
Cross-chain Trading Network Using Smart Contracts

by

Quang Tran

A Thesis submitted to the Department of Computer Science,

College of Natural Sciences and Mathematics

in partial fulfillment of the requirements for the degree of

Master of Science

in Computer Science

Chair of Committee: Weidong Larry Shi

Committee Member: Lei Xu

Committee Member: Panruo Wu

University of Houston
May 2020

Copyright 2020, Quang Tran

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr. Weidong Larry Shi, for his
patience, guidance, kindness, support, and instructions during my work on this thesis, especially
for his motivation so that I can complete my Master’s Degree.

I am very grateful to Dr. Lei Xu, for serving on my thesis committee and for being my reviewer
to correct my mistake in many projects.

I wish to thank Dr. Panruo Wu for serving on my committee and for reviewing, providing
advice on my thesis.

Last but not least, I also want to thank other students in Dr. Shi’s group, Keshav, Kelvin, and
especially Glenn, for suggestions and comments.

iii

ABSTRACT

The blockchain, a secured and distributed database design, has been introduced and launched for

ten years. Since then, a significant number of cryptocurrencies and financial trading markets us-

ing digital assets have also been introduced over time. Despite the fluctuation in the exchange

rate, blockchains and its cryptocurrencies have no remarkable change overall. They still follow the

old-traditional trading mechanism, which exchanges between cryptocurrencies and fiat currencies.

Although few projects are emerging to enlarge a blockchain’s trading usage, i.e., cross-chain liquid-

ity, it still limits itself on swapping one type of cryptocoin with another type. Beyond supporting

swapping coins, the blockchain could be applied and extended to become a trade-payment network

that connects multiple solitary blockchain-based platforms. In this thesis, I propose a heuristic

cross-chain trading system that leverages the blockchain technology to build a fair and border-less

trading network across multiple decentralized blockchains by taking advantage of smart contracts

and ERC-20 protocol. Last sentence, I provide a concrete example and design of a cross-chain

trading network between three popular systems, which are Bitcoin, Lightning Network Daemon,

and Ethereum.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS iii

ABSTRACT iv

LIST OF FIGURES vi

LIST OF TABLES vii

1 INTRODUCTION 1

2 BACKGROUND ON THE BLOCKCHAIN 3
2.1 Blockchain - A Brief History . 3
2.2 Bitcoin . 4
2.3 Lightning Network Daemon . 7
2.4 Ethereum . 10

3 RELATED WORKS OF CROSS-CHAIN TRADING 13
3.1 Related Works . 13
3.2 Motivation . 14

4 CROSS-CHAIN TRADING NETWORK SCHEME 15
4.1 Pre-defined Smart Contracts . 16
4.2 Wallet Initialization . 20
4.3 Sending and Adding Tokens . 29

4.3.1 Sending Tokens . 29
4.3.2 Adding Tokens . 30

4.4 Cashing Out Tokens . 32
4.4.1 Paying and Updating Tokens Using Option 1 34
4.4.2 Paying and Updating Tokens Using Option 2 37

5 MORE DISCUSSION OF THE PROPOSED SCHEME 39
5.1 Trade vs. Swap . 39
5.2 Security Properties . 39

6 EXPERIMENT SETUP AND RESULT 42
6.1 Network and Configuration . 42
6.2 Experiment Results . 44

7 CONCLUSION AND FUTURE WORKS 55

BIBLIOGRAPHY 56

A APPENDIX 59

v

LIST OF FIGURES

2.1 Simple Block Structure . 4
2.2 Unspent Transaction Output - UTXO . 7
2.3 Multi-hop payment between two participants . 9
2.4 HTLC in case of multi-hop payment . 10
2.5 Merkle Proof in Ethereum . 12
4.6 High-level architecture of the trading network. 15
4.7 Initialize Wallet with σ = 0 . 20
4.8 Initialize Wallet with σ = k . 21
4.9 Raw Transaction format . 23
4.10 Create Raw Transaction and Sign Raw Transaction 23
4.11 Raw String and Raw Transaction Explanation . 25
6.12 The high-level architecture of a cross-chain network using in experiment 43
6.13 The local Web Application supports in-chain activities 44
6.14 The client C1 requests to join a network and starts GroupTrade G1 with 0 Token . . 45
6.15 The balance of C1 after successfully deploys the GroupTrade (G1) 46
6.16 The client C3 joins GroupTrade G1 with requesting σ = 50 ∗ 108 Tokens 46
6.17 The balance of C3 after successfully joins the GroupTrade (G1) 47
6.18 The client C2 starts GroupTrade G2 with initializing σ = 100 ∗ 108 Tokens 47
6.19 The balance of C2 after successfully create the GroupTrade (G2) 48
6.20 The client C4 joins GroupTrade G2 with initializing σ = 80 ∗ 108 Tokens 48
6.21 The balance of C4 after successfully join the GroupTrade (G2) 49
6.22 The client C3 sends to C1 several Tokens k = 2 ∗ 107 using a local Web GUI 49
6.23 The balance of C3 after transferring Tokens to C1 . 50
6.24 The balance of C1 after receiving Tokens k = 2 ∗ 107 from C3 50
6.25 The client C4 sends to C1 some Tokens k = 8 ∗ 107 using a local Web GUI 50
6.26 The balance of C1 after receiving Tokens from C4 . 51
6.27 The balance of C4 after transferring Tokens k = 8 ∗ 107 to C1 51
6.28 The client C2 requests to cash-out 2 ∗ 108 Tokens = 2 BTC to GroupTrade (G2) . . . 51
6.29 The client C2 fails to query a cash-out request . 52
6.30 The client C1 fails to query a cash-out request before claiming to pay 52
6.31 The client C1 claims to pay for a cash-out request . 53
6.32 The client C1 succeeds to query a cash-out request after claiming to pay 53
6.33 The client C1 pays the cash-out and requests to update the balance 54
6.34 The balance of C1 is updated after making a payment 54
6.35 The balance of C2 is updated after receiving a payment 54

vi

LIST OF TABLES

3.1 The Cross-chain trading scheme in comparison with other networks. 14

vii

1 Introduction

The concept of blockchain was first introduced as the backbone of Bitcoin, a cryptocurrency

without a centralized component [1]. Intuitively, a blockchain is a distributed database that is

securely managed by multiple parties. All storage devices for the database are not managed,

maintained by central authorities, or servers. Instead, a growing list of records, called blocks, of all

transactions or digital events that have been executed and shared among participating parties, links

to each other to maintain the trust in a tamper-proof distributed database. Since the creation of

Bitcoin, cryptocurrencies have gained the popularity that starts a flourishing period of blockchain

technology, and financial trading markets using digital coins.

One of the most significant extensions of the original blockchain concept is a smart contract [2, 3,

4], which enables more complex functions than simple transactions to be enforced with a blockchain.

Specifically, a smart contract is a piece of computer programming code that is replicated across

clients in a blockchain network. As the name suggests, a smart contract expresses the agreement

between involved parties, and the blockchain facilitates the verification and enforcement of the

agreement without relying on any trusted third party. Several popular blockchain platforms support

smart contracts such as Ethereum, EOS, Hyperledger Fabric, and Stellar, which can be utilized for

solving a range of business challenges [5, 6, 7].

During the past ten years, the exchange rates among different cryptocurrencies have fluctuated

significantly. However, blockchain-based platforms, in general, have no significant development

from end-users’ perspective except improvements such as privacy enhancement [8]. Blockchains

and their supporting digital assets still follow an old and traditional trading mechanism that is

cryptocurrencies and fiat currencies exchange. Recently, several projects have emerged to enlarge

the blockchain’s usage in trading, such as swapping one type of cryptocoin to another. However,

like the current financial trading system, trading is not limited only to exchanging one currency for

another. Blockchain can be applied as a backbone of various trades using digital assets.

In this thesis, I propose a novel cross-chain trading system. This network can leverage the

1

use of blockchain technology to aggregate existing blockchain-based platforms to create a scalable

trading network by taking advantage of smart contracts and ERC-20, which is a de facto standard

of token implementation. To provide heuristic schemes as a demonstration, proposing protocols

are implemented on three popular decentralized blockchain ledgers which are Bitcoin, Lightning

Network Daemon, and Ethereum.

The contributions in this paper include:

• Leveraging the use of blockchain as a backbone model of the cross-chain digital asset trade;

• Proposing protocols that can aggregate multiple solitary blockchain platforms;

• Proposing a trading network across multiple decentralized blockchains; and

• Suggesting future work and additional research on improving performance.

The rest of the thesis is organized as follows. In section 2, I briefly cover the history of blockchain

technology as well as some basic designs of Bitcoin, Lightning Network, and Ethereum. Then, I

provide some related works and motivation for me to come up with this thesis. In section 4, I

propose protocols and a detail scheme to build a cross-chain trading network that allows clients

from other side-chains, Bitcoin and Lightning Network, to be able to join a main-chain Ethereum.

Next, I also discuss threat models and analyze the securities of the proposing protocol. In the

end, I show how I set up an experiment and also provide capturing screenshots of the experiment’s

results before giving a conclusion.

2

2 Background on The Blockchain

2.1 Blockchain - A Brief History

In this section, I briefly cover the history of blockchain technology. Centralization is a common

and pervasive form of regulating and controlling by a single authority or governance. People

sometimes trust or lack trust of central authorities, i.e., banks, organizations, and governments, to

regulate or to maintain order, trust, and fairness during operation. There have been many examples

that show the vulnerability of these authorities in operation, e.g., the financial crisis of 2007-2008,

the crisis in Venezuela, and leaked customers’ bank information. Thus, centralization is not always

a suitable mechanism. Also, a centralized model allows for the monopolization of power. It tends

to serve the interests of a group of people rather than the community as a whole. These two reasons

motivate for giving birth to blockchain technology.

Many of the technologies, which people currently take for granted, undergo small and silent

transformations. For instance, computers and the internet have changed human life. They have

been around for a few decades. We are now in the midst of another quiet innovation that is

called a blockchain. Even today, many people believe Bitcoin and the blockchain are the same.

However, they are not the same as being described later. As early as 1991, the fundamental idea

behind blockchain technology was first described when researchers, Stuart Haber and W. Scott

Stornetta, introduced a computationally practical solution to implement a system where document

timestamps could not be tampered with [9]. A chain of blocks, applying cryptography to secure, was

implemented to store the time-stamped documents. One year later, Merkle Trees were incorporated

into the design, which made it more efficient by allowing several documents to be collected into one

block.

The blockchain is a growing list of records, called blocks, that are linked using cryptography.

Each block contains a cryptographic hash of the previous block, a timestamp, and data (see Fig-

ure 2.1). By design, a blockchain can be applied as a distributed database that keeps record

transactions between several parties efficiently, securely since it is resistant to alteration of data

3

[10, 11, 12, 13].

Figure 2.1: Simple Block Structure

During the past ten years, the blockchain innovation can be summarized as:

• The introduction of Bitcoin has started an era of blockchain and cryptocurrencies,

• A thriving release of many other digital assets along with the new, distinct, and efficient

design of blockchain platforms. Major financial institutions and hi-tech corporations are also

following a new trend of the decentralized record-keeping model,

• The implementation of smart contract protocol is considered as the second generation of

blockchain technology. Smart contracts provide the performance of trustworthy transactions

without requiring the involvement of third parties,

• Current generation blockchains are secured by Proof-of-Work (PoW), which requires a group

of miners contributing their effort in solving mathematical puzzles. This method limits the

scalability of blockchain’s performance and usage. Hence, a new consensus algorithm, Proof-

of-Stake (PoS), has been proposed to solve the issue,

• Not just limited to exchange and finance, blockchain technology can now be applied to many

different fields of services such as supply chain and IoT.

2.2 Bitcoin

After the financial crisis in 2008, the community’s faith in financial and banking systems went

down. An unknown founder, using the name Satoshi Nakamoto, utilized the cryptography and

blockchain technology to create Bitcoin. In early 2009, Bitcoin’s ledger was introduced and launched

4

as the first model of a decentralized blockchain and digital currency. It has become a global

decentralized financial system and empowers people to have full control over their finances. Without

a central bank and a single administrator, a transaction among clients can be executed and sent

using a peer-to-peer Bitcoin network. Even though Bitcoin lacks the ability to be extended or

replaced with a traditional currency system, it still has the capability of becoming a digital store-

of-value with the protection of anonymity, decentralization, and motivation of the users’ power over

the control of global finance. The Bitcoin’s purpose has never changed since the very beginning of

its release.

In Bitcoin, a block size is initially hard-coded in size of 1MB to prevent spam transactions.

However, Bitcoin’s scalability becomes an issue when it is getting more attractive and well-known.

There is an expected block generation time that is approximately 10 minutes. The expected block

time is set as a constant value so that miners cannot impact the security of the network by adding

more computational power. This implementation also helps to minimize the impact of communi-

cation delay of peer-to-peer in a network. When a block is successfully mined, transactions are

added into a block by miners. However, the number of transactions that can be added is limited

by the block size. In addition to a long block generation time, block size also contributes to limit

the Bitcoin’s scalability. By design, Bitcoin cannot fit a high volume of transactions to apply to

a financial system widely. Thus, Segregated Witness (SegWit) was introduced to limit the size of

each transaction. Just as there are multiple versions of the Internet Protocol, the Bitcoin address

also has multiple formats.

• Legacy address format (P2PKH): P2PKH stands for Pay-to-Pubkey Hash. This format is an

original version of Bitcoin’s address and still works to this day. If a client uses a legacy address

format, it can sign a message and can be easily verified by using traditional cryptography

(ECDSA).

• P2SH address format: this is one type of SegWit formats. Its structure is similar to the

P2PKH format. But, the P2SH format enables more elaborate functionality than a legacy

format. A P2SH script function most commonly uses for multi-sig addresses, which require

5

multiple digital signatures to authorize the transaction. This format is widely supported and

can be used to transfer funds to both a legacy address and a Bech32 address format. However,

the P2SH address format cannot sign and verify a message publicly as a P2PKH format.

• Bech32 address format: Bech32 is a native SegWit address format. It looks distinctly different

from the P2-style formats. Despite being supported by a majority of software and hardware

wallets, a minority of exchanges adopts the Bech32 address format. Similar to a P2SH format,

the Bech32 format cannot sign and verify a message by the standard cryptography.

In Bitcoin, a blockchain’s record-keeping model adopts a method, called UTXO (Unspent Trans-

action Output). Each transaction spends an output from previous transactions and then generates

new outputs that can be spent by future transactions (see Figure 2.2). Each transaction is repre-

sented by an address, i.e., P2SH address format. When new outputs are created, new addresses

are also generated. All of the unspent transactions are kept in each node. A user’s node takes

responsibility for keeping track of the unspent transactions associated with the addresses owned by

a user. Intuitively, the balance of a node is a total sum of the amounts of unspent transactions.

Furthermore, since new outputs generate new distinct addresses, it is difficult to detect the trans-

action’s sender and the total balance of a specific account even though transactions are publicly

announced.

6

Figure 2.2: Unspent Transaction Output - UTXO

Image from 1

2.3 Lightning Network Daemon

Ten years after Bitcoin was first released, scalability still has fallen behind current demanding

needs. The high latency of peer-to-peer communication and low throughput of consensus protocol

are two fundamental barriers to their wider adoption. Although the capability of processing around

7 transactions per second (TPS) was enough at the very beginning of the Bitcoin launch, the existing

system ultimately falls behind current demanding needs. It is unable to compete or to alternate

the existing payment systems that can be able to process a large number of transactions (Visa

achieved 47,000 TPS) [14]. As a distributed database, the Bitcoin blockchain holds great promise

that protects privacy and security. However, it lacks, as a payment system, the capability to cover

the world’s commerce. Bitcoin’s community has come up with several proposals that can improve

Bitcoin’s scalability over the year. Currently, there is one proposal in the process of launching and

testing that might work to solve the problem[15, 16]. This platform is called the Lightning Network

Daemon2

1https://bitcoin.org/
2https://lightning.network/

7

Improving the time to finalize a transaction and the number of transactions, which can be

handled per unit of time, is perhaps the most crucial need of distributed public blockchains. The

Lightning Network is a system of instant, high-volume micropayments in a peer-to-peer fashion.

Its payment protocol is a second layer that operates on top of blockchain-based cryptocurrency,

Bitcoin. Bitcoin’s ledger provides an advanced scripting language that allows users to program

instructions on protecting, releasing, and transferring funds. Taking advantage of Bitcoin’s built-

in scripting, the Lightning Network solves Bitcoin’s current problems by the implementation of a

multi-signature scripting smart contract (HTLC) [17, 18], which is possible to create a secure mesh

network of participants in trading with high volume and high speed. Not only does it provide better

scalability, but it also enables users to perform off-chain payments and with low or negligible fees.

Like a traditional process of consensus, transactions among parties are required to broadcast

and to be verified (a.k.a. a mining process) by other nodes in a network before they are finalized

and added into blocks. In the case of recurring transactions among two parties, it must be gone

through the same process, which is cumbersome and decreases the performance of the blockchain

protocol. “If a tree falls in the forest and no one is around to hear it, does it make sound?”[14].

Similarly, if only two participants care about recurring transactions, other nodes in the network

do not necessarily need to know about these transactions. Instead, only essential information is

preferred to be added to the blockchain. Thus, Lightning Network proposes an off-chain payment

channel, which essentially helps to cut-off a large number of recurring transactions. Two parties

create a multi-signature channel, requiring both participants to sign off, in which funds are placed.

By having many of these payment channels, it forms up a mesh network of connections among

participants. Furthermore, Lighting Network also implements a method that helps to find a path

across networks, similar to routing packets on the internet, to transfer funds to a recipient in the

case of trading between two participants without the creation of a new channel. This method is

called a multi-hop payment (Figure 2.3).

A payment channel is represented as an entry on the Bitcoin’s ledger. Thus, it requires a

transaction of a channel creation to be finalized on-chain, Bitcoin. Once a payment channel is

8

created, transactions among nodes in the network can be done off-chain by using a scripting Hash

Time-Locked Contract (HTLC). By design, the channel is a multi-signature address between only

two stakeholders. In releasing funds of the channel, signatures from two stakeholders must be

provided. Updating new owner of transferring funds can be processed off-chain, within the Lightning

Network, instantly and compatibly instead of requiring to reach consensus in the Bitcoin’s chain.

With each off-chain transaction, a secret is generated by each party with each new version of the

balance sheets. A hash function is applied to this secret to generate a unique digital fingerprint

that is then given to the other party to update and to prove the new ownership (see Figure 2.4).

This implementation permits the financial relationships between two or multiple participants in the

mesh network can be trustlessly deferred to broadcast recurring transactions on-chain to a later

date. The payment channel can remain open indefinitely unless at least one of the two stakeholders

requests to close the channel. Once the channel is closed, a final version of balance sheets and proof

of ownership must then be broadcast and finalized in the Bitcoin’s chain.

Figure 2.3: Multi-hop payment between two participants

Image from 3

3https://lightning.network/

9

Figure 2.4: HTLC in case of multi-hop payment

Image from 4

In general, the Lightning Network provides a potential solution to solve the scalable problem

of Bitcoin, in which it offers:

• A mesh network of off-chain payment channels in the peer-to-peer fashion;

• Fast and instant off-chain transactions among nodes;

• Micro-payments which allows a lower limit of transferring coins per transaction; and

• Low cost

2.4 Ethereum

Ethereum, on the other hand, is not only a payment system. When Ethereum is mentioned,

people think about smart contracts. This decentralized platform was launched in 2015 and is

widely known as the second generation of blockchain. Ethereum Founder, Vitalik Buterin, believes

that blockchain technology has more utility than just being a simple payment-service provider.

4https://lightning.network/

10

Developers can create many real-world applications on top of it. Hence, a smart contract, an ex-

tended protocol, was introduced to digitally facilitate, verify, or enforce negotiation or performance

of multiple involved parties. Smart contracts are computer programming running on top of a

blockchain-based platform, and containing a set of pre-defined regulations among participants of a

contract who agree to deal with each other. Smart contracts provide the performance of trustworthy

transactions without the involvement of third parties. Smart contracts are stored on a blockchain

and are replicated across clients in a blockchain network. Thus, the security and immutability of

the smart contract still fit the ideal of blockchain technology.

To create a protocol for smart contracts that offer beneficial and efficient interactions between

participants in the network, Ethereum builds a Turing-complete machine, called the Ethereum

Virtual Machine or EVM, as the heart of its blockchain platform. Developers can create their

applications, which run on EVM using any friendly programming languages, to create their arbitrary

rules of ownership, transaction formats, and state transition functions. In terms of a smart contract,

Ethereum can sometimes be considered as a ”world computer.”

There are two types of record-keeping models that are widely used in decentralized blockchain

today. One of them, the UTXO model, as described in previous sections, is adopted by Bitcoin.

Ethereum is currently using an Account/Balance model. The model keeps track of the total balance

of each account as a global state. When a spending transaction is executed, the total balance of an

account is checked to guarantee that it is greater than or equal to a spending amount. For the benefit

of developing complex smart contracts, especially the contracts that require state information

and involve multiple parties, the Account/Balance model brings simplicity and efficiency. Each

transaction needs only to validate that the sender has enough balance to pay for it.

In Ethereum, a user is called a client. A client that runs mining on Ethereum blockchain is

called a miner/a node. A client can send Ether, which is the official currency of Ethereum, to a

smart contract or other clients by issuing a transaction. To protect its platform and transactions

among clients, the Ethereum security model is based on a standard cryptography elliptic curve

ecp256k1 (ECDSA) to sign and to validate transactions. A private key, required to be 256-bit long,

11

is associated with one node client. A corresponding public key is derived using the group operation

of elliptic curve cryptography. In Ethereum, a node is associated with an address that is a 160-bit

value and is defined as the rightmost 160-bits of the Keccak hash of the corresponding ECDSA

public key.

Figure 2.5: Merkle Proof in Ethereum

Image from 5

Furthermore, Merkle Tree (Figure 2.5) is a fundamental feature that makes blockchains achieve

its purpose as decentralized databases. A Merkle tree is a way of hashing a large number of data.

Data are split into buckets, then taking the hash of each bucket and repeating until the total number

of hashes remaining becomes only one, a root hash. Unlike Bitcoin, every block header in Ethereum

contains three Merkle trees for three separating kinds of objects - transactions, receipts, and state.

By design, the total balance of an arbitrary account and the sender/receiver of a transaction in the

Ethereum blockchain can be easily verified.

5https://blog.ethereum.org

12

3 Related Works of Cross-chain Trading

3.1 Related Works

It has been a decade since the first time that blockchain technology was introduced and launched

by Bitcoin. A massive number of cryptocurrencies, around 3,000 cryptocoins, according to Coin-

MarketCap6, have been introduced over time, and yet begun a flourishing period of blockchain

technology and financial trading markets (e.g., Coinbase, Binance, Bitfinex) using cryptocoins

along with a high volume of trade per day. However, this trading system has some limitations since

it is sometimes required to trade directly or swap with real fiat currency (e.g., USD and EURO).

For example, a payer, who has Bitcoin coins, needs to pay for a payee that accepts payment of

Ether only. In this case, a payer has to sell Bitcoin, then buy a corresponding amount of Ether

along with paying a transaction or trading fee through an exchange market. Furthermore, the

current trading system lacks providing flexible use of cryptocoins for daily activities.

With the need for flexibility in transactions, the idea of cross-chain swapping coins gains more

attention in recent years. An atomic swap is one of a solution that enables the exchange from one

type of cryptocoins to another one without the existence of a trusted third party or a centralized

exchange market. Liquality [19], an atomic swap platform between Bitcoin, DAI, and Ether,

has been launched in late 2018. This project provides a web application that allows users to

swap assets across supported blockchains in a peer-to-peer fashion. Its atomic swap is based on

the use of Hash Time-Locked Contracts (HTLCs) [14, 17, 18], which is a time-bound conditional

escrows contracts to minimize risk and lay the foundation for peer-to-peer value transfer adopted

by Lightning Network Daemon

Another platform, Kyber Network7 [20], is an on-chain liquidity protocol that provides swapping

cryptocoins service from a wide range of reserves. This platform is implemented as a set of smart

contracts on decentralized blockchain platforms that support a smart contract protocol. Kyber

6Available at: https://coinmarketcap.com/all/views/all/
7https://kyber.network/

13

Network requires a variety of Reserves that refers to anyone/foundations who wish to provide

liquidity, to support swapping of multiple cryptocoins. Its infrastructure is designed and relied

on the practical use of smart contracts and decentralized applications (DApp) [21, 22]. They

design smart contracts, called Kyber Core Contracts, that take responsibility as HTLCs. In case

of swapping coins, a requester transfers his/her coins into Kyber Core Contracts with a request

of swapping to another supported coins. Then, it triggers an event to query all offering exchange

rates from a list of reserved-contracts to find the best deal. Once it is found, the core contract does

swapping coins by sending requesting coins to a requester while transferring input swapping coins

to a chosen reserved-contract.

3.2 Motivation

An idea of cross-chain swapping has gained attention from the cryptocurrency community in

recent years. However, cryptocurrency and exchange networks have not ultimately aggregated to

leverage the use of blockchain technology. Just as the current financial trading systems in the

world today, trading is not limited to exchanging one currency for another. It is the purchase and

sale of goods in the form of cash payments through supporting fiat currencies. This incentive,

as well as taking fundamental ideas from other projects [23, 24], and practical design ideas of

Libra blockchain [25], I propose a heuristic scheme that leverages the use of blockchain and its

related cryptocurrencies to promote a scalable trading environment across multiple blockchain-

based platforms. Table 3.1 compares the cross-chain trading system proposed in this work with

related works.

Scheme Supporting coins Scalability Service

Liquality Bitcoin, Ether, DAI Limited supporting platforms atomic swap

Kyber Network Multiple coins (>20) Compatibility with smart contracts atomic swap

This paper Multiple coins
Multiple platforms

w/o smart contracts compatibility

Trade, Payment,

Cashout

Table 3.1: The Cross-chain trading scheme in comparison with other networks.

14

4 Cross-chain Trading Network Scheme

In this section, I present the design of the cross-chain trading network scheme. The proposing

network is an additional layer protocol running on top of supporting blockchain platforms. It does

not affect the consensus or create a fork-chain on supporting platforms. The cross-chain trading

scheme involves at least two public blockchain-based cryptocurrencies. One of them works as the

main chain, which supports smart contract to process the trading. In the following, I use three

popular public blockchain cryptocurrency systems, Bitcoin, Lightning Network, and Ethereum, to

demonstrate the concept and design. The method can be easily extended to more blockchain-based

cryptocurrencies and supports more complex trading requests and scenarios.

Figure 4.6: High-level architecture of the trading network.

In this thesis, I use Ethereum as the main chain as it supports EVM for smart contract execution,

and I call it Virtual Main-chain (VMC). However, a VMC can be applied to any public blockchain

with EVM support. Bitcoin work as the other blockchain system that participates in the cross-

chain trading network. This blockchain called Physical Side-chain (PSC). A client that wants to

use the trading service needs to have a node on each blockchain. In the case of another blockchain

15

platform, i.e., Lightning Network, it acts as another PSC with respect to the VMC.

A smart contract cannot automatically verify transactions on the physical side-chains (PSCs).

Instead, I propose impartial witness roles, Founders and Validators, to verify side-chain transac-

tions. Any client that is approved by the Founders can be a Validator. Also, the Validators are

required to have nodes on both sides, PSC and VMC. In this thesis, smart contracts are designed

as a record of notary service. A smart contract records a list of Validators so that they can be ver-

ified publicly and easily. By design, communication protocols, as being described later, should be

created to guarantee all processes, requirements must be met so that a cross-chain trading network

can be run smoothly.

A cross-chain trading scheme can be broken down with four functional components:

• Wallet Initialization: this process requires cross-chain activities. A wallet, in this case, is

a smart contract. A couple of processes and requirements must be met before receiving a

number of tokens.

• Sending/Receiving Tokens: this feature can be executed as an in-chain process. Sending and

Receiving Tokens are executed by smart contracts within VMC. Client-to-Client transfer of

tokens can be applied within a group or across groups.

• Adding Tokens: this feature is a cross-chain procedure. Clients are required to transfer their

funds in requesting to add a number of Tokens.

• Cashing out: this is also a cross-chain procedure. The client submits a request to convert

their Tokens back to supporting side-chain coins, i.e., Token → BTC.

4.1 Pre-defined Smart Contracts

In the cross-chain trading scheme, smart contracts hold fundamental roles, e.g., supporting

trading features among clients, keeping track of a record of cross-chain verification, and enforcement

to guarantee a fair and trustworthy trade among anonymous clients. To achieve the expected

purpose, I propose four smart contracts that act as the backbone of the cross-chain trading network.

Token Contract: A Token Contract (Algorithm 1) is a Genesis smart contract, a contract

16

defined by the trading system and included in the block of VMC. Token Contract keeps a record

of founders, groups, user’s balance, and transactions along with some utilizing functionalities, e.g.,

mint/burn Tokens, and getBalance. At the very beginning of launching the cross-chain trading

network, the Founder deploys the Token Contract to obtain a contract’s address (T). A group that

belongs to the cross-chain trading network must link its contract to T.

Algorithm 1 Token Contract - A Genesis Contract

- Founder deploys a Token contract to obtain T

- Token Contract contains:

+ Name: a name of Token coins

+ Symbol: a symbol of Token coins

+ Total Supply: a total number of Token being released

+ Used: a total number of Token being mint

+ map[address][boolean]Founders: a record list of founders

+ map[address][boolean]Groups: a record list of groups have joined a network

+ map[address][uint256]BalanceOf: a record list of balance of each wallet

+ Public map[uint256]TxInfo: a record list of in-chain transactions

+ mint(∆,W): increase user’s wallet address (W) a number of ∆ Tokens

+ burn(∆,W): decrease user’s wallet address (W) a number of ∆ Tokens

+ getBalance(W): return a total balance of wallet’s address (W)

+ remove(W): set the balance of a wallet (W) back to 0 and remove it from the list

+ sendUpdate(W1,W2,G2,∆): update the balance of Sender, Receiver and also save a transaction

info

+ cashoutUpdate(W1,W2,G2,∆): update the balance of Payer, Payee and also save a transaction

info

Record Contract: A Record Contract (Algorithm 2) is also a Genesis smart contract. Similar

to the Token Contract, the Record Contract is also deployed to obtains an address R at the begin-

ning. Record Contract takes responsibility as a record of notary service. It saves a list of validators,

used transaction id, and pre-claim information. Along with recording vital information, Record

Contract also has a function that can verify endorsing signatures. To initialize, add, or cash-out

Tokens, clients must submit required signatures of endorsement that are given by Validators for

verification. A group that successfully joins a network is also required to link its contract to R.

17

Algorithm 2 Record Contract - A Genesis Contract

- Founder deploys a Record contract to obtain R

- Record Contract contains:

+ Token Contract: Token contract’s address T

+ map[address][boolean]Validators: a record list of validators

+ map[string][boolean]TxID: a record list of used TxIDs

+ map[address][Info]PreClaim: a record list info of pre-claim

+ addvalidator(V): add validator’s address (V) into a record list

+ addTxID(Tid): add transaction id into a list to prevent a replay attack

+ checkTxID(Tid): check whether transaction id has been used before

+ addPreClaim(Si,Pk,∆): add sign information (Si), pubkey (Pk), and amount (∆) as pre-claim

+ getPreClaim(C): return pre-claim info by a client (C)

+ verify(Hm, Sv1, Sv2, Sv3): retrieve a signer of message hash (Hm) with each signature

(Sv1, Sv2, Sv3) and check with a list of validators.

Wallet Contract: A Wallet Contract (Algorithm 3) is a pre-defined contract that can be

deployed by a client.

Algorithm 3 Wallet Contract - A Pre-defined Contract

- Client deploys a Wallet contract to obtain W

- Wallet Contract contains:

+ Owner: 256-bit Ethereum address of account’s owner C

+ GroupTrade: an address of GroupTrade (G)

+ InitBalance: an initialized amount in the wallet

+ setInitBalance(∆): set balance of a wallet (W) before joining a GroupTrade (G)

+ deposit(Tid, Sv1, Sv2, Sv3,∆): request to add more Tokens into a wallet

+ setGroup(): called by GroupTrade contract (G)

+ getGroup(): return a GroupTrade contract (G) that holds this wallet

+ removeGroup(): called by GroupTrade contract (G)

Clients deploy the contract source code to create an instance of Wallet Contract (W). Unlike

regular wallets that hold coins, wallet contracts do not hold any Tokens in my scheme. Since

Ethereum does not support external assets other than Ether (ETH) but supporting ERC-20 [26, 27],

I take advantage of the ERC-20 protocol to create my Token Contract to issue Token coins. The

total balance of each wallet (W) is saved by the Token Contract instead. When a Wallet Contract

is deployed, a client is required to specify a number of Tokens to be initialized. However, this initial

18

balance has not been activated yet. To activate it, clients are required to collect signatures from

Validators and successfully deploy/join a GroupTrade contract (G). By design, one node client’s

address (C) on the VMC may create multiple Wallet Contracts. But, each Wallet Contract should

only join one GroupTrade.

GroupTrade Contract: A GroupTrade contract (Algorithm 4) is a pre-defined contract that

can be deployed to the blockchain. Unlike a payment channel in the Lightning Network, GroupTrade

contains a group of clients who agree to join by a specific trade deal.

Algorithm 4 GroupTrade Contract

- A group’s host deploys a GroupTrade contract to obtain G and adds its wallet W into this group

- GroupTrade Contract contains:

+ Token Contract: Token contract’s address T

+ Record Contract: Record contract’s address R

+ map[address][address]Wallet: a mapping list of wallet (W) and account (C)

+ map[address][Request]CashoutReq: a mapping list of cash-out requests by an account C

+ getBalance(C): return the balance of an account (C) within this GroupTrade

+ getWallet(C): return a wallet address (W) of an account (C) within GroupTrade

+ joinGroup(W,Tid, Sv1, Sv2, Sv3): request to join GroupTrade with endorsement signatures

+ leaveGroup(): request to leave this GroupTrade

+ cashoutRequest(B,∆): request a cash-out with information - receiving address (B), amount (∆)

+ getRequest(C): return a cash-out request information by a client (C)

+ claimToPayReq(C2): Payer (C1) claims to pay the cash-out request of Payee (C2)

+ send(C,G,∆): send an amount (∆) Tokens to an account (C) of GroupTrade (G)

+ pay(C,G,Tid, Sv1, Sv2, Sv3,∆): pay the cash-out request of an account (C) within GroupTrade (G)

an amount (∆)

A host of a group deploys the contract source code to create an instance of GroupTrade contract

(G). When GroupTrade is deployed, it also automatically triggers an event to request adding (G)

into a Token Contract (T) along with minting Token coins. A group’s host may start a GroupTrade

with 0 Token. Regardless of initializing amount, members and the host are required to collect

required signatures and to pass a verification process before successfully joining the trading network.

Similar to a mesh network of nodes in the Lightning Network, my proposing scheme also allows

trading among participants in different GroupTrades. Moreover, the scheme provides a base code

19

of GroupTrade that contains minimal and fundamental functions to operate. In reality, clients are

allowed to modify the code to suit their intended usage, i.e., adding more functions or linking to

another contract that defines an exchange rate in swapping Tokens.

4.2 Wallet Initialization

The wallet initialization is a cross-chain process. A wallet is created by deploying a smart

contract and is set an initial balance by clients on VMC. In return, clients obtain a 256-bits

address of a wallet (W). However, this wallet (W) has not entirely been activated. To activate

it, clients are required to broadcast a request message to collect enough signatures of endorsement

from the Validators. Upon gathering enough endorsements, clients must then deploy or join a group

payment by using a pre-defined contract source code. A GroupTrade contract has a function that

internally sends a request to mint Tokens for W in Token contract.

Figure 4.7: Initialize Wallet with σ = 0

For wallet initialization, Clients have two options:

• σ = 0 Token: clients join a trading network with 0 Token. Later, they can make a trade deal

with other third parties to receive Tokens (Figure 4.7).

20

• σ = k Tokens: clients are required to transfer funds into Reserves8 (RS) on PSC (Figure 4.8).

Figure 4.8: Initialize Wallet with σ = k

To participate in a cross-chain trading network on the VMC, a Bitcoin client (BC) or a Lightning

Network client (LC) is required to go through a process of verification regardless of an initializing

amount. The process and time to join the network, when σ = 0, is faster than the other since clients

do not need to transfer funds to Reserves (RS), and Validators do not have to verify a transferring

fund transaction on PSC. In the next following parts, the thesis elaborates concrete procedures of

how clients on the PSC (e.g., Bitcoin or Lightning Network) can initialize their wallets on the VMC.

Balance Init σ = 0: Both LC and BC have the same procedures in requesting to join a cross-

chain trading network (see Algorithm 5). Regardless of requesting 0 Token, a client is required to

send a request to Validators to collect a number of required signatures. Since transferring funds to

Reserves (RS) does not take place, transaction id (Tid) is not generated. Instead, in step 1, this

client concatenates an arbitrary string (λ) with a node’s address (C) on the VMC, then passes it to

the SHA256 function to generate Tid. By this design, one client is allowed to create as many wallets

8Reserves: System Addresses that receive funds from Clients on PSC

21

as they need as long as the initialized amount σ = 0. In the case of validate 0, a verification process

is quick and straightforward. Validators only check whether the requesting amount is σ = 0, then

they can reply to the client with a signature of endorsement (γ). Once collecting enough signatures,

this client can start to create or join a GroupTrade (G) along with submitting signatures for another

verification process by Token Contract and Record Contract.

Balance Init σ = k: In the case of requesting an amount of Token (σ = k) in initializing a

wallet, LC and BC have different procedures to prepare data before claiming. Thus, Validators

also have different mechanisms to verify claiming data. In the next following part, I provide detail

procedures for these two types of the client when they request to join, to initialize σ = k Tokens

and also how Validators verify data upon receiving a request.

Algorithm 5 Wallet Initialization - Apply for BC and LC

procedure Balance Init σ = 0

- Step 1: Client prepares Tid = SHA256(m) with m = λ+ C, λ is arbitrary string

- Step 2: Client broadcasts a request (validate 0, Tid, σ = 0) to collect signatures

- Step 3: Upon receiving a request (validate 0), Validators verify a request

if σ = 0 then

Reply proof γ = Sign(mrep) with mrep = (”Init”,Tid, 0,C)

end if

- Step 4: Upon receiving a reply, Client saves into its list LS

if len(LS) = α with α = (3,..,n) then

Move to Step 5

end if

- Step 5: Client creates Wallet Contract (W), and sets init balance = 0

- Step 6: Client executes a contract to create/join GroupTrade (G) with proof in L

- Step 7: A contract (G) sends a request with signatures (γ1, γ2, ...) to (T)

if (γ1, γ2, ...) = true then

Save Tid in Record Contract (R)

Internally request to add (G) into Token Contract (T)

Mint 0 Token for C

end if

end procedure

22

Figure 4.9: Raw Transaction format

Image from 9

(a) Create Raw Tx

(b) Hash of Sign Raw Tx

Figure 4.10: Create Raw Transaction and Sign Raw Transaction

Image from 9

Balance Init σ = k with BC (Algorithm 6): The BC first self-creates a Raw Transaction

(RT). Then, this client uses its private key (Bprk) to generate a hash of Sign Raw Transaction (Φ)

as a digital fingerprint to prove an account’s ownership (see Figure 4.10b) before transferring funds

23

to Reserves (RS), .

Algorithm 6 Wallet Initialization - Apply for BC

procedure Balance Init σ = k

- Step 1: Client self-creates a Raw Transaction (RT)

- Step 2: Client generates a Sign Raw Transaction (Φ) with Φ = (RT,Bprk)

- Step 3: Client submits HS = Sign(Φ,Cprk) to Record Contract (R) as a pre-claim

- Step 4: Client transfers funds to Reserve (RS) and waits until Tid is mined

- Step 5: Client broadcasts a request (validate k, Tid, Φ, σ = k) to collect signatures

- Step 6: Upon receiving a request (validate k), Validators verify a request

if R(Tid) = false then

Get transaction info using Tid

if (σ = k) = true and RS = true and Φ = true then

Get pre-claim info from R

if C = ecrecover(HS ,Φ) then

Reply proof γ = Sign(mrep) with mrep = (”Init”,Tid, k,C)

end if

end if

end if

- Step 7: Upon receiving a reply, Client saves into its list LS

if len(LS) = α with α = (3,..,n) then

Move to Step 8

end if

- Step 8: Client creates Wallet Contract (W), and sets init balance = k

- Step 9: Client executes a contract to create/join GroupTrade (G) with proof in L

- Step 10: A contract (G) sends a request with signatures (γ1, γ2, ...) to (T)

if (γ1, γ2, ...) = true then

Save Tid in Record Contract (R)

Internally request to add (G) into Token Contract (T)

Mint k Tokens for C

end if

end procedure

In Bitcoin, a transaction, which generated among peers, is broadcast in a serialized byte format,

called raw format. This raw format is a pre-form to create a transaction id (TxID). A raw trans-

action contains inputs and outputs. Transaction’s inputs are addresses of unspent transactions.

One of the outputs is addresses of receivers while another output is a new generating address for

24

remaining change after spending (see Figure 4.9, Figure 4.11a, Figure 4.10a).

(a) Bytes of Raw String Explain
(b) Decode Raw Tx

Figure 4.11: Raw String and Raw Transaction Explanation

Image from 9

In Bitcoin, the ledger provides a method to decode a raw transaction. Thus, detail inputs and

outputs of a transaction can be verified (Figure 4.11b). Furthermore, a Sign Raw Transaction is also

included in a transaction when it is successfully mined and added into a block. Importantly, only

a node’s owner can generate a Raw Transaction and a Sign Raw Transaction. Taking advantage

of these features, the scheme requires the BC to prepare pre-claim information so that this client,

9https://bitcoin.org/

25

at a later time, can claim that the transferring funds are successfully and indeed sent by him/her.

To make it more secure, the Sign Raw Transaction (Φ) is then encrypted once again by using

a node client’s private key (Cprk) on VMC to generate a signature (HS) before submitting it to

Record Contract (R) as a pre-claim. Once the funds are successfully transferred to Reserves (RS)

and a transaction (Tid) is completely added into a block in the PSC, the BC can start to request

(validate k, Tid, Φ, σ = k) to collect endorsements from Validators. Waiting for a transaction

completely being added into a block guarantees that this transaction is irreversible.

Unlike verifying a request validate 0, Validators must verify a transferring fund transaction

(Tid) on the PSC, Bitcoin. To prevent a replay attack, Validators access Record Contract to check

whether Tid has been claimed before querying to retrieve detail transaction information. Once the

verification is passed, Validators reply to a requestor (BC) a signature (γ) as a proof of endorsement.

A message, using to generate γ, consists of a request’s purpose, a TxID, an amount, and an address

of Requestor so that this endorsement is bound only to the request. In receiving Tokens, the BC is

required to create or to join a GroupTrade (G), including to provide the signatures of endorsement.

Token Contract and Record Contract take responsibility to verify that all approval signatures are

generated by authorized Validators before activating a number of requesting Tokens. In the end,

the BC receives an address of transaction when the request is accepted or receives an error message

otherwise.

Balance Init σ = k with LC: The Lightning client (LC) has two options to initialize its wallet

on VMC. Each of them has a different procedure to verify. Two options are:

• Option 1: the LC transfers funds to Reserves (RS).

• Option 2: the LC opens a payment channel with the Reserves (RS).

In Option 1, the LC also goes through quite similar processes as the BC in initializing wallet

with a number of Tokens (see Algorithm 7). But, the LC has a little difference in preparing data to

pre-claim. Unlike the BC that is supported RPC calls to generate Raw Transaction (RT) and Sign

Raw Transaction (Φ), the LC has to manually specify and create an array of addresses of unspent

transactions (UT) before applying a SHA256 function on an array to generate a hash (HI). This

26

hash is encrypted once again by using a private key (Cprk) on VMC to generate a signature HS

before submitting to Record Contract (R). By using two layers of encryption, secret data can be

protected, and only a transaction’s creator (LC) can reveal the secret data to claim later on.

Algorithm 7 Wallet Initialization - Apply for LC Option 1

procedure Balance Init σ = k

- Step 1: Client specifies and creates an array of addresses of unspent transactions going to be

spent (UT)

- Step 2: Client generates a hash HI = SHA256(UT)

- Step 3: Client submits HS = Sign(HI ,Cprk) to Record Contract (R) as a pre-claim

- Step 4: Client transfers funds to Reserve (RS) and waits until Tid is mined

- Step 5: Client broadcasts a request (validate k, Tid, UT, σ = k) to collect signatures

- Step 6: Upon receiving a request (validate k), Validators verify a request

if R(Tid) = false then

Get transaction info using Tid

if (σ = k) = true and RS = true and UT = true then

Get pre-claim info from R

Generate a hash HV = SHA256(UT)

if C = ecrecover(HS ,HV) then

Reply proof γ = Sign(mrep) with mrep = (”Init”,Tid, k,C)

end if

end if

end if

- Step 7: Upon receiving a reply, Client saves into its list LS

if len(LS) = α with α = (3,..,n) then

Move to Step 8

end if

- Step 8: Client creates Wallet Contract (W), and sets init balance = k

- Step 9: Client executes a contract to create/join GroupTrade (G) with proof in L

- Step 10: A contract (G) sends a request with signatures (γ1, γ2, ...) to (T)

if (γ1, γ2, ...) = true then

Save Tid in Record Contract (R)

Internally request to add (G) into Token Contract (T)

Mint k Tokens for C

end if

end procedure

Option 2 (Algorithm 8) is a particular method that only applies to the LC since Lightning

27

Network supports a payment channel among two stakeholders. By using a supporting RPC API,

OpenChannel10, the LC can open a payment channel, which funds are placed into, with one of the

system Reserves (RS) in the Lightning Network.

Algorithm 8 Wallet Initialization - Apply for LC Option 2

procedure Balance Init σ = k

- Step 1: Client opens a channel payment P(ϑ, η) to (RS), with ϑ is local amt, and η is push amt

- Step 2: Client queries a new opening channel to retrieve a channel id (Ψ)

- Step 3: Client submits HS = Sign(Ψ,Cprk) to Record Contract (R) as a pre-claim

- Step 4: Client broadcasts a request (validate k, Ψ, σ = k) to collect signatures

- Step 6: Upon receiving a request (validate k), Validators verify a request

if R(Ψ) = false then

Send an HTTPS request to a webserver to query the channel info

if σ = k = η and RS = true then

Get pre-claim info from R

if C = ecrecover(HS ,Ψ) then

Reply proof γ = Sign(mrep) with mrep = (”Init”,Ψ, k,C)

end if

end if

end if

- Step 7: Upon receiving a reply, Client saves into its list LS

if len(LS) = α with α = (3,..,n) then

Move to Step 8

end if

- Step 8: Client creates Wallet Contract (W), and sets init balance = k

- Step 9: Client executes a contract to create/join GroupTrade (G) with proof in L

- Step 10: A contract (G) sends a request with signatures (γ1, γ2, ...) to (T)

if (γ1, γ2, ...) = true then

Save channel id (Ψ) in Record Contract (R)

Internally request to add (G) into Token Contract (T)

Mint k Tokens for C

end if

end procedure

Without specifying a push amt parameter, the RPC call only attempts to open a singly funded

channel to a remote peer, which means that depositing funds are signed and under controlled by

10https://api.lightning.community/#openchannel

28

the LC instead of a remote peer, RS [28]. However, the Lightning Network also supports a feature

that a channel’s creator can transfer coins to a remote peer when a channel is created. In this case,

the LC must specify two fundamental parameters, local amt (ϑ) and push amt (η). The local amt

specifies a total amount of funds that is placed into a channel, while push amt is a number of coins

that are transferred to a remote peer. For example, Alice opens a payment channel P(100, 40),

ϑ = 100 and η = 40, with Bob. In this example, a payment channel between Alice and Bob has a

total of 100 coins with Alice owns 60 coins and Bob owns 40 coins in the channel P.

Once a payment channel is created, a transaction Tid is then broadcast to the Bitcoin’s ledger.

Unlike Option 1, the proposing scheme does not use Tid as pre-claim information. Querying Tid

only retrieves a total number of funds (ϑ) that has been transferred into a channel P. Validators

need the information of the push amt (η) instead. Thus, to prepare pre-claim information, the LC

has to query a new opening channel to get a channel id (Ψ) that is a unique string and is known

by only two stakeholders. The channel id (Ψ) is then signed by using a private key (Cprk) on VMC

to generate a signature (HS) that is then submitted to Record Contract (R) before broadcasting a

request (validate k, Ψ, σ = k) to Validators for endorsement.

The channel id (Ψ) and its information are secret and available to query only by a channel’s

creator (LC) or a remote peer (RS). Hence, the scheme also implements a web server that handles

a request to query the channel’s information. To verify, Validators sends an HTTPs request to the

webserver to query the channel Ψ. Once Validators verify that required funds are successfully sent

to Reserve, they reply to the LC a signature (γ) as a proof of endorsement. And the rest process

to initialize a number of Tokens for the Wallet Contract (W) of the LC is similar to Option 1.

4.3 Sending and Adding Tokens

4.3.1 Sending Tokens

The process is simple, fast, and straightforward by using smart contracts. There is no cross-chain

validation when sending Tokens among clients in the VMC. Instead, transactions are generated and

verified through smart contracts, then added into blocks by a mining process that is an Ethereum’s

29

consensus in this case. Clients can spend on what they have possessed, which is saved by Token

Contract (T). Furthermore, the trading network may consist of many GroupTrade (e.g., G1, G2, G3).

By creating a scalable and unlimited trading environment, my trading network allows members of

this group can trade with members of other groups.

4.3.2 Adding Tokens

Algorithm 9 Add Token - Apply for BC

procedure Add σ = k Tokens

- Step 1: Client self-creates a Raw Transaction (RT)

- Step 2: Client generates a Sign Raw Transaction (Φ) with Φ = (RT,Bprk)

- Step 3: Client submits HS = Sign(Φ,Cprk) to Record Contract (R) as a pre-claim

- Step 4: Client transfers funds to Reserve (RS) and waits until Tid is mined

- Step 5: Client broadcasts a request (add k, Tid, Φ, σ = k) to collect signatures

- Step 6: Upon receiving a request (add k), Validators verify a request

if R(Tid) = false then

Get transaction info using Tid

if (σ = k) = true and RS = true and Φ = true then

Get pre-claim info from R

if C = ecrecover(HS ,Φ) then

Reply proof γ = Sign(mrep) with mrep = (”Add”,Tid, k,C)

end if

end if

end if

- Step 7: Upon receiving a reply, Client saves into its list LS

if len(LS) = α with α = (3,..,n) then

Move to Step 8

end if

- Step 8: Client calls addToken() of GroupTrade (G) with proof in L

- Step 9: A contract (G) sends a request with signatures (γ1, γ2, ...) to (T)

if (γ1, γ2, ...) = true then

Save Tid in Record Contract (R)

Internally request to mint k Tokens for C in Token Contract (T)

end if

end procedure

30

This function helps clients, both BC or LC, to replenish a number of Tokens in their existing

accounts. The process (Algorithm 9, 10) is almost similar to initializing a wallet with σ = k that is

presented in previous parts. To request, both types of clients (BC or LC) must have their Wallet

Contract (W) still being active and joining a GroupTrade (G).

Algorithm 10 Add Token - Apply for LC

procedure Add σ = k Tokens

- Step 1: Client specifies a list of unspent transactions going to be spent (UT)

- Step 2: Client generates a hash HI = SHA256(UT)

- Step 3: Client submits HS = Sign(HI ,Cprk) to Record Contract (R) as a pre-claim

- Step 4: Client transfers funds to Reserve (RS) and waits until Tid is mined

- Step 5: Client broadcasts a request (add k, Tid, UT, σ = k) to collect signatures

- Step 6: Upon receiving a request (add k), Validators verify a request

if R(Tid) = false then

Get transaction info using Tid

if (σ = k) = true and RS = true and UT = true then

Get pre-claim info from R

Generate a hash HV = SHA256(UT)

if C = ecrecover(HS ,HV) then

Reply proof γ = Sign(mrep) with mrep = (”Add”,Tid, k,C)

end if

end if

end if

- Step 7: Upon receiving a reply, Client saves into its list LS

if len(LS) = α with α = (3,..,n) then

Move to Step 8

end if

- Step 8: Client calls addToken() of GroupTrade (G) with proof in L

- Step 9: A contract (G) sends a request with signatures (γ1, γ2, ...) to (T)

if (γ1, γ2, ...) = true then

Save Tid in Record Contract (R)

Internally request to mint k Tokens for C in Token Contract (T)

end if

end procedure

Before requesting to add Tokens, clients are required to transfer funds into Reserves (RS) and

wait for Tid to be mined. Unlike initializing a wallet with σ = k that offers the LC a method to open

31

a payment channel in transferring funds, the adding Token feature does not support this option for

all LCs. Opening a new payment channel, when coins need to be transferred to Reserves, generates

uncontrolled dummy channels on the PSC, Lightning Network. In addition, the Lightning Network

also provides an RPC call, ”sendpayment”11, for existing payment channels in the network. This

method is an HTLC off-chain payment that does not require a transaction to be finalized on-chain

immediately. Thus, it could be faster to transfer funds to a remote peer. However, my scheme

also does not support this option since this method requires an invoice to be generated, which is

described later. Generating an invoice, in this case, might cause an unwanted delay. This problem

is caused by the limitation of smart contracts since a smart contract cannot automatically generate

a secure hash of invoice on the PSC.

4.4 Cashing Out Tokens

The Cash-out is a function that helps clients convert their Tokens back to coins on the cor-

responding PSC. This feature is a cross-chain procedure, and Validators have to be involved in

verifying a payment among a requestor and a payer. Clients are allowed to convert all of their

Tokens, stored by Token Contract (T), back to supporting side-chain coins. In reality, this process

may accompany a small amount of fee. For the sake of simplicity, my scheme does not take it into

account. The procedure of cashing-out Tokens consists of three phases:

• Phase 1: Payee (C1) submits a cash-out request to GroupTrade, i.e., G1

• Phase 2: Payer (C2), in any group, claims to pay a request. After claiming, G1 locks a cash-out

request and only allows Payer (C2), Validators to access and to get the information.

• Phase 3: Payer (C2) accesses G1 and gets the cash-out request information, then transfers

funds to Payee (C1) on PSC. Finally, Payer (C2) updates its payment using pay() in Group-

Trade contract (i.e., G2) to request adding Tokens.

To cash-out Tokens, requestors (Payee) submit a cashout request and add it into the GroupTrade

contract (G). For a method of payment, they may choose their preferred account, Bitcoin and/or

11https://api.lightning.community/#sendpayment

32

Lightning account, in receiving coins. Thus, the essential information of a cash-out request should

be specified.

Cash-out request’s information includes:

• An address of Requestor’s account (C1) on the VMC;

• A Bitcoin’s address (B1) in a Bitcoin’s ledger (Option 2);

• A Lightning’s address (L1) in a Lightning Network (Option 1);

• A hash of payment request (Hpr) in a Lightning Network (Option 1);

• A secret message (Ms) for payment confirm (Option 1);

• A requesting cash-out amount (∆);

• An address of Payer’s account (C2) on the VMC;

• A boolean value isLocked.

In Phase 1: A requestor, who submit a cash-out request, must specify an amount (∆) and the

address on PSC to receive coins. Smart contracts verify a cash-out amount with the total balance

that a requestor owns and is saved in the Token Contract. Once a request is accepted and saved by

a GroupTrade contract, it cannot be accessed by any clients, except Validators, since Payer has not

claimed to pay yet. There are three cases to provide the necessary information in receiving coin:

• Payee only accepts payment via Bitcoin’s chain (Option 1). Thus, a Bitcoin address (B1)

must be provided, whereas other information (L1, Hpr, and Ms) can be omitted.

• In the case of accepting payment via the Lightning Network’s chain only (Option 2), Payee

must provide L1, Hpr, and Ms, whereas Bitcoin’s address (B1) can be left in blank.

• In the last case, accepting payment by both methods, the essential information, B1, L1, Hpr,

and Ms, should be provided in the cash-out request.

In Phase 2: Payer (C2) calls claimToPayReq() in a contract (G1), a GroupTrade contract that

a requestor submits his/her cash-out request, with an address of the requestor, Payee (C1). Using

the providing address C1, the contract G1 queries its mapping to find a request and to update it

with an address of Payer (C2). Once it is claimed, the contract G1 locks and binds the Payer with

this cash-out request, ({cashout, C1, B1, L1, Hpr, Ms, ∆, address(0), false} → {cashout, C1, B1,

33

L1, Hpr, Ms, ∆, C2, true}). By now, Payer (C2) and Validators can access to get the request

information.

In Phase 3: Payer (C2) accesses the GroupTrade contract (G1) once again to get the necessary

information to make a payment. This process does not generate a transaction. Thus, it is fast

to retrieve the information. After this step, cross-chain activities are taken place. This procedure

requires the involvement of Validators to verify a transferring fund transaction on PSC that can be

either Lightning Network or Bitcoin’s chain depending on a payment method that Payee accepts.

In the next following sections, the thesis presents how a client makes a payment for a cash-out

request on the PSC and also how to request to update Tokens on the VMC by providing a detailed

procedure for both types of payment options, via Lightning Network and Bitcoin.

4.4.1 Paying and Updating Tokens Using Option 1

In this option 1, Payer (LC2) can make a payment for a cash-out request from a requestor,

Payee (LC1). This method requires a fundamental condition, which is that Payer must open a

payment channel with Payee, or there should be a route from Payer to Payee so that funds can

be transferred along the route in the Lighting Network. In this thesis, the scheme assumes that

a payment channel between Payer and Payee has been created. Hence, Payer can send coins

to Payee using a supporting RPC call, sendpayment, over a channel among them. However, this

procedure still has a critical problem when Validators verify a payment. After a payment channel is

created among two stakeholders, transactions among them can be done in off-chain fashion using the

scripting HTLC contract. Some information about an off-chain transaction is made public, whereas

scripting signatures and other important information are kept secret among two stakeholders. This

secret information is only revealed to verify publicly when a payment channel is closed. Hence,

if Payer wants to prove to Validators that payment has successfully paid, Payer has to disclose

transaction’s scripting signatures and other confidential information. Attackers can make use of

these to drain out all coins in this channel. Therefore, it raises a problem, how to prove that Payer

successfully sends a payment to Payee without disclosing secret information.

34

In the Lightning Network, Payee is required to create an invoice to inform a network and

also to prepare fundamental procedures for an upcoming payment. An invoice, in a design of

Lightning Network, consists of some necessary information [28]. But, the thesis points out only

three fundamental elements.

• A pay req (Hpr): a hash of an invoice that Payer can use for making a payment.

• A value: a total amount of coins that Payer has to pay for a request.

• An r preimage: a confidential scripting proof of releasing funds among two parties in the

channel. Before payment, this can be shown only on the Payee’s side through an RPC call,

lookupinvoice12

When Payer successfully pays for a request, Payer receives the r preimage from Payee through

scripting HTLC contract. This r preimage proves that Payer completely releases the funds, and

Payee successfully receives and updates new ownership of transferring funds from Payer. How-

ever, this factor is unable to verify publicly by Validators. The scheme solves this problem by

adding one essential element, a pay confirm (χ). The Lightning Network provides two RPC calls,

one for signing a message and the other one for verifying a signature, signmessage13 and veri-

fymessage14 respectively. Taking advantage of these supporting RPC calls, the pay confirm (χ)

is created by applying the signmessage RPC call on a pay req (Hpr) and a secret message (Ms),

χ = signmessage(Hpr,Ms). Similar to the r preimage, this pay confirm (χ) is also added into

an invoice and is kept secretly. Once Payee successfully receives a payment from Payer, both

r preimage and pay confirm (χ) are sent to Payer. In the scheme, Payer uses r preimage to prove

with the Lightning Network, whereas the pay confirm (χ) is used to prove with Validators that an

invoice has been completely paid. Validators or any node in the Lightning Network can easily verify

the pay confirm (χ) as long as the essential information is provided. By providing a pay confirm

(χ), a pay req (Hpr), and a secret message (Ms), the verifymessage function can decrypt to acquire

a signer’s public address.

12https://api.lightning.community/#lookupinvoice
13https://api.lightning.community/#signmessage
14https://api.lightning.community/#verifymessage

35

In the following part, the thesis presents all steps of Phase 3 that is how the LC2 pays a cash-out

request in the Lighting Network and updates the total balance of Wallet Contract (W2) in the VMC

(see Algorithm 11). The scheme assumes Payer and Payee have already joined into two different

GroupTrade contracts (G1, G2).

Algorithm 11 Pay Cash Out and Update Tokens - Option 1

procedure Pay (cash out, L1, Hpr, Ms, ∆) and Update σ = ∆ Tokens

- Step 1: Client accesses a GroupTrade (G1) to retrieve essential information (L1, Hpr, Ms)

- Step 2: Client makes a payment using a providing pay req hash (Hpr)

- Step 3: Client receives a pay confirm (χ) after successfully paid

- Step 5: Client broadcasts a request (pay k, Hpr, χ, ∆, C1, G1) to collect signatures

- Step 6: Upon receiving a request (pay k), Validators verify a request

if R(Hpr) = false then

Get cash-out request’s information using C1, G1

Decode a pay req hash (Hpr) to compare with the cash-out request’s information

if (σ = ∆) = true and L1 = true then

if L1 = verifymessage(Hpr, χ,Ms) then

Reply proof γ = Sign(mrep) with mrep = (”Pay”,Hpr,∆,C2)

end if

end if

end if

- Step 7: Upon receiving a reply, Client saves into its list LS

if len(LS) = α with α = (3,..,n) then

Move to Step 8

end if

- Step 8: Client calls pay() of GroupTrade (G2) with proof in L

- Step 9: A contract (G2) sends a request with signatures (γ1, γ2, ...) and Payee’s info (C1) to (T)

if (γ1, γ2, ...) = true then

Save Hpr in Record Contract (R)

Internally request to mint ∆ Tokens for C2 in Token Contract (T)

Internally request to burn ∆ Tokens for C1 in Token Contract (T)

end if

end procedure

To pay a cash-out request, Payer (C2) accesses a GroupTrade (G1) to get a Payee’s address in

the Lightning Network (L1), a hash of pay req (Hpr), and a secret message (Ms) for making a

36

payment. Notably, the cash-out request’s accessibility is only for Payer (C2) and Validators since

the contract G1 locks and binds this request to Payer after claiming to pay. This design helps to

prevent a replay attack in the case of transferring funds using multi-hop payment in the Lightning

Network. In this case, the pay confirm (χ) is transferred along the route. If malicious nodes on

the route knew the pay req, and could also access a smart contract to retrieve request information,

they would claim that they had already paid a cash-out request so that they could also demand to

add Tokens.

By using a providing pay req hash (Hpr), Payer’s node (LC2) in the Lightning Network pays an

invoice using the supporting RPC call, sendpayment15. In return, Payer obtains the pay confirm

(χ) when a Payee’s node (LC1) successfully receives full payment of this invoice. Upon receiving

the pay confirm (χ), Payer’s node (C2) in the VMC broadcasts a request (pay k, Hpr, χ, ∆, C1, G1)

to collect signatures from Validators. And a process of attestation starts taking place. To prevent

a replay attack, Validators accesses a Record Contract (R) to query Hpr in the case it was claimed

before. If a hash Hpr is a new one, Validators then decode it to compare with information that is

retrievd from a cash-out request. When an amount (∆) and a Payee’s address (L1) are matched,

they move on checking whether the Payer successfully pay the request by using the supporting RPC

call, verifymessage, on Hpr, χ, and Ms to retrieve a signer’s address to compare with Payee’s address

(L1). Once all verification steps are passed, Payer’s node (C2) can obtain signatures of endorsement

H(Pr) from Validators so that Payer can apply for updating balance (see Algorithm 11).

4.4.2 Paying and Updating Tokens Using Option 2

Option 2 is a method to pay a cash-out request using Bitcoin’s chain. Payer applies for updating

Token in his/her Wallet Contract (W2) in the VMC. This option also assumes both nodes, Payer and

Payee, have already joined into two different GroupTrade contracts (G1, G2). Similar to Option 1,

Payer’s node (C2) in the VMC must claim to pay a cash-out request before accessing a GroupTrade

(G1) to query the request’s information. Instead of transferring funds to Reserves (RS), Payer

15https://api.lightning.community/#sendpayment

37

sends coins to Payee’s address (B1) in the Bitcoin’s chain. The cross-chain processes to claim

and to update the wallet’s balance (Algorithm 12) are almost similar to the procedure of wallet

initialization, and the request to add Tokens (see Algorithm 6, Algorithm 9).

Algorithm 12 Pay Cash-Out and Update Tokens - Option 2

procedure Pay (cash out, B1, ∆) and Update σ = ∆ Tokens

- Step 1: Client self-creates a Raw Transaction (RT)

- Step 2: Client generates a Sign Raw Transaction (Φ) with Φ = (RT,Bprk)

- Step 3: Client submits HS = Sign(Φ,Cprk) to Record Contract (R) as a pre-claim

- Step 4: Client transfers funds to B1 and waits until Tid is mined

- Step 5: Client broadcasts a request (pay k, Tid, Φ, ∆, C1, G1) to collect signatures

- Step 6: Upon receiving a request (pay k), Validators verify a request

if R(Tid) = false then

Get transaction info using Tid

Get cash out request information in G1

if (σ = ∆) = true and B1 = true and Φ = true then

Get pre-claim info from R

if C2 = ecrecover(HS ,Φ) then

Reply proof γ = Sign(mrep) with mrep = (”Pay”,Tid,∆,C2)

end if

end if

end if

- Step 7: Upon receiving a reply, Client saves into its list LS

if len(LS) = α with α = (3,..,n) then

Move to Step 8

end if

- Step 8: Client calls pay() of GroupTrade (G2) with proof in L

- Step 9: A contract (G2) sends a request with signatures (γ1, γ2, ...) and Payee’s info (C1) to (T)

if (γ1, γ2, ...) = true then

Save Tid in Record Contract (R)

Internally request to mint ∆ Tokens for C2 in Token Contract (T)

Internally request to burn ∆ Tokens for C1 in Token Contract (T)

end if

end procedure

38

5 More Discussion of the Proposed Scheme

In this section, I provide an additional discussion of the thesis’s contribution. Concurrently, I

also describe the threat model and analyze the securities of the proposed protocol.

5.1 Trade vs. Swap

Unlike Kyber Network and Liquality, the contribution in this thesis is to provide a protocol and

a blockchain-based platform that can link and connect other ones to promote a universal cross-chain

trading network. Trade of assets and swaps can have a close meaning. However, trade still has a

broader scope of transactions than simple swaps, where the swap is a particular case. After coins

are converted to tokens using this proposed network, any kind of trade deals can be supported

on top using smart contracts, including swap. For example, Client A transfers 1 Bitcoins to the

address of Reserve (RS). In return, Client A receives an equivalent of Token that is 108 Bit-Tokens.

In the meantime, Client B also transfers 1 Ether to a designated system-reserved wallet address

in requesting 1018 Ether-Tokens. The value of these tokens is not equal so that it can be traded

equally. Instead, in case of a swap, Client A and Client B can make their smart contract deal in

exchanging Token coins and link to their GroupTrade contract. Not only limited to swap, but the

trading network also promotes group-trades and payment-networks by using the offering backbone

smart contracts. Clients can transfer their tokens, same or different types of tokens, within a group

or from group-to-group as long as they agree on their trade deals.

5.2 Security Properties

Impartial witness role: The cross-chain trading network is a series of cross-chain activities

that require smart contracts as record-keeping services and Validators as on-chain operators to

take responsibility as a notary of the cross-chain activities. In the proposed scheme, Validators do

not intervene or affect any trades among clients. They take responsibility as border gatekeepers

to verify side-chain transactions before giving an endorsement to allow clients to cross a border

39

between chains, to join/exit a trading network, or to attest activities that relate to cross-chain

procedures.

Replay attack: In receiving a corresponding amount of Tokens in the trading network, clients

are required to transfer their funds to designated system-reserved addresses. The proposed model

considers a presence of replay attacks in which a transaction could be claimed twice by one client

or by multiple clients since system-reserved addresses are public and transaction id can be queried

publicly and easily. The replay attacks can be prevented by applying pre-claim steps (Steps 1-3)

before sending a transaction in the proposed protocols. The secret information of a transaction

can be determined beforehand by only an owner of a transaction. It then is encrypted using

a cryptography method to generate a signature before submitting to Record Contract as a pre-

claim proof. By revealing this encrypted data, a client can prove that he/she is a transaction’s

sender. These steps work effectively on both UTXO and Account/Balance based models. In

the Account/Balance based model, a client specifies an address, storing its funds on a PSC, that

expects to be spent. By applying ECDSA cryptography, a transaction’s issuer can easily prove a

transaction’s ownership through its signature. Likewise, the UTXO model, as discussed in previous

sections, is hard to detect a transaction’s sender by the fact that this model keeps generating a

new address to store updating funds in every transaction. Thus, it seems to be impossible to keep

track of funding addresses of arbitrary nodes in a network. As a result, pre-claim steps would help

to identify the creator of a transfer-fund transaction. When multiple clients concurrently claim on

one transaction, pre-claim steps can resolve the conflict.

Furthermore, the scheme proposes two layers of verification to protect a cross-chain trading

system from replay attacks. Validators execute the first layer of verification, and a smart contract

does the other one. A client sends a request, including essential information, i.e., a transaction id, to

collect signatures of endorsement. Before giving an endorsement to a request, Validators must verify

whether providing transaction id has been claimed previously by checking it with a record list in the

Record Contract (R). Once a client gathers enough required signatures, its request to GroupTrade

contract (G) must include transaction id along with submitting signatures of endorsement for the

40

second layer of verification. When all of these are verified successfully, transaction id and signatures

are saved in the Record Contract (R). As a result, a replay attack is not possible when applying

two layers of verification.

Man-in-the-middle attack: Along with Replay attacks, the scheme also considers the pres-

ence of Man-in-the-middle attacks. For security reasons, sensitive data are required to sign by a user

using ECDSA cryptography. For example, pre-determined transaction information, in pre-claim

steps (Step 1-3), is encrypted using a user’s private key to generate a signature. This information

is kept as a secret until it is claimed and revealed by a user. In addition, the validation process,

which is done by Validators, is also accompanied by signatures. By this design, Man-in-the-middle

attacks can be prevented.

Validation credibility: Smart contracts cannot automatically verify side-chain transactions.

This attestation should rely on impartial witnesses. Thus, the credibility of validating processes is

considered as a top priority. The signatures of endorsement are strictly required to be provided only

by authorized Validators. By providing a Genesis Record Contract, the authorized Validators can

be verified. Upon receiving endorsements, clients must check the validity of these signatures. Even

in the worst case that clients skip checking these signatures, the validation credibility is additionally

forcibly complied by the second layer of verification that is the smart contract.

41

6 Experiment Setup and Result

6.1 Network and Configuration

In this section, I provide how I set up an experiment to demonstrate the protocols of the cross-

chain trading scheme. The network is created by establishing a private test-net among eight nodes

(Figure 6.12):

• Three Validators verify cross-chain procedures running on three separate servers using Ama-

zon Cloud Server (AWS). Each server has a configuration: Intel(R) Xeon(R) CPU E5-2686

v4 @ 2.30GHz, 8GB RAM, and running Ubuntu 18.04,

• The Reserve (RS) server is also created by running another AWS server. This instance has

a configuration: Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz, 4GB RAM, and running

Ubuntu 18.04,

• Two node clients (C1, C2) connect to the network using a local computer that has config-

uration: Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz, 16GB RAM, and running Ubuntu

18.04,

• Another two clients (C3, C4) also connect to the network using another desktop computer that

has configuration: Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz, 16GB RAM, and running

Ubuntu 18.04.

Distributed blockchain-based applications include:

• Ethereum: the smart contracts are built on top of a private test-net of Ethereum’s blockchain.

The experiment uses the Go Ethereum application (Geth v1.8.16) that acts as the main

chain to demonstrate. This code-base has been modified to add more protocols so that

the communication among clients within a network as well as cross-chain procedures can be

effectively implemented,

• Bitcoin: The experimental network uses Bitcoin Core RPC client (v0.18.0.0) to set up a

private side-chain distributed ledger. All RPC methods, supported by Bitcoin Core, are uti-

lized within this project without modification. Instead, the additional protocols that support

42

cross-chain procedures are implemented to Lightning Network Daemon,

• Lightning Network: This is a second side-chain distributed ledger. A private test-net of clients

is built by using Lightning Network written in Golang (lnd v0.5.1). Along with using the

supporting RPCs, additional command-line-interfaces, e.g., lncli deploy, lncli join, and lncli

deposit (see Appendix), and protocols are implemented to support the cross-chain scheme.

Figure 6.12: The high-level architecture of a cross-chain network using in experiment

Along with cross-chain activities, there are some processes, as provided in previous sections, that

can be executed within the matchcalV MC, e.g., sending Tokens, querying balance, and submitting

a cash-out request. To support these in-chain processes, I also create a local web GUI (Figure 6.13)

instead of using RPCs and CLIs. The local web GUI includes:

• Send Tokens: A function that helps transfer Tokens among clients within a group or across

groups as long as both sender and receiver have already joined the trading network,

• Cashout Request: A function that helps submit a cash-out request and add to a GroupTrade

contract,

• Claim To Pay: this function helps Payer claim to pay for a cash-out request. It accesses a

GroupTrade contract, which saves a cash-out request, to update Payer’s address and to lock

request’s accessibility,

• Wallet Balance: Clients can use this function to query the balance of an arbitrary account

within the network,

43

• Wallet Address: this function returns a Wallet Contract (W) corresponding to only one

Ethereum account’s address (C) within a GroupTrade (G),

• Channel Address: this function returns a GroupTrade address (G) that a Wallet Contract

(W) has joined,

• Query Cash-out Info: this function helps Payer to query cash-out request information. No-

tably, after a cash-out request is claimed to pay, it can be accessed by only Payer and Val-

idators.

Figure 6.13: The local Web Application supports in-chain activities

6.2 Experiment Results

To demonstrate proposed protocols of the cross-chain trading network, the experiment estab-

lishes two GroupTrades (G1, G2) that have two node clients in each group. Two clients, C1 and C3,

join the GroupTrade (G1). The other two clients, C2 and C4, join GroupTrade (G2). In the following

part, the thesis provides the results of creating wallets of each client, sending tokens among clients,

and cashing-out by running experimental scenarios.

- Creating Wallets: In this experiment, each client deploys or joins a GroupTrade by using

different proposed methods. The scenarios as following:

44

• First, the client C1 starts the GroupTrade (G1) by initializing its wallet (W1) σ = 0 Token

(see Figure 6.15),

• Second, the client C3 joins the GroupTrade (G1) in accompany with requesting to initialize

its wallet (W3) σ = 50 BTC = 50 ∗ 108 Tokens (Algorithm 6),

• On the other hand, the GroupTrade (G2) is created by C2 using Algorithm 6 to initialize the

wallet (W2) σ = 100 ∗ 108 Tokens (100 BTC),

• Finally, the client C4 initializes the wallet (W4) σ = 80 BTC = 80 ∗ 108 Tokens, then joins

the GroupTrade (G2) using Algorithm 7.

Figure 6.14: The client C1 requests to join a network and starts GroupTrade G1 with 0 Token

The client C1 starts the GroupTrade (G1) using CLI ”lncli deploy.” This RPC call handles a

procedure of requesting signatures for attestation, creating a wallet, deploying a Group Trade. This

command sends a request validate 0 to collect signatures of endorsement from Validators. Once

gathering enough signatures, a Wallet Contract (W1) is created. Then, the GroupTrade (G1) is

deployed and adds W1 into G1 as well as requesting to mint 0 Token in the Token Contract. If there

is no error, the client C1 receives two addresses in return. The first address is a Wallet Contract

address, and the second one is an address of GroupTrade G1 (see Figure 6.14).

45

Figure 6.15: The balance of C1 after successfully deploys the GroupTrade (G1)

After the GroupTrade G1 is formed up, the client C3 starts joining this group. Unlike the client

C1 that requests to join with 0 Token, the client C3 has to deposit coins into Reserve (RS) and to

submit pre-claim information before requesting to join GroupTrade G1 (Figure 6.16). The command

”lncli deposit” takes responsibility for preparing pre-claim information, transferring funds into RS,

and submitting the pre-claim into the Record Contract. Similar to ”lncli deploy,” the command

”lncli join” takes responsibility in requesting to join the GroupTrade (G1) as well as requesting to

initialize W2 several Tokens, σ = 50 ∗ 108 (Figure 6.17).

Figure 6.16: The client C3 joins GroupTrade G1 with requesting σ = 50 ∗ 108 Tokens

46

Figure 6.17: The balance of C3 after successfully joins the GroupTrade (G1)

The second group, GroupTrade (G2), is created by the client C2 using Algorithm 6. As the same

as client C3, the client C2 is also required to transfer funds into Reserve (RS) before deploying a

GroupTrade G2 since this client also requests to create a Wallet Contract with some Tokens (Figures

6.18, 6.19).

Figure 6.18: The client C2 starts GroupTrade G2 with initializing σ = 100 ∗ 108 Tokens

47

Figure 6.19: The balance of C2 after successfully create the GroupTrade (G2)

Finally, the client C4 joins the GroupTrade G2 (Figure 6.21). In this experiment, the client C4

is a Lightning Network Daemon (LND) node. Instead of using ”lncli deposit” to transfer funds

to RS, this experiment uses another command that is ”lncli sendcoins” (Figure 6.20). This RPC

call, which is supported by LND, helps to transfer funds and to finalize a generating transaction

on-chain. The project has modified the command so that it can be applied to the cross-chain

scheme.

Figure 6.20: The client C4 joins GroupTrade G2 with initializing σ = 80 ∗ 108 Tokens

48

Figure 6.21: The balance of C4 after successfully join the GroupTrade (G2)

- Sending Tokens: Sending and Receiving Tokens are executed by smart contracts within a

private Ethereum test-net. Client-to-Client transfer of tokens can be applied within a group or

across groups. Instead of using RPC commands as above, clients can utilize a local web appli-

cation to execute in-chain processes when they have successfully joined the trading network. In

demonstrating these features, the experiment executes some basic scenarios as follows:

• The client C3 transfers to the host of GroupTrade (G1) 2 ∗ 107 Tokens (Figure 6.22). Client-

to-Client transferring is applied within a group since both clients, C1 and C3, have joined

the same GroupTrade (G1). The balance of both clients is updated after this transaction is

accepted (Figures 6.23, 6.24).

Figure 6.22: The client C3 sends to C1 several Tokens k = 2 ∗ 107 using a local Web GUI

49

Figure 6.23: The balance of C3 after transferring Tokens to C1

Figure 6.24: The balance of C1 after receiving Tokens k = 2 ∗ 107 from C3

• The client C4 transfers to the host of GroupTrade (G1) 8 ∗ 107 Tokens (Figures 6.25, 6.26,

6.27). Client-to-Client transferring is applied across groups since C1 has joined the Group-

Trade (G1) while C4 is a member of GroupTrade (G2)

Figure 6.25: The client C4 sends to C1 some Tokens k = 8 ∗ 107 using a local Web GUI

50

Figure 6.26: The balance of C1 after receiving Tokens from C4

Figure 6.27: The balance of C4 after transferring Tokens k = 8 ∗ 107 to C1

- Cash-out: this feature is a cross-chain procedure. As discussed in the previous sections, this

procedure can be broken down into three phases. To demonstrate these phases, the experiment

creates a scenario as follows:

Figure 6.28: The client C2 requests to cash-out 2 ∗ 108 Tokens = 2 BTC to GroupTrade (G2)

51

• The client C2 submits a cash-out request into a GroupTrade (G2). This process is an in-chain

process. Thus, a local web GUI can be utilized (see Figure 6.28). After a request is successfully

submitted into the GroupTrade (G2), this request can be accessed only by Validators before

the Payer claims it. Even an owner of this request, the client C2, cannot access to query the

request information (Figures 6.29, 6.30).

Figure 6.29: The client C2 fails to query a cash-out request

• The client C1 claims to pay the cash-out request by accessing the GroupTrade (G2) to update

and to lock the request (Figure 6.31). When this client claims successfully, the GroupTrade

(G2) binds the request to an address of the client C1. From now, this GroupTrade contract

allows the client C1 to access the request while it blocks the accessibility from other clients

except for Validators in querying information.

Figure 6.30: The client C1 fails to query a cash-out request before claiming to pay

52

Figure 6.31: The client C1 claims to pay for a cash-out request

Figure 6.32: The client C1 succeeds to query a cash-out request after claiming to pay

• After claiming to pay for a cash-out request, the client C1 accesses the GroupTrade (G2) to

query Payee’s address for making a payment (Figure 6.32). Similar to transferring funds to

Reserve, the command ”lncli deposit” can be utilized. In this case, a receiver is the one that is

queried from the previous step. After executing a previous command, the client C1 can start

sending a request to update the wallet’s balance by using a command ”lncli updatepayreq”

(Figure 6.33). This command takes responsibility for gathering signatures of attestation

before requesting to update the balance in a smart contract. Once the payment of a cash-out

request is verified successfully by both Validators and Record Contract, the balance of both

clients, C1 and C2, is updated accordingly in the Token Contract T (Figures 6.34, 6.35).

53

Figure 6.33: The client C1 pays the cash-out and requests to update the balance

Figure 6.34: The balance of C1 is updated after making a payment

Figure 6.35: The balance of C2 is updated after receiving a payment

54

7 Conclusion and Future Works

The described system leverages the use of the blockchain technology to aggregate multiple

solitary blockchain platforms and its crypto-currencies to establish a scalable, fair, and decentralized

trading network of digital assets. To demonstrate the protocols, the thesis chooses Ethereum,

Bitcoin, and Lightning Network as a deployment scenario to show its feasibility. The scheme can

be widely applied to other blockchain ledgers and cryptocurrencies.

In addition to decentralized cryptocurrencies, the key innovation of a blockchain is the consensus

mechanisms. At the heart of blockchain technology, consensus algorithms, e.g., PoW [29] and

pBFT [30], guarantee all participants to be honest in mining and help to maintain one longest

chain without relying on any centralized server. Despite Proof-of-Work (PoW) having a reliable

security mechanism to protect a blockchain and to prevent threats such as Sybil attacks, it still

has a severe scalability problem for decentralized cryptocurrencies, especially in supporting scalable

trade of assets. A low transaction throughput [31, 32], Ethereum supports up to 20 transactions per

second, is unable to support the widespread use of a trading network. The problem can be solved

by applying a faster and more scalable consensus algorithm, i.e., Proof-of-Stake with Sharding

[33, 34]. The next step of this work is to integrate the protocol with sharding based EVM chain,

for instance, protocols such as Ethereum 2.0-Casper [33] and Harmony [35].

55

Bibliography

[1] S. Nakamoto. (2008) Bitcoin: A peer-to-peer electronic cash system. Visited 11-15-2019.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain model of
cryptography and privacy-preserving smart contracts,” in 2016 IEEE Symposium on Security
and Privacy (SP), San Jose, CA, USA, 2016, pp. 839–858.

[3] V. Buterin. A next-generation smart contract and decentralized application platform. Visited
11-16-2019. [Online]. Available: https://github.com/ethereum/wiki/wiki/White-Paper

[4] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for the internet of
things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[5] T. Sameeh, “An overview of the most reliable cryptocurrency smart contract platforms,” Nov
2018, visited 11-16-2019. [Online]. Available: https://www.cointelligence.com/content/smart-
contract-platforms-guide/

[6] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum Project Yellow Paper, vol. 151, 2014, visited 11-15-2019. [Online]. Avail-
able: https://ethereum.github.io/yellowpaper/paper.pdf

[7] Hyperledger. Smart contracts and chaincode. Visited 11-25-2019. [Online]. Available:
https://hyperledger-fabric.readthedocs.io/en/release-1.4/smartcontract/smartcontract.html

[8] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous distributed e-cash
from bitcoin,” in 2013 IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 2013,
pp. 397–411.

[9] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,” in Advances in
Cryptology-CRYPT0’ 90. Springer, Berlin, Heidelberg, 1991, p. 437–455.

[10] B. Marr, “A very brief history of blockchain technology everyone should read,” Forbes, visited
02-26-2020. [Online]. Available: https://www.forbes.com/sites/bernardmarr/2018/02/16/a-
very-brief-history-of-blockchain-technology-everyone-should-read/#785650737bc4

[11] Binance. (2020, Jan) History of blockchain. Visited 02-26-2020. [Online]. Available:
https://www.binance.vision/blockchain/history-of-blockchain

[12] V. Gupta, “A brief history of blockchain,” Harvard Business Review, Aug 2019, visited
02-26-2020. [Online]. Available: https://hbr.org/2017/02/a-brief-history-of-blockchain

[13] ConsenSys. (2018, Nov) A brief history of blockchain: Blockchain basics book from consensys
academy. Visited 02-26-2020. [Online]. Available: https://consensys.net/academy/blockchain-
basics-book/brief-history-of-blockchain/

[14] J. Poon and T. Dryja. (2016, 01) The bitcoin lightning network:scalable off-chain instant
payments. Visited 12-10-2019. [Online]. Available: https://lightning.network/lightning-
network-paper.pdf

56

[15] I. A. Seres, L. Gulyás, D. A. Nagy, and P. Burcsi. (2019, Apr) Topological analysis of bitcoin’s
lightning network. Visited 12-10-2019. [Online]. Available: https://arxiv.org/abs/1901.04972

[16] S. Martinazzi and A. Flori. (2020) The evolving topology of
the lightning network: Centralization, efficiency, robustness, syn-
chronization, and anonymity. Visited 02-10-2020. [Online]. Available:
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0225966&type=printable

[17] Interledger. Hashed-timelock agreements (htlas). Visited 02-10-2020. [Online]. Available:
https://interledger.org/rfcs/0022-hashed-timelock-agreements/

[18] M. Conoscenti, A. Vetrò, J. D. Martin, and F. Spini, “The cloth simulator for htlc payment
networks with introductory lightning network performance results,” Information, vol. 9, no. 9,
p. 223, Mar 2018.

[19] A. Min. (2019, Jul) Atomic swap between bitcoin, dai, and ether: Liquality is live on
mainnet. Visited 11-20-2019. [Online]. Available: https://liquality.io/blog/liquality-atomic-
swaps-on-mainnet/

[20] KyberNetwork. (2019) Kyber: An on-chain liquidity protocol. Visited 12-10-2019. [Online].
Available: https://files.kyber.network/Kyber Protocol 22 April v0.1.pdf

[21] K. Wu, “An empirical study of blockchain-based decentralized applications,” 02 2019, visited
11-20-2019. [Online]. Available: https://arxiv.org/pdf/1902.04969.pdf

[22] K. Wu, Y. Ma, G. Huang, and X. Liu. (2019) A first look at blockchain-based decentralized
applications. Visited 12-15-2019. [Online]. Available: https://arxiv.org/pdf/1909.00939.pdf

[23] R. Khalil, A. Zamyatin, G. Felley, P. Moreno-Sanchez, and A. Gervais, “Commit-
chains: Secure, scalable off-chain payments,” 2018, visited 12-05-2019. [Online]. Available:
https://eprint.iacr.org/2018/642

[24] YongJie, Zhang, Jingjing, Wu, Weigang, Luo, Cao, and Jiannong, “Boros: Secure
cross-channel transfers via channel hub,” Nov 2019, visited 12-01-2019. [Online]. Available:
https://arxiv.org/abs/1911.12929

[25] Libra. Libra white paper: Blockchain, association, reserve. Visited 07-10-2019. [Online].
Available: https://libra.org/en-US/white-paper/

[26] Ethereum. Ethereum wiki: Standardized contract apis. Visited 11-05-2019. [Online]. Available:
https://github.com/ethereum/wiki/wiki/Standardized Contract APIs

[27] Ethereum, “Eip 20: Erc-20 token standard,” 11 2015, visited 11-05-2019. [Online]. Available:
https://eips.ethereum.org/EIPS/eip-20

[28] LightningNetwork, “LND gRPC API Reference,” visited 01-25-2020. [Online]. Available:
https://api.lightning.community/

[29] C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,” in Advances in
Cryptology — CRYPTO’ 92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 139–
147.

57

[30] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,” ACM
Transactions on Computer Systems (TOCS), vol. 20, no. 4, pp. 398–461, 2002.

[31] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun, “On the
security and performance of proof of work blockchains,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 3–16.

[32] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena,
E. Shi, E. Gün Sirer, D. Song, and R. Wattenhofer, “On scaling decentralized blockchains,” in
Financial Cryptography and Data Security. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, pp. 106–125.

[33] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” CoRR, vol. abs/1710.09437,
2017, visited 11-30-2019. [Online]. Available: http://arxiv.org/abs/1710.09437

[34] O. Moindrot and C. Bournhonesque, “Proof of stake made simple with casper,”
2017, visited 12-3-2019. [Online]. Available: https://www.scs.stanford.edu/17au-
cs244b/labs/projects/moindrot bournhonesque.pdf

[35] Harmony, “Harmony: Technical white paper,” visited 12-01-2019. [Online]. Available:
https://harmony.one/whitepaper.pdf

58

A Appendix

In this appendix, the paper provides more information of additional and modified RPC com-

mands that are implemented in the Lightning Network Daemon (LND) and utilized in cross-chain

procedures.

1 var depositCommand = cli.Command{

2 Name: "deposit",

3 Usage: "Deposit collateral (only Bitcoin client)",

4 Description: "Command that serves btc/lnd clients to deposit collateral" +

5 "This collateral can be used to request a corresponding Token coins" +

6 "on virtual trading system" +

7 "This command requires client must start bitcoin server" +

8 "This command supports to create bitcoin raw transaction",

9 Flags: []cli.Flag{

10 cli.StringFlag{

11 Name: "testnet",

12 Usage: "A bitcoin server testnet i.e. regtest/testnet/mainnet (Require)",

13 },

14 cli.StringFlag{

15 Name: "rpcuser",

16 Usage: "RPC User to connect to bitcoin server (Require)",

17 },

18 cli.StringFlag{

19 Name: "rpcpass",

20 Usage: "RPC password to connect to bitcoin server (Require)",

21 },

22 cli.StringFlag{

23 Name: "rpcport",

24 Usage: "RPC port to connect to bitcoin server (Require)",

25 },

26 cli.StringFlag{

59

27 Name: "receiver",

28 Usage: "A bitcoin receiver address that bitcoins will be sent (Require)",

29 },

30 cli.StringFlag{

31 Name: "amt",

32 Usage: "An amount of bitcoin (Require)",

33 },

34 cli.StringFlag{

35 Name: "localhost",

36 Usage: "A localhost to connect to client on virtual (Require)",

37 },

38 cli.StringFlag{

39 Name: "eth_addr",

40 Usage: "A ethereum client address on virtual trading network (Require)",

41 },

42 cli.StringFlag{

43 Name: "contract",

44 Usage: "A contract address on virtual trading system to claim (Require)",

45 },

46 },

47 Action: actionDecorator(deposit),

48 }

1 var deployContractCommand = cli.Command{

2 Name: "deploy",

3 Usage: "Generate a contract",

4 Description: "Command that serves btc/lnd clients to deploy a contract on virtual trading system" +

5 "Clients may either have a bitcoin wallet or lightning network payment channel to request" +

6 "Client transfers funds to Reserve address, then requests to create a Group Trade on virtual system",

7 Flags: []cli.Flag{

8 cli.StringFlag{

9 Name: "localhost",

60

10 Usage: "the localhost IP + port that client wants to connect and to send a request (Require)",

11 },

12 cli.StringFlag{

13 Name: "token_addr",

14 Usage: "A system-token contract address (Require) ",

15 },

16 cli.StringFlag{

17 Name: "verifier_addr",

18 Usage: "A contract that uses to verify endorsed signatures (Require)",

19 },

20 cli.StringFlag{

21 Name: "collateral_addr",

22 Usage: "A system Collateral contract address (Require)",

23 },

24 cli.StringFlag{

25 Name: "eth_addr",

26 Usage: "An address of Ethereum account on a trading system (Require)",

27 },

28 cli.StringFlag{

29 Name: "tx",

30 Usage: "A chan_id / hash transaction that shows client has already created a channel payment" +

31 " or deposit an amount of coins into System wallet (Require)",

32 },

33 cli.StringFlag{

34 Name: "txsin",

35 Usage: "All hash transactions inputs that client has been used to spend" +

36 "when client open a channel to connect to a designated system wallet" +

37 "TxIDs must be in restricted sequence order as the same as client has pre-claimed" +

38 "and TxIDs are separated by a comma" +

39 "If opt_code = 3, txsin is required",

40 },

41 cli.StringFlag{

42 Name: "signtx",

61

43 Usage: "A hash signature of raw transaction that client has used to pre-claim or " +

44 " a signature of chan_id (Optional)" +

45 "If opt_code = 1 or opt_code = 4, signtx is required",

46 },

47 cli.StringFlag{

48 Name: "amt",

49 Usage: "An amount of token coins to request on virtual system (Require)." +

50 "The amount should be in Satoshi format",

51 },

52 cli.IntFlag{

53 Name: "opt_code",

54 Usage: "the option code to join virtual trading network (Require)" +

55 "1. Bitcoin debit option\n" +

56 "2. Bitcoin credit option\n" +

57 "3. Lightning debit option via send coins\n" +

58 "4. Lightning debit option via open channel\n" +

59 "5. Lightning credit option\n",

60 },

61 },

62 Action: actionDecorator(deployContract),

63 }

1 var joinContractCommand = cli.Command{

2 Name: "join",

3 Usage: "Join a contract",

4 Description: "Command that serves btc/lnd clients to join a GroupTrade contract in the virtual trading system" +

5 "Clients may either have a bitcoin wallet or lightning network payment channel to request" +

6 "Client transfers funds to Reserve, then requests to join a channel on virtual system",

7 Flags: []cli.Flag{

8 cli.StringFlag{

9 Name: "localhost",

10 Usage: "the localhost IP + port that client wants to connect and to send a request (Require)",

62

11 },

12 cli.StringFlag{

13 Name: "signtx",

14 Usage: "A chan_id / hash signature of raw transaction that client has used to pre-claim or a signature of chan_id (Optional)" +

15 "If opt_code = 1, signtx is required",

16 },

17 cli.StringFlag{

18 Name: "eth_addr",

19 Usage: "An address of Ethereum account on a virtual system (Require)",

20 },

21 cli.StringFlag{

22 Name: "contract_addr",

23 Usage: "A GroupTrade contract address on a virtual system (Require)",

24 },

25 cli.StringFlag{

26 Name: "tx",

27 Usage: "A hash transaction that shows client has already created a channel payment" +

28 " or deposit an amount of coins into System wallet (Require)",

29 },

30 cli.StringFlag{

31 Name: "txsin",

32 Usage: "All hash transactions inputs that client has been used to spend" +

33 "when client open a channel to connect to a designated system wallet" +

34 "TxIDs must be in restricted sequence order as the same as client has pre-claimed" +

35 "and TxIDs are separated by a comma" +

36 "If opt_code = 3, txsin is required",

37 },

38 cli.StringFlag{

39 Name: "amt",

40 Usage: "An amount of token coins to request on virtual system (Require)" +

41 "The amount should be in Satoshi format",

42 },

43 cli.IntFlag{

63

44 Name: "opt_code",

45 Usage: "the option code to join virtual trading network (Require)\n" +

46 "1. Bitcoin debit option\n" +

47 "2. Bitcoin credit option\n" +

48 "3. Lightning debit option via send coins\n" +

49 "4. Lightning debit option via open channel\n" +

50 "5. Lightning credit option\n",

51 },

52 },

53 Action: actionDecorator(joinContract),

54 }

1 var sendCoinsCommand = cli.Command{

2 Name: "sendcoins",

3 Category: "On-chain",

4 Usage: "Send bitcoin on-chain to an address.",

5 ArgsUsage: "addr amt",

6 Description: ‘

7 Send amt coins in satoshis to the BASE58 encoded bitcoin address addr.

8 Fees used when sending the transaction can be specified via the --conf_target, or

9 --sat_per_byte optional flags.

10 Positional arguments and flags can be used interchangeably but not at the same time!‘,

11 Flags: []cli.Flag{

12 cli.StringFlag{

13 Name: "addr",

14 Usage: "the BASE58 encoded bitcoin address to send coins to on-chain",

15 },

16 cli.BoolFlag{

17 Name: "sweepall",

18 Usage: "if set, then the amount field will be ignored, " +

19 "and all the wallet will attempt to sweep all " +

20 "outputs within the wallet to the target " +

64

21 "address",

22 },

23 cli.Int64Flag{

24 Name: "amt",

25 Usage: "the number of bitcoin denominated in satoshis to send",

26 },

27 cli.Int64Flag{

28 Name: "conf_target",

29 Usage: "(optional) the number of blocks that the " +

30 "transaction *should* confirm in, will be " +

31 "used for fee estimation",

32 },

33 cli.Int64Flag{

34 Name: "sat_per_byte",

35 Usage: "(optional) a manual fee expressed in " +

36 "sat/byte that should be used when crafting " +

37 "the transaction",

38 },

39

40 // adding arguments for virtual trading network

41 cli.BoolFlag{

42 Name: "virtual",

43 Usage: "the boolean value option to join virtual trading network" +

44 "1: activate. It requires to enter all requirement fields" +

45 "0: not-activate",

46 },

47 cli.StringFlag{

48 Name: "localhost",

49 Usage: "the localhost + port to connect to TCP Server" +

50 "Require when virtual is set active",

51 },

52 cli.StringFlag{

53 Name: "eth_addr",

65

54 Usage: "The address of Ethereum account on the virtual trading network" +

55 "Require when virtual is set active",

56 },

57 cli.StringFlag{

58 Name: "contract",

59 Usage: "the Collateral contract address on the virtual trading network to submit pre-claim info" +

60 "Require when virtual is set active",

61 },

62 },

63 Action: actionDecorator(sendCoins),

64 }

1 var updatePayReqCommand = cli.Command{

2 Name: "updatepayreq",

3 Usage: "Updating cashout request payment",

4 Description: "Command that serves btc/lnd clients to update cashout request payment on the virtual trading system" +

5 "Clients sendcoin/payinvoice on lightning network can send a request to add Tokens or to decrease credit balance",

6 Flags: []cli.Flag{

7 cli.StringFlag{

8 Name: "localhost",

9 Usage: "the localhost IP + port that client wants to connect and to send request (Require)",

10 },

11 cli.StringFlag{

12 Name: "receiver_btc",

13 Usage: "A bitcoin account addr of receiver (Optional)" +

14 "If opt_code = 1, receiver_btc is required",

15 },

16 cli.StringFlag{

17 Name: "sender_eth",

18 Usage: "An address of Ethereum account of sender on a virtual system (Require)",

19 },

20 cli.StringFlag{

66

21 Name: "receiver_eth",

22 Usage: "An address of Ethereum account of receiver on a virtual system (Require)",

23 },

24 cli.StringFlag{

25 Name: "receiver_lnd",

26 Usage: "An address of lightning network account of receiver (Optional)" +

27 "If opt_code = 3, receiver_lnd is required",

28 },

29 cli.StringFlag{

30 Name: "pay_req",

31 Usage: "A payment request (Optional)" +

32 "If opt_code = 3, pay_req is required",

33 },

34 cli.StringFlag{

35 Name: "secret_msg",

36 Usage: "A secret message between sender and receiver for creating a payment confirm signature (Optional)" +

37 "If opt_code = 3, secret_msg is required",

38 },

39 cli.StringFlag{

40 Name: "pay_confirm",

41 Usage: "A payment confirm from receiver when a payment is successfully paid (Optional)" +

42 "If opt_code = 3, pay_confirm is required",

43 },

44 cli.StringFlag{

45 Name: "tx",

46 Usage: "A hash transaction that shows client has already made a payment (Optional)" +

47 "If opt_code = 1 or opt_code = 2, tx is required",

48 },

49 cli.StringFlag{

50 Name: "txsin",

51 Usage: "All hash transactions inputs that client has been used to make a payment (Optional)" +

52 "TxIDs must be in restricted sequence order as the same as client has pre-claimed" +

53 "and TxIDs are separated by a comma" +

67

54 "If opt_code = 2, txsin is required",

55 },

56 cli.StringFlag{

57 Name: "signtx",

58 Usage: "A hash signature of raw transaction that client has used to pre-claim (Optional)" +

59 "If opt_code = 1, signtx is required",

60 },

61 cli.StringFlag{

62 Name: "amt",

63 Usage: "An amount of tokens or credit balance that client requests to receive on the virtual system (Require)",

64 },

65 cli.IntFlag{

66 Name: "opt_code",

67 Usage: "the type that shows how client has made a payment (Require)" +

68 "1. Send Coins via Bitcoin CLI\n" +

69 "2. Send Coins via LND CLI\n" +

70 "3. Send Coins via LND channel payment\n",

71 },

72 cli.IntFlag{

73 Name: "payreq_channel_type",

74 Usage: "the type of GroupTrade that a cash-out pay request was issued (Require)" +

75 "1. DChannel\n" +

76 "2. CChannel\n",

77 },

78 cli.IntFlag{

79 Name: "payer_channel_type",

80 Usage: "the type of GroupTrade that a payer currently joined (Require)" +

81 "1. DChannel\n" +

82 "2. CChannel\n",

83 },

84 cli.StringFlag{

85 Name: "payreq_channel",

86 Usage: "A GroupTrade contract that a cash-out pay request was issued (Require)",

68

87 },

88 cli.StringFlag{

89 Name: "payer_channel",

90 Usage: "A GroupTrade contract of the Payer (Require)",

91 },

92 },

93 Action: actionDecorator(updatePayReq),

94 }

69

