
Machine Learning for Multi-Access Edge Computing and

Autonomous Driving

by

Dawei Chen

A dissertation submitted to the Department of Electrical and Computing Engineering,

Cullen College of Engineering

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Electrical Engineering

Chair of Committee: Zhu Han

Committee Member: Miao Pan

Committee Member: Hien Van Nguyen

Committee Member: Jiang Xie

Committee Member: BaekGyu Kim

University of Houston
December 2021

Copyright 2021, Dawei Chen

ACKNOWLEDGMENTS

Upon the completion of this thesis, I am grateful to those who have offered me

encouragement and support during the course of my study.

First of all, my heartiest thanks flow to my supervisor, Professor Zhu Han, for his

helpful guidance, valuable suggestions, and constant encouragement both in my study

and in my life. His profound insight and accurateness about my Ph.D. research taught

me so much that they are engraved on my heart. He provided me with beneficial help

and offered me precious comments during the whole process of my Ph.D. study, which

will be an invaluable assets for my future career.

Also, I would like to express my sincere gratitude to all the dissertation committee,

Professor Miao Pan, Professor Hien Van Nguyen, Professor Jiang Xie, and Professor

BarkGyu Kim. Without their precious time, esteemed guidance, and continuous sup-

port, the dissertation would not be what it is now.

My appreciation also goes to my dear colleagues Xunsheng Du, Hongliang Zhang,

Kuo Chun Tsai, Saeed Ahmadian, Hao Gao, Jing Li, Wen Xie, Yuhan Kang, and Kai-

Chu Tsai, whom I always having great time with in both on and off work time. I am

also grateful to the visitors of our laboratory, Ruoguang Li, Chunxia Su, Xuelin Cao, Di

Zhou, Chuanyin Li, Junhua Wang, Zhongyu Miao, Benedetta Picano, Yue Yu, Ziye Jia,

Yan Zhu, Yu Zhang, Minghui Min, Zirui Zhuang, and Zhuang Ling, whom gives strong

support both in study and life. I am grateful to all my friends who give me support

during my Ph.D. life. They are Zefeng Gao, Yuhong Fang, Xiaoyu Jiang, Guihao Yan,

Kai Yin, Qianwen Wu, and Haifeng Tang.

Last but by no means least, I want to thank my mother, father, grandmothers,

grandfathers, uncles, aunts, and cousins, for their countless love, encouragement, and

support during my life. Their loving considerations and helps are the source of my

strength.

iii

ABSTRACT

Last twenty years have seen the explosive growth of information technology, and we
have stepped into the era of information explosion. These technologies significantly con-
tribute to the generation of the unprecedented quantity of data and make it challenging
for data storage and data processing. Multi-access edge computing is emerged as an
effective way to relieve the pressure of data processing. One of the typical edge com-
puting assisted applications is autonomous driving, which relies heavily on edge servers
for data analysis and decision making. However, with the growth of end users, how to
allocate the available edge computing resources to fulfill the requirements becomes a
challenging problem.

Machine learning, as a popular and effective method for decision making, has diverse
applications. Machine learning is the study of computer algorithms that can improve
automatically through experience and by the use of data. Machine learning algorithms
build a model based on sample data, known as training data, in order to make predictions
or decisions without human interference. Therefore, there is a great potential to utilize
the ideas, methods, and models of machine learning to make decisions for edge computing
resource allocation.

Given this background, this dissertation provides a theoretical research between
machine learning, multi-access edge computing, and autonomous vehicles. Especially,
different machine learning models and edge computing assisted applications are dis-
cussed. The main contribution of this dissertation are as follows.

1. The basic concepts and classifications of machine learning are provided. The
architecture, characteristics, and key technologies of multi-access edge computing
are given as well.

2. Applications of machine learning for edge computing resources allocation are stud-
ied. Also, except the utilization of machine learning method, the efficient machine
learning framework design is also discussed.

3. Numerical results are provided to show that the proposed method can be utilized
for object realization in edge computing scenario such as accurate prediction, low
latency. etc.

4. The potentials of machine learning for multi-access edge computing applications
in future wireless networks are discussed.

This dissertation provides a theoretical research between machine learning, multi-
access edge computing, and autonomous vehicles, in which different machine learning
models are utilized in different multi-access edge computing assisted applications as well
as efficient machine learning mechanism design. This work places a fundamental research
on edge computing resource allocation. This research has the potential to contribute to
the future wireless network area and has a long term effect on problems such as edge
computing resource deployment, service guaranteed wireless network design.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS iii

ABSTRACT iv

LIST OF FIGURES vii

1 INTRODUCTION 1
1.1 Machine Learning Basics . 2

1.1.1 Supervised Learning . 2
1.1.2 Unsupervised Learning . 4
1.1.3 Reinforcement Learning . 5

1.2 Edge Computing Basics . 7
1.2.1 Background . 7
1.2.2 Architecture of edge Computing 8
1.2.3 The Characteristics of Edge Computing 10

1.3 Dissertation Organization . 11

2 EDGE COMPUTING RESOURCES RESERVATION IN VEHIC-
ULAR NETWORKS: A META-LEARNING APPROACH 14
2.1 Introduction . 14
2.2 Related Work . 16
2.3 Scenario Description and Problem Formulation 18
2.4 Methodology . 20

2.4.1 Meta-Learning . 20
2.4.2 Machine Learning Model Space 24
2.4.3 LSTM Cell . 25
2.4.4 BiLSTM . 26
2.4.5 Stacked LSTM and Stacked BiLSTM 27

2.5 Simulation Results . 29
2.5.1 Data Generation . 29
2.5.2 Simulation and Evaluation . 31

2.6 Conclusion . 36

3 LOVE OF VARIETY BASED LATENCY ANALYSIS FOR HIGH
DEFINITION MAP UPDATING: AGE OF INFORMATION AND
DISTRIBUTIONAL ROBUST PERSPECTIVES 37
3.1 Introduction . 37
3.2 Related Work . 39
3.3 Preliminaries . 41

3.3.1 High Definition Map . 41
3.3.2 Sensor Systems in Autonomous Vehicles 42

3.4 System Model and Problem Formulation 44
3.4.1 Love of Variety . 45
3.4.2 Data Quality for Federated Analytics 46
3.4.3 HD Map Components . 47
3.4.4 Communication Model . 48
3.4.5 Age of Information . 49
3.4.6 Problem Formulation . 50

3.5 Deterministic Capacity Case . 51
3.6 Uncertain capacity case . 54

v

3.6.1 Wasserstein Distance Based Ambiguity Set 54
3.6.2 Distributional Robust Chance Constrained Optimization 55

3.7 Simulation results . 57
3.7.1 Deterministic Capacity Case . 58
3.7.2 Uncertain Capacity Case . 63

3.8 Conclusion . 64

4 MATCHING THEORY BASED LOW-LATENCY SCHEME FOR
MULTI-TASK FEDERATED LEARNING IN MEC NETWORKS 65
4.1 Introduction . 65
4.2 Related work . 67
4.3 System model and Problem Formulation 68

4.3.1 Federated Learning Preliminaries 69
4.3.2 Local Computation Model . 71
4.3.3 Communication Model . 72
4.3.4 Problem Formulation . 73

4.4 Methodology . 75
4.4.1 HR Problem Allocation Modelling with Incomplete Preference List 75
4.4.2 Participants and Edge Nodes Pairing 79

4.5 Numerical results . 82
4.6 Conclusion . 88

5 CONCLUSION AND FUTURE WORKS 89
5.1 Conclusion Remarks . 89
5.2 Future Work . 90

REFERENCES 93

vi

LIST OF FIGURES

1 The difference of classification problem and regression problem. 3
2 The k-means clustering. 4
3 The framework of reinforcement learning. 6
4 The architecture of edge computing. 8
5 The scenario and procedures description. 19
6 The proposed meta-learning framework. 22
7 The structure of a LSTM cell. 24
8 The architecture of BiLSTM network. 25
9 The structure of a stacked LSTM network. 26
10 The structure of a Stacked BiLSTM network. 27
11 The 3D model of Manhattan area built in Unity. 29
12 The different scenarios built in Unity. 30
13 System Overview. 39
14 Illustration of federated analytics for HD map generation. 44
15 Illustration of RLV. 45
16 Penalty function. 50
17 Edge server allocation percentage with different edge server capacity. . . 58
18 The AoI penalty with different edge server capacity. 59
19 Edge server allocation percentage with different global accuracy index. . 60
20 The AoI penalty with different global accuracy index. 60
21 Edge server allocation percentage with different average utility Ū 60
22 The AoI penalty with different average utility Ū 61
23 The federated learning procedures. 71
24 The multi-task federated learning framework in MEC scenario. 73
25 The example of matching edge nodes Ei with end devices Nj in both

complete and incomplete preference list cases. The orders indicates each
individual’s preference list. 78

26 Average network latency with different number of users. 83
27 Network latency with different number of edge nodes. 84
28 Network latency with different capacity of edge nodes. 85
29 Network latency with different local accuracy. 86
30 Network latency with different energy threshold. 86
31 Network latency with different preference list missing rate. 87
32 The scenario for adaptive resolution with communication resources con-

strained HD map updating. 91
33 The scenario for HD map distribution. 92

vii

1 Introduction

Last twenty years have seen the explosive growth of information technology, and we

have stepped into the era of information explosion. We are embracing the prevalence of

the Internet of Things (IoT), Cyber Physical System (CPS), Mobile Internet, wearable

devices, smart home, smart grid, smart city, Vehicular Ad Hoc Networks (VANETs),

large-scale wireless sensor network (LSWSN), etc., and feasting the convenience they

bring in every aspect of daily life. At the same time, these technologies also significantly

contribute to the generation of the unprecedented quantity of data and the consequent

requirements for data storage and data processing [1]. According to the anticipation of

Cisco, the number of devices that are connected to the Internet will achieve more than

50 billions by 2020. Correspondingly as a result, the total amount of yielded data can

reach 500 zettabytes by 2019, 45 percent of which will be dealt with or stored in the

network [2]. Such a kind of massive data bring a significant challenge to data processing

and storage.

To relieve the data processing pressure, multi-access edge computing is emerged

as a solution [3]. Edge computing employs a distributed and hierarchical computing

model. The edge nodes, which have computational abilities as well, are geographically

deployed. Those relatively lower complexity missions can be addressed in the edge nodes

directly instead of uploading to the cloud center, so as to the transmission distance can

be significantly minified, therewith the decreasing of latency [4]. As a consequence, the

edge computing is more suitable to address those real-time missions. One of the typical

edge computing assisted applications is autonomous driving, which relies heavily on

edge servers for data analysis and decision making [5]. However, with the growth of end

users, how to allocate the available edge computing resources to fulfill the requirements

becomes a challenging problem.

Machine learning, as a popular and effective method for decision making, has diverse

applications. Machine learning is the study of computer algorithms that can improve

automatically through experience and by the use of data. Machine learning algorithms

build a model based on sample data, known as training data, in order to make predictions

or decisions without human interference. Therefore, there is a great potential to utilize

1

the ideas, methods, and models of machine learning to make decisions for edge computing

resource allocation.

In this dissertation, we mainly focus our research on how to use machine method to

allocate edge computing resources. Also, we discuss the mechanism design to optimize

the machine learning framework. The basics of machine learning and edge computing

are provided in Section 1.1 and Section 1.2 respectively. The main organization of this

dissertation is given in Section 1.3.

1.1 Machine Learning Basics

Machine learning, as a popular and effective method for decision making, has diverse

applications. Machine learning is the study of computer algorithms that can improve

automatically through experience and by the use of data. Machine learning algorithms

build a model based on sample data, known as training data, in order to make predictions

or decisions without human interference. Basically, it can be categorized into three

classes: supervised learning, unsupervised learning, and reinforcement learning.

1.1.1 Supervised Learning

For supervised learning, the data sample contains data features as well as desired

output. So the basic method is to feed the machine a plenty of data, and in the training

process, the backpropagation will be used to adjust the parameters of the machine

learning model like weights and biases. Therefore, by calculating a specific piece of

input data, it can gives out the desired value. So basically a supervised learning can

be divided into classification problem and regression problem. Both the algorithms are

used for prediction in Machine learning and work with the labeled datasets. But the

difference between both is how they are used for different machine learning problems.

The main difference between Regression and Classification algorithms that Regression

algorithms are used to predict the continuous values such as price, salary, age, etc. and

classification algorithms are used to predict/classify the discrete values, as is shown in

Fig. 1.

In machine learning, classification refers to a predictive modeling problem where a

2

Figure 1: The difference of classification problem and regression problem.

class label is predicted for a given example of input data. The typical classification prob-

lems are image classification, identity fraud detection, customer retention, and disease

diagnostics. From a modeling perspective, classification requires a training dataset with

many examples of inputs and outputs from which to learn. A model will use the train-

ing dataset and will calculate how to best map examples of input data to specific class

labels. As such, the training dataset must be sufficiently representative of the problem

and have many examples of each class label. Class labels are often string values, e.g.

“spam,” “not spam,” and must be mapped to numeric values before being provided to

an algorithm for modeling. This is often referred to as label encoding, where a unique

integer is assigned to each class label, e.g. “spam” = 0, “no spam” = 1. The objective

function for two-class classification problem can be written as

f = − 1

K

 K∑
j=1

yj log(ωTxj) + (1− yj) log
(
1− ωTxj

) , (1)

where j denotes the j-th data sample, ω is model weights, and K is the number of

data samples. There are many different types of classification algorithms for modeling

classification predictive modeling problems. But there is no good theory on how to map

algorithms onto problem types; instead, it is generally recommended that a practitioner

use controlled experiments and discover which algorithm and algorithm configuration

results in the best performance for a given classification task.

Regression predictive modeling is the task of approximating a mapping function f

3

Figure 2: The k-means clustering.

from input variables x to a continuous output variable y. The typical regression prob-

lems are like population growth prediction, advertising popularity prediction, weather

forecasting, market forecasting, and estimating life expectancy. The typical loss function

of a regression problem can be written as

f =
1

2

(
xTω − y

)2
, (2)

where ω is model weights.

1.1.2 Unsupervised Learning

For unsupervised learning, the data are without label. Unlike supervised learning,

the unsupervised learning algorithm should rely on its own to find structure in its input.

In some pattern recognition problems, the training data consists of a set of input vectors

x without any corresponding target values. The goal in such unsupervised learning

problems may be to discover groups of similar examples within the data, where it is called

clustering, as shown in Fig. 2, or to determine how the data is distributed in the space,

known as density estimation. The clustering applications are like recommend systems,

targeted marketing, and customer segmentation. For density estimation problems, the

typical applications are like, meaningful compression, big data visualization, structure

discovery, feature elicitation.

Also, in another way, unsupervised learning can be categorized into two classes:

4

parametric unsupervised learning and non-parametric unsupervised learning. For para-

metric unsupervised learning, it assumes that sample data comes from a population that

follows a probability distribution based on a fixed set of parameters. Theoretically, in

a normal family of distributions, all members have the same shape and are parameter-

ized by mean and standard deviation. That means if you know the mean and standard

deviation, and that the distribution is normal, you know the probability of any future ob-

servation. Parametric Unsupervised Learning involves construction of Gaussian Mixture

Models and using Expectation-Maximization algorithm to predict the class of the sam-

ple in question. This case is much harder than the standard supervised learning because

there are no answer labels available and hence there is no correct measure of accuracy

available to check the result. In non-parameterized version of unsupervised learning,

the data is grouped into clusters, where each cluster(hopefully) says something about

categories and classes present in the data. This method is commonly used to model

and analyze data with small sample sizes. Unlike parametric models, nonparametric

models do not require the modeler to make any assumptions about the distribution of

the population, and so are sometimes referred to as a distribution-free method.

1.1.3 Reinforcement Learning

Reinforcement learning is the training of machine learning models to make a se-

quence of decisions. The agent learns to achieve a goal in an uncertain, potentially

complex environment. In reinforcement learning, an artificial intelligence faces a game-

like situation. The computer employs trial and error to come up with a solution to the

problem. To get the machine to do what the programmer wants, the artificial intelli-

gence gets either rewards or penalties for the actions it performs. Its goal is to maximize

the total reward. The framework is illustrated in Fig. 3.

The basic reinforcement learning algorithm, Q-learning, is to learn a policy π(a|s)

of an agent interacting with the environment over time. In this chapter, we use s and

a denote current state and action at time t, respectively, and use s′ and a′ denote next

state and next action at time t+1, respectively. At each time instance t, the interacting

is realized by an action a ∈ A, which brings a reward rt to the agent and the feedback

5

Figure 3: The framework of reinforcement learning.

can be positive as a prize or negative as a penalty. Meanwhile, through different actions,

the agent will transit from the current state s to the next state s′. Intuitively, we can

define the reward function as R(s, a) and the state transition probability as p(s′|s, a),

respectively. This state transition process will not be suspended until the state achieves

a terminal state. Over the time, the accumulated reward can be written as

Rt =

∞∑
k=0

γkrt+k, (3)

where γ is a discount factor in the range of (0, 1]. The purpose of the agent is to

maximize the expected long term reward.

The state value function is the expectation of reward from state s adopting policy

π, which is Vπ(s) = E [Rt|s]. In order to find the value function of each state, we need

to solve the Bellman equation

Vπ(s) = Eπ,p[R(s, a) + γVπ(s
′|s)]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVπ(s
′)],

(4)

for all s ∈ S and a ∈ A. The desirable state value is V ∗(s) = max
π

Vπ(s). Then, we

define a state-action pair function Qπ(s, a), which means the expected reward by action

a in state s under the policy π. We can rewrite (4) as

Qπ(s, a) = Eπ,p
[
R(s, a) + γQπ(s

′, a′)
]

=
∑
s′,r

p(s′, r|s, a)

[
r + γ

∑
a′

π(a′|s′)Qπ(s′, a′)

]
,

(5)

6

where, a′ is the next action. Correspondingly, the objective function turns to be

Q∗ = max
π

Qπ(s, a). (6)

The main challenge in reinforcement learning lays in preparing the simulation envi-

ronment, which is highly dependant on the task to be performed. When the model has

to go superhuman in Chess, Go or Atari games, preparing the simulation environment is

relatively simple. When it comes to building a model capable of driving an autonomous

car, building a realistic simulator is crucial before letting the car ride on the street. The

model has to figure out how to brake or avoid a collision in a safe environment, where

sacrificing even a thousand cars comes at a minimal cost. Transferring the model out of

the training environment and into to the real world is where things get tricky.

1.2 Edge Computing Basics

1.2.1 Background

With the development of information technology in the last twenty years, we step

into an era of information explosion. The unprecedented quantity of data and the

requests for data processing are generated. Internet of Things (IoT), Cyber-Physical

System (CPS), Mobile Internet, etc., have a great contribution to speed data genera-

tion. According to the anticipation of Cisco, there will be more than 50 billion devices

connected to the Internet by 2020. And the amount of generated data could reach 500

zettabytes, 45 percent of which will be processed or stored in the network by 2019 [2].

Such a kind of massive data bring a significant challenge to data processing and storage.

In order to handle the huge workload, cloud computing emerges as a solution [1]. And

its architecture is shown in Fig. 4.

The advantages of cloud computing lie in the powerful data processing ability and

the huge capacity for storage. But the computation model of cloud computing is a kind

of centralized model, which means every job request or task has to be uploaded to the

cloud data center for processing therefore easily resulting in cloud server overloaded. In

addition, from the perspective of transmission, the long distance and the limited network

7

Figure 4: The architecture of edge computing.

bandwidth are still intractable problems [6]. Thus, the latency is an inevitable challenge.

In order to surmount this, edge computing is proposed, which employs a hierarchical

computation model. The main idea is to geographically distribute the cloud services to

the edge of network rather than the cloud center [7]. Therefore, the transmission distance

can be significantly reduced. Furthermore, the edge nodes themselves are possessed of

data processing abilities to a certain extent. Hence, not all the tasks need to be uploaded

to the cloud. Those relatively lower complexity tasks can be dealt with in edge nodes

and then send back to the terminal devices so the latency can be further decreased [8].

In the aspect of technology, we can obviously find that the edge computing is more

suitable for the real-time missions due to the low latency property, which is conductive

to improve the quality of service (QoS).

1.2.2 Architecture of edge Computing

The reference model of edge computing architecture is a significant research topic.

In recent years, a number of architectures have been proposed for edge computing. They

are mostly derived from the fundamental three-layer structure. edge computing extends

cloud service to the network edge by introducing edge layer between end devices and

cloud. Fig. 2 shows the hierarchical architecture of edge computing.

The hierarchical architecture is composed of the following three layers:

A Terminal layer: This is the layer closest to the end user and physical environment.

8

It consists of various IoT devices, for example, sensors, mobile phones, smart ve-

hicles, smart cards, readers, and so on. Specially, though the mobile phones and

smart vehicles have the computing power, we only utilize them as the smart sens-

ing devices here. These devices are widely geographically distributed in general.

They are responsible for sensing the feature data of physical objects or events and

transmitting these sensed data to upper layer or processing and storage [9].

B edge layer: This layer is located on the edge of the network. edge computing layer

is composed of a large number of edge nodes, which generally including routers,

gateways, switchers, access points, base stations, specific edge servers, etc. These

edge nodes are widely distributed between the end devices and cloud, for example,

cafes, shopping centers, bus terminals, streets, parks, etc. They can be static at

a fixed location, or mobile on a moving carrier. The end devices can conveniently

connect with edge nodes to obtain services. They have the capabilities to compute,

transmit and temporarily store the received sensed data. The real-time analysis

and latency-sensitive applications can be accomplished in edge layer. Moreover,

the edge nodes are also connected with cloud data center by IP core network, and

responsible for interaction and cooperation with cloud to obtain more powerful

computing and storage capabilities.

C Cloud layer: The cloud computing layer consists of multiple high-performance

servers and storage devices, and provides various application services, such as

smart home, smart transportation, smart factory, etc. It has powerful computing

and storage capabilities to support for extensive computation analysis and perma-

nently storage of an enormous amount of data. However, different from traditional

cloud computing architecture, not all computing and storage tasks go through the

cloud. According to the demand-load, the cloud core modules are efficiently man-

aged and scheduled by some control strategies to improve utilization of the cloud

resources [10].

9

1.2.3 The Characteristics of Edge Computing

A Low latency and real time interactions: edge nodes at the network edge locally

acquire the data generated by sensors and devices, process and store data by

network edge devices in local area network. It significantly reduces data movement

across the Internet and provides speedy high-quality localized services supported

by endpoints. Therefore, it enables low latency and meets the demand of real time

interactions, especially for latency-sensitive or time-sensitive applications.

B Save bandwidth: edge computing extends the computation and storage capabilities

to the network edge to perform data processing and storing between the end nodes

and traditional cloud. Some computation tasks, for example, data preprocessing,

redundancy removing, data cleaning and filtering, valuable information extraction,

are performed locally. Only part of useful data is transmitted to the cloud, and

most of the data don’t need to be transmitted over the Internet [11].

C Support for mobility: In edge computing scenarios, there are various mobile devices

(e.g., smart phones, vehicles, and smart watch) so that the spatial mobility at the

terminal layer is frequent, while there are also some end devices remained static,

such as traffic cameras. Similarly, edge node in edge layer can also be a mobile or

static computing resource platform. It can be deployed in airport and coffee shop,

or on the mobile vehicles and trains.

D Geographical distribution and decentralized data analytic: Compared with the

more centralized cloud computing, the services and application of edge comput-

ing advocate geographical distributed deployment. It consists of large number of

widely distributed nodes, which have the ability to track and derive the locations

of end devices in order to support the mobility [12]. Instead of processing and

storing information in centralized data center far away from end-user, the decen-

tralized architecture of edge computing ensures the proximity of data analytics

to the customer. This characteristic can support faster analysis of big data, bet-

ter location-based services, and more powerful capabilities of real-time decision

making.

10

E Data security and privacy protection: edge computing hosts services closed to

end-users. So it has particular advantages in data security and privacy protection.

Firstly, it can protect data by encryption and isolation. edge nodes provide access

control policy, encryption schemes, integrity check and isolation measures to pro-

tect the security of sensitive privacy data. Secondly, it can avoid the risks caused

by system upgrade. The remote upgrade of traditional devices is low efficiency,

and there are disadvantages such as firmware upgrade lost contact. edge comput-

ing does not need Over-the-Air Technology (OTA) firmware upgrade of system,

only update the algorithms and micro applications in the edge end [13].

F Low energy consumption: In the edge computing architecture, edge nodes are

dispersed geographically. So it will not generate a lot of heat due to concentration,

and need not additional cooling system. In addition, short range communication

mode and some optimal energy Management Policies of mobile nodes evidently

reduce communication energy consumption. This will lead to reducing power

consumption, saving energy and decreasing the cost. edge computing provides a

greener computing paradigm [14].

1.3 Dissertation Organization

The rest of dissertation is organized as follows. In Chapter 2, we utilize the meta-

learning method to predict edge computing resources demand in vehicular networks.

In order to minimize the expenses to consume edge computing resources, this chapter

proposed a two-stage meta-learning approach. In the first stage, a DNN is utilized to

learn the experience dataset so as to figure out which machine learning model performs

better in a specific situation. In the second stage, the resource amount anticipation

will be conducted by the machine learning model selected by the DNN obtained in the

first stage according to the meta-features. In addition, due to the fact that there is no

open edge computing based vehicular network dataset, we program in the game engine

Unity3D to build the 3D model of Manhattan area as in real world. Meanwhile, we adjust

the factors like different roadmaps, the number of vehicles, and the randomness of task

sizes for the traffic, which makes our data get closer to the practice. Eventually, we find

11

that out proposed meta-learning method always gives the most economical predictions,

which helps save up to 39.93%, 37.15%, 5.62%, and 70.47% for multi-intersections,

roundabout, highway, and bridge scenarios, respectively, compared with the fully real

time requests.

In Chapter 3, the edge computing assisted high definition map updating mecha-

nism is discussed. As a latency sensitive application, HD map transmission needs to

be performed in a timely manner. This chapter investigates an information staleness

minimization problem for federated analytics based HD map generation and layer-wise

transmission offloading. Fortunately, emerging MEC provides a low-latency paradigm

for data transmission. But the available edge computing resources may be variational

practically. Therefore, this chapter discusses two cases, i.e., deterministic edge capacity

case and uncertain edge capacity case. For the deterministic edge capacity case, the

optimal solution is obtained analytically. And the influence of different edge server ca-

pacity, federated analytics accuracy, vehicle utility is also discussed. For the uncertain

edge capacity case, the problem is reformulated into a DRCCO optimization problem

and solved by the CVaR model based approximation. The experiments demonstrate the

CVaR model based approximation is able to find near-optimal solutions with much less

time consumption.

In Chapter 4, a low latency purposed framework design for edge assisted federated

learning is described. In this chapter, we study the low latency problem for multi-

task federated learning in the MEC networks. Considering in large scale IoTs scenario,

it is not possible for edge nodes and end devices to obtain the complete information

of the other side, which means building the complete preference list is impractical.

Therefore, we propose a method to deal with the two-sided many-to-one matching with

the incomplete preference list. The simulation results show that the performance of

our proposed method is close to the performance of CPL, although there is small gap

between them due to information missing. Besides, we also discuss the influence of

number of participants, the number of edge nodes, the edge node capacity, local accuracy,

energy threshold, and preference list missing rate among network latency. Evidently, the

network latency is positively related to the missing rate while is negatively correlated

12

with number of edge nodes, capacity of edge nodes, energy threshold, and local accuracy

indicator.

Finally, some possible future works and conclusions are given in Chapter 5.

13

2 Edge Computing Resources Reservation in Vehicular

Networks: A Meta-Learning Approach

2.1 Introduction

Having stepped into the era of information technology, there are enormous artificial

intelligence based autonomous devices, technologies, and services coming into being, one

important branch of which is autonomous vehicles or intelligent vehicles. According to

the definition of National Highway Traffic Safety Administration (NHTSA), the levels

of vehicle automation can be categorized into six classes, which are distinguished by

the extent of autonomy [15]. Currently, the performance of autonomous vehicles can

just meet the requirements between level 2 and level 3, and both of which require the

driver must be ready to take back control at any time. In other words, the artificial

intelligence based autonomous driving remains much to be done before realizing the

human occupants never need to be involved in driving, such as accurate prediction,

precise inference, latency decreasing, etc.

For the time being, the artificial intelligence technologies of autonomous vehicles

heavily rely on the data generated by the built-in devices such as an array of sensors,

electronic control units, cameras, etc. According to the forecast of Intel, the data gener-

ated by one single autonomous vehicle will achieve 4TB data per day [16]. Such a kind of

massive data bring inevitable challenges to data processing and storage within vehicles,

especially for those real-time tasks with high computation complexity such as collabo-

rative perception, path planning, collaborative simultaneous localization and mapping

(SLAM), real-time pedestrian detection, or with high demands for storage capacity like

uploading driving records. In this case, cloud computing can be an effective way to help.

Nowadays, there are two mainstream cloud computing paradigms: one is the con-

ventional centralized cloud computing and the other one is edge computing. The su-

periority of traditional centralized cloud computing is founded on the powerful data

processing ability and the enormous storage capacity of remote datacenter. However,

as a centralized paradigm, all the data needs to be transmitted to the datacenter for

storage or further processing. The latency caused by long transmission distance and

14

limited bandwidth is a significant challenge for vehicular networks [17]. On the op-

posite side, the architecture of edge computing performs better for latency alleviation

and is more suitable for real-time tasks demanded by autonomous vehicles. Because in

edge computing configuration, many edge nodes will be deployed in a geographically

distributed manner within the network, which means the services can be provided to

the users more closely. Moreover, edge nodes are capable of computation ability and

storage capacity to a certain extent, which makes it feasible to perform tasks locally

and feedback the results to vehicles on time. Accordingly, transmission latency can be

reduced significantly and quality of service (QoS) can be remarkably improved [18].

From the commercial perspective, the investment for edge nodes deployment will

increase the expenditures of services-providers correspondingly, resulting in a relatively

expensive price of edge services [19]. Meanwhile, aiming at catering to the market

demands and attracting more customers, the corporations carry out some marketing

strategies, one of which is that the services can be sold in a reservation or subscrip-

tion way with a cheaper price and a real-time requested way with an expensive price.

Furthermore, different purchasing programs are supplied and the customers can decide

which program to get enrolled in according to their own consumption characteristics.

For instance, Amazon Web Services (AWS) provides several purchase schemes to cus-

tomers, which are pay-as-you-go, save when you reserve, and pay less by using more

[20]. Concretely, these programs are described as the following:

1. Pay-as-you-go: the customers can adjust the services demands at any time de-

pending on the their own needs and only need to pay for services on an as needed

basis.

2. Save when you reserve: for the service like the Amazon Elastic Compute Cloud

(Amazon EC2) and Amazon Relational Database Service (Amazon RDS), if the

customers reserve in advance, a certain percent discount will be provided. In

addition, if paid with upfront payments, the customers will be charged further

less.

3. Pay less by using more: this is a common marketing strategy, which means for

services like Amazon simple storage services (S3), if more volumes you consume,

15

the less you will pay per GB.

Obviously, it is a more economical way to consume services by reservation in ad-

vance and the customers can save up to 75% compared with equivalent on-demand

scheme based on the AWS’s description. Therefore, for the purpose of minimizing the

expenditure, it is of great importance for customers to figure out how many resources,

i.e., computational memory or storage memory, should be reserved. Intuitively, this

expense minimization problem can be regarded as a prediction problem. However, the

amount of edge resource consumption actually is closely related to many factors, such as

speed, road map, task type, etc. While traditional optimization algorithms are not effec-

tive to address such high-dimensional nonlinear regression problems [21]. Fortunately,

the emerging machine learning methods provide powerful tools to tackle with such pre-

diction problems. Due to the diversity of influence factors in vehicular networks, we

can hardly find one machine learning model which is suitable and performs the best in

any scenarios [22]. Considering there are similarities in these scenarios, meta-learning

can be an effective method to help, whose goal is to learn from the experience or prior

knowledge that generalizes well to related new tasks. Therefore, we propose a two-stage

meta-learning based approach to adaptively choose the appropriate machine learning

algorithms according to the meta-features extracted on databases.

2.2 Related Work

As a promising distributed computation paradigm, edge computing has become a

popular field of research. However, most existing papers in an edge computing scenario

focus on the technology perspective of the edge computing network side, like network

architecture improvements, edge nodes placement, edge-assisted tasks offloading, etc.

[23] proposes a fine-grained collaborative offloading strategy with caching enhancement

scheme to minimize the latency at the edge side in both femto-cloud mobile network

scenario and mobile edge computing scenario. [24] proposes a method based on the

Lagrangian heuristic algorithm and workload allocation scheme to optimally place the

cloudlets, under the considerations of both cloudlet cost and average end-to-end delay

in a mobile edge computing scenario. [25] proposes a novel communication scheme to

16

Table 1: Typical Edge Computing Companies and Products

Company
Name

Typical Product Main Functionalities

Amazon AWS Greengrass Pushing local computing, communication,
caching, sync, and machine learning inference
to edge devices

Clear Blade Edge Software Deploying and managing IoT systems on the
edge, and communicating with on-premise
devices

Cisco Gateway IC3000 Providing built-in security and manageability,
enabling faster decision making at the edge

Dell EMC VMware Cloud Extending public cloud benefits to workloads
in both private datacenter and edge locations

FogHorn Lightning Offering rapid data ingestion, sensor fusion,
and machine learning to generate actionable
insights in real-time

HPE Edgeline Aggregating and filtering data, analyzing video
streams, and translating industrial protocols

IBM Waston IoT IoT security, data analyzing, IoT management,
and IoT machine learning application

Microsoft Azure IoT Edge Offloading artificial intelligence and analytics
workloads to the edge

Rigado Cascade Edge infrastructure establishment and
connecting devices in Commercial IoT
environments

Saguna vEdge Providing virtualized resources to enable
on-edge applications and real-time network
visibility

enable the low-latency, robust and accurate edge node assisted self-driving service for

connected autonomous driving services in a mobile edge computing scenario. Different

from these literature, this chapter stands on the side of edge resources consumers and

focuses on the economic aspect to minimize the expenditure for customers. Therefore,

in this chapter, the specific architecture of edge computing network, the limitation of

edge resources, and the wireless communications are unconcerned.

Thanks to the low-latency and distributed properties of edge computing, diverse

use cases can be supported, such as connected autonomous vehicles, e-health, industrial

automation, mobile gaming, smart grid, and Internet of Things (IoT) services. Corre-

spondingly, such characteristics and capabilities offered by an edge computing platform

can be translated into unique value and revenue generation [26], which also prompts

17

some researches on commercial aspect of edge computing. Present typical edge comput-

ing companies are summarized in Tab. 1. [27] discusses the influences of five factors,

i.e., ease of use, security, cost reduction, reliability, and collaborating, on the cloud us-

ages of micro and small businesses. [28] introduces a framework that leverages pricing

aspects to enable the sharing economy vision for edge devices applied into the smart city

scenario. [29] compares several pricing models, such as the time based model, volume

based model, flat rate, content based model, etc., and discusses the pricing schemes

from different cloud services providers including AWS EC2, AWS S3, Microsoft Azure,

and AppNexus. Whereas, these works analyze and discuss problems on from the per-

spectives of service providers and the market operations instead of service customers as

well.

As a promising machine learning approach, meta-learning has attracted consider-

able interests of diverse science and engineering communities recently, and is widely used

in different fields. [30] proposes a meta-learning based framework to learn the online

learning algorithm from offline videos so as to address an object tracking problem. [31]

proposes a meta-learning based method to tackle with an automatic text classification

problem through utilizing the distance-based meta-features derived from the original

bag-of-words representation. [32] proposes a novel meta-learning method for domain

generalization by a model agnostic training procedure so that the domain shift problem

can be avoided. [33] proposes a two deep neural network architecture based meta-

learning strategy to solve the clod-start problem for item recommendations when new

items arrive continuously. However, to the best of our knowledge, there is no existing

literature that implements a meta-learning based method to deal with an edge resource

reservation problem in vehicular networks.

2.3 Scenario Description and Problem Formulation

In this chapter, we consider an edge computing platform deploying edge nodes and

providing edge computing services. The computational resources or storage resources

can be purchased via reservation or real-time request. The automotive company pro-

vides services to the autonomous vehicle customers, such as collaborative perception,

18

Vehicles

Automotive CompanyEdge Server

Business Contract

Reservation and Payment

Figure 5: The scenario and procedures description.

path planning, collaborative simultaneous localization and mapping, real-time object

detection, etc. Consequently, it is inevitable for automotive company to pay the rental

fee or operation fee to the edge platform so as to offer the corresponding services to

customers. The procedures are described in Fig. 5.

We define the unit price for reservation and real-time request as Prv and Prt, re-

spectively. To perform some computation-intensive or storage-demanding tasks, the

practical needed amount for edge resources is n units. While the total amount reserved

by automotive company is m units. Intuitively, only when n = m, the consumption

expenditure is optimally minimized. Because when n > m, the reserved amount of

resources cannot meet the usage requirements and the extra real-time purchasing is in-

evitable. When n < m, the reserved amount of resources exceeds the actual demand,

which actually is a waste for both customers and services provider. Therefore, the total

cost of consuming edge services S can be described by the following function

S =

m× Prv, n ≤ m,

m× Prv + (n−m)× Prt, m < n.

(7)

Correspondingly, the total wasteW can be calculated as the following piece-wise function

W =

(m− n)× Prv, n ≤ m,

(n−m)× Prt, m < n.

(8)

Obviously, in order to minimize the waste, the desirable situation is m = n. Thereby,

19

the objective function can be defined by mean-square-error (MSE)

min ∥m− n∥22 . (9)

2.4 Methodology

In this section, we firstly introduce our proposed two-stage meta-learning approach.

Then, the machine learning models utilized in this chapter are introduced as well.

2.4.1 Meta-Learning

Meta-learning is also known as learning to learn, which is not specifically defined

but covers any kind of machine learning methods based on prior knowledge learned from

other related tasks. One of the typical meta-learning problems is the algorithm selection

problem (ASP). [34] formulates the classical ASP and proves that there is a connection

between the problem characteristics and the algorithm which can be utilized to solve it.

Later, [35] further demonstrates there will be no one single algorithm that can work out

optimums for all the problems. In other words, the algorithm performs differently from

problem to problem, or more specifically, from dataset to dataset. However, generally,

ASPs are NP-hard, which are challenging to be resolved by traditional optimization

methods [36]. Therefore, we propose a two-stage meta-learning approach to address this

problem. Before looking into the details, some preliminary definitions and descriptions

are introduced here. In this work, the meta-learning task is made up by the following

components:

• The task or problem space P: a set of problems that contains both solved and

unsolved ones. Essentially, the dimension of P is high due to the diversity of char-

acteristics embedded in the tasks, which is the factor that leads to the performance

fluctuation of same model among different problems. In this work, P indicates the

edge resource prediction problems in vehicular networks under different scenarios.

• The meta-feature space C: a set of data characteristics reflecting the internal or

intrinsic representations of a dataset. Basically, C is a multi-dimensional vector

mathematically. The specific types of meta-features are decided by the problem

20

and the selected machine learning models, the typical forms of which include sim-

ple meta-features (such as the number of samples, the number of classes, etc.),

statistical meta-features (such as skewness, kuitosis, covariance, correlation, etc.),

information-theoretic meta-features (such as norm entropy, mutual information,

uncertainty coefficient, etc.), complexity based meta-features (such as Fisher’s dis-

criminant, volume of overlap, data consistency, etc.), model based meta-features

(like for decision tree, the number of leaves, branch length, information can be the

meta-features), and landmarkers, etc [37]. The specific meta-features utilized in

this work are introduced in details in Section 2.5.1.

• The machine learning model or algorithm space M: basically it can be the uni-

versal set which contains all the existing algorithms. Whereas, practically, when

considering one specific problem, M can only be a set of appropriately selected

ones. In this work, because the tasks are time series data based prediction prob-

lems,M is defined as a group of long short term memory (LSTM) based machine

learning models, which is detailedly introduced in Section 2.4.2.

• The performance evaluation space E : is a set of diverse metrics to assess the

performance of algorithms inM on a dataset. The evaluation metrics implemented

in this work are discussed concretely in Section 2.5.2.

For each task Ti in P, what is supposed to be learned the distribution over the

dataset, which can be described as p(Ti). In order to find the best regression model, the

traditional method is to apply all the algorithms inM to Ti, and then perform ranking

calculations to determine which specific algorithm should be the one [38]. However,

one defect of this approach is that, each time when dealing with a new but related

task, calculating over the space M is time-costing. Meanwhile, the prior-knowledge

concealed in history experiences are not well exploitative. Therefore, we propose a two-

stage meta-learning method to solve this problem, which is illustrated in Fig. 6. On

the first stage, we utilize a deep neural network (named as Decider) to figure out which

algorithm should be selected according to the experiences. On the second stage, the

chosen machine learning model (named as Prognosticator) is implemented to perform

the inference for edge resource consumption.

21

Meta-Feature

Extraction

Input

Dataset

…

Machine Learning

Model Space

Selected Machine

learning Model

(Prognosticator)

Time Series Data

Reservation

Prediction

Decider

Figure 6: The proposed meta-learning framework.

Basically, each algorithm inM can be denoted as fθi , where f is the function that

can represent the ith algorithm in M and θ describes the corresponding parameters

determined by the machine learning model configurations. Intuitively, the objective

function or loss function of the Decider can be written as

min
i
L1 (fθi) = ∥fθi(c)− r∥

2
2 ,

s.t. fθi ∈M,

c ∈ C,

(10)

where c is the meta-feature vector and r is the suggested algorithm according to history

experiences which gives the most economical scheme. The architecture of the Decider

is a fully-connected deep neural network, which means the output of each hidden layer

22

will be the input of the following hidden layer. Thus, to optimize the network, back-

propagation is inevitable operation through the network, which can be described as,

∂L1
∂δ(l)

=
∑(

∂L1
∂o(l)

)
∂o(l)

∂o(l−1)

∂o(l−1)

δ(l)
, (11)

where l denotes the number of hidden layers of the Decider, δ(l) describes the generalized

parameter set (including weight and bias) in layer l, i.e., δl = {w(l), b(l)}, and o(l) denotes

the output of layer l. During each iteration, the parameters of all the layers will get

updated by

δ
′
= δ − α∇δL1, (12)

where α is the learning rate. When the number of iterations or the value of loss function

achieves the threshold, the training phase ends and the optimal algorithm f∗θ or the

Prognosticator can be obtained. Until here, all the operations in stage one have been

finished.

The second stage is to exploit the Prognosticator obtained in stage one to predict

the edge resource consumption. In this stage, what needs to be done is to optimize the

parameters of Prognosticator so as to fit the new dataset N from Ti. Pre-requisitely, it

is necessary to divide N into training set and testing set, which are denoted as x and

y, respectively. Therefore, the objective function of Prognosticator can be defined as

min
ϕ
L2 (f∗θ (ϕ)) =

∑
(x,y)∼Ti

∥f∗θ (ϕ;x)− y∥22 , (13)

where ϕ is the parameters set for the machine learning model f∗θ . To minimize the error,

likewise, the Prognosticator will perform the back-propagation, i.e.,

∂L2
∂ϕ(p)

=
∑(

∂L2
∂o(p)

)
∂o(p)

∂o(p−1)

∂o(p−1)

ϕ(p)
, (14)

where p denotes the number of hidden layers in the Prognosticator. For step in (14),

the parameters ϕ will be updated by

ϕ
′
= ϕ− β∇ϕL2, (15)

23

Algorithm 1 The Proposed Two-Stage Meta-Learning

1: Input: experience data D; meta-feature space C; machine learning model spaceM;
new task Ti; new task dataset N ; learning rates α and β; maximum iteration steps
for stage one tmax and stage two kmax, respectively.

2: Randomly initialize the parameter δ.
3: for t=1:tmax do
4: Feed forward propagate all the samples in D and calculate the MSE by (10);
5: Back propagate MSE through the network by applying (11) and update the values

of parameter set δ
′
via (12);

6: end for
7: Output: the trained Decider with optimal parameters δ∗ ;
8: Feed the meta-features ci from Ti into the Decider and the specific Prognosticator,

i.e., f∗θ , can be obtained;
9: Divide N into training set x and testing set y;

10: Feed x into f∗θ with randomly initialized parameters ϕ;
11: for k=1:kmax do
12: Feed forward propagate all the samples through x and get the MSE by (13);
13: Back propagate MSE throughout the network f∗θ by applying (14) and update the

parameter set ϕ
′
via (15);

14: end for
15: Output: the Prognosticator f∗θ with optimal parameters ϕ∗;
16: Feed the testing data y into f∗θ (ϕ

∗) and infer the amount of edge resource consump-
tion;

Forget Gate Input Gate Output Gate

Figure 7: The structure of a LSTM cell.

where β is the learning step size. Overall, the procedures are summarized in Algorithm

1.

2.4.2 Machine Learning Model Space

In this section, the algorithm space M are concretely introduced. With a time

series dataset, in this work, we exploit several LSTM based machine learning models,

which are introduced in details as the following.

24

() … …Sequence Data

LSTM LSTM

LSTM LSTM LSTM

LSTMForward

Backward

() ()()

() () ()

() () () () () ()

()() ()

Figure 8: The architecture of BiLSTM network.

2.4.3 LSTM Cell

LSTM is developed from recurrent neural networks (RNNs), which is a kind of

artificial neural networks (ANNs) with recurrent connections. For ANNs, one key as-

sumption is that all the outputs or inputs are independent to each other. However, with

the help of recurrent connections, a RNN is able to execute same task for every element

from a sequence with the output being depended on the previous computations, which

makes it suitable for utilizing sequential data to perform sequence recognition or pre-

diction problem [39]. Whereas, one drawback when a RNN performs back-propagation

to optimize the parameters is the gradient vanishing or gradient explosion problem due

to the sequential multiplication of tanh′ [40]. Aiming at solving this problem, LSTM

is proposed through introducing the gates. The structure of one LSTM cell consists of

three main parts: forget gate, input gate, and output gate, which is illustrated in Fig.

7. At each time t, the calculation equations are as follows:

f (t) = σ
(
ωf

(
h(t−1), x(t)

)
+ bf

)
, (16)

i(t) = σ
(
ωi

(
h(t−1), x(t)

)
+ bi

)
, (17)

C̃(t) = tanh
(
ωc

(
h(t−1), x(t)

)
+ bc

)
, (18)

o(t) = σ
(
ωo

(
h(t−1), x(t)

)
+ bo

)
, (19)

25

LSTM LSTMLSTM

LSTM LSTM LSTM

() () ()

() () ()

… …

LSTM LSTM LSTM

… … …

Figure 9: The structure of a stacked LSTM network.

and

h(t) = tanh
(
c(t)

)
∗ o(t), (20)

where σ is sigmoid function; f (t), i(t), o(t) are the value of forget gate, input gate and

output gate, respectively, and the corresponding ω and b are weight and bias; h(t) is the

hidden state. When performing back-propagation among LSTM, we can obtain

∂C(t)

∂C(t−1)
= C(t−1)σ

′
(·)ωf ∗ o(t−1) tanh

′
(
C(t−1)

)
+ C̃(t)σ

′
(·)ωi ∗ o(t−1) tanh

′

+ i(t) tanh
′
(·) ∗ o(t−1) tanh

′
(
C(t−1)

)
+ f (t).

(21)

For k steps back-propagation, the derivative shown in (21) will be multiplied over k

times. If the LSTM architecture is sufficiently large, e.g. k → ∞, when the network

starts approaching to converge to zero, we can adjust the value of ∂C(t)

∂C(t−1) closer to one,

like 0.97, through controlling the output value of forget gate f (t) [41]. In this way, the

gradient vanishing problem can be avoided, which is also the reason for why we only

focus on those LSTM based models in this work.

2.4.4 BiLSTM

BiLSTM is inspired by the directional RNN and is proposed by [42]. Conventional

RNN or LSTM processes series data in a forward direction or in time order. However,

for BiLSTM or bidirectional RNN, both forward and backward direction information are

26

… …Sequence Data

LSTM LSTM

LSTM LSTM LSTM

LSTM

Forward Layers

Backward Layers

() () ()

()() ()

LSTM LSTMLSTM

LSTMLSTM

… … …

LSTM

LSTM

…

LSTM

LSTM

…

LSTM

LSTM

…

LSTM

Figure 10: The structure of a Stacked BiLSTM network.

utilized to process the sequence data through two independent LSTM or RNN layers

[43]. The structure of the BiLSTM network is illustrated in Fig. 8.

As we can see, the overall structure of a BiLSTM can be divided into four layers:

input layer, forward layer, backward layer, and output layer. The functionality of input

layer is intuitive, which feeds the series data into the network. The forward layer cal-

culates
−→
h(t) chronologically, in other words, from t = 0 to t = N . While the backward

layer calculates
←−
h(t) unchronologically, i.e., from t = N to t = 0. For both forward and

backward layers, LSTM is the basic element for configuration. All the formulations and

structures inside these LSTM cells are totally the same as what is discussed in Sub-

section 2.4.3. The output layer utilizes the output of forward and backward layers to

calculate the current output through a sigmoid activation function. Therefore, unlike

the output of LSTM in (19), the final output of the BiLSTM network can be expressed

as

o(t) = σ

(
ωo

(
x(t),
−→
h(t),
←−
h(t)

)
+ bo

)
. (22)

2.4.5 Stacked LSTM and Stacked BiLSTM

In the field of machine learning, there is a kind of model named as deep neural

networks (DNNs), which is developed from ANNs. Generally, compared with ANNs, a

DNN is possessed of a deep architecture, which has more than one hidden layers. With

27

multiple layers, a DNN is able to extract high-level and more essential representations

so as to fitting a high-dimensional non-linear model [44]. This idea works for LSTM and

BiLSTM as well. Based on the shallow structure, a deeper model can be built by adding

more hidden layers. The names of deep LSTM and BiLSTM model are stacked LSTM

and stacked BiLSTM, respectively, and the corresponding architectures are shown in

Fig. 9 and Fig. 10, respectively.

The architecture becomes hierarchical paradigm and the output function needs

some modifications accordingly. For stacked LSTM, in layer l, the input is the ouput of

the last layer, which can be described as

h
(t)
l = ω(l−1,l)h

(t)
l−1 + bl. (23)

Suppose the number of hidden layers is M , the output of the network is

o(t) = σ
(
ωo

(
h
(t)
M

)
+ bo

)
. (24)

Similarly, the output of a stacked BiLSTM network can be expressed as

o(t) = σ

(
ωo

(−→
h
(t)
M ,
←−
h
(t)
M

)
+ bo

)
. (25)

Although a deeper network can fit a complex non-linear model well, it also easily

brings over-fitting problem. Over-fitting means the model is exactly suitable for the

training dataset while performs poorly upon test dataset. To tackle with this problem,

one effective method is to adopt the dropout strategy. The main idea of dropout is to

randomly ignore some hidden LSTM units by a certain percentage during the training

phase. The selected hidden units will not update the parameters in the back-propagation

process. But for the other units, they will optimize the parameters normally according

to the back propagated error. By this way, the model can never fit the training dataset

perfectly so as to avoid the over-fitting problem [45]. Therefore, based on these two deep

models, we add dropout strategy during the training phase, which are named as S-LSTM

with dropout (S-LSTM-D) and S-BiLSTM with dropout (S-BiLSTM-D), respectively.

28

Figure 11: The 3D model of Manhattan area built in Unity.

2.5 Simulation Results

2.5.1 Data Generation

There are many different edge computing resources in reality, such as computation

memory, computation power, etc. In this work, we focus on the computation memory

consumption. In order to obtain the memory utilization data in diverse traffic situa-

tion, we build our own simulation environment through implementing the game engine

Unity3D [46]. We build up the 3D model of real-world Manhattan area as the geograph-

ical background, which is shown in Fig. 11, where the red dots indicate the locations of

edge servers and the green dashed boxes represent the simulation areas. The traffic AI

package is implemented to yield traffic flows. Vehicle models are generated in specified

areas and move forward following the pre-defined road network obeying traffic rules.

In addition, we adjust the total number of vehicles appear in the roadside unit (RSU)

coverage area to simulate peak period and off-peak period traffic. Edge server model

and vehicle receiver model are built to simulate edge computing assisted computation

execution behavior on both units when vehicle receiver is located within the connection

range of edge server. Every offloaded computation task will consume a certain amount

of memory in the edge server during the period of the task execution. Therefore, we can

obtain the memory utilization data by documenting the memory consumption of the

edge server. Task sizes are defined in the vehicle receiver model to simulate offloading

computation with different data size. Accordingly, a larger data size will occupy more

29

(a) The multi-intersection scenario.

(b) The roundabout scenario. (c) The highway scenario.

(d) The bridge scenario.

Figure 12: The different scenarios built in Unity.

memory capacity on edge server, resulting in taking longer time to be computed or pro-

cessed, and vice versa. Vehicle receiver model is attached to the vehicle model of the

traffic AI package, and edge server models are placed in the area, where is considered

to perform simulated computation offloading service for all vehicles within the range of

the edge server.

For the purpose of enriching the scenarios, in this work, we choose four different

road maps to simulate traffic flow, i.e., multiple intersections, roundabout, highway, and

30

Table 2: Parameters Setting for Different Road Maps

Amount of Vehicles Task Size Range
Road Map Small Medium Large Small Large

Multi-Intersections 30 60 100 [18,22] [36,44]
Roundabout 20 35 50 [18,22] [36,44]
Highway 30 60 100 [18,22] [36,44]
Bridge 45 90 150 [18,22] [36,44]

bridge areas, which is illustrated in Fig. 12. As is shown in Fig. 12, edge servers are

located right below the horizontal black bars, surrounded by a green circle representing

the coverage range of each edge server. The spline connecting vehicles and edge servers

represents the connection link, with different color represents different ongoing operation

(green for uploading, white for processing, and blue for downloading). The small dot

on top of the vehicles is the vehicle receiver model, and the color of the dot stands for

the status of the receiver (blue for task complete, yellow for task in process, and red for

disconnected). Besides, the larger green or blue disk attached to the bottom of vehicles

represents upload and download progress. Apart from creating different scenarios, we

also vary the task size in vehicle receiver model and number of vehicles utilizing the

driving AI package. The number of cars for multi-intersection, roundabout, highway,

and bridge are set as {30, 60, 100}, {20, 35, 50}, {30, 60, 100}, and {45, 90, 150},

respectively. For the small data size situation, the data size will be randomly generated

within the range of [18, 22] (MB). And for big data size situation, the data size will be

randomly generated within the rage of [36, 44] (MB). Therefore, for each road scenario,

there are six dataset in total with the combination of different data size and number of

cars and these three factors constitute the meta-feature space F . For convenience, we

name the dataset in the format “Scenario-number of vehicles-datasize”. For example,

Roundabout-20-B means the data is generated in roundabout scenario with 20 vehicles

and the data size is big. The details of settings for variation of situations can be

summarized in Tab. 11.

2.5.2 Simulation and Evaluation

For the performance evaluation metrics space E , we adopt the suggestions in [47]

and use three measurements totally, i.e. root mean square error (RMSE), mean absolute

31

Table 3: Parameters Settings forM

Models Hidden Layer Units Dropout Percentage

LSTM 1 64 -

BiLSTM 1 64 -

S-LSTM 3 32-32-32 -

S-BiLSTM 2 32-32 -

S-LSTM-D 3 32-64-32 10%

S-BiLSTM-D 2 64-64 10%

percentage (MAP), and mean GEH (MGEH), whose definitions are

RMSE =

√√√√ 1

n

n∑
i=1

(yi − Yi)2, (26)

MAPE =
1

n

n∑
i=1

|yi − Yi|
Yi

, (27)

and

MGEH =
1

n

n∑
i=1

√
2 (yi − Yi)2

yi + Yi
, (28)

respectively, where yi is the predicted value and Yi is the ground truth. Therein RMSE

and MAPE are widely used statistical metrics. While GEH is named by the initials

of creator, Geoffrey E. Havers, and has no special mathematical or statistical meaning.

Even so, GEH has been approved to be an effective measurement for a variety of traffic

analysis purpose and a smaller GEH value indicates a better regression of observed

flows[48]. In addition, as is discussed in Section 2.4.2, M contains six models, i.e.,

LSTM, BiLSTM, S-LSTM, S-BiLSTM, S-LSTM-D, and S-BiLSTM-D. The parameters

settings are as shown in Tab. 3. The simulations are performed under TensorFlow

framework and the GPU version is NVIDIA 1080Ti.

Among the three metrics, it is obvious that they keep consistent to each other ac-

tually. Checking throughout the table, one conclusion is that LSTM performs better in

the majority cases instead of those deep models. Generally, deep network is supposed

to work better than shallow networks, like the performance difference between DNNs

and ANNs, however, which is not the case here. The main difference is, in DNNs or

ANNs, a vital assumption is the data samples are independent to each other. Whereas,

32

for time series data, one significant property is time dependency, which means the infor-

mation comes from previous LSTM makes more sense than the information transmitted

between hidden layers. In addition, in the stacked architecture, if the previous layer has

already made wrong prediction, the next layer will continue forecasting based on the

incorrect results, which means errors will be transmitted and enlarged. Besides, time

dependency can also explain why the dropout strategy is not suitable here. Since the

information that each LSTM brings may be of great importance for cells in the later

series. Dropout strategy will erase the randomly selected units so that anticipation can-

not be calculated accurately. Moreover, for time series data, the input can be as few as

even two dimensional, i.e., time and value. Unlike high dimensional cases, overfitting is

not that common. Also, comparing the bidirectional model with unbidrectional model,

generally, the performances are similar. But there are still some numerical differences

between them, which is because if the forward information is different from backward

information, it is easy to introduce bias in the output phase.

Based on the history results, we generate the data for model selection recommenda-

tions. The data is four-dimensional. The first three features are roadmap, the number

of vehicles, and task size. And the rest one is the suggested model. With the foundation

of this dataset D, we build a two-hidden layer DNN to perform the model selection

problem, or we can say, a classification problem. The hidden units in each hidden layer

is 4. The loss function is defined as MSE as well and the gradient descent methods is

also Adam. In addition, according to the evaluation from [49], the peak time of traffic

happens averagely from 6am to 9am and 4pm to 7pm. Therefore, when we assess the

performance on a roadmap basis and quantitative analysis, we add different weights to

the values. The datasets with a larger number of vehicles will get 25%, as is regarded as

peak time. The two hours around peak time are defined for medium number of vehicles,

which is 33%. The rest 42% goes for the datasets with small amount of vehicles, which

is considered as off-peak time. In addition, for the percentage of different task size, it is

divided equally. Finally, the final scores obtained by our meta-learning method and the

non-meta methods are summarized in Tab. 4, which is statistically calculated among the

different roadmaps. Obviously, we can find that our proposed method always achieves

33

Table 4: Scores Obtained by Proposed Meta Method and Non-meta Methods

Roadmap Multi-Intersections Roundabout

Model RMSE MAPE MEGH RMSE MAPE MEGH

Meta-learning 37.91 9.13 1.51 19.42 8.56 1.35
LSTM 44.26 9.56 1.68 19.76 9.03 1.37
BiLSTM 69.71 11.78 2.41 38.42 17.14 2.79
S-LSTM 111.28 17.15 3.79 38.71 17.40 2.82
S-BiLSTM 64.16 14.21 2.49 40.70 26.28 3.15
S-LSTM-D 87.57 16.20 2.89 37.87 22.64 2.72
S-BiLSTM-D 62.05 13.14 2.16 38.98 22.79 2.99

Roadmap Highway Bridge

Model RMSE MAPE MEGH RMSE MAPE MEGH

Meta-learning 37.23 11.64 1.63 46.63 9.31 1.49
LSTM 43.92 12.65 2.72 52.63 10.03 1.72
BiLSTM 44.50 13.57 2.45 74.45 13.67 2.36
S-LSTM 60.79 20.08 3.57 78.98 22.96 2.73
S-BiLSTM 59.26 22.41 2.84 75.99 14.63 2.42
S-LSTM-D 79.20 25.55 3.58 95.27 16.08 3.06
S-BiLSTM-D 64.55 16.32 2.74 93.53 16.56 2.76

the best evaluation scores among all the roadmaps.

Besides, we conduct the quantitative analysis among all the methods as well. Here,

to calculate cost defined in (7) and waste defined in (8), we take the price of the AWS as

reference. According to the data and description from reference [20], the one year of all

upfront price is 541 dollars and can save 43% compared with paying on demand. Here,

we just do a simple normalization and define the reservation unit price as 1.48 dollars

and the unit price for real-time request as 2.60 dollars, respectively. The concrete details

for the cost are summarized in Tab.5. Also, we add the best case and the worst case

as the benchmark values, which indicates all the volumes are purchased by reservation

and real-time requests, respectively. Obviously, we can find that although there is gap

between the cost of our proposed meta-learning method and the counterpart of the best

case, the proposed method always gives the better price than all the other methods,

which helps save up to 39.93%, 37.15%, 5.62%, and 70.47% for the multi-intersections,

roundabout, highway, and bridge scenarios, respectively, compared with the fully real

time requests. Apart from the cost, we also calculate the amount of waste. Actually, the

total cost is made up by two parts: one is the reservation part and the other one is the

real-time request when we have insufficient reservation. Intuitively, both of them can be

34

Table 5: Total cost for different methods

Roadmap Multi-intersections Roundabout Highway Bridge

Best Case 79,663.366 19,249.67 62,557.02 102,169.57
Meta Learning 84,068.38 21,254.02 65,474.81 105,290.85

LSTM 84,315.18 21,402.28 66,557.07 105,755.63
BiLSTM 87,637.47 23,592.48 66,347.30 106,897.90
S-LSTM 87,264.55 23,359.78 70,263.50 106,796.78
S-BiLSTM 86,383.19 23,824.74 67,596.26 107,266.89
S-LSTM-D 88,215.74 22,885.18 69,513.89 108,729.89
S-BiLSTM-D 85,955.44 22,897.63 67,618.88 108,746.32
Worst Case 139,949.49 33,816.76 69,367.75 179,487.10

Table 6: Waste for different methods

Roadmap Multi-Intersections Roundabout

Model Excess Inadequate Excess Inadequate

Meta-learning 2,897.63 1,507.09 1,346.69 657.67
LSTM 2,952.71 1,698.81 1,409.11 743.5
BiLSTM 4,897.08 3,076.73 3,587.86 754.95
S-LSTM 4,485.60 3,115.29 3,398.36 711.75
S-BiLSTM 4,328.86 2,390.67 3,940.01 835.06
S-LSTM-D 5,702.95 2,849.13 2,957.22 691.74
S-BiLSTM-D 4,123.82 2,167.96 2,856.19 791.77

Roadmap Highway Bridge

Model Excess Inadequate Excess Inadequate

Meta-Learning 1,329.84 1,587.95 1,944.85 1,176.43
LSTM 1,407.77 2,592.28 2,189.71 1,396.35
BiLSTM 1,565.95 2,224.33 2,955.62 1,772.71
S-LSTM 5,184.06 2,522.42 2,934.56 1,692.65
S-BiLSTM 2,251.39 2,787.85 3,163.27 1,934.05
S-LSTM-D 4,331.12 2,625.75 4,217.52 2,342.80
S-BiLSTM-D 3,048.65 2,013.21 3,947.43 2,629.32

the source of waste. If the amount of reservation is more than that of needed, it means we

make excess reservation, which leads to a waste of money for the customer and a waste

of computation or storage resources for edge platform as well. Similarly, if the amount of

reservation is less than the demands, it indicates we make inadequate reservation, which

means purchasing more resources is inevitable for meeting the demands with a relatively

expensive price. Therefore, when we calculate the waste, the distinguishment for these

two kinds of waste is also took into consideration, and the details are summarized in

Tab.6. For the total waste, the results keep consistent with the results of cost, i.e.,

the method gives the most economical scheme brings the least waste. Meanwhile, no

matter for the excess waste or the inadequate waste, we can find that our proposed

35

meta-learning gives out the least waste.

2.6 Conclusion

In order to minimize the expenses to consume edge computing resources, this chap-

ter proposed a two-stage meta-learning approach. In the first stage, a DNN is utilized to

learn the experience dataset so as to figure out which machine learning model performs

better in a specific situation. In the second stage, the resource amount anticipation

will be conducted by the machine learning model selected by the DNN obtained in the

first stage according to the meta-features. In addition, due to the fact that there is no

open edge computing based vehicular network dataset, we program in the game engine

Unity3D to build the 3D model of Manhattan area as in real world. Meanwhile, we ad-

just the factors like different roadmaps, the number of vehicles, and the randomness of

task sizes for the traffic, which makes our data get closer to the practice. Eventually, we

find that out proposed meta-learning method always gives the most economical predic-

tions, which helps save up to 39.93%, 37.15%, 5.62%, and 70.47% for multi-intersections,

roundabout, highway, and bridge scenarios, respectively, compared with the fully real

time requests.

36

3 Love of Variety based Latency Analysis for High Defini-

tion Map Updating: Age of Information and Distribu-

tional Robust Perspectives

3.1 Introduction

Having stepped into the era of information technology, there are enormous artificial

intelligence based autonomous devices, technologies, and services coming into being, and

one important branch of which is autonomous vehicles or intelligent vehicles. According

to the definition of the National Highway Traffic Safety Administration (NHTSA), the

levels of vehicle automation can be categorized into six classes, which are distinguished

by the extent of autonomy [15]. Currently, the performance of autonomous vehicles can

just meet the requirements between levels 2 and 3, and both of which require the driver

must be ready to take back control at any time. Aimed at achieving a higher automation

level, one effective way is to utilize the high definition (HD) map. Unlike the traditional

map, HD map is represented with a high degree of precision and resolution, which is as

fine as 10-20 centimeters or better.

To generate and maintain HD map, one key is to extract useful information from

data captured by embedded sensor systems, such as object detection, lane marking de-

tection, ranging, etc. However, since different sensor systems have essential pros and

cons regarding range, resolution, sensitivity to visibility, etc. [50]. In order to extract

effective information that contributes to HD map generation and maintenance, collabo-

rative making use of diverse sensors is inevitable, which exactly can be done by federated

analytics. The aim of federated analytics is to obtain data insights among distributed de-

vices by applying data science methods to the analysis of raw data generated on different

clients [51]. Unlike federated learning, what transmitted between clients and aggregator

are data insights rather than machine learning model gradients, such as distribution,

positions of detected objects, etc. In other words, to support basic data science needs

is the purpose of federated analytics.

In federated mechanisms, if the number of participants (i.e., sensors here) is larger,

the desirable accuracy can be achieved faster and the optimization process converges

37

more quickly. From the perspective of practice, this can be interpreted as well. When

extracting information that contributes to HD map, if more types of sensors are utilized,

the obtained information, (e.g. positions of detected objects), will be more accurate,

leading to a better accuracy level of HD map. For example, in a bad weather condition

(e.g., fog, heavy rains, or storm), poor visibility will degrade the performance of visual-

based sensors like LiDar and camera but has no influence on Radar and ultrasonic sensors

[52]. In other words, the diversity of utilized sensors is higher, the more accurate HD

map can be generated. However, the challenge is how to quantify the impact of diversity

among the HD map accuracy level.

To tackle this challenge, we model the diversity of sensors in the federated analytics

problem into the utility of love of variety. Basically, love of variety is a concept from

economics, which assumes that each consumer has a demand for multiple varieties of a

product over a given time period [53]. Within the time period, the utility will increase

if consumers use more different products. For HD map generation, the interpretation is

that, during the federated analytics, the more types of sensor data are utilized, the

better accuracy of HD map can be achieved. However, since HD map is typically

used for autonomous driving, the accuracy level has a required threshold, such that

the probability of accidents can be reduced. Therefore, in order to achieve the desired

accuracy level of HD map, if more types of sensors are included in federated analytics,

the accuracy of each aggregation round will be higher. Thus, the total needed number

of global aggregation rounds can be decreased.

Previously, the problem of HD map generation is discussed from one single vehicle’s

view. But from the practical use of HD map, it should be at least in a whole city wise.

Therefore, uploading individual HD map to the server needs to be considered to form an

intact city-wised HD map. Roughly, the information in the HD map can be categorized

into dynamic layer and static layer. Dynamic layer information includes pedestrian, ad-

jacent vehicles, and etc. While static layer information contains lanes, traffic signs, road

markings, etc. Obviously, dynamic information updating is more latency sensitive since

it may vary within seconds [54, 55]. Fortunately, emerging multi-access edge computing

(MEC) provides a low-latency paradigm for data transmission, which is realized by edge

38

Figure 13: System Overview.

servers deployed at the edge of networks and the transmission distance can be reduced

compared with traditional cloud computing [56, 57]. Because the different layers of HD

map have different requirements for updating latency. In order to quantify the latency

and measure the freshness of HD map, the age of information (AoI) is employed here.

AoI is an end-to-end metric that can be used to characterize latency in status updating

systems and applications. In AoI, information freshness and staleness can be quantified

through the penalty function. For latency sensitive contents, the penalty will increase

exponentially when the information staleness becomes larger. Therefore, considering the

capacity of the edge server is limited, we propose a method to allocate the edge server

capacity into different HD map layers so that the overall penalty can be minimized.

Firstly, we discuss the case where the edge server capacity is deterministic. The opti-

mal allocation scheme can be derived through Karush–Kuhn–Tucker (KKT) conditions.

Then, consider the practice that an edge server provides services to multiple attached

devices simultaneously, such that the available capacity for the autonomous vehicle is

variational. We describe this ambiguity using Wasserstein metrics and reformulate the

problem into a distributional robust chance constrained optimization problem, which can

effectively and efficiently find a near-optimal solution. The overview of the system is

illustrated in Fig. 13.

3.2 Related Work

As a key technique to realize autonomous driving, HD map has attracted interest

from both industry and academia. Some existing literature focuses on how to make use

of HD map. [58] uses near-term future information of HD map to propose a control

scheme enabling predictive cruise control such that the overall fuel consumption can

39

be minimized. [59] proposes an image region of interest extraction method to improve

the accuracy of traffic light recognition with the help of HD map and self-localization

techniques. [60] utilizes HD map as prior information, and proposes a local motion

planning method to realize the path planning and obstacles avoidance in autonomous

driving scenarios. [61] proposes a sequential algorithm that can perform accurate lane-

keeping or changing decisions while keeping a safe distance with the adjacent vehicle

through using the position of the host vehicle and HD map. However, these works

concentrates on HD map enabled applications instead of the generation and updating

strategies.

While some of the existing literature focus stand on the perspective of HD map

transmission. [62] proposes a collaborative vehicle to everything (V2X) transmission

scheme to meet the transmission rate requirement for HD map while achieving low power

consumption. [63] proposes a distributed multi-agent multi-armed bandit algorithm

to maximize the accumulated cache utility for each roadside unit (RSU) by caching

appropriate HD map contents in storage. [64] proposes a cluster based strategy for

HD map offloading by using characteristics of HD map data and mobility of vehicles

so that the energy consumption and offloading delay can be minimized. [65] proposes

a fusing algorithm based on the Kalman filter to increase the position and semantic

confidence of HD map such that the efficiency of HD map updating can be improved.

[66] proposes a HD map data distribution mechanism such that the HD map provision

task can be allocated to the selected RSU and transmit proportionate HD map data for

energy efficiency purposes. But these works lack the analysis of sensor based HD map

generation.

Also, there is some work focusing on the creation of HD map. [67] introduces the

workflow of HD map creation and the machine learning based techniques used by indus-

try that can minimize the amount of manual work for HD map generation. [68] proposes

a crowd-sourcing framework to update the point cloud map layer in HD map from en-

vironment changes by jointly utilizing LiDar and vehicle communication. [69] proposes

a semantic-based road segmentation method to address the problems of dynamic ob-

stacles and shadows as well as the GNSS signal errors for HD map construction. [70]

40

proposes a Dislocation-Projection approach to create a color-pointed layer of HD map

based on effective processing of LiDar, camera, and global navigation satellite system

(GNSS) data. However, all the above literature only focuses on one perspective of HD

map, either creation, transmission, or application. While our work jointly considers the

generation and transmission processes of HD map in a layer-wised and latency-aware

manner. Besides, the generation of HD map needs the contributions from different types

of sensors, which is regarded as a federated analytics problem and almost no existing

literature does this way.

3.3 Preliminaries

In this section, the background information is introduced. The basics and lay-

ered HD map are introduced in Subsection 3.3.1, the sensor systems are discussed in

Subsection 3.3.2.

3.3.1 High Definition Map

HD map is made up of various information and resources, such as drivable paths,

lane marks, the priority of lanes, traffic light and crosswalk to lane association, adjacent

objects, and street furniture, which is represented in a high degree of resolution and

precision, generally in the centimeter level. For practical autonomous driving use cases,

HD map is the indispensable key for the advanced driver assistance system (ADAS).

Intuitively, the contents of HD map can be roughly categorized into two classes: dynamic

objects (such as pedestrians and vehicles) and static objects (such as traffic signs and

lights). According to the definition of automotive edge computing consortium (AECC),

the composition of HD map is layered, which can be represented by the highly dynamic

layer, transient dynamic layer, transient static layer, and permanent static layer, as is

illustrated in the upper part of Fig. 14 [71].

• In the highly dynamic layer, contents include the position, velocity, and accelerator

of pedestrians, vehicles, and so on, which changes in several seconds.

• In the transient dynamic layer, contents include obstacles like fallen objects and

trash, and local weather like unexpected sudden rain, which changes in several

41

minutes.

• In the transient static layer, contents include road work, temporary road closure,

accidents, and so on, which changes in several hours.

• In the highly static layer, contents include lanes, traffic lights, road signs, and so

on, which change in several days or longer.

Intuitively, in the current map, it is common to find the gaps between actual cir-

cumstances and the map, which takes days to be corrected. However, for autonomous

driving, any delayed update for HD map can result in dangerous or even fatal accidents

without human intervention. Therefore, HD map must be updated in a timely manner.

3.3.2 Sensor Systems in Autonomous Vehicles

HD map is inevitable for autonomous driving. How to generate and maintain this

map with abundant dynamic and static information is challenging. Basically, HD map

is mainly created by onboard sensor data. Typically, there are three main sensors in

automotive vehicles in the present: cameras, Radar (Radio Detection And Ranging),

and LiDar (Light Detection And Ranging). They allow the vehicle to see and sense

everything on the road, as well as to collect the information needed in order to drive

safely.

• Camera: Autonomous cars often have several smart cameras deployed in front and

rear of the vehicle so that a 360° view of the external environment can be generated

[72]. Unfortunately, these camera sensors are still far from perfect. Poor weather

conditions such as rain, fog, or snow can prevent cameras from clearly seeing the

obstacles in the roadway.

• Radar: Radar sensors send out radio waves that detect objects and gauge their

distance and speed in relation to the vehicle in real-time. Unlike camera sensors,

radar systems typically have no trouble at all when identifying objects during fog

or rain. But since the sensors only scan horizontally, which can cause a variety of

problems when driving under bridges or canyons [73].

42

Table 7: Pros and Cons of Sensor Systems in Autonomous Vehicles

Sensor Strength Weakness

Radar Good ranging accuracy and
does not rely on visibility

Cannot detect road markings

LiDar Highly accurate ranging Higher cost and less effective in
featureless areas (like country
roads)

Camera Good object detection Less effective in featureless
roads, low visibility scenario
(snow, rain, darkness. Good in
tunnels/ urban canyons fog),
roads without lane markings,
and construction areas

GNSS Good accuracy, Common
global reference between
vehicles,

Good in low visibility,
featureless roads. Less reliable
in high urban canyons

IMU Good in low visibility,
featureless roads

Not usable in long tunnels (a
few km) due to high drift rate of
IMU

Ultrasonic Good in low visibility,
featureless roads

Need close proximity and slow
speeds

• LiDar: LiDar sensors work similar to radar systems, with the only difference being

that they use lasers instead of radio waves. Apart from measuring the distances

to various objects on the road, LiDar allows creating 3D images of the detected

objects and mapping the surroundings [74]. The main problem for performance

is the same as the camera, i.e., poor weather and visibility can sometimes block

LiDar sensors.

Except for the three kinds of sensors, there are also some traditional sensor systems,

such as

• GNSS: GNSS is the technology that uses satellites constellation to provide au-

tonomous geo-spatial positioning, navigation, and timing services on a global or

regional basis, which includes the GPS, GLONASS, Galileo, Beidou, and other

regional systems.

• Inertial motion units (IMU): IMU is a device including multi-axea, accelerometers,

and gyroscopes that can provide an estimation of an object movement in space,

such as measuring force, angular rate, altitude, and orientation.

43

• Ultrasonic sensors: Ultrasonic sensors mimic echolocation used by bats and are

able to calculate distance between objects within a short range through transmit-

ting high-frequency sound waves.

The pros and cons of different sensor systems are summarized in Table. 7.

E
C
U

RaDar
Sensors

LiDar
Sensors

Ultrasonic
Sensors Camera IMU GNSS

RaDar
Sensors

LiDar
Sensors

Ultrasonic
Sensors Camera IMU GNSS

RaDar
Sensors

LiDar
Sensors

Ultrasonic
Sensors Camera IMU GNSS

Observation 1 Observation 2 Observation 3

Layer-wised
Transmission

Federated Analytics

ACCIDENT

OBSTACLES
UNEXPECTED
WEATHER

ROAD WORK

Highly Dynamic Layer

Transient Dynamic Layer

Transient Static Layer

Permanent Static Layer

Figure 14: Illustration of federated analytics for HD map generation.

3.4 System Model and Problem Formulation

In this section, the concept of love of variety is introduced in Subsection 3.4.1.

We model the utilization of multiple types of sensors for federated analytics into a love

of variety based utility in Subsection 3.4.2. Then, the models of HD map layers and

layer-wised transmission are introduced in Subsections 3.4.3 and 3.4.4, respectively. The

transmission time based AoI is introduced in Subsection 3.4.5. Finally, since different

layers of HD map have different delay requirements, we formulate the HD map trans-

mission penalty minimization problem from the perspective of AoI in Subsection 3.4.6.

44

Figure 15: Illustration of RLV.

3.4.1 Love of Variety

Obviously, when performing federated analytics, as illustrated in Fig. 14, the results

will be better if more types of sensors are included, e.g., the object detection and ranging

can be accurate in both good visibility and poor weather scenarios. We assume the

electronic control unit (ECU) can perform one type of data in a specific time slot, and

a vehicle has a demand for multiple varieties of sensor data over time. Therefore, a

time vector t = ti∈N can be used to describe the computation over different sensor

systems, where ti is denoted as ECU is executing a specific kind of sensor data during

a fixed time slot. Apart from the utilization of diverse sensors, the utility of a vehicle is

also related to computation time slot ti. Therefore, the utility function of ECU can be

defined as u(ti), which is a strictly increasing and concave function and meets u(0) = 0,

as is suggested in [75]. The general utility function can be defined as

u(ti) =
1

1− ρ
[
(α+ ti)

1−ρ − α1−ρ]+ βti, (29)

where α ≥ 0, β ≥ 0, and 0 < ρ < 1 are constant coefficients. By assigning different

values for α, β, and ρ, the utility function can illustrate different vehicle characteristics

for variety. Intuitively, the utilities from computation over different types of sensors are

additive. Overall, the aggregated utility of an ECU or vehicle is
∑

i∈N u(ti).

Mathematically, to involve variety, one key challenge is how to evaluate or quantify

the willingness of an ECU to hand over computation from sensor data x to another

sensor data y. Besides, since each vehicle needs diverse sensor data to obtain more

accurate and effective information for HDmap, how to quantify willingness of exchanging

45

among multiple sensors is also challenging. In order to solve this problem, we introduce

elasticity, whose definition is shown below.

Definition 1 For two variables x and y, the x-elasticity of y is defined as

ϵyx = −∂y
∂x

x

y
. (30)

The interpretation of elasticity is that the percentage change in y is in response

to the percentage change in x. If the value of elasticity is larger, it means y is more

sensitive to the change of x. To quantify the willingness of exchanging among multiple

sensors, the definition of relative love of variety (RLV) is given as the following.

Definition 2 The vehicle’s relative love of variety is the elasticity of the marginal utility

with respect to the computation time slot ti, which is described by

ru(ti) = ϵu
′
ti = −u

′′
ti
u′

> 0. (31)

Obviously, from Definition 2, the value of RLV reflects whether the vehicle is willing

to exchange different sensor data in consecutive time slots for achieving a higher marginal

utility, as is described in Fig. 15. For case 1, the user changes consumption among sensor

data at the end of time slot T/3 and achieves the highest utility U3. For case 2, the user

consumes two types of sensor data within time T and achieves utility U2. While the user

in case 1 keeps the same type of sensor data throughout time interval and achieves the

lowest utility U1. Besides, it should be noted that the definition of RLV is with respect to

a particular sensor generated data. When we need to analyze the overall RLV difference

among multiple vehicles, we can utilize the average or summation of RLVs from all the

types of sensor data to describe the overall RLV level, i.e., Ū = 1
N

∑N
i=1 u(ti).

3.4.2 Data Quality for Federated Analytics

Obviously, when performing federated analytics, the results will be better if more

vehicles with high love of variety unity are included [76]. Therefore, we can utilize

the utility value or average RLV to describe the precision or accuracy. According to

46

[77], for distributed optimization, if the global optimization problem is strongly convex,

the general upper bound on number of global iteration is
O(log(1

ψ
))

1−Ψ , where Ψ is relative

accuracy level of the local subproblem. Then, the needed number of global iterations

can be given as

G =
ζ · log(1ψ)
1−Ψ

, (32)

where ζ > 0 is a constant. It can be seen that for a certain number of global iterations,

the global accuracy level can be improved (i.e., ψ is close to 0) solving local subproblems

towards high accuracy. However, the inverse dependence on 1−Ψ means that there is a

limit to how much the global accuracy can gain from the high-accurate solutions of the

local subproblems [78]. To obtain ψ-accuracy, the global iteration will always require

ζ · log(1ψ) [79].

For federated mechanisms, if the number of participants is larger, higher accuracy

can be achieved when the number of global aggregation is fixed. Likewise, here, when

the number of types of the sensor is larger, the value of RLV or the utility U will be

larger accordingly. When a desirable accuracy level ψ is given, the needed number of

global aggregation will be less compared with the low average variety vehicle group.

Therefore, for the vehicles with average utility level Ū , the needed number of global

federated analytics aggregation will be

L = κG

⌈
log(1ψ)

Ū

⌉
, (33)

where κ is a constant such that the given accuracy level ψ can be achieved. Obviously,

if the average utility is larger, the total number of iteration will be less when the global

accuracy level is fixed, as is proved in [76].

3.4.3 HD Map Components

Let L1(r1), L2(r2), L3(r3), and L4(r4) denote highly dynamic layer, transient dy-

namic layer, transient layer, and permanent static layer, respectively. ri is the range

that needs to be updated. Here, ri for each layer is different, which means each HD map

layer has an essential requirement for updating range. For example, for the permanent

47

static layer, the required info may be “on street A (like several miles long or more), the

speed limit is 50mph”. However, for the highly dynamic layer, the vehicle needs to know

the nearest pedestrian within several meters or less, which is much more precise than the

permanent static layer requirement. Therefore, the precision scale from the permanent

static layer, transient static layer, transient dynamic layer, to the highly dynamic layer

can be from county wide, region wide, a few blocks wide, to a crossing wide. Therefore,

for each time updating, i.e., performing a federated analytics global aggregation, the

size of each layer can be represented by

Di = k × ri, (34)

where k is a constant.

Moreover, in order to achieve ψ-accuracy, the total number of the HD map size will

be

D = L
4∑
i=1

Di = L
4∑
i=1

kri. (35)

Here, the number of components is four, which is because the number of layers to

compose HD map is four, as discussed in Subsection 3.3.1.

3.4.4 Communication Model

Intuitively, since we have different requirements (scale and time) for different layers.

For those with no reporting of the real-time object layers, e.g. the transient static layer

and permanent static layer, usually with relatively larger required areas, the updating

can be done via the cloud through the backhaul network. While for those reporting

of real-time objects layers, e.g. the transient dynamic layer and highly dynamic layer,

usually with relatively smaller required regions, the HD map updating can be done

through V2V communication or edge servers. For the updating part that is transmitted

through the edge server, the transmission rate can be described as

v = B log2

(
1 +

ph

N0

)
, (36)

48

where B is the bandwidth, p is transmission power, h is channel gain, and N0 is the

Gaussian noise. For the updating that is done by the backhaul network, we assume the

delay to transmit a unit size map is a constant tc, which is typically larger than the time

of transmission through edge.

To update a certain layer, we assume the part transmitted via edge server is denoted

by ϕi ∈ [0, 1]. So in a time period T , the total time consumption is

t(ϕi) =

4∑
i=1

(
Diϕi
v

+Di(1− ϕi)tc
)
. (37)

3.4.5 Age of Information

AoI is an end-to-end metric that can be used to characterize latency in status

updating systems and applications [80]. An update packet with timestamp a is said to

have age b − a at a time b ⩾ a. Here, timestamp a denotes the generation time of HD

map and timestamp b denotes the reception of updating [81]. Therefore, the difference

b−a describes the transmission time of HD map, i.e., b−a = t(ϕi). For each composition

in HD map, the updating age ∆i can be written as

∆i = t(ϕi). (38)

Since the delay requirement for HD map updating is very strict, when the delay

becomes larger in a certain time period, the penalty increases non-linearly at the same

time. Therefore, the staleness of information updating can be defined as

pi (ti(ϕi)) = ti(ϕi)
αi , (39)

where αi is the constant and can describe sensitivity of different HD map layers regarding

to delay. The typical cure of staleness is shown in Fig. 24.

49

Figure 16: Penalty function.

3.4.6 Problem Formulation

For an autonomous vehicle, in order to minimize the time staleness for HD map

updating, the problem can be formulated as

min
ϕi

4∑
j=1

pi

s.t.
4∑
i=1

Diϕi ≤ q,

ϕi ⩾ 0,

(40)

where q denotes the available computation or storage resources of edge server. Here,

the constrain means the total edge transmission data of four layers cannot exceed the

capacity of the edge server. However, practically, an edge server provides services to

multiple attached devices simultaneously, such that the available capacity q for the

autonomous vehicle is variational. Therefore, problem (12) can be rewritten as

min
ϕi

4∑
j=1

pi

s.t.
4∑
i=1

Diϕi ≤ ∆q,

ϕi ⩾ 0,

(41)

where ∆q denotes the uncertainty of available capacity.

50

3.5 Deterministic Capacity Case

In problem (13), the staleness of each layer is pi, which can be rewritten as

pi =

[
Diϕi
v

+Di(1− ϕi)tc
]αi

=

[(
1

v
− tc

)
Diϕi +Ditc

]αi
= (aixi + bi)

αi ,

(42)

where xi = Diϕi, ai =
(
Di
v −Ditc

)
and bi = Ditc are layer characteristic constants.

Therefore, problem (12) can be rewritten as

min
xi

4∑
j=1

(aixi + bi)
αi

s.t.
4∑
i=1

xi ≤ q,

xi ⩾ 0.

(43)

To address problem (15), we have the following theorem.

Theorem 1 Let x∗ be a feasible point of

min f(x)

s.t. gi(x) ≤ 0, i = 1, · · · ,m,

hi(x) = 0, i = 1, · · · , n,

(44)

where f and gi are continuously differentiable convex functions over R, and hi are affine

functions. Suppose that there exsist multipliers λ1, · · · , λm and µ1, · · · , µn ∈ R such that

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +
n∑
i=1

µi∇hi(x∗) = 0 (45)

and

λigi(x
∗) = 0, i = 1, · · · ,m. (46)

Then x∗ is an optimal solution of (16).

51

proof 1 Let x be a feasible point. Define the convex function

L(x) = f(x) +

m∑
i

λigi(x) +

n∑
i=1

µihi(x). (47)

A feasible point x∗ is a minimizer of L, since ∇L(x∗) = 0 and in particular L(x∗) <

L(x), we have

f(x∗) = f(x∗) +

m∑
i

λigi(x
∗) +

n∑
i=1

µihi(x
∗) = L(x∗)

≤ L(x) = f(x) +

m∑
i

λigi(x) +

n∑
i=1

µihi(x)

≤ f(x),

(48)

showing that x∗ is the optimal solution. ■

To find the solution to problem (14), we introduce Lagrange multiplier λ∗ ∈ R for

the inequality constraint xi ⩾ 0, and a multiplier µ∗ ∈ R for the equality constraint∑
xi = q, i.e.,

L =
∑

(aixi + bi)
αi −

∑
λixi + µ

(∑
xi − q

)
. (49)

Then, we can obtain the KKT conditions. Firstly, we have the following lemma.

Lemma 1 Let x∗ and any (λ∗, µ∗) be any primal and dual optimal points with zero

duality gap. Since x∗ minimizes L(x, λ∗, µ∗) over x, it follows that its gradient must

vanish at x∗.

Therefore, we have the stationarity condition, which is

aiαi(aix
∗
i + bi)

αi−1 − λ∗i + µ∗ = 0. (50)

The complementary slackness is

λ∗ix
∗
i = 0. (51)

Primal feasibility is

x∗i ⩾ 0 (52)

52

and ∑
x∗i = q. (53)

The dual feasibility is

λ∗ ⩾ 0. (54)

We can directly solve these equations to find x∗i , λ
∗, and µ∗. We start by noting that

λ∗ acts as a slack variable in (17), so it can be eliminated. So we have

(
µ∗ + aiαi(aix

∗
i + bi)

αi−1
)
x∗i = 0 (55)

and

µ∗ ⩾ −aiαi(aix∗i + bi)
αi−1. (56)

If µ∗ < −aiαibαi−1
i , condition (22) can only hold if x∗i > 0. Solving for x∗i , we conclude

that x∗i =
αi−1

√
µ∗
aiαi

−bi
ai

. If µ∗ > −aiαibαi−1
i , then x∗i > 0 is impossible, because it

would imply µ∗ ⩾ −aiαibαi−1
i > −aiαi(aix∗i +bi)αi−1, which violates the complementary

slackness condition. Therefore, x∗i = 0 if µ∗ ⩾ −aiαibαi−1
i . Thus we have

x∗i =

αi−1

√
µ∗

aiαi
− bi

ai
µ∗ < −aiαibαi−1

i ,

0 µ∗ ⩾ −aiαibαi−1
i .

(57)

Alternatively, we can put in a more simple way,

x∗i = max

0,

αi−1

√
µ∗

aiαi
− bi

ai

 . (58)

Substituting the expression for x∗i into the equality constraint, we have

4∑
i=1

max

0,

αi−1

√
µ∗

aiαi
− bi

ai

 = q. (59)

53

3.6 Uncertain capacity case

The previous section discusses the solution to the deterministic edge capacity case.

However, practically, an edge server provides services to multiple attached devices si-

multaneously, such that the available capacity q for the autonomous vehicle is varia-

tional. In this section, the uncertain capacity allocation case is discussed. Subsection

3.6.1 introduces the method using the Wasserstein distance to mathematically describe

the ambiguity. Then, a distributionally robust chance constrained optimization based

method is introduced to solve the uncertain capacity allocation problem in Subsection

3.6.2.

3.6.1 Wasserstein Distance Based Ambiguity Set

Assuming ambiguity set ∆q follows a distribution, a natural way to hedge against

the distributional ambiguity is to consider a neighborhood of the empirical probability

distribution. Considering the discrepancy-based ambiguity sets: we introduce ambiguity

sets based on probability distance

P = {P : d(P̂N , P) ≤ ϵ}, (60)

where P̂N is empirical probability for capacity q distribution, ϵ is radius. d(P̂N , P) is the

metric to measure the similarity or distance of two distributions, and one of the most

commonly used methods is the Wasserstein distance, which is defined as follows.

Definition 3 The Wasserstein metric dW : M(Ξ)×M(Ξ)→ R is defined by

dW (Q1,Q2) := inf

∫
Ξ2

∥ξ1 − ξ2∥Π(dξ1, dξ2), (61)

for all distributions Q1,Q2 ∈ M(Ξ), where ∥ · ∥ represents an arbitrary norm on Rm,

Π(Q1,Q2) is the the set of all possible joint distributions of Q1 and Q2. ξ1 and ξ2 are

the samples under joint distribution Π.

With the Wasserstein metric, the Wasserstein distance based ambiguity set can be

54

defined as

Bϵ(P̂N) =
{
Q ∈M(Ξ) : dW (P̂N ,Q) < ϵ

}
. (62)

The ambiguity set Q can be viewed as a Wasserstein ball which contains all probability

distributions whose Wasserstein distance to the empirical distribution P̂N is less than ϵ

[82]. The Wasserstein ball contains all possible probability distributions. Q will include

the true distribution with a higher probability. Under a common light tail assump-

tion on the unknown data-generating distribution, this ambiguity set offers attractive

performance.

3.6.2 Distributional Robust Chance Constrained Optimization

With the Wasserstein metric, problem (13) can be reformulated as the following

Distributional Robust Chance Constrained Optimization (DRCCO) form:

min
x

cx

s.t. xi ∈ S,

inf
P∈P

P
{
ξ̃ : ξ̃ ≤ b(x)

}
⩾ 1− ϵ,

(63)

where vector x ∈ Rn denotes the decision variables, vector x ∈ Rn is the objective

function coefficients, set S ⊆ Sn is the deterministic constraints on x, and the last

constraint is a chance constraint specified by the ambiguity set. Therefore, the second

constraint is also named the distributionally robust chance constraint (DRCC). DRCC

requires all of the uncertain constraints satisfied for all the probability distributions from

ambiguity set P with a probability at least (1− ϵ), where ϵ ∈ (0, 1) is the specified risk

tolerance [83]. The feasible region induced by DRCC is defined as

Z :=

{
x ∈ Rn : inf

P∈P
P{ξ̃ : ξ̃ ≤ b(x)} ⩾ 1− ϵ

}
. (64)

Firstly, by using the strong duality result from [84], (36) can be reformulated by

the following theorem.

55

Theorem 2 Set Z is equivalent to

Z =

x ∈ Rn :

δ − ϵγ ≤ 1

N

∑
j∈[N]

zj ,

zj + γ ≤ max
{
b(x)− ζj , ∀j ∈ [N],

}
,

zj ≤ 0,∀j ⊆ [N], γ ⩾ 0.

. (65)

Further, we can reformulate set Z in (37) as a mixed integer program as below [85].

Lemma 2 For DRCCO with right-hand uncertainty, suppose that there exists an M ∈

RN+ such that

max
i∈[I]

max
x∈Z

{
|b(x)− ζj |

}
≤Mj , (66)

for ∀j ∈ [M]. Then set Z is mixed integer representable, i.e.,

Z =

x ∈ Rn :

δ − ϵγ ≤ 1

N

∑
j∈[N]

zj ,

zj + γ ≤ sj , ∀j ∈ [N]

sj ≤ b(x)− ζj +Mj(1− yj),∀j ∈ [N],

sj ≤Mjyj ,∀j ∈ [N],

γ ⩾ 0, zj ≤ 0, sj ⩾ 0, yi ∈ {0, 1},∀j ∈ [N].

. (67)

However, the scale of programming (39) is large, which is difficult to meet the real-

time requirements of HD map updating. Therefore, to quickly find a feasible solution

needs to be considered. According to [86], the feasible set Z can be reformulated as

descriptions by a conditional-value-at-risk (CVaR) constrained set. Regarding a random

variable X̃, the (1− ϵ)-value at risk (VaR) of X̃ is

VaR1−ϵ(X̃) = min
{
z : FX̃ ⩾ 1− ϵ

}
, (68)

where F is the cumulative distribution function of X̃, defined by FX̃ = P{X̃ ≤ z}. And

the (1− ϵ)-CVaR is defined as

CVaR1−ϵ(X̃) = min
β

{
β +

1

ϵ
EP

[
X̃ − β

]
+

}
. (69)

56

It is observed that, for any random variable X̃, we have

CVaR1−ϵ(X̃) ≤ CVaR1(X̃) := ess.sup(X̃). (70)

Then the feasible solution can be approximated by the following theorem.

Theorem 3 Set Z can be inner approximated by

ZR =

{
x ∈ Rn :

δ

ϵ
+ ζj ≤ b(x), ∀j ∈ [N]

}
. (71)

proof 2 Because CVaR1−ϵ [−f(x, ζ)] ≤ ess.sup [−f(x, ζ)], where ζ is a random vector,

the feasible set Z can be inner approximated as

ZR =

{
x ∈ Rn : Pζ

{
f(x, ζ) ⩾

δ

ϵ

}
= 1

}
. (72)

By using the definition of f(x, ζ), i.e.,

f(x, ζ) = min
{
min
x

max{b(x)− ζ, 0},min
x
χ{x:b(x)<0}(x)

}
, (73)

where the characteristic function χR(x) = ∞ if x ̸= R and 0, otherwise. Also, because

of the fact that δ
ϵ > 0, we can arrive (44).■

In Theorem 3, it can be proved that set ZR is a subset of he feasible region induced

by a regular chance constraint, i.e., ZR ⊆ Z [86].

3.7 Simulation results

In this section, the simulation is performed for deterministic and uncertain capacity

cases in Subsections 3.7.1 and 3.7.2, respectively. The experiments are conducted on

MATLAB platform. The RLV based utility function is defined as u(ti) = 2×(1+ti)0.5−1,

by setting a = 0, b = 1, and ρ = 0.5. The constant parameter of iteration upper bound of

federated analytics ζ is 20. The global accuracy index for federated analytics is 0.1. The

parameters that denote HD map data size k is set as 10. The updating range for four

layers are set as 2, 3, 4, and 5 MB/m2, respectively. As for the communication model,

57

Table 8: Parameters Settings

Parameters Value

RLV Parameter a 1

RLV Parameter b 0

RLV Parameter ρ 0.5

Global accuracy index ψ 0.1

Global accuracy parameter ζ 10

Global iteration parameter κ 10

HD map parameter k 10

HD map size parameter r1, r2, r3, and r4 2, 3, 4, and 5 MB/m2

Bandwidth B 10MHz

Transmission power 23 dBm

Channel gain h 16

Gaussian Noise N0 -96 dBm

Penalty parameters for four layers α1, α2, α3, and α4 4, 3, 2, and 1

100 200 300 400 500 600 700 800 900 1000

Edge Server Capacity (MB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rc
e

n
ta

g
e

Permanent Static Layer

Transient Static Layer

Transient Dynamic Layer

Highly Dynamic Layer

Figure 17: Edge server allocation percentage with different edge server capacity.

the bandwidth B is 10 MHz. The transmission power is 23 dBm. The channel gain is

16. The Gaussian noise power is -96 dBm. And for the penalty function parameters,

α1, α2, α3, and α4 are set as 1, 2, 3, and 4, for the highly dynamic layer, transient

dynamic layer, transient layer, and permanent static layer, respectively. Overall, the

general model parameter settings are summarized in Table 11.

3.7.1 Deterministic Capacity Case

In this case, we firstly assume there are four vehicles in total, which will consume a

random number of sensor data from the six types of sensors as introduced in Subsection

3.3.2. We increase the edge server capacity from 100 MB to 1,000 MB by step 100

58

100 200 300 400 500 600 700 800 900 1000

Edge Server Capacity (MB)

0

5

10

15

20

25

30

35

A
o

I
P

e
n

a
lt
y

Permanent Static Layer AoI Penalty

Transient Static Layer AoI Penalty

Transient Dynamic Layer AoI Penalty

Highly Dynamic Layer AoI Penalty

Total AoI Penalty

Figure 18: The AoI penalty with different edge server capacity.

MB and the results are shown in Figs. 28 and 18, respectively. Fig. 28 illustrated the

variation of allocation percentage of each HD map layer to edge server. Obviously, the

highly dynamic layer always has priority to consume the edge server resources and is the

first one that achieves the 100% edge resources allocation at 300 MB capacity, followed

by the transient dynamic layer at 500 MB, the transient static layer at 800 MB, and

the permanent static layer at 1000 MB, respectively. This is understandable because

each layer has different latency requirements. For example, the highly dynamic layer,

which consists of surrounding vehicles and pedestrians, is much more latency sensitive

than the permanent static layer which consists of road signs. Correspondingly, the

penalty assigned to the highly dynamic layer will be more than the permanent static

layer with regard to the same time delay. Typically, we set the penalty function to

highly dynamic layer, transient dynamic layer, transient static layer, and permanent

static layer as quadruplicate, cubic, quadratic, and linear functions, respectively, which

gives rise to the allocation priority order as in Fig. 28. In the beginning, when the

edge server resources are limited, only the highly dynamic layer is able to consume the

resources because small latency will result in the fourth power penalty. Thereafter, when

the resources are plentiful, all of the four HD map layers can be transmitted via the

edge server.

This change can also be demonstrated by Fig. 18, which shows the overall penalty

and penalty of each layer. Generally, all of the curves indicate decreasing trend with the

59

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Global Accuracy Index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rc
e

n
ta

g
e

Permanent Static Layer

Transient Static Layer

Transient Dynamic Layer

Highly Dynamic Layer

Figure 19: Edge server allocation percentage with different global accuracy index.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Global Accuracy Index

0

5

10

15

20

25

30

35

A
o

I
P

e
n

a
lt
y

Permanent Static Layer AoI Penalty

Transient Static Layer AoI Penalty

Transient Dynamic Layer AoI Penalty

Highly Dynamic Layer AoI Penalty

Total AoI Penalty

Figure 20: The AoI penalty with different global accuracy index.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Average Utility

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rc
e

n
ta

g
e

Permanent Static Layer

Transient Static Layer

Transient Dynamic Layer

Highly Dynamic Layer

Figure 21: Edge server allocation percentage with different average utility Ū .

60

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Average Utility

0

5

10

15

20

25

30

35

40

45

A
o

I
P

e
n

a
lt
y Permanent Static Layer AoI Penalty

Transient Static Layer AoI Penalty

Transient Dynamic Layer AoI Penalty

Highly Dynamic Layer AoI Penalty

Total AoI Penalty

Figure 22: The AoI penalty with different average utility Ū .

increase of edge server capacity. Because when the edge resources are more sufficient,

more HD map data will be transmitted through the edge server such that the transmis-

sion delay can be reduced, resulting in the reduction of AoI penalty. In addition, we

can see that the drop point of the highly dynamic layer AoI penalty is 100 MB edge

capacity, 200 MB edge capacity for the transient dynamic layer, 300 MB edge capacity

for the transient static layer, and 400 MB edge capacity for the permanent static layer,

which also keeps consistent with the allocation priority order mentioned above.

Table 9: Results for Uncertain Capacity Case

Parameter Optimal Solution CVaR Model Random

ϵ δ Opt.Val Time Value Gap Time Value Gap Time

0.05 0.01 32.57 4.73s 32.93 1.11% 0.05s 36.49 12.04% 0.02s

0.05 0.02 32.57 2.32s 33.02 1.38% 0.06s 33.69 3.44% 0.02s

0.1 0.01 32.57 9.16s 32.97 1.23% 0.06s 36.03 10.62% 0.02s

0.1 0.02 32.57 10.85s 33.68 3.17% 0.05s 34.87 7.06% 0.02s

Next, because the required HD map accuracy is crucial for federated analytics based

HD map generation. We also explore the impact of the global accuracy index ψ on the

performance. In this case, we keep the edge server capacity as 400 MB. The global

accuracy index ψ increases from 0.1 to 0.5 by step 0.1, which represents local accuracy

decreases gradually. The corresponding results are illustrated in Figs. 29 and 20. In

Fig. 29, we can see that the overall trend is the percentage of each layer allocated to

edge server transmission increases with the increase of the global accuracy index. Since

a high global accuracy index indicates a low local accuracy. Therefore, to achieve to the

61

required precision, the needed number of global aggregation will be less due to a lower

accuracy desire. Accordingly, the generated data size will be reduced, resulting in a

larger percentage of HD map data allocated to the edge server with a certain volume of

capacity. Hence, with only 400 MB available capacity, all of the four layers can realize

fully edge server transmission with a lower accuracy expectation, i.e., ψ=0.5. In addition,

similarly, because of the differences of the penalty functions, the allocation priority order

still exists, where the highly dynamic layer has the highest priority, followed by transient

dynamic layer, transient static layer, and permanent layers. As for the results in Fig.

20, obviously, the AoI penalty decreases with the increase of the global accuracy index

for all cases. The reason is the same as explanation for Fig. 29. The number of global

aggregation will be reduced due to a lower accuracy requirement. As a consequence, the

generated data size will be smaller, resulting in a lower transmission latency and AoI

penalty. Also, this result reveals that a trade-off can be made between accuracy and

transmission delay so the decisions can be adjusted for cases with specific requirements.

Intuitively, HD map generation heavily relies on vehicle sensor data. Therefore, we

also discuss the influence of different average utilities among HD map allocation and

AoI penalty. In this part, we keep the available edge server capacity as 400 MB and

the global accuracy index as 0.1. The average utility is increased from 1 to 3 by step

0.5. The results are shown in Figs. 21 and 22. In Fig. 10, we can see the allocation

percentage increases with the increase of average utility. This is because when the

average utility is larger, the needed number of federated analytics aggregation will be

less regarding a given accuracy level. Thus, the data size that needs to be transmitted

will be less as well, resulting in lower latency and AoI penalty. Likewise, in any case, the

highly dynamic layer is always allocated the majority of edge resources, which brings

into correspondence with previous experiments. Also, the penalty is illustrated in Fig.

22. The AoI penalty decreases with the increase of average utility Ū . Since a higher

average utility leads to a smaller data size, the reduction in transmission time will bring

less AoI penalty.

62

3.7.2 Uncertain Capacity Case

In this subsection, we will use the CVaR based inner approximation to estimate

the uncertain capacity case. The mean value of edge server capacity is set as 400 MB.

The risk parameter ϵ is chosen from {0.05, 0.1}. And the Wasserstein distance δ is

set as {0.1, 0.02}. The number of instances N is 10. In addition CVaR based inner

approximation, we also use random strategy to act as a comparison method. Also, since

we can refer to the optimal solution from the deterministic case, the optimality gap can

be adopted as the evaluation metric, which is defined as

GAP =
|Value - Opt.Val|

Opt.Val
, (74)

where Value indicates the inner approximated AoI penalty and the Opt.Val is the optimal

AoI penalty based on the deterministic case. The results are shown in Table 9.

Generally, we can see that no matter for CVaR model based approximation or

random strategy, they have a certain amount of accuracy gap regarding the optimal

solution. The CVaR model is usually 1% − 3% away from the optimality. However,

the optimality gap for random strategy varies a lot, where the least one is 3.44 % and

the largest one is 12.04%, because the allocation percentage is randomly determined.

Therefore, in terms of approximation accuracy, CVaR model is better. Since the ex-

istence of uncertainty, the optimality gap is inevitable but 1% − 3% difference is also

acceptable. In addition, the results for CVaR model shows that the least gap is achieved

when ϵ = 0.05 and δ = 0.01 while the largest gap comes from the case with ϵ = 0.1 and

δ = 0.02. This is also understandable because the larger value indicates a more relaxed

or larger ambiguity space. If the ϵ is smaller, the risk tolerance is smaller as well, so that

high risk instances will be exempted. While for δ, if the number is larger, the radius of

uncertain Wasserstein ball is larger, which increases ambiguity level.

Another thing that needs to be noted is the execution time. To obtain the optimal

solution, the time consumption can be up to 10 seconds. However, the CVaR model

execution time is typically less than one second. The reason behind this might be CVaR

model is a second order conic programming and does not involve any binary variables.

63

Therefore, for time sensitive applications, the CVaR model based inner approximation

can be an effective approach for the trade-off between time consumption and accuracy.

Additionally, random strategy achieves the lowest execution time because it does not

solve any complex programming but randomly chooses a percentage within the given

range. Overall, the results in Table 9 demonstrate that the CVaR model based approx-

imation is able to find near-optimal solutions with much less time consumption.

3.8 Conclusion

As a latency sensitive application, HD map transmission needs to be performed in a

timely manner. This chapter investigates an information staleness minimization problem

for federated analytics based HD map generation and layer-wise transmission offloading.

Fortunately, emerging MEC provides a low-latency paradigm for data transmission. But

the available edge computing resources may be variational practically. Therefore, this

chapter discusses two cases, i.e., deterministic edge capacity case and uncertain edge

capacity case. For the deterministic edge capacity case, the optimal solution is obtained

analytically. And the influence of different edge server capacity, federated analytics

accuracy, vehicle utility is also discussed. For the uncertain edge capacity case, the

problem is reformulated into a DRCCO optimization problem and solved by the CVaR

model based approximation. The experiments demonstrate the CVaR model based

approximation is able to find near-optimal solutions with much less time consumption.

In the future work, we will investigate more topics on real-time HD map refreshing and

maintenance mechanisms, such as adaptive resolution with communication resources

constrained HD updating, efficiency or quality of service (QoS) guaranteed HD map

distribution scheme, etc.

64

4 Matching Theory Based Low-Latency Scheme for Multi-

Task Federated Learning in MEC Networks

4.1 Introduction

The last decade has witnessed an unprecedented improvement and prosperity of

machine learning techniques and applications, such as face recognition, driverless vehi-

cles, and autonomous disease diagnose, etc. On the one hand, such rapid development

is heavily dependent on the tremendous available data generated by the ever-increasing

number of users. According to the anticipation of International Data Corporation, the

number of devices connected to the Internet will achieve 80 billions and the amount of

generated data can be as much as 180 trillion gigabytes in 2025 [87]. On the other hand,

thanks to the evolution of powerful computation hardware design and efficient comput-

ing architecture, like parallel high performance graphics processing units (GPUs), those

computation-intensive machine learning applications finally are able to be performed on

devices instead of centralized cloud data centers, which also promotes the extensive use

of machine learning [88].

However, it is acknowledged that training a machine learning model relies heavily

on enormous data while the data generated by one single device is limited. At the same

time, due to the diversity property of individual behavior characteristics, the machine

learning model obtained from one device is hard to work desirably for others [89]. Be-

sides, for traditional machine learning, the model is trained via a centralized manner,

i.e., all the training data have to be uploaded to a centralized cloud through a wire or

wireless channel, which increases the risk of privacy leakage [90]. Therefore, proposing

a framework that can unite multiple devices to collaboratively train a universal model

and guarantee the privacy safety to a certain extent simultaneously is indispensable,

which motivates federated learning coming into being.

Federated learning is firstly proposed by [91], which is a machine learning framework

that allows end devices to jointly train a global machine learning model in a decentralized

paradigm without sharing individual data. Typically, there will be multiple user devices

involving in a federated learning tasks. Firstly, an initialized machine learning model

65

will be broadcast to all of the participants. Having received the naive model, each

participant will optimize the model based on their own data through, for example,

stochastic gradient descent method for a certain number of iterations. Then, the model

updates, i.e., the calculated model parameters by each participant, will be uploaded to

an aggregator. Thereupon, the aggregator performs a weighted average among all the

parameters to obtain relatively optimal global model parameters, which will be fed back

to all the participants again. The procedures will be conducted repetitively until the

pre-defined accuracy is achieved.

Intuitively, there are several reasons to adopt federated learning in practical situ-

ation. Firstly, with the development of multi-access edge computing (MEC) networks,

there will be many available edge nodes deployed at the edge, which are much closer to

the user devices. Invested with adequate computing resources, edge node can be suf-

ficiently powerful to process federated learning tasks instead of using centralized data

centers so as to reduce the transmission latency [92]. Secondly, since in federated learn-

ing, what transmitted between participants and aggregator are the machine learning

model parameters rather than raw data, whose size is much smaller. Therefore, the

communication cost can be reduced significantly [93]. At the same time, this manner

can also decrease the probability of eavesdropping to a certain extend such that the

privacy can be guaranteed [94]. Thirdly, due to the diversity of individual behavior

characteristics, the distributions of data generated by different devices are disparate.

Fortunately, federated learning has been proved that it is effective to deal with non-

identical and independent distribution (non-i.i.d.) data [95], which is suitable for large

scale IoTs scenarios.

With all the alluring benefits above, federated learning is also faced with new chal-

lenges to tackle. On the one hand, the majority of existing literature make a desirable

assumption that once the end devices are invited, they will unconditionally take part in

the federated learning tasks that is not practical in the real world. From the perspective

of participants, resources cost and willingness caused by machine learning model train-

ing have to be took into consideration. For example, when the remained power is lower

than a threshold, the device can be unwilling to join any tasks. Otherwise, its normal

66

functions are not able to be supported. Secondly, in a MEC network, the end devices

are always on the go, which means the time of devices localizing within the network is

limited. Although edge computing paradigm can reduce the latency to a certain extend,

how to reduce the delay and save more time needs to be discussed further. Thirdly,

there are many available edge nodes in a MEC network, while each node can work as

an agrregator actually. Therefore, how to parallelly perform multiple federated learning

tasks, i.e., multi-task federated learning, in a low-latency purpose to augment efficiency

needs to be considered as well.

4.2 Related work

As a promising distributed learning paradigm, federated learning has become a

popular field of research. [96] analyzes the convergence bound for federated learning

with non-i.i.d. data and proposes a control algorithm to achieve an optimal trade-off

between local updates and global aggregation considering a resource budget constrain.

[97] proposes a sparse ternary compression framework to reduce the communication cost

for federated learning with non-i.i.d. data. [76] proposes an over-the-air computation

based approach for the fast global aggregation process so as to maximize the number

of participants under limited bandwidth, which can improve the accuracy of federated

learning. [98] proposes a contract theory based method to build an incentive mechanism

to motivate the participants with high-accuracy local training to take part in the collab-

orative learning process for efficient federated learning. [99] proposes a fast convergence

algorithm to find an optimal trade-off between computation and communication laten-

cies as well as overall federated learning time and user device energy consumption so as

to enhance the performance of federated learning in wireless networks. [100] proposes

a multi-dimensional contract-matching incentive framework to maximization the profit

of model owners in a unmanned aerial vehicle (UAV) enabled (Internet of Vehicles)

IoVs scenario. [101] utilizes a multi-objective evolutionary algorithm to simultaneously

minimize the communication cost and maximize the global model accuracy. However,

regarding these work, [96, 97, 76] make a desirable assumption that once the end devices

are invited, they will unconditionally take part in the federated learning tasks, which is

67

not practical in the real world. Besides, for [96, 97, 76, 98, 99, 100, 101], only onefold

federated learning task is discussed and multi-task federated learning is not considered.

As for matching theory, it is often used to address the combinatorial problem of

players in two sets, based on the preferences of each player and the individual information

[102]. [103] proposes an algorithm that combines the Markov decision process with ran-

dom serial dictatorship matching to solve the UAV-assisted charging problem for energy

constrained devices. [104] proposes a student project allocation game based matching

method to address the joint radio and computation resource allocation problem for IoTs

in the fog computing scenario. [105] proposes a two-sided matching solution for IoTs and

edge nodes matching problem to reduce the average service time so that quality of ser-

vice (QoS) requirements can be achieved. [106] develops an efficient task-virtual machine

matching algorithm that jointly considers task execution time and energy consumption

to make computation offloading decisions in ultra-dense wireless networks. [107] pro-

poses a matching based strategy for virtual machine placement so as to minimize the

system response time and requests dropping for industrial IoTs applications. [108] ap-

plies a matching theory based approach to solve the computation offloading problem

utilizing parked vehicles such that the more tasks can be accomplished within a certain

time range. Whereas, for the work mentioned above, the matching game is considers

under the complete preference list situation, which is not practical in large-scale IoTs

applications.

4.3 System model and Problem Formulation

In this section, we introduce the preliminaries for federated learning in Subsection

4.3.1. Then, the computation and communication model are discussed in Subsections

4.3.2 and 4.3.3, respectively. At the last, we describe the scenario in details and provide

the corresponding formulation for multi-task federated learning latency minimization

problem within the MEC network in Subsection 4.3.4. For a clear understanding of

parameters and symbols in this chapter, their definitions and descriptions are provided

in Table 10 in details.

68

Table 10: Parameter and symbol description

Notation Definition

N Set of participants.
E Set of edge nodes.
N Total number of participants.
E Total number of edge nodes.
Ni The ith participant.
Ej The jth edge node.
D Total amount of data.
Di The amount of data for the ith participant.
ωi Weights of the ith participant’s machine learning model.
ωglob Weights of aggregated global machine learning model.
fi CPU frequency of the ith participant.
mi The number of instructions to process a piece of data

in the ith participant.
ϵi Local accuracy of the ith participant.

T cmpi Time consumption of local training for the ith participant.
ri Transmission data rate.
B Channel bandwidth.
pi Transmission power of the ith participant.
hij Channel gain of the link between the ith participant and the jth

edge node.
N0 Gaussian noise.
si The number of bits of the ith participant’s local model parameters.

T comij Time consumption of communication between the ith

participant and the jth edge node.
aij Index of participant-edge node pair designation.
qj Capacity of the jth

edge node.
δ Energy threshold of willingness for participation.
ci Remaining battery percentage of the ith participant.
θi Willingness of participation for the ith participant.
M A matching assignment.
A(Ej) Acceptable participants set for the jth edge node.
A(Ni) Acceptable edge nodes set for the ith participant.
L(Ej) Preference list of the jth edge node.
L(Ni) Preference list of the ith participant.

4.3.1 Federated Learning Preliminaries

Due to different customer expectations and daily usage habits, the generated data

by each end device can be different, i.e., the data are non-i.i.d.. Therefore, the object

of federated learning is to cooperatively train a global optimal machine learning model

for a certain group of devices or users N = {1, ..., N}, where the obtained model can

be applied to any user within the network. Correspondingly, the individual dataset can

be denoted as Di, which is in a vector form (xi, yi), where xi describes a diverse input

69

data features and yi represents the output or label. Based on the task requirements, the

devices will perform a certain local iterations to minimize the loss function li, i.e.,

min
ω
li (xi, ω; yi) , (75)

which is different according to the specific purpose. For instances, local loss function

can be

li(ω) =
1

2

(
xTi ω − yi

)
, yi ∈ R (76)

for linear regression problem or

li(ω) = max
{
0, 1− yixTi ω

}
, yi ∈ {−1, 1} (77)

for a logistic regression problem using vector support machine. After a certain number

of rounds, each device will upload their own model parameters to the aggregator, i.e.,

the matched MEC server in this work, to perform a weighted average, which can be

described as

ω =

N∑
i=1

Diωi

D
, (78)

where D =
∑N

i=1Di is the total amount of data. Intuitively, the percentage of local

parameters to form the global model is proportional to its data size.

Having finished aggregation process, the calculated parameters will be distributed to

all the participated devices and perform local updates. After a certain number of similar

interactions, once the maximum number of iteration or required accuracy is achieved,

the whole process comes to an end. Overall, the objective function of federated learning

can be written as

min
ω∈Rd

J(ω) =
1

N

N∑
i=1

li(ω). (79)

To summarize, each global epoch can be divided into three steps: local computation,

participants-aggregator interaction, and recomputation. The corresponding process is

illustrated in Fig. 23.

70

!

Coverage Area

Global Model

MEC Server

(Aggregator)

Local Model

Local Training

Local
Parameters

Uploading

Global

Parameters

Downloading

Figure 23: The federated learning procedures.

4.3.2 Local Computation Model

Generally, the involved devices can be mobile phones, IoTs, and IoVs, whose com-

putation abilities are not as powerful as MEC or cloud servers. Hence, their computation

tasks are almost accomplished through central processing units (CPUs). We define the

CPU frequency for device Ni as fi. The required number of CPU cycles to process a

piece of data sample is mi. We should note that the value mi will be influenced by the

model type, such as support vector machine (SVM), long-short term memory (LSTM),

deep neural network (DNN), convolutional neural network (CNN), and the adopted

training methods, such as stochastic gradient descent (SGD), mini-batch stochastic gra-

dient descent (mBSGD), or Adam. Here, we assume that all the clients are optimizing

the same type of machine model via the same kind of training method. Therefore, as is

suggested in [109], the consumed time for local device Ni to perform one local iteration

can be written as

tcmpi =
Dimi

fi
. (80)

Obviously, from the perspective of latency, the device with a higher CPU frequency

is preferable for MEC server. Besides, the threshold to upload local parameters to

matched server can be defined as achieving a certain local accuracy ϵi, where a lower ϵi

indicates a higher prediction accuracy. To obtain the desirable accuarcy, the requisite

number of local iterations can be described as log(1
ϵi
) [110]. Therefore, for device Ni,

71

the consumptive time for one local updates can be calculated as

T cmpi = log

(
1

ϵi

)
Dimi

fi
. (81)

4.3.3 Communication Model

For federated learning, communication happens each time when participated devices

upload local parameters and MEC servers broadcast aggregated global parameters. In

this work, we adopt time-division medium access (TDMA) technology as the communi-

cation protocol. Without loss of generality, for other protocols, similar approaches can

be easily extended. Besides, it is assumed that each device is allocated an orthogonal

sub-channel and the interference brought by neighbor users can be ignored. For device

Ni, the transmission rate can be described as

ri = B log2

(
1 +

pihij
N0

)
, (82)

where B is the sub-channel bandwidth allocated to device Ni, pi is transmission power,

hij is channel gain between device Ni and matched MEC server Ej , and N0 is the

Gaussion noise. Suppose for all the devices connected to the same MEC server have the

same local parameter size si bits. Intuitively, the required time for communication can

be characterized as

T comij =
si

B log2

(
1 +

pihij
N0

) . (83)

Overall, for device Ni associated with MEC server Ej in one single global iteration,

the total amount of time consumed can be written as

Tij = aij(T
com
ij + T cmpi), (84)

where aij denotes the index for pair designation, while aij = 1 denotes device Ni is

paired with edge node Ej , and vice versa.

72

……

……

Cloud Center

Federated Learning Tasks Assignments

Edge Nodes

Task 1 Task 2

Two-Sided Matching

End Devices

Figure 24: The multi-task federated learning framework in MEC scenario.

4.3.4 Problem Formulation

We consider the latency minimization problem for multi-task federated learning

in a MEC network with many users N = {1, ...,Ni, ...,NN} and several edge nodes

E = {1, ..., Ej , ..., EE}, where each edge node Ej is supposed to accomplish the designated

machine learning task which is different from all the other edge nodes. And each edge

node will be assigned a disparate federated task. The scenario is illustrated in Fig.

24. In this work, we focus on the one global aggregation round delay minimization

problem. Firstly, we consider the scenario that the mobile phones, IoTs or IoVs work

as participants and edge server performs as aggregator. Due to the limitation of edge

server coverage and the mobility of IoTs and IoVs, some devices can only take part in one

round of federated learning in practice. Secondly, actually the proposed matching can

be applied in each global aggregation round, which means if in each round the latency

is minimized, then the overall latency is minimized as well. Thirdly, experiments show

that if the number of local computation iterations are sufficient or local accuracy can be

achieved sufficiently high, the global model can achieve the high accuracy as well even

with one round global communication [111, 112]. Therefore, we only need to consider

73

the latency minimization problem in one communication round.

Due to the fact of diversity of devices computation abilities, from the edge nodes

in the latency perspective, the data providers with relatively higher CPU frequency are

desirable. On the other hand, the end devices is usually powered by batteries which is

energy-constrained. Therefore, in order to proceed tasks as many as possible, providing

owned data to the MEC server with better channel gain hij is preferable. Besides, when

the remained power is lower than a threshold, the device can be unwilling to participate

any federated learning. Otherwise, its owned function cannot be supported. From the

perspective of a system or network, the aim is to find the optimal device-server pair so

as to minimizing the overall time consumption. Because we consider only those device

whose battery energy is higher than a certain percentage δ will take part in federated

learning tasks, the parameter θi is introduced, which is denoted as the willingness for

participation of the ith device. Intuitively, θi is determined by the remained energy

percentage, i.e., θi = 1 when δ ≤ ci, and vice versa. Overall, the corresponding problem

can be formulated as following,

min
N∑
i=1

E∑
j=1

θiTij ,

s.t.

C1 : aij ∈ {0, 1},∀Ni ∈ N , ∀Ej ∈ E ,

C2 :
∑
j

aij ⩽ 1, ∀Ni ∈ N ,

C3 :
∑
i

aij ⩾ 1, ∀Ej ∈ E ,

C4 :
∑
i

aij ⩽ qj , ∀Ej ∈ E .

(85)

Here, C1 is the designation element, where aij = 1 denotes device Ni is connected with

edge node Ej , otherwise they are not paired. C2 describes each device can only connects

to one edge node. C3 represents that for a specific edge node, there will be at least

one device connects to it and assists to accomplish the assigned task. C4 denotes the

number of connected participants for edge node Ej cannot exceed its capacity qj .

Evidently, this optimization problem is a 0-1 integer programming problem, which

74

is generally NP-hard to solve. Hence, we are motivated to find a feasible suboptimal

solution. Therefore, we utilize a matching theory based approach: the HR problem with

incomplete preference list, which will be discussed in details in the next section.

4.4 Methodology

In the previous section, we have formulated the latency minimization problem as

a 0-1 integer programming problem. Because of NP-hardness, we propose a matching

theory based method to find the suboptimal solution. Besides, due to the fact that the

number of participants in IoTs and IoVs scenario can be pretty large, different from the

traditional matching game, the preference list cannot be generated completely, which

means each side cannot fully obtain all the information of the other side in practice.

Therefore, we propose HR problem with incomplete preference list based solution in

this section. Specifically, the HR modelling is introduced in Subsection 4.4.1, and the

proposed solution is provided in Subsection 4.4.2.

4.4.1 HR Problem Allocation Modelling with Incomplete Preference List

The HR problem, also sometimes named as the college admission problem was firstly

proposed by Gale and Shapley [113]. Each year, there will be many medical students

looking for hospitals to do practical training. And each hospital will provide a certain

number of available positions for them. From the perspective of medical students, each

of them will have an order of hospitals indicating which one is more preferable to join.

Simultaneously, hospitals will also review their application materials to decide the order

of which ones they prefer to hire. Obviously, in the HR problem, each student can only

be assigned to one hospital for practical training. But for a specific hospital, it will

provide a certain number of positions for medical students. Therefore, it is actually a

two-sided many-to-one matching problem.

Inspired by the HR problem, we can model the latency minimization problem for

multi-task federated learning as the HR game. Because in fact, the matching problem

between edge nodes and participants is also a two-sided many-to-one problem. The

edges nodes can be considered as hospitals which need to hire many participants to

75

finish federated learning task for them. Meanwhile, the participants can be regarded

as medical students, providing their data and computing resources for edge nodes, and

each participant can only be assigned to a specific edge node. Intuitively, the problem

involves a set of participants N , a set of edge nodes E , and a set of acceptable pairs

H = N × E . The capacity of each edge node Ej should be a positive integral and every

edge node has a set of acceptable participants A(Ej), where

A(Ej) = {Ni ∈ N : (Ni, Ej) ∈ H}. (86)

At the same time, each participant Ni must be accepted by one and only one edge node.

Likewise, the acceptable edge nodes options for resident Ni can be denoted as

A(Ni) = {Ej ∈ E : (Ni, Ej) ∈ H}. (87)

Let us define an agent k ∈ N × E for the HR problem, which has a preference

list in which it ranks A(k) in a strict order, i.e. no matching candidates share the

same preference. Given any participant Ni ∈ N and edge nodes Ej , Ep ∈ E , we can say

Ni prefers Ej to Ep if Ej precedes p on Ni’s preference list, under the condition that

(Ni, Ej) ∈ H and (Ni, Ep) ∈ H. Similarly, the preference relation can be defined for edge

nodes.

A matching assignmentM is a subset of H. We can say Ni is assigned to Ej or Ej

is assigned to Ni if the pair (Ni, Ej) ∈ M. Once Ni and Ej is paired and the relation

is no longer changeable, the matching M is stable. The stability notion here implies

the robustness to deviations that can be beneficial to both participants and edge nodes

[114]. An unstable matching indicates that participant can change the connected edge

node if the altering is beneficial to both of them. However, this kind of unstability is

not desirable regarding to the network operation and resources utility. For federated

learning, the time of interaction between edge nodes and participants can be more than

once. Reconnecting to a new edge node can make lead to the uselessness of current

model. Besides, in multi-task federated learning scenario, different edge nodes have

different tasks, which means the loss function can be various. Therefore, for a specific

76

federated learning, all the local training procedures need to be restarted, which is also a

waste of time as well as computing resources. Therefore, stability is fatal for matching

and here we give the formal stability definition.

Definition 4 Let M be a matching in HR. A pair (Ni, Ej) ∈ H \ M blocks M, or

(Ni, Ej) is a blocking pair for M, if the following conditions are satisfied regarding to

M:

1. Ni is unassigned or prefers Ej toM(Ni);

2. Ej is under-subscribed or prefers Ni to at least one member ofM(Ej) (or both).

ThenM is said to be stable if it admits no blocking pair.

When matching achieves stable, no candidate can find a more preferable partner

than current one and no new matching process will be proposed. In Definition 4,M(Ni)

indicates the matching of participant Ni in matching M. In this chapter, a blocking

pair can be defined as a pair of participant and edge node (i, j), where participant Ni

prefers edge node p to its current mate Ej and edge node Ej prefers participant q to its

current mate Ni. However, traditional HR matching is essentially a two-sided many-to-

one matching game. And the preference list of both sides are complete, i.e., for ∀Ej ∈ E ,

each Ni ∈ N has a strict order list to indicate the preference, and vice versa. However,

due to the fact that the number of participants in IoTs and IoVs scenario can be very

large, it is impossible for each edge node to acknowledge the computing abilities or CPU

frequencies of all the participants, which leads to the incompleteness of preference list.

Therefore, considering the incomplete preference list in HR game is indispensable.

HR problem with incomplete preference list is actually a variant of standard HR

problem. The only difference between them is the completeness of preference list, which

can be described by an example shown in Fig. 25. The majority of notations and

definitions in the HR problem can be applied here directly. But for stability, we can

redefine as the following.

Definition 5 Let M be a matching in HR with the incomplete preference list. A pair

(Ni, Ej) ∈ H \ M blocks M, or (Ni, Ej) is a blocking pair for M, if the following

conditions are satisfied regarding toM:

77

!" !"#" #$ #% #& #' #" !"!% !" !$!& !'

!% !"#$ #" #' #% #& #% !"!% !" !& !' !$

!$!"#% #" #' #& #$ #$!"!" !% !$!' !&

!& !"#$ #% #& #' #" #& !"!$!" !& !% !'

!' !"#$ #& #% #' #" #' !"!& !$!" !% !'

(a) Matching with Complete Preference List.

!" !"#" #$ #% #" !"!% !" !$!& !'

!% !"#$ #" #% !"!% !"

!$!"#% #" #$!"!" !%

!& !"#$ #% #& #' #& !"!$!" !&

!' !"#$ #& #% #' !"!& !$

(b) Matching with Incomplete Preference List.

Figure 25: The example of matching edge nodes Ei with end devices Nj in both complete
and incomplete preference list cases. The orders indicates each individual’s
preference list.

1. Ni is unassigned or prefers Ej toM(Ni);

2. Ej is unassigned or prefers Ni toM(Ej).

ThenM is said to be stable if it admits no blocking pair.

Therefore, from the perspective of stability, let us look back to the example in Fig.

25. In Fig. 25(a), for the complete preference list case, suppose E1 proposes matching

firstly, so it tries to match with the most desirable candidate, i.e., N1, according to

preference list. But N1 prefers E2 to E1 and E2 is exactly available at this time. So

(E1,N1) is a blocking pair and N1 will propose to match with E2. Likewise, E1 tries to

match with the next candidate N3. N3 exactly prefers E1 best so they will form a pair.

Similarly, when all the process is done, we can see the the final stable matching results

are (E1,N3), (E2,N5), (E3,N1), (E4,N2), and (E5,N4). Whereas, for the matching in Fig.

25(b) with incomplete preference list, the doubtless stable pairs are (E1,N2), (E2,N3),

and (E4,N5). As for the unpaired individuals, i.e. E3, E5, N1, and N4, there exist

two possibilities to combine them, i.e., (E3,N1) and (E5,N4) or (E3,N4) and (E5,N1).

However, according to Definition 5, we can see that both of the options belong to stable

matching. Therefore, for HR problem with the incomplete preference list, one important

conclusion is that the stable matching can be partial. Besides, it has been proved that

for HR with incomplete preference list problems, there may be more than one stable

matching, but their size is all the same and one of them can be obtained in poly time

[115][116]. In the next subsection, the algorithms proposed to solve the corresponding

problem will be discussed.

78

4.4.2 Participants and Edge Nodes Pairing

As is discussed above, edge nodes need to hire many participants to finish feder-

ated learning task for them. Accordingly, the participants will provide their data and

computing resources for edge nodes. Besides, considering the power constrain in prac-

tice, edge nodes can only choose those participants whose remaining battery capacity is

larger than the pre-defined threshold δ. Therefore, the acceptable participants set for

edge nodes Ej (∀Ej ∈ E) can be defined as

A(Ej) = {Ni ∈ N | δ < ci}. (88)

For participants, practically they can work for any edge nodes. Therefore, the acceptable

edge node set for participants is the universe set of edge node, which can be written as

A(Ni) = {Ej ∈ E}. (89)

The preference list is based on a private view and can be defined according to utility

function. Making use of the computation model described in Section III, i.e., in (7),

each edge node is able to calculate the time consumption for each connected participant.

Therefore, a preference list of edge node Ej can be established based on the computation

time T cmp∗i , where T cmp∗i indicates the least time consumption. Correspondingly, we can

define the preference list of edge node Ej as

L(Ej) = T cmp∗i ,∀Ni ∈ A(Ej). (90)

Obviously, L(Ej) is in an ascending order since less time consumption is always prefer-

able.

When it comes to the participants preference over edge nodes, the power consump-

tion is more important. Because, participants are usually end devices with limited

capacity batteries. Apart from taking part in the invited federated learning tasks, they

need to consider to maintain enough power and time to perform their normal function-

alities as well. Therefore, according to (9), suppose the channel between participant and

79

Algorithm 2 Participants and Edge Nodes Pairing with Incomplete Preference List

1: Input: participant set N , edge node set E , remaining battery energy for each par-
ticipant ci, energy threshold δ, participant CPU frequency fi, channel gain hij , edge
node capacity qj ;.

2: All the participants check their remaining battery capacity. Only for those devices
meet the requirement δ < cj will be the candidates for federated learning tasks.

3: //Participants build preference list;
4: for i=1:N do
5: Build the preference list L(Ni);
6: end for
7: // Edge nodes build preference list;
8: for j=1:E do
9: Build the preference list L(Ej);

10: end for
11: while ∃Ej ∈ E is available and edge node has a non-empty preference list do
12: //Participants propose to match with edge nodes
13: for Unmatched Ni ∈ N do
14: Propose to the top-ranked edge node in participant Ni’s preference list L(Ni);
15: Remove the top-ranked edge node from participant Ni’s preference list L(Ni);
16: end for
17: //Edge node overflow notification
18: for Ej ∈ E do
19: if The number of candidates exceeds capacity qj then
20: Hold qj participants based on its preference list L(Ej) and inform the other

participants that they are get rejected from Ej .
21: else
22: Hold all the participants.
23: end if
24: end for
25: end while
26: //Partial matching checking
27: for Unmatched Ni ∈ N do
28: Randomly assign them to the available edge node.
29: end for
30: Output: Stable many-to-one matching results.

80

edge node with a higher channel gain is more desirable. So, the corresponding preference

list can be defined as

L(Ni) = T com∗
ij ,∀Ej ∈ A(Ni). (91)

L(Ni) is in an ascending order because less communication time is preferable in accor-

dance with a higher channel gain.

Based on the setting and definitions above, we can apply the many-to-one matching

algorithm to find a stable matching solution for participants and edge nodes pairing

problem, which is described in Algorithm 2. Firstly, every participant will evaluate

its remaining power so as to decide whether it is able to involve a federated learning

task. Each participant will generate its preference list based on L(Ni). If the number

of selected participants exceeds edge node capacity, edge node Ej will only keep those

desirable participants within capacity and reject the applications of the others. Then,

the unmatched participants will continue to match with the available edge nodes. This

process iterates until each participant is either matched or rejected by all the edge nodes

based on its preference list, i.e., the matching arrives the stable state. However, since

the preference list is incomplete, the results can be partial matching as is illustrated in

Fig. 25. Therefore, when the matching arrives stable state, checking the assignments

for every participant is necessary. If there are still any participants who are willing to

join unassigned, they will be assigned to available edge node randomly. For Algorithm

2, we can derive the following proposition.

Proposition 1 For the Algorithm 2, the proposed many-to-one matching method is

able to converge and obtain stable matching results. Besides, as for the performance,

the running time of implementation can achieve O(N ×E), where (N ×E) denotes all

the possible matching pairs.

proof 3 LetM be an instance of HR matching. The stable pairs inM can be found in

O(N) time. And the stable matchings in M can be listed in O(E) time per matching,

after O(N) pre-precessing time. Therefore, the overall running time can achieve O(N ×

E). The corresponding proof can be found in [117] and [118] in details.

■

81

Table 11: Table of Key Parameters

Simulation Parameters Value

Channel bandwidth B 20MHz

Transmission power pi 23dBm

Data size Di 1000

The number of instructions for one
piece data processing mi

50

The size of local model parameters
size si

5MB

Gaussian noise N0 -96dBm

Energy threshold δ 40%

CPU frequency fi [10,20]MHz

Channel gain hij [10,20]

Default local accuracy ϵi 0.1

4.5 Numerical results

In this section, we evaluate our proposed method for matching with the incomplete

preference list (IPL) with regard to system latency. Meanwhile, we take matching

with the complete preference list (CPL) and random matching as baseline methods for

performance comparison. Besides, we change the number of participants, the number

of edge nodes, the capacity of each edge node, local accuracy, energy threshold, and

incomplete rate to see the performance varieties of the MEC network. In order to

control variables, we fix some common parameters for all the participants [96, 95, 76].

The channel bandwidth B is set as 20MHz. The transmission power for each device

pi, the amount of data for each device Di, the number of instructions to process one

data sample needed by each participant mi, and the size of local model parameters

si are assumed the same, which are set as 23dBm, 1,000, 50, and 5MB, respectively.

The Gaussian noise N0 is set as -96dBm. The energy threshold for every participant is

assumed the same as well, which is set as 40%. Remaining energy capacity is randomly

assigned within [20, 100]%. The CPU frequency is randomly generated within the range

[10, 20]MHz. The channel gain of the link between the ith participant and the jth

participant is randomly generated within the interval [10,20]. The default local accuracy

indicator is defined as 0.1, where a lower value of ϵi represents the higher local accuracy.

The default percentage of preference missing is set as 10%. For the convenience, the

parameters settings are summarized in Table 11.

82

1 1.5 2 2.5 3 3.5 4 4.5 5

Number of Participants (Thousand)

0.0146

0.0148

0.015

0.0152

0.0154

0.0156

0.0158

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

S
e
c
o
n
d
s
)

CPL

Proposed Method

Random

Figure 26: Average network latency with different number of users.

Firstly, we discuss the influence of different participants among participant’s average

latency. In this case, the number of edge node E is set as 10, where each of them can

accept 100 participant at the most. The results are illustrated in Fig. 26. We increase the

number of participants from 1,000 to 10,000 by step 1,000 to show the change of system

latency. Among the three methods shown in Fig. 26, algorithm with CPL achieves

the lowest average latency throughout the variation process. which is understandable.

Because with CPL, both sides have entire knowledge to each other, i.e. channel gain

and CPU frequency. Therefore, each matching step aims at pairing the higher CPU

frequency for edge node and higher channel gain for participant, which approaches the

lower latency until stable matching is obtained. However, for matching with IPL, due

to the incomplete information, the unassigned individuals will be matched randomly

with available edge node, which is not desirable and the latency is not the optimal

solution. As for random strategy, it comes by random participants allocation among

edge nodes, which gives the highest average latency. Besides, during the variation, the

average network latency keeps almost the same for CPL but varies for IPL and random

strategies. This is because random method gives different matching results each time.

As for IPL, since we set the missing rate as 10%, the missing preferences introduce

uncertainties, which leads to fluctuation.

Then, let us have a look at the influence of different numbers of edge nodes upon

network latency. We set the number of users as 5,000 and the capacity of edge nodes

83

5 6 7 8 9 10

Number of Edge Nodes

74.8

74.82

74.84

74.86

74.88

74.9

74.92

74.94

74.96

74.98

L
a
te

n
c
y
 (

S
e
c
o
n
d
s
)

CPL

Proposed Method

Random

Figure 27: Network latency with different number of edge nodes.

is 1,000. We increase the number of edge nodes from 5 to 10 by step 1. The corre-

sponding results are shown in Fig. 27. Apparently, CPL achieves the lowest latency

because the complete information for preference. The performance of proposed method

is in the between of random method and CPL due to a part of matching is assigned

randomly instead of the utility functions. Likewise, random method generates the worst

performance reflecting by the highest latency. When the edge node number is five, CPL

achieves 0.1072 second less delay than random method and IPL achieves 0.0533 second

less latency than random method. Besides, we can see that with the increase of number

of edge nodes, the overall latency goes down, which is understandable. When the num-

ber pf edge node is larger, the elements in the acceptable sets A(Ni) and A(Ej) become

larger accordingly, which means the options for participants get augmented. Therefore,

each participant is able to find a better assignment with the higher channel gain. Corre-

spondingly, the total number of low latency pairs increases, leading to a relatively lower

network delay.

Now, we vary the edge nodes capacity to see the corresponding effect among system

latency. We set the number of participants as 5,000 and the number of edge nodes as

10. The capacity of each edge node is increased from 500 to 1,000 by step 100. The

corresponding results are illustrated in Fig. 28. Overall, the results keep consistent

with previous experiments, i.e., random method yields the highest latency, proposed

method gives less, and the CPL achieves the lowest latency. Averagely, the latency of

84

100 200 300 400 500 600 700 800 900 1000

Edge Server Capacity (MB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e
rc

e
n
ta

g
e

Permanent Static Layer

Transient Static Layer

Transient Dynamic Layer

Highly Dynamic Layer

Figure 28: Network latency with different capacity of edge nodes.

random method is 0.0664 second more than CPL method, and 0.0390 second more than

IPL method. Moreover, it is obvious that no matter for which method, the latency

reduces with the increase of capacity of edge nodes. Because when the edge node

is possessed of a larger capacity, participants can obtain a higher probability to be

accepted by the desirable edge node instead of rejection, such that the overall latency

can be decreased. Furthermore, for CPL, we can find that the latencies for 800, 900,

and 1,000 capacity cases are the same. This is because when the edge node capacity is

sufficiently large, the matching assignments achieves stable and no more optimal solution

can be found. However, for IPL and random methods, due to the embedded uncertainties

or randomness, i.e., random preference list missing and random participant-edge node

allocation, they cannot achieve the same latency.

Next, we look into the influence of the local accuracy upon network latency. The

number of participants, the number of edge nodes, the edge node capacity are set as

5,000, 10, and 500, respectively. The local model accuracy indicator is increased from 0.1

to 0.5 by step 0.1, which represents local accuracy decreases gradually. Corresponding

results are illustrated in Fig. 29. Still, the performance of CPL is the best and random

method gives the largest latency. Statistically, random strategy yields 2.5691 seconds

more delay than CPL and 1.5724 seconds more latency than IPL. Macroscopically, with

a higher accuracy, the latency is much larger as well. Actually, what is affected by local

accuracy is computation time. According to (81), the total number of local computation

85

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Local Accuracy Indicator

35

40

45

50

55

60

65

70

75

80

L
a
te

n
c
y
 (

S
e
c
o
n
d
s
)

CPL

Proposed Method

Random

Figure 29: Network latency with different local accuracy.

40 42 44 46 48 50 52 54 56 58 60

Energy Threshold (%)

45

50

55

60

65

70

75

80

L
a
te

n
c
y
 (

S
e
c
o
n
d
s
)

CPL

Proposed Method

Random

Figure 30: Network latency with different energy threshold.

iterations is in exponential growth with the decay of ϵ. Therefore, in order to achieve a

relatively higher local accuracy, the required rounds of computation iterations increases

explosively, resulting in longer time delay.

Also, we change the energy threshold to find the corresponding influence among

system latency. The number of participants, the number of edge nodes, the edge node

capacity are set as 5,000, 10, and 500, respectively. The participation willingness or

energy threshold is increased from 40% to 60% by step 5%. The numerical results

are shown in Fig. 30. Apparently, random method gives the highest network latency

while CPL gives the lowest, which keeps consistent with previous experiments. In the

86

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Missing Rate (%)

73

74

75

76

77

78

79

L
a
te

n
c
y
 (

S
e
c
o
n
d
s
)

CPL

Proposed Method

Random

Figure 31: Network latency with different preference list missing rate.

average, random method generates 4.2652 seconds higher latency than CPL and 2.5547

seconds higher latency than IPL. In general, with the increase of energy threshold δ, the

total network latency decreases accordingly. The index of willingness for participation

is determined by remained energy percentage. Only when δ is less than ci, θi equals to

1, i.e., Ni will join federated learning task. Hence, as energy threshold increases, the

total number of participants involving in the learning process will decrease. Therewith,

the overall network latency can be reduced correspondingly.

Finally, we adjust the parameter of preference list missing rate, which is from 10%

to 30% by step 5%. The number of participants, the number of edge nodes, the edge

node capacity are set as 5,000, 10, and 500, respectively. The corresponding results are

illustrated in Fig. 31. The overall trend is that, with the increase of missing rate, the

network latency becomes larger. And we can find that the performance approaches to

CPL with small missing rate but similar to random method with a larger missing rate.

This is because if the missing rate is higher, the probability of partial matching increases

as well. Correspondingly, the number of unassigned individuals will be aggrandized.

Since unassigned individuals will be matched with available edge node randomly, which

is not based on utility function. Consequently, the obtained latency is not the optimal

solution. Therefore, the performance get closer to random strategy. In an extreme case,

when the missing rate is 100%, IPL will be exactly the same as random allocation. On

the contrary, when the missing rate is small, which means the built preference list is

87

relatively complete, the system latency can achieve similar value compared with CPL.

When the missing rate is sufficiently small, i.e., 0%, IPL will turn into CPL case.

4.6 Conclusion

In this chapter, we study the low latency problem for multi-task federated learning

in the MEC networks. Considering in large scale IoTs scenario, it is not possible for edge

nodes and end devices to obtain the complete information of the other side, which means

building the complete preference list is impractical. Therefore, we propose a method

to deal with the two-sided many-to-one matching with the incomplete preference list.

The simulation results show that the performance of our proposed method is close to

the performance of CPL, although there is small gap between them due to information

missing. Besides, we also discuss the influence of number of participants, the number

of edge nodes, the edge node capacity, local accuracy, energy threshold, and preference

list missing rate among network latency. Evidently, the network latency is positively

related to the missing rate while is negatively correlated with number of edge nodes,

capacity of edge nodes, energy threshold, and local accuracy indicator.

88

5 Conclusion and Future Works

5.1 Conclusion Remarks

To relieve the data processing pressure, multi-access edge computing is emerged

as a solution.Edge computing employs a distributed and hierarchical computing model.

The edge nodes, which have computational abilities as well, are geographically deployed.

Those relatively lower complexity missions can be addressed in the edge nodes directly

instead of uploading to the cloud center, so as to the transmission distance can be signif-

icantly minified, therewith the decreasing of latency. However, with the growth of end

users, how to allocate the available edge computing resources to fulfill the requirements

becomes a challenging problem

This dissertation provides a theoretical research between machine learning, multi-

access edge computing, and autonomous vehicles, in which different machine learning

models are utilized in different multi-access edge computing assisted applications as

well as efficient machine learning mechanism design. This work places a fundamental

research on edge computing resource allocation. In this dissertation, we mainly focus our

research on how to use machine learning method to allocate edge computing resources.

Also, we discuss the mechanism design to optimize the machine learning framework.

In the first application, a two-stage meta-learning approach is proposed to predict

the edge computing resource consumption such that the expenses to consume edge

computing resources can be minimized. In the first stage, a DNN is utilized to learn the

experience dataset so as to figure out which machine learning model performs better in a

specific situation.In the second stage, the resource amount anticipation will be conducted

by the machine learning model selected by the DNN obtained in the first stage according

to the meta-features. In addition,due to the fact that there is no open edge computing

based vehicular network dataset, we programming the game engine Unity3D to build

the 3D model of Manhattan area as in real world. Meanwhile,we adjust the factors like

different roadmaps, the number of vehicles, and the randomness of task sizes for the

traffic, which makes our data get closer to the practice. Simulation results show that

our proposed meta-learning method always gives the most economical predictions.

Next, the problem of latency minimization for edge assisted HD map updating

89

is investigated. Especially, consider the practice that the available edge computing

resources may be variational. Two cases are discussed, i.e., deterministic edge capacity

case and uncertain edge capacity case. For the deterministic edge capacity case, the

optimal solution is obtained analytically. And the influence of different edge server

capacity, federated analytics accuracy, vehicle utility is also discussed. For the uncertain

edge capacity case, the problem is reformulated into a DRCCO optimization problem

and solved by the CVaR model based approximation. The numerical results show that

our proposed method is able to find the low latency edge computing resource allocation

scheme.

Finally, the low latency problem for multi-task federated learning in the MEC

networks is discussed. Considering in large scale IoTs scenario, it is not possible for edge

nodes and end devices to obtain the complete information of the other side, which means

building the complete preference list is impractical. Therefore, we propose a method

to deal with the two-sided many-to-one matching with the incomplete preference list.

The simulation results show that the performance of our proposed method is close to

the performance of CPL, although there is small gap between them due to information

missing.

From those works, we have seen machine learning as a powerful prediction tool is

able to help arrange or optimize the edge computing resources allocation. Beyond ma-

chine learning utilization, the efficient mechanism design for machine learning, especially

for distributed learning, is also necessary. This dissertation is expected to provide an

accessible and holistic survey on the use of machine learning and optimization methods

to address the resource allocation problem for edge computing assisted applications, and

has a long term effect on problems such as edge computing resource deployment, service

guaranteed wireless network design.

5.2 Future Work

As a promising transportation way, autonomous driving is in fast development,

which relies heavily on the utilization of HD map. HD map is made up of various

information and resources, such as drivable paths, lane marks, the priority of lanes, traffic

90

Figure 32: The scenario for adaptive resolution with communication resources con-
strained HD map updating.

light and crosswalk to lane association, adjacent objects, and street furniture, which is

represented in a high degree of resolution and precision, generally in the centimeter

level. Intuitively, in the current map, it is common to find the gaps between actual

circumstances andthe map, which takes days to be corrected. However, for autonomous

driving, any delayed update for HD map can result in dangerous or even fatal accidents

without human intervention. Therefore, HD map must be updated in a timely manner.

Thus, we see there is a great potential to do further research in edge computing assisted

HD map updating, offloading, and distribution problems. The following are research

directions that can be further explored in this area of research.

• Adaptive resolution with communication resources constrained HD map updating:

In wireless networks, bandwidth is not always sufficient for high speed transmis-

sion. Under different wireless environments, the transmission rate can fluctuate

a lot. However, HD map is a latency sensitive application. In this case, how to

guarantee the HD map updating in a timely manner with communication con-

strains needs to be considered. To address this, an adaptive resolution scheme can

be a solution. When the communication resources are limited or the transmission

rate is low, a coarse resolution version of HD map will be transmitted. Since the

data size becomes smaller, the latency can be reduced accordingly. When the

communication resources are sufficient or the transmission rate is sufficiently high,

91

Figure 33: The scenario for HD map distribution.

a detailed resolution version of HD map will be transmitted, which is illustrated

in Fig. 32.

• Efficiency or quality of service (QoS) guaranteed HD map distribution scheme:

Previously we mainly discuss the HD map updating mechanism, i.e., the uplink

transmission. When the information from vehicles located in different areas is

gather, the complete HD map needs to be distributed to all the autonomous ve-

hicles for real time and accurate decision making. Therefore, how to deliver the

HD map to all the vehicles efficiently needs to be considered. Expect the direct

transmission from server to vehicle, the other transmission methods, like vehicle-

to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-everything (V2X)

can be take into consideration, which is described in Fig. 33.

92

References

[1] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications and

issues,” in ACM Proceedings of Workshop on Mobile Big Data, Hangzhou, China,

June 2015, pp. 37–42.

[2] C. V. Networking, “Cisco global cloud index: Forecast and methodology, 2014-

2019,” White Paper, Cisco, 2013.

[3] H. Wang, T. Liu, B. Kim, C.-W. Lin, S. Shiraishi, J. Xie, and Z. Han, “Architec-

tural design alternatives based on cloud/edge/fog computing for connected vehi-

cles,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2349–2377,

2020.

[4] Y. Zhang and Z. Han, “Multi-dimensional payment plan in fog computing with

moral hazard,” in Contract Theory for Wireless Networks. Springer, February

2017, pp. 73–88.

[5] H. Wang and J. Xie, “User preference based energy-aware mobile ar system with

edge computing,” in Proc. IEEE Conference on Computer Communications (IN-

FOCOM), 2020, pp. 1379–1388.

[6] H. Zhang, Y. Zhang, Y. Gu, D. Niyato, and Z. Han, “A hierarchical game frame-

work for resource management in fog computing,” IEEE Communications Maga-

zine, vol. 55, no. 8, pp. 52–57, August 2017.

[7] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, “Computing resource

allocation in three-tier iot fog networks: A joint optimization approach combining

stackelberg game and matching,” IEEE Internet of Things Journal, vol. 4, no. 5,

pp. 1204–1215, October 2017.

93

[8] H. Wang, J. Xie, and T. Han, “A smart service rebuilding scheme across cloudlets

via mobile ar frame feature mapping,” in Proc. IEEE International Conference on

Communications (ICC), 2018, pp. 1–6.

[9] H. Wang, B. Kim, J. Xie, and Z. Han, “Energy drain of the object detection pro-

cessing pipeline for mobile devices: Analysis and implications,” IEEE Transactions

on Green Communications and Networking, vol. 5, no. 1, pp. 41–60, 2020.

[10] S. Sarkar and S. Misra, “Theoretical modelling of fog computing: a green comput-

ing paradigm to support iot applications,” Iet Networks, vol. 5, no. 2, pp. 23–29,

March 2016.

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and

challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646, June

2016.

[12] Y. Zhang, D. Niyato, and P. Wang, “Offloading in mobile cloudlet systems with in-

termittent connectivity,” IEEE Transactions on Mobile Computing, vol. 14, no. 12,

pp. 2516–2529, February 2015.

[13] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A platform for

internet of things and analytics,” in Big data and internet of things: A roadmap

for smart environments, 2014, pp. 169–186.

[14] M. Chen, Y. Zhang, Y. Li, S. Mao, and V. C. Leung, “Emc: Emotion-aware mobile

cloud computing in 5g,” IEEE Network, vol. 29, no. 2, pp. 32–38, March 2015.

[15] National Highway Traffic Safety Administration (NHTSA). Automated vehi-

cles for safety. [Online]. Available: https://www.nhtsa.gov/technology-

innovation/automated-vehicles-safety#issue-road-self-driving.

94

[16] Intel. Data is the new oil in the future of automated driving. [Online]. Avail-

able: https://newsroom.intel.com/editorials/krzanich-the-future-of-automated-

driving/#gs.jpzzzs.

[17] D. Chen, X. Zhang, L. L. Wang, and Z. Han, “Prediction of cloud resources

demand based on hierarchical pythagorean fuzzy deep neural network,” IEEE

Transactions on Services Computing, to appear 2019.

[18] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato, and C. S. Hong,

“Joint communication, computation, caching, and control in big data multi-access

edge computing,” IEEE Transactions on Mobile Computing, to appear 2019.

[19] B. Antonio, F. Stefano, and I. Ahmad, “Deploying fog applications how much does

it cost, by the way?” in the 7th International Conference on Cloud Computing

and Services Science (CLOSER), Porto, Portugal, April 2017.

[20] Amazon Web Services, “AWS Pricing - How does AWS pricing work?” [Online].

Available: https://aws.amazon.com/pricing/?nc1=h ls.

[21] J. Xu, R. Rahmatizadeh, L. Bölöni, and D. Turgut, “Real-time prediction of

taxi demand using recurrent neural networks,” IEEE Transactions on Intelligent

Transportation Systems, vol. 19, no. 8, pp. 2572–2581, August 2018.

[22] C. Lemke, M. Budka, and B. Gabrys, “Metalearning: a survey of trends and

technologies,” Artificial intelligence review, vol. 44, no. 1, pp. 117–130, June 2015.

[23] S. Yu, R. Langar, X. Fu, L. Wang, and Z. Han, “Computation offloading with

data caching enhancement for mobile edge computing,” IEEE Transactions on

Vehicular Technology, vol. 67, no. 11, pp. 11 098–11 112, November 2018.

95

[24] Q. Fan and N. Ansari, “On cost aware cloudlet placement for mobile edge comput-

ing,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 4, pp. 926–937, July

2019.

[25] H. Wang, B. Kim, J. Xie, and Z. Han, “E-auto: A communication scheme for

connected vehicles with edge-assisted autonomous driving,” in IEEE International

Conference on Communications (ICC), Shanghai, China, May 2019.

[26] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge com-

puting—a key technology towards 5g,” European Telecommunications Standards

Institute (ETSI) white paper, vol. 11, no. 11, pp. 1–16, September 2015.

[27] P. Gupta, A. Seetharaman, and J. R. Raj, “The usage and adoption of cloud

computing by small and medium businesses,” International Journal of Information

Management, vol. 33, no. 5, pp. 861–874, October 2013.

[28] J. M. Garćıa, P. Fernández, A. Ruiz-Cortes, S. Dustdar, and M. Toro, “Edge and

cloud pricing for the sharing economy,” IEEE Internet Computing, vol. 21, no. 2,

pp. 78–84, March 2017.

[29] A. Mazrekaj, I. Shabani, and B. Sejdiu, “Pricing schemes in cloud computing: an

overview,” International Journal of Advanced Computer Science and Applications,

vol. 7, no. 2, pp. 80–86, February 2016.

[30] B. Li, W. Xie, W. Zeng, and W. Liu, “Learning to update for object tracking with

recurrent meta-learner,” IEEE Transactions on Image Processing, vol. 28, no. 7,

pp. 3624–3635, February 2019.

[31] S. Canuto, D. X. Sousa, M. A. Gonçalves, and T. C. Rosa, “A thorough evaluation

of distance-based meta-features for automated text classification,” IEEE Transac-

tions on Knowledge and Data Engineering, vol. 30, no. 12, pp. 2242–2256, March

96

2018.

[32] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Learning to generalize: Meta-

learning for domain generalization,” in the 32th AAAI Conference on Artificial

Intelligence, New Orleans, LA, 2018.

[33] M. Vartak, A. Thiagarajan, C. Miranda, J. Bratman, and H. Larochelle, “A meta-

learning perspective on cold-start recommendations for items,” in the 31th Con-

ference on Neural Information Processing Systems, Long Beach, CA, 2017.

[34] J. R. Rice, “The algorithm selection problem,” in Advances in computers. Else-

vier, 1976, vol. 15, pp. 65–118.

[35] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,”

IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, April

1997.

[36] D. G. Ferrari and L. N. De Castro, “Clustering algorithm selection by meta-

learning systems: A new distance-based problem characterization and ranking

combination methods,” Information Sciences, vol. 301, pp. 181–194, April 2015.

[37] J. Vanschoren, “Meta-learning: A survey,” arXiv preprint arXiv:1810.03548, 2018.

[38] M. Tripathy and A. Panda, “A study of algorithm selection in data mining using

meta-learning.” Journal of Engineering Science & Technology Review, vol. 10,

no. 2, March 2017.

[39] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, “Recent advances

in recurrent neural networks,” arXiv preprint arXiv:1801.01078, 2017.

[40] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-

tion, vol. 9, no. 8, pp. 1735–1780, November 1997.

97

[41] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent

neural networks,” in International conference on machine learning, Atlanta, GA,

June 2013, pp. 1310–1318.

[42] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirec-

tional lstm and other neural network architectures,” Neural networks, vol. 18, no.

5-6, pp. 602–610, July 2005.

[43] Z. Cui, R. Ke, and Y. Wang, “Deep bidirectional and unidirectional lstm re-

current neural network for network-wide traffic speed prediction,” arXiv preprint

arXiv:1801.02143, 2018.

[44] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The journal

of machine learning research, vol. 15, no. 1, pp. 1929–1958, June 2014.

[46] Unity. Unity for games: create a world with more play. [Online]. Available:

https://unity.com/solutions/game.

[47] J. Mackenzie, J. F. Roddick, and R. Zito, “An evaluation of htm and lstm for short-

term arterial traffic flow prediction,” IEEE Transactions on Intelligent Transporta-

tion Systems, vol. 20, no. 5, pp. 1847–1857, August 2019.

[48] Transport for London. Traffic modeling guidelines version 3.0. [Online]. Available:

http://content.tfl.gov.uk/traffic-modelling-guidelines.pdf.

[49] T. D. Wemegah, S. Zhu, and C. Atombo, “Modeling the effect of days and road

type on peak period travels using structural equation modeling and big data from

radio frequency identification for private cars and taxis,” European Transport Re-

search Review, vol. 10, no. 2, p. 39, June 2018.

98

[50] R. Liu, J. Wang, and B. Zhang, “High definition map for automated driving:

Overview and analysis,” The Journal of Navigation, vol. 73, no. 2, pp. 324–341,

March 2020.

[51] D. Chen, D. Wang, Y. Zhu, and Z. Han, “Digital twin for federated analytics

using a bayesian approach,” to be pubulished in IEEE Internet of Things Journal,

doi:10.1109/JIOT.2021.3098692, 2021.

[52] F. Jomrich, J. Schmid, S. Knapp, A. Höß, R. Steinmetz, and B. Schuller,

“Analysing communication requirements for crowd sourced backend generation of

hd maps used in automated driving,” in IEEE Vehicular Networking Conference

(VNC), Taipei, Taiwan, China, December 2018.

[53] S. Kokovin, J.-F. Thisse, and E. Zhelobodko, “Monopolistic competition: Beyond

the ces,” CEPR Discussion Paper No. DP7947, August 2010.

[54] X. Xu, S. Gao, and M. Tao, “Distributed online caching for high-definition maps

in autonomous driving systems,” IEEE Wireless Communications Letters, vol. 10,

no. 7, pp. 1390–1394, July 2021.

[55] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du, “Poclib: A high-performance

framework for enabling near orthogonal processing on compression,” IEEE Trans-

actions on Parallel and Distributed Systems, vol. 33, no. 2, pp. 459–475, June

2021.

[56] D. Chen, C. S. Hong, L. Wang, Y. Zha, Y. Zhang, X. Liu, and Z. Han, “Matching-

theory-based low-latency scheme for multitask federated learning in mec net-

works,” IEEE Internet of Things Journal, vol. 8, no. 14, pp. 11 415–11 426, July

2021.

99

[57] G. Lloret-Talavera, M. Jorda, H. Servat, F. Boemer, C. Chauhan, S. Tomishima,

N. N. Shah, and A. J. Pena, “Enabling homomorphically encrypted inference for

large dnn models,” IEEE Transactions on Computers, Early access, 2021.

[58] H. Chu, L. Guo, B. Gao, H. Chen, N. Bian, and J. Zhou, “Predictive cruise control

using high-definition map and real vehicle implementation,” IEEE Transactions

on Vehicular Technology, vol. 67, no. 12, pp. 11 377–11 389, September 2018.

[59] M. Hirabayashi, A. Sujiwo, A. Monrroy, S. Kato, and M. Edahiro, “Traffic light

recognition using high-definition map features,” Robotics and Autonomous Sys-

tems, vol. 111, pp. 62–72, January 2019.

[60] Z. Jian, S. Zhang, S. Chen, X. Lv, and N. Zheng, “High-definition map combined

local motion planning and obstacle avoidance for autonomous driving,” in IEEE

Intelligent Vehicles Symposium (IV), Paris, France, June 2019, pp. 2180–2186.

[61] Y. Yoon, H. Chae, and K. Yi, “High-definition map based motion planning, and

control for urban autonomous driving,” SAE Technical Paper, 2021.

[62] F. Wang, D. Guan, L. Zhao, and K. Zheng, “Cooperative v2x for high definition

map transmission based on vehicle mobility,” in IEEE 89th Vehicular Technology

Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, April 2019.

[63] X. Xu, S. Gao, and M. Tao, “Distributed online caching for high-definition maps

in autonomous driving systems,” IEEE Wireless Communications Letters, vol. 10,

no. 7, pp. 1390–1394, July 2021.

[64] Y. Wu, Y. Shi, Z. Li, and S. Chen, “A cluster-based data offloading strategy for

high definition map application,” in IEEE 91st Vehicular Technology Conference

(VTC2020-Spring), May 2020.

100

[65] Y. Liu, M. Song, and Y. Guo, “An incremental fusing method for high-definition

map updating,” in IEEE International Conference on Systems, Man and Cyber-

netics (SMC), Bari, Italy, October 2019, pp. 4251–4256.

[66] J. Xie, J. Tang, and S. Liu, “An energy-efficient high definition map data dis-

tribution mechanism for autonomous driving,” arXiv preprint arXiv:2010.05233,

2020.

[67] J. Jiao, “Machine learning assisted high-definition map creation,” in IEEE 42nd

Annual Computer Software and Applications Conference (COMPSAC), vol. 1,

Yokyo, Japan, July 2018, pp. 367–373.

[68] C. Kim, S. Cho, M. Sunwoo, P. Resende, B. Bradäı, and K. Jo, “Updating point

cloud layer of high definition (hd) map based on crowd-sourcing of multiple vehicles

installed lidar,” IEEE Access, vol. 9, pp. 8028–8046, 2021.

[69] H. Zhuang, C. Wang, Y. Qian, and M. Yang, “Semantic-based road segmentation

for high-definition map construction,” in International Conference on Cognitive

Systems and Signal Processing, Zhuhai, China, December 2020, pp. 527–537.

[70] Y. Li, C. Wang, F. Chen, Z. Su, and X. Wu, “A method for generating large-scale

high definition color-point map,” in IEEE International Conference on Real-time

Computing and Robotics (RCAR), Irkutsk, Russia, August 2019, pp. 487–492.

[71] Automotive Edge Computing Consortium (AECC) White Paper. (2020,

May) Operational behavior of a high definition

map application. [Online]. Available: https://aecc.org/wp-

content/uploads/2020/07/Operational Behavior of a High Definition

Map Application.pdf

101

[72] Y. B. Can, A. Liniger, O. Unal, D. Paudel, and L. Van Gool, “Understanding

bird’s-eye view semantic hd-maps using an onboard monocular camera,” arXiv

preprint arXiv:2012.03040, 2020.

[73] W. Feng, J.-M. Friedt, G. Cherniak, and M. Sato, “Batch compressive sensing for

passive radar range-doppler map generation,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 55, no. 6, pp. 3090–3102, February 2019.

[74] F. Ghallabi, G. El-Haj-Shhade, M.-A. Mittet, and F. Nashashibi, “Lidar-based

road signs detection for vehicle localization in an hd map,” in IEEE Intelligent

Vehicles Symposium (IV), Paris, France, June 2019, pp. 1484–1490.

[75] Y. Zhao, H. Wang, H. Su, L. Zhang, R. Zhang, D. Wang, and K. Xu, “Understand

love of variety in wireless data market under sponsored data plans,” IEEE Journal

on Selected Areas in Communications, vol. 38, no. 4, pp. 766–781, February 2020.

[76] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air

computation,” IEEE Transactions on Wireless Communications, vol. 19, no. 3,

pp. 2022–2035, January 2020.

[77] C. Ma, J. Konečnỳ, M. Jaggi, V. Smith, M. I. Jordan, P. Richtárik, and M. Takáč,

“Distributed optimization with arbitrary local solvers,” Optimization Methods and

Software, vol. 32, no. 4, pp. 813–848, February 2017.

[78] R. Han, M. Si, J. Demmel, and Y. You, “Dynamic scaling for low-precision learn-

ing,” in Proceedings of the 26th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, Virtual Event Republic of Korea, February

2021, pp. 480–482.

[79] N. H. Tran, W. Bao, A. Zomaya, M. N. Nguyen, and C. S. Hong, “Federated

learning over wireless networks: Optimization model design and analysis,” in

102

IEEE Conference on Computer Communications (INFOCOM), Paris, France,

April 2019, pp. 1387–1395.

[80] S. Zhang, H. Zhang, Z. Han, H. V. Poor, and L. Song, “Age of information in

a cellular internet of uavs: Sensing and communication trade-off design,” IEEE

Transactions on Wireless Communications, vol. 19, no. 10, pp. 6578–6592, October

2020.

[81] F. Wu, H. Zhang, J. Wu, Z. Han, H. V. Poor, and L. Song, “Uav-to-device un-

derlay communications: Age of information minimization by multi-agent deep

reinforcement learning,” IEEE Transactions on Communications, vol. 69, no. 7,

pp. 4461–4475, July 2021.

[82] Z. Chen, D. Kuhn, andW.Wiesemann, “Data-driven chance constrained programs

over wasserstein balls,” arXiv preprint arXiv:1809.00210, 2018.

[83] F. Luo and S. Mehrotra, “Decomposition algorithm for distributionally robust

optimization using wasserstein metric with an application to a class of regression

models,” European Journal of Operational Research, vol. 278, no. 1, pp. 20–35,

October 2019.

[84] J. Blanchet and K. Murthy, “Quantifying distributional model risk via optimal

transport,” Mathematics of Operations Research, vol. 44, no. 2, pp. 565–600, May

2019.

[85] W. Xie and S. Ahmed, “Distributionally robust chance constrained optimal power

flow with renewables: A conic reformulation,” IEEE Transactions on Power Sys-

tems, vol. 33, no. 2, pp. 1860–1867, July 2017.

[86] W. Xie, “On distributionally robust chance constrained programs with wasserstein

distance,” Mathematical Programming, vol. 186, pp. 115–155, November 2019.

103

[87] D. Reinsel, J. Gantz, and J. Rydning, “The digitization of the world from edge to

core,” IDC White Paper, 2018.

[88] J. Ren, G. Yu, and G. Ding, “Accelerating dnn training in wireless federated edge

learning system,” arXiv preprint arXiv:1905.09712, 2019.

[89] Y. Zhang and Q. Yang, “A survey on multi-task learning,” arXiv preprint

arXiv:1707.08114v2, 2018.

[90] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, “Efficient and privacy-enhanced

federated learning for industrial artificial intelligence,” IEEE Transactions on In-

dustrial Informatics, vol. 16, no. 10, pp. 6532–6542, October 2019.

[91] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,

“Federated learning: Strategies for improving communication efficiency,” arXiv

preprint arXiv:1610.05492, 2016.

[92] D. Chen, Y.-C. Liu, B. Kim, J. Xie, C. S. Hong, and Z. Han, “Edge computing

resources reservation in vehicular networks: A meta-learning approach,” IEEE

Transactions on Vehicular Technology, vol. 69, no. 5, pp. 5634–5646, March 2020.

[93] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and

applications,” ACM Transactions on Intelligent Systems and Technology (TIST),

vol. 10, no. 2, pp. 1–19, January 2019.

[94] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,

D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-

preserving machine learning,” in Proceedings of ACM SIGSAC Conference on

Computer and Communications Security, Dallas, TX, October 2017.

[95] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning

with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

104

[96] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan,

“Adaptive federated learning in resource constrained edge computing systems,”

IEEE Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1205–

1221, March 2019.

[97] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and

communication-efficient federated learning from non-iid data,” IEEE transactions

on neural networks and learning systems, Early access, 2019.

[98] J. Kang, Z. Xiong, D. Niyato, H. Yu, Y.-C. Liang, and D. I. Kim, “Incentive design

for efficient federated learning in mobile networks: A contract theory approach,”

in IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS), Sig-

napore, August 2019.

[99] C. Dinh, N. H. Tran, M. N. Nguyen, C. S. Hong, W. Bao, A. Zomaya, and

V. Gramoli, “Federated learning over wireless networks: Convergence analysis

and resource allocation,” arXiv preprint arXiv:1910.13067, March 2020.

[100] W. Y. B. Lim, J. Huang, Z. Xiong, J. Kang, D. Niyato, X.-S. Hua, C. Leung, and

C. Miao, “Towards federated learning in uav-enabled internet of vehicles: A multi-

dimensional contract-matching approach,” arXiv preprint arXiv:2004.03877, April

2020.

[101] H. Zhu and Y. Jin, “Multi-objective evolutionary federated learning,” IEEE Trans-

actions on Neural Networks and Learning Systems, vol. 31, no. 4, pp. 1310–1322,

June 2019.

[102] D. Manlove, Algorithmics of matching under preferences. World Scientific, 2013,

vol. 2.

105

[103] C. Su, F. Ye, L.-C. Wang, L. Wang, Y. Tian, and Z. Han, “Uav-assisted wire-

less charging for energy-constrained iot devices using dynamic matching,” IEEE

Internet of Things Journal, vol. 7, no. 6, pp. 4789–4800, June 2020.

[104] Y. Gu, Z. Chang, M. Pan, L. Song, and Z. Han, “Joint radio and computational

resource allocation in iot fog computing,” IEEE Transactions on Vehicular Tech-

nology, vol. 67, no. 8, pp. 7475–7484, August 2018.

[105] N. Sharghivand, F. Derakhshan, L. Mashayekhy, and L. M. Khanli, “An edge

computing matching framework with guaranteed quality of service,” IEEE Trans-

actions on Cloud Computing, Early access, 2020.

[106] S. Seng, C. Luo, X. Li, H. Zhang, and H. Ji, “User matching on blockchain for

computation offloading in ultra-dense wireless networks,” IEEE Transactions on

Network Science and Engineering, Early access, 2020.

[107] R. Fantacci and B. Picano, “A matching game with discard policy for virtual

machines placement in hybrid cloud-edge architecture for industrial iot systems,”

IEEE Transactions on Industrial Informatics, Early access, 2020.

[108] X. Huang, R. Yu, S. Xie, and Y. Zhang, “Task-container matching game for com-

putation offloading in vehicular edge computing and networks,” IEEE Transac-

tions on Intelligent Transportation Systems, Early access, 2020.

[109] L. U. Khan, M. Alsenwi, Z. Han, and C. S. Hong, “Self organizing federated

learning over wireless networks: A socially aware clustering approach,” in 2020

International Conference on Information Networking (ICOIN), Barcelona, Spain,

January 2020.

106

[110] N. H. Tran, W. Bao, A. Zomaya, N. M. N.H, and C. S. Hong, “Federated learning

over wireless networks: Optimization model design and analysis,” in IEEE Con-

ference on Computer Communications (INFOCOM), Paris, France, April 2019.

[111] Y. Chen, X. Sun, and Y. Jin, “Communication-efficient federated deep learning

with layerwise asynchronous model update and temporally weighted aggregation,”

IEEE Transactions on Neural Networks and Learning Systems, no. 10, October

2020.

[112] D. Chen, L. J. Xie, B. Kim, L. Wang, C. S. Hong, L.-C. Wang, and Z. Han,

“Federated learning based mobile edge computing for augmented reality applica-

tions,” in International Conference on Computing, Networking and Communica-

tions (ICNC), Big Island, HI, Feburary 2020.

[113] D. Gale and L. S. Shapley, “College admissions and the stability of marriage,”

American Mathematical Monthly, vol. 120, no. 5, pp. 386–391, 2013.

[114] N. Raveendran, Y. Gu, C. Jiang, N. H. Tran, M. Pan, L. Song, and Z. Han,

“Cyclic three-sided matching game inspired wireless network virtualization,” IEEE

Transactions on Mobile Computing, Early access, 2019.

[115] G. M. Sotomayor, “Ms. machiavelli and the stable matching problem,” American

Mathematical Monthly, vol. 92, no. 4, pp. 261–268, 1985.

[116] D. Gale and M. Sotomayor, “Some remarks on the stable matching problem,”

Discrete Applied Mathematics, vol. 11, no. 3, pp. 223–232, July 1985.

[117] I. Gent and P. Prosser, “An empirical study of the stable marriage problem with

ties and incomplete lists,” in the 15th European Conference on Artificial Intelli-

gence, Amsterdam, Netherlands, August 2002, pp. 141–145.

107

[118] K. Iwama and S. Miyazaki, “A survey of the stable marriage problem and its

variants,” in International conference on informatics education and research for

knowledge-circulating society (ICKS 2008), Tokyo, Japan, March 2008, pp. 131–

136.

108

