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ABSTRACT 

 

There are valid and invalid post-processing methods to extend seismic bandwidth for 

resolution enhancement. Some methods attempt to invent high frequencies without a 

physical basis, while inversion-based methods extrapolate the spectra in reasonable 

ways. Frequency invention methods can extend the original seismic spectrum to 

desired spectral bandwidths. However, those spectral components they invent do not 

provide new effective information for enhancing resolution. Matching pursuit 

decomposition has been successfully applied to analyze the available spectrum of 

seismic data. Consequently, missing spectral components can be directly extrapolated 

from zero frequency all the way to the Nyquist frequency. Alternatively, the spectral 

information within the limited band can be modeled as an autoregressive process. 

Higher and lower frequencies outside the band can thus be predicted by designing a 

Wiener prediction filter. Spectral decomposition by matching pursuit on the 

band-limited seismic trace stabilizes the predictions to recover a broad-band 

reflectivity sequence. Further, continuous wavelet transform can be employed to 

spectrally decompose the band-limited signal into discrete sub-bands from which 

missing high and low frequencies could be extrapolated locally using multi-channel 

operators. Conventional sparse spike deconvolution attempts to retrieve a reflectivity 

sequence comprising isolated sparse delta functions, which may restore the missing 

part of the spectrum.  
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Chapter 1   

 

Introduction 

 

Due to over exploitation of natural oil and gas resources in recent decades, 

exploration targets have increasingly changed from large structural reservoirs to 

subtle entities which might not yet be detected. New techniques are thus in demand 

for seismic volumes of higher resolution with more details. Resolution is the ability to 

separate two features that are close together. In 3D seismic data, seismic resolution 

involves both vertical (temporal) and horizontal (spatial) resolution. In this thesis, we 

investigate various methodologies to vertically enhance the data resolution. The 

seismic temporal resolution, being a function of frequency content, is determined by 

effective spectral bandwidth, which is exactly what is studied here.    

In seismic exploration, the geological subsurface is generally assumed to be parallel 

layers with varying rock properties. Impedance contrast between adjacent layers could 

generate reflections at the interfaces if seismic energy strikes. Ideally, energy waves 

propagating through subsurface layers and hitting the interfaces will, if there is no 

energy loss or frequency attenuation, produce impulse responses from the earth. The 

impulse response can be thought as a broad-band reflectivity series. However, in 

nature there are absolutely no rocks with perfect quality. The seismic energy will 

partly be converted into heat while passing through the medium, which will result in 

amplitude reduction and frequency loss. Therefore, seismograms recorded at surface 

are typically band-limited with high and low frequencies missing. A basic goal for 
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seismic interpretation is just to derive reflectivity sequences representing the true 

subsurface structures from observed seismic data so as to provide better 

interpretations consistent with the actual geology. 

For seismic acquisition and processing stages, many efforts have been made to 

preserve and restore signal bandwidth. They do work well, but in many cases they do 

not achieve broad enough bandwidth for interpretation purpose. So my research is 

focused on the post-processing stage, which is more likely to be worth the effort. A 

tremendous amount of work has been done for higher resolution results on 

post-processing sections. Oldenburg et al. (1983) described the basic theory of linear 

programming method for reflectivity inversion, and also indicated that the spectrum 

of the structure for a layered earth can be modeled as an autoregressive (AR) process. 

Russell (1985) outlined various deconvolution methods in theory and also made them 

easily applied in the real world. Sacchi (1997) examined different regularization 

criteria leading to an algorithm where the damping term is adapted to retrieve a 

broad-band reflectivity sequence. Further, spectral inversion yields accurate thickness 

determinations below tuning, using the inverse relationship between thickness and the 

constant periodicity of spectral interference patterns (Puryear and Castagna 2008). 

Extension of bandwidth using harmonics and sub-harmonics predicted and computed 

with CWT will enhance the seismic resolution, allowing a more refined and detailed 

interpretation (Smith et al. 2008). Zhang and Castagna (2011) used a wedge 

dictionary for seismic responses of any thickness to derive an inversion with 

significantly greater vertical resolution by basis pursuit algorithm. The purpose of this 

paper is just to evaluate and compare various spectral extension methods based on 
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summary and analysis for the previous achievements. 

The convolutional model is widely employed in seismic processing and interpretation 

which indicates that a post-processing seismogram ( )s t  can be represented by 

convolution of an embedded wavelet ( )w t  with a reflectivity series ( )r t  plus 

random noise ( )n t . Reflections are thus assumed to be generated at normal incidence. 

This process is shown in Figure 1.1. In this thesis, I also assume the wavelet is 

constant with time and space; hence, the convolution model is represented as: 

( ) ( ) ( ) ( )s t w t r t n t                        (1.1) 

Mathematically, the convolutional operation is essentially an integral process: 

( ) ( ) ( ) ( )s t w r t d n t                       (1.2) 

which implies that the convolution formula can be described as a weighted average of 

the wavelet function ( )w   at the moment t , where the weighting is given by the 

reflectivity ( )r   simply shifted by amount t . Further according to the convolution 

theorem, Fourier transform of the convolution between two functions is the product of 

the transforms for those two functions. Consequently, seismic bandwidth should be 

limited within the wavelet band (Figure 1.2) given that high and low frequencies in 

the recorded seismograms have to be filtered out due to earth filtering effect. 

 

 

 

 

 

 

 

Reflectivity

＊

Wavelet

+

Noise

||
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Figure 1.1: Convolutional model in time domain. 
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There are many different methods to extend seismic spectral bandwidth. Some invent 

higher frequencies, making the spectrum apparently extended. However, these 

frequency invention methods are performed without a physical base, thus whether 

they can actually increase resolution should be questioned. On the other hand, based 

on the convolutional model, the fact that there is actually a strong relationship 

between the frequencies inside and outside the limited band provides opportunities 

that the missing spectral components can be recovered in logical and verifiable ways. 

In this thesis, Chapter 2 first introduces three frequency invention methods for 

extending spectral bandwidth: frequency-modulating method, frequency-sliding 

method, and frequency-doubling method. Spectrally broadened seismic traces 

generated by these three methods are compared with new higher frequency synthetics 

with comparable bandwidths. Whether they are valid or not will be demonstrated by 

wedge model tests. In Chapter 3, matching pursuit decomposition (MPD) is applied to 

analyze the available data band using sine waves as the bases. Chakraborty and Okaya 

(1995) refer to matching pursuit algorithm in time domain discussed by Mallat and 

Zhang (1993). An improved version of MPD, fractional matching pursuit 

decomposition (FMPD), is proposed by Chen and Castagna (2012), which is supposed 

to solve an instability problem due to bases nonorthogonality. The Wiener filter is the 

Frequency Frequency

Χ

Frequency

+ ||

Frequency

Figure 1.2: Convolutional model in frequency domain. 
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keystone of many current seismic digital processing systems, and Treitel (1970) 

generalizes the multichannel Wiener theory as a natural extension of the more familiar 

single-channel case. Therefore, Chapter 4 presents the idea that the attenuated 

frequency components could be calculated and predicted from the available spectrum 

in a least-squares error sense. This is performed on both matching pursuit (MP) and 

continuous wavelet transform (CWT) frequency gathers. In Chapter 5, we discuss the 

conventional sparse spike deconvolution approach. Sparse spike inversion has been 

widely used in industry for many years. It gives solutions for the earth model as 

simple as possible, while an acceptable data misfit is honored. Chen and Donoho 

(2001) derive the sparse spike algorithm by linear programming. For this section, we 

prefer a reweighted strategy which iteratively retrieves the broad-band reflectivity 

sequence. To sum up, Chapter 3, Chapter 4, and Chapter 5 demonstrate those 

theoretically valid methods from totally different perspectives. Their effectiveness 

will be illustrated by using synthetic cases as well as real data examples. Furthermore, 

comparisons for all methods are presented, and a final discussion is given in Chapter 

6. 

A 3C-3D seismic survey was acquired in 1995, proposed by Boyd Exploration 

Consultants Ltd and the CREWES Project. The survey was over the Blackfoot field 

near Strathmore Alberta (Township 23, Range 23 W4M), as determined by 

suggestions from industry. This Blackfoot 3C-3D survey was recorded in two 

overlapping patches (Figure 1.3). One was designed to target the clastic Glauconitic 

channel and the other one was for a deeper, reef-prone Beaverhill Lake carbonate 

prospect. Recorded logs for 12 wells in the Glauconite patch are available with this 
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real dataset. However, only the 01-08-23-23 well has been selected to do the 

inversions for this paper. All algorithms require information about the seismic wavelet 

to perform the spectral extension. 

The wavelet which is assumed to be zero-phase (Figure 1.5) is extracted statistically 

with the seismic traces from Cross-line 88 to 168 at Inline 49. The picked time 

window ranges from 800ms to 1200ms. A relatively good synthetic tie (Figure 1.4) is 

achieved between the well log-derived seismic trace and the averaged trace around 

that well where the maximum correlation coefficient is large than 0.8. The 

corresponding surface seismic line, which is a migrated 2D section, will be ready for 

testing all those spectral extension algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Base map of Blackfoot field. The survey area is shown 

within the dash line. 
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Figure 1.4: Well log data, including density and sonic logs along with synthetic seismogram 

(blue), composite trace at the well (red) and seismic traces surrounding the well (black). The 

maximum correlation coefficient is 0.83. 

Figure 1.5: Statistically extracted wavelet in time domain (left) and its amplitude spectrum 

(right). The peak frequency is around 30Hz and the wavelet is zero-phase. 
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Chapter 2  

 

Spectral Extension by Frequency Invention Methods 

 

Fourier transform (FT), named after French scientist Joseph Fourier, describes a kind 

of mathematical transform utilized to transform signals between time or spatial 

domain and frequency domain which can be operated reversibly. The Fourier 

transform and its mathematically derived variants have many applications in physics 

and engineering. Its mathematical properties can be used to manipulate spectral 

information in frequency domain whereby the signal bandwidth could be extended. 

However, apparently broader bandwidth does not necessarily mean better resolution 

for the signal in time domain. In this chapter, frequency invention methods of 

extending seismic spectral bandwidth without physical bases are investigated. 

 

2.1 Frequency-sliding Method 

To start with, band-limited seismic spectrum will be easily extended where the higher 

frequencies are invented by directly rescaling the original spectrum. Visually, the data 

spectrum will be slid along the frequency axis. Intuitively, signal resolution should be 

better if low frequency components are replaced by higher frequencies. However, this 

is a common mistake which all beginners might commit. To clarify this issue, three 

diverse waveforms of varying spectral bands in time domain are displayed in Figure 

2.1. 
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The waveform with a spectral band of 10-40Hz (Figure 2.1a) has a bandwidth of 

30Hz, and another waveform with a band of 30-60Hz (Figure 2.1b) also has the same 

bandwidth but with a higher central frequency. Obviously, the waveform in Figure 

2.1b oscillates with a higher rate than that in Figure 2.1a. However, their envelopes 

are exactly the same because of the identical bandwidths in frequency domain. 

Therefore, the envelopes would stay the same if the bandwidths are the same and just 

slid. A third waveform with a band of 20-80Hz is shown in Figure 2.1c whose 

bandwidth of 60Hz is broader than the previous two. As a result, the corresponding 

envelope becomes much narrower, which implies its resolution should be better. 

Consequently, seismic data resolution is determined by the absolute bandwidth rather 

than the central frequency. So the idea for this method is just to slide original seismic 

spectrum to any desired frequency and add those duplicated spectra back to the 

original one in order to obtain a spectrally broadened seismic trace. 

A synthetic trace generated by a 25Hz Ricker wavelet is given in Figure 2.2a, thus the 

dominate frequency is around 25Hz (Figure 2.3a). Then the original spectrum is 

rescaled to higher frequencies by a shift interval of 30Hz (Figure 2.3b and Figure 

Time

( a )

Time

( b )

Time

( c )

Figure 2.1: (a) Band-pass filter of 10-40Hz; (b) Band-pass filter of 30-60Hz; 

(c) Band-pass filter of 20-80Hz. 
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2.3c). Their corresponding traces (Figure 2.2b and Figure 2.2c) in time domain have 

the identical envelopes as expected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: (a) Original synthetic trace (25Hz); (b) Frequency-sliding trace (55Hz); 

(c) Frequency-sliding trace (85Hz). 

Figure 2.3: (a) Spectrum of the original trace (25Hz); (b) Spectrum of the Frequency-sliding 

trace (55Hz); (c) Spectrum of the Frequency-sliding trace (85Hz). 
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Figure 2.4: Frequency-sliding method. (a) Original synthetic trace (25Hz) with its 

envelope; (b) Spectrally broadened trace with its envelope; (c) High frequency 

synthetic trace (55Hz) with its envelope. 

Figure 2.5: Frequency-sliding method. (a) Spectrum of the original synthetic (25Hz); 

(b) Spectrum of the spectrally broadened synthetic; (c) Spectrum of the high 

frequency synthetic (55Hz). 
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Then the three frequency sliding traces are summed to produce a spectrally broadened 

trace (Figure 2.4b) which has a higher central frequency (Figure 2.5b). For 

comparison, a new synthetic trace (Figure 2.4c) is also generated by a higher 

frequency Ricker wavelet with a comparable bandwidth to that spectrally broadened 

trace. With the spectra (Figure 2.5b and Figure 2.5c) of similar bandwidths, we might 

expect that they also should have about the same resolution according to previous 

discussions. However, envelopes on the spectrally broadened trace are not even close 

to those on the new synthetic trace. Although some envelopes are seemingly narrowed, 

most of them are distorted and biased instead. The two closely spaced events around 

1.2s that can be resolved in the higher frequency synthetic could not be separated in 

the spectrally broadened trace. Therefore, the ability for this method in enhancing 

Figure 2.6: Frequency-sliding method. (a) Seismic responses for the wedge model (25Hz); 

(b) Spectrally extended seismic responses for the wedge model; (c) Seismic responses for 

the wedge model (55Hz). 
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resolution should be considered doubtful. To further demonstrate the invalidity of this 

frequency-sliding method, a wedge model comprising even spike pairs is employed. 

Low frequency seismic responses (Figure 2.6a) are generated by convolving a 25Hz 

Ricker wavelet. In this case the thin beds can be resolved at Trace 22. Applying this 

spectral extension method on this seismic section, spectrally extended seismic 

responses are obtained (Figure 2.6b). And higher frequency wedge model responses 

are also plotted with the same band-pass for comparison (Figure 2.6c) in which the 

spike pairs are resolved down to Trace 38. Unfortunately, we could not observe any 

resolution enhancement indication in the spectrally extended section. The original 

events in the wedge model are even destroyed that those reflection horizons could no 

longer be recognized. Conclusively, the frequency-sliding method is invalid because 

those extended spectra are just sliding in a relatively random fashion which makes it 

impossible for the spectral components to form periodical ties. 

 

2.2 Frequency-modulating Method 

If any function ( )f t  has the Fourier transform ( )F f , then 0( )cos2f t f t  will have 

the Fourier transform 
0 0

1 1
( ) ( )

2 2
F f f F f f   . The derivation is given below: 

 0 0

0 0

2 22 2

0

2 ( ) 2 ( )

0 0

1
( )cos 2 ( )

2

1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

i f t i f ti ft i ft

i f f t i f f t

f t f t e dt f t e e e dt

f t e dt f t e dt

F f f F f f

  

 


 

 

 

 
   

 

 
    

 

   

   

 

   (2.1) 

Observed from Eq. 2.1, when a function is multiplied by a sinusoid, the original 

spectrum of this function will be shifted to the frequency of that sinusoid. Consider a 
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simple case of multiplying a 25Hz Ricker wavelet by a 75Hz sine wave where their 

spectra can be analytically computed. The spectrum of the wavelet (Figure 2.7a) is 

two-sided, with positive and negative frequencies centered at the zero frequency at 

which there is a notch. The resulting spectrum (Figure 2.7c) shows that the notch in 

the original spectrum has been shifted to both 75Hz and -75Hz. Consequently, Fourier 

transform of the multiplied wavelet in this case could be considered as the 

convolution of the wavelet spectrum with the spectrum (Figure 2.7b) of that sinusoid. 

 

 

 

 

 

 

 

( )convolution　         

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: (a) Spectrum of 25Hz Ricker wavelet; (b) Spectrum of 75Hz sinusoid; 

(c) Spectrum of the signal generated by multiplying the wavelet by the sinusoid. 
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Figure 2.8: Frequency-modulating method. (a) Original synthetic trace (25Hz) with its 

envelope; (b) Spectrally broadened trace with its envelope; (c) High frequency synthetic 

trace (75Hz) with its envelope. 

Figure 2.9: Frequency-modulating method. (a) Spectrum of the original synthetic (25Hz); 

(b) Spectrum of the spectrally broadened synthetic; (c) Spectrum of the high frequency 

synthetic (75Hz). 
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In this way, the original spectrum of the seismic trace can be shifted to any desired 

frequency by multiplying corresponding sinusoids. Consequently, seismic spectral 

bandwidth could be broadened significantly by adding those frequency-modulating 

traces back to the original one. Figure 2.8a is the original synthetic trace generated by 

a 25Hz Ricker wavelet. Its spectrum thus becomes band-limited and the dominant 

frequency is around 25Hz (Figure 2.9a). After the frequency-modulating method is 

implemented, the spectrally broadened trace has been produced (Figure 2.8b). 

Obviously the spectrum (Figure 2.9b) has been extended significantly. Similarly, the 

new synthetic trace (Figure 2.8c) with a higher frequency wavelet is presented for 

comparison. Its spectrum (Figure 2.9c) has a similar bandwidth to the spectrally 

extended one. Seemingly, they also should have comparable resolution. However, the 

spike pair around 1.2s resolved by the high frequency wavelet still cannot be 

separated in the spectrally broadened trace. The waveforms and event locations are 

once again distorted and biased. Polarities of some reflections are even reversed such 

as the events near 1.4s. Observed from the corresponding envelopes for each trace, for 

some isolated events, their envelopes are truly narrowed but compressing a single 

wavelet simply amounts to changing the wavelet. It only refers to interfering events 

that resolution is relevant. Envelopes for those interfering events on the spectrally 

broadened trace do not indicate the resolution has been enhanced. They just have 

become disordered with this spectral extension method. 

Similarly, the validity of this method can be further disproved by the wedge model 

test (Figure 2.10). The time seismic responses generated by a higher frequency Ricker 

wavelet of 75Hz for the wedge model are shown in Figure 2.10c. 
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In this case, those thin layers can be resolved down to Trace 41, which is much 

thinner than that in the original section. However, for the spectrally extended wedge 

model responses (Figure 2.10b), no resolution improvement is achieved. Worse still, 

the true locations of those spike pairs in the original wedge model are lost in the 

spectrally extended section. Consequently, the bandwidth is not really broadened by 

this frequency-modulating method. The extended spectrum is just smeared from the 

original band by the windowing effect with sine waves being the ugly windows. It 

really makes sense that an event can never be resolution enhanced if it is just 

truncated by a window whereby the bandwidth is broadened. Therefore, those 

resulting high frequency components are not new useful information.            

Figure 2.10: Frequency-modulating method. (a) Seismic responses for the wedge model 

(25Hz); (b) Spectrally extended seismic responses for the wedge model; (c) Seismic 

responses for the wedge model (75Hz). 
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2.3 Frequency-doubling Method 

Considering a sinusoid of single frequency (Figure 2.11a) in time domain, its 

spectrum should be an isolated spike at that frequency (Figure 2.11c). When 

rectifying all negative values of this sinusoid to be positive (Figure 2.11b), its 

spectrum will become a series of spikes with a constant interval of doubled frequency 

at specific components ranging from zero frequency all the way to the Nyquist 

frequency with a downward trend for the amplitude (Figure 2.11d). After rectifying, 

the average level of this sinusoid, which is originally oscillated up and down around 

zeros, has been raised to a positive value, which is the reason why there is a spectral 

component at the zero frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: (a) 3Hz sinusoid; (b) Rectified 3Hz sinusoid; (c) Spectrum of the 

3Hz sinusoid; (d) Spectrum of the rectified 3Hz sinusoid. 
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Also, troughs in the original sinusoid become all positive at the same time points; the 

same values thus have turned to repeat twice the frequence of the original signal. 

Consequently, there is a spectral component at the frequency doubling the original 

one. Further, smooth curves at zero crossings have become spiky. Those spiky parts in 

the rectified sinusoid result in those higher frequencies. The above statement is just 

the case for a single sinusoid. In fact, this would be the same situation for any seismic 

trace, since according to Fourier theory, any function can be considered as a 

superposition of a series of sine waves with various frequencies such that each 

spectral component will be processed the same way as the single sinusoid. 

Figure 2.12 shows a zero-phase band-pass filter in both time and frequency domain 

which will be used to filter out the very low and very high frequencies in the rectified 

trace. Cutting out the high frequencies makes the sharp troughs smooth, while cutting 

out the low frequencies restores some envelopes. What are needed are just the spectral 

components doubling those of the original trace. 

 

 

 

 

 

 

 

 

 

 

Figure 2.12: (a) A band-pass filter in time domain; (b) Frequency response of the 

band-pass filter (30Hz-35Hz-100Hz-105Hz). 
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Figure 2.13: Frequency-doubling method. (a) Original synthetic trace (30Hz) with its 

envelope; (b) Spectrally broadened trace with its envelope; (c) High frequency synthetic 

trace (45Hz) with its envelope. 

Figure 2.14: Frequency-doubling method. (a) Spectrum of the original synthetic (30Hz); 

(b) Spectrum of the spectrally broadened synthetic; (c) Spectrum of the high frequency 

synthetic (45Hz). 
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The synthetic trace used in this method (Figure 2.13a) is generated by convolving a 

30Hz Ricker wavelet. The dominant frequency is thus limited around 30Hz in this 

case (Figure 2.14a). Rectifying all negative values to be positive, the band-pass filter 

is employed to reserve the spectral components required to make the spectrally 

broadened trace. Since the filter is zero-phase, phase information for each frequency 

component would be invariable, and what is modified will be the amplitude spectrum. 

Subsequently, adding the filtered trace back to the original trace would result in the 

frequency-doubling trace (Figure 2.13b). Once again, the reference synthetic (Figure 

2.13c) is made by a higher frequency wavelet which, for this method, the central 

frequency is 45Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15: Frequency-doubling method. (a) Seismic responses for the wedge model 

(30Hz); (b) Spectrally extended seismic responses for the wedge model; (c) Seismic 

responses for the wedge model (45Hz). 
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Observing the traces which are expected to have similar resolution (Figure 2.13b and 

Figure 2.13c), the thin layer around 1.2s that can be resolved in the 45Hz synthetic 

trace, unfortunately still stays as a one single event on the frequency-doubling trace. 

The corresponding envelope for this reflection has almost no change. In fact, a more 

serious problem for this so-called frequency-doubling method is that polarities of 

those negative reflections might be destroyed. Positive reflections added to negative 

reflections could split one single event into two separated parts, which can be 

observed at the event around 1.4s (Figure 2.13b). So this method will probably not 

make the seismic trace look natural, let alone achieve resolution enhancement.    

Again, the wedge model has been tested to demonstrate that the frequency-doubling 

method does not work for enhancing seismic resolution. Thin layers can be resolved 

at Trace 27 (Figure 2.15a) in the low frequency synthetics (30Hz). For the high 

frequency synthetics (45Hz), those spike pairs can be separated at Trace 35 (Figure 

2.15c). However, we could not observe any indication of enhanced resolution in the 

spectrally extended section (Figure 2.15b). As a matter of fact, if we continuously 

rectify the spectrally doubled signals the same way, the resulting spectrum can be 

further extended to frequencies tripling the original. Based on the previous cases, 

however, we might foretell that this should be not worth the effort even with 

apparently much broader bandwidth. Therefore, to make a conclusion, the so-called 

frequency-doubling method is also invalid. The fact that spectral bandwidth has been 

broadened should be ascribed to the trace rectification which makes the original signal 

oscillate more rapidly than before, causing those higher frequencies to come about. 

However, this is not new effective information for enhancing resolution. 



23 
 

Chapter 3  

 

Frequency Extrapolation by Matching Pursuit 

Decomposition 

 

3.1 Shift Theorem of Fourier Transform 

If the Fourier transform of function ( )f t  is ( )F f , then 0( )f t t  has the Fourier 

transform 02
( )

ft
e F f


. Derivation is presented in Eq.3.1: 

0 0

0

2 ( ) 22

0 0 0

2

( ) ( ) ( )

( )

i f t t i ftft

i ft

f t t e dt f t t e e d t t

e F f
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 
  

 



   



         (3.1) 

If there is a time shift for a given function, the amplitude for each spectral component 

will have no changes. The changes in its Fourier transform are in the phase 

information. Inferred from Eq.3.1, the phase shift for each frequency should be 

directly correlated with the frequency f  itself: higher frequencies will have more 

rapid phase changes. 

 

3.2 Convolution Theorem of Fourier Transform 

If Fourier transform of function ( )f t  is ( )F f  and Fourier transform of function 

( )g t  is ( )G f , then convolution of the two functions will have the Fourier transform

( ) ( )F f G f . The derivation is given in Eq. 3.2: 
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Thus, the Fourier transform of convolution between two functions is equivalent to 

product between transforms of those two functions. Consequently, the resulting 

amplitude spectrum will be multiplications of amplitudes for all frequency 

components, while the resulting phase spectrum will be summations of their phases. 

 

3.3 Basic Principles 

3.3.1 Discrete Fourier Transform for an Isolated Event 

Theoretically, any continuous periodic function can be represented as an infinite 

Fourier series. However, continuous signals have to be discretized by sampling in 

practice and length of signal for transform should be limited. Performing Fourier 

transform on a real signal in time domain, the resulting spectrum will be a complex 

number of which the modulus is the amplitude spectrum representing energy 

distribution of each spectral component composing that signal. The inverse tangent 

function of the imaginary part over the real part in the complex number will give the 

phase information for each frequency. 

Obviously, for a single sinusoid in time domain, the spectral component will be 

represented by an isolated spike in frequency domain. Since Fourier transform has 

characteristic of symmetry, it can be expected that an isolated spike in time domain 

(Figure 3.1a) will correspond to sinusoidal spectra in frequency domain for both its 

real and imaginary part (Figure 3.1c and Figure 3.1d). 
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The spectrum of an isolated spike is full band and white; that is, each spectral 

component has the identical amplitude. According to convolution theorem, if 

convolving with a band-limited wavelet, the spectrum of the spike will be multiplied 

by the spectrum of that wavelet, resulting in frequencies outside the band to be absent 

(Figure 3.2c and Figure 3.2d). The isolated wavelet can be considered as the simplest 

case for a synthetic seismogram, since there is only one single event on the trace. The 

wavelet is accurate and no random noise is involved. Although those frequencies 

outside the wavelet band are missing, there is a strong inherent relationship between 

the available spectrum inside the band and the missing part outside the band. 

Mathematically, after dividing the data spectrum by amplitude spectrum of that 

wavelet, the resulting spectrum within the limited band can actually be connected 

with the missing part to form a complete sinusoid (Figure 3.3a). Consequently, once 

Figure 3.1: (a) An isolated spike in time domain; (b) Amplitude spectrum of the 

spike; (c) Real part of the spectrum; (d) Imaginary part of the spectrum. 
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specific information such as frequency period, phase shift, and amplitude of the sine 

wave over the usable band are known, the missing sinusoid outside the data band will 

be directly extrapolated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2 Spectrum of Composite Events  

Seismic traces are typically composed of interfering reflections. However, there are 

chances to decompose the data into a series of single isolated events at different time 

points. Correspondingly, spectrum of the composite events should be a superposition 

of a series of wavelet overprinted sinusoids with various frequency periods, phase 

shifts, and amplitudes (Figure 3.3b). Furthermore, as the available data bandwidth 

depends on the band of the wavelet, there would be an unpredictable phase delay for 

each sinusoid over the usable band. However, once the available composite spectrum 

becomes decomposed, the original full spectrum could be recovered based on those 

Figure 3.2: (a) An isolated wavelet in time domain; (b) Amplitude spectrum of the 

wavelet; (c) Real part of the spectrum; (d) Imaginary part of the spectrum. 
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parameters for all single events. In fact, there are many ways to achieve this. For the 

case of this thesis, matching pursuit decomposition (MPD) will be applied to analyze 

the available data spectrum and make it decomposed. 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.3 Matching Pursuit Decomposition 

Matching pursuit is a type of numerical technique which involves finding the best 

matching projections of data onto an over-complete dictionary. Mallat and Zhang 

(1993) presented a thorough analysis on matching pursuit using time-frequency 

dictionaries. The basic idea is to reconstruct a signal by atom signals chosen from the 

dictionaries: 

0

( ) ( )
nn

n

S t a g t






                        (3.3) 

where 
n

g  are the matched atoms and na  are the cross-correlation coefficients for 

each matched atom. 

So in this method, matching pursuit decomposition will be performed with a series of 

Figure 3.3: (a) Spectrum (real or imaginary) of an isolated spike; (b) Spectrum 

(real or imaginary) of a reflectivity series. 
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sine waves within the limited data bandwidth as the atoms comprising that dictionary; 

hence, the procedure is listed below: 

(1) Prepare a series of normalized sine waves of various frequency periods and phase 

shifts over the data band for the atom dictionary. 

(2) Cross-correlate the spectrum with all the elements in the dictionary to find the best 

fit sinusoid and then subtract it from the original spectrum. 

(3) Repeat this process on the residual spectrum until the residual spectrum falls 

below some energy threshold. 

(4) Make a list of all matched sinusoids with the corresponding frequency periods, 

phase shifts and amplitudes. 

(5) Extrapolate those sinusoids from zero frequency all the way to the Nyquist 

frequency in order to get the full spectral band recovered. 

The above process can also be represented mathematically by Eq. 3.4: 

1

1

( ) ( ) ( )
n

k
k

n a

n

F f C S f r f




                    (3.4) 

where ( )F f  is the original band-limited spectrum (either real or imaginary), nC  is 

the cross-correlation coefficient at thn  iteration, ( )
naS f is the matched sinusoidal 

base at each iteration, and ( )kr f  is the residual spectrum at the beginning of thk  

iteration. An ideal situation is that all the sinusoids representing their corresponding 

reflections are decomposed independently. If this would happen, interfering events 

can be accurately and perfectly resolved. 

 

3.3.4 Principle of Orthogonality 

The concept that two lines are perpendicular to one another has been extended into 
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higher dimensional spaces. In mathematics, two vectors are considered orthogonal if 

and only if their dot product is zero. Physically, orthogonality describes relation 

between objects as non-overlapping, uncorrelated, or independent. 

Two nonzero real functions 1( )t  and 2 ( )t  defined in the interval  1 2,t t are 

considered mutually orthogonal if the equation below is true: 

1

2
1 2( ) ( ) 0

t

t
t t dt                          (3.5) 

Further, a sequence of functions 1( )t , 2 ( )t , …, ( )n t  are defined in the interval

 1 2,t t . If any two of those functions satisfy the following equations: 

2

1

0
( ) ( )

t

i j
t

i

i j
t t dt

k i j


   


                   (3.6) 

Then this series of functions can be classified as an orthogonal set. 

For instance, the sequence of trigonometric functions 

 1 1 1 2 11,cos( ),cos(2 ),...,cos( )nt t n t       just can be regarded as an 

orthogonal set of functions in the interval 0,2 /  . 

However, for the case in this chapter, those sinusoidal bases used by MPD are not 

completely orthogonal over the available spectral band. Mathematically, sinusoidal 

signals are only considered mutually orthogonal in certain specific intervals such as 

integral multiple periods. However, the seismic usable band is determined by 

bandwidth of the wavelet which is relatively arbitrary. In other words, those atoms 

have to be cross-correlated with non-orthogonal composite spectrum. Consequently, 

the coefficients could never purely describe the correlations between those matched 

atoms and their desired corresponding sinusoids occurring in the spectrum. Moreover, 

narrower the data bandwidth, more likely those sinusoids will become 

non-orthogonal. 
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3.4 Synthetic Data Examples 

3.4.1 Synthetics with Varying Signal-to-Noise Ratio (SNR) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An original reflectivity series (Figure 3.4a) is given in which there are two closely 

spaced events around 1.2s. Original bandwidth of this reflectivity series ranges fully 

from zero frequency to the Nyquist frequency (Figure 3.4d). A 30 Hz Ricker wavelet 

(Figure 3.4b) is convolved with the original reflectivity to generate a synthetic seismic 

trace (Figure 3.5a). This band-limited trace is contaminated by random noise of 

varying signal-to-noise ratio of 10:1 (Figure 3.5b), 5:1 (Figure 3.5c) and 2:1 (Figure 

3.5d), respectively. Correspondingly, spectrum (Figure 3.6a) of the clean synthetic is 

Figure 3.4: (a) Original reflectivity series; (b) 30Hz Ricker wavelet; (c) Amplitude 

spectrum of the wavelet; (d) Amplitude spectrum of the original reflectivity. 
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limited within the wavelet band. Figure 3.6b, Figure 3.6c, and Figure 3.6d are the 

spectra of those noisy synthetics with different SNRs, in which increasing noise levels 

can be observed at high frequency end. Applying the frequency extrapolation program 

to these four traces, inversion results are obtained. The inverted reflectivity series 

(Figure 3.7a) for the clean synthetic is pretty good. All primary events have been 

revealed, and the two closed spaced events around 1.2s which cannot be resolved on 

the original trace have been successfully separated. Actually, the corresponding 

extended spectrum (Figure 3.8a) is almost the same as the original one (Figure 3.4d). 

The other three inverted reflectivity series are increasingly contaminated by noise as 

those cross-correlation coefficients are increasingly biased. The problem might be 

very serious when the signal-to-noise ratio is too low (Figure 3.7d). Some events have 

been distorted and even destroyed. In the frequency domain, extrapolated spectra 

would stay stable when the signal-to-noise ratio is good enough, but will deviate from 

true spectrum as too much noise is added. Observed from extended spectrum of the 

inverted reflectivity with SNR of 2:1 (Figure 3.8d), a large number of spectral 

components have been exaggerated, among which an extreme component has 

occurred around 75Hz. Nevertheless, as long as those major reflections are strong 

enough, they still can be successfully revealed. 
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Figure 3.5: Synthetic traces with varying signal-to-noise ratio: (a) no noise; 

(b) SNR of 10:1; (c) SNR of 5:1; (d) SNR of 2:1. 

Figure 3.6: Spectra of synthetic traces with varying signal-to-noise ratio: 

(a) no noise; (b) SNR of 10:1; (c) SNR of 5:1; (d) SNR of 2:1. 
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Figure 3.7: Inverted reflectivity for varying signal-to-noise ratio (DFT method): 

(a) no noise; (b) SNR of 10:1; (c) SNR of 5:1; (d) SNR of 2:1. 

Figure 3.8: Spectra of inverted reflectivity for varying signal-to-noise ratio 

(DFT method): (a) no noise; (b) SNR of 10:1; (c) SNR of 5:1; (d) SNR of 2:1. 
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3.4.2 Synthetics with Different Wavelet Bandwidths 

The available and usable data bandwidth for extrapolation will be narrowed if the 

wavelet bandwidth narrows. It is thus necessary to fit sinusoids over increasingly 

narrow bands and check how this method will work. The original reflectivity series is 

convolved with 30Hz Ricker wavelet (Figure 3.9a), 25Hz Ricker wavelet (Figure 

3.9b), and 20Hz Ricker wavelet (Figure3.9c). Corresponding spectra are shown in 

Figure 3.10. 

In Figure 3.9, an increasingly serious wavelet interference effect can be found on the 

traces of lower dominant frequencies, which would obviously lead to worse inversion 

results. Figure 3.11 presents the inverted reflectivity series and corresponding 

extrapolated spectra are shown in Figure 3.12. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: (a) Synthetic trace generated by 30Hz Ricker wavelet; (b) Synthetic trace 

generated by 25Hz Ricker wavelet; (c) Synthetic trace generated by 20Hz Ricker wavelet. 
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The inversion result (Figure 3.11a) is fairly good for the case of 30Hz wavelet. The 

thin layer around 1.2s has been clearly resolved and most spiky events are recovered. 

For the case of 20Hz wavelet (Figure3.11c), however, the thin layer is inverted as one 

single event by the program instead of two separated ones. Also, the events between 

0.5s and 0.6s have an apparent deviation from the true reflectivity. For two closely 

spaced events, their spectra will be two sinusoids with close frequency periods. This 

slight difference requires a broad enough bandwidth to be distinguished by MPD. 

Therefore, the program has not been able to separate the very closely spaced spikes 

within a narrow band as 20Hz wavelet. Interestingly, in the corresponding frequency 

domain, the extended spectrum for the narrower band case exhibits a lower energy 

level than the broader band case. 

 

 

 

 

 

Figure 3.10: (a) Spectrum of the synthetic (30Hz); (b) Spectrum of the synthetic (25Hz); 

(c) Spectrum of the synthetic (20Hz). 
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3.4.3 Well Log-derived Synthetics with High Complexity  

A harder case for this frequency extrapolation method to invert should be 

seismograms with very high complexity. A well log-derived reflectivity series (Figure 

3.13a) has reflection coefficients for almost every single time point ranging from 

0.15s to 1.10s. The inversion result is shown in Figure 3.13c. Since the interference 

Figure 3.11: DFT method. (a) Inverted reflectivity (30Hz); (b) Inverted reflectivity (25Hz); 

(c) Inverted reflectivity (20Hz). 

Figure 3.12: DFT method. (a) Spectrum of the inverted reflectivity (30Hz); (b) Spectrum 

of the inverted reflectivity (25Hz); (c) Spectrum of the inverted reflectivity (20Hz). 
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effect is extremely serious on this seismogram, it will be difficult for matching pursuit 

decomposition to analyze the spectrum correctly. Consequently, true reflections might 

be suppressed while some false events might be created. Only the strongest events 

could be revealed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: (a) Well log-derived reflectivity sequence; (b) Well log-derived synthetic 

seismogram (30Hz); (c) Inverted reflectivity for the synthetic seismogram (DFT). 

Figure 3.14: DFT method. (a) Spectrum of the well log-derived reflectivity; (b) Spectrum 

of the well log-derived synthetic seismogram; (c) Spectrum of the inverted reflectivity. 
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3.4.4 Wedge Model Tests 

Band-limited seismic responses (Figure 3.15a and Figure 3.17a) for both even and 

odd spike pairs of varying thickness (Figure 3.16b and Figure 3.18b) are generated by 

convolving a 30Hz Ricker wavelet. For the even part, in the spectrally extended 

section (Figure 3.15b), Trace 36 has been resolved, which is a significant 

improvement in resolution when compared with Trace 26 in the low frequency 

synthetis (Figure 3.15a). This spectrally extended section is generated by convolving 

the corresponding inverted spiky output (Figure 3.16a) with a 60Hz Ricker wavelet. 

Another high frequency synthetic is provided by convolving the true wedge model 

(Figure 3.16b) with the same high frequency wavelet for comparison, where those 

thin beds can be resolved down to Trace 38. It has slightly better resolution than the 

spectrally extended result, even with the same broad band-pass (60Hz). After all, the 

spectral extension method can never perfectly make the band-limited data inverted. 

Observing the inversion result (Figure 3.16a), spike pairs are well resolved when the 

wavelets are still far enough apart. When it comes to the traces ranging from number 

35 to 40, the program fails to recognize the true reflections and some false spikes are 

produced. Furthermore, for very thin layers, the spike pairs can not be resolved any 

more. For the odd part, similarly, the spectrally extended section (Figure 3.17b) has 

exhibited much more improved resolution than the original (Figure 3.17a), and its 

tuning thickness has been made close to the high frequency target (Figure 3.17c). For 

the corresponding inverted stick output (Figure 3.18a), those thin beds far below 

tuning thickness have not been correctly inverted, because time thickness of those 

seismic responses below tuning is almost constant. However, the inversion results 
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above tuning thickness are still well recovered and reasonable. 
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Figure 3.15: DFT method. (a) Seismic responses for even wedge model (30Hz); 

(b) Spectrally extended responses for the even wedge model (60Hz); (c) Seismic 

responses for even wedge model (60Hz). 

Figure 3.16: DFT method. (a) Inverted even wedge model; (b) True even spike pairs. 
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Figure 3.17: DFT method. (a) Seismic responses for odd wedge model (30Hz); 

(b) Spectrally extended responses for the odd wedge model (60Hz); (c) Seismic 

responses for odd wedge model (60Hz). 

Figure 3.18: DFT method. (a) Inverted odd wedge model; (b) True odd spike pairs. 
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3.5 Real Data Examples 

This frequency extrapolation approach will be tested on a real seismic section from 

the Blackfoot dataset. The original seismic image data (Figure 3.19) is a band-limited 

2D section going across that 01-08-23-23 well. The seismic trace near the well 

location is denoted by red color. The spectral extension method is applied to the 

original section using the estimated wavelet extracted from corresponding surface 

seismic data. The section for inverted reflectivity series is displayed in Figure 3.21, in 

which some horizons could be clearly recognized. Furthermore, a higher frequency 

Ricker wavelet is used to make it band-limited in order to produce a high resolution 

section (Figure 3.20). Resolution of the original band-limited section has been 

significantly enhanced. 

Viewing a comparison of the resolution enhanced section with the original section, it 

is clear that some indistinct boundaries between layers have become clearer with the 

spectral extension. Also, some thin beds that are totally unresolved in the original 

section have been separated in the high resolution section. Although the validity of the 

spectrally extended results is doubtful, the outputs produced by this method should be 

reasonable and the corresponding spectrum (Figure 3.22) does have been extended 

significantly. 
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Figure 3.19: Original band-limited seismic section. The well location is near the trace 

denoted by red color. 

Figure 3.20: Resolution enhanced seismic section (bandwidth-extended) for DFT method. 
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Figure 3.21: Inverted reflectivity section for DFT method. 

Figure 3.22: DFT method. (a) Spectrum of the original trace at well location; 

(b) Spectrum of the bandwidth-extended trace at well location; (c) Spectrum of 

the inverted reflectivity at well location. 
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3.6 Chapter Conclusion 

Beginning with an illustration of the relationship between spectral information within 

the limited data bandwidth and the missing part outside, we proposed using the 

matching pursuit decomposition to unravel the superposition of a series of sinusoids 

within the usable band. This method resolves composite reflections by recognizing the 

amplitude, frequency period, and phase shift for each sinusoid within the available 

band corresponding to spikes in time domain. Extrapolating those matched sinusoids 

from zero frequency all the way to the Nyquist frequency could recover the original 

reflectivity, and thus have a chance to resolve thin beds below tuning thickness. The 

recovered reflectivity sequence can be filtered back to any desired bandwidth, which 

significantly improves the vertical resolution of original seismic data. However, it 

would be impossible for the program to resolve thin layers with extremely small 

thickness, as those sinusoidal bases are not completely uncorrelated over the limited 

spectral bandwidth. This is because matching pursuit decomposition requires 

orthogonal bases. Nevertheless, as shown in the real data examples, the method 

discussed in this chapter could successfully enhance seismic data resolution and has 

shown great potential as a practical tool for high resolution seismic interpretation. 
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Chapter 4  

 

Spectral Extrapolation by Wiener Predictive Filters 

 

Seismic wave propagation is subject to energy loss and frequency attenuation in the 

earth. Low frequencies filtered out during acquisition stage and high frequencies 

absorbed during seismic transmission may never be restored. However, according to 

the theory of Fourier analysis, general functions may be represented or approximated 

by sums of simpler trigonometric functions. There should be some necessary 

relationships between surviving spectral components and those that are missed. The 

missing high and low frequencies can thus be calculated from available spectral band 

by standard prediction techniques. In this chapter, two time-frequency analysis 

techniques: Matching Pursuit Decomposition (MPD) and Continuous Wavelet 

Transform (CWT), are employed to spectrally analyze the band-limited seismic data 

whereby spectra will be broadened on frequency gathers for resolution enhancement. 

 

Section І: Wiener Prediction on MPD Frequency Gathers 

The previous chapter has indicated that the spectrum of a reflectivity function for a 

layered earth can be represented as a superposition of a series of sinusoids with 

various frequency periods and amplitudes. As a matter of fact, the spectrum can also 

be modeled as an autoregressive (AR) process. Consequently, the prediction of the 

missing high and low frequencies from the available band heavily depends on the 

assumption that the reflectivity series is impulsive. However, if the reflectivity 
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function contains too many impulses, the ability of the AR modeling to pick up many 

sinusoids from a short portion within the band will be limited. Thus, in this section, 

band-limited seismic data will be spectrally decomposed by matching pursuit 

algorithm so that spectral extension could be performed locally instead of globally. 

 

4.1 Autoregressive (AR) Model 

In signal processing, an autoregressive model is a representation of a type of random 

process which specifies that output variables depend linearly on the previous values. 

Mathematically, it is defined as: 

1

p

t i t i t

i

X X c 



                        (4.1) 

where i  are parameters of the model, c  is a generalized constant, and t  is the 

random noise. 

For the layered earth with an assumed sparse structure, the reflectivity function will 

be zero everywhere except at some specific times. Therefore, it must have the 

mathematical form: 

1

( ) ( )
N

k k

k

r t r t 


                        (4.2) 

where N  is total number of those interfaces and k  indicates two-way travel time 

for the thk layer. Consequently, the corresponding spectrum for the reflectivity 

function is constrained to have a form as following: 

2
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Separating the complex spectrum into real and imaginary parts: 

1

Re( ) cos(2 )
N

f k k

k

R r f 


                    (4.4) 

1

Im( ) sin(2 )
N

f k k

k

R r f 


                    (4.5) 

Hence, both the real and imaginary part of the spectrum are the sum of N  sinusoids 

with frequency periods of 2 k . Each single sinusoid can be modeled as a simple 

autoregressive process. So in the case of many layers, the spectrum could be modeled 

as a superposition of many autoregressive processes: 

1

p

j k j k

k

R R 



                         (4.6) 

where k  are model parameters (filter coefficients) and p  is number of model 

parameters which is also the filter length. As a matter of fact, Eq.4.6 is the special 

form for Eq.4.1 where the constant term and random noise are not taken into account. 

 

4.2 Calculation of Predictive Coefficients 

To predict missing spectral components outside the band of the wavelet, a set of 

equations has to be established in order to solve for those predictive coefficients. A 

linear equation of p  unknowns will be given, assuming a current output is 

calculated based on its own previous p  points. The current output will be 

subsequently utilized as one of the inputs for later calculations. Consequently, the set 

of equations can be represented in a matrix form (Eq. 4.7) by using up all spectral 

components within the available data bandwidth. 
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              (4.7) 

The rectangular matrix has q  rows and p  columns. Practically, the number of the 

linear equations should be larger than that of unknowns so that the problem of solving 

the equation system (Eq.4.7) is overdetermined. As a result, the extended spectrum 

will be predicted in a least-squares error sense. The autoregressive model parameters 

solved in this way could also be considered as coefficients of so-called Wiener 

predictive filter. The idea of Wiener (1942) is just to transform an input into a desired 

output as nearly as possible, which implies that the sum of the squares of differences 

between the filter output and the desired result is minimized. Therefore, those spectral 

components within the usable band are trained with Wiener’s theory to generate 

predictive filters for spectral extension.  

 

4.3 Time-Frequency Analysis by Matching Pursuit  

The spectrum (Eq.4.3) obtained from traditional Fourier transform reflects global 

spectral information representing composite events along the whole seismic trace. 

Superposition of various sinusoids in frequency domain may lead to serious instability 

problem in the extended frequencies, or even totally fail the algorithm. Therefore, 
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time-frequency spectral decomposition by matching pursuit is performed in this 

section to spectrally analyze the seismic data locally. Generally in signal processing, 

time-frequency analysis techniques study a signal in both the time and frequency 

domain simultaneously using various time-frequency representations. In the case of 

this section, the atom dictionary for matching pursuit decomposition would just be 

composed of zero-phase Ricker wavelets with various dominant frequencies. The 

algorithm is similar to that discussed in Chapter 3. The differences lie in the bases and 

the corresponding domains used. Therefore, seismic data are cross-correlated with all 

the elements in the dictionary and the best matched atom is regarded as the best 

representation for the signal at current iteration. So the matched wavelet is subtracted 

from the original signal and this process is repeated until the signal energy falls below 

some threshold. Then, all the matched atoms will constitute a two-dimensional 

time-frequency plane for further analysis. For each matched wavelet, a Wiener 

predictive filter will be specially designed to extrapolate the frequencies outside the 

limited band for enhancing data resolution locally.  

However, Ricker wavelets are non-orthogonal and can never correlate events in 

seismic data without disturbance. Inaccurate cross-correlation coefficients may lead to 

biased decomposed results or bring about additional noise. For instance, two 

closely-spaced interfering events with identical amplitudes will have asymmetry 

problem in the spectral information by matching pursuit.  

Chen and Castagna (2012) proposed an improved version of MPD, which is called 

Fractional matching pursuit decomposition (FMPD). This is achieved by subtracting a 

fractional portion of the cross-correlation coefficient which is supposed to crudely 
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handle the nonorthogonality issue for those bases. Figure 4.1c just displays the FMPD 

spectra for the synthetic seismic trace (Figure 4.1b) whose central frequency is around 

30Hz. Two spectra around 1.4s for the odd spike pair have demonstrated symmetrical 

characteristic which might probably be seriously biased if conventional MPD is 

applied instead. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: (a) Original reflectivity series; (b) Synthetic trace generated by 30Hz Ricker 

wavelet; (c) Time-frequency analysis of the trace by FMPD. 
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4.4 Synthetic Data Examples  

4.4.1 Synthetics with Varying Signal-to-Noise Ratio (SNR) 

To test this prediction technique by matching pursuit algorithm, the original 

reflectivity series is again convolved with a 30Hz Ricker wavelet for preparing 

synthetic traces with varying signal-to-noise ratios (Figure 4.2). Their corresponding 

inversion results are listed in Figure 4.4. For the clean synthetic (Figure 4.2a), almost 

all events are recovered in accordance with the true reflectivity sequence. A slight 

difference consists in the closely spaced spike pair around 1.2s which has not been 

completely restored due to nonorthogonality occurring in matching pursuit with 

Ricker wavelets. Nevertheless, the two events that cannot be resolved in the original 

data have been separated to an acceptable degree. When noise is added in, closely 

spaced spikes might not be well resolved, since noise disturbance is uncontrollable, so 

that the separated events might be inverted as one single event (Figure 4.4b and 

Figure 4.4c). Furthermore, when noise is serious (Figure 4.2d), along with those 

primary events, many false spikes are produced, which would probably undermine 

further interpretation. In this case, inversion results would be considered 

unreasonable. 

Original spectra for those synthetic traces are displayed in Figure 4.3 and the 

corresponding extended results are shown in Figure 4.5. It is evident that with noise 

level increased, more unwanted spectral components would become dominant in the 

broadened spectrum (Figure 4.5d). 
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Figure 4.2: Synthetic traces with varying signal-to-noise ratio: (a) no noise; 

(b) SNR of 10:1; (c) SNR of 5:1; (d) SNR of 2:1. 

Figure 4.3: Spectra of synthetic traces with varying signal-to-noise ratio: 

(a) no noise; (b) SNR of 10:1; (c) SNR of 5:1; (d) SNR of 2:1. 
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Figure 4.4: Inverted reflectivity for varying signal-to-noise ratio (MPD method): 

(a) no noise; (b) SNR of 10:1; (c) SNR of 5:1; (d) SNR of 2:1. 

Figure 4.5: Spectra of inverted reflectivity for varying signal-to-noise ratio 

(MPD method): (a) no noise; (b) SNR of 10:1; (c) SNR of 5:1; (d) SNR of 2:1. 
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4.4.2 Synthetics with Different Wavelet Bandwidths 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since matching pursuit decomposition using nonorthogonal bases is vulnerable to 

events interference, it is thus necessary to test this spectral prediction method with 

different data bandwidths. Three synthetic traces (Figure 4.6) are generated by 30Hz, 

25Hz, and 20Hz Ricker wavelets, respectively. Interference effect becomes 

increasingly obvious as the wavelet band narrows. As expected, inversion results for 

Figure 4.6: (a) Synthetic trace generated by 30Hz Ricker wavelet; (b) Synthetic trace 

generated by 25Hz Ricker wavelet; (c) Synthetic trace generated by 20Hz Ricker wavelet. 

Figure 4.7: (a) Spectrum of the synthetic (30Hz); (b) Spectrum of the synthetic (25Hz); 

(c) Spectrum of the synthetic (20Hz). 
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narrower bandwidths are of inferior quality. For the inverted reflectivity with 30Hz 

wavelet (Figure 4.8a), closely spaced spikes could still be resolved. Unfortunately, for 

the 25Hz wavelet case (Figure 4.8b), the spike pair around 1.2s starts to be recognized 

by the program as one single reflection rather than two separated events. Furthermore, 

with the wavelet bandwidth continuously narrowed, the spike pair has been 

completely suppressed such that only one isolated spike has been inverted. Therefore, 

this method could only resolve events separated enough apart, but doesn’t work well 

for reflections that are too close. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: MPD method. (a) Inverted reflectivity (30Hz); (b) Inverted reflectivity (25Hz); 

(c) Inverted reflectivity (20Hz). 

Figure 4.9: MPD method. (a) Spectrum of the inverted reflectivity (30Hz); (b) Spectrum of the 

inverted reflectivity (25Hz); (c) Spectrum of the inverted reflectivity (20Hz). 
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4.4.3 Well Log-derived Synthetics with High Complexity  

The well log-derived synthetic seismogram (Figure 4.10b) is employed again to 

examine the method in this section, since the well log-derived reflectivity sequence 

(Figure 4.10a) has high complexity in which the interference effect is regarded as 

extremely serious. The inversion result is presented in Figure 4.10c. 

Similarly, two very closely spaced events near 1.0s are inverted by the program as one 

single event. Worse still, an apparently erroneous spike with negative polarity has 

been produced around 0.2s, where the true reflectivity should be dominated by 

positive spikes. Consequently, unless major reflections are strong enough, inversion 

results may be unreliable when too much interference occurs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: (a) Well log-derived reflectivity sequence; (b) Well log-derived synthetic 

seismogram (30Hz); (c) Inverted reflectivity for the synthetic seismogram (MPD). 
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4.4.4 Wedge Model Tests 

True comparisons are also made for this method on both the even and odd wedge 

models, where low frequency synthetics are generated by 30Hz Ricker wavelet and 

high frequency ones are generated by 60Hz Ricker wavelet. This time the spectrally 

extended sections (Figure 4.12b and Figure 4.14b) could not achieve the resolving 

capability of their comparatives (Figure 4.12c and Figure 4.14c). Examining the 

corresponding spiky outputs (Figure 4.13a and Figure 4.15a), when the spikes are still 

far enough apart, inverted spike pairs can be well resolved. For the even part, as layer 

thickness gets thinner, some tiny false spikes are produced between Trace 20 and 

Trace 35. This is because wavelet interference pattern of the waveforms at those 

thicknesses would mislead the matching pursuit program into considering the side 

lobes as primary events to invert. When the layer thickness approaches zero, the spike 

pairs will then become totally unresolved. Furthermore, for the odd pairs, those bed 

thicknesses are still inverted to be constant when they go below tuning thickness. 

Nevertheless, this method does increase the resolution to some degree. The even 

Figure 4.11: MPD method. (a) Spectrum of the well log-derived reflectivity; (b) Spectrum 

of the well log-derived synthetic seismogram; (c) Spectrum of the inverted reflectivity. 
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wedge responses can be resolved at a thinner layer (Figure 4.12b), whereas the tuning 

thickness has been approached to a smaller thickness (Figure 4.14b) when compared 

with the original synthetics (Figure 4.12a and Figure 4.14a). 
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Figure 4.12: MPD method. (a) Seismic responses for even wedge model (30Hz); 

(b) Spectrally extended responses for the even wedge model (60Hz); (c) Seismic 

responses for even wedge model (60Hz). 

Figure 4.13: MPD method. (a) Inverted even wedge model; (b) True even spike pairs. 
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Figure 4.14: MPD method. (a) Seismic responses for odd wedge model (30Hz); 

(b) Spectrally extended responses for the odd wedge model (60Hz); (c) Seismic 

responses for odd wedge model (60Hz). 

Figure 4.15: MPD method. (a) Inverted odd wedge model; (b) True odd spike pairs. 
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4.5 Real Data Examples 

The AR algorithm based on matching pursuit will now be applied to that original 

migrated 2D seismic section (Figure 4.16). The resulting section for reflectivity from 

the AR algorithm is shown in Figure 4.18. The outputs have become much spikier 

than the original data, such that major layer interfaces are revealed clearer than before. 

The high resolution section produced by convolving a higher frequency Ricker 

wavelet is displayed in Figure 4.17. Although it is certain that some false events are 

inevitable to be produced in the inversion with this method, the results are still 

reasonable and the seismic resolution does have been improved. Observing the 

corresponding spectra (Figure 4.19) for the trace at the well location, the seismic 

spectral bandwidth has really been significantly extended by this approach. 
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Figure 4.16: Original band-limited seismic section. The well location is near the trace 

denoted by red color. 
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Figure 4.17: Resolution enhanced seismic section (bandwidth-extended) for MPD method. 

Figure 4.18: Inverted reflectivity section for MPD method. 
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4.6 Section Conclusion 

Restricted to homogeneous blocky layers, seismograms can be reproduced by the 

collection of isolated delta functions convolving with embedded band-limited 

wavelets and therefore the reflectivity sequence could be considered broad-band. The 

fact that the corresponding reflectivity spectrum can be modeled as an autoregressive 

process provides the opportunity to predict the missing spectrum outside the available 

band. To avoid the instability problem encountered in the spectrum consisting of 

many sinusoids and additional noise, matching pursuit algorithm is employed as a 

more robust strategy to spectrally decompose the seismic data locally. This 

methodology has been successfully applied to a number of examples and it works 

acceptable on both synthetic and field data. The idea investigated in this section gives 

enlightenment for further research that modified versions of matching pursuit 

algorithm might have better performance and enormous potential in high resolution 

seismic interpretation. 
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Figure 4.19: MPD method. (a) Spectrum of the original trace at well location; 

(b) Spectrum of the bandwidth-extended trace at well location; (c) Spectrum of 

the inverted reflectivity at well location. 
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Section ІІ: Wiener Prediction on CWT Frequency Gathers  

In Chapter 3, the seismic signal is spectrally transformed by Fourier analysis. Fourier 

transform reveals that any function can be represented as a superposition of a series of 

single sinusoids. However, when FT is employed, a window typically has to be fixed 

for analysis, so time and frequency resolution is thus defined by the window length. 

Therefore, the signal is decomposed by sinusoids regardless of how many local events 

are included in that window. In this way, isolated events far apart would be considered 

globally, which might make local information lost. In this section, a local spectral 

decomposition strategy, through the use of wavelet transform (WT), is utilized in 

capturing the seismic local information and global information simultaneously. We 

employ continuous wavelet transform (CWT) to perform a time-scale analysis for the 

seismic trace, which decomposes the band-limited signal into discrete sub-bands. 

Then the usable limited band information will be analyzed to model missing parts of 

the spectrum. 

 

4.7 Continuous Wavelet Transform 

4.7.1 Morlet Wavelets 

In mathematics, a Morlet wavelet is defined as multiplying a complex exponential by 

a Gaussian window. A complex Morlet wavelet with the central frequency of 40Hz is 

displayed in Figure 4.20a. The real part (red solid) is a zero-phase wavelet, while the 

imaginary part (blue dash) has a 90 degree phase rotation to that real part. 

The amplitude spectrum of the complex wavelet is a Gaussian curve centered at its 

dominant frequency (Figure 4.20b), which corresponds to the modulation occurring in 
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time domain. Mathematically, Morlet wavelets can be generally expressed as: 

2

22
1

( )

t

i tt e e 




                       (4.8) 

where 2 cf   and cf  is the wavelet dominant frequency;   is the wavelet 

scale and defined as the reciprocal of the central frequency: 1/ cf  . A large scale 

indicates the wavelet has longer time duration and vice versa. Higher central 

frequency means a broader bandwidth in frequency domain. 

 

 

 

 

 

 

 

 

 

 

4.7.2 Basic Properties for CWT 

Continuous wavelet transform of a time series ( )s t  is defined as convolution of ( )s t  

with a series of Morlet wavelets ( )t with varying scales : 

 ( , ) ( ) ,W s t t dt    





                   (4.9) 

where   is a translated time for the wavelet of scale   and ( , )W    is thus the 

cross-correlation coefficient between the signal and the Morlet wavelet of scale   at 

the translated time . Consequently, at each time point, the signal is cross- correlated 

Figure 4.20: (a) Complex Morlet wavelet; (b) Amplitude spectrum of the Morlet wavelet. 
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with a series of Morlet wavelets with varying central frequencies. Those CWT 

coefficients thus reveal similarity degrees between the analyzing wavelets and the 

signal segment around that time point. Therefore, a 2D time-frequency analysis plane 

can be displayed for a seismic trace (Figure 4.21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dominant frequency of the synthetic trace is around 30Hz where those relatively 

independent spectra are mainly concentrated. On the high frequency end, we could 

observe some spiky elements which are corresponding to those closely spaced events, 

while a number of ribbons are extending in the direction of time axis between the 

primary spectra on the low frequency end. This implies that CWT has a better time 

resolution with higher frequencies (small scales) Morlet wavelets and a better 

Figure 4.21: (a) Original reflectivity series; (b) Synthetic trace generated by 30Hz Ricker 

wavelet; (c) CWT frequency gather of the trace. 
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frequency resolution with lower frequencies (large scales) ones. In other words, time 

resolution is more important in the high frequency end and frequency resolution 

should be paid more attention in the low frequency spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.7.3 Band-pass Filters 

From another point of view, Morlet wavelets used for CWT can be considered as a 

series of band-pass filters, since the real part of the complex Morlet wavelet is 

zero-phase. Figure 4.22 displays the amplitude spectra of five Morlet wavelets with 

different central frequencies. There is a chance for them to obtain a flat spectrum if 

weighted summed. Consequently, the original seismic trace can be decomposed by the 

analyzing wavelets into discrete sub-bands which will be further analyzed to compute 

both higher and lower frequency spectral components. Therefore, for this 

Figure 4.22: Amplitude spectra for Morlet wavelets of varying central 

frequencies: 25Hz, 50Hz, 75Hz, 100Hz, and 125Hz. 
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methodology, only the real Morlet wavelets will be employed to perform spectral 

decomposition for the seismic data which is shown in Figure 4.23. A limited number 

of sub-bands decomposed from the original seismic trace (Figure 4.21b) are listed on 

the right column, and their corresponding analyzing wavelets are displayed on the left. 

These sub-bands are the available information for predicting both the higher and 

lower frequencies. CWT is in theory infinitely redundant, meaning that one could use 

unlimited Morlet wavelets to analyze the band-limited signal, which might stabilize 

the predictions to some degree. However, 100-200 scales per octave are already 

sufficient to guarantee a stable calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: Sub-bands of the band-limited synthetic trace filtered by real Morlet wavelets. 
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4.8 Calculation for Predicted Spectral Components 

The CWT transforms a one-dimensional signal into a 2D time-frequency analysis 

plane, which provides the opportunity to extend missing spectral information 

depending on spectra redundancy. Consequently, there are multiple wavelet transform 

coefficients at different frequencies (or scales) and times to make a prediction at 

another frequencies (or scales). Theoretically, utilizing CWT spectra at multiple time 

points would give better stability in the predictions. 

4.8.1 Multichannel Wiener Predictive Operator 

A sampled seismic trace is a typical example of single-channel digital series, while a 

number of adjacent traces on a seismic section could be regarded as multichannel 

series. Similarly, on the CWT time-frequency (time-scale) analysis plane, a spectra 

coefficients sequence at each time point is considered as a single-channel series and 

two or more such spectra sequences around that time point thus constitute the 

multichannel spectra series. Moreover, transition from single-channel to multichannel 

processing systems requires that the scalar-valued weighting coefficients occurring in 

the single-channel filter should be modified to be matrix-valued weighting 

coefficients. Treitel (1970) discussed the general case of k  input channels and l  

output channels for multichannel Wiener filter. For the purpose of this thesis, we 

specify only one output channel and k  input channels for computing coefficients of 

the multichannel operators. Those multichannel operators have a constant dimension 

of q k . So there should be q k  unknown coefficients to be solved in the 

prediction system. The design criterion for the multichannel predictive filters is also 

based on the least-squares principle so that those predicted CWT coefficients will be 
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overdetermined. Specifically, if the number of available sub-bands is p , there will be 

p q  wavelet coefficients in the desired output channel so the number p q  is 

supposed to be larger than q k  in order for least-squares solutions. 
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     (4.10) 

The equation system (Eq.4.10) provides an equation set of generalized form with 

p q  equations whereby the q k  unknown coefficients of multichannel operators 

will be solved. sX  and sF  are column and row vectors both with a length of q . 

4.8.2 Reconstruction of Spectrally Extended Data 

Since analyzing wavelets used in CWT can be considered as a series of band-pass 

filters, it is possible to reconstruct both the original and spectrally extended time 

series by adding together real part of the wavelet transforms over all sub-bands 

(Figure 4.23). Theoretically, time sampling rate and a fractional constant accounting 

for varying wavelet scales are required to compute compatible spectrally extrapolated 

outputs. A factor calculated from the reconstruction of a delta function from its 

wavelet transform and the scale of the mother Morlet wavelet are also needed to 

remove the energy scaling occurring in the predictions. However, energy density 
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adjustment for discrete sub-bands could be made in a practical way so that 

extrapolated frequencies (or scales) could produce a better looking shape for the 

amplitude spectrum. 

4.8.3 Limitation of Spectral Extrapolation by CWT 

Although multiple spectra series are involved for better stability in the calculations, 

they also have their downside, as has already been demonstrated by a number of 

synthetic cases. For an isolated event, the multichannel operators just need to 

recognize the variation tendency of the spectra from a single event. In the case of 

many reflections around a time point, however, it would be difficult for those 

operators to pick up the superposition of so many variations occurring in the spectra. 

So this spectral extension method might not work well for data with high complexity. 

Since the extrapolated spectral components are computed with least-squares, different 

extrapolations will give different results in the time domain. In fact, the extrapolation 

is limited in how far out it can reach because deviated predictions may lead to large 

cumulative error in further calculations. Moreover, wavelet correction performed in 

this approach can only be carried out in a practical way, as Morlet wavelets will have 

differing degrees of Gaussian decay at different frequencies (or scales). Nevertheless, 

this method does have produced seismic sections that are resolution enhanced. 

 

4.9 Wedge Model Tests 

We have tested this spectral extension algorithm on wedge models to examine its 

performance. A 30Hz Ricker wavelet is used to model the low frequency seismic 

responses for both even and odd spike pairs. Observed from the low frequency 
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responses for the even wedge (Figure 4.24a), the spike pairs are fully resolved at 

Trace 26. Applying spectral extension, the top and bottom reflectors of the wedge can 

be resolved down to Trace 34 (Figure 4.24b), which is comparable to the resolving 

capability of higher frequency synthetics generated by a 42Hz wavelet (Figure 4.24c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For this thesis, Ricker’s criterion is used to determine if the thin beds are resolved or 

not. However, it is not the only criterion widely employed in industry. A brief 

introduction for three kinds of criteria regarding resolution is thus given below: 

1) Rayleigh criterion: Two closely spaced wavelets with same polarity can be 

resolved when the time separation is large or at least equal to half the apparent 

period of the wavelet. 

Figure 4.24: CWT method for even wedge model. (a) Low frequency seismic 

responses; (b) Spectral extension of the original seismic responses; (c) High frequency 

seismic responses. 
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2) Ricker criterion: Two closely spaced wavelets with same polarity can be resolved 

when the time separation is larger or at least equal to the distance between the two 

points with maximum gradient on the flanks of the wavelet main lobe. 

3) Widess criterion: When the time separation for two closely spaced wavelets with 

opposite polarity is less than 1/4 of the wavelet apparent period (tuning thickness), 

the composite waveform could be approximated as the first derivative of the 

temporal wavelet. The time interval between the peak and trough of the waveform 

would be constant so the time thickness cannot be interpreted as the true layer 

thickness. Even so, an approximate positive correlation can be found between the 

amplitude of the waveform and the true layer thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25: CWT method for odd wedge model. (a) Low frequency seismic 

responses; (b) Spectral extension of the original seismic responses; (c) High 

frequency seismic responses. 
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This spectral extension method is also run on low frequency responses (Figure 4.25a) 

for the odd wedge. The tuning thickness for the low frequency synthetics is about 

13ms which is denoted by the black line with the time-amplitude curve (Figure 4.26).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26: Time-amplitude curve for the low frequency synthetics (30Hz). 

Figure 4.27: Time-amplitude curve for the spectrally extended synthetics. 
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Through spectral extension, the maximum amplitude has been approached to a thinner 

bed (Figure 4.27). The spectrally broadened model responses (Figure 4.25b) thus have 

a tuning thickness about 9ms, which is comparable to the high frequency synthetics 

(Figure 4.25c). The validity of this spectral extension method has been successfully 

demonstrated on wedge models in which significant improvements in resolution have 

been achieved. It can extend the original bandwidth to a broader bandwidth that 

matches the targeted bandwidth and ultimately increases the thin bed detectability. 

 

4.10 Real Data Examples 

Applying this CWT method to that 2D seismic section from Blackfoot dataset, the 

comparison of the before-and-after bandwidth extensions is shown in Figure 4.29 and 

Figure 4.30. The usable input frequency content is approximately 20-75Hz (Figure 

4.31a), while the output frequency content is about 10-90Hz (Figure 4.31b). With this 

broader spectrum, we can observe some thin layers that cannot be resolved in the 

Figure 4.28: Time-amplitude curve for the high frequency synthetics (42Hz). 
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original section have been revealed. More details have come to light with the spectral 

extension. Frankly, the performance of this method on real data might not be that 

good. The spectrum it can extend is quite limited on the Blackfoot dataset. This is 

because the estimated wavelet used is determined statistically within a picked window, 

thus the same wavelet correction has to be performed for all time points on the trace. 

The wavelet is assumed to be constant with time and space in the target zone. 

However, the actual waveforms as well as signal-to-noise ratio would vary along the 

trace. Consequently, the wavelet overprint is normalized in a fuzzy way. Different 

parts on the trace might have different robustness in the calculations. So if some local 

calculations go wrong, they would affect the whole trace so the extrapolations have to 

be stopped. However, this spectral extension method with CWT does produce a real 

seismic section that looks better and the result is reasonable. 
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Figure 4.29: Original band-limited seismic section. The well location is near the trace 

denoted by red color. 
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Figure 4.30: Resolution enhanced seismic section (bandwidth-extended) for CWT method. 

Figure 4.31: CWT method. (a) Spectrum of the original trace at well location; 

(b) Spectrum of the bandwidth-extended trace at well location. 
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4.11 Section Conclusion 

Spectral bandwidth extension using predicted high frequency sub-bands and low 

frequency sub-bands calculated with continuous wavelet transform has been 

demonstrated to have potential for seismic resolution enhancement. Although the very 

high and low frequencies have been filtered out in the original seismic, the missing 

spectrum can be extrapolated by multichannel predictive operators computed from the 

available fundamental frequencies and added back, which would effectively extend 

the seismic bandwidth and improve the overall resolution of the seismic data. 

Wedge models with both even spike pairs and odd spike pairs have been examined to 

prove that this technique can extract the very thin beds originally concealed by the 

band-limited wavelet and could thus resolve other similar geological features.  

This methodology is limited in how far out those multichannel operators can reach; 

the predicted sub-bands can only extend upward or downward within 0.5 to 2 octaves. 

The real data examples presented have further shown the benefits of this method. It 

can be expected that those subtle features which might not be resolved in the original 

seismic data have the potential to come to light. 
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Chapter 5  

 

Sparse Spike Inversion for Reflectivity Sequence 

 

In reflection seismology, artificial seismic sources such as dynamites or vibroseis are 

generally utilized to stimulate explosions near the surface. Precise devices arranged in 

certain acquisition systems receive the energy and record seismograms at the surface. 

The raw recorded data are subsequently processed through a series of procedures to 

finally produce seismic sections which could be regarded as representations for true 

subsurface geologic structures. However, underground conditions are typically 

complicated and noise contamination is also inevitable. Although much effort in the 

acquisition and processing stages has been devoted in order to reduce disturbance, the 

resulting images could never reflect the exactly true structures. Nevertheless, a 

post-processing seismogram could be thought of as convolution of a reflectivity 

sequence representing sparse structured subsurface layers with embedded wavelets. In 

fact, this convolutional model does work well and has prevailed in industry for many 

decades. 

 

5.1 Forward Convolutional Model 

The previous convolutional model is described by the equation of convolutional 

operation in an integral form (Eq.1.1 and Eq. 1.2). As a matter of fact, convolution 

can also be represented as a direct multiplication (Figure 5.1) between a wavelet 

matrix and a reflectivity vector which is essentially the same as integration. 
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Mathematically, the forward problem can be represented with explicit linear equation: 

Gm n d                            (5.1) 

For the convolutional model, G  will be a N N  wavelet kernel matrix, where N  

is the vector length of the data. Each column of the G  matrix only contains a single 

wavelet vector, and the wavelet is shifted with a sampling interval from column to 

column (Figure 5.1). m  and d  represent the reflectivity series and observed 

seismogram, respectively. Moreover, n  is the random noise. What we typically will 

have are the recorded seismograms d  and estimated wavelets G  extracted from 

corresponding surface seismic data. From a purely mathematical perspective, the 

direct solution m  could be calculated by inverting the wavelet kernel matrix and 

make it left multiply both sides of the equation Gm d , which is shown in Eq. 5.2: 

1m G d                           (5.2) 

However, the matter is not that simple and we cannot take it for granted. 

 

Figure 5.1: Matrix multiplication for convolutional model. 
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5.2 Ill-conditioned Inverse Matrix  

The inverse of a square matrix G  is denoted by 1G , which can be calculated as: 

1 1
( )

det( )
G Adj G

G

                        (5.3) 

The numerator is the adjoint matrix of G  and the denominator is the determinant of

G . Unfortunately, the wavelet kernel matrix G  has a determinant of nearly zero, so 

its inverse would be extremely large. To further character this inverse matrix, its 

eigenvalues are calculated and there is a significant difference among them (Figure 

5.2). The order of magnitude of the first two eigenvalues is 18, while the majority of 

the rest have orders of magnitude less than 5. Such a big difference in eigenvalues 

will lead to serious instability problem in the solution. In the standpoint of numerical 

analysis, the ratio of the largest eigenvalue to the smallest eigenvalue of a matrix is 

defined as condition number, which is used to measure how sensitive a solution is to 

changes or errors in the data, that is, how much error in the solution results from an 

error in the data. Since the order of magnitude for the condition number of the inverse 

matrix has reached 21, the inverse problem with such a huge condition number is 

definitely considered as ill-conditioned, which means the solution for inverted 

reflectivity series will be extremely noise sensitive. 

Physically, the shifted seismic wavelets comprising the kernel matrix G  typically 

just have spectral components within a limited band. Frequencies outsides the 

bandwidth are almost zeros. But the reflectivity to be inverted should be broad-band 

requiring non-zero spectral components outside the limited band. Thus, if a solution 

exists, deconvolution operator has to attempt to boost the absent frequencies to some 

finite values, which is virtually impossible to achieve. This corresponds to another 
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serious problem in inversion which is non-uniqueness. Therefore, direct inversion of 

the wavelet kernel matrix can never be the correct way in obtaining a broad-band 

reflectivity sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Least-squares Approach for Deconvolution 

The discrete convolutional process can be represented as: 

, 1,k j k j y

j

d w m k n                     (5.4) 

where km , 1, mk n  is the reflectivity series (model parameters vector), kd , 

1, dk n  is the observed seismogram (data vector), and kw , 1, wk n  is the source 

wavelet. The basic goal for seismic deconvolution is just to recover the vector km in 

model space. Ideally, the desired solution should be the one which can generate the 

predicted data perfectly matching the observations, that is, data misfit is zero. 

However, the true reflectivity sequence could never be obtained in the real world due 

to noise disturbance and wavelet inaccuracy. So a practical solution is to find an 

estimated vector ˆ
km  that gives a minimal residual vector kr :  

Figure 5.2: Eigenvalues of the inverse matrix
1G
. 
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ˆ , 1,k k j k j y

j

r d w m k n                    (5.5) 

Therefore, in a least-squares error sense, the objective is just to minimize the 

summation of the residuals for all time points: 

2

1

2

k
m

k k

r
J



 
  

 
                        (5.6) 

Theoretically, data misfit for each time should be weighted by the reciprocal of the 

standard deviation of that observation. In other words, more emphasis should be put 

on the points where the data are more accurate. In this chapter, however, for simplicity 

we assume the standard error n  is constant for all observations. 

Generally, maximization or minimization of a function is achieved by equating the 

gradient of the function with respect to related variables to zero. In seismic inversion 

for reflectivity series, independent variables are the reflection coefficients lm  for 

each time point. Derivation is presented in Eq.5.7: 

 
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
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

 

               (5.7) 

and, 

ˆ 0k j k j k l

k j

d w m w 

 
  

 
                    (5.8) 

Hence, 

ˆ
k l j k j k l k

k j k

w w m w d                      (5.9) 
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Also, Eq. 5.9 can be written in a matrix form as the time index l  slides: 

Rm g                           (5.10) 

 

 

 

 

 

 

 

 

 

 

 

The matrix R  (Figure 5.3) is comprised of wavelet autocorrelation coefficients 

where the wavelet is sliding along the data vector from the first time point to the end. 

Each row of the autocorrelation matrix corresponds to the location of data points, 

while each column denotes time lags in autocorrelation. The vector g  on the right 

side (Eq.5.10) is a column representing cross-correlation coefficients between the data 

and the wavelet. In accordance with the wavelet kernel matrix G  in Eq.5.1, the 

determinant of the R  matrix is also almost zero. Mathematically, the spectrum of 

autocorrelation should be the square of the original spectrum, so that spectral 

components outside the limited bandwidth are still zero. The inverse matrix of R  

will be ill-conditioned. There is a wide distribution among eigenvalues of the inverse 

matrix 1R , thus the model parameters m  directly inverted are quite unstable.   

Figure 5.3: Autocorrelation coefficients matrix R. 
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5.4 Least-squares Optimization with L1-Norm Regularization 

The non-uniqueness issue in seismic deconvolution is partly brought by noise 

disturbance occurring in the data. The error (data misfit) between observation and 

predicted data generated by forward modeling can never be eliminated. For 

minimizing the error, the inversion program might try to reach a solution consisting of 

a large number of closely spaced odd spike pairs so as to arbitrary fit small 

waveforms in the data. However, a minimal error does not necessarily mean the best 

solution. In fact, true earth reflectivity function is assumed to be sparse structured 

when the seismogram is dominated by a few strong reflections where a minimum of 

structural variation is desired. A sparse solution can be found by minimizing a specific 

norm of the model, which in this case is accomplished by regularizing the objective 

function (Eq.5.6) with an l1-norm penalty term. In general, the l1-norm regularized 

objective function can be written in a form as: 

2 1
min d Gm m                       (5.11) 

where   is the penalty factor that balances the two terms: l2-norm of the 

observation error d Gm  and l1-norm of the solution m . 

5.4.1 Huber Criterion 

Huber’s criterion is a useful method for robust regression. It defines a piecewise 

function (Huber, 1981): 

2

2

/2
( )

/ 2

u u a
u

a u a u a


 
 

 

                (5.12) 

and the influence function of  , which is the first-order derivative shown below: 

( )
u u a

u
a sign u a


 

 


                  (5.13) 
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In this method, the regularization term is just derived using Huber’s criterion, so the 

modified objective function will be: 

2

1

2

k i
m

k in m

r m
J 

 

   
    

   
                   (5.14) 

where m  is the standard deviation of reflection coefficients. Similarly, 

minimization of this objective function is achieved by equating the first derivation to 

zero. The derivation is presented below where small enough a  is postulated: 
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       (5.15) 

Hence, 

 
2

1
ˆ 0n

j k j k k l l

k j m l

a
w m d w m

m




                 (5.16) 

Finally, the minimization of the modified objective function mJ  leads to the 

following equation: 

2
1

ˆ n
k l j k j l k l k

k j k jm l

a
w w m m w d

m




                (5.17) 

Eq.5.17 demonstrates the calculations for the case where the time shift is l . Because 

time is sliding from the beginning to the end of the whole trace, a matrix form for this 

system of normal equations can be obtained: 

( )R Q m g                        (5.18) 
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where R  is still the wavelet autocorrelation coefficients matrix as in Figure 5.3,   

can be thought as the penalty factor   in Eq.5.11, and Q  is a diagonal matrix in 

which those diagonal elements are reciprocals of absolute values of the reflection 

coefficients. 

 

 

 

 

 

 

 

 

The introduction of Huber’s criterion as a regularization term is equivalent to adding a 

small perturbation to the diagonal of the R  matrix (Figure 5.3), which could 

stabilizes the inverse problem. This is very similar to prewhitening, which is adding a 

constant to the zero lag of the autocorrelation function. From the physical aspect, 

prewhitening is accomplished by adding purely random noise to the wavelet, which 

means spectral components outside the original limited bandwidth would be raised up 

to some positive level. Ideally, all lags of the wavelet autocorrelation should be 

invariant, except the zero lag where there is a constant added in. Figure 5.4a displays 

the inverse of the modified kernel matrix in which the elements have become finite 

and reasonable. Also, the condition number of this inverse matrix is less than 100 

because there is only a small distribution range for those eigenvalues (Figure 5.4b). 

Moreover, as seen from Eq.5.12, as long as the parameter a  is small compared with 

Figure 5.4: (a) Inverse of the regularized matrix; (b) Eigenvalues of the inverse matrix. 
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the independent model parameter, the modified objective function would behave as 

l1-norm regularization (Eq.5.11), which guarantees that the inverted reflectivity is 

constrained to be sparse. The fact that an l1-norm favors a sparse structure in the 

solution can be demonstrated by the example where two vectors with same l2-norm 

might have different l1-norms, and the one with smaller l1-norm will have a sparser 

structure than that with larger l1-norm. As a matter of fact, the objective function 

utilized in this method is neither invented nor imagined, but is derived from genuine 

mathematical laws. 

5.4.2 Bayes’ Theorem 

Bayes’ theorem, named after Thomas Bayes (1701-1761) who first suggested using 

the theorem to update beliefs, plays an important role in mathematical operation of 

conditional probabilities. It biases the degree of belief in an event based on given 

evidence. Mathematically, Bayes’ theorem reveals the relationship between the 

probabilities of two events A  and B , and also the conditional probabilities of A  

given B  and B  given A : 

( | ) ( )
( | )

( )

P B A P A
P A B

P B
                    (5.19) 

Specifically, in seismic reflectivity inversion, the model parameter m  and 

observation data d can thus be considered as two related events, A  and B . Using 

Huber criterion, the reflectivity series is assumed to be exponentially distributed, 

which provides a prior distribution with a long tail (Figure 5.5). Therefore, the 

probability density is given by: 

2 1

1

( ) exp
nm

i

i

P m c c m


 
  

 
                   (5.20) 
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where 1c  is the decay parameter and 2c  is a normalization constant. 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, assuming noise in the data is uncorrelated and Gaussian distributed with 

zero mean, the conditional probability density of the data given the prior reflectivity 

sequence is represented by: 

2
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( | ) exp

2

dn

k j k j

k jn

P d m c d w m
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   

            (5.21) 

where n  is the noise standard deviation and 3c  is a normalization constant. 

According to Eq.5.19, the following equation will be true: 

1
( | ) ( | ) ( )

( )
P m d P d m P m

P d
                   (5.22) 

The event B  is typically postulated to remain unchanged in the formula. In this case, 

the probability of the given observation seismic data d  is invariant. Therefore, the 

posterior distribution ( | )P m d  of the model parameters m  is directly proportionate 

Figure 5.5: Exponential distribution (black curve) and Gaussian 

distribution (red curve). 
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 (5.23) 

Obviously, to maximize the posterior distribution density of the reflectivity sequence 

m  is just to minimize the modified objective function mJ  (Eq.5.14). Consequently, 

a sparse reflectivity series will be obtained by solving the system of normal equations 

in Eq.5.18. 

5.4.3 Iteratively Reweighting Strategy for Sparse Recovery 

An Iteratively Reweighted Least Squares (IRLS) algorithm will be applied to solve Eq. 

5.18. It starts with an initial reflectivity series 0m  to generate the initial diagonal 

matrix Q , in which all diagonal elements are weighted equally. Also, the 

hyperparameter   is selected to provide a prior distribution for the sparse recovery.  

The source autocorrelation matrix R  is calculated with an estimated wavelet. 

Therefore, the solution 1m  at the first iteration can be obtained by left multiplying 

the g  column vector by the inverted well-conditioned kernel matrix. The resulting 
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reflectivity sequence will be used to calculate a new Q  for the next iteration. 

Accordingly, the diagonal elements are reweighted by the current reflectivity in which 

larger absolute values will provide less weight and vice versa. This process is repeated 

until the error between the inverted reflectivity sequences in two consecutive 

iterations falls below some tolerance criterion. Typically, 15 to 20 iterations would 

guarantee the convergence of solution. Moreover, the penalty factor selection is 

critical because unsuitable hyperparameter may produce outputs that are 

unreasonable. 

5.4.4 Penalty Factor Selection 

Theoretically, under the assumption of Huber criterion, both the parameter a  (Eq. 

5.12) and the standard deviation of model parameters m  are required to compute 

the penalty factor  . The parameter m  could be chosen based on the theory of 

probability and statistics. However, in this thesis, the trade-off factor will be 

determined in a practical way. Figure 5.6b shows the synthetic seismogram generated 

by 30Hz Ricker wavelet with a signal-to-noise ratio of 5. The optimal hyperparameter 

could never be found; however the inversion results can be investigated by scanning a 

series of varying   values whereby we can plot the data misfits versus l1-norms of 

those solutions (Figure 5.7). When   is relatively large, the l1-norm regularization 

term in Eq.5.11 would be weighted more than the error term. Consequently, the 

l1-norm of the solution has to be forced to diminish for minimizing the objective 

function. Furthermore, a too large   might make the sparse deconvolution behave 

like a damped least-squares problem under zero-order quadratic regularization. In this 

case the error between observations and predicted data is obvious. With the penalty 
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factor getting smaller, amplitude of observation error drops rapidly until some 

minimum error has been achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beyond this point, the curve changes slowly and could actually be considered stable, 

which implies that increasing the l1-norms of the solutions can no longer reduce the 

data misfits. Furthermore, as long as   is small enough, the inverted reflectivity 

Figure 5.6: (a) Original reflectivity series; (b) Synthetic trace with SNR of 5:1. 

Figure 5.7: Scanning for the optimal regularization factor. 
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could be of arbitrary complexity in order to make the error term to vanish. However, 

since the inverted model structure is desired to be as sparse as possible, we regard the 

penalty factor at the point where the curve (Figure 5.7) starts to take off as optimal. 

A panel displaying different inversion results with varying   values is given in 

Figure 5.8. Corresponding to the scanning curve in Figure 5.7, relatively large penalty 

factors would produce inversion models with higher sparsity while small values lead 

to denser ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Sparse spike deconvolution results with varying penalty factors. 
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5.5 Synthetic Data Examples 

5.5.1 Synthetics with Varying Signal-to-Noise Ratio (SNR) 

The synthetic seismogram with varying signal-to-noise ratio (Figure 5.9) is again 

employed to test the method performance. The corresponding spectra are presented in 

Figure 5.10. An identical trade-off parameter will be used to invert all four traces. The 

inverted reflectivity sequence for the clean synthetic is almost the same as the original 

reference (Figure 5.11a), since the data are exact. When noise level increases, 

additional spikes may be falsely inverted while some of true reflections might be 

reduced (Figure 5.11b-d). However, those primary events have been successfully 

inverted. 

As a matter of fact, there is a trade-off between the major reflections and random 

noise. Sometimes it is necessary to consciously preserve those primary events at the 

sacrifice of bringing about some noise by selecting a relatively small penalty factor. 

Fortunately, missing spectral components for each band-limited synthetic are restored 

very well (Figure 5.12) and the inverted noise has not caused great damage to those 

inversion results for interpretation. 

 

 

 

 

 

 

 



94 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.04

-0.02

0

0.02

0.04

Time(sec)

A
m

pl
itu

de

( a )

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.04

-0.02

0

0.02

0.04

A
m

pl
itu

de

( b )

Time(sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.04

-0.02

0

0.02

0.04

Time(sec)

( c )

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.04

-0.02

0

0.02

0.04
( d )

Time(sec)

A
m

pl
itu

de

0 50 100 150 200 250
0

0.5

1

Frequency(Hz)

A
m

p
lit

u
d
e

( a )

0 50 100 150 200 250
0

0.5

1

Frequency(Hz)

A
m

p
lit

u
d
e

( b )

0 50 100 150 200 250
0

0.5

1
( c )

A
m

p
lit

u
d
e

Frequency(Hz)

0 50 100 150 200 250
0

0.5

1

Frequency(Hz)

A
m

p
lit

u
d
e

( d )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Synthetic traces with varying signal-to-noise ratio: (a) no noise; 

(b) SNR of 10:1; (c) SNR of 5:1; (d) SNR of 2:1. 

Figure 5.10: Spectra of synthetic traces with varying signal-to-noise ratio: 

(a) no noise; (b) SNR of 10:1; (c) SNR of 5:1; (d) SNR of 2:1. 
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Figure 5.11: Inverted reflectivity for varying signal-to-noise ratio (SSD method): 

(a) no noise; (b) SNR of 10:1; (c) SNR of 5:1; (d) SNR of 2:1. 

Figure 5.12: Spectra of inverted reflectivity for varying signal-to-noise ratio 

(SSD method): (a) no noise; (b) SNR of 10:1; (c) SNR of 5:1; (d) SNR of 2:1. 
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5.5.2 Well Log-derived Synthetics with High Complexity 

The inversion result (Figure 5.13c) is acceptable for the well log-derived synthetic 

seismogram (Figure 5.13b) where the interference effect is extremely serious. Most of 

the composite events between 0.8s to 1.0s are recovered to be close to the original 

reference (Figure 5.13a). However, the polarities of events around 0.2s are incorrectly 

inverted due to the inherent limitation of this method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: (a) Well log-derived reflectivity sequence; (b) Well log-derived synthetic 

seismogram (30Hz); (c) Inverted reflectivity for the synthetic seismogram (SSD). 

 

Figure 5.14: SSD method. (a) Spectrum of the well log-derived reflectivity; (b) Spectrum of 

the well log-derived synthetic seismogram; (c) Spectrum of the inverted reflectivity. 
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5.5.3 Wedge Model Tests 

The wedge models with both even and odd spike pairs are shown in Figure 5.16b and 

Figure 5.18b. Inspecting the inversion results, inverted spike pairs are satisfactory 

when the two wavelets are far enough apart. However for the even part (Figure 5.16a), 

when it comes to the very thin layers, the seismic responses are inverted to be 

waveforms that are much smoother than the true spikes. For the odd pairs (Figure 

5.18a), when the time interval goes below tuning thickness, as the time thickness 

between peak and trough stays constant and waveform amplitude diminishes, those 

thin beds can no longer be correctly inverted. Nevertheless, the spectrally extended 

sections (Figure 5.15b and Figure 5.17b) produced by sparse spike deconvolution 

both have shown comparable resolving capability to their corresponding high 

frequency synthetics (Figure 5.15c and Figure 5.17c).  
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Figure 5.15: SSD method. (a) Seismic responses for even wedge model (30Hz); 

(b) Spectrally extended responses for the even wedge model (60Hz); (c) Seismic 

responses for even wedge model (60Hz). 
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Figure 5.16: SSD method. (a) Inverted even wedge model; (b) True even spike pairs. 

Figure 5.17: SSD method. (a) Seismic responses for odd wedge model (30Hz); 

(b) Spectrally extended responses for the odd wedge model (60Hz); (c) 

Seismic responses for odd wedge model (60Hz). 
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5.6 Real Data Examples 

The same 2D portion of the migrated Blackfoot seismic volume shown in Figure 5.19 

is used to test the performance of the reweighted deconvolution procedure when 

dealing with field data. The corresponding inversion results for inverted spikes 

(Figure 5.21) and the high resolution section (Figure 5.20) have demonstrated much 

better resolution than the original section. In particular, we are interested in the 

coherent events around 0.81s and 1.10s, which may represent two thin layers. They 

have been clearly resolved using this deconvolution strategy. The regularization 

parameter used in this real example is determined by examining the trace around that 

control well; therefore, the same penalty factor will be utilized for all the traces in this 

target zone. In fact, we can show that different regularizations will give different 

inversion results; however the one displayed here is reasonable enough. 
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Figure 5.18: SSD method. (a) Inverted odd wedge model; (b) True odd spike pairs. 
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Figure 5.19: Original band-limited seismic section. The well location is near the trace 

denoted by red color. 

Figure 5.20: Resolution-enhanced seismic section (bandwidth-extended) for SSD method. 
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Figure 5.21: Inverted reflectivity section for SSD method. 

Figure 5.22: SSD method. (a) Spectrum of the original trace at well location; 

(b) Spectrum of the bandwidth-extended trace at well location; (c) Spectrum of 

the inverted reflectivity at well location. 
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5.7 Chapter Conclusion 

The sparse spike deconvolution we discuss in this chapter is a conventional method of 

inverting for high resolution reflectivity in which a reweighted strategy is employed. 

The regularization term in the objective function derived using Huber’s criterion is 

continuously adapted in order to retrieve the broad-band reflectivity sequence. 

Incorporating the penalty term with l1-norm of the solution characterizing a prior 

distribution of long tails constrains those inversion results to be sparse structured.  

Selection of the penalty factor is a crucial step in solving for reasonable outputs. It is a 

trade-off between sacrificing primary events and producing false reflections caused by 

noise. However, acceptable inverted reflectivity sequences preserving those primary 

reflections could be obtained by choosing a relatively small penalty factor, even 

though a certain number of false spikes are generated. This is especially desirable 

when the seismic data is dominated by a few strong reflections. 

As evidenced by the results from the 2D seismic section, this sparse inversion method 

works pretty well in the real world, and the seismic resolution has been successfully 

increased. 
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Chapter 6  

 

Comparison and Discussion 

 

In previous chapters, various methods of extending seismic spectral bandwidth are 

investigated with both synthetic and real data examples. All of them have been 

demonstrated to be valid for enhancing seismic resolution. However, realizing the 

necessity for comparisons between all methods, a comprehensive evaluation will be 

carried out in this chapter. For convenience, the method introduced in Chapter 3 is 

labeled as “DFT” because the seismic trace is transformed into frequency domain in a 

global way. For the method in Section I of Chapter 4, it should be labeled as “MPD” 

because the signal is spectrally decomposed by matching pursuit algorithm locally 

instead of globally. In Section II, a continuous wavelet transform is employed to 

decompose the band-limited signal into discrete sub-bands for analyzing, so this 

methodology is labeled as “CWT”. The conventional sparse spike deconvolution 

method discussed in the last chapter is referred to as “SSD”. 

 

The apparent difference between the CWT method and the others is that it could only 

extend the data spectrum upward or downward within 0.5 to 2 octaves, while the other 

three methods can extrapolate the missing spectral information from zero frequency 

all the way to the Nyquist frequency. However, recovering a full spectral band does 

not necessarily mean resolving everything. Some high frequencies are actually 

incorrectly restored when interference effect is serious, which has been demonstrated 
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by those thinning beds in the wedge model tests. Therefore, those final spectrally 

extended wedge model responses for various methods have been plotted with the 

same bandwidth for both the even spike pairs (Figure 6.1) and odd spike pairs (Figure 

6.3), from which we can make a reasonable comparison. 
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Figure 6.1: Resolution enhanced wedge model responses from even spike pairs. (a) DFT 

method; (b) MPD method; (c) CWT method; (d) SSD method. 

Figure 6.2: Residuals between predictions and high frequency synthetics for the even part. 

(a) DFT method; (b) MPD method; (c) CWT method; (d) SSD method. 
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Although band-pass filtered with the same bandwidth, the four groups of wedge 

model responses produced by various methods have actually shown somewhat 

different resolving capabilities. For the even part, DFT method can distinguish the top 

and bottom reflectors at Trace 33, while MPD method resolves the thin beds down to 

Trace 30. The CWT method and SSD method resolve thin beds to Trace 34 and Trace 
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Figure 6.3: Resolution enhanced wedge model responses from odd spike pairs. (a) DFT 

method; (b) MPD method; (c) CWT method; (d) SSD method. 

Figure 6.4: Residuals between predictions and high frequency synthetics for the odd part. 

(a) DFT method; (b) MPD method; (c) CWT method; (d) SSD method. 
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32, respectively. For the odd part, the CWT method produces seismic responses with 

a smaller tuning thickness than the other three. The MPD method, however, exhibits 

the largest tuning thickness among them. Furthermore, we also calculate the 

differences between those resolution-enhanced seismic responses predicted by the 

various methods and their corresponding true high frequency synthetics. Dividing the 

Root-mean-square values of the errors by that of the high frequency synthetics, we 

find the average percentages for these four methods are 3.12% (DFT), 16.54% (MPD), 

33.58% (CWT) and 4.54% (SSD), respectively. Note that all the sections have been 

normalized and the calculations are compared in a relative sense. As observed from 

reviewing those sections for errors (Figure 6.2 and Figure 6.4), the DFT, MPD, and 

SSD methods all have shown relatively accurate predictions when the two events are 

enough apart. When it comes to the thinner part of the wedges, predictions by these 

three methods may deviate from the truth due to the interference effect. In contrast, 

the CWT method has shown relative stability for all thicknesses, even where 

interference becomes significantly serious. The reason why predictions from the MPD 

method deviate more than those from the others is because it may perform inferior 

when too much interference occurs. The largest error calculated from the CWT 

method is caused by the practical wavelet correction inherent in this method, in that 

its wavelet is no longer Ricker wavelet shaped; its resolution has been actually 

increased though. So why does the same bandwidth generate results with differing 

predictions and resolving capabilities? This is because even though the wedge model 

synthetics are purely clean with exact wavelet, various methodologies extend the 

original spectra in diverse physical perspectives which lead to those differences. 
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The DFT method analyzes the whole seismic trace using conventional Fourier 

transform which provides global spectral information. Errors in the extension partly 

arise from incorrect cross-correlation coefficients between the sinusoidal bases and 

the band-limited spectrum due to non-orthogonality. Observed from those inverted 

spike pairs with very small thickness, those thin beds are gradually considered as 

single events instead of separated ones, as the layer thickness approaches zero. As 

long as those primary reflections are dominant in the data, the DFT method could be 

regarded relatively robust against noise disturbance. Moreover, narrowing the usable 

data bandwidth may weaken the resolving capability of this method and even bring 

some detrimental impact in the final results. 

 

The MPD method utilizes matching pursuit algorithm to do spectral decomposition 

for the seismic data. The atom dictionary used in this part is composed of zero-phase 

wavelets which are obviously non-orthogonal bases. Compared with the sine waves as 

atoms over the limited spectral band in the previous method, the issue regarding 

non-orthogonality becomes more serious for the zero-phase wavelets employed in the 

MPD method. Reflection interference would directly affect the local decomposition 

by those correlated wavelet bases. Consequently, narrowing the wavelet bandwidth 

will also make interfering events increasingly difficult to be resolved. For composite 

events, some side lobes of the wavelet might be mistakenly regarded as main lobes, 

due to blindness of the matching pursuit strategy which will definitely distort the true 

reflectivity. Also, this may be further compounded by random noise. Consequently, 

the major reflections have to be strong enough so as to be revealed by the program.  
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A distinct characteristic for CWT method is that multichannel operators are used to 

compute the missing spectral information. Choosing a suitable operator length is 

important because multiple spectra series may bring better stability in the 

extrapolations. As those operators are designed in a least-squares error sense, the 

predictions should be non-unique, so the calculations on the far ends might deviate 

from true values. The advantage of this method using multichannel spectra for better 

stability is simultaneously also a disadvantage, because involving multiple time points 

may increase the chance of bringing in incorrect values. Furthermore, if there are too 

many events around a local time point, it will be difficult for the predictive operators 

to recognize the superposition of so much variations occurring in the spectra. 

Consequently, the spectral extension is limited in how far out it can reach. However, a 

positive aspect for this method is that it can manipulate the reflection interference 

internally and capture the true essence of underlying physical processes, which is the 

most amazing part for this methodology if it does work. 

 

The SSD method solves for the broad-band reflectivity sequence based on inverse 

theory, which is achieved by minimizing a regularized objective function. The 

regularization factor can be adjusted to produce results with varying degree of sparsity. 

Furthermore, thin beds with very small thicknesses might be inverted to be smoother 

waveforms than the true spikes, so as to optimize the objective function. This should 

be the inherent limitation for this method to resolve very thin layers. There is a chance 

for the SSD method to enhance high frequencies beyond the original bandwidth 

without amplifying noise. On the other hand, however, some useful information may 
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also be lost due to the noise suppression. 

 

In accordance with most seismic inverse problems, the accuracy of wavelet estimation 

plays an important role for all these methods. A biased wavelet for inversion would 

cause false events or hide true information and even cause the algorithm to totally fail. 

As observed in Figure 6.1 and Figure 6.3, the CWT method has performed somewhat 

better than the others, while MPD method has shown the lowest resolving capability. 

Take note that the wedge model tests in this thesis are carried out by exact data 

without noise. If robustness of these methods against noise is required to be 

investigated, this could be accomplished by watching the observation errors between 

the spectral extension results and the known high frequency synthetics. However, we 

shouldn’t draw any rapid conclusions about which methods will definitely work 

superior to the others. Even applying the same methodology, it may produce outputs 

with different degrees of satisfaction in different situations. In fact, any one of these 

various methods has a chance to surpass the others. Unless the data are exactly 

accurate, it will be unpredictable as to what is happening in the calculations for noisy 

data in the real world. Anyway, all the synthetic and real data examples presented in 

this paper have demonstrated those supposedly valid methods of extending spectral 

bandwidth are truly effective in seismic resolution enhancement. 

 

For each methodology discussed in this thesis, only one algorithm has been realized to 

accomplish the target. However, there are many other different ways to achieve the 

same goal. For instance, in the DFT method, basis pursuit could be used to solve for 
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those sinusoids coefficients in a global optimization. Even for the matching pursuit 

algorithm, there will be diverse modified versions to match the signal in better ways, 

which may be a great topic for future research. As for Chapter 5, more deconvolution 

techniques may be grouped under the category of sparse spike methods. The 

reflectivity sequence can also be retrieved based on the principle of maximum 

likelihood. Moreover, the objective function could be optimized by linear 

programming in order to produce reflectivity series with sparse structures. Through 

further studies and efforts, spectral bandwidth extension methods will definitely have 

a bright future as practical tools for high resolution seismic explorations. 
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