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FORWARD

Sophistication in more than one of the traditional disciplines
of pnysics, biology, chemistry, and mathematics is required if research
is to be conducted which utilizes the tools of physics, mathematics,
and chemistry to explore those biological problems which are susceptible
to such analysis. Investigations of this nature first require a
relevant biological system which therefore demands biological insight
and secondly, capable analytical "tools", i.e., skill in mathematics,
chemistry, and physics. At the expense of not focusing on current
researches in molecular bioloby, development of this latter aspect
has been emphasized in the present graduate training. To this end,
the dissertation topic was selected from an active area of theoretical
chemistry and physics which involves the theory and computation of
the properties of atomic systems and reactive scattering probabilities.
The particular research discussed in this thesis involves the
development and use of Green functions in order to employ recently

developed techm‘ques]’2

for noninteratively solving integral equations
for atomic systems. In addition, three particle reactive collisions
are investigated, using newly developed techm'ques3 for analyzing such

processes.
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ABSTRACT

A unique prescription is given for obtaining the Green function
for N free particles which can have different masses. The approach is
systematic and straightforward. A coordinate transformation of the
Fourier integral representation of the N-particle noninteracting Green
function facilitates the integration over 3N-1 angular variables of
wave number space, using the orthogonal properties of Jacobi polynomials.
A single radial integral can then be evaluated. The resulting Green
function representation may be of use in applying the integral form of
Schrodinger's equation to calculate the ground and excited states of
atoms.

The Sams-Kouri method for noninteratively solving integral
equations is used to solve the integral form of Schrgdinger's
equation for He such that the Hartree-Fock approximation is avoided and
the inclusion of nuclear motion is straightforward.‘ An exact formalism
is presented which requires the solution to coupled integral equations,
and the method for generalizing to many electron atoms is indicated.
Calculations are reported for a single integral equation approximation
to He which illustrates the essential features of the method. The
energy value obtained is approximately 85% of the total binding energy.
Calculations for the H atom are given so comparisons with an exactly
soluble atomic problem can be made, and the energy values for the

ground and first three excited states are in excellent agreement with

A4 3 .:-



the exact values. Excited state calculations are found to be no more
difficult than those for the ground state.
Reactive collision probabilities are calculated in the collinear

approximation for the proton transfer scattering system of
+ +
He + H2 ———> HeH + H

where the cross derivative term in the kinetic energy operator is
neglected. The total energy range of 0-3 e.v. includes the first four
vibrational states of H2+ and the first three energy states of HeH™ .

The coupled channel”C operator equations of Baer and Kouri are employed
to execute the calculations and the flux conservation is consistently
within the range of .92 - .99. The graphs of total reaction probability
versus relative translational energy compare favorably with the
experimental cross-section versus energy curves of Chaupka, Berkowitz,
and Russell. Fermi's Golden Rule is one of two descriptive models used

to interpret and discuss the data.
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CHAPTER I
N PARTICLE NONINTERACTING GREEN FUNCTION

For certain problems in quantum mechanics, it is advantageous to
reduce the number of continuous variables, replacing them with sums over
discrete variables. Many investigators4"9 have utilized some form of
hyperpherical coordinates to express a 3N-dimensional (N=2,3,4, ---)
problem in terms of a single continuous radial variable with the
remaining 3N-1 coordinates being angies. Functions of the 3N coordinates
may then be expanded in terms of a set of "generalized" spherical
harmonics labeled by discrete indices. If N is one, ordinary spherical
polar coordinates result.

In this chapter, a well known hyperspherical coordinate system
1510’11 employed to obtain in the noninteracting Green function for
N + 1 distinguishable particles. Although other forms of many-particle

12,13

Green functions are available, the representation developed here

permits one to employ the integral solution procedure of Sams and Kouri]
wnich is a numerical method for noninteratively solving integral
equations. It has been successfully used in carrying out numerous
scattering ca]cu1a’c1’ons]4 and bound states investigations for model
potentials such as the Lennard-Jones (12,6). Since such integral

equations are constructed using Green functions, their numerical

method can be employed to calculate energy eigenstates of systems



composed of several particles if the relevant Green functions are known.
The present representation for the N-particle Green function is
computationally convenient for solving the integral form of Schrodinger's

equation for a‘coms]5

and it therefore may be of some benefit in analyzing
other three or more body prob]ems]6.

In center of mass coordinates, y, is the vector between particles
1 and 2 with masses m; and m,, respectively, r, is the vector from their
center of mass to a third particle and y; is a vector from the center of
mass of all three to a fourth particle. The ith vector r, (i=1,2,---, N)

is from the center of mass of all the particles 1,2,3, ---, i to the

center of mass particle i+1. The ith reduced mass, /41 » 1S

£ (1-1}
W'g‘-uz 'n:zj
A ;f' )
=1 mj
and yli is defined by
(1-2)

&

e = M-

The Green function G(Qlﬁ') for N free particles having reduced
masses )13' satisfies the 3N-dimensional inhomogeneous differential

equation

N
2:(;‘1_) V_“z + K2 G(ggl_{g') = "J‘(r"..‘::) or(l,’a-d,’;’)- .. J({,‘.ﬁ:)



where the vectorﬁ possesses 3N components and the right side of Eq. (1-3)

is a product of N three-dimensional Dirac § -functions. The Fourier

integral representation of G( g l S&,) may be written as
Gelg) =
. '(.-Y') ‘(.l‘( ".,') £ .(L’N—_“;).'
4 G AR N L AW W/ wN
(=3 Jdg. Olééz"j;éﬁ, e e e

using the Fourier representation of the Dirac J—functions”. The method

for treating the singularities in Eq. (1-4) follow from the boundary

conditions imposed on G( (Q) as W—ew. It is convenient to let

(1-5)

Us

7= =

and
(1-6)
EA = ?l'( wwL
in order to obtain the equation

(1-7)

G(xi®) =

q68) g RE) . 865 ]
ﬁdg xdﬁ» “dg 2 - -
+ 5,1 4.0+ - K i




By employing a partial wave decomposi’cion]8 and integrating Eq. (1-6)

over the 2N spherical polar angles IJ% )% l% v, ¢ 5 the expression
] ! N 3, gN

for G(® lg ) becomes

G—(Q?]g') (1-8)

N
—_— (2}] % , 2 2 , s
— (T‘;ﬁ 3, Jg,ﬁz 31 a’?z"le?N N fro *amo ,QN:Q o g - 'JN
° o ° .
(

N
W
[Mls

i
M

M
n?[wﬂpa
[Mis

e iantangan g am g an

r4
3‘1 + 31)_ + . . + gﬂ - Kz
M, m ¥ m, "k m, MN’V
X Y @Y @y @y @ Y a) @
where the orthonormality condition
dm - , (1-9)
N m; me ¥ N
i. ‘ 11 LFZ fc!'wg SiNU’z‘: qu" (iﬁ) >X{; (8:;) - UJ’Q4I: ng !
AL=1 * 4 az=1
o [#}

has been employed in performing the integration.

The orbital angular momentum of the ith particle (i=1,2,---,N) is
designated Qi and the z-component is ms3 so, the spherical Bessel
functions written in the form j;fia R:) represent "single particle

functions". The ,Qith spherical Bessel function, jj (? Rz) s 15
AN
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defined in terms of the cylindrical Bessel function, ;£-+,(3_24) , by
AR

the equation

(1-10)

ms
and tne X (R.) (m,;=-,&-) Ro+1 -, /?,e) are ordinary spherical harmonics

defined by Edmonds]g.

After Eq. (1-8) is expressed in hyperspherical coordinates, the
many particle representation of the Green function will be explicitly
given by executing the remaining integrals, which are tedious but not
difficult. The hyperspherical coordinates include 4 N spherical polar
angles e, 9/:’) 434‘; 43(,’ and hyperspherical distances P and [J' defined
by

. N (1-11)

and

N
Ptz 20 (1-12)

where r; is the ith radial spherical polar coordinate for the observer;
primes denote source coordinates. In addition there are 2N-2 hyper-
spherical angles a& and x; ( _j T3 --., N-1 ) given by the

relations



B = pPCos e, (1-13)

K= PSiN Cos=,

VLT PSING SNy -+ COS %y,
and
! p ‘ (1-18)
Mz pcose,
= P' Sine COSA,
/ I'4 . rd N , ra
= Fsm«,$mxlo"Costd
’
’ ' 1] £, f T
YN': FS"'JO(‘ S"Nd;o c o S M O(N.l (o - “j /J) .

Hyperspherical coordinates of wave number space have radius, Q , given

by
. N (1-15)
6" = 2@,

1
L
o
Z
\
[l
S
[2))
-
o]

and the hyperspherical angles F] (4=

introduced by the relations



. 1-16
s Q CoSF, ' ( )
9. = Q sinf, Cosg,

g = QSI'NP, S'I'NF'; - - .« Cosp,,
N RV )

N

The other 2N coordinates, 193 and q% , are the spherical polar
p; )3
angles over which integration was carried out to obtain Eq. (1-8).
With this choice of coordinates, the products of spherical Bessel

functions 7"T j (ite ) and ] ] .] <ZR in Eq. (1-8) can
be separate]y coup]ed using the product expans1on relation 20
oo (1-17)
- !
Jesmesma Jec = a2 ]
y(zsw@s;fué) /{(7: os@Cos%) A £ P (2)

'U+/,.+27(+]

XCOS/’@ SiNv@a[‘l.(‘i', 'V+/a+;\‘+1)‘ vV+I; Sl'Nz@qﬁk, 7/+/a+i'+j)' v+l;5i~1§)

*
A o VT 7 [(v+urx+1) (4 7+1)
XCos” ‘D siN'd (-1) (v+/a+ 2%+1) [ﬂ (ool Tlisaed .

The orders, 4 of the Bessel functions can assume any value except
negative integers, and X is zero or a positive integer. Thus, 2Fi is
the Jacobi polynomial of X+1 terms, and [ is the usual gamma function.

Equation (1-8) may be represented in hyperspherical coordinates exclusively



after 2(N-1) coupling operations are performed; however, a definite

pattern is followed to implement this transformation. By using Eq. (1-17),

the functions jXN(z4P”) and j£N¢ﬁ4R~q)are initially coupled to

yield a two particle "cluster function" where the hyperspherical variable
is a parameter. Likewise the functions ' and

P P 40 @5 2 (5 =)

are coupled, producing the two particle "cluster funct1on" w1th F

entering as a parameter, i.e.,

(1-18)

%
jﬂﬂ(iu Ru) jIN-F%”" RN') - [(;Z;: RN) (2 Z_;/ ﬁn-)} J/;lei (ZN RN) J:GN_"*'%. <?~-, R,J..)
S [Si"‘F' , L — _] i ?pL I (opSinsing,

‘—QQ‘D 3 -‘SmfN_a SiN«, .- +,?N 433,43
. /QN-‘ ) f,q F 3 o a
X SINOQ"-:S,'N NN-J) cos O(N_‘SIN £, (')’,)IN+,(L_’+){'+Q;£N+3‘)' Sin °<N_,)

A \A-a
X Cos™p,, Sin™,, FOO, Aot sroni oy sotg, ) 1) )

and
(1-19)

jij(?NRL)jQ . 3_ [(37 g~)(37 Ru-)} J—X n (X RN) jN (NI ~-)

— s u It — .

- SLQf" [SiNFv"'Si”FN S:Nx . s,uoa }2 (C?f) Rt 250 (QF'S:NE---S:'NFN_‘I
N N Ture i }No(' FOE,040 4+ ¥ea- 3. sine )

X S,Mu....slan_l)Cos £, SN . nA L+ '+3,/2N+ x; SiNTX

ﬂu—r N ,QN , . 3 N )2'1’ r)_
Xx Cos ﬁ‘_,SnN B F(—?r,),QN+&_'+%,+J;JZN+1;S/N ﬁﬂ_,) (-1 (ﬂ,



where
(1-20)
N AN T A C R AT
1
Q[,Q,.; Lo, 2% +a] F(/QN»*-,QN_,*‘X, +2) r’( A X+ g)
and
(1-21)
2
2 yu (sl (e, 4% +3)

n =

b}

Al gt v e P Aty + ¥ +2) T Ay+ 5 +3)

Thus the two particle "cluster functions" are shown in Egs. (1-18) and
(1-19).
The second step in transforming the integrand of Eg. (1-8) entails
coupling the single particle functions, jﬂﬂ,ggu.f"-l\ and jﬂu—a(zﬂ—a Rlu-a\
to the 2 particle "cluster functions" of Egs. (1-18) and (1-19) respectively,
using the product expansion relation of Eq. (1-17). To these expanded
results, the functions dﬁn;(ﬂwgahg and i@bgiﬁag~3) are respectively
coupled wnich compietes the third transformation step. Finally, the
N-particle "cluster function" is formed by coupling the remaining single
particle function, jl, » to the (N-1)-particle "cluster function".
However, the integral representation for the noninteracting N-particle
Green function G(Qil@{) can be generated from a generalized expression
for the product expansion operation that will couple M particles
(M-2,3,4,---, N) within a hypersphere of 3 M-dimensions and will thus

yield an M-particle “"cluster function”. The (M-1)th product expansion

operation is now considered where an Ma-particle function is coupled to
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an Mb—particle product expansion, and it follows that M=Ma+Mb. (Note
that Ha is equal to one in the present treatment.) Using this coupling
prescription with the hyperspherical coordinates introduced, the (M-1)th
expansion operation couples the (N-M+1)th particle expression to the
(11-2)th M -particle expression. By identifying the relations

(1-22)

Q(J COSﬁN_M“Cos X pnry — QPSA'NF‘--'SI'NPN’MCOSFN_M“ Sinek-SiN et CoSek, |y

. (1-23)
C,)FSN«N_M“S‘INFN_M = QPSENH--'SI'NM_MS:‘NPNM“ Simet oo Sinat  SiMe
and (1-24)

o = N-Mm+1,

then the (M-1)th product expansion in the sequence of (N—])‘expansions

may be expressed as

(1-25)

-t ﬂfj ,
Coreseomm) Sy Greospcess)

My 3 Mg )

X G o)

J;/N‘_a(éF S :'tJﬁr SiN oka_>
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(1-25)

— 4 —) - 3Mm,
-— 3) ;(5%(} IJ (QF)COS’Qo( S:Nj{ ( 1)}

e (300

=X Ut sluao()Cos B Sin Pa'

XFCh oy ensmia) e (0)

M~1) M-y M-t)

.._—1} ’ ™Mm-2) T M-
( ) (Q{o z{]‘ (QF)Cosh(zc S:NA“ og,_cos’la( ;:}rSiNM< nﬁr

PV =% ep 41° S:Mo()F( 2 )’M_,;“V_ +1;87N Igr (1> ”-4}7_?

M) Tmar T ) gy ) Ml) M- M M-q

(1-26)

.na__ (1)1 [F’(VM_J-J-!)]& [(F, + daor + 203

o J(WM-q) P(VM-,' 3\'M_‘) [—'(i + A (™= 2)+3Mb)

The M-particle “cluster-functions" constructed in Eq. (1-25) by the (M-1)

product expansion operation contains a cylindrical Bessel function order

2 which is given by
M~ M- (1'27)
— am
Bo = 2R waZiy 4 -
AZo A=t

wnere the QN ~are individual particle orbital angular momentum
~A
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quantum numbers and tne X; are defined in Eq. (1-17). The order
of the cylindrical function belonging to the Mb—particle “cluster function”

is obtained from the relation

(1-28)

M-1 Mm-d 3 M,
7{«-;:2/@“__+;223f;+ 2 -1
Azo ~ <=1

It is also apparent that the powers, Aale) , of the cosine functions
produced by the (M-1)th product expansion are numbers related to the
number of particles Ma; i.e., the )a(T)are quantum numbers given by
(1-29)
Nay = L
N-mA + 1
Similarly the powers, As(m-2), of the sine functions are connected with

the number of particles M_ included by the (M-2)th product expansion.

The relevant relation here is

M-2 M1 (1-30)
Mo(ma) = Z '()N-"*‘ QZ X,
A0 A=
It also may be seen that
(1-31)
I My
— =20 g
VM-; - Ab(m-2) + a2
and (1-32)
M
Y. T AR, FAale)+ As(ma) + Tz T4

Now hyperspherical coordinates and Egs. (1-27) and (1-30) are used
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in order to write the N—partic]e Green function integral of Eq. (1-8) as

(1-33)
G(@ig) = TT( ( )< 7 QJ (60, 6pdo
or - 7
V2 T’/;o a
3(N-)-1
' fs f, 05" R, 5 Co Rad e [5 peesp df
[0} [ ?
Ab(o 0] a
X Cosf”"ocu-ls:u " F( Jg- 23 Y+l sin' )Cosp B, smm )FWFH,,-;;J,;%H;S;‘A: @..)

B . . Jo@, ‘ 26¢o) a2
X Cos ”ocN_‘ Siv X F(‘%y,-x.)y +); sin’ olfy. l)cos ﬁ‘ Sin B F(n.,v 7/,4-1;3:»1,&‘{,_,)

f )t(') pINS
XCOSN%(N_R N ) R Y=A,5 Y+ JNO‘ ’)COS FM aSIM “)ﬁ FE a) a.i‘ U'”)S’”ﬂ,;)

AbQ)

A, . hed i
XCOS’““’(M_Q b()/ F(;‘{ 2 +1; Smo( )COS p SiN F F—( .1)73-’& <Y +1j Smﬁ:ﬂ)

j. + 2",4 ﬁ’- + ;TJ-' ;,—N—I+ iﬂ'!

CORCARCANCHI NN e T

2 “"“) AB (N~
XCos le“‘ ('j 7 -3 -1{‘_;;}-5‘:‘»«{:4,)(:059'(35!'!4 FF?)' o) Y. NH _fl}SiMnl)

“1) Nt Tper )

[) Ab(n-2) ’ , : A N2
XCos ume F( 7 N1y Y™ N_,)'?/N,fl,'SfNa'*,)COS'pF,5/” ’ F(]:“)m ~ YR S:NP)
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The orthogonality conditionZ]

(1-34)
a

arb(M-2)+3 M-t aXa(d) +3Ma-1

{d B(Sinpo) (cosg,)

o
X F(k me1) Ve Tt Thaea 3 SIN F’)F<’T B k;“ 23 Yatls Sf"’zﬁr)}

. aq
—_ OM-M [P<VM-A+J)] F(*M_. + dalo) + 3; ) é; é;(

3 i ey M-l

AL, Mw, -%.) (%

a1 dp(m-2) +2==

is utilized to perform the (N-1)-fold integration over the hyperspherical
angles @j (j: b3, e N-1 ) in Eq. (1-33), and the resulting expression is

(1-35)

m, X » » " 1

Xd@O\LN_,@P)J«a.-.(@N }; (R)) }a;)}’ VA <€'~-,>"'y<£.)\4 (&)
Qg_ _ KJ. ~ N

o

- . A Onet 2 As(o) , -2
XCosg” o, SN & F(‘ﬁ.,z),—j'; z;o+|,‘s.'uao(~_")c<;s N;(w SiN oL, ,F(Z “h el . Sin'w :) n,

M-t

‘QN 1 . Ak(n N 2 Ah(l) ,

-2
.1
XCOS 25“\1 ( 4)1 1)1}'“) :N o( )COS 0( SIN “N~JF(-%)J{1¢;2;7{+I‘;S"~ O‘N-l)n&
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[ 3 o ®
, Ab(n-2) Ab(n- a,
COSFN, SiN = F( ,,,, u-: 1) +u,$m d)Cos!' ’Sin R N Y - 3: '1,/“+4, 5'““))2,-,
The sums of Eq. (1-35) are finite for a fixed value of Vy., . Thus,

only a finite number of terms are associated with any one hyper-radial

Green function. The hyper-radial integral in Eq. (1-35) can be evaluat-

ed to _yie'ld]2

0]
12 J (Kﬂ) H (K(’>) )

Fy ’ »
and the outgoing wave solution G( & | & ) of Eq. (1-2) is thus
determined where p( , F> are the lesser and greater respectively

of P and f’ . The cylindrical Hankel function of the first kind

-

is designated H(]), and the /7.

; (J:l,a)--',""l) are

obtained from Eq. (1-26).
This representation of the many-particle Green function appears
to be useful in obtaining non Hartree-Fock wave functions and energy

15

levels for many electron atoms ~ as will be indicated in chapter II.
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CHAPTER II

INTEGRAL EQUATION APPROACH TO BOUND STATE ATOMIC SYSTEMS.
PRELIMINARY STUDIES OF HELIUM AND HYDROGEN

A. INTRODUCTION

It is well known that bound state atomic systems are formally
described by the appropriate Schrodinger equation. A study of
Schrodinger's equation for a many electron atom reveals that extreme
numerical difficulties are encountered due to the presence of non-
separable terms in the many electron Hamiltonian. In fact, the exact
eigenfunctions and eigenvalues of atomic systems containing two or
more interacting electrons are not known 23 . The atomic theory for
many electron atoms has been therefore strongly dependent on the
skil1ful use of approximate theories and solutions. In particular,
a large number of the quantitative calculations of the states of
many electron atoms have involved the Hartree-Fock approximation
which employs wave functions constructed from a determinant of single
electron wave functions. Hartree-Fock atomic wave functions allow
for electron correlation due to the Pauli exclusion principle but do
not completely account for the effects of electron-electron repulsion
interactions in a many electron atom.

It is evident that for such an atomic system an alternative

method for obtaining accurate numerical solutions of the Schrodinger
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equation, including correlation effects, would be useful in understand-
ing many electron bound states in atoms. One such approach may be
based directly on the homogeneous integral solution technique of Sams

24

and Kouri which previously has been applied to the problem of

determining vibrational wave functions and energy 1evels]4 . The
formalism is employed here for helium, and the method of generalizing
to other many electron atoms is indicated.

Different models for the He atom will be considered, and the first

will use the symmetric center-of-mass coordinates shown in Fig. 1.

The complete nonrelativistic Hamiltonian for this system may be

written as
(2-1)
_t_\* i\ 2Z 3 2Z
_<7a)7é _(Yh)VEZ“ “l‘ﬁjl’ !£1+ixji'£

where atomic units are chosen to measure energy in rydbergs. The
interelectronic vector is I\S j}b is the vector from the center of
mass of the electrons to the Helium nucleus, and the value of &£ is 2.

The reduced mass, YZf', for the electrons is

N e (2-2)

%
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and the reduced mass of the helium nucleus and the center of mass of

the electrons is
Z 2 M I77¢

Yz’“ = A + MR (2-3)

where M and Me are the alpha-particle and electron masses respectively
Since the present investigation deals with bound states for
atomic systems, the energy E is negative, and the wave-number is given

by

K= i (H>0) (2-4)

such that

2 (2-5)

Hence, the Schrodinger equation for the He system is written as

(2-6)

[W)LVE + ('w—lﬁl)zvf,_ 4 sz?(f\ ) =
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and the so]ution’¥:k_(v v _jean be written in the form
Al G 2

P =

we b oye L

(2-7)

The function C}(g‘r;\xfsl is a noninteracting Green function which
satisfies the inhomogeneous differential equation

(2-8)

[(71?7)2%2. () Vi + ]G (rorlre) =

~e-p) L)

where the right side of Eq. (2-8) is a product of a two 3-dimensional

Dirac delta functions.

Integral equations have been used extensively 25,26 to treat

b

bound state systems. Weinber926 and Delves S have considered in

detail collisions of three or more particles. In the present chapter,
. . 10

Eq. (2-7) is expressed in terms of hyperspherical coordinates and

several of the relations encountered herein have also been discussed
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by Delves. Many of the studies of bound state systems have been devoted
to nuclear problems and problems where the mass of one particle is
infinite. The present treatment deals with atomic systems and enables
the effects of finite nuclear mass to be studied.

The purpose of this paper is to present a numerical method of
noninteratively solving Eq. (2-7) for the total wave function
of the atomic system and the energy E of the corresponding atomic
state. Thus, using He as an example atom, an approach for calculating
bound state atomic wave functions and energy levels is presented which
does not involve the Hartree-Fock approximation and which permits
nuclear motion to be readily included.

In the next section, the Green function G( (" r Lf:lg. )

fw %

defined in Eq. (2-8) is determined using the Fourier integral representa-
tion where the integrals are easily done using hyperspherical coordinates.
Different model systems of He are constructed in Section C, and the
interaction potentials for each are expressed in hyperspherical
coordinates. Next (2-7) is written in terms of hyperspherical

coordinates and transformed into a Volterra integral equation such

that numerical integration can be performed noninteratively by use of

the integral solution technique of Sams and Kouri 23

The coupled
integral equation formalism is then developed in Section D. 1In
order to get an idea of the accuracy of the integral equation method,
H atom bound states have been studied. The calculated energy values

for the ground and first three excited s-states are shown to be in
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excellent agreement with the exact results. MNext the numerical
procedure is illustrated by treating different models of the He system
with zero total angular momentum. This analysis is approximate and
involves only a single radial integral eigenvalue equation so the
calculated energy levels represent qualitative information concerning
the model He systems. The models may then be classified into two
groups: the fixed nucleus approximation and the He systems which

allow nuclear motion. It is finally noted that calculations to yield
excited state energies are no more difficult than ground state
calculations. The method and its implications are discussed in terms

of these example systems in the last section.

B. SYSTEMATIC DETERMINATION OF THE NONINTERACTING GREEN FUNCTION FOR
TWO DISTINGUISHABLE PARTICLES

An explicit representation of.the Green function is required for

>

application of the integral solution procedure Thus, the non-
interacting Green function for two distinguishable particles is
considered where a convenient form can be easily obtained from Eq. (2-8)
by using a Fourier integral representation in hyperspherical coordinates]O
These coordinates have been used by numerous other authors (see

referances 4-8 and 27-29, for example) to discuss the wave equation.
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It is noted that this approach for obtaining the Green function is
of greater generality than indicated by the present problem. That is,
it is readily generalized to construct the noninteracting Green function
for a system of N(N=2,3,4...) distinguishable particles 30 such that
the final representation may be used to calculate energy eigenvalues
and eigenstates of many electron atoms. As a result, the integral
equation formalism herein introduced allows a straighforward generaliza-
tion to atoms with more than two electrons.

The two particle Green function given in Eg. (2-8) can be written

as

(2-9)

G(Y‘P ‘ i [ Iu‘ .” !,::) ‘:%‘l.(rl_}:;‘l)j
c
)fc(ufﬁ(uz ( (%)"‘,K"

>

using the relation

-1
2 2 ‘
[\73:54»\%5,] or(frw;) =

. ot i (g y)
.J.T") f&(uf u; Rz ]

where j equals 1,2. By introducing into Eq. (2-9) the variables

(2-10)
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and defined as
7 b

) .jéLL_ & (2-11)
/B SO
3 ‘ ' L3
and the variables B‘,) B““E'L)and Bzg1ven by
(2+12)
. i 1
El —7?|w,| ) B‘ —Yl‘.c‘
!
- i
Re = N2k, | R, = Ners |
the function G(r r |p'y' ) becomes
Pwi, g w2
(2-13)

Gl egiel) = g (BR) ig,(8.-RL)
(zrr)ffl.dg,, f)?‘dj-z [ ;L,“ + }i - K* ]

The Fourier integral representation of G(f|fsz” w; ) in Eq. (2-13)
is the form required for the present approach of obtaining the Green
function in hyperspherical coordinates. It is seen that Egq. (2-9)
would be of this same form if the mass factors )%L and Y]t_ were equal
to one. In fact, normalized center-of-mass coordinates 31 could have

been employed in the original Hamiltonian to achieve this result;

however, the change of variables which leads to Eq. (2-13) is adequate
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for obtaining the relevant Green function and performing the subsequent

calculations.

To begin the transformation to hyperspherical coordinates, regular
spherical polar coordinates are employed in Eq. (1-13), and the

multipole expansion 18

/ (2-14)
6;%}‘@;’3;‘)

[=-] ¢ ol 2“ ,Q' JQ"
-V 57 YL L ' D . ife. '
= (4+7) 2 B 2‘;0 = (U (i) ?1?- (%;R4) ?1{(“;7@

2 \

x Vo T(3) /z} m)%e @) Y,e;_ (R;)

is used where the subscript j equals 1,2. It will be seen that

spherical polar angles “Q; and 13_ also belong to the hyperspherical
coordinate system of interest. Thus ordinary spherical polar coordinates

of 6-dimensions are sufficient for performing a 4-fold integration of

Eq. (2-13) over the ang]eS'L%% and ¥, * The resulting expression is
(2-15)
Gleeicrn =G )f’? ot%, fﬂsz 454,2;22
~ul“ [ 2 '

?y,(mua (2R ) 4 (22 Re) G, (32RL) e
<l i 2 ) Vo (R) % (R)
v X@ml('ﬁz) >£:r12_ (RA;)

A



25

where the orthonormality condition

¢ x (2']6)
m-

2 [ Tty s
b cjdﬁmf&” Ve o4, ey (B) %)

’.T~—T‘C£} 2 CJ:n fvnj

has been utilized.

The functions)ﬁfﬂ are ordinary spherical harmonics as defined by
Edmonds . The index A j is the orbital angular momentum quantum
number of the jth particle (j=1,2), whereas m, is the z component
angular momentum quantum number of ,Qj. The Jj,(qR) are spherical
Bessel functions, and the,Jthh spherical Bessel function is defined
in terms of the cylindrical Bessel function J;L}% (%;,—Rj) by the

equation

(2-17)

. - -
7}1'3 (%7\)&): ‘%’731':} ‘J£§+"7~ (4

m/‘ﬁ)

The hyperspherical coordinates of wave number space include the
regular spherical polar angles ‘\%, R 1,%1 R ¢f?; » and <f%z
over which integration was performed in obtaining Eq. (2-16) In

addition, a hyperspherical radius Q is defined by
Z _ 2 2

=~ Cf‘ * jl; (2-18)
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and a hyperspherical angle ﬁ; is given by the relations
7
(1

g,
[A,

The volume element of the spherical polar coordinates is related to

(2-19)

i
)
e
C
U\
<

pex)

1
wv
z
<
N
o}
th

the 6 dimensional hyperspherical coordinate volume element by

(2-20)

&

2

3 5 N ‘ . :
CUMTg g, G dgo v g sinth, dog, g, ol

"'()7 7?;) Q AdQ Sin 5(',0-: ﬁc{[SINUf SIN Ua CLL’? AU ? al‘l%c/?g’lz

Hyperspherical variables of coordinate space are analogously defined
with the hyperspherical distances P and p' being

(2-21)
2

RS N S A e U

)

Hyperspherical angles <X and ' are introduced by

/{{ = /OC,OSOQ ’ /RL= /OS;ND( (O-‘ é]j;z. (2-22)

J
31
K

| ]
’F\‘l = 2 Ceset Psine' (0ex'eT)
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The ramaining hyperspherical coordinates are the ordinary spherical
. d 1
olar angles 1%- , ¢ s ¥ , and ¢ i=1,2).
p g W 1} ’ a “f’f (3=1,2)
It is seen from Egs. (2-22) that the distances Y, ¥ i, and
Yqé can be expressed in terms of hyperspherical coordinates as

(2-23)
— -t 0 =1
Y; —_ nl FQC’SD() Yi_ = Y\'L FS[NO(
- =t ! - \ w i '
Pl —-nc PCOSd) Y‘l = nl PS:NO()
and the volume element relation is then
(2-24)

r.’—r:— Ar, A, sin U SN W A A, S,

= (MY LU P 51 o5 ek san Y, sin i s o, oL or d <o,

Equation (2-15) can now be written in terms of hyperspherical
coordinates when the expression given in Eq. (2-17) is substituted for

the spherical Bessel functions. By using the product expansion

20
relation
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(2-25)

Raradd 7 . T / s [ ’ N . Vi H

H LA N . ') Al A
‘J\u‘_p., \ ~ Jll~. T \.lu' (],‘,I ':”,/‘_ &"» '~_‘IJ\4 - ( ~ 7 ¢//
_0 S T e PN
- ,’/:,.; ‘Z; L}—\‘) TR TN ,’:,}\_(m) "/;,: AR P é"-;;l}‘ l\l_-\\J T/.“T /3 'f‘lJ.\)"rl ‘) oS

n=G
X /

o st 3 S e ar 2NN ol e
X Cos” o P, F (A ) m«/ Vil St 2 (vl

I (ﬂ s i) P ALY -1
VL (’\) ’H)J ST e el

&

J

e )

a g
\/‘('l“.‘>

the Green function integral in term of hyperspnerical coordinates bacomas
(2-26)
a (é \;‘) = (y\. n \)< z\ﬁ. )
x P\ ) — bV f
3 ) 4 r‘ X .7\ =53] (.:21 . .
o & < <" ot B » _ W,y M, AL
y 7. > > A 7'(7/3‘ ) v Sy T ‘)\"ﬂ"/'ﬁ‘\ \
A A~ A A S AT (AR T VD B A R T IR AT
Lize 90 m=-1, mpz-f. Az0 R'=c e B :
= N T ~ Nl
(ﬁ AN 2y 3005 (QF/ (r é-ﬂ»,j‘.fﬁ"‘i?.w(\i;‘\ /- ~)
%o \ Q“ - K 4 Q
¢
il
af joa i
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L d

/ , 2 . (-i)" (-r)*;__)
X /-,/ ('%\Z' ,Q,JrﬂLr A+l L+ T o h )_70( F (Y\'; )( '

)

' . =
CHIN R *“rl‘j k472 5.,,\;%()

_T\

‘ ; ! i 2
X coster' sin e L F (-4, Lol v Kwas L v-Ze sin ')

In Eq. (2-25) the orders» and Al can not be negative integers, and
k is zero or a positive integer. The functions 2F1 are Jacobi
polynomials of 7&;\ terms, and {° s the usual gamma function.
The orthogonality properties of Jacobi po]ynomia]sﬂ are used

in evaluating the integral over the hyperspherical angle ﬁ in Eq. (2-26),

1.€.,
T‘Z: (2-27)
L2, +A 22 +2 =
55‘/\’ Pess™ " B F(‘*., S S R ) ;51N7“ﬁ)>
el

X FOX Bk v 2y g3y swb)d 6 = 4 g N7
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where

o Al D M rked) @)
N7 = 20t o2 Aea T ekoe K 2) P04 0 E)

The integral over the hyper-radius Q can be evaluated for outgoing

wave boundary conditions to yie1d22

___.44_
\.J)e NYRALY S (KP H,@+/ZL+J*+—J, <K P>)

where H(1) is the cylindrical Hankel function of the first kind and

/i P are the lesser and greater, respectively of ( and fj'.
) >

Thus the Green function G(2| %' ) is given explicitly in hyperspherical

coordinates as

c (1) (2:29)
= CE)eeT (nny 22 LT L Jpegeaen (kR)
a‘ L X, M

£

()

£ -6 3
X /-/ﬂﬁh jg+g(KP,)CoSqS/'N qj(‘f,,f,ffz_ +X 2 éf»z‘SwZ«x)

M AA

i) L . 2 2
X Cous IO{'S//\/ 20(' g(“/tu.ﬁ,fﬁf*?%,i—l; ﬂzfi}‘ SN O()

\]M(,\,AI‘
s
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where €  represents the coordinates [ o< WO, 4 ¢, and the
: J ’ J ; s X
normalized Jacobi po]ynomia](f:f’ is defined by the equation
(2-30)

— A . - - . ” - i 4 )
Qr(-k £+k»+Aﬁ&j.@+¢)5MJa}

- i / : - - -—’3.'— 2 Z
= V@'l’(—X,)ifrlgf-k{+xj_Lir 4)QQJN‘W)

Tne function\%ﬁ g (r%ﬁ,_) is a sum of products of spherical
7 A
harmonics obtained with aid of the vector addition coefficients, and

the triangular inequality

(2-31)

1 0,- 2 | —} £ 4+,

and the condition

(2-32)

M=y + i,

on the magnetic quantum number M must be satisfied.

C. MODELS FOR THE He ATOM

The interaction terms of the He atom Hamiltonian given by

Eq. (2-1) must now be expressed in hyperspherical coordinates. By
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substituting the appropriate hyperspherical coordinates of Eq. (2-23)
into the interaction potential of Eq. (2-1), the Hamiltonian HI may

be written as

A\ A _ 2 ~_.§: )
2

’)i <C{} /ﬂ@ (ces U ,Z/ + “?%EZZ?

where the multipole expansions of the attractive terms are given by

4 _ S | (2-34)
R -‘%’Z} (F1) A, (= F (cos g,
and
(2-35)
- (im T icmo«j ceo (oexsw)
Xzﬁ(ﬁx) N

) g
k_nl zr m%qj\;ay& (w4d$A)

(2-36)
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and b, s the angle between the vectors ry, r,.

To examine the present approach as applied to the He atom, two
other He systems will be considered. Thus, energy calculations of the
moving nucleus He, model I, will be compared with results calculated
using Model II, the infinitely massive nucleus model and Model III, the
fixed nucleus model.

The second model is constructed as a limiting case of the first
by allowing P&K—9<mo in Eq. (2-33). The significant change is that

(2-37)

LJ. .‘ .7._ A _
- + Md—-)oonz_ - Yls = XV .

The Hamiltonian, HII’ for this system is then constructed by replacing

Y)Y in Eq. (2-33) with V[5 . i.e.,

9 (2-38)
12 1, 2
/T_ZZ = —(—/:[(.") 'VL:C: - (#3) VL?;L o p
o0 “~ ~ ’
X IZ::O X;z (o‘) /i)g (505 7/,2)'1’ f%gJSo(
‘l'n 24
AN, NS %fm% Selx (o“‘ ) (2-39)

;X_ <q) = }Elzjé—ﬂéfx] CSE (aILO(Lle
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(2-40)
L -t/ N5
0% :Vfajl (Qﬂ,l
.
and UL is the angle between the vectors S ¥ . Tne distance
Y, for this system is
(2-41)

-1 .
Vo= 0y Psinv
The calculated energy differences for the systems given by Eqs. (2-33)
and (2-38) of course indicate the manner in which nuclear motion affects
the total energy of a He system.

In addition, the fixed nucleus approximation will be considered,

and tne initial Hamiltonian is given by

(2-42)
- 2 _ 4 2 _ 4 _ 4 ””gi p
H=="m Vi T o0 VJSL 5 K2 -1

where the vectors y , 7. Tlocate the electrons relative to the nucleus

and the electron masg Mg equals one. Thus the relations

o= Cces = , (2-43)

f}_ = SIN
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define the hyperspherical coordinates, and the Hamiltonian HIII is

written as
(2-44)

2 ;4 4
[ty == Vi = T Pleon TP

v f s AL

+‘%_£_ZO -—Q—z () K (cese,,).

Here the electron-electron interaction is expressed by the multipole

expansion
P 2 o | | | (2-45)
ool S0, (L, ()R (ese,)
where
/'\
) ' ' (2-46)
tan" = GeE of (0"—~°\' éjzfr‘)

Y T -
0ot " 50 (49’(52)
~
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and & ;, 1is the angle between the vectors ', r, . The

calculations performed for these three systems are presented in Sec. E.
D. COUPLED INTEGRAL EQUATIONS FOR He

The coupled integral equations are developed for the He system
taking into account the motion of all particles. By substituting into
Eq. (2-7) the Green function G(%{&') given by Eq. (2-29) and the
interaction potential expressed in Eq. (2-33), the bound state He
system is formally described by the integral form of the Schrodinger

equation

(2-47)

- :
LT
Q‘P(Kl):dﬂzjlodlo S,/«d(,ceoxcld
a7 4
50( 5170( 'fg//v?}g(qﬁfgwb"d o
[¢] Q
A A M*sAs A, 4, A . .
X‘yz}f@('fg) \%ee( é\) Cos '« S/ 0<Sf('*«)a'*é’z*zu}’@f%j5’”20<)

t T2

O

’“M
-»M

1)
% J;_,fgzhztu (A'HP<)H;+g+xt,+z (A R)

¥ cog ﬁfo('sz/vf’wsf(-x,x,ffz h20 0 5 F i)

\EP'Z p,é(ccs ,l ’Z(Q _]QI.’()U
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We note that the mass factor (1, Y. )3 in the Green function was
canceled by the inverse factor (Y,‘/(L )—3 generated by the volume
element given in Eq. (2-24).

It follows from Eq. (2-27) that the Jacobi polynomials

satisfy the orthonormality condition

(2-48)
T/ 2

20,62 R Y 4 .
4 Siwv AC0E T oA (’X} IRy 2 13;3; sin?e)

X :‘}7‘(—7(,),/’.,4-121» o2 e sinjd = = SK %, )
ﬁ - ) satisfy
PA
2 (2-49)
’/-21/ ’:Ag'_}: MM’

The wave function'§§ (¥¢|% ) in Eq. (2-47) can therefore be expanded

in terms of these orthogonal functions as

(2-50)
S : Z, ' 2
Y(ylR)= ,”'f', g‘ QZ' ) %1 05 % Sjwtia y(‘x,)_i‘(—i’zftflb.gi‘ffj S
¢ I ‘A i
| Mo, . .
o UT CRR) (UL, Amie)
4 4



to yield the set of coupled integral equations

S (2-51)
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A wore coavenient form of Eq. (2-51) is cobtainad by factering tho
terms independent of £« Thus € and D are dafinad as
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(2-53)

Dx%‘@* M/}’ﬁjﬁ; kM) = M-{;(ﬁ, i, /2] 0 //)

X 5 C( o{, S/./\/,é,z*f_—; '*‘JO\/I 605’6/7‘—2,*0?%, Zzz (0( {)

[
X ZE(-5, Bl ke £ rFs sin2)

o~ ! it ’ - 2,7
X Q_T("/(',}f,r‘[z,t-}t,{-ufj,cu + <L SN *9():

where ,Xﬂ ("") is defined in Eq. (2-35). The functions

LQ& (.(}., Qi/fl/j[;/d,r) are given by 32

(2-54)

ﬁ ‘s — A A { AA
T2 (,é,,éz //,[l /&ﬂ) "fd’f’ Q%Z,t&(ﬁ f';_)

M’ \
X /ff (cos £, y (7).
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In terms of these constants, Eq. (2-51) becomes

= (2-55)
T (s A mfe ,fﬂ

1

X Jir@mﬁ’n&(i )’fﬂ)HLw +,./,(-+,1([}{,p) ;ZZ

-
YA,
£ L M

{Z D, (ﬂi’%/va OM‘I RIM )+ C(u %M)W[ﬁ M)}

X q;(.)/F//}/,élflﬂL/Ml/p/)
It is convenient to define a function L’(}( I é A h1l()) by the

equation

(2-56)

UCetlie i,k mj0) = €7 OMle e, 4mle)

and write Eq. (2-55) in the form

UG8 A 10 ¢ [ € Tz (o) &
xAyth&MMZZZZZ[iCWMNWJMJ
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P A ‘w’/" rl:' 4 7/ . .
where the definition of C)’Z (}b, (. M\}_h, < } IV\\/ is obvious from a
comparison of Egs. (2—57) and (2-55). By letting the single index ¢

represent the five indices, ;., 4 «.J’ ™M, and removing the variables
v

f. and A s Eq. (2-57) can be written as

(2-58)

P
U (,( |/ P) _/LHL,,)rZ Fak b2 (L'MP)JC\MO/
X :}__rzm?/t»z,(«c )’/(O)ZZ C (g O')?/(‘/! '”3)

-+ Jﬁ o, t2 G+ 2 Q/ M{O) ?A((T) IO( (OHZ)HJ;.,L,Q;&{.Z A)’((OI)

T T e YR 10

=4

where
A (o)
jd (O /7/g fz‘lr;*-f-/l, (LMP)Z Z C (O"/C')Z/(}’(/O‘ //n)

o =0

(2-59)

The solution form of Eq. (2-58) is written as

Ui ele) = 2 Heleifey 10 ) Ao

’

(2-60)
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so that the matrix representation of the above is

Yer =M A

(2-61)

The matrix A satisfies the eigenvalue equation

(2-62)

JH“”(M 2 Cf W) Ao =€A,

and the matrix function )g/(’fq) satisfies the Volterra integral
equation given by

(2-63)

(O
}_i’/(@:z;/")(fo)vf;_f(p')f {; Co S U ()L P
£ J(r)- f/f (0)- Q f> el e +cdie)

where the elements in the arrays d (p) and i-(é)) are given by

(2-64)

f::[(())]c; o JMIJ:(A

£,k 12 He)
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A solution to Eq. (2-61) is obtained for an e apgy B = -7 if the

eigenvalue € in Eg. (2-62) equals one. Thus, initial and corrected

estimates for J ave used in noninteratively so]v1nq Eq. (2-63) for
, ree P
- 7> ) . - ' l’r Y - ) " }
Y (¢), and the eigenvalues of the matrix J/ s .“{gx @;;'5 V(P JC)

are calculated for cach )2. with  an eigenvalue equal one. The

eigenvector A for that eigenvalue is then determined from Eq. (2-62)

and the normalization condition

(‘f
\ 7 f\ \ ; ; ; /,)/ .,
O U es UeD P =
and the normalized solution is given by Eq. (2-61).

E. SIHGLE INTEGRAL EQUATION CALCULATIONS

tom: Calculations of the Ground and First Three Excited
t..

In order to develop an understanding of the integral equation

procedura, it was deemad dasirable to initiate the numerical studies
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using only a sing]e integral equation. To i]]ustrate this approach
with an exact calculation, the s-state H atom is considered where the
total angular momentum is zero. Energy values are calculated for the
ground and first three excited states, and the results are in
excellent agreement with the exact value as shown in Table 1. Since
the average electron-nucleus separation is greater in the excited
states, the radial integral from the origin to a point Rmax must
also be greater to yield accurate calctilations for excited states.
Other than the increased Rmax’ the excited and ground state
calculations are pérformed with equal ease.

The noninteracting single particle Green function G{(Q vy’ ) for
an H atom is well known and can be obtained from Eq. (2-6) and expanded

19

LRle=gt] (2-67)

~ & o am
- ‘/?QZ; ,ZQ Lo (kryh, (kes) ) (7)Y, ?F’),

For the H atom Eq. (2-7) becomes
(2-68)

Py = S CCrie ) E (end
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and the wave functiqn > () is expanded in terms of the )Q”?rf)

The radial equation for the £ th partial wave is obtained by multiplying
Eq. (2-68) through with a particular 2£”7t}{) and integrating

over the solid angle P: to give

(2-69)

@f@>zkgthaﬂf(mw(

}fjg% (fkfr‘

)
where -4

, is the spherical Hankel function of the first kind. The

total energy E is measured in rydbergs and

(2-70)

kR=:iM

so that

(2-71)
FE=- X"

where,[}((}(i>o) is the pure imaginary wave number. Thus, from
Eq. (2-69), the bound s-state solutions of Schrodinger's equation for
the H atom may be written in integral form as

5 oo (2-72)
F, (lol) = T Jemh (e ™ ()

X L (Aale) dr'
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r
' ’ i \ Of},,z-:}’h“ _!_‘\ ) . . r/)
ot o, (Wlelr) = =57 J( ) g () K (R o)l
Qaﬂw’f(l«(’_ﬂ) ﬁ,?;é,/_yzlﬁgr) (2f73)
+ P — W

r ’
CF 0™ ol
A rtJc CQ,<}(IOIFZ/Q[P'.

o

Here

B, (Rlolr) =, (Rlole) B3 (2-74)

and

o0

e | | (2-75)
S e (37D sroleetr = ¢ B.

o

A solution to Eq. (2-74) is obtained for an energy E= - W% uhere
€ in Eq. (2-75) is one. The wave function ?g;o (¥lsl vy ) s then
absolute square integrable.

2. He Models: Ground S-State Approximations

The single integral equation approximation to He requires that,
only the term 22 =ng = }Q:: ¢  be included in the wave function

expansion, Eq. (2-51). This is tantamount to examining the first
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element in tne matrix, and is, of course, a ratnar crude appiroximation.

Howaver, thea wave function may be improved by including higher order

tzrmg, i.e., ,5, Lo ,e AN . Counled equations are then
,

encounterad, and tne calculated energy value will bacome correspondingly
more accurate. Nevertheless, the present single tarm calculations will
be shown to account for approximately 85% of the total binding energy
of He.
With tne imnosition of specialized conditions that c = n,(
: A O
Eq. (2-51) becomas a single integral equation of the Torm

- /6 £ ;o2 (2-76)
3 ‘ Ay N olreY,
b (Alole) = T O -

vinere ll(ti) reprasents an interaction potential for any one of the
particular He systems. Certain interreietions of the wodal He sydb~“
N .. e daying  fam aneh cyetom e 1 (o
may be mada abparent by considering, for each systom, the LNy
integral in Eq. (2-76); so these integrals are now avalusted.
i S, Lo Lo L/ :/ .l \ .~ oty ot 1

The dnteraction i A/ associated with Hamiltonian Hy of
Eq. (2-33) is fivst analyzed. 1t is recalled that tho Hueilteaian Hy
describes a He atom wiich taies into account the motion of hotn
elactrons and tha nucleus, using the symnatric center of mass coordinates

L

shown in Fig. 1a.  However, if the asymmairic coordinates of Fig, b,
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are employed, the results of the following analysis can be shown to

remain unchanged.

From Egs. (2-76) and (2-33), the expression for the integral over

’XJ(JE (\ck,) is

(2-77)
EI = !\S’/N”zd'&s@' {410("")“‘(:;5 }c(d ,

and the evaluation yields

(2-78)

£, E%(éirfm&)%—z}

where use is made of Eq. (2-36). It is of interest to let M — =0¢

in Eq. (2-78), so that one obtains

(2-79)

L"""'th_-,loo 6: = {473_ ‘1? :

The interaction potentials ALéﬂ.GX) and U () are

associated with the He atom Hamiltonians given by Egs. (2-38) and

(1-44; yespectively. System III is the fixed nucleus approximation,

whereas system II is considered a Timiting case of system I since
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(2-80)

l_-frw I+’ )_‘1 = F{II .

MO(—,;or..v

Now Egs. (2-38), (2-44), and (2-78) are used to construct the integrals
Ez and fm which are given as

v,

EI :0f§/N20<lCaS’Lo(' {45{: <°<'>—‘?55—;<'}0{ ! (2-81)

and
/2

Q Q -— : ¥ ) (2_82)
EJZZ = ) Sin“K'0os7o! [ cosK’ t sin ﬂo(m) dd.
o

It can be shown that the result given in Eq. (2-79) 1is the value for
both integrals gﬂ and gzzz- Therefore, when the interaction potentials
are integrated over all angular variables,systems II and III manifest
idéntical benavior. The inclusion of higher order terms could alter
these conclusions.

Continuing the single equation integral solution treatment of He,
we let R represent - and Ez, E_ZZZ , and use the relations 33

(2-83)

—

Joz (A'Z) - ’Iz (z)
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and
(2-84)

( _ R
Fw)([iﬂ'— T Ki(g)

L

in order to obtain

oo (2-85)

28 o
2B (vlole) = T OJ(O L, (ALK, (Ve

X E(K1ell)dp

from Eq. (2-76).
The functions I,(E) and k-;. (Z) ar2 the modified Bessel and
-~
Hankel functions, respectively. Then the function <P, (gflolﬁa

defined by

(2-86)
CE )= 2GR (lote)
may be shown to obey the Volterra integral equation

(2-87)

P (elolf) = vk, (00 S T, ()l
(hp) = ¥, (0 S K, (A )

+ 51,
s %, (Aol
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where X 3218

(2-88)

and oA
Ole (K E, Ol ) €T (2-89)

= efj.
Thus when

(2-90)

&0

;KZ(WP’) Y, (Alole)ot P =1

the eigenvalue and associated eigenfunctions are determined, and the
resulting wave function is the best angular independent single term
representation possible for the ground state He atom. As shown in
Table 3, the results of ground state energy calculations for He

systems I and II, III are given by

(2-91)

“ M, =4I Trea r ydberys
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and

(2-92)
— ) = 5. 00004450 f/r:( he :15/5 )

The He system in which nuclear motion is allowed is seen to be less

tightly bound (by ~ 2.59x10™%

rydberg) than the systems which assume a
fixed or infinitely massive nucleus. This energy difference is
reasonable in view of the fact that nuclear motion contributes to the

kinetic energy of the He atom.

F. DISCUSSION

In spite of the single equation approximation for He, comparative
analysis of the different He models yields results which one would
expect so far as the effect of nuclear motion. This suggests that the
integral equation approach should be useful for studying quantum
mechanical states of He and, therefore, other two electron atomic
systems. In addition, the formalism allows a straightforward
generalization to systems of more than three particles since the

30

relevant Green functions are available The non Born-Oppehheimer

nature of the method is illustrated in the treatment of model I for

He, and the present method could be used to study the electron

34

correlation problem Further, unlike methods which involve
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expansions of atomic states in a hydrogenic basis, all expansion
functions in the present analysis possess purely discrete indices so
the present formalism avoids difficulties associated with the continuum
contributions in expansions.

To obtain more accurate calculations, a formalism for coupled
integral equations has been developed such that higher order terms
may be included in the expansion basis. In this case, the accuracy
attainable by the integral equation method could be competitive with
other procedures. However, the rate-of convergence and therefore the
number of terms required in the expansions will determine its
practicality. Thus far, it is not clear how Targe a number of particles
can be considered in an atomic system where the present "total" wave |
function approach is employed. Here, "total" wave function is used to
distinguish the wave functions constructed for the total system from
the Hartree-Fock type of wave function.

Finally, an interesting facet of the method is revealed by the
H atom treatment in that accurate results are obtained for excited
state calculations without excess effort compared to the ground
state calculation. This is a very desirable property for any
formalism to possess which is used to calculate energy states of atomic
systems. Calculations for coupled integral equations will be reported

in a later communication.
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CHAPTER III

A. INTRODUCTION

Insight into the behavior of three body systems can be gained by
employing approximate methods to obtain numerical results from which
reliable theoretical models can then be constructed. One such model
is the London—Eyring-Po]any?S’3gotentia1 energy surface which has been
widely used in studying energy transfer reactions resulting from atom-
diatom co]]isions37—43. These collisions are considered to be collinear
and electronically adiabatic; i.e., the surface is constructed from
the electronic energy plus the nuclear repulsion potential so that the
motion of the model particles sliding on the frictionless surface
simulates that of the reactive system. These approximations render
the problem mathematically tractable and seem to be qualitatively
reasonable.

Baer and Kour%’44have recently introduced the channel 7~
operator formalism which is an attractive technique for studying such
atom-diatom reactive co]]isions45’%6 This approach differs from the
more conventional wave function boundary matching procedures in that
it can be generalized to include three dimensional effects in a
straight forward manner and it has been successful in avoiding

£

4
difficulties associated with nonconservation of flux By treating
the collinear atom-diatom collision with the coupled channel ] operators,

coupled integral equations are encountered and their solution yields
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a set of coupled algebraic equations, the solutions of which are used

to obtain the reactive probabilities.

The present chapter considers the collinear approximation to the

reaction of HZ - He according to
HeH® + H (reactive)
H; + He ——
*i .
He + H, (nonreactive).

The reaction probabilities are calculated using matrix elements of
the channel ¢ operators. This treatment neglects the cross terms in
the kinetic energy operators in order to employ an L shaped potential
energy surface.

The next section contains a description of the collision system
and the relationship between the masses of the particles and the
potential energy surface. In Section C the Hamiltonian is separated
into perturbed and unperturbed parts. The eigenfunctions are obtained
from the unperturbed Hamiltonian and the pertubations are defined. The
coupled channel g operator equations are derived in Section D. The
relevant algebraic equations are then obtained and the reflection (Rn)
and transmission (Tn) coefficients are evaluated for the HZ - He
collision. In the final section, qualitative models are employed to

discuss the reaction and the numerical results are discussed and compared

with other data.
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B. DESCRIPTION OF THE COLLISION SYSTEM

The collinear atom-diatom collision system for H2+- He is shown
in Fig. 2. Particles 1 and 2 (of mass mHI and mHII) represent the two
proton masses; particle 3 is the He atom of mass Mo The distance
between particles 1 and 2 is R, whereas Rﬁ is the distance from the
“interior" proton to the H atom.

The initial stage of the scattering process, H2+ is vibrational in
and energy eigenstate and is far from the incoming He atom. After the
particle interact, the He atom is either reflected from the vibrating
H2+ molecule or the "distal"™ H atom (particle 1) becomes freed and leaves
the HeH' molecule vibrating in one of its accessible eigenstates. The
possibility of a reaction yielding three free particles is not allowed.

The system is taken to be in thecA configuration when H2+ is far
from He and in the/9 configuration whe H is far from HeH+. For the =<
and £ configurations, the vibrational coordinates are R ot and Rg.
respectively, and the complementary scattering coordinates are Rﬂ and
Ra - The subscript e is employed to indicate a general configuration,

i.e., eithercﬂ.or'ﬁ . By following the approach of Eyring and Po1anyi36

as modified by Hirschfe1der48

, 1t can be shown that the shape of the
potential energy surface for the collinear H2+ - He system is obtained
by diagonalizing the relative kinetic energy operators so the relative
coordinates can be drawn at an angle which depends on the masses of

particles.
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In Fig. 2, the positions of the masses My and my s and-mH are
I 11 €
specified with respect to a reference point, using the vectors T

Y.. and X, respectively. The relative coordinate, S, is a vector

from the center of mass of mHI to the center of mass of the combined
system, mHII and Mo The other relative coordinate, P, i1s a vector
from the center of mass of Mya to the center of mass of mHII? For

notational convenience, the masses mHI, mHII’ and LT will be denoted

by Mys My» and M3, respectively. The coordinates which render the

internal kinetic energy operators diagonal can now be given by

. , (3-1)
Wa ')’?73 2
FD {?41-+7;] (}'
and
L (3-2)
S; _ wi, ( Ma +my 2'7n1.r, + m; x;l
- M Ma + )’)’)3 - -E;\
where
(3-3)



Rearrangement of Eq. (3-2) yields

Wh(wm+ng)i ™ M,
+ ‘\ M ) [(an +m3)(m,+m3)] <‘t1 -

or

where

S X(w3 u!: +/L{<I3\'£3) &59

58

(3-4)

(3-5)

(3-6)

(3-7)
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and
! (3-8)
Cos& = m —] 1
(Yﬂ2+m3)(m,+m3)j .
The expression for £ becomes
(3-9)
P :/'((Ia— LB)S:'NQ
where
(3-10)
AN
S'.“ o - { M ms3 2
- L(’)’n, +m3) vy 2|,

By displaying the relative coordinates S and P as shown in Fig. 3, the
set of skewed coordinates /((“(1— 13‘) and  ¥( ,Y,.a'f-) became apparent
and the mass dependence of the angle & 1is seen in Eq. (3-8) and (3-10).
Note that as m,, becomes infinite, & becomes T/3 to give an L shaped

energy surface.

C. EIGENFUNCTIONS AND POTENTIAL ENERGY SURFACES
The full potential energy surface is shown in Fig. 4. The width,
1], of the entrance channel is taken to be .378° with a potential of

zero. The exit channel width, 12, is .30A° with an energy barrier of
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.846 e.v. The rectangular corner region has a small potential well
of -.20 e.v., and v, is 8.0 e.v.

In the X configuration, the potential energy surface felt by the
unperturbed diatom is seen to be the Vi (x,y) shown in Fig. 5a. The
potential energy surface for the unperturbed diatom when the system is
in the ﬁ configuration is Vg (x,y) of Fig. 5b. The v, (x,y) and
Ve (x,y) are considered to be the effective diatom binding potentials
for the « and F configurations respectively. Wave functions for
these bound states are obtained from the Schr8dinger equations given by

T ? 2
{__3_/2; %gz + \{‘ } CP(”&‘j) . Ey,d Cp()ﬂd\j)

(3-11)

and

" 5he 0+ o) = Evp P

(3-12)

where Mo and 'AF are the reduced masses for the two configurations,
Thus the bound state wave functions, Cf%”hl‘d) and cf%ﬁqp\xﬂ s
for the « and F configurations are given as

(3-13)

A“uS""‘)nd'j 0% Yy ¢y,
7%",(\3) —

BY) .Q— lhdtj y > A,

-



and

CP(WF\X): /qnlg Sin A x
BHF e mp¥
:}nd = [j Q/u“ Ezii].é
_hz
)
- _ ) y .
b, = [_%_V_ i )ﬂd]
&/QF
)T\F ——[ 'F\Z<Enf —V;)j}
and
— ;l/z,
- __~f? _ z
lhla -‘,-\z (\g \é) -~ )MP

o l-
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(3-14)

(3-15)

(3-16)

(3-17)

(3-18)
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with the normalization constants given by

l (3-19)
Ly
A, = |=—
L, A
and
(3-20)

B, = /q“ SI‘N(),‘,Q) e’/:,,()

The free particle eigenfunctions for the o¢ and f? configurations

are taken to be

(3-21)

'7;(”41)() = Sin kX

and
5“,9@) = Sk y (3-22)
f
with the wave numbers kn and kn dfined by
¢ P (3-23)
s AUE

R, = -

u _F\'L. ho\
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and
2 ;)/[( . (3-24)
k"ﬁ :7\{1(5”\/&)')”

fr‘

Equations (3-10) and (3-11) are used in defining the unperturbed

Hamiltonians, Ko and KP » as

(3-25)
-_h 2 W 2P
Ke( ;1//,5 ox* e, 2 ye +v,¢'
and
(3-26)

R W T
Kﬁ S Rmp X Ay Sy TV

so that the unperturbed eigenfunctions, 9(77,‘{)( Lj) and 9(7%}){)3) s

are given by

(3-27)

S(n vy = j(mlx)cp(ndlg)

and

(3-28)

@O},}X,y) = Z(“,a!fj) 49(”/3 1X)
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The K, and KF are related to the total Hamiltonian, H, by the
equation

(3-29)

H = Kd+v&=l<ﬁ+\¢;.

The perturbations VD( (x,y) and Vlg (x,y) are then determined by

(3-30)
\/°( = H ”KL = \4(’%3)‘ Z(X,ﬁ)
and
(3-31)
Vs = H “Kg © V,(x,9)-\txg)
and are explicitly given by the relations
(3-32)
\{ (0 £y q)

04Xy,

\‘/.40‘)33: Vi-V%  ysay

O X> A,
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and
(V- totxaty (339
O«
xy) = % -\ X> 4, g< R
F
- O 17 ’e'-

D. CHANNEL.']: OPERATOR EQUATIONS
The channel operators are next obtained by considering the

Lippman~Schwinger equation

(3-34)

P = led + (e- k) Y 17D

where E 1is the total energy and (E - Kf i e)_1 is the operator

form of the noninteracting F configuration Green function which
assures that the scattering state ,'QP+> will satisfy casual boundary
conditions. By letting P =%y Eq. (3-34) can be written as

(3-35)

)77-[/+> = ]@x\? + {E’(K* + \/d) ¥ e}-, Vv Ied>
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which becomes

(3-36)
)@5:\9d>+(E-Kr+‘-€)-'{%+ Vo (E-H e }\e}

by applying the identity

(3-37)
(E Hhe p (E K +1e {1+\/ F - H+‘e)”'}
The channel operator, ’Z}N , is now identified in Eq. (3-36) as
(3-38)
Y -1
Z,u = \[ + VF<E—H rie) |/,
which, by using Eq. (3-37), can also be written as
(3-39)

=\ e Y v T e}

(3-40)

or

F A Y -t

( :\/*V(E"K'-l—fé -y

Since f) and (J' are independent, the operators /(:“and ?,E « can be
expressed in terms of a set of coupled integral equations given by

(3-41)

e

L L

=V \/(E KPhc) /6,,(
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and

o . . (3-42)
Cpo( =\, + \7‘3 <E-ko<+"é’) .

dc(‘

The channel operator matrix is given in the unperturbed representation

as

(3-43)

B>

and is related to the probability amplitude of the system going into

fec(Gr100 = &l L,

. (4
a final configuration r) and state & from an initial configuration

®° and state O .
By operating on the initial state, @(’nﬁ [ x 9) » with the
channel operators, the amplitude density functions, 75()1“”() and

X('npj ‘j) » are introduced and expanded in terms of the bound

state functions as

(3-44)

/Z/ B nelxy) = Z %(h | X) ﬁ(n ly)

and

(3-45)

szd Olng|xg) = 2\}] SANELAEY
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The functions to be determined are the amplitude densities; so Egs.
(3-41) and (3-42) are used to express Eqs. (3-44) and (3-45) as
(3-46)

"
2 Xon 19 Gnig) =V, Oz

+ \[(E-kytie) %;. Kl ) £ 0ne 1)

and

(3-47)

Z‘f: )((nﬁly)qgmp\x} =\ 6(71,;1&5)

T Vo(E-Kevid) 2, Xonan Hnlg),

Before integrals can be performed in Eq. (3-47), the integral operator
must be abtained which will satisfy the equation

(3-48)
E- kat £ Gxyivgy = oxex) $y-g).

By using the closure relation

(3-49)

X
% QQ(”«’S) C&’Lly’) - f(:f‘y')
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and the fact that

(2] (3"50)
L
—-?T-fdk S"Nk)( g,',u kx’ = &x-x')
o J
one may show that Eq. (3-48) is equivalent to
(3-51)
C}(xglny
- WZ fdk S:H(k X) S:N(h X) 419(7! lﬂ) f(ndlg)
k‘h,( n, +tie
This integral is evaluated in the complex plane to yield
(3-52)

Ci(Xglny

_ A ,{k Xy X
:2“; K, & Simalk, X ﬂndly)qocmy')

where X> , X¢ are the greater and Tesser of X and X'. Since the

and ‘3 configuration Green functions are symmetric in x and y,
GF(XH‘X'_‘/') is given by

(3-53)
f(Yngg )
|

LS L ikous . *
= % }?nfe £ >S‘H(}QHF9<)%(MI@’X) %/W/ﬁlk”)
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By multiplying Egs. (3-46) and (3-47) and by éﬁ%nala) and qé%h?|x)
and integrating over the appropriate variables, these equations can now

be expressed as

(3-54)

’X(m\x) = S"'\'(/Qnae;f) fo/y 90("&’3)\4@, Y) qél(”w!‘j)

=T Houm [y & Q,xkn>.
MF h“F ) Y (meg‘ﬂ)\/ul(x’j)J ye fy SIN(h";j()X(”ﬁ'ﬂ')
and

(3-55)

%(w; ly) = 40("«-!3) (0/’( q%,ﬁlx) Vi (xy) S«N(k,,px)

_ Cf%ni\g) O

To assist in evaluating the resulting integrals, the following defintions

are convenient:

(3-56)

(o) \___/jg

\/Mno(x) = O/y qp[)(”?ql(j)va((x,y) %(Y’fly) )

(3-57)

}an,@) ~‘—Ja'>< C/Q(’”FIX) \L(x9) 5f~(knd2<) )
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(3-58)
Hom )

2 Y
= }?,nF fojj Cﬁ%’ﬂh'f/)\é(){fﬂj‘o/y'e‘ kﬂﬁ Y> .SIN< hnp‘ﬂ) /1/(7’/3 ly’)

and
(3-59)
Franty)
_ 1 0, qﬂ Fod’ ’ ,(_'IQ,‘X> . E 7{
T R ) OXF a0 V(g aX €T 2o, X L)
Thus Eqs. (3-54) and (3-55) become
(3-60)
Z(md\x) :\/mm(x) Sin (kan) - % °‘ml,,(x’ Qﬂ(h/ﬂ)()
and
(3-61)

/'k(—m/e'y) :Z//);lno((j)%(na"‘j) - 7”:( @Mnd\('j\ qﬂ(}?‘]‘y)

The integrals given by Eqs. (3-56) through (3-59) are now evaluated by
taking advantage of the piecewise constant nature of the an (x) and
2/(41”0(«1), Thus,

(3-62)
"U.,,,no 04X < 4,

Vo @ =
o) X> A=



where

Ui, :\/Iém 4,0) + (V, - v)cﬁ eo, 2,)

and
a
émm(a)b) - {Jj Qﬂ(m""y) Cﬁ(”«"/ )

Equation (3-57) is similarly evaluated to obtain

Yo (025 h)

where
n
%"“a - \/l Whin (/(’Z,O)
and
()
Horn, = (V=) sy
with

2
Wiy, (2, 0) = 50’)( C?%”/G\X)S
b

R, Xx) .
ok

72

(3-63)

(3-64)

(3-65)

(3-66)

(3-67)

(3-68)
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The quantity of (x) is expressed as
™mn

P (3-69)
. (0 ¢x ¢ A,)
Xy T P
o) (X > 4,)
where
(3-70)
M V2 - Vo)
X —- e
oy = olmfu.,on s S, (o)
and
(3-71)

2 oo
—-— ‘ /(:kh > ’
&-.mnp(a, b) = [ﬂlg qQ(nW) fo’y e Flj S,-H(R“Ptja X(“F‘ﬂ)-

The quantity an ((j) is similarly expressed as

(3-72)
o, (08928
ani(‘j\ -
0 (4 > &)
where
(3-73)
- (\/, ""VQ) o VO ~
o, = TR e )= K S )

o N
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and

(3-74)

o~

2] oo
. 2Ry Xs
&mn*(&,b) - j:ofx %)(MF)X)IO/X el T S/'M(bndxc)k(nd\x').
Equations (3-71) and (3-74) may be rewritten as

(3-75)

tgv'rﬂn{s (2, b)

a

LRy, ‘ ,

= jds J(M‘*w){e ijolj S,‘u(bnplj)/’k(nﬂ]g')

b

o , k ’
+ Sinck, %5”’5 e k(wj)
Py ?
and

~ (3-76)

Hom, (3, b)
Q . k X
- e S Yo
b O

+ Sinck, x) fdx' et ko )((nu\x')}
X

which, upon rearrangement, become
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(3-77)

‘&‘mn <a,5) - an(a) b)(j)_]:

2y
[
+ ia’fj C}Q(Wl.tlj)f"/&ll &'N[kh(‘j‘ﬂ’)] X(hlw

and

(3-78)

(&"M'n(&) B\ = @’mn (&, b, X) Rh
+ Jj d X Cf(’”f’ ’X)io/ X S’\"/[l?n(y’)(’g A,

Here,
2 (3-79)
,c.kn"
-me(&) br) = S‘/V %ler)e )
b
oo (3-80)
To = 1y Xeng Swiky,
and '
(3-81)

R. = 5;0’)( X n1y) Seckn v

In order to further evaluate o, and ﬁmh » the functions
ji(hlﬁ) and ;K(n[x) are required. These are given by
(3-82)

%(7‘ [ ) — {S“N (ky,‘)() U”Y’o B Sn; "n Y\'C?O('”'/X) (04 x2.4,)
© (X > /ez)
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and
o (3-83)
I( _ %o %(Yl“q«j) - E; pym, ﬁp(n’lﬁ) 0ty <4)
Ylﬂj\ =
Yo Pinel ) (4> 4
Equations (3-70) and ( 3-73 are thus written as
(3-84)

T _k\i;é Q’"n(‘%w)n}
2 =]
Y
+ Ry { ofd—lj Cp()%]j)gﬁ@' S;’J[bﬂ(fj-y')] )((,n ,3,)}
J
+ Q{-J—é{ég @’mn <00,.9.)(j T}
Va Vo)
{ fdj QQ(WIHJ gﬂa/ﬁ 5/»{’2 (3 3)] Z/Cnly)}

and
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(3-85)

g - s!__v_nz{@m@ o) R, }
<_.___)_V v gﬁ/x rDa/)( ~[k (X-x)]/?(W)}

_ .YQ{QWM(@, xz,xw,,}
"t L X :

and can now be evaluated to yield

CmIX

(3-86)

- L
0<wrn - kw{VIan(zgp)o,y)‘i"(vz‘Vo).?mn(co)i’,)ﬂ)}‘];
+.Y.l_ %“’ Z mZ
Ry‘ M N, ‘Ww\r\(Q O)»Q 'j '"1)1 mn fowﬁ

Vi
k“{ E’{: P n, me;(‘)'»"i*’ua)}

V:z - \/o) )
(T }km No Zm n Yl.<w’/e' )% P')

and
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(3-87)
BB
67;171 = T{an(’q‘UO’X)RH + Um,,o/jmnm(fmoj'/ﬂ_,)()}
V. -V,)
- 5: D(nm.@ Zmnh,(/(pz,oj',{?%x)
n ¢ f
Vo
B CHNCY SRS
whers
(3-88)

‘Zmnm<%bﬁﬂ)
= ‘fc/g q&(m;)ja’?' Sw[}?“(f—f')]&m\g')

and

,%an(aﬁﬁqd)

2 c
- £ fyttniy i df Sl (g1 St g

(3-89)

with q being x or y.
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Expressions for the values of the reaction or transmission coefficient,
T and the reflection coefficient, R.» given in Eqs. {3-80) and (3-81)
are now obtained by multiplying Eqs. (3-59) and (3-60) by the appropriate

sine function and integrating; i.e., the equations

. . (3-90)
i"/x)((mdlx) Sm(bmx) = SJX \(nn (x) S‘«N(]l?nox) g"M(hmx)
- " YGIX o(mn &0‘13“) S"”(k’ X)
poe f "
and
(3-91)

co

/
ojal_‘j X(anlg) Sk, o) = j%nf‘ﬁ ?9(’%\‘1) SintR,y) 0/3

B % fﬁm”o?j) q,%yw ‘j) S-'N(km ‘j)Jy

become

(3-92)

Rm: Yo, Snnn(’q'-\)o) B %_" X
f

™mn

w;, MG@JO)
f

) () (3-93)
— t
_I-:n B /V‘nq')qa wno m (IQ” O) * % " wnom (/e)w)

- nz Pﬁ ng w‘ndm(’Q»)O)
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respectively, where

(3-94)

2
Smm (a,0) = CJ:@/X S k,.%) Sinck x)

The probability amplitudes for reaction and reflection, Tm and
Rm respectively, can now be calculated by solving simultaneously the
algebraic Egs. (3-86), (3-87), (3-92) and (3-93) for Cx;nn , (3 mn’
Rn’ and T

In appendix A the probability amplitudes Tn and Rn are shown to
pe related to the transition probability, P, by

2 (3-95)
P =12 %/ |
and
J (3-95)
Pw;-*(v?) = 4R, //h,,okn (np,)
for the nonreactive probabilities and by
(3-97)

P = 4T Ak

n,> N

for the reactive probabilities.
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~E. RESULTS AND DISCUSSION

1. Descriptive Models
The reactive collision indicated by

(3-98)
He + H2+ —~> HeH' +H

will be qualitatively discussed from two different view points in order
to seek additional insight into the scattering process and possibly
construct a "physical picture". The first treatment considers the
possibility of viewing the reaction probability as a product of the
relevant reflection and transmission coefficients.

To illustrate this approach it is convenient to recall that the

full potential energy surface (Fig. 4 ) is represented by

N

\/= e <846

AV

Bo eV
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where, in thg S cqnfiguration, the X motion on the energy surface is
associated with the He atom and the y motion with the oscillating H
atom. The motion of the reactant particles in Eq. (3-98) can therefore
be represented on the energy surface by defining the position of the
incoming He atom as X and the H atom position as y. The product
particle motion is similarly given where x now defines the position
of the oscillating atom associated with HeH" and y is the position of
the free H atom. Since this problem is mathematically equivalent
(except for non identical masses) to the motion of a single two
dimensional particle moving in the x-y plane, the positions, x and y,
of the two one dimensional particles can be viewed as the x and y
components of a single two dimensional particle which moves in configura-
tion space. The motion of the single point in configuration space
which corresponds to the reaction given in Eq. (3-98) is a superposition
of the motion of the two one dimensional particles displayed on the

two dimensionhal plane. Thus the incoming point particle would be
translated along the x coordinate in the direction of the origin and
would oscillate in the y direction approximately within the region
defined by (0 ¢ Yy “h+ ¢ ) where € is the usual small number
greater than zero. For some reactions, the point particle passes
directly into the -0.2 e.v. "interaction region" defined by {Zﬁzfﬁ
and exits along the y coordinate with oscillatory motion now in the

x direction. This path is refered to as the classical route. In other

reactions, the point particle follows a nonclassical path in configura-
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tion space which "cuts the corner" from the entrance channel into the
exit channel such that the "interaction region" is never entered. For
such "corner cutting" reactions, the point particle exhibits two
dimensional tunneling. If the exchange reaction did not occur, the
point particle could be reflected from the "interaction region" or a
nonclassical region such that the direction of translational motion
along the x coordinate would be reversed, i.e., away from the origin.
Thus, when the incoming He atom is not in the asymptotic region
but is approaching the position Q& on the X coordinate, the potential
energy surface felt by the He atom is a function of the position y of
the H atom. The converse is also true; i.e., the energy surface for the
oscillating H atom depends on the position x of He. One can see from
the full potential energy surface that when the position y of the H
atom is such that (O ¢ y < £ ), the potential energy surface,
V¢ (x) [the symbol < indicates the condition y £ & 1, seen by the He

atom is given by

V,.®
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However, when the H atom penetrates into classically forbidden regions
defined by

(3-99)
y = A +e  (e>0),

the He atom feels a potential energy surface V> (x) (i.e., y>9ﬁ) as

indicated by

V>(") a})\
Boeyl B0 e.v. N
A rd X
Rl eV,
1
X"o X:/?z

The potential energy surface Vs> (y) for the oscillating H; system

is given by



>8

\L @ 85

.o ev

B.ocV 1

v
"

0.0 ¢y,

Lo —>

Ls

where the position x of He satisfies the condition X >X,. When the
position x of He is within the region ( 0 ¢X < £z ), the H,

2
system feels a potential energy surface V¢ (y) given by

o0
A
Vo
.8’446\/. —_— 094& e, «
?9
- . eV
t
l:o B:Q\ .
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The reaction given by Eq. (3-98) is now ana]yzed whgre the relative
position of the oscillating H atom is considered to be, for case A, in
a nonclassical (y > 4 ) region of the potential energy surface, or for
case B, in the classical (y 4« A ) region of the surface. In both
cases, A and B, the incoming He atoms are classified according to their
relative transmission and reflection probabilities. Recall, however,
that for H atom case A(.y > A ), the potential energy surface for
He is V5> (x), whereas it is V¢ (x) for case B H atoms. The impinging
He atoms are classified for each surface as (I) those which are intially
reflected at x= 22 by the discontinuity in the potential, (II) those
which are not initially reflected at x=,92 but maintain a Tocalization
within the region ( O £ X £ 22 +€ ); this phenonmen could be consider-
ed as a type of standing wave or resonance, and (I1I) those which
penetrate the initial discontinuity at x= }%, but compared to class II,
the class III atoms remains only briefly within the region defined by
( o ¢ X ¢ +€ ); d.e., class III atoms could rebound several times
between the positions x=o0 and x=.22 before being transmitted back
into the x>/V2 region.

In case A, the H atom position is given by Eq. (3-99) and the
potential energy surface seen by the incoming He atom is Vs (x). The
class I He gives rise to purely nonreactive scattering. Helium atoms
of class II would enter the potential well over the region defined by
( 0 & x¢ f2+€ ) and exhibit standing wave or resonance properties.

Therefore, the energy surface most likely to be seen by the nonclassical
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H atom is V¢ (y), and it follows that impinging class II He atoms render
the system reactive. Helium atoms classified as III can also lead to
reaction since their effective position is that of II until the atoms are
transmitted back into the x:>92 region. After this event, H atoms

see the Vs (y) surface and reaction is no longer possible.

In case A,collision the incident He atom is required to travel
through classically forbidden regions in order to reach the well on the
V> (x) surface. Since this same well binds the product oscillator,
HeH+, and the wave function for such system would extend beyond the
classical turning point (x= 22), it is suggested that wave functions of
the class II He atoms "join on smoothly" to the HeH' wave functions in
‘the nonclassical regions and that the class I and class III wave
functions do not.

This case A H atom example is convenient for illustrating the
"corner cutting" effect,using the point particle in configuration space
picture. The H atom [Eq. (3-99)] position is y= 2] + € ., If the
incoming He atom were located by x = 92 +e'and  €» €, it follows
that the two dimensional point particle could pass into the exit
channel (parallel to the y axis) from the entrance channel (parallel
to the x axis) without ever entering the interaction region. This is
possible since the particle motion in configurdtion space follows a
path defined by the positions x and y of the two one dimensional

particles.
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In case B for the H atom, the position y is in.the classical region
and is given by

(3-100)

E/"—X.—op

where

(3-101)
E < S\ f.’ I\ (€ >0)_

The energy surface seen by the incoming He atoms (of classifications
I, II, and III) is V ((x). Although the discontinnuity at x =4!2 is
smaller on the energy surface V¢ (x) than that on V3 (x), incoming He
atoms of class I are still nonreactive due to reflection at the initial
discontinuity, x = ‘QZ' Helium atoms classified as II are required to
exhibit some type of "localization” behavior within the region defined
by ( 0¢x & f,+€& )onthe V. (x) surface. Uhen the He atom
is in this region, the H atom potential energy is such that reaction
readily occurs. Atoms of class III can also be reactive provided the
H atoms are not easily reflected by the V,(y) potential which they see
when the class III He atoms are in the interaction region.

It is noted that the well depth for this problem is 0.2 e.v.,
whereas the energy difference between the top and bottom of the well
of Vs (x) for the same range of x is 7.154 e.v. At the kineti¢ energies

considered for the incoming He atoms (i.e., 0-2.5 e.v.), it would
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appear that the probabﬂi‘_cy of Tocalizing an 1'ncqm1'.ng atom would bt_a
greater on the Vs (x) surface than on the V¢ (x) energy surface. This,
of course, implies that if the probability is increased for H atoms

to penetrate into the classically forbidden regions, then the probability
of yielding exchanged products per incident He atom is enhanced if such
He atoms can penetrate into the xu?z region.

Since the energy surfaces are functions of particle positions, the
model surfaces actually felt by the two atoms change frequently,
particularly for the He atom. It can be argued that for the Tower
energy states, the oscillating H atoms are of case B most of the time;
so the incoming He sees the V . (x) surface the same percentage of the
time. On this basis it seems reasonable to believe that the majority of
exchange reactions occur with class III He - case B H atoms since
relatively few class II He atoms would be expected due to the shallowness
of the well and the kinetic energy range of He.

We can summarize He—H;r collisions as follows: (a) for reaction, the
incident He atom must be able to reach into region i ( 04X 4Rz )
from region ii ( X>4.) on either the surface V¢ (x) or Vs (x), (b)
for reaction, the energy of the reacting H atom must be sufficient to
allow transmission from region i ( 0 ¢ y A, ), onthe V¢ (y) surface,
into region ii (y > A2 ), (c) the He atom in region i( 0 ¢X <.4;) of
V¢ (x) can be transmitted into region ii (x > £, ), or reflected
back into region i; He atoms in region i { O ¢ X & £z ) of V5 (x) are

bound, and (d) H atoms are bound by Vs (y). Statements (a), (b), and
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(c) can be used to express the probability of exchanged products per

collision as

(3-102)

He
A,l.%a( ADLL A">4‘-

P - \Te\Te||Re

where THe(E). is the transmission coefficient associated with the x=.fz
discontin‘Ji-:; for the incident He atom on the surface V¢ (x) or Vy (x),
THEEsziS the transmission coefficient for the reacting H atom at the
discontinuity y = £ on the v ¢(y) surface, and RHéE) is the
reflection coefficient at x = £z for the He atom Q%EE}n region i of
Ve (x).

It is noted, however, that a H atom transition from region i(o ¢4 ¢4)
into region ii{y > A ) does not necessarily require a reflection
of the incident He atom at x = o0 nor does it require a reflection at
X = ﬁ: of the He atom which has been reflected at x = o0; i.e., the

H atom transition could occur before the incident He atom is able to

It

encounter the discontinuity at x = o or before the rebounded atom

can reach the discontinuity at x = 12. In either case, the barrier at
X =-22 would become 7.154 e.v., and the HeH+ system would become bound
without employing the reflection term in Eq. (3-102). If such initial
conditions existed (e.g., high energy vibrational states of HZ

jnteracting with low kinetic energy He atoms), the contribution to the

reaction probability from the term i?;f) in Eq. (3-102) would be
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small compared to the transmission coefficients.

We now develop expressions for the coefficients in the product of
Eq. (3-102) for class III-case B. The transmission coefficient, TH. »
for the H atom is obtained first where, for convenience, the V¢ (y{

surface is now represented as

©p
Vity)
£ s
BUdseV - > 5
-9 eV
Jd e T T .
Y= -4, =0

In region i, the solution of the Schradinger equation can be given as
(3-103)
P - F]e"k’j + Be"’“‘%

—A

where
(3-104)

!'\)7_ _ 2/&:) (Ev-f—.le.v)
_b\.z.
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and E is the internal energy of the oscillator before entering the

0.2 e.v. well. At y = -4,, the boundary conditions is generally

(3-105)

A.r t A‘h/el U,
11“/.'—’/4’@' R +Be” - 0O,

A

but for the present problem, this condition is not employed. Since the
emitted H atoms travel only in the positive'y direction, the solution

to Schrodinger's equation in region ii is given by

(3-106)
—_ .
?gi:; - £ o* "7
where
¢ 2ty (E - rowd ev) (3-107)
X =z =
The boundary conditions at y = o require that
(3-108)
A+R = ¢
and
' ‘ 3-109
Ak(A'B):AVC . ( )

The relative amplitude of the transmitted wave, C of Eq. (3-106), is
expressed in terms of the amplitude of the incident wave, A, by the

equation
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(3-110)
2AKR

T K+ k

The formula

(3-111)

J‘ — ;7:-; [va 7 1_7‘_/711’7

is then used to obtain the relative current densities, J} for the

transmitted waves and JI for the incident waves, and the transmission
coefficient is given by

TH T SR (3-112)

ar—— — ————————-

PRI J: (Z+ k)

where the kinetie¢ energy , E , of the incident H atom must be such that
is E> 1.046 e.v. Since the energy of the ground and first vibrational
state of HZ is less than 1.046 e.v., the product H atoms from these
initial sates must acquire sufficient energy for transmission by an
energy transfer collision. The kinetic energy E of the H atom in the
second excited state is given by (in region i)
(3-113)
E - E, + -2 = 1ta3 +.2

= L42 ev.

and the corresponding transmission coefficient is obtained from Eq.

(3-112) as
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(3-114)

T _ _4&'/.41 ﬁ"fl"[.o"/él

H 1

A4 ()’I. 42" + Yiyga- Lode )z
= 0.897

which suggests that the initial H; states of higher vibrational energies
are more likely to react unless there is a very high probability of
energy transfer between He and H atoms in the collision so that non-
reactive inelastic collisions dominate.

The energy surface V¢ (x) for obtaining the transmission coefficients

for the He atom can be represented by

L4
A
VL(X)
A /{./(.
e~
0.0 4 O.0 . \/ N
-3ev L ] - X
T T
X:—/Qz Xz O

and the solutions to Schrodinger's equation are, for the transmission
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coefficient, given as

, (3-115)
71/. = <

A

for region i and as
(3-116)
'4’.. ae 8%y pettX

A4

in region ii. The wave numbers are defined by

(3—1]7).

2 2/&l(€.+-§le.v.)
;><9 - 7R Z
and
- 2/&' € (3-118)
F - 3=

where E is the kinetic energy of the He atom in region ii. From the
boundary conditions at x = o given by
(3-119)
A+ b = C
and

(3-120)
_/éz(&_l,) = - e
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the relationship

(3-121)
5 -
b o= a
g
can be obtained. By using Eq. (3-111), the reflection coefficient, ™
R , can be given as
Ai—> AL
(3-122)
- Z
He - T = —_— j
Jye=y, J. 7 tC 4,
and the transmission coefficient is expressed as
(3-123)
luc .= 7-R
LA 2L LAPEQ
However, the reflection coefficient, R ho. , is obtained by
A—> A
representing the V. (x) surface as
A
V{(X\
L LA
':Z? —>
o.0 3 >
~2ev. H X
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where the wave functions are given by

(3-124)

|

r +ALIEX ‘ '
-L_Pﬁ.-aal + b e

and

(3-125)

£

¢ e 1%,

Since this form is the same as that employed to obtain the transmission
coefficient of H [Eq. (3-112)], the reflection coefficient is given by
(3-126)

Rio = 4 . 03
A (e -

The graphs of the calculated reaction probabilities show considerable
structure. In terms of this model, the reaction conditions for the
lower energy states of H2+ are H atom case B-class III He. Although
the energy exchange required for reaction of the ground and first
vibrational state is not explicitly included by this model, the reaction
probability curves can be viewed as products of the transmission

coefficients, T wfor Hand T
H -l H

: o for He, and the reflection coefficient

RHe of He. At the higher kinetic energy required of He to react with
e '
the ground and first excited state of H2+, the coefficient, THe’ is

Ve L A

effectively equal to one; however, the Tow kinetic energy He reactions
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involving the second and third excited states of H2+ indicate that THe
o . M _ s
is Tess than one. The plot (Fig. ]]; of total reaction probabilities
versus kinetic energy of He can be used to illustrate the T L1
He ;o\
behavior. The curve for the second excited state of H2+ peaks quickly,
turns downward to a minimum, and rises sharply to a maximum. The
initial peak which drops to a minimum can be explained by the case B
H-classIII He mechanism which assumes that TH- 3 remains constant.
A=PAL

The transmission and reflection coefficients, THe and RHe’ as a

function of kinetic energy can be graphically represented as

1
Me f)‘
JV T
probakilidy 1 He
(o) .

h.‘Nc + < eﬂer77 e d

The product RHe X THe is then given by the solid line as

proc[uc'f_ 1\

-—
v

k-‘N& fo e Enieryg,
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which is the form of the initial total reactiqn prqbabi]ity peak for the
second excited state of H2+. The dashed line represents the sharp
increase observed in reaction probability and can be explained as case

A H-class Il He effects. Such behavior (i.e., the dip) was not observed
for the third excited state of H2+ due to contributions from the class
IT and III He-case A H atoms. The increase in probabilities which
occurs immediately after the opening of a new reactive channel can be
attributed to a "smooth joining" of the He atom scattering wave function
to the wave functions of the product oscillator. This corresponds to

."resonant" type reaction associated with class II He-case A H atom

collisions.
We now discuss an alternative approach for treating the reactive
system [( Eq. (3-38)]. This discussion employs a noninteracting
state |4) to describe the initial system as that of free He-bound
H atom (as H2+), whereas <31 is the noninteracting final state for the
bound He atom (as HeH+)- free H atom system. The full potential
energy surface V(xy) is decomposed into a form given by

(3-127)
i é £ £
\/(Xj) = Vi + V(j) + A Vixy) = Vixy + My) + A\/(xy)
which enables one to write the full Hamiltonian H as
(3-128)

i f
H = H, +AVay = Ho + aAVGy.
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The states |4> and |f> are constructed to satisfy the equations

(3-129)
4 . i
and
(3-130)
£
H1o = el
0)
and the first order transition rate, )ij , 1s then expressed by
Fermi's Golden Rulef%as
(3-131)

%{f = 2] A\/lx’}!;lcf(e;- £) |

where AV(xy) is a perturbation and the d -function ensures energy
conservation. The perturbation, A V(xy), is the portion of the full
potential energy surface which is responsible for reaction. Thus, in
the state l£> » the system is nonreactive, translational motion of

the free He atom is measured by the x coordinate, and the displacement
from the origin of the oscillating H atom is measured by y. 1In the
state {€> » the free nonreactive H atom is allowed translational motion
along the y coordinate, whereas the bound He atom oscillates in the

x direction without reacting. The full potential energy surface may

be decomposed as
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yr =
AL
o 84, 0
8.0 )
£
k>""l
\.J : o
A x
ta T e
o
>)(
X=4,
where
(3-132)
/(: 80 @.\/, (57/Q|\
\/(fj) - o) <
(0 4y <h)
e (Y <o),
(3-133)
o (x <o)
\/<:) — -7/54 eV, (04X <A,)
o (X>2))
O (elsewhere)

AV(xy) =

(0594/(]1)

b, 754 eV {(OS X< Ah) .
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The H2+ oscillator potential can be represented as

.1
XL
\/(5)
Bo L 8o eV > ¢
°f 1
l{'-'-'b g:j,
and the potential for the free He atom is schematically represented by
o
R
\/(x)
0. 0.0 €.V > o
~-7.154¢eV

4
X=o X‘-‘-/gq .

In order to obtain the initial state |4 of Eq. (3—131% it is

necessary to solve the Schrodinger equation
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(3-135)

H: .I‘I:.J(Xg) — E,i qi-(Xg) ]

The Hamiltonian Ho'i is related to the full Hamiltonian by Eq. ( 3-128)

and Hoi is given by
(3-136)

< A <
HY = 'r;: C T, Ve Wy
and TH + and THe are the kinetic energy operators of the H and He atomsres-

2
pectively. By letting

(3-137)
qf(Xg) = Z.w C}Q(ff))
Eq. (3-135) is separable and can be expressed as
] (3-138)
1 0 =- Rt 13 < - = M
%.ia/(‘ axz + V<X) { #;” aﬂlajz V(ﬁ) E,:} ){m
where units are chosen such that h equals one. The solutions 49(y) are
given by
(3-139)
44‘(5) = QSI'NCKnLg) (0*3 L/el)
and
(3-140)

Fuc) = be™?Y  (y52)
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where

(3-141)

and

(3-142)
2

>"n,' :/K”,' - 2/‘2 \/(;) .

However, in order to simplify this calculation, we make the approximation

that the wave function q9 vanishes at y = X]; therefore,

| (3-143)

K J]{* _ mm

ni = 2/4(2[ E?h' ”}ﬁw' - A (}'L: ’Jz.)’/'“)
and
(3-144)
T
Fly = a Siw(BTY)  (ocyen),

The x dependent solutions of Eq. (3-138) are given as

(3-145)

— < b X - b, ;
S = A.e ¥ + B, e’"ﬁd> * X >4,)

i
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and
(3-146)
Z(X) = C}y,‘ SI'N(Um'X) (OfX<Jz)
where
(3-147)
2 2 <
’Z/q"" - 2/‘(:[)’@?” "V(X)]
and
(3-148)
= _ 2
C#m’ - Z/A/ }'@7/'.
The conditions on Egs. (3-145) and (3-146) at x =.22 are that
(3-149)

A .pz — X2
A’n-' & 4,)” + Bm e g 4;;“,0 - C'ni SI'N(ZF)),'I'I-)

and

(3-150)

/(: Cﬁm’ [Ani e/i C})""J)z - Bw:e'—jd%’;f{] = Zé’)" Cos(?,()m',&)} w”L

The constant (f;/ can be determined in terms of B,; , and the He
atom wave function in the region ( 02X <4, ) is expressed as
(3-151)
; (x) : f 0( qbn,' e.—/(.d’;"‘/ﬁz S (Lp )
S i Sin(Uni02) + 4 Doi CosC Ui he) in(2hiX
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where the constant B,,,- in Eq. (3-145) has been assigned the value of

one. The normalization constant,q , of Eq. (3-144) is given by

RERE
aQa = ,Q;)

and the initial state 14> can now be written as

(3-152)

(3-153)

> =

V’jl—_’ ;l¢7-n e_,(éﬂ.?zg\. n‘_n_—y 5 Zp '
I ¢7,; S:W(ZQn.'/ez)-b(LonlCoS(Zﬂ,,,-Aﬂz) 'N( ,Q.) 'N( ”’X).

The state ¥ is constructed such that y denotes the displacement
of the free H atom (of mass /4(2) and the position of the oscillating He
atom (of mass ,l(]) js designated by x. The complete potintial er;ergy
surface of Fig. 4 is decomposed into the components V(Xx), V(_g ),

and B V(xy) as

In
o0 | "B ﬁ 4 Yy
‘84 3
.0
B.0 @
— Y
[ — AN
IS o ( ﬂ(\, O +5=& °
520 sy o + ~ 8.0 45
7 > N i
N t,(’z oo X For X oo X R+
X=0 X:){'?_ o
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where
(3-154)
[ oo (x <o)
V(X) - “BUG e.V. (O éx(fz)
8.0 e\ (x> 4,)

and the energy surface containing the well for the HeH' oscillator can

be represented by

£
Viea
8.0 + 8o &.\. N
%
846 .
1
X=o X= /fz
£
The V( y ) segment is given as
(3-155)
07 <o)
£ Y
V(g) -8.0 €.V (0t y<d,)

o (3>&)
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and the energy surface seen by the free H atom appears as

oo
N

i

o 4L

- 8o

K""ﬁ'—"ﬂ
The remaining contribution to the full potential energy surface is

A V(xy) and has been defined by Eq. (3-134).

£
The Hamiltonian H, 1is given by

(3-156)

f f f
Ho = T, + T & Voo + Vi

where TH and THeH+ are the kinetic energy operators for the free H
atom and the HeH' oscillator. The solutions 1?}(x59 of the
Schrodinger equation

(3-157)

¢
M. zli(xg) = By Py
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are now required in order to obtain the state {f|. Equation (3-157) can

be written in separable form as

(3-158)
2
T ST S - S i L _ g
5 A2 0 Y? + V= },7’5,;2/(,»% VO”'EW}’ )fm:

and the solutions to the oscillator problem are given, as before, by

N v (3-159)
ng(x) = ])5//«(‘7:%) (0 «x<4,)
where
(3-160)

? — ~ 2 I/Z__ ner

(nﬁ SRR RE )
and

(3-161)

The free H atom solutions from Eq. (3-157) are given by
(3-162)

~
o~

A Yy Y —icbps Y
277:(:7) = AM < Tt By e o CEZD
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and
(3-163)
Zn;(ﬂ) — 677{ S.N (en{j) (O€H</G)
where
(3-164)
<i;; - QZ/QZ &f;g
and
(3-]65)

A 1

@n; - Q/[(g {9’6’); + 8.0 €V]

’

By requiring the continuity conditions on %M(y) at y = £., the
constant (g in Eq. (3-163) can be given in terms of B, o , of
Eq. (3-162), as

2 ;ﬂ ~ . (3-166)
C = - e—%div;y'

7n{ T .
Cb‘n_; S;‘N(@,,,;,?.) + 4 9,14-_ CoSCQn,c/V.) )

and Tor the region ( O 534,@ )> the wave function én(y) is given
by

(3-167)
e 2 5 "\'
2 el 4 e Fit Sy
[¢n¥ 5«’!\1(9)1;/?!) -+ £ 9)1.? CoS(@n‘;P‘)
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. The final state <{l is thus given as
(3-168)

=

" 24>n; 4) 10

2 "" ns !t Ve I
5/}?1143“5.-«%;.)“ sCos(en 4) ; S( 7 )5”( Fff)

Equation ¢3-131), now given by

m 2 4’”‘: 1(6;71 X(" ¢n,'21.>
; = am@y) E’(Zﬁ‘{s.u(e %) /‘9»1;505(9»1%96 ;

/Q! 97. 9~

X (4) 2, )J f/ () ST 3,

ni 5«'#(”,,,-,@_) + 4L Zﬂni COS(Um')

*

(3-169a)

° 0
(3-169b)
- 4 %: ¢ o s (Av) g
T2 z 2 A
4)11 ¢ 5""42(971& ’?') + 6:; C’S(ﬁnwﬂ) “Pn,' 5""’?”0"1'/?‘) + Uy, C°5z(y7n' '?7-) /ez
&

(N[(g_g zp)] Cin [m:r 3 9] <,~[( egp] Sm[ ,;)}z]
a

R /AN GO C
'
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can be employed to obtain first order perturbatiqn thgoretic ca]cu]atiqns
of the transition rates from the various vibrational states of [« D
into the vibrational states of ().
Note that in both states, {[i> and <fI , AV(xy) can be associated
with the He- H interaction and that the attractive potentials of H-H+
and He - H' are represented respectively by V(y) and V(x). The state {f]
is thus obtained from the state |i> by allowing the free He atom to
interact with the bound H atom through the perturbation aV(xy). The
bound H atom must acquire sufficient energy to become free at the
expense of an energy 1oss for He, which is then rendered bound as HeH+.
The potentials with representative wave functions for the states

{45 Oand <#} can be given respectively as
0 . (=]

V{;‘ A V?X) A
8o AT Y A o e
7 o = X
M/ n= 4 +
R n=4 ~2./54 '
(H- H) N\~5:ﬂ, (He¢lfﬂt\-ﬂx=11
and
°=: -
‘ o 5
BV VARV e N N
o > 8o -+ > X

(H‘ H+) Q‘H:’Ql (He- H™) K‘X:/?‘L
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where the wave functions for the oscillators correspond to the ground
and third excited states. Note that the wave functions for bound
particles approach the form of that given for the free particle as the
energy state of the oscillator is increased, i.e., shorter wavelengths.
Thus smaller amounts of energy exchange are required to produce a
reaction if the initial oscillator is in a higher energy state. In such
cases, the state of the final oscillator is more 1likely to be one of
higher energy than if the initial oscillator were in the ground state.
This is consistent with the T operator calculations for He- H (Fig. 11 )
in that the reaction probabilities increase as the energy of the initial
oscillator is increased and the higher energy states of the final
oscillator (HeH+) occured most frequently when the initial oscillator
was in an excited state.

These conclusions are also embedded in the transition rate

equation, (3-169) which is rewritten here as

(3-170)
%ﬂ_ g maV®

A 4 lc, Coy F0) Fa) ’}

where the terms outside the brackets,ﬁi } » are constants. The
probability amplitudes, &,; and Cxg , are given respectively, in
Egs. (3-151) and (3-166), and the definitions for F(X]) and F( 92) are
given as (3-171)

U = [y 52510
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and

2 (3%172)
F—('Qz) = fdx SJN('F’E;;’) SI'N(?&;X)

In Eq. (3-169b), the integrated form of F(£,) is given as

(3-173)
5'N< m)apz SIN[("FW ) 1
: ~ Y,
(T - o) A
and can be expressed as
(3-174)
F(%) = 5::\1(}9,,,,0) 1 T
Up; — 2L Y + 7T
R 9,
7‘/2
= Si'N Lp",-/? y ZE >
( Z)[ Lon.‘ - 7(1/”‘ })
using the idenity
S'N(ai‘b) = S'NaCo_sL + Sinh Cosa. (3-]75)

Since Un: is the wave number of free He (state }£>) over the region
X< £, [Eq. (3-145)] and Z&; is the wave number of bound He
[state <fl; given in Eq.(32160)that 57 = Z,. 1, Eq. (3-174)
indicates that F(,Qz) makes larger contributions to %:_) for smaller

differences,SHe,in the initial and final wave numbers of He where

8He is given by
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z . (3-176)"
é;e = Zlaﬂ B ;%QF .
— Ay (38

— 2
715 Lle.v.) = QU (E,,; = Mg -,edzpev),
2
Recall that Qf,; is the initial kinetic energy for regions x > 22,

~ 2
whereas ¥fn¢ is the kinetic energy of H over the regions y:>21, EZ”F

is the total energy, and .846 is the endogercity requirement. The
analogous equation for F( Q]) is given by

g T
9,,;"""—27‘ en; + 2,
— An/
- Sin (9 9) { z - 1}
e eng. - 7(11:'

and the same argument follows for smaller differences, 5; y in the

1 _ 1 (3-177)
F-(/q‘) - Sil\l(en;)«)[ LRI )
2

initial and final wave number of H given by

v

(3-178)
2 71,."’7 a 2 pA
é;\ Enp ~ /?() = 8, - Ko

1"

Uty (Hg + 8.0 V) = Auy(Em; = ).

The kinetic energies are expressed in terms of the total energy,

Ers
and the oscillator energies, EH2 + and EHeH+’ as

(3-179)
- E,
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and
{3+180)
~ 2
}6; - ET‘ E;%m — 846 e
in order to write é; and §& as
Hg
" _ (3-181)
L4 — el - —
= $ = (ET E“eH+ + 7./54e.v.> EH;.
and
(3-182)

< -
__f_e_: clge - (ET.‘ EH: +7154e.v>"E

!

HoHt

-

Consistent with higher probabilities corresponding to smaller é; and

—

§

He
yielding an excited state final oscillator is greater if the initial

» Egs. (3-181) and (3-182) indicate that the probability of

oscillator were in an excited state. For example, in Eq. (3-181) if
the energy, EH2+, of the initial oscillator were large, a smaller SZ
would result if higher energy states, EHEH+’ were allowed for the final
HeH™ oscillator. If the energy state, EH +, is Tow for the initial H2+
oscillator, excited state final HeH' oscillators could be obtained

when sufficient total energy is available. However, the corresponding

—

a)
5;4 is larger (due to the smaller EH +) and the )ﬁ} is comparatively
2 3

smaller.
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From Eqs. (3-146) and (3-151), C»; can be interpreted as the
amplitude for the state |i> He atom being in the x 412 region. The
absolute square of the amplitude C,; , given by

= Y b e

- )
cb'nz, S-,wz(zpw'/?z) + mez CDSZ(V”"I’)

is not the probability per se of finding the He atom of [£) 1in the
X <,€2 region, but IC,,,-}Z is proportional to this probability. The
wave number an is related to the kinetic energy of the He atom in the

X < R, region according to Eq. (3-143) given here as

(3-184)

CP”‘. - o.{/u‘ an:

0%y <4
Since the interaction region of the first model is defined by {o&X(,?}

Y

3
}C-ni’ of Egqs. (3-183) is related to the transition coefficient, THe

$A=3 4
which appears in Eq. (3-102), and the reflection coefficient, R, .
2 H 4 i 4.9
of the first model. Both The. and ,C’,,,-} become vanishingly small as

2 it—p4
)ﬁ; approaches zero, and in the limit of small 43, and/or small

sin( 28,:; £, ), the expression for [C’n;]zis given by

(3-185)

o P = 44)’2; Cos(2tu: 0 %
& Wni Cos'( Ui 22) ( 2 o>
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where

(3-186)
z

Wi = 2/&,(}&,1,- + 7154 av.) ]

Equation (3-167) 1is similarly used to interpret C,; as the
amplitude for the H atom of <F| being in the y ¢ ﬂ] region) and the
absolute square of CM » given as

(3-187)
—~z
|Cad” = 4 o )
J):F S.‘Nz(anlg‘) + 9;; Cos’(ony )

is proportional to the probability that the £f] state H atom be in the
y(;?l region. The kinetic energy, }/{Vn‘; » of the H atom in the ,yb(’1
region is related to the wave number 5”_ » by [Eq. (3-164)].

(3-188)

2

&;; . 2/&2 )Qxaf.

In the 1imit of small gb"F and/or small sin (g, 4 ), the equation

for ]C,,g]l is given by
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(3-189)

! Czy,plz - 4 ;E;F

- <G>s(9nrp.)xo>
971; COSZ(Q-n ¢ /?.)

which implies that the probability of the <f] state H atom being in
the Y <X region becomes smaller as the kinetic energy of the H atom
decreases. MNote, however, that the H atom must be in the y < A

region in order for the reaction to occuryi.e., for energy exchange

purposes.

2. Data and Analysis

The He - H2+ reaction [Eq. (3-98)] has been investigatedSO
experimentally over the relative translational energy range of 0-10 e.v.
The calculated total reaction probability curves of Figs. 7-10 compare
favorably with the experimentally obtained cross-sections over the
0-1.6 e.v. energy range; i.e., the general qualitative features of the
experimental and theoretical curves are compatible over the RTE values
specified. However the experimental cross-section curve using ground
state H2+ does not display an initial downward slope as shown by the
Z£-9 z/g curve of Fig. 10, The difference in the experimental and
the theoretical curves is likely due to an oscillation, and calculations

at Tower RTE should drop back to zero. The 2, , 3%, and 4, total
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reaction probability cruves [Figs. 8-10] agree in form over the whole
energy range with the corresponding experimental curves for cross-sections.
The most noticable differences are the oscillations of the calculated
probability curves compared to the smooth experimental cross-section
curves. After reaching a maximum, the experimental cross-section curves
generally approach zero at higher RTE values, i.e., 6-10 e.v. This
effect is not a prominant in the calculated probabiiity curves due to
the more restricted RTE ranges employed in the latter. This comparison
implies that the experimental and theoretical treatments of the reactive
collision are in qualitative agreement at least over the RTE range
considered. Of course, the experimental cross-sections reflect reactions
of He-H2+ in three dimensional space which were not necessarily the
result of collinear collisions. Furthermore the He=H2+ interaction
potential is,of course, completely smooth.

The calculated reaction probabilities were obtained, however,
by restricting the collisions to be collinear. Also, the potential
surface is at best only qualitative since it possesses discontinuities.
Finally, the cross derivate terms in the kinetic energy operator which

result from our choice of relative coordinates were neglected. The

22 ,

Ox . Oy
dot product of the momenta for the two reacting particles, i.e.,

neglected cross derivate, corresponds classically to the
BH .ﬁhe . If this interaction were included, it is not clear how the
structure of the reaction probability curves would be altered. By

neglecting the cross term, the kinetic energy operator of the
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Hamiltonian is dagonalized. We then scale the He atom distance such that
only the H atom mass appears in the coefficients of the kinetic energy
operators. This scale cnange for the He atom distance results in a
change in the width of the exit "trough" of the potential.

The potential energy surface shown in Fig.4 is employed for the
calculations. The channel width Z] is chosen to be .37 A® so that
the initial H2+ molecule has the correct zero point energy. The
channel width/2 is taken to be .30 A® so that the bound state energy
Tevels of HeH  are correct. The potential energy of 0.846 e.v. assigned
to the exit channel is the endoergicity requirement for the reaction
(where the endoergicity is the difference in the binding energies
of H2+ and HeH+). The interaction region is a potential well of -0.2 e.v.

which is obtained from the ab initio energy surface for HeH2+ generated

by Brown and Hayes 51.

The region designated as Vo was assigned a

value of 8.0 e.v. in order to obtain a sufficient number of bound HeH'

states with the present version of the program. A value such as 2.4 e.v.

which correspond more closely to the H2+ binding energy would produce

a more realistic simulation of the He—H2+ energy surtace. An important

consequence of this is the fact that the perturbation, aAV(xy) which

is responsible for the reaction in the second descriptive model, would

become + 1.354 e.v. compared to the AV of + 6.954 e.v. when Vo = 8.0e.v.
The reaction probabilities computed with coup]ed‘zroperator

equations can be discussed in a "physical sense", using the two

qualitative models introduced in the previous section. The reactant
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oscillator, H2+, is in configuration ¢ and notation 1 , 2 » 3 »
and 4 « is used to indicate respectively, the first four vibrational

f.oIn configuration B, HeH™ is the oscillator and

energy states of H2
the first three vibrational energy states are denoted by ]F > Zﬁ , and

3 g respectively. Thus, the notation SN-—é'lp is used to represent the
reactive coilision of a third vibrational state H2+ with He yielding a
ground state He Ht (1 B ) and H.

In Figures 7-10, reaction probabilities versus relative transla-
tional energy of reactants are plotted for the first four vibrational
energy states of H2+ where the first three energy states of HeH' are
available as product oscillator. In Fig. 7, the initial oscillator,

H2+, is in the third vibrational energy state (3o ) with an internal

energy of 1.22 e.v. The minimum energy required for a 3q»—e>1p reaction
is 1.047 e.v. which is the sum of the HeH' ground state (.201 e.v.) and

the endoergicity requirements (.846 e.v.). Since this energy requirement
is less than the internal vibrational energy (1.22 e.v.}, the 3, ——>]/3
reaction probabilities are non zero at very Tow relative translational
energies. Note, however, that the reaction probabilities decreases

sharply as the relative translational energy, RTE, approaches zero and that
such behavior is consistent with predictions of both qualitative models.

The reaction probability curves in Fig. 7 exhibit two characteristic
features which are found in the other reaction probability curves
corresponding to the calculations using the initial H2+ oscillator states

of Ix » 2> and 4y . First, the individual reaction probability

curves in Fig. 7 fluctuate considerably and the curve, 2R, representing
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the sum of reaction probabilities displays an oscillatory behavior as a
function of translational energy. Second, increases in reaction
probabilities are observed for the newly opened reactive channels
compared to the reaction probabilities of trose channels which opened
at lower energizs, i.e., 34— 2(3 and 3°<——>3P are the nawly opened
channels in Fig. 7.
The energies corresponding to the second and third vibrational
states of HeH+ are .804 e.v. and 1.80 e.v., respectively. The 35— 213
channel requires a total energy of 1.65 e.v. (=.846 e.v. + .804 e.v.)
and opens at the threshold translational energy of .43 e.v. (=1.65 e.v.
-1.22 e.v.). The ensuing reaction probabilities are enhanced for this
newly opened chainel compared to the probabilities of the 3°‘_HF
channel. Such behavior is predicted by Eq. (3-174), rewritten here
as
(3-190)
An
F—(}Z) - S‘N<Uni/gz> wE 7“(;F
which indicates that F(IZ) becomes larger for smaller differences in
the initial and final wave numbers for the He atom. Singe 7(,,; is given
by
(3-191)

2

/7()4?- — M (EHGH*‘)
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where EHeH+ is the HeH oscillator energy, the difference in the wave
number, Zf,; , of free He and the wave number, Fﬁ;p , of bound He is
less when A% ¢ is the He atom wave number for the second vibrational
state rather than the ground state of HeH". The contribution of

to)k;n [Eq. (3-170)] is accordingly larger for the smaller differences
in wave numbers, and since the reaction probability is proportional to
7%72);) the probability curve of the newly opened 30(—a72p channel 1is
qualitatively consistent with the first order transition rate expression
of Eq. {3-171).

The next reactive channel to open in Fig. 7 is 3“——9'3F which
requires a total energy of 2.646 e.v. (=1.80 e.v. + .846 e.v.) and the
threshold energy is 1.42 e.v. (=2.64 e.v. - 1.22 e.v.). The reaction
probabilities of the newly opened channel are seen to increase here
as previously described, and the same argument applies to the newly
opened 30(—-—?3P channel as was applied to the newly opened 34 — ZP
channel. Thus with each opening of a new reactive channel, the
difference in wave numbers between the free He atom and bound Heliumis
Tess since the bound atoms occupy higher energy states. Associated
with this "Tikeness of wave number" is an enhancement of the reaction
probabilities into the said channels. Recall that the transition rate
expression ?42} is the absolute square of a product of four quantities,
the two integrals F( 21) and F(,Xz) and the two amplitudes C; and Cug.
The integral F(,QZ) is given on previous page by Eq. {3-190) and the

absolute square of the amplitude (C»; is rewritten here for convenience
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as

(3-192)

lC'ni ,z: 4 ¢)1"
br Sin(thi By) F P Cos? (Ui 4)

The physical variables in Eqs. (3-190) and (3-192) are the wave numbers
Wai » Kye » and @, respectively for free and bound He at x < 4,
and free He at x>ﬂz. Thus the quantity Sin(Wni£:) 1in Eq. (3-190)

would cause oscillation in the reaction probability curves for individual

channels such as that demostrated by the 34 ? [p curve of Fig. 7.
The sine function would also cause }Q;?) to vanish, of course, when

the product W f, is equal to nTr (n=1,2,3,---). The cosine and

sine functions in the denominator of Eq. (3-192) also cause oscillatory
behavior in 7¢i%) , whereas {C;;ll vanishes only if 455, vanishes.

The analogous arguments apply to the quantities F) and Icfn;}1given
respectively by Egs. (3-177) and (3-187) where the wave numbers Eng
Kns , and 3;"; are for the H atom. Therefore, f%g;n
as a product of these four quantities as in Eg. (3-170) would be expected

expressed

to demonstrate some type of oscillatory behavior as a function of
relative translational energy.
In Fig. 8 , the initial oscillator is in the fourth vibrational

state (Qi)at an energy level of 2.16 e.v. which is sufficient to open
both of the first two reactive channels, i.e., 44— YP , which

requires 1.047 e.v. (= .201 e.v. + .846 e.v.) and 4, 2/3 , which
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requires 1.65 e.v. (=.804 e.v. + .846 e.v.). These channels which are
opened by the availability of sufficient vibrational energy are seen
to exhibit similar reaction probabilities for low RTE (relative
translational energy) values; e.g., the reaction probability curves for
by —7 ]F s Ay —> Zﬁ ,» and 3, —> 1P (Fig. 7) decline very
rapidly as the RTE value converges toward zero. Such behavior appears
to be independent of the particular channels available for reaction but
dependent on the relative kinetic energy as discussed in the descriptive
models. The large dip observed in the reaction probabilities of the
3477 ]P chanuel is also seen, to a lesser extent, in the 4,— Ta
curve at approximately the same RTE value of .29 e.v. However the dip
observed in the total probabilities for 3, H2+ (Fig. 11 ) does not
occur in 4, H2+ (Fig. 8) since the open 2P channel is sufficiently
reactive to mask the decrease in ]P reactivety.

After opening the 4, — %ﬂ channel at a total energy of 2.646 e.v.
(=1.80 e.v. + .846 e.v.) and a RTE value of 0.48 e.v. (=2.160 e.v.), the
3/9 channel reaction probabilities increase rapidly as a function of
RTE, which is the expected pattern for a newly opened chanﬁe]. However,
the characteristic high probability "peak" which usually accompanies the
opening of a new channel (e.g., 347~9-§ﬂ of Fig.7) is not seen in the
4y — %4 curve of Fig. 8 due to a Tower maximum RTE value. This
results from using the same maximum total energy for each of the
different H2+ initial states. The range of relative translational

energy is thus decreased (Figs.11 and 12) as the energy level of the
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initial H2+ oscillator increases from 1, to 4.

The reaction probability curves for the second vibrational H2+
state (2_ ) are shown in Fig. 9. The 20;—4?1ﬁ channel opens at a total
energy value of 1.047 e.v. (=.201 e.v. + .846 e.v.) with the threshold
RTE being .505 e.v. (=1.047 e.v. - .542 e.v.). The }9 reaction
probability curve then increases until the 2 ,—? %ﬁ channel opens at
a total energy requirement of 1.65 e.v. (= .804 e.v. + .846 e.v.) and
threshold RTE value of 1.118 e.v. (=1.650e.v. - .542 e.v.). The
reaction probability for the Lg channel then decreases more sharply
than that of the %g channel, which is usual pattern. However at higher
RTE values, the reaction probabilities display large oscillations and
a fspike" in the Lﬁ curve is greater than a similar "spike" in the
2/ curve. The reaction probability curves for the 24— 3# and
1d;——9 3/4 (Fig. 10) channels exhibit clearly the expected behavior
associated with close matching of the wave number for the initially free
He atom and the wave number for the He atom when it is bound.

The probability curves for the H2+ ground state (1, ) initial
oscillator are given in Fig. 70. The total reaction probabilities shown
by the curve, 3R, are seen to be less for the 1, H2+ compared to the
total probabilities arising from the 2, , 3, , and 4 initial H2+
states, as shown in Fig. 11 . This pattern is consistent with the model
prediction that when the bound H atom wave number and final free H atom
wave number are close, reaction is enhanced. That is higher vibrational

states of H2+ correspond to "more nearly free" H atoms.
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APPRENDIX A

TRANSITION PROBABILITIES FOR THE CHANNEL T OPERATOR
 EQUATIONS

The transition probabilities are obtained from the asymptotic form
+ .
of the scattering wave function'q? (xy). For the nonreactive collision,
Y remains finite as X approaches infinity and the scattering wave

function is written as

+ .-4' hnx £ ik’n
Lim q’(xy): C[Ci‘ ‘F(my) +2: S x‘f)(h'a)}

X—> 00

(A-1)

vihere C is a constant and N is the number of open channels. The

transition probabilities, FVP) » for nonreactive collision are
Ny —> W

then given by

P :';(k‘/hp,)’f’n /Z .' -

n,—> n

+
From Eq. ( 3-36 ) the scattering state ¥ can be written in terms of

N,
(clc( as

(A-3)

+
W(Xy) — @o( +<E_"Ko( +ie)|2:«@d



which can also be expressed as

(A-4)

-1
2 Bom foig = Ot (E-karid Z Xondong
by using Eq. (3-44 ) and expanding the scattering state 1_-}:)+ as

N |
Y= 2 By Py,

(A-5)

Equation (a-4 .) can be multiplied by qp(,ﬂg) and integrated with
respect to Yy to yield

q)(llx) = Sim R, X fqp(w 1) Llay) dy (A-6)

__-—h-}j £ ,eX> N(@ )(A]((, )Y)OIX

In the asy?totic Timit of x, Eq. { A-6 ) becomes

(A-7)
. "' bXX ¢ [ ’
L:'M ’z_‘!/(/?]X) - NP X) R} S:O’X S"“‘I}X}L/(/‘“X')
X—=> 00 )
R X
= Sim k’nj( ;”:10,9 h}{ RX

Equation ( a-7 ) can now be substituted into Eq. (A-5) to produce
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ib (A-8)

+ N "
LiN\ Y.E(xg) = %ijsa‘ubhz(:&oh" ehn Rn}ﬁpwy)

X—>o00

- S:Nb xqo(n |lj)" R Cp(yl\(j

> (e )E P nly)

Nixvi,

which can be rewritten as

(A-9)
L im qf?xﬂ = i “‘k""xqg(ntg) (th"')
nX Cp("o!‘j)}
"';I'}‘Z (M)? Ponrg).

Nxv,

By equation Egs. (A-1) and (A-9), the constant C can be identified with

- 12]. and it follows that

(A-10) |
24R,
3 = ’[“ ‘ xzm]
and
(A-11)
24w,
Q = - (1 20y,
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The nonreactive transition probabilities are therefore given as

(A-12)

and

(A-13)

A similar analysis can be used to show that the transition probability,
Py (T) , for the reactive channel are given by

(A-14)
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APPRENDIX B

CHANNEL "¢~ OPERATOR FORMALISM FOR THREE BODY COLLISIONS
WITH SMOOTH INTERACTION POTENTIALS.

Baer and Kouri have generalized the 7 operator formalism to treat
non-collinear reactive collisions in three dimensions with angle dependent
potential energy surfaces. A further refinement of the T° formalism
would result if the piecewise constant potential were replaced with a
"smooth" potential in order to more closely approximate the actual
interaction potential of an atomic system. However, it is convenient
if the functions employed to represent the "smooth" ﬁotentia] have the
same separable qualities as the piecewise constant potentials. One
possible function is the Morse potentia]52 which has been successfully

used 53’%% approximate the potential energy of diatomic molecules.

The purpose of this chapter is to present the T operator
equations for treating the collinear reactive system of Li-HBr where
the interactions are represented with Morse potentials.

The collision system can be schematically represented by Fig. 2
if the center atom, Br, is taken to be infinitely massive. When Li is
far from Br, the scattering system is in the o configuration, whereas
it is in the P configuration when the H atom is far from Br.

The total interaction potential V.. (R « , RF ) is given by

(B-1)

\4(R=«>R,s> s \{:BF(R') + \43(,&) + \L/;H(R“R}Q
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where Morse potentials will be used to express the two particle inter-
actions VLiBr’ VHBr’ and VL1'H' In thg x configuration, R « is large

and the perturbation V& (R« , RF ) is given by

(B-2)
\/O((RGHRF): M(RQ)RF) - \/H%r( RF)
This can be written in a separable for as
2 (B-3)
M.y = > AL RS B, (Rp)
A
where
(B-4)
m - Rt -
0 = e i) ]
B,(8) = 1.0, (8-5)
)7@ ( e ) (B-6)
_ (3 __aa_’ R“— RBA} -
/LJ(R) - [il ](;? )
)] (R~ R5/7) (&-7)
= -G\~ K3 /5
B«:SRF\ [DG’] [@ ]

A | (B-8)
=[] e ]

and
% g (B-9)
) y

&@ﬂ :[‘ZDGHG—Q(RP R/Q)] :



134

We note that the A . (i = 1,2,3) are function of R« only and the B,

are functions of Rg, In equations (B-4) through (B-9), the constants
DéJ), aj, and R? occur in the Morse function representing the jth

interaction potential where j is 1, 2, or 3 corresponding to the LiBr,

HBr, or LiH interaction terms, respectively. The perturbation V%

is given as
(B-10)
\/f‘(R“/ RP) = Vr(gcc pp) - \{'.B‘KR")
which has a separable form analogously expressed as
3 (B-11)
\/F(RARF) - ,(.zf—l-‘ AF,;,(RJ B,{.<Rp)
with
(B-12)
A, R = 10, (8-13)

B 1(RF) - D:) e— QJ(Rp‘Rf)[e— Qa( QF" Ef) - 9:]
. o (B-14)
AFQ(&J = [Df)]l[e‘m’“"%/ﬂ]

bt = vt ]

)

(B-15)
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(B-16)

Ao o Dﬂ‘z[ ERNCZ)

7
and
(B-17)

By (Re) [;L;Dﬂz [ B ‘?f/l)] |

It is recalled from Chapter III that the coupled equations for

the channel operators are given as

(B-18)

- -t NS

Lo(o( = \/e( + \/«(E"Kp-t-n‘e) (_Fm

and

(B-19)

- _ ,_ e ol
éF(A - \A* \43 ( E k:* ) 4 oL e

Operating with the channel opererators on the eigenstate,
659(24?]134 pp) of the unperturbed Hamiltonian K . , the amplitude
densities )ﬁl(zajadj and ><F<;?;£P)resu1t which can be egpand—
ed in terms of the bound state vibrational functions, ll,L(zk\ RF)
and up (%iR), as

' (B-20)

/Z:[p( @(Vf‘ R.;LRF> = ;o: ZLCV&IQ“) U&C%L}Ep)

and



136

(B-21)

/ZI;“ e(%°] R« Rp) = % k}g(?//el Rp) ufe(’l//rlﬂt).

The bound state function u?(—%; R{) » are Morse eigenfunctions. The
unperturbed eigenfunctions, @(‘l/ﬂ R« RF) » are given by
(B-22)

OlulRuRe) = U (ue1ry Sk, R)

where K is the wave number, and ¥/ is the vibrational quantum
number.
X
By multiplying Egs. (B-20) and (B-21) by @(wgdﬂp) and
integrating over the Ry and R/g » the transition aplitude matrix

elements can then be expressed as

(B-23)
(Q(V-J/ 2: « } 9(¥)> = jo/ K YI"N{K% P,Q Xuk(?/df?«k)

and

(B-24)

il Tl 0y = [ S, ) Xy

These ?e]ements can therefore be computed once the ){(v]g) are known.
Equations for the )C(vm) can be obtained by employing Egs.
(B-18) and (B-19) to rewrite Egs. (B-20) and (B-21) as
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(B-25)

% XJMIRJU«(WMRF) = \/O((Rd Re) O(7 1R, Ry)

+\4(R.< Qﬂ)fo/&ﬂ/ Rs Gy (RaRp 1R Qk)ZXF(yF:e;BLI{,@am;)
and 776

(B-26)
% %(Wﬁmﬁ) L(f,(w,zi RS — \[L(P,& Rp) Oz R Rp)

+\4(Rg{2p)f&/ﬁ; (OIR,; G (RaRp| R R'P}% )g(ww’,a U, oty

By multiplying Eqs. (B-25) and (B-26) by u.((vamp)and
uﬁ(vﬁl R«) » repectively and integrating over the appropriate
R, the }{(wg) are found to satisfy coupled integral equations given
by
(B-27)

) )
é(v‘,\}ﬁw -J,&/Rp u_((V«IRF) \4(9.,( Qp) (/(4 (%] Rg) 5"”(k14,.R4)

+ DQX UF (%IR.) \é(pu QP)(o/@jro/Rf; @(&Rﬂ@l?p%}i(am;) [«.{(74])?/;)
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(B-28)

i

AV4
l'\_ /7’ H g > s { . o \)
R iR “ﬁ"/‘{i &}3@/@3\{(&@.93,\ el R Sem Ko R

d R 0GR 2 K ) %)
; ; .

{ v ey . e
A SR R L) AR
o

” Vs
Tha Grean function GP(Qd Qﬁ | RaRp ) was obtaired in Chapter III

ahd is given here as

' '4
tha Tesser and oreatzr vespoctively of R oand R,

The resulting integrals in Egs. (B-27) and (B-28) ara ncw exscuted to

giva
o (B-30)
/’ g\ / (y // / {
— 3 - I = le] \//' T fe
/“r,:(/"zl‘?{/\ -~ i I\"/df RJ )m’ M,’i v{u{ 2 ~,a) \/{kfx)"\)»’ "'f(‘uyf-’ p\l/“)
¢
[¢)
C_/’)
S\ 3 e {1 \
— 7 ~ NS i §
A 2L L’“,(.?/H\’i){(a i\ .{Cl’d)"\%’.)\ (Ratip 1700 Ry
1A ¢ 5 P / g
[
and
.
o ( ~.‘1)
% ! e vl ,//} ; A o RN
{ - lf‘! o I P, 0l ';) | { }" el \,’ Iy 0 \.\, '.41/\ N
Apl Rt = T R M e B R
fs
K fr) o
— > [:,_ f)‘",r,“\) L; Corne VN fas \ T,
. L «'(LV‘ ARG ‘\-!.ﬂi'-"-;_’i\/._/\’ 48{" ¢ 4\/ Tt !‘D
:{( o 7 o I[ /I / e RN :\1’,:
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where
o2 (B-32)

[}

and
(B-33)

T < ;?v }?\">
Fhagy = Sutp e

L d

It is now convenient to express Egs. (B-30) and (B-31) in terms
of the ﬁ, (z?)Qe). Thus each equation is multiplied by the
appropriate {7%(RP<IRP)/;%)and integrated over the corresponding
RP to yield

(B-34)
NEALAN
o

1 , , P
- %, fﬁ'& J;(%d&?@) Sine 7%94[@/’?5 U o21Ra) V(R Rp) Ui (0] Rp)

"% gp BICHIN Ui R')JC/QF Gp1Rs) \(RRY U (241 Rg)
% “ o

and ° o
F (B-35)
o2

w

1 ’ i
:—‘:/Z; {/pp Jf;(RPdQ/ZD) (,{(('Z([Q;) 5 C/F\ZL é{f;(?ﬁ/R“ [ AR \{3 Sx'm/\y—,»&nz[?,{

Q??—-Z R J(’?N‘Q Y Guigy gé/’\ Baird V(R RS Up (IR,



Since the perturbations Vg (R, RF ) and VF (Re R ) are separable
in R, and R as indicated by Eqs. (B- ) and (B-11), the separable
equations for Fx (724 )R, ) and F/g (’VF/F?{? ) are

(B-36)

3 (2
AATAEE Y [ AR TR clR.s) S, R) A, (R)

Az
Vi '0

X J/?F Ud(%.lgls) B‘q’<?f’) ud(u«o l Qﬁ)

(2]

. 3
_j;‘f_;\i: (G/Rﬂ A7 1R, U(v R/BB (Re)
;i

X ﬁm JQ ‘QQAM'/(‘?;)LZF(?%“(‘)Q

or more compactly as

(B-37)

Fzie)

-t & 3
..,?1& [;L’::' Ido(V.Ll?,g\,(-/) *A% %:, Hd(zg()ylgu' ,&) y;(%'v};b(.,)];

and
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to (8"38)
- S
[
CHlRs) = 5 C/PJ_ Do 0 ‘o
F r /‘7? /::L:‘ 2 \F f’(\ﬁu’eﬁn) Bp,,;/(’\ﬁ) uOLL/ )))
(
X )( pv« U,fi (V,ﬁ”?‘“‘) A/';,gf( Ro) ‘g“ MK R,
o
_.-—”—C-; <M Si‘ 000/
I/ﬁ//‘ :'//:f, 7;, le EC?’;’,]R‘»&\: “/’i’s’("’fb’/‘r‘)i‘)ﬁ/ﬂ,«(ﬁo()
* o
2
/ N’ 'y P p ’
X R Jy(Rc16y) 5o (k) U 1))
4]

o (25 1R,147)

it
\\\g !
L
~ [\/—J 93]
oL
-
f
>
_
‘\./_'_{L-\.

1 £5 , . AT B , ) —~ ;‘Z.—' sothep s :
qda‘n"’.l t’—] 2 T"OO 7/0 ] '\(J | { ) }'l(‘ \>I-.'x »;:/ ],( l -\‘(.7}; i ke ’{"('/{”i’ L{J! A )
above are defined by
5 (3-40)
- f /'
VR ) c e A o
,LJ\Q(?—’OL ['(’\‘:. l-"LI' (/J ’\_& A \ ‘e |\ \) \S, PN ZA! 2, .L:,’.: [{t - (li\i)
C) L4
(]

. \ / ~
A f é( { i ‘x)/r/ ': . (Fr((’) (/é( (2.',‘ l‘.?[_’,:’



N (B-41)
Ip"(??’mﬂu) = [‘Wﬂ J-( <lR,s> B (p,a (U°/PF)
XJ‘Q/ (775/?* 23 -(Ra) S:""Cz/y{‘.po& )

(B-42)
Hd(vdl%}ﬂ&) = [0/12; J_:(&)g,) A (R Us (1R,

(8-43)
L RCATAN QF>:§’@'I,,< Rec Rp>) By (Re) U (varRp),

(B-44)
F(?/;uu f&f/&k F(WOLIR« 24 1R) /4
and

(B-45)

?(wiv/ﬁu) [dQF fa(opiRg) U (2ndRp) B (Rp).

Equations (B-37) and (B-49) can be substituted into the right hand
sides of Eqs. (B-44) and (B-45), respectively to obtain equations for
the constants Fy (%}%] A ) and Fﬂ (VKWﬂ ] 4 ) given by
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(B-46)
E S
'*(213“/*;") K/’Q /(‘,:" ! J/Po( ,(o(?/ocl Reli’) L{p(eﬂ/r\) < (R*
o

5%%;1):%2 a'/?PIF (vmﬁu) C{(Vd!kp\ 8 ({?F)

{

.___,_c'_ — 3‘ °
i }/;Z il >fJ BRI U 0L o) B (%)
and these are expressed more concisely as
{(B-48)
RN Z%io(%%m
2
% N L
Ao 7 Z’/,;' @ ny H&((Uw%u’} ﬁ;(%{“%m
and
(B-49)

3
- = 2 l. 1 £ S
B8 L e Eopn).
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Equations (B-48) and (B-49) constitute members of a set of couplad
algebraic equations which can be simultaneously solved for the

F. <7,5 [ }¢) and FF (1/17 ‘), using a computer. After obtaining

. Laas At -« k i, ) - 9 .
these quantities, the functions }-([/‘A“‘i&; and ,r(l 51 r\F) can

«

be obtainad from Eas. (B-37) and (B-39).

The tran

‘/7

ition amplitudes given by Egs. (B-23) and (B-24) can

now be cbtainad by considering the asyaptotic form of F(’ (7,1{« ) Q(o ),i.e.,

‘n (B-50)
3K
S M_J:_"f ,
Livn Etmieg = Z }m\ Sl ) S 87, (%)
R°(~">f’) 4=1 '
[as]
X dR U ums B (R U R,)
AR ARl B ARl S e Ry
s}
: o
I S I LK R .
7 2J>—-l }::(2)4\)",\!/()(_0 “ u\j(’/‘l'\) )H‘!/\ ,\ /\ ( \l'{"l‘z‘ 1—\)')
R Z/ . f / o 7
Z.:) /C A=t o
(5-51)
) B
,(/ 6
. I:_, ,|\w ~, ’ ’\'../ . —~ S
SEPVN D) e e L BN T
P —en ( ,}d /// V| Soal L/J("ocnl/ .
Vel ﬁ
Similarly (13-52)
.'7(/ )
< LAY
3 - ..C._/::-.__,,’;e \’} /:‘)_—1/ Y ! /‘7/ /. i/ \>
P ] - S e
G b0 ke 175) e g& PRI R C A
{ PR A /
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and the transition matrix elements can be determined from these
relations.

If Morse eigenfunctions are used as the bound state vibrational
function U#l?l Rﬁ), it appears that a numerical evaluation is required
of the integrals which define the i;and ﬁ% in Eqs, (B-48) and (B-49).
However, if %(1@) Rﬁ) is expressed as a Slater function, i.e., as

(B-53)

the integrals in question can be evalaated analytically once the

constants Bn('bg ) and Xh for the Slater functions are known.
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Exact
Calculation Ia

Calculation II

TABLE .1,

H atom:

Comparison of Calculated and Exact

Energy Values in rydbergs for the Ground and

First Three Excited S-States

Ground

State

1l s

-1.0
-1.00000000000

-1.00000000001

l1st Excited
State

2 s

-0.25
~0.24999999988

~0.24999999990

2nd Excited
State

3 s

-1/9
-0.11111111102

-0.11111111106

3rd Excited
State

4 s

-0.0625
-0.062499996

-0.062499997

2por calculations I and IT, the radial component was

integrated to a maximum value of 75 in step sizes of 0.005

and 0.01,

respectively.
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max

25
35
45
50
60

75

TABLE 2. H atom: Calculated Energy Values in rydbergs

as a Function of the Upper Limit of Integration,

R max.

Ground
state

1 s

-1.000000000004
-0.999999999999
~0.999999999997
-0.999999999998
-0.999999999995

-1.000000000011

4The step sizé was 0.01 for each

lst Excited
state
2 s

-0.2499999565

-0.24999999998
-0.24999999998
-0.24999959993
-0.24999999991

-0.24999999990

2nd Excited
state
3 s

-0.110594711
-0.111106206
~0.111111085
-0.111111109
-0.111111111

-0.111111111

3rd Excited
state
4 s

-0.04594868
-0.06079321
~0.06239419
-0.06247836
-0.06249933

-0.06249999

case and the maximum

computer time required on the Univac 1108 was 20 seconds for

R

max

75.
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TABLE 3, Comparison of the Helium Atom Calculations with the

Experimental Ground State Energy

Type of le system . '~ total energy, rydbergs

experimental observation -5.808

system 18

(moving nucleus model) ~4,9957862

systems II & III
(infinitely massive and
fixed nucleus models) -5.0000450

%An uppef limit of integration of 35 and a step size:

of 0.001 was employed to compute the energy values.
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TABLE 4. Calculated Energy for the Ground State Helium Atom
as-a Function of Step Size and Comparison of the
Results Obtained Using Numerical and Analytic
Techniques of Integration

Mecthod of integration total energy, rydbergs

analytic? ~5,0000456

numerical'b (A=0.001) -5,0000450

/
numerical (A=0.005) -5,0002951
numerical (A=0.01) ~-5.,0010764

fReference 11

bThe upper limit of integration is 35 and the step size

is indicated by A.
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PROPOSAL

A Matnematical Model for Transformation in Bacillus subtilis

The proposed research consist of developing and testing a mathe-

matical model to describe genetic transformation of Bacillus subtilis.

This project is suggested by the conclusions of, for example, Erickson
and Braun (10), Bodmer (3), Cooper (5) and Cooper and Evans (6) that
recipient chromosomes of a competent culture possess target loci with
which particular donor segments must interact in order to effect the
particular transformations. It is further suggested that unbroken
portions of single stranded donor DNA becomes integrated into recipient -
chromosomes (7) and that either of the two donor strands can produce a
transformation (4). It is also well known that the target loci are not
susceptible to transforming DNA unless the recipient culture is in the
physiological state of competence (1).

By using this information and the fact that a replication map
exists for B. subtilis chromosomes (9), a possible model for the
transformation system may be assumed. For example, in a usual trans-
formation experiment (1), the rate at which B. subtilis transformants
accumulate would be assumed to depend on (a) the concentration and
physical properties of donor DNA (11), (b) the time (11) of DNA incubation,
(c) growth of the transformed cells during the incubation period, and

(d) the concentration of receptive loci, i.e., those which can be
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transformed.

By using these variables, a general mathematical model can be
constructed to obtain an accurate description of the observable trans-
forming events in cultures throughout the growth curve spectrum. It is
anticipated that this model will involve several parameters and rate
constants to be determined empirically. In turn, explicit forms of the
mathematical model could render information concerning the possible
mechanisms for describing DNA recombination. Thus, such mechanisms
and their attendant mathematical models should suggest new experiments i.
and/or ways of using data currently available.

Although Hotchkiss(13) and Fox and Hotchkiss (11) have considered
some of the kinetic processes involved in transformation experiments,

a more general example model for DNA induced transformation in a
competent B. subtilis culture can now be considered where terms are

defined in the following manner:

t = time

y = number of observed transformats

x = the number of loci receptive to transformation

Xy = the number of receptive loci when t = o

z = the number of loci not receptive to transformation
K = transformation constant; dependet on the physical

properties and concentration of donor DNA and on the
recipient locus to be transformed

KR = replication constant for transformed logi

N = X+ 1z
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KR]'é rep]ication cqnstant for receptive loci

é; = competence constant governing the cell reaction Z25> X
which changes the cell classification from Z to X_

5; = competence constant governing the cell reaction X —53=»£Z
which changes the cell classification from X to 2,

With this example model, the number of transformed recipient loci, y,

would change according to the equation.

oly K. X (1)
-2 = + K
- T v Y
and the rate of change of X would be written as
(2)

D 1= —Kex s KX +§ 2- D x
o (Key ~ke = 2)X + S (N-X)= X +& N
where

(3)
Y o= (ke -Ke- & -G )

The equation for N is given by

(4)
N =N, e

where X is the usual growth constant and N0 is the value of N at t = o-
Equation (4) is substituted into Eq. (2) to give
(5)
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which can be integrated to give an equation for X as

(6)
— 1 Ht vt
X = ”_”M_U[J;N,,e VAT ET RV = }
This expression for X is substituted into Eq. (1) to give
(7)
G’S -~ ] Rt { ?/9)" S’ N} Z,Ot]
At"KRH - K ) J\zN"e MRS 2 MofC
which is integrated to yield an eguation for y as
(8)

<.€ - kT glNﬂ }QZ: XO(M—U)-&\NO ?,Ot; J*\.No Xo(}?’u)"S‘No) kqt
14 H-20 H—kge ( 20~ Kg )6 -Ke ' 20 —Kn e

Due to the nature of genetic transfer in transformation, this
process appears to be a logical first choice to consider in constructing
a mechanistic model to describe genetic recombination in bacteria.

For example, transformation is particularly amenable for investigating
relationships between the physical structure of DNA and it biological
functions; i.e., it is the only method currently available by which

the effects of physical and/or chemical alterations in the structure

of DNA may be correlated with its biological activity. The B. subtilis

transformation system is particularly attractive because of extensive
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genetic studies of this organism; these include transformation, trans-
duction, and replication mapping. However, since transformation has
recently been discovered in E. coli (2), a more meaningful comparison
of transformation, transduction, and conjugation with respect to the
modes of transfer and the recombination event itself is possible. Thus
mathematical models of recombination for a transforming system could
serve as a basis which could be expanded (or adapted) to describe
bacteria recombination in general and/or the specific categories of
recombination. Further, it is not improbable that "spontaneous"
mutations are closely connected to the mechanisms involved with genetic
recombination (14), whereas the latter appears to be associated with
replication (8). Thus, models which correctly describe genetic
recombination in bacteria could be applicable to more complex biological
systems.

By experimentally measuring the various constants appearing in
Eq. (8), one should hope to obtain a better understanding of the

transformation process and perhaps modify the present model.
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