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ABSTRACT

A theoretics,! treatment is presented for the heat 

transfer rates over spheres and cylinders in forced convec

tion film boiling when the liquid bulk is subcooled to any 

degree. With the help of suitable assumptions, solutions 

for temperature profiles in liquid and vapour boundary layers 

are obtained which are then used to formulate a total energy 

balance on the sphere surface. The resulting equation is 

solved numerically to determine vapour film thickness at 

every point on the sphere body. Dimensionless Nusselt 

numbers are then computed for any given system parameters 

k^ and k2 (dimensionless), which can be looked upon as a 

general solution to the problem. It is confirmed that sub

cooling of the liquid bulk raises the heat transfer sub

stantially.

A number of comparisons with experiment are made 

which in general show a reasonably good match between the 

theory and the experimental trend. Theoretical fluxes 

obtained are about one half the experimental values.
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NOTATION

A surface area

Ac cross-'sectional area of vapour film

0^ specific heat capacity

D diameter

h heat transfer coefficient

H heat transfer coefficient

k thermal conductivity

k^,k2 dimensionless numbers

kj/k^ dimensionless numbers

M 2Ra/3Uoo

Nu Nusselt number

p pressure

Pr Prandtl number

q heat flow rate

q" heat flux

r axisymmetric radial coordinate

r*  radial coordinate

R radius of sphere/cylinder

Rl radius of spherical vapor region

T temperature

AT temperature difference

u velocity in x-direction

u average velocity in x-direction

ix



U velocity

v velocity in y direction

w mass flow rate

x coordinate measured along surface

y coordinate measured normal to surface

a thermal diffusivity

b vapour film thickness

6*  dimensionless film thickness

n transformation variable

X latent heat of vaporization

A*  effective latent heat of vaporization

p viscosity

p density

t shear stress

<j> angle measured relative to the free stream velocity

ip . transformation variable

Subscripts

B bulk liquid

c cross-section

exp experimental

Jl liquid

r*  radial

sat . saturation

v vapour

x



vap vaporization

w surface

4> angular

co free stream

xi



CHAPTER I

INTRODUCTION

Film boiling is the type of boiling phenomenon where 

the heated surface is separated from the liquid by a continu

ous vapour blanket. In the classical boiling curve for liq

uids, the film boiling regime is marked by very high surface 

temperatures and relatively low heat fluxes. However this 

classical behavior is substantially changed if the liquid 

bulk is subcooled to some extent, i.e., if the liquid bulk 

temperature is kept below its saturation temperature at the 

given system pressure. Various experimental studies [1-5]*  

for subcooled film boiling have revealed that it is possible 

to obtain large heat transfer rates if the liquid bulk is 

below its saturation temperature; the heat flux will of 

course depend upon the degree to which the liquid is subcooled.

* Numbers in brackets indicate references.

This circumstance may be used to advantage in several 

film boiling heat transfer situations; e.g., the operation of 

jets and rockets frequently involves the contact of a boiling 

liquid with hot surfaces and film boiling- occurs. In thermal 

cracking operations, it might be desirable sometimes to use 

high temperatures and short contact times giving rise to the 

film boiling mode of heat transfer. Again in a boiling slurry 

reactor where the fuel particles generating heat are suspended
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in a, liquid moderator and coolant, the heat transferred from 

particles to the liquid is restricted by the presence of a 

vapour blanket.

In all these cases the heat transfer characteristics 

can be considerably improved by suitably subcooling the 

liquid. It is thus important to develop a theory which would 

reasonably predict the heat transfer rates in subcooled film 

boiling.

The problem of film boiling of saturated liquids over 

a cylinder was analyzed by Bromley first for the free con

vection case [6] and then for forced convection [7]. The 

case of the sphere was then treated by Frederking [8], 

Kobayashi [9] and Witte [10]. These studies, however, do not 

include the effect of subcooling of the bulk liquid. Sparrow 

and Cess [11, 12] presented an exact boundary layer solution 

for subcooled forced convection film boiling over a flat 

plate.

In the present study it is attempted to explain theo

retically some of the observed heat transfer rates for the 

subcooled film boiling from spherical and cylindrical geo

metries in forced convection. The basic assumption under

lying the formulation of the problem is that there exists 

a continuous and smooth vapour film over the entire solid 

surface. Boundary layer equations are written for vapour 
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and liquid phases separately. The analysis is simplified 

by neglecting the inertia forces and energy convection terms 

thus linearizing the equations. These effects are accounted 

for reasonably well by replacing the latent heat of vaporiza

tion in the final result by an ’effective' latent heat [13].

For the flow of liquid over the sphere the velocity 

gradient in the liquid is taken to be negligibly small. This 

permits the use of potential flow theory for the calculation 

of velocity field in the liquid. This greatly simplifies the 

problem and a solution can be obtained which without this 

assumption might have been impossible.

The formulation of an energy balance at the interface 

provides a nonlinear differential relationship between the 

film thickness and the angular position on the sphere/cyl- 

inder, which is solved by a numerical technique. Dimension

less Nusselt numbers are then obtained for specific values 

of a set of dimensionless numbers, k^ and k2, thus providing 

a general solution to the problem.

Unfortunately, only a very limited amount of data 

exists for this particular situation and that too is either 

not in a usable form or the experimental conditions are too 

uncertain. A comparison with Bromley's data [3] shows the 

theoretical values of flux about 2.5 times too low and that 

with Witte [2] about 2.5 times too high.
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To take into account tlxe effect of surface irre

gularities, a different treatment, the ’roughness’ model 

was proposed. Though this model makes use of very simpli

fied assumptions, it improves the results by about 20%.



CHAPTER II

LIQUID AND VAPOUR BOUNDARY LAYER SOLUTIONS 

OVER THE SPHERE

Physical’ Model' and Governing Equations

Film boiling is normally characterized by the exist

ence of a vapour film completely surrounding the heated sur

face. At some distance from the solid surface an interface 

exists between the vapour film and the surrounding liquid. 

Since the liquid is forced past the sphere, relative motion 

between the sphere, the vapour and the liquid will occur. 

The model used for this phenomenon is shown in Figure 1.

The problem may be thought of as one of two boundary 

layer systems occurring simultaneously. First, the vapour 

film moves past the solid sphere surface and is influenced 

in its motion by the presence of the sphere surface and also 

by the presence of the liquid at the liquid-vapour interface. 

Second, the liquid layer overriding the vapour film actually 

feels the influence of the vapour layer only. It cannot 

actually ’see’ the sphere surface. Mass crosses the liquid- 

vapour interface from one boundary layer system to the other 

as the liquid flows past the sphere.

The problem is further complicated because of the fact 

that the liquid bulk is below its boiling temperature. This
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U
00

vapour

Fig. 1 Model for forced-convection film 
boiling around a sphere.
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condition of the liquid allows heat to be transferred away 

from the liquid-vapour interface into the liquid bulk.

The problem has now been formulated and consists of 

two phases of a fluid flowing past a sphere with a simultane

ous heat transfer occurring in both phase regions. The 

boundary layer treatment will be applied to both the vapour 

boundary layer and the liquid boundary layer to obtain the 

solution.

Liquid Boundary Layer

The liquid will be assumed to move around the sphere 

inpotential flow. As stated previously it shall be assumed 

that the liquid feels only the influence of the vapour film. 

If it is assumed that the liquid-vapour interface is smooth 

and in dynamic equilibrium, then the shearing stress acting 

on the liquid-vapour interface in the liquid must be equal 

in magnitude to the 

vapour interface in 

be written;

where H and v refer 

respectively, and t

shear stress acting upon the liquid

following relation can

(2.1)-T

to conditions in the liquid and vapour

stands for shear

(2.2)

stress. Alternatively

the vapour. The

TA

3u, _ " ' 3u.3yj ’ ”uv 3yJv
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This above equation relates the product of viscosity

p J n • J • . 9uand velocity gradient in the liquid at the liquid-vapour

interface to the corresponding product in the vapour. The 

velocity gradient in the liquid then may be written as,

du. _ ' pv du.
•ri " " " i v (2.3)

small so that

mits the use of potential flow theory for the calculation of

is .039. Further

small. For water

film thickness goes down, it per-

For conditions sufficiently far from the critical 
uv 

point the ratio of viscosities — is quite 

at 1 atm. and its boiling point, the ratio 
3 u. the velocity gradient t—) will be assumed

V 312 V
t—) remains small. Though this assumption gets progress- 9y £ 
ively worse as the vapour

the velocity field in the liquid bulk.

By using spherical coordinates, assuming axial symme

try and neglecting conduction in the <{> direction as compared 

to convection in that direction, the differential equation 

describing the temperature distribution around the spherical 

vapour film becomes

2„ _dT_ 1 3T _ d T 2 dTr*  dr*  + u<j> r*  3<t> ~ 01 9r*2  t r*  dr* C2.4)

where T is temperature and a is the thermal diffusivity of

the liquid. The velocity components u * and u.
<p

in accordance
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with the assumption of frictionless flow can be written as

r*"R  ' 3ur* = -3U«, cos<h = 2 U<x>sin'i)

These are obtained directly by differentiating the 

stream and potential functions for frictionless flow around 

a sphere.

Sideman [14] showed that if the assumption is made 

that the heat transfer takes place in a thin layer near the 
2 ‘ • •  interface, the term -g^-) may be neglected m comparison 

a 2m
with the term --- y in the energy equation. This further

dr* 2
implies that the product of the Reynolds number and the 

Prandtl number called the Peclet number is much larger than 

unity. The Reynolds number and the Prandtl number are de

fined by the equations.

u 0
Ke = and Pr = —<-2-

P k

where p is density, U is velocity D is sphere diameter, p is

viscosity, is specific heat 

conductivity of the liquid.

capacity and k is the thermal

The energy equation is then reduced to

aST
d<j>

„ 3T 1ur*  dr*  + u<|> r*
2d t

. *2  dr*

The boundary conditions are
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T = T_ r* . <|>?0;

T = T . r*  - R' 4>>0;sat . t f

T = «o>r*>R'  <f)=0 (2.5)

Tg represents the temperature in the bulk liquid flowing past 

the spherical region, Tsa^. is the saturation temperature of 

the liquid and R' is the radius of the spherical region. If 

the vapour film thickness is assumed thin, the radius of the 

solid sphere may be used for R*.

Defining y by y = r*-R  one may write

u * = -3U cosA, u. = x- U Sind) r* =» R v| 2 « Y

Transformation variables can be defined as

and

t = y

AT = T-T , sat
• 2, sm <j> (2.6)

The energy equation under these transformations be

comes

dip2
a at M a2 at 
an C2.7)

where m-2 Rg
U
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The boundary conditions become

41 = tb - Tsat' Ip =? « n>0

AT = 0 , Ip - 0 n>0

41 = Tb " Tsat a; > ip > 0 n=0 (2.8)

This system of equations is similar to the heat con

duction equations for which solutions are known. A solution 

is [15];

m " ■ = erfc (2.9)
sat B 2V5^

Where the complimentary error function is defined by

2erfc (a) = 1 - erf (a) = 1 - — e"X dX

dTThe temperature gradient t— dy can be written as

9T _ 9T 8ip dT 8_n 
dy dip dy dn dy 

tt dnHowever, ~ d¥
is zero and the gradient becomes 

' 9T 9T. M 
dy ” dip dy

or

8T dAT _■ dAT dip 
dy " dy dip dy
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,' D AT . , x. jthe term -t-t- is evaluated a,s 
d ip

' S AT ' '
= " WnlV2 "here 4Ib = Tsat ' tb 

and

|| = Sin2*

The temperature gradient thus becomes

. 23T = ATBSln *
3y (tiMh )1//2 (2.10)

we shall later use this gradient to make an energy balance 

at the interface.

Vapour Boundary Layer

The boundary layer equations for axisymmetric flow 

of a fluid past a sphere are as follows [16].

3 (ur) 
3x

+ 9 ^vx 
dy l=o (2.11)

' 3U
U 3x + V ay

1
’ " pv

3P
3x pv

A
3y2 (2.12)

3T , u 35F + 3T
v 9y ” av

32T
9y2 C2.13)

These are the equations of conservation of mass, mo

mentum and energy, respectively; r, x and y are measured as
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U

Fig. 2 Coordinate system for the 
boundary layer. 

vapour
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shown in Fig, 2, u is the velocity, in x-direction and v in 

y’-direction, P is the pressure. These equations assume 

that vapour film thickness is much smaller than the sphere 

radius.

The following additional assumptions are made:

1. The vapour is incompressible.

2. The sphere surface is isothermal.

3. The average vapour temperature can be 

taken as the arithmetical mean of the 

Twall an<^ Tsat an<^ vaPour properties 

can be evaluated at this temperature.

4. The liquid-vapour interface is continuous 

and smooth.

5. Inertia effects and energy convection 

effects in the vapour film can be 

neglected.

6. Heat is transferred across the vapour 

film only by conduction; i.e,, radiative 

heat transfer is neglected,

7. The velocity of the liquid-vapour inter

face can be calculated from potential 

flow theory,

8. The liquid-vapour interface is at the 

saturation temperature.
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The applicable boundary conditions a,re

y 0 u = .0 T = T w (2.14)

y = 6 u = u (x) T = T 4, sat

Where 6 is the film thickness and u (x) = 3/2 UroSin<f).

The assumption that inertia effects and energy convection in 

the vapour boundary layer are negligible enables one to write 

the momentum and energy equations as 

and
2

= 0 (2.16)
ay

The solution to the last equation is

T =' C1y + C2 (2.17)

Evaluation of constants and C2 from the boundary 

conditions, Equation (2.14), gives

T = T„ + CTsat - Tw)y/6 (2.18)

Rearranging,

. . T’-'T
 sat = j „ y/5 (219)

w sat
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The solution to the momentum equation is

u = + C3*  + C4 (2-201

is zero from the condition that u = 0 at y = 0. 

Evaluation of gives

u - |u.(Sin*)$. + (2.21)

If it is assumed that the pressure in the liquid layer is 

impressed upon the vapour layer, the pressure gradient term 
d P can be replaced by a velocity gradient term. Neglecting 

height changes, Bernoulli's equation for the vapour is

a. 1 2Po = P + 2 pvU = const*

differentiating with respect to x,

3P _ 3u
3x pvU dx

where u is the velocity at liquid-'vapour interface given by

3u - y uco Srn(|>

Differentiating this with respect to <}> and making use of

x - Rd<j>, one obtains for the pressure gradient

U■—■ = - (|)2 Pv -5- cos<f) SiM (2.22)
dX Z V -tx
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Substituting tlxis into the expression for velocity, Equation 

(2,21) gives the velocity distribution in the vapour film as

o . p. U 9u = y U^Sin^ 1^+4- Ccos<t>) (yS-y2)] (2.23)

from

The average vapour velocity in the film is obtained

1 f | U.Sin  [y/« + 3*
V o

2• (cos 41) (y6-y ) ] dy

Evaluation of this integral gives

- . _ , P -3 ,u = ? tj" u<,osin*<4  *6"  + 2}] (2.24)

Thus we have solved for the temperature and velocity

profiles.



CHAPTER ITT

ENERGY BALANCE AND NUMERICAL SOLUTION FOR •

NUSSELT NUMBERS

By writing an energy balance on a differential ele

ment of the vapour film shown in Figure 3, one obtains,

= d,2vap + (3.1)

This equation states that the energy conducted through 

the vapour film arrives at the interface; is used partially 

to form vapour and is partially transferred to the bulk 

liquid. If the bulk liquid is at saturation temperature 

then all the energy arriving at the liquid-vapour interface 

goes into forming vapour and the last term dq_, is not neces- 

sary. The energy used to vaporize liquid at the liquid

vapour interface can be written as the product of the effect

ive heat of vaporization and the increase in the mass flow 

rate in the differential film element.

dqvan ” X’dw (312)

The increase in the mass flow rate in the film element 

must come from the vapour which is formed at the liquid-vapour 

interface. Bromley [13] showed for laminar film condensation 

that the assumption of a linear temperature profile is valid
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Fig. 3 Energy balance on an elemental 
area of sphere surface.



20

as long as an ’effective’ latent heat of vaporization is used 

in an energy balance on an element of the film. He also used 

this concept in film boiling analyses with good success. The 

expression for the effective latent heat of vaporization X’ 

as derived by Bromley is

. ...40 AT
X’ =?X (1 +   E—) • (3.3)

where AT = T ^-T , . This expression accounts for the heatw sat *
capacity of the superheated vapour.

The increase in mass flow rate dw can be written as

dw = d(pyAc u) (3.4)

where A is the flow cross-section of the film. A can be c c
written in terms of the film thickness and angular position

as

Ac = 27TR6Sin<{)

The average velocity u as previously determined by

Equation (2.24) is now used to write

dw = d[pv2irR(Sin<|>l U^inHl (cos*)^-  + J}] C3.5)

The energy balancef Equation (3,1) becomes
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k AT d i 1 P\Uoo X3 XdA = .X'27TRpv gy [?UeSin»{?y^(cos»)^-+ |}]d<!>
2 V

. k. Sin <|>
+ ■ - ■  AT dA

/ttMr

where dA refers to the area element on the sphere surface 

adjacent to the film element. dA can be written as

2dA = 27rR Srniji d<(>

Substituting this into the above equation and simplifying, 

one obtains,

(3.6)

kv6T 3 pvn«X' d ... 2 ,3 pvU«, ,53
-y- = 2 rsiHT a*  [Sln *'4  tt|cos»>t + 2,]

. 2 k£Sin <#> ATb

/ttMti

This differential equation describes the variation 

of film thickness 6 with angle <j>. A solution of this equa

tion for 6 permits one to compute the heat transfer rate at 

any angle <j>.

The equation is put in the derivative form as fol

lows :

d 2'3 P v^oo ’ '6"^ ' 5 d? ISin2K|^-Ccos*lV + f”. k,,AT , p U A’ V _ 3, rV 00
<5 2 R Sin<|>

2. k£Sm .<$> ATb

/irMn
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Let

Solving

a,nd

for
2

Sin<f>

C3.7)

f

d6 = 
d<j>

2 1(3M25 cost +

. 2k Sinzt AT

3p U X’
r V 00 
"2R' —

Let C1 = 1 m-l
k AT

C2 = M2 ’ C3 =
M2 /ttM

. 2• (—Sint) } + SSintcost + -—— ^7-

M = aTtTT {Sin^^costSS^ ^7-+ 6^ ^Sintcos^A+sin^t
Dxncp Z Q<p

2 , VT M2«J (1-3Cos *)  . 6cost k^ntATB

2 at

M^Sin*  + Sin* ’ Sin*  " 
ao _ . 1
dt

 1 d 3 2 6 2
" SIm di [M25 Sin <|,cos* + 2 Sin <f)J

9k£Sinzt ATb 

/irMn

. M. = Sint" tM2{Sin2tcost352 + 63 A (Sin2tcost)}

2
1 2 ha k.Sm t ATd+ y{ 2 <5 Sint cost + Sin t 37-}] + —---- ------Z d<1, (irMn)1/2

ky.AT . . m.
"T” <

T P U1 r V 008" fX " W2

d<5 . . .•5-7- one obtains dt 2
k AT - 9 Sin tAT-f— + M^S^l-Scos^l-M^cost-k^^^^^^

2 1M1Sint(3M26 Cost + J)
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then we have 3 2
C1 C2;lS' • '^3COS 6Cos<j> .; c3Sin<|>

h 'ra2
m3 = h * * * * f(*n + 2' 6n + "2^ '

m4 = h f (<j>n + h, 6n + m3) .

5n+^ is then computed as,

5n+l - 5n + ^ml + 2ni2 + 2m3 + m4^

The process is then carried on to 6n+2 .. and so on.

. . .6Sin<j> . Sin<j> . .....gin<j> ■ 1 •' ' (3.8)

d4> (3C252Cos4> +' i-)

A solution to this equation in closed form was 

not found. However, the equation can be solved numerically 

for given values of constants, C^, C2 and Cg.

The fourth order system frequently called the ’Runge- 

Kutta-Simpson* [17] method was employed for the numerical 

solution of the problem. The method in brief is as follows:

Let gy = f (6,<#>)at any known point n, then find 

m^ = h f(5n, <|>n) where h is an increment in <j>.

Then find ‘

i Hl-j
m2 = h f(* n + «n + -),



24

We can thus compute the vapour thickness 5 for the entire 

periphery and then determine the heat transfer rates.. How" 

ever, since the differential Equation (3.8) contains three 

constants C^, €3 and C^, the results cannot be put in a 

convenient form. This difficulty is overcome by making a 

further assumption that the velocity profile in the vapour 

film is linear. Because of the very small vapour thickness, 

this assumption is seen to introduce very little error in 

the final results.

The vapour velocity at any distance y is now given 

as

u = | ^(Sin*)  J (3.9)

The average velocity becomes

u = J UmSin^ (3.10)

The mass of vapour generated in the differential

volume of vapour is

dw = d (p uX )VMV c 

3= d(pv J U^Sincjj^irR Sin<f>*6)  (3.11)

Energy per unit area of sphere surface required to

generate this much vapour is,
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or

then

or

or

The energy balance now becomes

Let Z

■ K .AT Z
6

+

Sin<|>= 2Z6Cos<j) + Z +

2Z6CoS(j>6

26Cos<j>

back the value ofBy putting

as, 
d(|>

3
4 R

d6 _
d4>

2X d6, , Sm <|> 5^-} +

kvAT
Z6Sln'<|> Sin<#>

Z and for M = j

3 .^’^P d
T a-' T ST (6Sin <j>)
4 R Sin<j> d<j> v y

2. k£Sin <MTb 

/irMn

2 k£Sm <i)ATB

VirMn

3 2d (p t’2ttR Sin 4> • 61

. 2 k£Sm <f)ATB

VirMn

2 k£Sm 4>ATb

/ ttMt)

(SZSlntCos*

k£Sin<|>ATB

Z /ttKh.

z sint « . VI 
aq)

■ A ’ .Uro. . .
- ■ 2' ' ' ' 1 '
2irR Sm<j)d<{>

3- X ’UooP
4 R

c'. 5^- (6 Sin^ <|>)
Smij> d<j>

X ’UcoPy d 2 
(6Sin2<i)) 

Sinq> Qq>
k ATV 
r~

2 k£Sm <|>ATb

/irMn
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one obtains

(3.12)

Upon dividing by D to put the equation in dimensionless form

getsone

4k RAT.

Let

(3.13)

(Dimens ionless) (3.14)Let

(3.15)

kl

k2

4vu

A pv /n

6/D = 6 *

ATB Sint

' ATb S'111*
X’pv /?

d6 ' 
dt

2k AT_ ______v_________
6'3X'U p DSint

Sint
/iT

2 £ Cost _ .8^ P^p&^A.1//2 
p D2Sint D Sin<f> 3 3x2ttU D2

'4 P £Cp£k£1 1//2 ATb ,
[t- ------- (Dimensionless)u3 itU D A p__

. . . . 4k RAT . . . o p .C .Rknd6  v 26Cost  r8 r £ p£ £
dt 36 A 'U^p Sint Sint L3 itU^

2 kvAT
" 3 A 'tJ P D

AT..• B
vT

d(6/D) 
dt

26’Cost r4 P £Cp£k£11//2
Sint L3 ttU D J



27

so that Equation (3.13) becomes

' d 5 * = kl _ 2 6 ' Cos^ _ k2sIn<i> 
d<f> S'Sintf, Sin<f) j—

/rf is evaluated as

/VT =
$

[ Sin3<i>d<|>] 1'/2

o

= [{-I Cos<H2) }£]1/2

3
= (f - COS4.+ ) 1/2

We have finally.

26 'Coscj)
Sin(j>

(3.17)

d6 * = kl 
d4> 6 1 Sin<j)

k2sin<|)............
-

>2 i _t Cos d) k 1/2(j - COS$ +  y-L) '

A solution to this equation by the previously de

scribed Runge-Kutta-Simpson method brings out an interesting 

property of the equation; that for a given and k2, it has 

a unique limit cycle as the solution. In other words the 

solution does not depend upon the initial value of 6’. Wat 

ever value of 6*  is chosen as an initial condition, the 

solution rapidly approaches the fixed limit cycle. Many 

nonlinear systems (such as the well-known Vander Pole Equa
tion [18,19]Xare known to exhibit such behaviour where the 



solution is fixed due to the inherent properties of the 

system.
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To illustrate this, solutions were obtained for a 

set of and k2 values for initial values of 6 = .00001 

and 6 = .02 (at (j> = 1.5°). The results are in Table 1.

In spite of the fact that the initial values are so widely 

different, both the solutions coincide just within 1/2° 

increase in the angle, namely, at = 2.15° both solutions 

exactly coincide and continue to be coincident.

A plot of 6 v/s is shown on Figure 4 for a given 

system. As expected, 6 uniformly increases with the angle 

$.

Although the initial value of 6 does not affect the 

results at all, this value is found by using the condition

that dfiJL = 
d<j>

value, say

0 at <f> = 0. To program this statement, any high 

1, is given to 61 at <#> = 2.5° and 4-u i <35 ' the slope

is computed. If this slope is negative then 61 is made

= .1 and again the slope is found. If again it is negative 

it is multiplied by .1 and so on till the slope is positive.

The value of 61 is then slowly incremented in the interval 

where it changes sign. We thus carry on the process say to 

6 significant figures and then select the value of 6. This 

amounts to selecting a value of 6 * such that —= qe

Having thus obtained the values of dimensionless
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TABLE 1

Initial Value of 6^1.239xl0-5 Ft. 
(at $ =1.5°)

Initial Value of 
6=.O2 Ft. 
(at <!> = 1.5°)

<f> (Degrees) 6 (Ft.) 6(Ft.)
1.55 .00001062 .01735349
1.6 .00001088 .01498746
1.65 .00001110 .01286114
1.7 .00001129 .01094155
1.75 .00001145 .00920163
1.8 .00001159 .00761886
1.85 .00001170 .00617437
1.9 .00001181 .00485220
1.95 .00001189 .00363885
2.0 .00001197 .00252289
2.05 .00001204 .00149508
2.1 .00001210 .00055040
2.15 .00001215 .00001215
2.2 .00001220 .00001220
2.25 .00001224 .00001224
2.3 .00001228 .00001228
2.35 .00001231 .00001231
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vapour film thickness 6/D for the whole sphere, we can pro

ceed to compute the dimensionless Nusselt number as follows:

Heat transfer across the vapour film from elemental 

area dA subtended by angle d<j> (Figure 5) 

. k AT 
 dq = — dA

. k AT  
= — 27rR2Sin($>d<j>

This quantity is calculated for a very small d<j) say 

.01°. The value of 6 is assumed to be constant over this 

increment in angle. Further, we shall neglect the heat 

transfer beyond <J> = 160°.

Total heat transfer is then written as

4i=16O0 k AT 2Q = —T— 2irR2Sin4>d<|)
<j>=0 °

2 4>=16O° , = kvAT 2irR2 y Sin(f)d4>

. k <j>160 .
or -——■ -a- =5^-1 v Sin<j> d^>

AT(4ttR ) <|)=0 0

Noting that -y ■ is the 
AT(4ttR )

denoted by H, one obtains,

overall heat transfer coefficient.

H _ 1 *v160 sih<!)d4> 
2 6v <ji=0
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Fig. 5 Heat flux from a differential 
area on sphere surface.
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Fig. 7 Heat transfer results' (cont.).
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or

or

HD _ 1 K160 sin<j>d<j>
k 2 6/Dv 4>=0 '

Nu = i- <j)=160

<j>=0
Sin4d<j> 

6 * (3.18)

Thus we have been able to obtain the Nusselt numbers 

starting from dimensionless numbers and k2.

Computations were made for the Nusselt numbers for 

a limited range of numbers k^ and k£ and results plotted on 

Figures 6-8.

The Roughness Model

In our treatment so far it was assumed that the sphere 

surface was absolutely smooth i.e.f it did not have any sur

face irregularities. But an ordinary machine finished sphere 

would definitely be expected to have some kind of surface 

roughness and if this roughness size is comparable to the 

vapour film thickness, it could interfere in the formation 

of a continuous and smooth vapour film. Such a size of 

roughness was indeed assumed, so that it would not allow the 

growth of a continuous vapour film over the sphere.

To deal with the problem quantitatively, it is neces

sary to assume some sort of roughness distribution. The 

roughness assumed was in the form of two dimensional discs
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protrusion

Fig. 9 The model used for roughness treatment.
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having zero thickness placed on the sphere (Figure 9) in a 

direction perpendicular to the motion of the sphere and at 

a fixed distance apart. One can conceive the situation as 

that of film boiling of liquid contained in the individual 

•troughs' formed by the consecutive protrusions. The pro

blem then becomes one of making an energy balance over an 

individual 'trough' and computing the vapour film thickness 

in that region.

Let d<j> be the angle subtended by the two consecutive 

protrusions at the center of the sphere. We will consider 

the energy balance over the element Rd<|> which makes an angle 

<l> with the direction of sphere motion. If d<J> is small we 

can assume that vapour film thickness 6 is constant over it. 

From Equation (3.10) the average tangential velocity of 
. 3vapour is U^Sm^ . Now since the vapour motion m the tan

gent direction is restricted because of the presence of the 

protrusion, it would be reasonable to expect that the vapour 

flows along the direction of protrusion and escapes into the 

bulk liquid. It is premised here that the vapour flows along 

the direction of protrusion with a velocity which is the 

component of tangential velocity in that direction.

The amount of vapour generated over the elemental 

area Rd<f> is 

dw = p V dA vc 
3= pv«y U^Sin^Cos^) • 2irRSin<J>Rd<j>
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The energy required to generate this vapour is

3dqvap = ^,’PV,4 U^Srn^Cosij) • 2ttR Sin<j>P.d<j>

Energy conducted through the vapour layer is dq = 
k AT c
—y— • 27rR Sin<j>Rd<j).

Energy conducted into the bulk liquid is dq^ =
3 Tk. —) dA where from Equation (2.10)£ 3y £

2Bin ♦atb

3Y «. (Mirn)1/2

Writing an energy balance (Equation 3.1)

dq = dq + dq„^c wap

and substituting for the respective terms one obtains

k AT v
6

2, k Sin 4>AT
dA = V pvUooSin<f>Cos<j)dA + ..... ■ —- dA

where dA = 2irR Sin<j>*Rd<|>

or
. - X’U Dp Sin2d>i _ y ” v
6/D - 8 ... kv'AT

3k„U p„C „D + r„ . & ]
7T

' ATb Sin2^

. A?U. Dp
3 • co v*  > * » - «Let 3- Vm” = Ni (Dimensionless) o K A1 J-
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Sk^p^D 1/2 ATb
' ' 1 ■ Mi?; = N2 (Dimensionless)

and 6/D = 6' (Dimensionless)

So that one has

2 . 1 N-Sin. 4
~ = N1Sin2<j> + ————---- -—------

,2 n Cos’5* x 1/2
(j - Cos<i> + ——-) '

The dimensionless vapour film thickness 61 over

every individual ’trough*  is computed from the above equa

tion and Nusselt number is found as in Equation (3.18), 

namely.

Sin<j> »dj>
6 1

1 ♦r90 
Nu = 1z <|>=0

Thus for every set of dimensionless numbers and 

N2 a Nusselt number can be computed.

To determine how the results compare with the smooth 

sphere solution already obtained, a specific system was 

taken where

T w T sat Dia. U CD X pv kV Cp£

°F °F In. Ft BTU BTU BTU
Sec Abm’ Ft3 Hr. Ft. °F. Ft3

1300 212 .5 .02 1178 .02 .032 1 62.4
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so that r ,77 and = 22,2. The Nusselt number obtained 

was 18.6 using the protrusion model, whereas for the same 

system for smooth sphere (with ~ .322 and = 6-451 the

result was a Nusselt number of 15,6 CFigure 8), showing an 

increase of about 20%,



CHAPTER IV

NUSSELT NUMBERS FOR CYLINDERS

The Nusselt number for forced convection flow over

a, cylinder is given I2QJ a,s

NuCxl - .57 Re Cxi Pr*̂ (4.1)

To bring it in conformance with the expression used 

for a sphere, let us assume a Prandtl number dependence of 

.Sth power (for Prandtl number range of water, this will 

introduce little error) then

Nu (x) » .57

- .57

= .57

where V is the free stream velocity and with the assumption 

of potential flow is given for a cylinder as (Figure 10a)

. U. Xp .C . c

Re(xl1//2 Pr* 5

fY X p SI v 5 ,^Cp£ A . 5
I—----- 1 V C h 1
VSl KJl

V a 2UgoHin5>

and also

X a Rj)
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Fig. 10a Potential flow around a cylinder.

Fig. 10b Energy balance over an elemental 
area on the cylinder.
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thus

' hx c-7 V^X^J.CP&sl/2 
K7= *57 ■ k"..

h = .57 (—LPJLJi)1/2 
x

cn ,2U-»PJlCp&SS:Ln*.l/2
*D' 1 R<|) 1

dTT PC 1c _______
h -57 f °° 1 P4 l)V2 /Sin<j> 
n(<|>) " -b/ I D 1 <)>

= 1.14 (U<!pP&CP£k&)1/2 /Sin<f>

Energy Balance

We shall as before assume a linear velocity profile, 

the velocity varying from zero at the wall to 2UooSin<|> at the 

liquid vapour interfere (Figure 10b). The average velocity 

is therefore

'  0 + 2U Sin<$>
u = ------------ -

= U^Sintj)

Mass of vapour generated in an elemental volume of vapour is 

dw = d (p u^cl

where A is the area of flow, so thatc f

A =6x1=6, c r
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a,ndf

dwn dtp

The energy required to generate thi? vqpour is X*dw.  Heat 

flux required for vaporization per unit area of cylinder is

, AJACpij.oo.(5.S.in$l
<3qVa,p —Rd4------- CRd4>xl=surface area)

W-U.. -d

d<lvap = -R— 3T MS±n*1

Upon writing an energy balance at the interface, one has, 

heat conducted across vapour film equalling heat required 

for vaporization plus heat going into the liquid bulk, or

. k„.AT . . A.’p. U , . U p0C „k„ 1/2 ^-r—-
-rar + atb

=' -- ^V'■ ■■“ (6COS4>+Sin4> g|l + 1.14.[- AT
R a<p D 9 Jd

. A.' p U• ry ao
Letting’ —--- = E one obt^xns

=; E6Cos^ + E Sinj> + 1,14 [- ”.P.-O,LAj /^1 AT
a J ay D 9 X5

OX*
.d5 . kvAT jCosA 1.14 ■rUc°p^Cp&k&1 V2 ./ t -
d't ESStnt ” Sint ’ D B

Dividing by D
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d(6/D) = ; KyAT £ Cos j> 
d* E^D2sin^ " D

Let

, j^at . j^at: n/ 2 ,:.. j^at '
ED2 ^ ’p U D2 2^'P.vUcor> 

. ’ r y oo T

and .

■‘■•■L4L _3 J X’p U
D Kv 00

P£CpXk£1l/2 ATB
UooD

Hence
I

d6' = kl _ g'Coscj) 
d4> 61 Sin<j> Sin<#>

We can now numerically

' E 1 d3 j 3^n^4>

(Dimensionless 1 C4.5)

i
= (Dimensionless) (4.6)

/<j> • Sin(j>

solve this equation for 61 as

a function of by using the same method as used for sphere.

Having computed the dimensionless film thickness 6*  

for all j), we can proceed to determine the Nusselt numbers 

as follows.

The energy conducted through the vapour from an 

elemental area subtended by an angle d$ is

■dg =i Rd<J> C4.8)

The total heat is then

$=160 .Q = 2 k^TR Hl (4.9)
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H i,s tike overall coefficient of h.ea,t tra,nsfei; then

HC2ttR1AT 21^^

kv ^160.

£ 
D

4>=16O
I<j>=0

d4>
6 » (4.10)

This sum is easily computed numerically.



CHAPTER V

SOME COMPARISONS WITH EXPERIMENT AND CONCLUSION

As remarked earlier, very scant experimental data 

are available on tills problem. Following is a brief dis

cussion of comparisons which could be made.

"First of all to check the validity of the numerical 

procedure, computations were made for the case when the 

dimensionless number k£ is zero. Since k£ represents the 

degree of subcooling, this case reduces to that of saturated 

film boiling, an analytic solution to which is available 

[10]. As shown below, the analytical solution matches very 

well with the numerical solution.

The properties of the system considered are given in 

Table 2 (No. 1)

TABLE 2

S.No T w
(°F)

T .sat
(°E’)

Uco

''Sec'

Dia

(In)

k V
fBTU ' _ x
vHr.Ft.°F)

pv ■ 
(BTU) 
Ft"3

A
BTU_ 
k£bm°F'

Cp£
(BTU... ) 
'‘£bm°F/

', £bmx 
3' Ft

1 1000 212 20 .75 .027 .023 970 1 —

2 .762 174 8 .387 .012 .027 200 .762 46.2

The parameter k^ from Equation (3.14) is
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ov- Am

kl = IPUTT = •000121 

cory

Corresponding- to = .000121 and k£ = 0 one finds 

the Nusselt number from Figure 6 as 55. The heat transfer 

coefficient is tlren

. N.u k ?h = —=—=23.4 BTU/FtZHr. °F

The total heat flux is found as

o 
q" = hAT = 18400 BTU/Ft Hr.

Now from film boiling theory for saturated case the heat 

flux is given by

q" =
. k’p k U. AT 1/2 

.69 8 (--- )

9= 18500 BTU/Ft Hr.

The two values thus very closely match.

A series of experiments were performed by Bromley 

[3] for the film boiling of various hydrocarbons over a 

cylinder in forced convection. The tube was electrically 

heated and the surface temperature was maintained constant. 

Different values of subcooling were taken.

We shall for our comparison take tire tabulated data 

for ethyl alcohol for run No. 106. The system properties
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are tabulated in Table 2 (No. 2)

The dimensionless numbers and k2 are

and

. . . k .AT.
kl - i'X'? U D = ■000945

rn'rPllC'p'llKll iTB .1/'2

2 = -so * * * * * * 57'--u D” V^1 
co

so that

. h exp 
h

Thus, the theoretical value is about half the ex

perimental value.

Witte [2] performed a range of experiments on tran

sient heat transfer from high temperature tantalum spheres

moving in higlrly subcooled liquid sodium. Although presence

of vapour blanket could not be visually observed due to the

.436

The Nusselt Number obtained using these k^ and k2 comes out 

to be 333.5

Whence
. Nuk

h = = 124.5

The experimental value of the heat transfer coefficient is

h exp = 275

2.2
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opaqueness of liquid sodium, intuition would indicate that 

a vapour film would form around the sphere because of its 

high temperature. The transient data was suitably reduced 

to heat flux v/s instantaneous temperature variation.

A comparison with the above data is given in Fig

ures 11-13 and shows the theoretical results to be 2 to 3 

times the experimental.

If for a given Twajj/ i»e. for a fixed k^, we plot 

Nu v/s k2 (where k2 is the subcooling parameter) we obtain 

a linear variation (Figure 14). Zuber and others [22] ob

tained a similar variation of critical heat flux with the 

degree of subcooling in nucleate boiling. Bromley [3] also 

gets almost a linear variation of flux with degree of sub

cooling in his experiments on subcooled film boiling of 

several hydrocarbons over a cylinder in forced convection.

Another interesting observation is that the product 

(Nu . k^) for a given k2 (subcooling parameter) is approxi

mately constant as shown in Figure 15. The quantity (Nu*k^)  
represents the total heat flux. That then means that the 

flux is quite independent of the sphere temperature in sub

cooled film boiling. Walford [4] also made this observation 

in his experiments.

The reason for this phenomenon is not difficult to
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see. If we look at the energy equation, the quantity of 

heat going into the bulk is independent of the sphere 

temperature, it depends upon only the temperature of the 

liquid bath. And since with substantial subcooling, QB 

is the major portion of the heat transfer, a change in 

sphere temperature does not affect the overall heat transfer.

Walford in his experiments with a zinc sphere also 

obtained a constant heat flux when plotted against wall 

temperature in the stable film boiling region. This plot 

is reproduced in Figure 16.

Jacobson and Shair [1] have also reported some ex

perimental work regarding subcooled film boiling. However, 

the conditions under which the experiments were performed 

are not clear. Also their data show a steep rise in flux 

with the surface temperature of the sphere which is quite 

in contradiction with the results obtained by Walford who 

gets a constant flux with the said change in wall temperature. 

Moreover the degree of accuracy to which the temperature 

measurements were made by means of the optical pyrometer is 

not known.

However after giving suitable numbers to the system 

properties for the range of variables considered by them, 

the experimental value was found to be .8 to 7 times the 

theoretical value.
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INITIAL SPHERE TEMPERATURE °C

Fig. 16 Average heat flux v/s initial 
temperature.



56

Concluding Remarks

It is seen that the subcooling of the liquid bulk 

considerably reduces the vapour film thickness, thereby 

raising the heat transfer rates. Although higher transfer 

rates are obtained for the case of liquid sodium, it is 

premised that in general the theory underdepicts the heat 

fluxes; the higher values for liquid sodium being attributed 

to characteristics like surface wettability etc., peculiar 

of liquid metals. An attempt to explain the liquid sodium 

behaviour was not made and is left for future investigation.
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