

To illustrate this, solutions were obtained for a
set of kl and k2 values for initial values of 6§ = .00001
and § = .02 (at ¢ = 1.5°). The results are in Table 1.

In spite of the fact that the initial values are so widely
different, both the solutions coincide just within 1/2°
increase in the angle, namely; at ¢ = 2.15° both solutions
exactly coincide and continue to be coincident.

A plot of § v/s ¢ is shown on Figure 4 for a given
system. As expected, § uniformly increases with the angle
$.

Although the initial'value of § doés not affect the
~ results at all, this value is found by using the condition
that ds8' = 0 at ¢ = 0. To program this statement, any high
value?¢say 1, is given to &' at ¢ = 2.5° and the slope'ggl
is computed. If this slope is negative then §' is made
= .1 and again the slope is found. If again it is negative
it is multiplied by .1 and so on till the slope is positive.
The value of §' is then slowly incremented in the interval
where it changes sign. We thus carry on the process say to
6 significant figures and then select the value of 4. This
amounts to selecting a value of §' such that‘g%l

Having thus obtained the values of dimensionless

He

0.



29

TABLE 1]

Initial Valge of Initial Value of

§=1,239x107° Ft. §=.02 Ft.

(at ¢ = 1.5°) (at ¢ = 1.5°)

¢ (Degrees) § (Ft.) §(Ft.)

1.55 .00001062 .01735349
1.6 .00001088 .01498746
1.65 .00001110 .01286114
1.7 .00001129 .01094155
1.75 .00001145 .00920163
1.8 .00001159 .00761886
1.85 .00001170 .00617437
1.9 .00001181 .00485220
1.95 - .00001189 .00363885
2.0 .00001197 © .00252289
2.05 .00001204 : .00149508
2.1 .00001210 .00055040
2.15 .00001215 .00001215
2.2 .00001220 .00001220
2.25 .00001224 .00001224
2.3 .00001228 .00001228

2.35 .00001231 .00001231



=5 py.

Vapour Film Thicknéss §x10

2.6

30

¢ (Degrees)

Fig. 4 Plot between 6 and 4.
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vapour film thickness S/D for the whole sphere, we can pro-
ceed to compute the dimensionless Nusselt number as follows:

Heat transfer across the vapour f£ilm from eiemental

area dA subtended by angle d¢ (Figure 5)

dgq = da

Y 24R%Sin¢ds

This quantity is calculated for a very small d¢ say
.01°., The value of § is assumed to be constant over this
increment in angle. Further, we shall neglect the heat
transfer beyond ¢ = 160°.

Total heat transfer is then written as

$=160° k_AT

Q= 7 g 27R%Sinod
$=0
$=160°
= k_AT 21R? ¥ L sineds
v & §
=0
........ .k 4160
or ————9—5— = iz z % Sing¢ d¢
AT (47R") =0 :

Noting that'FFFQQQi—-is the overall heat transfer coefficient,
AT (47R7)
denoted by H, one obtains,

1
2,5

"H
=
v



liquid

‘b& vapour

¢

Fig. 5 Heat flux from a differential

area on sphere surface.
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Nusselt Number
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5 kAT
k. = £ YV
1 3 AU p.D
®© vV
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4 Potpete 1/2
k (3 mU_D ) i
1800 |
1350 4
900 -
450 -
k2=.09
k2=.06
.\ . =.
k2 03
, , . k=0

.055 .155 .255 .355 .455
(k1x103) ~

Fig. 6 Heat transfer results.
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.02 .044 .068 .092
(k1x103)
Fig. 7 Heat transfer results’ {(cont.).
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. Nusselt Number

150 _

120
90
60
30
0 i [ 1 (]
.1 .3 .5 .7 .9
ky

Fig. 8 Heat transfer results (cont.)
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or A
m 1 P sineay
K, ©2 Gk, e/
ox
. =160, L.
Nu = %. 'y §£§$§i (3.18)
$=0

Thus we have been able to obtain the Nusselt numbers
starting from dimensionless numbers k1 and kz.

Computations were made for the Nusselt numbers for
a limited range of numbers kl and k2 and results plotted on

Figures 6-8.

The Roughness Model

In our treatment so far it was assumed that the sphere
surface was absolutely smooth i.e., it d4id not have any sur-
face irregularities. But an ordinary machine finished sphere
would definitely be expected to have some kind of surface
roughness and if this roughness size is comparable to the
vapour film thickness, it could interfere in the formation
of a continuous and smooth vapour film. Such a size of
roughness was indeed assumed, so that it would not allow the
growth of a continuous vapour film over the sphere.

To deal with the'problem quantitatively, it is neces-
sary to assume some sort of roughness distribution. The

roughness assumed was in the form of two dimensional discs



protrusion

Fig. 9

The model used for roughness treatment.
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having zero thickness placed on the sphere (Figure 9) in a
direction perpendicular to the motion of the sphere and at
a fixed distance apart. One can conceive the situation as
that of film boiling of liquid contained in the individual
'troughs' formed by the consecutive protrusions; The pro-
blem then becomes one of making an energy balance over an
indiﬁidual 'trough' and computing the vapour film thickness
in that region.

Let d¢ be the angle subtended by the two consecutive
protrusions at the center of the sphere. We will consider
the energy balance over the element Rd¢ which makes an angle
¢ with the direction of'sphere motion. If d¢ is small we
can assume that vapour film thickness § is constant over it.
From Equation (3.10) the average tangential velocity of
vapour is % U_Sin¢. Now since the vapour motion in the tan-
gent direction.is restricted because of the presehce of the
protrusion, it would be reasonable to expect that the vapour
flows along the direction of protrusion and escapes into thé
bulk liquid. It is premised here that the vapour flows along
the direction of protrusion with a velocity which is the
component of'tangential velocity in that direction.

The amount of vapour generated over the elemental
area Rd¢ is

dw=pVVdAc

p;-%-UwSin¢Cos¢-2nRSin¢Rd¢
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The energy required to generate this vapour is

=.A‘-pv}§-UmSin¢Cos¢-2ﬂR Sin¢RdA¢

dg Z

Energy conducted through the vapour layer is dqc =
.k AT
v

$

- 27R Sin¢Rd¢.
Energy conducted into the bulk liquid is dqb =

kz %%J dA where from Equation (2.10)

L

. 2
Y .Sln.¢ATB

L) ) (M1Tn)l/2

Writing an energy balance (Equation 3.1)

dg_ = dgq

c 9yap * dag

and substituting for the respective terms one obtains

K_AT 3 k,Sin®paty
—%—— @A = A' 7 p U _SingCos¢dA + da
v v 7Mn
where dA = 27R Sin¢+Rd¢
l _ )
or 1 §._.)\.UmDp.VS.:l_anp . [3k£Uwp2szD]l/2
§/D ~ 8 ﬁkvAT T
;'ATB"Sin2¢
AT 1/2
k, (n
3.AFU;DpV
Let N (Dimensionless)
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3k, U p C D 1/2 AT,
L " LT PR B _ . .
[—=- - 1 ATkV =N, (Dimensionless)

and §/D = §' (Dimensionless)

So that one has

'3%-= N.Sin2¢ +

1

The dimensionless vapour film thickness §' over
every individual 'trough' is computed from the above equa-
tion and Nusselt number is found as in Equation (3.18),

namely,

Thus for every set of dimensionless numbers N, and

1
N, a Nusselt number can be computed.

To determine how the results compare with the smooth
sphere solution already obtained, a specific system was

taken where

ia. o

To Tsat Plas Uo A ey & pt . Py

°F  °F  1In "Ft BTU " 4BM ~ BTU =~ BTU = ¢BM
* Sec 2bm Ft3 Hr.Ft.°F 4BMF, Ft3

1300 212 «> .02 1178 .02 .032 1 62.4
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so that N. = ,77 and N2 = 22,2, The Nusselt number obtained

1
was 18.6 using the protrusion model, whereas for the same

system for smooth_sph.e‘,:r:e‘Gmlthk:L = ,322 and k, = 6.45) the

2
result was a Nusselt number of 15,6 (Figure 8], showing an

increase of about 20%,



CHAPTER 1V
NUSSELT NUMBERS FOR CYLINDERS

The Nusselt number for forced convection flow over

g cylinder is given [20Q] as

Nu(x) = .57 Re(x)1/2 pr+? (4.1)

To bring it in conformance with the expression used
for a sphere, let us assume a Prandtl number dependence of
»5th power (for Prandtl number range of water, this will

Introduce little error) then

Nu (x)

I

«D7 Re(x)l/2 Pr'5

.V xop

| .5 MCpa. .5
«57 GTT———) Qj;jlﬂ

L L

1

57 CogRhy -8

L

where V is the free stream velocity and with the assumption

of potential flow is given for a cylinder as (Figure 10a)
v = 2U_Sing

and also



v

v

g

Fig. 10a Potential flow around a cylinder.

liquid

A

vapour

Fig. 10b Energy balance over an elemental
area on the cylinder.



thus

ju
i
[ ]
Ut
~
—

.40 P . C _k

h(¢) = .57 (

D

Up C  k

1.14 (—4wD

Energy Balance

.2Ump&Cp£k281n¢)l/2
© Pl 2)1/2 /8ing

© pL 2)1/2 /Sln(b
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(4.2)

(4.3)

We shall as before assume a linear velocity profile,

the velocity varying from zero at the wall to 2U_Sin¢ at the

liquid vapour interfere (Figure 10b).

is therefore

0 + 2U_Sing

u = 5

= UmSin¢

The average velocity

Mass of vapour generated in an elemental volume of vapour is

dw = d(p WA )

where A  is the area of flow, so that

Ac = § x 1
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and,

dw = d(p & U_Sing)

The energy required to generate this vapour is Atdw. Heat

flux required for vaporization per unit area of cylinder is

, A¥dGU_851ns)
dqvap = . ) » (Rd¢xl=surface area)
‘XFbU;.d )

Upon writing an energy balance at the interface, one has,
heat conducted across vapour film equalling heat required

for vaporization plus heat going into the liquid bulk, or -

R AT . Atp U U p.C k, 1/2 moe-
\'s - v o d . o" L plL Sing
3 = R» aa-(ssln¢) + 1.14[————5e———q Y. 3 ATy
At U . .U p,C_ .k, 1/2
- v o . as. o TPl R Sing
= —x (6Cos¢+Sing d¢) + 1.141————52———4 /—$~_'ATB
A U
Letting ——ﬁz—— = E one obtains
kAT : s " U_p,C kK, 1/2 mr—
Y - EsCos¢ + E S5 sing + 1,14[— A~ RE Y y21n9 m
§ ds D % B
or
'§§\=*‘RVAT . §Cos¢y _~1.14 iUffgcpaknjl/Z V;*iffffAT
dy ~ Eesiny - Sinp B D Sing+j - B

Dividing by D



a(s/p) _ kAT § Cosp 1,14 - 15} 'f"z‘c'p'zk 1/2 . — T .
d¢ E%Dzsin¢ D .5in¢ E D3 Sings ¢ B
Let
\k§AT .K&ATfD/2 L kOAT \
oy B ey = 5T 0D ;.kl(pimensionlessl (4.5)
ED At UD LA P e _
and D
1.14[U.°°p R.szkIL] 1/2 7 .A.TB
D3 ‘A'pVUm
- p,Ck AT '
- pL4,1/2 B _ . .
.57[——315——] XTH; k2(D1men51onless) (4.6)
Hence
] 1
as' _ kq §'Cos¢ _ k2 (4.7)

dq) - G'Sin¢ - Sinq) m

We can now numerically solve this equation for §' as
a function of ¢ by using the same method as used for sphere.

Having computed the dimensionless film thickness &'
for all ¢, we can proceed to determine the Nusselt numbers
as follows.

The energy conducted through the vapour from an

elemental area subtended by an angle d¢ is

.kVAT
dgq = - N Rd ¢ (4.8)
The total heat is then
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if H is the overall coefficient of heat transfer then

or

H(2TR)AT = 2}g]ATR Z '
Q>=

k.. $=160.
, \'4 - d
H= — ]
T 420 —%
- HD =.}.¢=1604§$
Ko T g0 %
. =160
Nu = .]l 9.‘2
" & st
$=0

\t_ii\

(4.10)

This sum is easily computed numerically.



CHAPTER V
SOME COMPARISONS WITH EXPERIMENT AND CONCLUSION

As remarked earlier;Avery scant experimental data
are available on this problem. Following is a brief dis-
cussion of comparisons which could be made.

‘First of all to check the validity of the numerical
procedure, computations were made for the cése when the
dimensionless number k., is zero. Since k

2

degree of subcooling, this case reduces to that of saturated

5 represents the

film boiling, an analytic solution to which is available
[10]. As shown below, the analytical solution matches very
well with the numerical solution.

The properties of the system considered are given in

Table 2 (No. 1)

TABLE 2
s.Wo T, T U Dia ko A o Py
° ° L FE BTU " BTU BTU " BTU “2bm
(°F1 CF) (gg5) () Gpeor) 30 Gemer! omew (T3
‘ - Ft Ft
1 1000 212 20 .75 027 .023 970 1 -

2 .762 174 8 .387 012 .027 200 .762 46.2

The parameter kl from Equation (3.14) is
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2K AT
v = .000121

k = ; .=
1 3 UprD

Correéponding to k; = .000121 and k2 = 0 one finds

1
the Nusselt number from Figure 6 as 55. The heat transfer

coefficient is then

. Nu k.

h = —-Y = 23.4 BIU/Ft°Hr. °F

The total heat flux is found as
g" = hAT = 18400 BTU/Ft°Hr.

Now from film boiling theory for saturated case the heat
flux is given by

" A'p k. U AT 1/2

2]

.698 (—Y g )

R q"

18500 BTU/Ft Hr.

The two values thus ?ery closely match.

A series of experiments were performed by Bromley
[3] for the film boiling of various hydrocarbons over a
cylinder in forced convection. The tube was electrically
heated and the surface temperature was maintained constant.
Different values of subcooling were taken.

We shall for our comparison take the tabulated data

for ethyl alcohol for run No. 106. The system properties
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are tabulated in Table 2 (No. 2)

The dimensionless numbers_k and k2 are

1
..{kaT" -
kl = W = _.000945

and
Lo CL kAT, 1/2
_ 2 P L B _
k, = .57 Tb  i'p ] = ,436

v

The Nusselt Number obtained using these k., and k, comes out

1
to be 333.5

Whence

The experimental value of the heat transfer coefficient is

hexp = 275
so that
- _&xp _
5 2.2

Thus, the theoretical value is about half the ex-
perimental value.

Witte [2] performed a range of experiments on tran-
sient heat transfer from high temperature‘tantélum spheres
moving in highly subcooled liquid sodium. Although presence

of vapour blanket could not be visually obserwved due to the
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opaqueness of liquid sodium, intuition would indicate that
a vapour film would form around the sphere because of its
high temperature. The transient data was suitably reduced
to heat flux v/s instantaneous temperature variation.

A comparison with the above data is given in Fig-
ures 11-13 and shows the theoretical results to be 2 to 3
times the experimental. |

If for a given Twall' i.e. for a fixéd kl’ we plot
Nu v/s k2 (where k2 is the subcooling parameter) we obtain
a linear variation (Figure 14). Zuber and others [22] ob-
tained a similar variation of critical heat flux with the
degree of subcocoling in nucleate boiling. Bromley [3] also
gets almost a linear variation of flux with degree of sub-
cooling in his experiments on subcooled film boiling of
several hydrocarbons over a cylinder in forced convection.

Another interesting observation is that the product

(Nu . kl) for a given"k2 (subcooling parameter) is approxi-
mately constant as shown in Figure 15. The quantity (Nu-kl)
represents the total heat flux. That then means that the

flux is quite.independent of the sphere temperature in sub-
cooled film boiling. Walford [4] also made this obserxvation
in his experiments.

The reason for this phenomenon is not difficult to
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see. If we look at the energy equation, the quantity of
heat going into the bulk is independent of the sphere
temperature; it depends upon only the temperature of the
liquid bath., And since withﬁsubstahtial subcooling, Qg
is the major portion of the heat transfer, a change in
sphere temperature does not affect the overall heat transfer.

Walford in his experiments with a zinc sphere also
obtained a constant heat flux when plotted against wall
temperature in the stable film boiling region. This plot
is reproduced in Figure 16.

Jacobson and Shair [1] have also reported some ex-
perimental work regarding subcooled film boiling. However,
the conditions under which the experiments were performed
are not clear. Also their data show a steep rise in flux
with the surface temperature of the sphere which is quite
in contradiction with the results obtained by Walford who
gets a constant flux with the said change in wall temperature.
Moreover the degree of accuracy to which the temperature
measurements were made by means of the optical pyrometer is
not known,

Howevér after giving suitable numbexs to the system - -
properties for the range of variables considered by them,
the experimental value was found to be .8 to 7 times the

theoretical value.



AVERAGE HEAT FLUX MW.m~2

a2 /- AN

55

| 20°c
6 / L 40°%¢
A
A~
a 4 \\,\ 60°C '

.—-—\ )

//" \ \\ N L goec

/4 — : 85°C 950¢

o 100 200 300 400 "~ 500 6800 700 800 900 1000 QO
INITIAL - SPHERE TEMPERATURE ©C

Fig. 16 Average heat flux v/s initial
' temperature.



56

Concluding Remarks

It is seen that the subcooling of the liquid bulk
considerably reduces the vapour film thickness, thereby
raising the heat transfer rates. Although higher transfer
rates are obtained for the case of liquid sodium, it is
premised that in general the theory underdepicts the heat
fluxes; the higher values for liquid sodium being attributed
to characteristics like surface wettability etc., peculiar
of liquid metals. An attempt to explain the liquid sodium

behaviour was not made and is left for future investigation.
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