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Abstract 

Supernova Type Ia plays a vital role in the measurement of the cosmological parameters. 

It is used as ‘standard candles’ for measuring extragalactic distances. There are other 

types of supernovae like Supernova Type Ib and Ic that closely resemble Supernova Type 

Ia (but are not as useful as Supernova Type Ia). Large telescopic surveys capture light 

curves of these supernovae events referred as photometric observations, which include 

all the three types. Thus, accurate classification of supernovae from these photometric 

observations is desirable for proper calculation of cosmological parameters.  

The existing method for classification of supernova photometric observations is based on 

spectroscopic method, which is very cumbersome and expensive. In the future, with the 

increase in photometric surveys, myriad number of supernova photometric observations 

is expected. Thus, an efficient method for the classification of supernovae is required to 

replace existing methods. We also want to take advantage of existing dataset classified by 

spectroscopic method for the classification of upcoming photometric dataset. Since, 

these two datasets belong to different domains, an adaptive mechanism across the 

domains is required. Thus, we propose a method to generate a predictive model using 

domain adaptation with active learning that will classify supernovae (Ia, Ib, Ic) using 

spectroscopic data (aka source data) as a training set and photometric data (aka target 

data) as a testing set. Our method includes two concepts of machine learning: 1. Domain 

adaptation technique is used to transfer the source domain information to the target 

domain. 2. Active-learning technique is used to rely on only few target domain labels in a 

non-uniform distribution to build an effective model. The experiments and results show 

that our method outperforms various domain adaptation techniques with significant 

increase in classification accuracy.  
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Chapter 1  

Introduction 

1.1   Problem Statement 

Although it has been a decade since the discovery of dark energy, astronomers still know 

very little about it. To improve their understanding of dark energy, they require 

cosmological parameters, which can be inferred from measurements of distances. It is 

easier to retrieve information from our Milky Way galaxy and nearby galaxies with the 

help of Cepheid stars. Cepheid stars are used as stellar candles for nearby galaxies to 

calculate distances with the help of the intensity of their light. But for farther galaxies, 

the brightness of Cepheid stars is not sufficient for the measurement. Astronomers 

require some brighter source of light to serve as standard candles to measure 

extragalactic distances. Supernovae are cataclysmic event, which happen at the last 

evolutionary stage of a star’s life cycle releasing a tremendous amount of energy for a 

particular period. The light produced by some supernova can outshine their host galaxy 

for weeks or months. Thus, supernovae are ideal for serving as standard candles. There 

are different types of supernova events. But only Supernova Type Ia are homogenous 

enough to be used in the calculations of cosmological parameters. Large telescopic 

surveys are conducted to gather observations of supernovae. The observations include 

light curves captured from supernova event. These observations are known as 

photometric observations. They include all types of supernova like Supernova Type Ib, 

Supernova Type Ic, Supernova Type II, etc. Thus, correct identification of Supernova 

Type Ia is necessary among other forms for accurate calculations.  
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The current method for classification of supernova depends on the high-resolution 

spectroscopic method that is very cumbersome and expensive. In the future, the number 

of telescopic surveys is going to increase, which will lead to an unprecedented amount of 

photometric observations of supernova. Thus, astronomers require an automated 

method for the classification of supernova photometric observations to take advantage of 

future incoming data. Since, only a few of the supernovae samples are classified with the 

help of spectroscopy method, they also want to take advantage of existing supernova 

dataset classified with spectroscopy method to generate automated methods for the 

classification of supernova photometric data. 

1.2 Contribution 

In this thesis, the main goal is to find a methodology for the automatic classification of 

supernova photometric data. Employing machine-learning algorithms has solved many 

classification problems. With the use of machine learning techniques, it is possible to 

develop an automated method to solve the problem of supernova classification. We have 

proposed a method to generate a predictive model for the classification of supernova 

photometric data with the help of machine learning techniques. Since, both the 

supernova dataset classified with spectroscopy method and supernova photometric data 

belong to different domains and it is desired to use supernova spectroscopic data for the 

generation of automated method.  We have developed a novel approach to domain 

adaptation technique to adapt the information across the domains and for the generation 

of an efficient model for classification. Many experiments have been performed on our 

method using different parameters. We have also performed various experiments on 

existing domain adaptation techniques for comparing the performance of our method. 
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The method proposed can be applied to other astronomy classification problem; it can be 

used outside the astronomy as well.  

1.3 Thesis Organization 

Chapter 1 contains the problem statement and our contribution to solve the problem. For 

the proper understanding of the problem and technical concepts related to methodology, 

some background knowledge will be provided in Chapter 2. Chapter 3 will include 

methodology explained in details. Followed by chapter 4, which will include experiments 

and results discussed in a precise manner. The last chapter of this thesis is chapter 5, 

which will conclude the thesis by providing limitations, future work and summary of the 

thesis as the conclusion.  
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Chapter 2 

Background and Related Work 

2.1 Astronomy Background 

2.1.1   Supernova  

Supernova is an astronomical phenomenon, which occurs at the last evolutionary stage 

of massive star’s life cycle whose mass is greater than eight solar masses (1 solar mass = 

mass of the sun). This event includes the destruction of a star with a final gigantic 

explosion. The amount of energy released during this event is approximately equivalent 

to the amount of energy created during the entire lifetime of the solar-like star (star 

whose mass is equal to the sun) and can outshine the entire galaxy for few months or 

weeks.  It is visible as a sudden appearance of a bright star whose magnitude degrades 

gradually and diminishes within a period. It may take weeks or months to disappear 

from the sight. The radiant of energy during supernova explosion can cause all its stellar 

material to expel at a speed of 30,000 km/hr.  This speed is 10% of the speed of the light 

resulting in the fast-moving shock wave into the surrounding as an expanding shell of 

gas and dust, which mainly includes ejection of heavier elements results from 

nucleosynthesis. They distribute high mass elements in the galaxy and can trigger the 

formation of new star or planets. 

 The word supernova has been derived from the Latin word ‘Nova' means new. Since 

supernova emerges as a new bright star at first which are brighter and energetic than a 

new star. Thus, Super word differentiates supernova from ordinary novae star. It is a 

rare event. So, far only three supernova explosions have been observed naked eye in 
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Milky Way galaxy. The most recent one has been noticed in the year 1604 named as 

SN1604. However, it is visible in other galaxies and can be recognizable by astronomical 

equipment.  

2.1.2   Types of Supernova 

To better understand the phenomenon astronomers have classified supernova in mainly 

two categories Type I and Type II.  Astronomers' classify supernovae with Type codes 

that describe the type of light received from a supernova and the absorption lines of 

different elements in the spectra. The optical spectra provide the information of physical 

and chemical properties of the outermost layer of the star. The primary division of 

supernova is based on the presence of hydrogen lines in the spectrum. If the hydrogen 

lines are present in the range then supernova is classified as Type II or else Type I. There 

are further subdivisions in Type I supernova viz. Type Ia, Type Ib, and Type Ic depends 

on the further presence or absence of higher elements after hydrogen in the supernova 

spectrum. 

2.1.2.1   Types Ia Supernova 

Type Ia supernovae evidence the absence of hydrogen lines in the optical spectra. They 

were most popular in the last decade as they helped to detect the accelerated expansion 

of the Universe. Along with the absence of hydrogen lines, SNIa is characterized by the 

presence of elements like calcium, oxygen, silicon and sulfur in their peak luminosity 

phase. They are present in the outer layer of the exploded star. With the gradual 

appearance of iron in the spectra with the age contribution as it reaches to the core, 

which suggests the association of thermonuclear explosion of a white dwarf.  
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Type Ia supernova mainly occurs in a binary system where one of the stars is a carbon-

oxygen white dwarf which is capable of nuclear fusion reaction resulting in the release of 

a high amount of energy, and another star companion can be any star between giant star 

or star whose mass is lighter than a white dwarf star.  In the binary system, they orbit 

each other. The star companion swells massively as it ages during the process. Since, the 

white dwarf star is small and dense, due to which their gravity is intense enforces to pulls 

the material of the companion star resulting in the increase in the mass of the white 

dwarf star. When the mass of white dwarf star reaches a critical mass known as 

Chandrasekhar limit that is 1.4 solar masses it results in the explosion of Type Ia 

supernova causing the companion star eject away from the orbit. 

Astronomers use Type Ia supernova to calculate extragalactic distance. Considering the 

intrinsic brightness of the Type Ia supernova homogenous throughout cosmic history 

they compare the brightness by how bright the supernova explosion should be and how 

bright it appears. It is based on the inverse square law, which states that, if two light 

source objects are in a line one after the other then the nearer object will appear brighter 

as compared to the farther object. Thus, it helps in estimating the distance based on the 

dimness of the light. Although to measure distance in our galaxy and a local group of the 

galaxy, they use Cepheid star as a standard candle but to measure distance in the farther 

galaxies, astronomers need an extremely brighter object. Thus, with the help of inverse 

square law, they compute the distance between us to the supernova ultimately giving the 

distance of supernova home galaxy. 

2.1.2.2   Type Ib and Ic Supernova 

Type Ib and Ic supernova both originate from the core collapse of the massive star. They 

mostly found in the spiral galaxies or HII regions of spiral galaxies. The energy source of 
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stars is nuclear fusion reaction, which fuses hydrogen elements to helium. A nuclear 

fusion reaction generates enough energy to oppose the gravitation force of the stars 

moving inward. Thus, maintaining the equilibrium prevents the star from collapsing. But 

if nuclear fusion reaction starts fusing into elements have an atomic mass heavier than 

helium like carbon, oxygen, iron and cobalt, etc., then it forms onion-like layer structure. 

Each layer represents an element starting with hydrogen followed by helium, carbon, 

neon, oxygen, silicon and iron. Formation of iron and nickel in the core of the star 

doesn't contribute towards energy production. Thus, no further nuclear reaction happens 

which results in the lack of energy. Due to insufficient energy the equilibrium breaks and 

the force of gravity starts pushing inward compressing the core with the overlaying mass 

of the star. When the mass of the core due to compaction reaches the critical mass, which 

result in a rapid collapse and explosion of the core within seconds. The outer layer of the 

star that includes hydrogen and helium is washed off due to the wind or either 

companion star, which are 3-4 solar masses. So, Type Ib lost its hydrogen layer due to 

collapse, and Type Ic lost both hydrogen and helium layer which differentiate Type Ib 

with Type Ic supernova. 

Since it belongs to Type I supernova, there is an absence of hydrogen lines in the optical 

spectra. However, Type Ia can be differentiating with Type Ib & Ic by the presence of 

strong silicon absorption line at the maximum light. The absence of silicon lines and the 

presence of helium absorption lines represent Type Ib supernova, and the lack of both 

silicon and helium absorption lines characterizes Type Ic supernova. The difference 

between SNIa and SNIb becomes more evident in the later stages of the supernova when 

the outer layer starts to fade away as it ages resulting in the strong helium and oxygen 

absorption lines in the spectra for SNIb. SNIa shows strong iron and cobalt absorption 

lines in their later times.  
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2.1.2.3   Type II Supernova 
	

Type II supernova is similar to Type Ib/Ic supernova originated from the core collapse of 

the massive star. But the only difference between Type II and Type Ib/Ic supernova is 

the presence of hydrogen absorption line in the optical spectra that is not present in the 

Type I supernova. Type II supernova can be further subcategorized into Type IIL, Type 

IIP, Type IIn and Hypernova based on their behavior in the optical spectrum. Type Ib/Ic 

and Type II supernova are mostly referred as the core-collapse supernova. These types of 

supernova are very prone to become a black hole depending on the mass of the core and 

the initial size of the star. 

2.1.3   Observation of Supernova 

The studies of supernova are carried out by the observations of light curves, i.e., graph 

between luminosity versus time following the explosion and the optical spectra, which 

are known as photometry and spectroscopy observation respectively. 

2.1.3.1   Supernova Photometric Observation 

Photometry is related to the study of the brightness of the object in a particular color. 

This type of study is mainly carried out with astronomical objects and events where the 

information source is the amount of energy, in the form of electromagnetic radiations 

known as flux. It helps to reveal the physical properties of the astronomical objects for 

example size of the object, object temperature, the distance between the object and other 

physical properties. The study of supernova also includes the photometric observation, 

which measures the variation of apparent brightness of the event over a particular 

period, which is mainly known as light curves. It is the measurement of flux over a broad 

wavelength of the radiations.  
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2.1.3.2   Supernova Spectroscopic Observation 
 
Spectroscopy is related to the study of the spectrum of the electromagnetic radiations 

received from the objects. It is mostly used to examine the celestial objects and events by 

gathering the visible lights or infrared rays through a telescope. The electromagnetic 

radiations are spread into different wavelength with the help of spectrometer, which is a 

prism or grating material and projects into a screen, which is known as spectra. Spectra 

reveals about the chemical composition of the object based on the emission and 

absorption lines of the electromagnetic radiations in different wavelength that is also 

known as fingerprints of atoms and molecules. An object can emit three kinds of spectra: 

continuous spectra, emission spectra and absorption spectra. Continuous spectra are the 

smooth gradient of light like passing the sunlight through the prism will spread the white 

light into continuous colors of longer and shorter wavelength. If there will be some 

missing lines in the spectrum typically the dark lines which happen due to the absorption 

of wavelength by colder medium, this type of spectrum is known as an absorption 

spectrum. The stars produce this kind of spectrum when the colder outer region of stars 

absorbs the radiations of the inner hotter part. This type of spectra helps to know the 

elements present in the celestial object. Emission spectra are the spectrum of 

wavelengths of electromagnetic radiations of different atoms and molecules of the object. 

As some atoms and molecules emits extra light in the hot regions giving a sharp line in 

the spectrum. Thus, spectroscopic observations of supernova help to gather the 

information regarding chemical composition, mass, temperature, diameter, and 

distance, etc. 
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2.1.4   Challenges 
	

Astronomers are more prone towards Type Ia supernova as it is used as ‘standard candle 

to measure the distance to farther galaxies. In some cases, Type Ib/Ic supernova light 

curves appear identical to the light curves of Type Ia. Thus, they act as a contamination 

in the supernova surveys introducing erroneous in the calculation of the distances. For 

the correct estimation of the distance, Type Ib/Ic should be carefully removed from Type 

Ia samples.  As the astronomical surveys are increasing day by day with advanced 

techniques, a significant amount of data is expected to gather. So, introduction of an 

automated system to classify the observations as different types of supernova is a 

necessity. With the help of machine learning techniques it is possible to classify the 

observation with the respective supernova type.  

The observations of astronomical data mostly include high dimensions. The curse of 

dimensionality also possess a significant challenge, as a system will require a 

considerable amount of time and space to process the high dimension data efficiently 

and to produce the results. An efficient dimensionality reduction technique is needed to 

reduce the number of the observation without much loss of information.  

Another challenge for supernova classification is that there can be two methods of 

observation for supernova as explained above.  The present system for supernova 

classification is based on high-resolution spectroscopic observations. But in future with 

the upcoming surveys like Dark Energy Survey, Large Synoptic Survey Telescope (LSST) 

etc., it is possible to gather a large number of supernova observations based on 

photometric method. Since, we already have information about the classification of 

supernova based on spectroscopic method, an automated and adaptive method is 
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required to take advantage of information of existing system to classify the future 

incoming data. 

2.2   Machine Learning Background 

2.2.1   Machine Learning Methods 

Machine learning is a field of computer science mainly a subarea of artificial intelligence 

that provides machines capability to learn without explicit programming. Machine 

learning has been applied to various real world problems successfully. Astronomy is also 

not remaining untouched with the application of machine learning techniques. Many 

astronomy problems have been solved with the development of automated systems 

based on machine learning methods, but it is still in a naïve stage. Machine learning 

tasks can be categorized into supervised learning, unsupervised learning, and 

reinforcement learning. Most of the problems can be dealt with supervised learning in 

which the goal is to build a model and determine the classification of an object based on 

their specific features. To learn a model, a training set is used which are the features of 

objects with their known classification. After the model is built with the help of training 

set, it is capable of classifying the object of unknown classification. To validate the model 

testing data is used. Testing data is a part of training data, which has been split before 

training. The dataset of known classification is divided into 2/3 training data and 1/3 

testing data. But this might introduce bias in the model or the model can prone to 

overfitting. There are various methods to divide the dataset into training and testing 

which also includes ten-fold cross validation technique. In this procedure dataset is split 

into ten partitions randomly, and ten iterations are performed. In each iteration, nine 

partitions are treated as training set and one partition as testing data. This procedure 

results in the reduction of the bias of the model and tends to prevent overfitting. 
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In a variety of astronomical classification problem like star classification, galaxy 

morphology classification, supernova photometric classification, etc. included machine-

learning techniques. With the discovery of dark energy, astronomers are conducting 

extensive surveys to garner more information regarding its nature and physical 

structure. During these surveys, they expect a significant number of supernova samples, 

which can be used as standard candles to measure the distance of the galaxies and other 

cosmological parameters as a function of redshift. It is possible to classify supernova 

with the help of spectroscopy method, but it is a very cumbersome task. Spectroscopy 

method is not an automated way to classify the supernova. Whatever the samples of 

supernova has been provided by the various surveys, only a fraction of it has been 

succeeded in labeling with spectroscopy method mainly by Supernova Legacy Survey 

[Asteir et al., 2006] and Sloan Digital Sky Survey [York et al., 2000].   

Various efforts have been made in the past to provide an efficient statistical tool for the 

automated classification of supernova [Poznanski et al., 2002; Johnson & Crotts, 2006; 

Sullivan et al., 2006; Poznanski et al., 2007; Kuznetsova & Connolly, 2007; Kunz et al., 

2007; Sako et al., 2008; Rodney & Tonry , 2009; Gong et al., 2010; Falck et al., 2010]. 

Most of them focused on the notion of template matching technique, in which they 

generated templates using supernova samples with known classification, and all the 

samples with unknown classification are classified by set of templates. The problem with 

this approach is that final classification is highly sensitive to the characteristic of 

template sample. Another approach has been made using posterior probabilities of each 

classification output [Newling et al., 2011; Sako et al., 2011]. In this method, the 

posterior probability of each data point has been calculated and assigned to templates 

according to their weight.  
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Following an entirely new approach [Richard et al., 2012] proposed a method of 

diffusion map to represent the data in low-dimensional space and in this random forest 

algorithm has been used to assign labels to supernova photometric data.  

In the most recent work by [Karpenka et al., 2012], he proposed two-step method to 

classify the data. In the first step, spectroscopic confirmed supernova has been fitted to a 

parametric function and the parameters obtained are used to train a neural network 

classifier. In the next phase, the model obtained from the neural network is used in 

supernova photometric samples, which in turn provides the probability of a sample 

being an Ia supernova. 

Another interesting approach has been made recently by [Ishida and de Souza, 2012], in 

which they used Kernel Principal Component Analysis to represent spectroscopically 

confirmed supernova data in low dimension and project photometric supernova samples 

to the same dimension. After projecting the supernova data in the lower dimension, k 

nearest neighbor algorithm is used for classification. Since the distributions of the both 

dataset are different, but their classes are same, there is a possibility for the application 

of domain adaptation techniques to improve the classification accuracy. 

2.2.2   Domain Adaptation 

One of the most common assumptions of machine learning problems is that the 

underlying distribution of the training dataset, which is used to train a model, is similar 

to the distribution of the testing set. However, in real world problems, this assumption is 

not valid. In many cases, training and testing dataset distributions are different, i.e., 

their marginal distributions are different which leads to the deviation of the classifier 

from the optimal model resulting in misclassification. In such cases, we use domain 

adaptation algorithms.  
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For the better explanation of domain adaptation we are assuming some terminology.  Let 

Xs and Xt represent the training set also called source dataset and testing set also called 

target dataset and Ys and Yt denotes the class labels of the source data and target data 

respectively. Prior probabilities of the source and target data are represented as Ps (Xs), 

Pt (Xt),Ps (Y),Pt(Y) respectively and the posterior probabilities of the source and target 

are represented as  Ps(Y/X) and  Pt(Y/X) . Since we are assuming a data point x belongs 

to X dataset, i.e., {xsà Xs} and {xtà Xt}, the joint probabilities of the both source and 

target data can be represent as Ps(xs,ys) and Pt (xt,yt) where {ys à Ys} are the class labels 

belongs to the source class and {yt à Yt} are the class labels belongs to the target class. 

Thus, source domain can be defined as Ds = {Xs, Ps (X)} and target domain as Dt = {Xt, Pt 

(X)}. The Learning task is to determine a predictive function that will predict class for 

the given features. For source domain, task is represented as Ts = {Ys, fs (.)}. Similarly for 

the target domain, task is defined as Tt = {Yt, ft (.)}.    Thus, if we say domains are 

different it means their prior probabilities are different, i.e.,  

                                                               Ps (Xs) ≠ Pt (Xt)                                                              (2.1)                                                                                                                          

But their feature space and tasks remain the same. If the model is built on only source 

dataset, it will not be able to classify target dataset correctly. The reason behind the 

difference of domain is due to data shift.  There can be many reasons for the data shift in 

which one of the most prominent one is covariate shift. In covariate shift, we assume that 

there exists an optimal model that can classify both source and target dataset correctly. 

This leads us to assume that given certain model parameters the source and target 

posterior probabilities would be the same i.e.  

                                                        Ps (Ys/Xs) = Pt (Yt/Xt)                                                          (2.2) 

But their marginal probabilities will be different. In most of the cases, source domain 

labels are available in abundance from which we can learn a source model that can 
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efficiently classify the source dataset but there is no or little information is available 

regarding target labels of the target domain. Thus, building a model on target domain 

with no prior information is difficult. This type of domain adaptation problem is known 

as unsupervised domain adaptation. Since, the source and the target domains are related 

we can use source information that is similar to target domain to learn a model in 

unlabeled target domain. This is called adapting a domain from source to target to get a 

better classification. 

 Thus, the goal of domain adaptation is to build optimal classification model on an 

unlabeled dataset (target dataset) by using relevant information from a related labeled 

dataset (source dataset). 

Apart from covariate shift, there are many reasons for the data shift, which includes 

prior probability shift in which we assume that the likelihoods of the source and the 

target data have different priors of the class i.e. 

                                           Ps (Ys) ≠ Pt (Yt) and Ps (Xs|Ys) ≠ Pt (Xt|Yt)                                     (2.3) 

Another reason can be sample selection bias in which we assume that source domain is a 

sample of target domain but not completely represent the target domain. Imbalance data 

can also be a reason in which we assume that class priors are different but likelihoods of 

the source and the target are the same. 

                                            Ps (Ys) ≠ Pt (Yt) and Ps (Xs|Ys) = Pt (Xt|Yt)                                   (2.4) 

But due to difference in the measurement of the dataset there can be a shift in the data 

this is known as domain shift. 



16	

2.2.2.1   Techniques of Domain Adaptation 

2.2.2.1.1   Instance-based methods  

Instance reweighting is one of the standard approaches for the domain adaptation 

problem. The assumption for the data shift here is the sample selection bias. We consider 

the source domain is a part of a target domain but not completely represent the target 

dataset. Thus, the source data that is closer to the target distribution can be given more 

importance by assigning weights to them, which will help to reduce discrepancy among 

the distributions. The goal of domain adaptation is learning an optimal model for the 

target domain that will minimize the expected loss over the target domain. Thus, it can 

be represented as 

                             !!∗ =  arg!"#! ∈! !!
!,!  ∈  ! ! !

!,! ! !,!,!                                     (2.5) 

Which can be rewritten as, 

                      !!∗ =  arg!"#! ∈!   !! !,!!! !,!
!!

!,!  ∈  ! ! !
!,! ! !,!,!                           (2.6) 

Since, P (X, Y) is unknown we can use empirical distribution to approximate P (X, Y) 

which can be represented as ~P (X, Y), 

                      !!∗ =  arg!"#! ∈!   !! !,!!! !,!
~!!!,!  ∈  ! ! ! !,! ! !,!,!                         (2.7)  

If we randomly select Ns number of training data points (!!!, !!!) from the distribution Ps 

(X, Y), we can minimize the empirical risk to get best model by following way, 

                          !!∗ =  arg!"#! ∈! ~!! !!!,!!!
!,!  ∈  ! ! !

! !,!,!                                 (2.8) 

                                  !!∗ =  arg!"#! ∈! !(! !
!

!,!  ∈  ! ! !
,!!!,!)                                        (2.9) 



17	

So, the above equation can be rewritten as 

                                !!∗ =  arg!"#! ∈! 
!! !!!,!!!
!! !!!,!!!

!!

!!!
! !!!,!!!,!                                     (2.10) 

Thus, we can get optimal target model by weighting the loss function over that data 

points. However, we don’t have enough labels for the target domain to calculate the 

above ratio as weight. Various approach being made to calculate the ratio or replace the 

ratio with some other equations to calculate optimal model. Covariate shift by 

[Shimodaira,'00] assumed that prior probabilities of the source and the target domains 

are different but their posterior probabilities are the same. Thus, the weight ratio can be 

computed as follows:  

                                                               !!  (!, !)
!!(!, !)

=  !! !  !! (!/!)
!! !  !! (!/!)

                                                   (2.11) 

                                                        Since, Ps (Ys/Xs) = Pt (Yt/Xt)                                                  (2.12) 

                                                                    !!  (!, !)
!!(!, !)

=  !! !  
!! !                                                                (2.13) 

Thus, weights can be calculated by the ratio of priors of the source and the target 

domain.  

In the class imbalance approach by [Japkowicz et al., 2002] they assumed that 

likelihoods of the source and the target domains are equal but their class priors are 

different.  

                                                               !!  (!, !)
!!(!, !)

=  !! !  !! (!/!)
!! !  !! (!/!)

                                                   (2.14) 

                                                       Since, Ps (Xs/Ys) = Pt (Xt/Yt)                                                   (2.15) 

                                                                     !!  (!, !)
!!(!, !)

=  !! !  
!! !                                                               (2.16) 
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According to this approach if there is a class imbalance across the domains weights, it 

can be calculated as the ratio of the class priors of the target and the source data. In 

another kind of approaches, [Sugiyama et al., 2007] built density estimator for both 

source and target and calculated the weight by their ratio.  One of the most interesting 

methods to solve domain adaptation problem was proposed by [Huang et al., 2006]. The 

method is known as Kernel Mean Matching in which they tried to minimize the 

maximum mean discrepancy between two distributions by projecting the distribution in 

reproducing Hilbert kernel space (RKHS). They estimated the beta values depends upon 

the source data points which are closer to the target points and multiplied the beta values 

to the loss function of the classifier to provide importance to the source data points 

which can help to build an efficient model for the target domain. 

Another interesting approach has been done by [Bickel et al., 2007] in which they 

learned weights by initially assigning all the class of source data points as 1 and the target 

data points as 0 and determine whether the source data points lies in the target domain 

or not. One of the major assumptions in instance-based approaches for the data shift in 

the distribution is due to sample selection bias, and we assume that there learning tasks 

are similar, but it is not true in all cases. Thus, this led to another type of approach to 

address domain adaptation problem. 

2.2.2.1.2   Feature-based methods  

It is not necessary that the source domain is a part of the target domain, and the data 

shift reason is sample selection bias. Sometimes source and target distribution doesn’t 

fall in the same region. In such cases, we can use some feature representation techniques 

to project source and target distribution in shared space such that they align. The goal of 

feature-based methods is to change the representation of features of both source and 
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target domain and explicitly project them in the new feature space for the better 

representation of shared characteristics between them. 

One of the most common feature-based methods is subspace alignment given by 

[Fernando et al., 2013] in which they learned subspace for both source and target 

domain using principal component analysis and then aligned the source subspace 

according to the target subspace using a transformation matrix. When the source is 

aligned in the new space, it will represent the target domain. Thus, a model is built on 

aligned source dataset for the better classification of target dataset. 

Another good approach in feature-based methods is Distance metric learning by [Kulis et 

al., 2011; Saenko et al., 2010] in which they calculated mahalanobis distance among the 

feature vectors and found the similarity and dissimilarity across the domains. Feature 

augmentation by [Daume III et al., 2007; 2010] is also a unique approach in which 

initially they train a model on only source domain and classify the target domain on that 

model. The predictions obtained by the model are augmented in the feature vector as 

additional features for the target data, and the target data is trained to build a model in 

the new feature vector. This approach requires target labels thus; this applies to fully 

supervised domain adaptation problem. Another method was proposed by [Blitzer et al., 

2007] known as structural correspondence learning, which has been mostly used in 

sentiment analysis. They exploit both the source and the target domain to determine 

pivot features. Pivot features are the features, which behave similarly to both the source 

and the target domain. These pivot features are then integrated with the feature vector of 

the source domain to learn a model.  

One of the traditional approaches in the feature-based methods is manifold learning by 

[Gopalan et al., 2011] in which they project both the source and the target domain in a 

new dimension, and they learn a geodesic path on the Grassman manifold between both 
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the projections. The most recent approach has been proposed by [Rafah et al., 2015] 

which is an improvised version of subspace Alignment technique [Fernando et al., 2013] 

known as Landmark based kernelized subspace alignment in which they choose 

landmarks across the source and the target domain. Landmarks are the regions where 

the source and the target data points overlap each other. These data points are known as 

candidates. After choosing landmarks, subspace alignment technique is applied to the 

candidates to get the better model in the target domain. Because this algorithm is the 

basis of this thesis, it is explained in more detail in Chapter 3.  

2.2.2.1.3   Iterative-based method 
	

The main principle behind this approach is to gather information regarding the target 

using pseudo labels and builds the model iteratively. If necessary add or remove the data 

points and continue till the convergence has been reached or no more data points 

remain. One of the most traditional approaches, which belong to this category, is 

DASVM (Domain adaptation support vector machine) by [Bruzzone et al., 2010]. In this 

method, initially model is built on support vector machine using the source data and all 

the target data is classified using the initial model, which gives the pseudo labels for the 

target data. In the next step, select the target data points that fall above and below the 

margin of the support vector machine both for the class +1 and -1. Include that target 

points in the training set for the next iteration. Meanwhile, remove the source data 

points from the training set which are far away from the margin. Build the model again 

using new training set in which target points have been integrated and again classify the 

remaining target data points.  Repeat the procedure of selecting the target points, 

including in the training set, removing the source data point, building the model on the 

training set and classifying the target data points till the convergence has been reached 
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or no source data points remain in the training set. One of the disadvantages of this 

approach is that it is not applicable for multiclass problem. 

2.2.3    Active Learning 

Active learning is a field of computer science and subfield of machine learning and 

artificial intelligence, which involves interactive learning process continuously. In 

traditional machine learning algorithms, hypothesis is built on the available training 

data at that particular time. But in active learning, every time new hypothesis is built 

actively by previous experience. 

In contrast to passive learning, active learner chooses the data points from the dataset to 

label. This act helps to reduce the number of data point labels required while learning 

and thus reduces the labeling cost. This type of learning is applied to the problems where 

labels are available in an accessible manner for example spam filtering problem. If the 

user interacts with the system to label an email as spam or non-spam to the query asked 

by the system, it will be very helpful for the system in learning process and will lead to 

better classification. In active learning, there used to exist an oracle or expert1, which 

provides labels for the data points that are being asked. There can be three types of 

approach to ask labels to the oracle to learn a model: 

Query synthesizing: In this scenario of active learning, learner can ask query for any 

unlabeled data during its learning process. The data points for which labels has been 

asked can be any arbitrary instances. Thus, query synthesizing is not a popular approach 

as sometimes, learner can query the data points which has no information and 

																																																													
1	In this work we are using simulated SN data and as a consequence all labels for the target sample are 
available. Thus enabling the method as a proof of concept.  
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insignificant towards the learning process. But it works well for the uniform data 

distribution. 

Stream-based selective sampling: In stream-based selective sampling, learner can 

sample unlabeled data from the distribution and can decide whether to query label for 

the sample data points or not. The decision can be based on the information content of 

the data. If the learner is very uncertain about the particular data point, it can query the 

label or else discard the data point. This setting works well when there is non-uniform 

distribution of data.  

Pool-based sampling: In pool-based sampling, the learner can choose sample data 

points to query from the pool of unlabeled data. In this scenario also, the learner decides 

whether to query the label for the selected data point depends on the information 

content. The difference between stream-based selective sampling and pool-based 

sampling is that latter has pool of data which are ranked before selecting best data point 

to be queried whereas, in stream based sampling, data points are queried sequentially by 

the learner. 

In most of the active learning techniques, uncertainty sampling is being used to 

determine the best query in the data distribution. Uncertainty sampling refers to the 

selecting of the data points among the distribution, which is very uncertain and contains 

high information for querying. There can be three strategies for uncertainty sampling, 

which are as follows:  

Least confident sample: In this strategy, data points that are least confident are 

selected for the query. The least confident factor is calculated by the lowest posterior 

probability of the data point for the given model. Usually, highest posterior probability is 

considered for the prediction of the class for the data point. Thus, lowest posterior 

probability represents uncertainty in the prediction. The only disadvantage of this 
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strategy is that it doesn’t consider other posterior probability as information. It only 

considers the best prediction. 

Margin sampling: In this strategy, data points with least margin are selected for the 

query. Margin is calculated by the difference of first and second highest posterior 

probability of the data point for the given model. One of the major advantages of this 

strategy over least confident sampling is that it considers two best posterior probabilities 

to determine the uncertainty. 

Entropy Sampling: The measure of randomness is known as entropy. However, in 

machine learning, entropy is used to measure the average information content of a 

variable. Thus, highest entropy value represents the most informative data point, which 

can be selected to query.  
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Chapter 3 

Methodology 

3.1   Overview 
The method for the classification of supernova photometric observations has been 

generated by the integration of two algorithms. Since it is a domain adaptation technique 

thus, we will refer supernova spectroscopic data as source data and supernova 

photometric data as target data.  The experiments have been performed on Matlab 

R2015b code. Matlab has been chosen as it has rich machine learning and data analysis 

toolbox, easy to implement and best for faster statistical calculations.  

The first step of the methodology is accompanied with a feature reduction procedure 

with the help of kernel principal component analysis. The attributes are selected by the 

highest classification accuracy in the source data, and the target data has been projected 

in the same dimension using Eigenvectors of the source data. 

The next phase is the selection of landmarks in source and target distribution on the new 

reduced feature dataset. Landmarks are the set of points in source and target data where 

their distributions are similar. The points in the landmarks are referred as candidates. 

The data points in landmarks belong to the source distribution are referred as source 

candidates and those data points belong to the target distribution are referred as target 

candidates. There is no use of the source and the target labels for the selection of 

landmarks. This idea is based on the method proposed by [Rahaf et al., 2015].  

After selection of landmarks, Clustering technique is applied on the landmarks to obtain 

different clusters of the source and the target candidates. For clustering, EM algorithm 

with Kmeans has been used. With, the help of domain adaptation with active learning on 
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each cluster, an individual model is generated. For testing purpose, target data points are 

assigned to the different clusters based on the minimum distance from Kmeans 

centroids obtain from the clusters and classified with the model of the cluster in which 

the target data point belongs. The predicted labels are compared with the actual labels of 

the target dataset, and classification accuracy is calculated in percentage. The 

methodology is explained in details in the further section of this chapter. 

3.2   Kernel Principal Component Analysis 

Kernel Principal Component analysis is a generalization of Principal Component analysis 

(PCA) in a non-linear way proposed by [Schölkopf et al., 1997]. Unlike PCA, Kernel PCA 

finds principal components in feature space rather than in input domain. In Kernel PCA, 

at first, data is mapped non-linearly into high dimensional dot product feature space F. 

                                                                        Φ ∶  !!  → !                                                                (3.1) 

                                                                         ! →  Φ !                                                                    (3.2) 

Where, Φ represents a non-linear function and F represents large dimensional space. 

The covariance matrix of this high dimensional space F is given by, 

                                                         !! =  !!  Φ !!  Φ !!!
!!! T                                                 (3.3)      

With the help of kernel trick, we can determine the dot product of Φ !!  Φ (!!) T by 

kernel matrix of N X N as 

                                                      !! !! , !! = (Φ !!  Φ (!!) T)                                               (3.4) 

Kernel matrix also known as a gram matrix allow to compute the dot product in the 

feature space F without actually mapping the data in high dimension with a non-

linear operator. 
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To find principal components, we need to diagonalize the covariance matrix, which 

can be done by finding Eigen values and Eigen vectors by solving this equation, 

                                                                           !" = !!!                                                                   (3.5) 

Where, ! represents Eigen values ≥ 0 and ! represents Eigen vectors. 

Now, there exist coefficients !! ! = 1…!  such that 

                                                                    ! =  !!
!

!!!
Φ !!                                                            (3.6) 

For the gram matrix !! !! , !!  of size n X n, we can rewrite above equation as, 

                                                                       !"!! ! = !!!!                                                             (3.7) 

Thus, we can solve this equation by finding Eigen values and Eigen vectors of the gram 

matrix and !! >  !! > ……  >  !! represents non –zero Eigen values and !!,!!… ,!! 

represents corresponding Eigen vectors.  

The resulting kernel principal components can be calculated as, 

                                                        !! ! =  Φ !  !! = !!"!!
!!!  ! (!, !! )                                    (3.8) 

For any test data point x, we can compute projection by using Eigen vectors by this 

equation, 

                                                               !!,Φ ! =  !!!
!

!!!
 ! !! , !                                                  (3.9) 

All these equations are based on the assumption that the data is centered and mean is 

zero in the feature space. However, after projecting the data in the new feature space by 

using kernel matrix doesn’t ensure that the data is centered. Thus, for centralization of 

kernel matrix can be computed by following equation, 

           !!"! = ( !! − 1!!! − !!  1! +  1! !!1! ) Where, (1! ) ij  = 1/m for all i,j     (3.10) 

Thus to summarize this algorithm, Kernel PCA is performed by following step: 
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1. Find the gram matrix from the source data: !! !! , !! . 

2. Centralize the kernel matrix using equation  (3.10). 

3. Solve for the Eigen decomposition problem and compute Eigen values and 

Eigen vectors !!,!!… ,!! using K’. 

4. Compute kernel principal components using equation (3.8). 

5. Project the target data with Eigen vectors of kernel matrix using equation 

(3.9). 

The experiment has been performed using various kernel functions, which included 

polynomial functions with different degrees, Gaussian with different sigma value etc. 

The type of kernel function and the features were selected by the performance of 

transformed source data in different classifiers.  

3.3   Landmark Selection 

The first step of our methodology is the selection of landmarks. The idea of landmarks 

has been taken from the method proposed by [Rahaf et al., 2015]. Landmark selection is 

a segment of the method proposed by them. Landmarks are the set of data points in 

source and target distribution; if we project these points in a common space their 

distributions will be similar. Landmarks represent the source and target data points that 

overlap each other.  To represent the source data, we will use S and to represent target 

data we will use T and landmarks will be designated as A. Thus, the set of landmarks will 

be the subset of S∪T. Landmarks are selected by finding the similarity between each 

point c belongs to S∪T with all the points p in S∪T. Each point c is considered as a 

landmark candidate. If the similarity measure of the candidate is above a threshold, it is 

considered as a landmark. 
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The similarity between candidate c and each point p ∈ S∪T is measured by Gaussian 

kernel with standard deviation s: 

                                                                ! !, ! = exp − ! − ! !

2!!                                                (3.11) 

Here, s is the kernel radius. It defines the size of the neighborhood with which candidate 

landmarks will measure the similarity. The parameter s helps us to capture the local 

properties in the feature space. It also helps us for the better alignment of source and 

target data. The value of parameter s is very crucial while similarity measurement as 

extreme values of s lead to perfect match between the distributions. A very small value of 

s close to zero will give all the values of K(c, .) as 0 and a very high value of s will give all 

the values of K(c, .) as 1. To avoid this situation, we perform multi-scale analysis by 

computing Euclidian distance among all the pairs of points in the distributions and try 

every percentile of these distances. We try out a range of s based on percentiles and 

compute the overlap between the source and target distribution. 

Thus, to summarize this step we compute Gaussian kernel using candidate c with source 

distribution and target distribution separately i.e.  

                                                         !! = exp (!| !!! |
!

!!! )  Where p ∈ S                                         (3.12) 

                                                        !! = exp (!| !!! |
!

!!! )  Where p ∈ T                                         (3.13) 

Now we compute degree of overlap between the two sets of K(c,.) using an overlap 

function. To be able to determine the overlap between two distributions, they are 

approximated as normal distributions.  Computation of overlap is based on the similar 

idea of Bhattacharyya coefficient. If we want to compute the overlap between two 

distributions, we can find integration of their product. Higher the value of the product, 

higher will be the overlapping between the distributions. The normal distributions can 

be summarized by their means and standard deviations. Let !!,!! represents the mean 



29	

and standard deviation of normal distribution of source data and !! ,!! represents the 

mean and standard deviation of normal distribution of target data. 

Integration of two normal distributions is given by: 

                                  ! !  !!  ,!!!) !  !  !! ,!!! !" = !(!! − !!  ,!!"#! )                           (3.14) 

Where, !!"# ! =  !!! + !!!. 

Thus, the overlap function can be given by: 

                                     !"#$%&' !! ,!!   ;  !!  ,!! = !(!! − !!  ,!!"#! ) 
!(0|0 ,!!"#! )                                       (3.15) 

The denominator of the overlap function represents the maximum value of the 

numerator as, if the means of both the distribution will be the same, !! − !!   = 0. Thus, it 

acts as a normalization factor. The maximum value of overlap function will be one if two 

distributions will perfectly match.  The range of overlap function value helps us to 

determine the threshold th to consider candidate as a landmark or not.  

Thus, algorithm select_landmarks can be summarized as follow: 

Input: Source data S, Target data T, threshold th 

Output: Landmarks A contains set of points from source and target data 

A à {}  

Distances ß {||a-b||, (a, b) ∈ (! ∪ !)!} 

for c in (! ∪ !) do 

               for s in percentiles (distances) do 

   !! = exp (!| !!! |
!

!!! )  Where p ∈ S 

                              !! = exp (!| !!! |
!

!!! )  Where p ∈ T 

  If overlap (!"!,!"!) > th then 

           A = A ∪ {c} 

  End if 

  End for 

                End for  
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3.4   Landmarks Clustering 

The next step after selecting the landmarks from the source and the target data is 

clustering. Many clustering techniques can be applied to obtain different clusters. Since 

landmarks are set of source and target data points that overlap each other, with the help 

of clustering we can determine which source and target data points are overlapping. 

Among the various clustering technique, we have applied EM algorithm on the 

landmarks for the clustering. EM algorithm assigns the probability to each data point, 

which determines the probability of it belonging to each of the clusters. Since the 

number of clusters to be formed is not known to the prior, we have chosen Weka to 

perform EM algorithm on the landmarks. It doesn’t require number of clusters to be 

formed as a parameter before executing this function. EM algorithm uses cross-

validation procedure to determine number of clusters. 

In Weka, EM algorithm performs the following procedures to determine the number of 

cluster and cluster means: 

1. Initially the number of clusters is set to 1. 

2. The data provided for clustering is split into ten folds randomly. 

3. EM algorithm is performed ten times in each ten folds similar to cross-validation 

procedure. 

4. The log likelihood determined by EM algorithm is averaged across ten folds. 

5. If the log likelihood has increased then the number of cluster is increased by 1. 

6. Execution continues to step 2. 

Thus, EM algorithm provides the number of clusters and cluster means as output. Since, 

Kmeans clustering algorithm is used in the framework of EM algorithm, we assigned 

landmarks to the clusters based on the minimum Euclidian distance from the cluster 

means. 
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3.5   Domain Adaptation using Active learning 

The goal of domain adaptation is to transfer the source information to the target domain 

to build the target model for better classification. Active learning helps to exploit the 

source and the target domain locally. After clustering of landmarks, the next step is to 

apply domain adaptation using active learning. The first step of this method is to build 

the initial training set, which will be used for building initial model for active learning. In 

basic active learning algorithms, the initial model is learnt using random sampling. In 

random sampling, few data points are randomly selected and queried for the labels. We 

are trying to use source information for building the target model. Thus, in the first step, 

we are incorporating source information in building initial model. Here, we have 

assumed that source candidates represent target candidates in an overlapping region.  

In each cluster, the number of source candidates, !"! is calculated. Let minPoints is the 

minimum number of data points require to learn a model, !! represent the source 

candidates present in one cluster and !"!! represents the number of target candidates 

randomly selected from the cluster. If the number of source candidates, !"! is less than 

minPoints then rest of the points, !"!! = (minPoints - !"!) is selected randomly from the 

target candidates in the cluster. For example: In cluster 1, if the number of source 

candidates is 4 and the minimum data points required to build the initial model is 10, 

then 10-4 =6 target candidates are randomly selected from the cluster 1 and included in 

the training data. Let the randomly selected target candidates is defined by !!!. Target 

candidates, !!! is queried for the labels from the expert or oracle and included in the 

initial training set along with the source candidates.  Thus, in this case, initial training 

set = !! ∪ !!!. If the number of source candidates, !"! is more than minPoints; the entire 

source candidate is included in the training set. As we want to take advantage of source 
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information as many as possible. So, in this case initial training set = !!.  But if cluster 

will not contain any of the source candidates, i.e., !"! = 0, then target candidates are 

randomly selected from the cluster equal to the minimum number of data points 

required to learn initial model i.e. !"!! = minPoints. In this case, initial training set = !!!. 

Thus the algorithm initial_training_model is as follow: 

Input: Clusters, minPoints 

Output: train_set, train_labels for each cluster 

For each Cluster C = i… N where N = number of clusters 

 Compute number of source candidate in the cluster, !"!. 

 If  !"! = 0 then 

  Choose !!! from the cluster where !"!! = minPoints. 

!!!  = Query the labels of !!! with expert. 

train_set= !!!, train_labels = !!! . 

 Else if !"! < minPoints then 

Choose !!! from the cluster where !"!! = minPoints - !"!. 

!!!  = Query the labels of !!! with expert. 

train_set = !! ∪ !!!, train_labels = !! ∪ !!! . 

  Else  

Choose !!  from the cluster. 

train_set =!!, train_labels =!!. 

 End If 

End For 

Where, 

!! = Source candidates in Cluster, !"! = Number of source candidates in the cluster,  

!"!! = Number of target candidates selected randomly from the cluster, 
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minPoints = Minimum data points required to learn a model,  

!!! = Randomly chosen target candidates from the cluster, !! = Label set for the source 

candidate, !!!  = Label set for randomly chosen target candidate, train_set = initial 

training set, train_labels  = initial training labels. 

The above algorithm represents domain adaptation technique as we are transferring 

source information for the next step of methodology. The next phase is to apply active 

learning. With active learning, we rely on only few target labels for better classification of 

supernova photometric data. Active learning is applied in each cluster individually. The 

first step in active learning is to learn initial model in each cluster based on the training 

set and training labels obtained from algorithm initial_training_model. Each cluster is 

assigned with maximum number of target candidate labels that can be queried during 

active learning. We refer this parameter as maxCost. At first in each cluster, all the target 

candidates, !! are classified with the initial model. With the posterior probabilities 

obtained from classification is used for the calculation of margin. The margin is 

calculated as the difference of highest posterior probability !"! with second highest 

posterior probability !"!.  

                                                                 !"#$%& =  !"! −  !"!                                                           (3.16) 

Since, the candidate with lowest margin represents the least confident data point.  

Thus, the target candidate with the minimum margin, !! is selected and asked for the 

label to the expert. Include this target candidate, !! in the initial training set and target 

candidate label, !! in the initial training labels obtained from the algorithm 

initial_training_model. Again learn model on the basis of new training set and classify 

all the target candidates in the cluster. Compute the margin for all the target candidates. 

Pick the target candidate with lowest margin and query for the label from expert. Include 
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this target candidate and label in training set and training label. Repeat this procedure 

till the maxCost is reached. 

Thus, algorithm active_learning is as follows: 

Input: Cluster C, train_set, train_labels, maxCost 

Output:  final_model for each cluster 

For each C = i… N where N = number of cluster 

 While cost ≤ maxCost 

  model = classifier (train_set, train_labels) 

  [Pr] = classify (model, !!). 

  Calculate the margin for each target candidate, !! as 

!"#$%& =  !"! −  !"! 

  Pick the target candidate, !! with minimum margin. 

  Query the label, !! from expert for target candidate !!. 

  train_set = train_set ∪  !!, train_labels = train_labels ∪  !!. 

  cost = cost +1 

   End while 

               final_model = model   

End For 

Where, 

C= Cluster, Pr = posterior probability, !"! = highest posterior probability, 

!"! = Second highest posterior probability, !! = target candidate with minimum margin 

!! = Target candidate label with minimum margin, maxCost = maximum number of 

labels can be queried from expert for each cluster. 

Final model obtained from above algorithm for each cluster is the required predictive 

model, which can be used to predict labels for test data. 
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Thus, to summarize the methodology: 

Step 1: Selecting landmarks in source and target data. 

Input: Source data S, Target data T, threshold th 

Output: Landmarks A  

A = select_landmarks (S, T, th) 

Step 2: Apply EM algorithm for clustering landmarks. 

Input: Landmarks A 

Output: Clusters C 

Step 3: Apply domain adaptation and active learning on each cluster C.  

This step will be carried off in two sub steps: 

a. For each cluster, determine initial training set and training labels. This step can 

be referred as domain adaptation technique. 

 Input: Input: Clusters C, minPoints 

 Output: train_set, train_labels for each cluster 

 [train_set, train_labels] = initial_training_model(C, minPoints) 

b. Apply active learning technique in each cluster  

 Input: Cluster C, train_set, train_labels, maxCost 

 Output: final_model for each cluster 

 final_model = active_learning(C, train_set, train_labels, maxCost)  

Testing of the target data is done by final model obtained from each cluster. Each target 

data point is assigned to the different clusters based on the minimum Euclidean distance 

from the cluster means. After assigning the target data points to the cluster, they are 

classified with the final model of their respective cluster to get predicted labels. 
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Chapter 4 

Experiments and Results 

4.1   Experimental Setup and Background 

4.1.1   The Data 

The Supernova Photometric Classification Challenge had released a dataset of 

supernova, which consisted of simulated supernovae with different types selected in ratio 

to their expected rate. It consisted of nearly 20,000 supernova light curves. Light curves 

were simulated according to Dark Energy Survey specifications. It has been simulated 

using SNANA light curve simulator. The dataset has been divided into training set and 

test set. The training set consisted of confirmed light curves using spectroscopic method, 

which are lesser in number as compared to test set and test set consisted of photometric 

samples.  

Preprocessing of light curves was required before implementing any machine learning 

techniques for photometric classification. Thus, the observation from each supernova 

passed through different filters. Let the number of filters were b. The filters can be 

denoted as F = {!!,!!,… !!}. Each filter consisted of series of three parameters !! =

{ !!! , !!!,!!"! … {!!" , !!" ,!!"#}} where !!" = jth observation epoch, !!! = flux measured at 

time !!", !!"# = error introduced in the measurement and e = number of observations 

epochs in !!. All the observations were taken in MJD format. MJD is abbreviated for 

Modified Julian Day is a dating method used by astronomers. Thus, for each 

observation, time in MJD was translated to the time since the maximum brightness in 

each filter. Let !!"# is the ideal time of peak brightness for an observation of supernova. 
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For each filter !!, time of maximum brightness in each epoch was determined by 

                                                                    (!!"#)!" =  !!" −  !!"#                                                          (4.1) 

The data points in each filter i represented as !! = { (!!"# )!!, !!!,!!"! … 

{(!!"! )!"  , !!" ,!!"#}}.  It was possible to have non-uniform sampling of the light curve in 

different filters for each supernova observation. The information translated to grid 

equally spaced in time to obtain a smooth curved function for each supernova 

observation. This translation was done by Gaussian process. Normalization was done by 

the maximum flux measured in all filters for a particular supernova observation to 

ensure the light curve in a reasonable range. Let !!" denotes the normalized fitted curve 

for the observations of supernova in filter i. Each observation of supernova represented 

as !! = {!!!, . . , !!"} where b = number of filters. Each row of supernova observation 

represents all the information regarding single supernova and the column contains the 

flux measurement in a particular observation epoch and filter. 

We applied our methodology to the dataset, which consists of two parts. The first part 

represents the training data, which are spectroscopically confirmed light curves. The 

number of observations for the training data is 7182. The second part represents test 

data, which are photometric samples. The number of photometric samples in test data is 

119462. The number of features in the dataset is 1083 and the last column of each 

observation represents the class of the supernova. The supernova Type Ia, Ib and Ic is 

denoted as 120,111 and 113 respectively in the class column of the supernova 

observations. Thus, the data matrix of supernova training data composed of 718 rows 

and 109 columns. Similarly, the data matrix of supernova test data consisting of 11946 

																																																													
2	After the selection cut	
3	Corresponding to observations between -3 and +23 days since maximum brightness		
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rows and 109 columns where 1 to 108 columns represent the feature set and the last 

column represents the class of the supernova to which it belongs. 

4.1.2   Weka 

For analyzing data and experimenting with different machine learning methods, we used 

Weka, an open source Java-based data mining application. It has a graphical user 

interface and many machine-learning algorithms available with the ability to change 

parameters as per our experiments. We can visualize data with the help of visualizing 

tool available in Weka. Also, It can be used for application of clustering algorithms and 

selection of attributes. Data should be in ARFF format to perform experiments in Weka. 

ARFF abbreviated for Attribute-Relation File Format. In .arff files, all the features are 

declared by @relation feature name and variables are separated by comma. We used 

Matlab code to generate ARFF format data files. 

4.1.3   Matlab  

Matlab is a platform used for solving scientific problems. It has rich toolboxes available 

for different scenarios like machine learning, image processing, computer vision, signal 

processing, robotics, etc. Matlab is also a fourth-generation programming language. It is 

intended for mathematical calculations. We have used Matlab for the code generation of 

various experiments. Matlab is also available with different machine-learning algorithms 

like Multilayer Neural Networks, Support Vector Machines, Naïve Bias, Decision Trees, 

etc. Apart from Weka, we have used Matlab for the experiments with machine learning 

algorithms. 
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4.1.3   Machine learning algorithms 

Various machine learning algorithms were used for the experiments using Weka and 

Matlab. For example Multilayer Neural Network, Random Forest, Support Vector 

Machine with different kernels, J48 Decision tree. We have used default settings of 

Weka. For the clustering purpose, we have used EM algorithm from Weka with the 

default setting. In Matlab, we have used Multilayer Neural Network to perform 

experiments. 

4.2   Dimension reduction  

The first step of our methodology was to reduce the dimension of supernova data. The 

goal of every dimension reduction technique is to project high dimensional data onto 

lower dimension without affecting the high dimensional structure. It should be able to 

restore the information as much as possible.  We have applied three dimension reduction 

techniques: Principal Component Analysis, Kernel Principal Component Analysis and 

Discrete Wavelet Transform. Various experiments have been performed on these 

algorithms to determine the right parameters. The selection of attributes has been made 

by their performance on classification of training data. Experiments and results of these 

three algorithms and comparison among them are provided in details in further sections 

of this Chapter.  

4.2.1   Principal Component Analysis 

Principal Component Analysis (PCA) is the most popular dimension reduction technique 

proposed by [Wold et al., 1987]. It is used to determine a small number of uncorrelated 

variables from a large set of data. These are called principal components. They are the 

direction where there is more variance in the data. The variables with more variance 
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contain more information and vice versa. It always tries to recognize strong patterns in 

the data to reduce dimension with minimum or no loss of information.  

Let D is the dataset with d dimension and N number of samples. Thus, Data matrix D 

can be represented as  

                                                                  ! =  
!! … !!
⋮ ⋮ ⋮
!!! … !!"

                                                                 (4.2) 

The first step to determine principal component analysis is to center the data by their 

means that is done by determining the mean of each dimension and subtracting each 

variable by their mean. Let  !!"#$ is the vector of mean values for D. Thus, centered 

observation X ∈  !! can be given as, 

                                                                       !! =  !! −  !!"#$                                                                (4.3) 

Next step is to compute the covariance matrix C, 

                                                                         ! = 1
!  !!!!!                                                                   (4.4)

!

!!!
 

To find principal components, we need to diagonalize covariance matrix, which can be 

done by solving eigenvalue equation, 

                                                                             !!!! = !!!                                                                        (4.5) 

Where, !! = eigenvalues > 0 and !! = eigenvectors. 

After determining eigenvectors and eigenvalues, sorting of eigenvalues is done in 

decreasing order. The highest eigenvalue represent the dimension with highest 

information. Thus, the dimension reduction can be achieved by choosing k eigenvectors 

with largest eigenvalues. Let W represent the eigenvector matrix of N X K dimension. 

Thus, the transformed dataset, y is obtained by following equation, 

                                                                           ! =  !!  !                                                                        (4.6) 
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Application of principal component analysis on supernova data was done with the help 

of Weka. Weka is integrated with select attribute function from where we can select 

principal component method to apply on the provided data. The first step for this 

experiment was to convert the supernova training data into ARFF file format. We did 

this by using Matlab code. The training data in .arff format was loaded in Weka and 

select attribute tab was selected. In select attribute interface, principal component option 

was chosen and setting of parameters was done by changing the center data to true and 

providing the value of variance. Variance determines the amount of information we 

required in the reduced feature set. The value of variance varies from 0-1. We had 

performed experiments by changing the value of variance from 0.95 to 0.999 with an 

interval of 0.1. Results obtained by principal component analysis in Weka comprised of a 

covariance matrix, eigenvalues, eigenvectors and the number of attributes (reduced one).  

It also has a provision to save transformed data obtained after applying PCA. The 

transformed data used to be in .arff format compatible with Weka. Thus, in each 

experiment, value of variance was changed and PCA was executed. After execution, 

transformed data was saved and then again loaded in the Weka for ten-fold cross- 

validation classification. Different classifiers were used like Multilayer Neural Network, 

Random Forest, Support Vector Machine Kernel 1, Support Vector Machine Kernel 2, 

Support Vector Machine Kernel 3 and J48 Decision Tree for the classification purpose. 

The number of features was selected on the basis of highest accuracy obtained by 

classification of transformed data. Thus, for the variance value 0.999 we had obtained 16 

features with highest classification accuracy of 93.03 % with Support Vector Machine 

Kernel 3 as the classifier.  
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4.2.2   Kernel Principal Component Analysis 

Kernel Principal Component Analysis (Kernel PCA) is nonlinear principal component 

analysis used as dimension reduction technique. The methodology to perform Kernel 

PCA has already been explained in Chapter 3. We had implemented Kernel PCA in 

Matlab. Various experiments were performed using different kernels for Kernel PCA. We 

had run experiments for following Kernels: Polynomial degree 1, Polynomial degree 2, 

Polynomial degree 3, Gaussian kernel with sigma 0.5,0.6,0.7, and 1. The number of 

transformed data had been produced using Kernel PCA for each Kernel. The number of 

features in transformed data varied from 6-40. For each Kernel, we had generated 36 

transformed datasets. Each dataset had number of features starting from 6 to 40 with an 

interval of 1. Each dataset then converted into .arff format to make it compatible to Weka 

using Matlab. The datasets were loaded in Weka and classified with ten-fold cross- 

validation procedure using different classifiers: Multilayer Neural Network, Support 

Vector Machine Kernel 1, Support Vector Machine Kernel 2, Support Vector Machine 

Kernel 3, Random Forest and J48 Decision Tree. The accuracy graph had been plotted 

for each kernel with x-axis represented the number of features ranges from 10-50 and y-

axis represented the classification accuracy corresponding to that feature. The number of 

features was selected on the basis of highest classification accuracy on the transformed 

data. After analyzing accuracy graph of different kernels, the maximum classification 

accuracy with minimum number of features was obtained with polynomial degree 1 

kernel, 23 features with classification accuracy of 93.44 % using classifier Support Vector 

Machine Kernel 3.   
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4.2.3   Discrete Wavelet Transform 

Discrete wavelet transform is another popular dimension reduction technique. The 

technique of dimension reduction technique from discrete wavelet transform is taken 

from the method proposed by [Yinsheng Qu et al., 2003]. Data can be treated as signal, 

and the transformation of signal can be treated as another representation of the signal. It 

doesn’t affect the information content of the signal. The wavelet transform is the 

representation of the signal in time and frequency. The wavelet transform can get 

required sampling by translation and dilation of mother wavelets. Discrete wavelet 

transforms is a type of wavelet transform in which wavelets are discretely sampled. If the 

data is transformed into wavelets, dimension reduction can be achieved by removal of 

very low amplitudes of the signal. As high amplitude signals carry most significant 

information rather than a very low amplitude signals, which carries less important 

information. The first step for discrete wavelet transform is to transform the dataset into 

wavelet coefficients. Wavelet coefficients are calculated by using cascade algorithm by 

[Mallat et al., 1989]. This algorithm includes recursive decomposition of original signal. 

Let !! is the original signal, at first step !! is decomposed into two signals: smoothed 

signal, !! also known as average signal and fluctuation signal, !! also named as detailed 

signal. The length of !! is equal to the length of !! + !!. Again, average signal !! is 

further decomposed into !! and !! such that !! à !! +  !!. Now, the original signal can 

be represented as !! = !! + !! + !!. Thus, by decomposing the average signal 

recursively, we can represent the original signal. The wavelet coefficients obtained by the 

transformation of original data are mathematically equivalent to the orthogonal 

transformation of data, which we carried out in principal component analysis. The next 

step after getting wavelet coefficients is selecting a threshold, !. Those coefficients whose 

absolute values are less than ! are set to zero. The threshold, ! is obtained by calculating 



44	

99th percentile of the absolute values of wavelet coefficients. Thus, for each column in the 

dataset, a threshold ! is computed where !! represents the threshold value for column j (j 

=1… n) where n = 718. A voting method is implemented to select a common subset of 

wavelet coefficients. The voting method is based on the idea that a wavelet coefficient 

will be selected if its absolute value is greater than threshold ! in m out of n samples. 

After selecting the subset of wavelet coefficients, it is reconstructed to the original signal 

by using the same mother wavelet used during construction of wavelet.  The 

reconstructed signal represents the reduced dimension data.  
We have implemented discrete wavelet transform technique in Matlab and performed 

various experiments with different mother wavelets and different levels of 

decomposition. We had generated the wavelet coefficients using Haar, DB1, DB2, DB3, 

DB4, DB5, DB6, DB7, coif1, coilf2, coif3, coif4, and coif5 mother wavelets. The level of 

decomposition varied from level 1-11. For the selection of subset of wavelet coefficient we 

had chosen m = 10. The reconstructed dataset obtained by the application of discrete 

wavelet transform was converted into .arff format to make it compatible with Weka. The 

data was loaded in Weka and then classified with ten- fold cross-validation technique 

using different classifiers: Multilayer Neural Network, J48 Decision Tree, Random 

Forest, Support Vector Machine Kernel 1, Support Vector Machine Kernel 2, Support 

Vector Machine Kernel 3. All the datasets obtained by using different mother wavelets 

and different levels of decomposition were classified in Weka to get classification 

accuracy.  

The features with highest classification accuracy were selected as reduced feature set for 

supernova data. Thus, the number of features of supernova data was reduced to 9 

features with the application of discrete wavelet transform using DB6 mother wavelet at 



45	

the fourth level of decomposition. The classification accuracy for 9 features was 91.77 % 

with Multilayer Neural Network as the classifier.  

4.2.4   Comparison of dimension reduction techniques 

Different dimension reduction techniques have been applied to the supernova 

spectroscopic data (aka training data). The results obtained by dimension reduction 

methods are as follows: 

Dimension reduction 
method 

Number of features Classification Accuracy 
(%) 

Principal Component 

Analysis 

16 93.03 

Kernel Principal 

Component Analysis 

23 93.44 

Discrete Wavelet 

Transform 

9 91.77 

 

Table 4.1: Number of features and classification accuracy on reduced supernova 

training data using different dimension reduction techniques. 

The above table represents the results of dimension reduction methods applied on 

supernova training data. The first column lists the dimension reduction methods 

applied. The second column determines the number of features obtained after 

application of dimension reduction method and the third column refers to the 

classification accuracy obtained on the training data after reduced features. As it is 

evident from the Table 4.1, the classification accuracy of training data obtained by Kernel 

PCA is more as compared to other methods. Although the training accuracies of 

Principal component analysis and Kernel PCA are very close but still we want the 

reduced feature to represent the original data as much as possible. Thus, we have chosen 
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Kernel PCA as the dimension reduction technique for the supernova training data and 

reduced the feature set from 108 features to 23 features. Supernova photometric data 

(aka test data) was also reduced to 23 features by projecting it to the same dimension 

using eigenvectors of reduced supernova training data. 

4.3 Domain Adaptation using Landmarks and Active 

Learning 

Our devised method has been already explained in Chapter 3. After a feature reduction 

procedure, next step is the application of domain adaptation. The experiments were 

performed on the 23-feature set both training and testing data obtained by the 

application of Kernel PCA. Since, we are discussing about domain adaptation, we will 

refer supernova reduced-feature training data as source data and supernova reduced-

feature testing data as target data. The application of our method on the source and 

target data was followed in three steps: first step was the selection of landmarks from 

source and target data, second step was the landmarks clustering and the last step was 

the application of domain adaptation and active learning in each clusters to generate a 

predictive model. Experiments performed in each step are explained in details in further 

sections. 

4.3.1   Landmark selection 

The selection of landmarks from the source and the target data has already been 

explained in Chapter 3. For more details please refer Chapter 3 section 3.3. The method 

to select landmarks from source and target data was implemented using Matlab. For the 

calculations of Euclidian distances between the data points in source and target data, we 

had used Matlab inbuilt function. Experiments were performed by monitoring two 
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parameters for the selection of landmarks: the percentile of distance s and the overlap 

threshold th. The parameter s determines the size of neighborhood, with which the 

candidate points will measure the similarity. Any candidate point will be considered as a 

landmark if its overlapping function value will be greater than threshold th. It has 

already been mentioned that the value of s should not be extremely small and not be 

extremely large. Thus, we started experiment initially with s = 10 and th =0.9. The 

threshold th is fixed to 0.9 as the overlapping function value for each candidate were in 

the range of 0.86 to 0.94. So, we have chosen the average value 0.9 as threshold. We 

experimented with s= 5, 1, 0.5 and threshold th =0.9 for the selection of landmarks. The 

landmarks obtained after each experiment was saved for further procedure. 

4.3.2   Landmark clustering 

After the selection of landmarks, the next step was the clustering of landmarks. For most 

of the clustering algorithms, we should initially know the number of clusters to be 

formed. But, in our case it was unknown. Thus, we had chosen EM algorithm in Weka for 

clustering purpose. The landmark dataset was converted into .arff file format to be 

compatible with Weka. EM algorithm was executed on landmark dataset with Weka 

default parameters. The result obtained by clustering contains cluster means. The cluster 

means were saved in .csv format. Assigning each data point to the closest cluster mean 

formed clusters of landmarks. The number of clusters formed for the different landmark 

datasets are as follows: 
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Landmark dataset for s Number of clusters 

0.5 33 

1 37 

5 35 

10 34 

 

Table 4.2: Number of clusters formed for each landmark dataset 

The number of target candidates was more in each cluster as compared to the source 

candidate. Few clusters were devoid of source candidates. The next step after clustering 

of landmarks was the application of domain adaptation and active learning. 

4.3.3   Domain adaptation using Active learning 

This part of experiment was conducted in two steps: the first step was the generation of 

initial model for each cluster and second step was the application of active learning on 

the basis of initial model. The methodology has already been explained in the Chapter 3 

section 3.5. Various experiments were performed by regulating two parameters: 

minPoints in the first part and maxCost in the second part. minPoints refers to the 

minimum number of data points required to build initial model for each cluster. 

maxCost refers to the maximum number of labels can be queried with an expert for 

active learning for each cluster. For learning the initial model, we performed 

experiments by providing minPoints in the range of 5 - 20, with the interval of 5. After 

generating the initial model, it was passed to the function of active learning along with 

the maxCost for each cluster. For the purpose of classification, we have used Multilayer 

Neural Network with 12 hidden layers as the classifier. Since, we wanted to rely on only 

few target labels for the classification purpose. Thus, we limited the maxCost value from 

5-20, with the interval of 5 for each cluster. Target data was tested on the model 
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generated by the proposed method. Classification accuracy was calculated to evaluate the 

model using Multilayer Neural Network with 12 hidden nodes. Since learning of initial 

model was based on the randomly selected target candidates. Thus, each experiment was 

performed ten times and the average of the classification accuracy was taken into 

consideration.  

Following are the results obtained by the experiments: 

Landmark 
Cluster 
for 
s 

 
Min 
Points 

Classification Accuracy (%) 

maxCost= 
5 

maxCost= 
10 

maxCost=
15 

maxCost= 
20 

 

s=0.5 

5 71.79 (1.55) 72.83 (1.36) 75.34 (0.65) 75.82 (0.39) 

10 72.72 (0.23) 74.27 (0.72) 76.09 (0.76) 77.68 (0.27) 

15 74.03 (0.56) 76.10 (0.60) 77.49 (0.43) 77.85 (0.73) 

20 77.45 (0.46) 77.63 (0.58) 78.18 (1.52) 78.53 (0.50) 

 

s=1 

5 72 (0.85) 75.60 (0.49) 76.88 (0.42) 77.40 (0.79) 

10 74.45 (1.13) 75.25 (0.72) 74.63 (0.82) 76.76 (0.26) 

15 75.24 (1.72) 77.88 (0.88) 77.44 (0.30) 79.12 (0.34) 

20 78.54 (0.99) 76.55 (1.24) 77.19 (0.43) 79.40(0.44) 

 

s=5 

5 72.42 (0.98) 72.08 (2.07) 73.91 (1.57) 75.88 (0.45) 

10 74.49 (1.70) 75.65 (0.83) 76.47 (0.85) 77.43 (0.27) 

15 72.98 (1.09) 74.42 (0.92) 76.41 (0.76) 77.66 (0.26) 

20 77.31 (0.60) 76.65 (1.12) 77.95 (0.49) 78.07 (1.04) 

 

s=10 

5 70.20 (0.72) 73.44 (0.65) 73.66 (0.92) 74.34 (1.02) 

10 71.65 (2.16) 74.08 (1.57) 73.02 (1.57) 73.74 (0.66) 

15 72.33 (1.46) 73.53 (1.09) 71.39 (2.40) 75.44 (1.07) 

20 75.07 (0.69) 74.57 (0.59) 75.51 (0.60) 76.56 (1.17) 

 

Table 4.3: Classification Accuracy on Supernova test data by the application of Domain 

Adaptation using Landmarks and Active Learning algorithm (our method) 
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The first column of the Table 4.3 refers landmark clusters based on the different value of 

s. The second column represents the minimum number of candidates required to learn 

initial model for active learning for each cluster. The last four columns represent 

classification accuracies on supernova photometric data based on different maxCost 

provided to each cluster. Along with accuracies standard deviations is also provided.  

4.3.4   Analysis of the result  

From the table 4.3, it can be seen that with the increase in maxCost, classification 

accuracy was increasing. It is because we were incorporating more target candidates in 

learning the model with the increase in maxCost. If we were making maxCost as 

constant, classification accuracy was increasing with the increase in minPoints. The 

reason behind the increment is that the probability of target candidates is more in initial 

training set with the increase in minPoints. Another point, it is worth noting that, the 

maximum accuracy was achieved for landmark dataset with s=1 and second best 

accuracies with s=0.5 and it didn’t work well for s=10. It was already mentioned in the 

method proposed by [Rahaf et al., CVPR’15] that landmark selection is based on the 

value of the parameter s. Here, s refers to the neighborhood we are considering for 

finding the similarity between two distributions. According to the method of landmark 

selection, extreme values of s should be avoided. Thus, in our method maximum 

accuracy is achieved in the average value of s, neither too high nor too low. 

To evaluate the performance of our proposed model, we have compared our method with 

other domain adaptation techniques like Kernel Mean Matching [Huang et al., 2006], 

Subspace Alignment [Fernando et al., 2013] and Landmark based Kernelized Subspace 

Alignment [Rahaf et al., 2015].  

We have applied all these algorithms on supernova data and many experiments were 

performed using different parameters to generate the best model. The models generated 
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were tested with supernova photometric data and classification accuracy was calculated 

to compare with our proposed method. 

4.4   Kernel Mean Matching 

Kernel Mean Matching domain adaptation method belongs to instance reweighting 

methods of domain adaptation. In this type of method, the source instances, which are 

closer to the target instances, are given more importance by providing weights to those 

instances. In instance-based methods of domain adaptation, weights are calculated using 

distribution estimation. However, it is different in the case of Kernel Mean Matching. 

First, we determine the kernel matrix for both source and target data. With the help of 

kernel matrix few parameters are calculated by solving the simple quadratic 

programming for Beta, ! values. Beta values are the weights provided to the source data, 

and the model is built on weighted source data. The main idea behind Kernel mean 

matching is to minimize the maximum mean discrepancy between source and target data 

by projecting it into kernel space.  

The implementation code for the Kernel mean matching is already available on the 

author’s page. We had modified the code to perform various experiments. Experiments 

were performed using different kernel types for instance: Polynomial degree 1, 

Polynomial degree 2, Gaussian kernel 0.5 and Gaussian kernel 0.6. The predictive model 

generated was evaluated by testing on target data. We had used different classifiers for 

the testing purpose, and the classification accuracy was calculated using predicted target 

labels. The result of the experiments performed on this algorithm is as follows: 
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Kernel Classifier Classification 
Accuracy (%) 

Polynomial degree 1 MNN 72.04 

RF 75.95 

SVM1 63.46 

SVM2 68.47 

Polynomial degree 2 MNN 60.98 

RF 69.3 

SVM1 57.92 

SVM2 61.45 

Gaussian 0.5 MNN 72.86 

RF 73.85 

SVM1 59.92 

SVM2 67.38 

Gaussian 0.6 MNN 75.07 

RF 72.12 

SVM1 64.31 

SVM2 65.71 

 

Table 4.4: Classification Accuracy on Supernova test data Kernel Mean Matching DA 

algorithm 

The classification was performed using Weka with default parameters provided for all 

the classifiers. , MNN = Multilayer Neural Network, RF = Random Forest, SVM1 = 

Support Vector Machine Kernel 1, SVM2 = Support Vector Machine Kernel 2. It is clear 

from the above table that Random Forest performed best overall with the kernel 

Polynomial degree 1. However, Multilayer Neural Network was very close to Random 

Forest and it performed better than Random Forest for Gaussian Kernel with sigma 0.6. 
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4.5   Unsupervised Subspace Alignment 

Subspace alignment [Fernando et al., 2013] domain adaptation technique is one of the 

popular domain adaptation methods falls under the category of feature-based methods 

in domain adaptation. The idea behind this approach is to decrease the discrepancy 

between two domains by moving the source and target subspace closer. In this method, 

they learn a transformation matrix that transforms the source subspace coordinate 

system to the target subspace coordinate system. Alignment between the two coordinate 

systems is achieved by aligning the source basis vectors with target basis vectors. Let S 

represents the source data, T represents the target data and d represents the subspace of 

dimension d. Thus, the algorithm can be given as follows: 

Input: Source data S, Target data T, Source labels !!, Subspace dimension d 

Output: Predicted target labels !! 

!! ß PCA (S, d) 

!! ß PCA (T, d) 

!! ß !! !!!!! 

!! =  !!! 

!! =  !!! 

!! ß Classifier (!! ,!! , !!) 

 

We had implemented this algorithm using Matlab. The principal components for both 

source and target data were determined using Weka. Experiments were performed on 

principal components to determine optimal subspace dimension d. We had chosen d= 16 

on the basis of maximum variance. Different models were generated using different 

classifiers. Classification accuracies were calculated by testing the models on target data 

using Weka. The result of the subspace alignment DA algorithm is as follows: 
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Classifier Classification Accuracy (%) 

Multilayer Neural Network 67.2 

Random Forest 61.25 

Support Vector Machine Kernel 1 60.55 

Support Vector Machine Kernel 2 61.04 

Support Vector Machine Kernel 3 65.99 

 

Table 4.5: Classification Accuracy on Supernova test data using Subspace Alignment 

DA algorithm 

It is evident from the above table that Multilayer Neural Network has better 

classification accuracy in comparison to other classifiers followed by Support Vector 

Machine Kernel 3 with only slight difference in the accuracy.  

4.6   Landmarks-based Kernelized Subspace Alignment 

This algorithm is the most recent one proposed by [Rahaf et al., 2015]. The algorithm is 

based on two steps: the first step is the selection of landmarks and the second step is the 

application of kernelized subspace alignment on the selected landmarks. Landmarks are 

the set of points, which can be used to project the source and target data in a shared 

space where their distributions are similar. The first part of our proposed method is 

based on this algorithm. Thus, the selection of landmarks has already been explained in 

detail in Chapter 3 section 3.3. After the selection of landmarks A with the function 

select_landmarks, all the points in source and target data is mapped non-linearly to the 

common space defined by the landmarks using Gaussian kernel. The value of standard 

deviation for the Gaussian kernel is selected by calculating the median distance between 

any pair of points randomly chosen from source and target data. Next step after non-
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linear mapping is the application of subspace alignment to the kernels of source and 

target data. Let S denotes the source data, T indicates the target data, th is the threshold 

for overlapping function, A represents the landmarks, d is the subspace dimension and 

 ! denotes the standard deviation of the Gaussian kernel. Algorithm for the Landmark 

based kernelized subspace alignment is as follows: 

Input: Source data S, Target data T, Source labels !!, Threshold th 

Subspace dimension d 

Output: !! Predicted target labels 

Aß select_landmarks (S, T, th) 

! ß median_distance (S∪T) 

!!ß project_using_kernel (S,A,!) 
!!ß project_using_kernel (T,A,!) 
!! ß PCA (!!, d) 

!! ß PCA (!!, d) 

M ß !!!!! 

!! ß !!!!! 

!! ß !!!! 

classifier ß learn_classifier (!!, !!) 
!! ß classifier (!!) 

 

We had implemented this algorithm using Matlab. There were two parameters s, 

neighborhood radius and th, threshold of overlapping function were required to 

determine for the selection of landmarks in source and target data. Thus, we selected the 

values of s similar to our proposed method for this algorithm i.e. s = 0.5,1,5,10 and th 

=0.9. After the selection of landmarks from source and target data, Subspace Alignment 

algorithm was applied on landmarks. The subspace dimension d was selected by 

maximum variance on the principal components of the kernels. The training data and 

testing data obtained after the application of Subspace Alignment was then fed to 
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different classifiers to generate models. Classification accuracies were calculated by 

testing the target data on different models. Following are the result of the experiments 

performed on this algorithm: 

Landmarks 
for s=  

Classification Accuracy (%) 

MNN RF SVM1 SVM2 SVM3 

0.5 37.29 69.44 25.53 34.12 22.59 

1 23.24 70.56 25.31 22.53 22.51 

5 67.42 71.30 68.93 66.43 35.35 

10 30.44 68.29 23.42 28.59 23.45 

 

Table 4.6: Classification Accuracy on Supernova test data using Landmark-based 

kernelized Subspace Alignment DA algorithm 

In the above Table 4.6, MNN = Multilayer Neural Network, RF = Random Forest, SVM1 

= Support Vector Machine Kernel 1, SVM2 = Support Vector Machine Kernel 2, SVM3 = 

Support Vector Machine Kernel 3. As it can be seen from the table that Random Forest 

had performed better as compared to other classifiers. Surprisingly, all other classifiers 

apart from Random Forest had failed miserably to classify supernova photometric data. 

4.7   Comparison of results of domain adaptation methods 

Results from different domain adaptation algorithms on supernova data are compared 

with our proposed method. We have compared with best classification accuracy obtained 

from all the algorithms on supernova photometric data. However, we have also 

determined the classification accuracy on raw supernova photometric data with 108 

features. Raw supernova photometric data refers to the data without pre-processing and 

domain adaptation algorithm. In addition to it, we have calculated the classification 

accuracy on supernova photometric data after the application of Principal Component 
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Analysis and Kernel Principal Component Analysis. We have listed out these 

classification accuracies for comparing with our method. 

The comparison table of classification accuracies for different algorithms on supernova 

photometric data is as follows: 

 
Table 4.7: Comparison of different algorithms on Supernova Photometric Data 

Different algorithms on Supernova 
data 

Classification accuracy on 
Supernova Photometric Data (%) 

 Raw Supernova data (108 features) 68.44 

Supernova with PCA (16 features) 72.19 
Supernova with KPCA (23 features) 74.35 
Kernel Mean Matching DA method 75.95 
Subspace Alignment DA method 67.2 
Landmarks-based Kernelized Subspace 

Alignment DA method 
71.30 

Domain Adaptation using 
Landmarks and Active Learning 
(our method) 

79.40 
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Figure 4.2: Comparison of Different Domain Adaptation Algorithms 

It is apparent from the Figure 4.2 that our method performed considerably well as 

compared to other domain adaptation algorithms. If we compare classification accuracy 

of our method with raw supernova data, it has been increased by nearly 11%. However, 

the classification accuracy of Kernel Mean Matching is close to our method as compared 

to other domain adaptation algorithms. Subspace Alignment DA algorithm performed 

worst overall with least classification accuracy among others. The reason behind the 

better working our method over other domain adaptations algorithms is that our method 

works more locally in the data. Since, the supernova datasets are highly overlapping, it 

requires a more local approach rather than global performed by other DA algorithms. 
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Chapter 5 

Future Work and Conclusion 

5.1   Limitations and Future work 
Even though our proposed method has improved the classification accuracy but still 

there is a space for improvements. One of the major limitations of the proposed method 

is that there is no limit in the maxCost (the number of target candidate labels that can be 

queried with an expert during active learning). The number of maxCost is increasing 

exponentially with the increase in the number of clusters. Thus, we could devise a 

strategy to use maxCost efficiently among clusters if it is limited in number.  

Another major limitation is that there is a possibility to get pure clusters of target 

candidate. Building a model on the pure cluster is useless. Thus, identifying a pure 

cluster without label information could be a challenge. 

Also, the number of samples in source data is minimal as compared to target data, i.e., 

718:11946. Our method can work better if we include more source information in future.   

There is a space for different sampling strategy of the target candidates for active 

learning apart from margin sampling that could have been an advantage not explored in 

this thesis. We have only used Multilayer Neural Network for learning model, for the 

calculation of margin using posterior probabilities and for the classification purpose. 

Instead of Multilayer Neural Network, we could use other machine learning algorithms 

that can provide posterior probabilities for the calculation of margins.  

Also, we have used EM algorithm for the clustering purpose; comparison of different 

clustering algorithms can be done for the better performance. 
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Another direction that can be taken in future is that, from the classification of different 

classes, it is observed that Supernova Type Ic has classified most of the times correctly. 

By analyzing the histogram of the supernova data by class distribution, it is found that 

Supernova Type Ic is entirely separable from other two classes. But there is an ambiguity 

between Supernova Type Ia and Supernova Type Ib samples. They are not well 

separated. Experiments could be done for separating Supernova Type Ia and Supernova 

Type Ib after completing removing Supernova Type Ic by two-stage classification 

process. The exercise presented here in a simulated context might be used as a guide for 

survey stratifies once we identify more closely the properties of target data used in 

training as a receipt for follow up.  

5.2   Conclusion 

The primary focus of this research is to find an automated way for the classification of 

supernova. Automation is necessary to replace the existing method of classification, 

based on spectroscopy method that is very expensive and time-consuming. With the 

wide range of telescopic surveys in the future, significant number of supernova samples 

is expected. An automated way of classification will help the astronomers to conduct 

their research efficiently and can help in future discoveries.  Astronomers also wanted to 

take advantage of existing dataset of supernova classified with the help of spectroscopic 

data for devising an automated method. With the help of domain adaptation and active 

learning it is possible to generate a predictive model that can classify supernova types 

automatically with good classification accuracy.  

In this thesis, we have reduced the dimension of the supernova dataset by applying 

different dimension reduction techniques: Principal Component Analysis, Kernel 

Principal Component Analysis, and Discrete Wavelet Transform. Experiments are 
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performed to determine the best dimension reduction technique. Our method of domain 

adaptation using active learning is applied to the reduced feature set of supernova to 

generate the predictive model. To evaluate our method, we have compared our result 

with the existing domain adaptation algorithms: Kernel Mean Matching, Subspace 

Alignment and Landmark based Kernelized Subspace Alignment. Analysis of the result 

has shown that our methodology has performed well by giving better classification 

accuracy as compared to other existing algorithms. 
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