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ABSTRACT

Cross sections for the simultaneous ionization and excitation of
helium by proton impact were calculated using a first Born approximation.
The main purpose of this theoretical investigation was to further inves-
tigate a thesis by Byron and Joachain1 that only atomic wave functions
containing electron-electron correlation terms are sufficiently accurate
to describe double-processes in helium, that is, processes which cause
a transition of both electrons. For the final state wave function a
symmetric product of a hydrogen-like wave function and a positive energy
Coulomb wave function were used. For the initial state three different
wave functions were used, a j2-term correlated wave function, an uncor-
related product of hydrogen-like wave functions, and a Green's expansion
of the Hartree-Fock wave function which is also uncorrelated. Comparisons

7 who investi-

were made with the analytical resu]t; of Bell and Kingston
gated the'sing]e ionization of helium by proton impact using a correlated
wave function; however, in their work they considered the case only for
the residual ion in the ground state. The analysis of Map]eton2 for
simultaneous ionization and excitation of helium using uncorrelated

wave functions was also used for comparison. Although for single pro-
cesses (i.e. transition of one electron) correlation effects are not
important, the results for multiple processes show significant differ-

ences between cross sections using correlated wave functions and cross

sections using uncorrelated wave functions.

Commencement August, 1972
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I. Introduction

When a fast heavy particle passés tﬁrough matter, its energy is
dissipated in excitation and ionization of the target particles.
Knowledge of the relevant cross sections are of considerable practical
and theoretical interest. For example, in the field of controlled
thermonuclear research, high energy injection is used to initiate the
thermonuclear process. Excitation and ionization cross sections also
enter into consideration of upper atmospheric phengmena. Ions and
electrons in the upper atmosphere are produced to some extent by colli-
stons with particles from space. Some of the electrons produced con-
tribute to the excitation of the auroras and to the population of the
electronic component of the Van Allen Radiation Belt. Any detailed
interpretation of auroral spectra must be based on a know]edge of
excitation cross sections. Spectral observations show that high energy
protons penetrate to auroral heights in the atmosphere during auroral
displays, and Doppler-shifted lines of the Balmer series appear in the
majority of auroral forms. Thus, from the viewpoint of thermonuclear
processes and upper atmospheric phenomena, the knowledge of the inter-

action of protons with various gases is of considerable interest,

The subject of this particular theoretical investigation is simul-
taneous ionization and excitation of helium by proton impact as repre-

sented by:

‘ HY + He (15)2 L (Hé+)* + e, (1)



(2)

The process (1) wds first examined by Mapleton in 1957. Mapleton
derived the following expfessions for the Born scattering amplitude and

total cross sections:

2
2u2e

= o .+ - - - K’-r.l A'-FZ 4
fo AZ ﬁ_2"/“1'"1‘““2 ‘Y:n(rlrz) (e + e ) Yo (F175) (2)

Q= f dkdak” |+ | (3)
where:

" C.M. Coordinate of Electron 1

ra C.M. Coordinate of Electron 2

Wﬁm Final state wave function of the helium atom

Yo Initial state wave function of the helium atom

A Momentum change vector of incident proton |
Since exact wave functions are not known for helium, some type of approxi-
mate wave function must be devised. The most accurate are those of
Hy]]eraas? and Pekeris? The initial state wave function used by Mapleton
is a product of normalized hydrogen-1ike ground state wave functions which
do not account for electron-electron correlation. This point is emphasized
here, because according to Byron and Joachain, ground'state wave functions
without correlation terms cannot give accurate results for collision pro-
cesses in helium which cause a transition of both electrons (i.e. multiple

processes). Byron and Joachain demonstrated this thesis by considering
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double ionization of helium by photon absorption. They obtained excellent
agreement with experimental results and showed that use of the wave function

for the Hartree-Fock initial state yields poor results.

Peach6, Bell and Kingston also investigated the single ionization
of helium by proton impact; however, they did not consider excited final
states of the residual ion. For the initial state Peach used ané]ytica]
fits to a Hartree-Fock wave function. Bell and Kingston used the cor-
related wave function of Stewart and Webb, which is a reevaluation of
the Hylleraas six parameter wave function. However, the 1itérature
yields no analytical work on the total cross section for the multiple
process of ionization and excitation of helium by proton impact using

correlated wave functions,

This ‘Thesis considers the process (1) with the residual ion in the
excited states: 2s, 2p, 3s, 3p, and 3d, and also the case with the resid-

ual ion remaining in the ground state,

Of obvious importance in these calculations is the question of
orthogonality between the initial and final states, that is, to guaran-
tee anyting but absurd results it must be true that

(Y ly >= 0.

It is well known (shown in detail later) that orthogonality naturally exists
between the initial and final state when they are not of the same parity.
For example, in Mapleton's work, and in any similar analysis using uncor-

related ground state wave functions in conjunction with the same final state
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approximation, Wkn(Fl’Fé) , used herein, orthogonality is assured for

all final states except those having an angular momentum quantum number
of zero (s states), and likewise for initial states containing both s
waves and p waves orthogonality naturally occurs for final states other
than s states or p states. Therefore, for the 12-term wave function

(see Section II.A) and for the final states of the residual ion considered
herein, orthogonality exists only for the 3d final state. For all other

final states a correction to the final state wave function must be made.

One way to overcome this problem, is to subtract from the final
state wave function the projection of the initial state onto the final
state. Then, giving the new final state the symbol ¥, (F17,) , it is
written as _

Yo (Fruf) = v (Frufp) - <y, (Fr,F2) vy (F1,Fe)D ¥, (F1.Fp)

Now ¥ (ry,r,) is obviously orthogonal to the initial state. This is the
technique used by Oldham and Miller® in calculating the differential cross
sections for simultaneous ionization and excitation of helium by proton
impact using the 12-term correlated ground state wave function. They
calculated the overlap integral, <%, (r1,ra)|¥, (r1,72)> , and computed
the matrix elements to the final states of interest here. The computer
program of Oldham and Miller was utilized for this analysis by adding

the required integration routines to calculate the total cross sections

to the final states other than 3d.
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For the uncorrelated ground state wave functions, the hydrogen-
like and the Hartree-Fock, several cases could be considered without
this additional complication, thus final states 2p, 3p, and 3d are com-

puted using the uncorrected final state wave function,

II. Analysis

II.A Scattering Cross Section, Wave Functions

The first Born approximation to the cross section for simultaneous
ionization and excitation of helium by proton impact where the residual

He' ion is in the quantum state represented by n is given by Mapleton

as follows:

\ nk 2 -
Q- =f|f0k| dk dF
fok = %fﬂ’fm (Fafz) €y, (F1F,) dFidF,

(4)

- 2
dk =k dk sin o do d¢
dF = sin o do de~ AR g

Ko
where '

k momentum vector of ejected electron

¢ reduced mass

A momentum change vector

Y, initial state wave function of the helium atom

r. radius vector to electron i
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© polar angle, éjected electron

¢ azimuth angle, ejected electron

w polar angle, final momentum vector of incident proton

¢ azimuth angle, final momentum vector of incident proton

K initial momentum of incident proton

Q;* is the total cross section for single ionization and excita-
tion of the bound electron to the state represented by n. ¥, (F1,r;)
is the final state wave function for the helium atom with one electron
free and the residual He+ ion in the state represented by n where n
collectively specifies the three usual quantum numbers n, £, and m.

f:" is the Born matrix element.

Since the main purpose of this Thesis is to compare the cross
sections using correlated initial state wave functions with those result-
ing from the use of uncorrelated wave functions, a general representation
for the initial state was devised that embodied the details of several
possible wave functions. By doing this, only one set of integrals needed
to be evaluated that would be applicable to all of the assumed initial state
wave functions. This was accomplished by formulating the initial state

as:

¥o (F1,1) = ;E: r?t r,P P (cos gy,) e 11 = d2r2
9

o (5)
Table I gives the values of the parameters required to generate 1) a

hydrogen-like initial state, 2) a Green's expansion of the Hartree-Fock,
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and 3) a 12-term correlated initial state. 1) and 2) above are chosen

because of their simplicity and lack of correlation terms. The first, 1),

was also attractive because it is the same wave function used by Map]eton2

and provides a very useful check on this analysis.

For the correlated initial state wave function many choices were
available. The Hylleraas wave tunctions (or the Stewart and Webb six
parameter wave function used by Bryon and Joachain) are the most accurate;
however, they contain terms of 1/r]2 which hopelessly complicates the
evaluation of the integrals herein. The 45-term correlated wave function7
contains s, p, and d re]ativé partial waves and consequently is quite
complex and (shown later) will not be othogonal to any of the final
states to be considered here., The 12-term wave function contains
angular terms through the relative p @ave and appears to be the simplest
correlated wave function available. The 12-term wave function is not
as accurate as the other functions mentioned but combines the advantages
of simplicity, fewer terms, and correlation terms. One measure of accuracy
is the ability of the ground state wave function to predict the ground

state energy.

wave function ground state energy
Hartree-Fock -2.862 (a.u.)
12-term -2..89852 (a.u.)
45-term -2.9020 (a.u.)
Hylleraas (6-term) -2.9032 (a.u.)
experimental -2.90372 (a.u.)
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Therefore, the 12-term wave function is an excellent compromise and
should show any dramatic éffects due to correlation. The final state,
g, (r1,72) , is approximated by a symmetrized product of a hydrogen-
1ike wave function for the bound electron, ¢, (Zy|r), and a positive
energy Coulomb wave function for the ejected electron, ¥ (Zslr)zo
Although Bryon and Joachain showed that correlation effects are important
in the final state as well as the initial state, of primary importance
here was the need to keep this problem soluable yet still consider cor-
relation effects in the initial state, hence the choice of this final

~ state: o 1 _ _ _ -
¥, (F1,72) " gq‘(lzlr1) 4 (Z3]F2) + ¢ (Z2|T2) o (Z5]F)
Substitution of the above into equation (1) yields the following expression

for the scattering amplitude:

. 1/2
nk _ 4y 4 A .
fo' = KTEZ.NA,Q,Q, (o] L+ 15]
where: |
L =.J[4f (ZpFy) w* (Z3]F;) Plk'rzp Yo o (B12:62)

iAF_-al} - apr
Xe 'l e 11 zzdrld\"z

12 =f¢: (ZzIFZ) ‘p;k (Z3|F1) Y'IA Y‘Zp Y (912,¢2) (6)

Ws0

iAs

. -air7 - —
X e e = @22 45 gF,
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And in the above, ¢* (Z,|r ) is a hydrogen-1ike wave function for a one
electron atom with a nuclear charge of Ze. The subscript n represents
collectively the usual quantum numbers, n, £, and m, ¢i(Z3|r ) is the
Coulomb wave function with wave propagation vector k, and with a field of
Z;e, Now, the problem consists of evaluation of I; and I, and subsequent

summation over the parameters a;, as, A, p, and w.

As noted earlier the initial state and final state are not orthogonal
for the 12-term wave function except-for final states with angular momentum
quantum numbers which are greater than w, i.e. final states must not con-
“tain the same partial waves as contained in the initial state. Since the
12-term wave function contains s and p waves (w = 0 and w = 1), the final
state is restricted to the 3d state. This is shown by_considering the

angular parts of the overlap integral, which are ) )

S {fo sl Yy o (onata) 0z 0, (Za]F) Y5 . (01000,) Oy
m*=-u , :

o, TP Y, o (orasta) a4, (Tl T2) Yh o (02as0a) doa-

Then if w = 0, fhe abové integrals are zero for all final states,
¢, (Zp|r1), which do not contain s waves. For the 12-term initial state
wave function, w has values 0, and 1, therefore, the integrals are
orthogonal only if the angular parts of ¢ _(Z,|F;) do not contain s or p
waves, Therefore, for the uncorrelated initial state wave functions,
orthogonality corrections are not required if transitions to the 2p,
3p, and 3d fjna] states are considered, and for the 12-term correlated
wave function corrections are not required if the He* ion is in the 3d

state.
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Now I, of equation (6) can be expressed as:
| )

e 3 [ 5 g @lf) g (oaat) 6
T mEew

X“/;_a25¢f (Z2]72) ngm’ (92A3¢2A)_Vzp qu
and by the séme reasoning above, I, = 0 for the final states considered
here., Thus, this problem has been reduced to evaluation of I; in general

for the parameters A, p, w, a; and o,.
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I1.B. Separation of the Integrals of the Born Matrix Elements

' _ 2
The positive energy Coulomb wave function, P, s is written as:

7 - ikr N Ly I(2+14n)
wk ( 3,]") Y Ce !; 1 (’m!—

X P2 (cos erk) F_(z+1+n, 2242, -2ikr)

where:
in /2
Yo = []——:z—ﬂm:l n = Z3/ix
-e
C = ] cos 6., = ELE
: 2aT (n+1) . re« rk
Substitution into equation (6) for I, yields:
Il = 11 Il
where:
o [4n ix-Ty A o cary
Lia= [Z»_H]/ Yw’o (61,,9,) e .lrl o (Zp]Fy) ™17 gFy
and:

Ip= v C 1" I%%i%%ﬂl (24)°

X./feikrz'dzrz r, 2P F (whl4n, 2042, -2ikrp) dro

‘The integrals, I;, and Iz, are evaluated in the appendices and only the
results given here. Ijzcan be evaluated in general for the parameters,
w, oy, and p; however, I;,cannot, thus, I,,is evaluated for each final

state and each value of w (w = 0 except for cases involving 12-term

wave function, i.e. 3d 0 and 3d = 1).
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I1.B. Séparation of the Integrals of the Born Matrix Elements

2
The positive energy Coulomb wave function, P, s is written as:

7 - - ikr X .g £L¥+]+nl
wk(3lr) y"Ce g;'l W

X P, (cos erk) F.(z+]+n, 2242, -2ikr)

where:
. 172
. in _ .
Y = [—_—2'1——[—]‘] n = 23/1k
1-e7 7
_ 1 L Pk
N T Cos 6y~ v

Substitution into equation (6) for I; yields:

L =1, I
where:
I14= [%:IT]/ Yo.0 (Brcsd,) A T, o (2,]F1) ™71 dF,
and:
Les v €1 Mgt (@

The integrals, Iy, and I;5, are evaluated in the appendices and only the
results given here. Ijgcan be evaluated in general for the parameters,
ws ay, and p; however, Ij,cannot, thus, I;,is evaluated for each final
state and each value of (; (w = 0 except for cases involving 12-term

wave function, i.e. 3d 0 and 3d = 1).
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II.C. Value of the Integral, I]

A

1. Final state = 2P

2. Final state = 3P

Ip=C s (4, 82+a],])+C35_(k+1,82+a],1)
3. Final state = 3d,
w=0,I,=0 S (x, By + a7, 2) + C; S (r + 2, By + 0qs 0)
w='l,I]A=C6$(A-'l,82+a],3)+C7S‘()t+'l,82+0L-|,1)

4. Final state = 3d,;

where:
C] = =27
_ 96 .
C2 - —8T]
~ 32 .
C3 = -'8—-"1
C4 - _ _48
81V3
C5 - __16"
81V/3
C = 16

6 —m‘COS eAk

- 16
“ TTEITEr % O

"32

1 .
8 i ——=——— (1 - cos eAk) /2 *19px
/8 (27) /2



By = 1 By = 2/3
and:
" _a oo
LW g ()
and:

2 gy = 2 [ 1 __ . ___J__;_7T]

505 D N N G D LA b
(A+1)1 AF2+n 2 |

(a+iA) (at+ip)

(3 2, ) = 2xi (1)1 5 <”> cull (A) it
S s dy = cm . —_—
50\t el aA1"t

G (A) .

(7a)

(7b)



II.D. Value of the Integral, I

(14)

1B
L =v* €1 T (wtlen) (20)° (-n)P*1e Zetl)
ap'”-(u (a__ik)n'w"]
) a29+1'“ (atik)Mrorl
let:
L O T of
n aazn (a+ik)n+“+1 ol (a2+k2)w+1
Z 2 .2
_ 3| -1 o7~k
r "r[z'ta“ 2ok ]
~ Then: T
F = ._.__E.___._.
0 (a2+k2)w+]
3 2 -1
Fpo= & = (G#Cy) Fy (a5E)
_ . 1
_ - _ 2.2
Fo = 5a Fi = (CoFgHCyFytCoufy) (o74k7)
-1
_ 9 _ 2.2
-1
_ 2 _ 2,.2
Fy = 55 F3 = (CgFatCyFgrCrafs) (a™4k7)
-1
_ 9 _ 2.2
Fg = 55 Fy = (CgFg#CiFytCoaF,) (a7+k7)
where
Cy = 243 Cs = Cp + Cc
C2“2(U)+]) C7=C5-2
C3=1C, =2 Cg = Cg + C;
Cq = Cp + Cq Cg=C; -2
C5 = C3 - 2

(8)
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Orthogonality conditions guarantee only zero contributions from
final states having magnefic quantum numbers not equal to zero except in
the case considered for the 12-term correlated wave function. For this
case a contribution is received from the 3di] state as well as the 3dO

state; however, orthogonality conditions yield zero contribution from the

3di2 state, Thgrgforg, thg tota] cross section to the 3d final state
for the 12-term wave f&nction is the sum of the 3d0, and the 3di]

cross sections. These equatioﬁs were incorporated into a computer pro-
gram to evaluate the scattering cro;s sections to the final states 2p,
3p, and 3d for uncorrelated initial state wave functions, and final

state, 3d, for the 12-term correlated initial state wave function.

III. Numerical Techniques and Results

IIT.A Numerical Integration and Check Cases

The cross sections were numerically integrated over the variables A,
€oS By and k with a Simpson's rule program for a Univac 1108 computer.
The accuracy of the results is dependent on the step size. As the step
size is decreased, truncation error will approach zero, unfortunately
to do so requires more calculations resulting in greater computer usage
time and increased round-off error. The results were checked for
accuracy by halving the integration step sizes and observing the differ-
ences. If the change in step size produced less than .5% change in the
total integrated result for the cross section, then it was assumed that

the previous step sizes were adequate for a range of incident proton
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energies about the checked point. Accuracy was further assured by adjust-
ing step sizes such that the third differences in the differential cross
sections were negligibly small, thus ihsuring a good fit by a parabola,

which is the basis of Simpson's rule,

As shown in equations (7) and (8) the matrix element is composed of
a great number of terms, which can be obtained by parametric differentia-
tion of F(A), G(A), and Fo' The analytical work required to obtain these
terms is tedious and subject to many errors and, needless to say, there
are numerous opportunities for coding errors in preparation bf the computer
program required to compute these functions. To obtain a check on both the
coding and the analytical work, numerical differentiation using a forward
difference formula was applied to each term and compared to hand calcula-
tion as well as compared to the computer calculation of the derivative.
A further check was made by calculating the scattering cross sections
using the same hydrogen-like wave function that was used by Mapleton.
' The agreement with Mapleton's results was excellent, and this check

case also gave confidence in the integration step sizes chosen.

III.B Results and -Comparisons

The computer programs developed for this work were used to cal-
culate cross sections for incident energies, EO, between ]0'2 and
10 Mev. and for final states of the residual He+ ion of 1s, 2s, 2p, 3s,
3p, and 3d. Three different wave functions were used to describe the

ground state of the helium atom, two of which were products of one
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electron orbitals, a Harﬁree-Fock and a hydrogen-like, and the third
wave function used was a 12-term correlated. The results are presented
in Figures 1-7, in Table II, and in a éeleétion of computer generated
plots in Appendix B. The high energy results for the 2p and 3p final
states are not intuitively appealing because of the difference in the
slope from the s and d final states. However, many checks (described

above) were made of the computer program and no errors could be found.

The plots presented in Appendix B were generated using coarse mesh

sizes to conserve computer time, however, they are Sufficiené]y accurate

(within 5% of values in Table II) to show trends. At very high energies
| in the neighborhood of cos & = 1 there is a sharp dip in the totally
differential cross section, see Figure B-1 through Figure B-5, and in
this same neighborhood of cos 6, the doubly differential cross section
exhibits a very sharp peak, see Figures B-6 through B-11. The dip can-
not be explained, however, it has only negligible effect on the cross
 sections. The sharp peak in the doubly differential cross section is a
result of the conservation of momentum. Due to a change of variable in
the computer program, cos 6 actua]iy represents the negative of the ejec-
tion angle, thus the peak corresponds to the scattered e]ectron'moving
opposite to the momentum change vector, A, which would be expected for
conservation of momentum at high incident energies. This peak begins
to take the form of a delta function as energy is increased, and it is
possible that the numerical integration used herein could not adequately

handle the calculations with sufficient acéuracy in this region, thereby,

offering a possible explanation for the unappealing results for the 2p
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and 3p final states. An exact explanation can only come from further
analytical and numerical studies which could not be done within the scope
of this Thesis.

Comparisons were made with the analytical works of Peach, Mapleton,
and Bell and Kingston. The results from Mapleton's work agree with the
results developed herein for the hydrogen-like ground state wave function.

Peach's results are very close and the results from the Hartree-Fock

ground state wave function fall in line also., Bell and Kingston's results
are for ionization with the residual ion remaining in the 1s state. They
used a correlated six parameter Stewart and Webb ground state wave function,
The results agree to within 1% with the 1s results from this work using
the 12-term correlated wave function,

Experimental data is available only for total cross sections, that
is for single ionization with the residual ion in all possible states.
Thus, to match experimental data, the cross sections presented herein
using the 12-term ground state wave function must be summed over all
possible final states. However, this poses an additional problem, that
is, whether or not to include the suspicious results of the 2p, and 3p
final states. This problem was sidestepped by making two plots, one labeled
A for a total cross section using all final states as calculated, and one
labeled B where the 2p and 3p results were replaced with the less objec-
tionable results from the hydrogen-like ground state wave function (see
Table II). These plots are shown in Figgre 8 together with the results
from Mapleton's paper and available experimental results. The agreement,

as expected, 1s very good at high energies and poor at low energies.
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IV. Conclusions

The total cross section for single ionization without exicitation
is plotted in Figure 1 versus incident proton energy. This particular
case is defined as a single process since only one electron makes a
transition. As the plot shows, there is little difference in the results
regardless of initial state wave function used. The uncorrelated wave
function gives results which differ at worse by only 15% of the results
obtained using the correlated wave function, and the 12-term wave plots
on top of the results reported by Bell and Kingston, having-a maximum
difference of only 1%. These results are of great importance for two
reasons. Firstly, the Stewart and Webb wave function used by Bell and
Kingston (a reevaluation of the Hylleraas wave function) is regarded as
being one of the most accurate descriptions of the helium atom, there-
fore, it is very satisfying to have the much simpler 12-term wave function
agree so closely. Secondly, the close agreement of all the results for
this case indicates that for single processes very simple uncorrelated
wave functions may be used, and it is reasonable to assume that single
processes involving more complicated atoms may also be analyzed using

simple uncorrelated hydrogen-like ground sate wave functions.

The remaining cases consider multiple processes involving both
electrons, specifically, single ionization with the residual helium ion
excited to the state 2s, 2p, 3s, 3p or 3d (Figures 2-7). As expected,
there are large differences in the computed croés sections using an
uncorrelated wave function as compared to using one that is correlated.

The results for the 2s case, Figure 2, show the 12-term wave function
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predicts a cross section that is almost twice that resulting from using
the hydrogen-like or the Hartree-Fock wave function. For the 3s final
state, Figure 4, there is again a factor of two difference in the low
to moderate energy range, however, this difference decreases somewhat
as the incident energy increases. The cross section for the 3d final
state, Figure 6, using the 12-term ground state wave function is initially
lower than the two uncorrelated wave functions, but as energy increases
the ]2-t§rm wave function again yields a cross section twice as large
as that due to the uncorrelated wave functiqns. The 2p and ép results
(Figures 3 and 5) for the 12-term wave function are an order of magni-
tude greater than the results from the uncorrelated functions, however,
as stated in Section IIIL, there may be numerical problems causing the

unexpected behavior of these cross sections.

These results clearly show that whenever multiple processes are
considered for helium, the analysis should definitely consider a correlated
initial state wave function, however, for single processes the results
using an uncorrelated wave function are not significantly different.

This conclusion is in agreement with that presented by Bryon and Joachain
in their analysis of multiple processes in helium due to electron impact.
One can further conclude that these excited states must be included the
analysis, because, as shown in Table II and Figure 8, the excited states
contribute a significant amount to the total cross section, specifically
in the high energy range this contribution amounts to 5 - 20% of the 1s

cross section at 1.25 and .229 MEV. respectively. Thus, to be very
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accurate, the contributions to the total cross section due to the excited

states must be included in the calculations.

Since the 12-term wave function produced results almost identical
to the results from Bell and Kingston, it would seem reasonable to
approach future work on this problem by concentrating on the final state
approximations. As demonstrated by Bell and Kingston, the final state
should also contain correlation terms, however, they also showed that by
computing the velocity matrix element rather than the ]ength-e]ement.
(used herein), the effects of correlation in the final state were not as
- significant for the case of double ionization. It is reasonable to
assume that these results would also apply to this problem, ionization
and exicitation. Thus, for future work on this problem it is recommended
that the results from the Born velocity element be compared with the
results herein, and possibly results from acceleration element also.

At first glance, it appears that these additional calculations would only
require minor modifications to the integrals evaluated herein. To improve
the final state wave function using correlation terms would be a more
difficult task but should be accomplished in conjunction with an inves-
tigation of the other matrix elements to accurately access the effects

of correlation,
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APPENDIX A

EVALUATION OF INTEGRALS I]A AND I]B

A.1 EVALUATION OF I.lA

= 4n jAer A . — -gqr -
I]A [2w+l]./rYw,0 (e]’ks ¢],k) e ]-r] ¢; (Zzlr]) e %M dr]

Consider first only cases for which w = 0, then Y 0° .
: w0 vz
yielding:
iAevy A -aly 4=
Iip = /IF_/re 1_r] o (22]r1) e 11 dry. (1)

Now I]A is evaluated for each final state representation of

L™ (Zzlr])-
1 -
¢2p,0 (22|r1) =-;§ rye BI™1 ¢os I (2)
. - 16
) (Z,lry) = {3 -r;} ree B2r1 25 cos 6 (3)
_ 2 2 -ppr1 8
¢ (Z,]ry) = {3 cos“ 0,, -1} rie — (4)
3d,0 ‘72171 1A 1 81/3+

For 2p final state substitution of (2) into (1) yields:

3.o. WA =BYrT -ar] 4=
I, = 2_/re1A rpry e Cos 8y, € dry

_ s 8 iAsry a1 -(Bqytalry o
I]A = 21 sﬁ:/re r e ‘Yl 1 dr1

I-]A = C-l S (}\, B-l'l"a,.l)
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where:

s (r, a,n) = 9—7; r? e 3" glAry cos 614 dr

and

Following the same procedure gives:
3p final state
Ia= G s (a, 82+a],]) + Cy s (atl, Bytays1)
3d final state

Iip = Cp s (h, Bytaqs2) - Cps (42, Bytay,0)

where:
C, = 37 i
Cs“?
Cy = -
813
C5='§4'

Now for w = 1 only the 3d final state will be considered. First
write Ym,O in (1) as:
. 172  w
_ [ 4w
Yoo Croowd = [zmr] 20 Yo Caotad Yupne Crata)

m’=-y
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and then equation (1) is:

. 3/2 _w_ '
= *
LA [m ] > Yame (et

m ==y
iﬂ-?] A _-ar | -
Xwa,m’ (BIA’¢1A) e rye 1 b (22|r]) dry
Now ¢ (Zzlr]) is written for the 3d,0 and 3d+1 final state:

¢n (Zzlr]) = ¢3d0 (22|P1) = R3’2 (Zzlr]) YZ,O (co; e]A)

with 5
- 2 2
Ry » (Z,]r) = e Bar1 = ¢
3,2 Y7211 81/T5

For 3dO final state

1 =[4n]3/2 [3 ]ms 6 [3 ]”2[5_]”2[&][1_] 1
1A 7 i Akl Tr 4q /5 811 2

2 PAer] A2 ~(atBo)ry 4=
Xfcos 994 (3 cos 01a - 1) e r e 1 dry

I]A = C6 s (-1, 82+a],3) + C7 s (a+1, 82+a],])

where:

16

o
]

16
C7 = BI(ET ©°5 Ok,
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Similarly:
for 3di] final state
1]A=08{s(mﬁ,sgup1)+s(AJ,BZM]J)}

where:

32

. 1/2 +i4
———— (1 - cos 6,,) e” TAk .
8 /g (27)3/2 Ak

Now only a solution of s (A, a, n) is required.

n LT
s (A, a, n) —Lfe]ArrA e”? d4r

A"
n T .
= E’._n 2n [ PA*2 gmar dr:[ 1ATCOS8 in ode
oA 0 :
n . 0
Sy %\_/rxﬂ omar e1Arcose|1T dr
A" :
an 2m A+ -ar -
= — i Jr sin Ar e dr
A"
" 2 (a-iA) 2 - (arip) 2
s (r, a, n) = == == (a+1)! I
_ 3A (a"+A%)
or
s (A, a, n) = 2ri (A+1)! =— F (A) G (A)

3A

n L n-L
s (A, a, n) = 2ni (1)1 EO("L) S F(A) zA"'-L 6 (A)
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where:
' , n
F(A) = and 33:3A) L1 ()
6 (A) = [ ] - 1 ]
(a+iA) 2 (a-iA)M2
and
a"6(A)  _ (an+1)! { it (-0t
5 AN (A+T)1 (a+iA)A+2+n

1.n

(a-iR)A¥eHn

}.
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A.2 EVALUATION OF I]B

= Sl (o

. (1)
X J/éier‘“Z”Z r, P F (wtn, 202, -2ikr,) dr,.

Now

ar) = eTRror W2 b (ran, 2ur2, -2ike,)

o™l P2 ke g (wtl4n, 2ut2, -2ikr,) -

-ar rp+] (—21kr)“+]/2

ikr .
(-21k)“+]/2 e F (wtl+n, 2p+1, -2ikr

= e 2)

where

n=w+1/2, now let Z = -2ikr

(2)

-ar o+l .
=& r W /2 =12/2 ¢ (Lh1y2, 201, -i2kr) .

—2ik)H
Gradsthteyn and Rhyzik give the following definition:

v (@) = 22 e iz, 2w, 7).
Al ‘ :

Now substitution into (2) yields:

= e .
J (Y‘) = W M_nu (-12kY‘) ,
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and then (1) is written as:

s s (wtl+n) W
I]A =vy- Ci T (2k)

e'“r p+1 .
XfW r M__nu (-21k?‘) dr.

Now choose
q = -i2k
S = o
A= =-n
Then (3) is

L= (o1)Pt1e 12 C A0 T (wblen) (26)° 5PF170 f’”,.u-l/z
1A (20)1 (-2ik)*F1/2 2t J

M (qr) 75" dr.
Al

Page 860, equation (2), Gradsthteyn and Rhyzik gives:

-]

S st T (e dt = @12 () (s-1720) 2
0

X (s+1/2q)"A-w-1/2

with
Re n>-1/2
R.q
Rs>-l—-§_—l_o
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Thus:

P w
I, = X ? ‘) r((‘””;’ﬂlT%k) (-2ik)"* /2 r(20v2)
20)1 (-2ik
; (a_ik)n-w-l
(.a+ik)n+w+]

T = v €101 (wrbm) (200 (-1 (Bnd)

w)!

o+ {Az-ik}“'“"l

0 a2p_+] @ { a2+1' k}n+w+]

X

Now considgr the various derivatives required for equation (4);

let:
an {az-ik}n-w-] 8I’] 'eI'
F o= = '
n n Lo\ ntotl n 2., .2 w1
) %y {u2+1k} o0 {cx +k }
whefe}
Y4 2 .2
3| =1fa"-k
r=-g [2" tan (TE‘)]
For n=20
T
F e
0 2. 2 utl
{2
For n =1
£ood el
1 o0, 2. . 2 Ywtl
2 {az'l'k }
Fy

1
= (C+Cy0) Fy o7
]22 0{a2+k},
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where:
C] = 223
C2 - -2 ((.U+.I)
Forn =2
2
277 T iTag (Ghe) Fo 7oy
a, 2 { +k }
F, - Gh o, GRS () G of
2..2 2.2 2..2)2 0 2., 2
{a +k } {a2+k } { S+k } {a2+k
C]ZuZFO
- 2.,2
{u2+k }
- . 1
o= [GF + ¢5fg + C39F | —_‘{a2+k2}
2
where:
C3 = C2 - 2

Continuing in a similar manner:

F3 = (4P + C1Fp + Coogfp | g

Fy = (CgFp * CiF3 + C7a2F3]

= 1
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where:

¢y = C,
¢ = Cq
Cs = C,
C; =05
Cg = Cg
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Figure B-1. - (Final State = 2p)
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Figure B-2, - (Final State = 2p)
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Figure B-3. - (Final State = 3s)
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Figure B-4. - (Final State = 3p)
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Figure B-5, - (Final State = 3p)
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Figure B-6. - (Final State = 2p)
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Figure B-7, - (Final State
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ii Figure B-8, - (Final State = 2p)
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Figure B-9, - (Final State = 3p)
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Figure B-10, - (Final State = 3p)
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TABLE I. - PARAMETERS FOR INITIAL STATE WAVE FUNCTIONS

I. Products of Normalized Hydrogen Wave Functions

N
1.529613

A

0

4

0

II. Hartree-Fock, Green's Expansion

N
.252204
.4203400
.4203400
.7005700

III. Correllated Wave Function,

N
.6975873
.6975873

.2318076
.2318076

.3391472
.3391472
.01831028

.01831078

.30262039
.30262039

03678389

-~ o O o

w o N o

o O‘O

12 Term

o O 9w

[AS I ]

o W O

w

0

€

o O O O O O O O o o o

o o o o

1

1.6875

*1
2.912
2.912
1.456
1.456

1.85
1.85
1.85
1.85
1.85
1.85
1.85
1.85
1.85

' a2
6875

912
.456
912
.456

%2

.85
.85
.85
.85
.85
.85
.85
.85
.85
.85
.85
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(Continued)

N

.03678389
.59467608
.59467608
.77032823
.77032823
.08134807
.08134807
.00760124
.00760124
.32995764
.32995764
.08318233
.08318233

w NN P
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N W NN

*

.85
.85
.85
.85
.85
.85
.85
.85
.85
.85
.85
.85
.85

%2

.85
.85
.85
.85
.85
.85
.85
.85
.85
.85
.85
.85
.85



TABLE II. - TABULATION OF CROSS SECTIONS

2P

Eys TS 1S 1S 25 75 2P
VEV 12-TERM BELL AND | HYDROGEN- | 12-TERM | HYDROGEN- | 12-TERM | HYDROGEN-
THIS WORK | KINGSTON LIKE THIS WORK LIKE THIS WORK LIKE
MAPLETON MAPLETON MAPLETON
.0125 .456 .574x10"" .130x1073
.02229 .743 .246x1073 .670x10"3
©.03902  |1.07 .953 .772x1073 .220x10~2
.07109 .993 .194x10-2 |.356x10-1 |.519x10-2
.100 1.08 1.07 .573x107¢
125 .867 .321x107¢ .831x10-2
.200 .798 .782 .690x10~2
.2229 .659 .683x10-2  |.363x10~2 |.939x10-1 |.104x70-!
.300 .622 .613
.3902 . 465 .312x10-2 .107x10" 1
.500 .428 .535x10"¢
© 7109 .303 .227x107¢  |.109 .951x10¢
1.250 .216 .196 .157x10"% .769x10-%
2.229 .123 .199x107¢  [.103x10-3 |.881x10°" [.577x10%
3.902 .778 .671x1073 .416x10-2
5.0 .686x10~" | .670x10-] | .734x10-1
10.0




TABLE II. - TABULATION OF CROSS SECTIONS (continued)

Eys 2P 2p 3S 35 3P 3p 3P
VEV HYDROGEN- | HARTREE- 12-TERM | HYDROGEN- | 12-TERM | HYDROGEN | HYDROGEN-
LIKE FOCK THIS WORK LIKE THIS WORK LIKE LIKE
THIS WORK | THIS WORK MAPLETON MAPLETON | THIS WORK
.0125 .131x10-3 |, 948x107% ,450x1072 194x10°% | 197x1074
.02229 |.676x1073 |.476x10-3 .215x10-% ].128x10-2 |.115x10"° |.116x10">
.03902  |.222x10-2 |.160x10-2 |.290x107% |.759x70~% .416x10-3 | .421x10-3
.07109  |.525x10-2 |.396x10-2 |.562x107° |.218x10~° [.761x10-4 |.103x10~% [.104x10-¢
.100 .689x10~
.125 .841x10-¢ |.670x10-2 |.751x10-3 |.409x10~3 .164x10-4 | .166x107%
.200
.2229 .105x10-1 |.877x10-2  }.783x10-3 ].509x10-° |,174x10-1 |[.195x10-¢ |.197x10-¢
.300
.3902 .108x10-1 [.938x10-2 |.651x10-3 |.458x10-3 .189x10-¢ |.190x107¢
.500
.7109 .955x10"2 | .863x10-2 .342x1073  |.228x10-1 |.157x10~¢ |.158x10-2
1.250 .773x10~2  [.718x10~2 |.318x10-3 |.239x10-3 .120x1072 | .121x10-2
2.229 .580x10-2 | .550x10-2 .158x10-3  |.244x10-1 |.859x10-3 |.863x10-3
3.902 .418x10-2  |.403x10~2 | .135x10-3 |.104x10-3 .595x10-3 | .598x10-3
5.0 .249x10" 1 .503x10-3
10.0 .303x10"3




TABLE II. - TABULATION OF CROSS SECTIONS (concluded)

Ey» 3p 3d 3d 3d 3d TOTAL TOTAL
VEV HARTREE - 12-TERM | HYDROGEN- | HYDROGEN- | HARTREE A B
FOCK THIS WORK LIKE LIKE FOCK
THIS WORK MAPLETON | THIS WORK | THIS WORK
.0125 .146x10~% | .461x10-6 | .860x10-6 .602x107°
.02229  |.822x10-4 .788x10-% | ,793x10-5 | .536x107°
.03902  [.302x10-3 |.317x10-% |.407x10-4 {.410x10-% |.294x10-% 1.095 1.077
07109 |.782x10"3 .133x10-3 | .135x10~3 |.709x10-%
.100 1.150 1.097
.125 .128x10-2 | .336x10-3 |.250x10-3 |.253x10-3 |.233x10-3
.200
.2229 .522x10~3 | .321x1073 |.324x10-3 |.334x10-3 .9690 .8710
.300 4 A
.3902 .159x107¢ | .576x10°3 |.311x107° |.313x10-3 |.351x107° .6581 .5390
.500
©.7109 .503x10~3 |.244x10~3 [.245x10"3 |.294x10-3
1.250 .128x10-2  |.381x10-3 |.171x10°3 [.172x1073 |.216x10-3 .3433 .2281
2.229 .977x10~3 | .260x10-3 |.110x1073 |.110x1072 |.143x70°3 .2490
3,902 .692x10™3 | .169x1073 | .678x10-% |.680x10-% |.905x10~4 .1850 .0881
5.0 .475x10"3 .1681
10.0 .398x10"3
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