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Abstract 

 

    Advanced driver assistance systems (ADAS) are general systems developed to enhance 

safety driving of an individual vehicle. In this dissertation, a type of ADAS, named safety 

driving assistance system, is proposed to lower the potential driving risk caused by severe 

driving events to enhance the safety driving of an individual vehicle. The safety driving 

assistance system identifies the severe driving events and the occurrence of the events to 

infrastructure, notifies the events temporal and spatial concentration and variation, and 

models the concentration and variation in form of the event count data time series 

modeling to evaluate and predict the potential driving risk. 

    Safety driving assistance system uses a designed intelligent analyzer which is a 

systematic procedure to identify severe driving events occurrence correlation with time 

and location. The proposed procedure, which is constructed based on batch clustering and 

real-time clustering techniques, incorporates historical and real-time data to recognize the 

time and location of severe driving events and simulate the variation of severe driving 

events distribution and concentration with respective to time and location, respectively. 

Batch clustering is implemented with the combination of subtractive clustering and fuzzy 

c-means clustering to generate clusters representing the initial correlation patterns. Real-

time clustering is then developed to create and update real-time correlation patterns on 

the foundation of the batch clustering using evolving Gustafson-Kessel Like (eGKL) 

algorithm. Historical and real-time data of operating vehicles acquired from data 

acquisition and wireless communication platform (DAP), constructed by Ford Motor 

company, are used to validate the proposed strategy. Batch clustering reveals the severe 
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driving events distribution and concentration in geographical domain at different time. 

Real-time clustering provides and updates the variation of the intra-correlation and inter-

correlation of different regions. Driver can be notified of the potential severe driving 

locations through maps showing the driving routes. Through the variation of the 

correlation, drivers can recognize the events occurrence at different time and location.  

     The variation of the correlation can be presented by events count data time series. 

Four models are proposed to describe time series of event count data in a region and to 

predict the future event count in the region. ARIMA and STARIMA modeling 

procedures account more on the aspect of the time series autocorreation in temporal 

domain and spatial domain. Generalized linear model (GLM) with Poisson distribution 

accounts more on the aspect of the natural distribution property of severe driving event. 

Hidden Markov Model (HMM) is attempted to describe and predict the event count data 

in a deep reasoning that the stochastic process of severe driving event occurrence in 

different regions is generated from different Poisson distribution components following 

certain transition logic. The four models are all validated by actual data and demonstrated 

their adequacy. 
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Chapter 1 

Introduction and Motivation 

    Advanced driver assistance system (ADAS) has been widely used in vehicles in 

enhancing the vehicles’ safety driving feature. In the past decade, the ADAS is one of the 

most remarkable elements and fastest-growing segments in automotive design. The 

traditional ADAS technologies are based on vision or camera systems, sensor networks 

and active control, such as, automate lighting, automate braking, GPS or traffic warning, 

alerting driver to keep driving in the correcting lane, and showing the cars in blind spots 

to assist the driver to avoid potential risks of collisions and accidents. With the 

development of cloud computing and wireless communication, the vehicle data analysis 

with artificial intelligent procedures is able to upgrade the ADAS and supply a more 

powerful real-time assistance. 

    This dissertation proposes a safety driving assistance system, which is a developing 

form of ADAS. The safety driving assistance system notifies potential risk caused by 

severe driving events to enhance the safe driving. The safety driving assistance system is 

designed based on the technology development of real-time communication between 

vehicles, database, and a cloud computing platform: vehicle real-time driving data are 

transmitted to the cloud database through wireless communication; in the cloud platform, 

intelligent algorithms are implemented to extract safety driving information by cloud 

computation; then the information is transmitted back and reported to the drivers.  Here, 

the cloud platform can be a remote computing center or a computer-unit embedded in 

each vehicle, where the safety driving assistance system is installed and implemented. 

1 



Thus, the safety driving assistance system can be regarded as a management system for 

processing the loop of severe driving data. It is essentially composed by four major steps 

in terms of data/information flow: relevant safety driving data acquisition from database, 

data analysis to extract information for driving assistance, driving assistance 

implementation, and transmission driving assistance information to database for sharing 

with other vehicles. The core part of the data flow is data analysis. In this dissertation, we 

focus on the data analysis step. We propose a systematic correlation identification 

procedure to extract valuable information for assisting drivers.  

    The remainder of this chapter introduces the background of the development of 

advanced driver assistance systems and the relative technology in intelligent 

transportation system (section 1.1). Followed by that, the basic architecture of the safety 

driving assistance system and the relative severe driving events are described. At last, the 

structure of the dissertation is presented as well as the specific contributions presented at 

last. 

1.1 Background 

    Nowadays, with more and more vehicles used daily around the world, safe driving 

becomes a major concern. Many measures have been taken to improve drivers’ safety and 

traffic condition in accordance with technical methods and governmental regulations [1], 

[2], [3]. On March 31st, 2014, the U.S. Department of Transportation’s National Highway 

Traffic Safety Administration (NHTSA) announced that it will require all new vehicles 

under 1000 pounds to be equipped with rear view cameras by May 2018 [4]. It is an 

example of mandatorily requiring the usage of advanced driver assistance system 

(ADAS) in latest vehicles to assure drivers’ safety driving. ADAS has been gradually 
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used since early 1990s [5]. For example, automotive companies started using camera-

assisted detection technologies in ADAS to alert drivers about potential driving dangers, 

such as, lane-keeping support system, driver monitoring system, and blind spot 

monitoring system. Later on, radar-assisted technologies employed in ADAS were used 

in vehicles to reduce the risk of driving at different surroundings, such as automotive 

night vision, collision avoidance system, and adaptive cruise control. The traditional 

ADAS was based on hardware usage in individual vehicles and did not pay much 

attention on vehicle driving data. With the development of wireless communication 

technology and cloud storage and computing technology, vehicle driving data potentially 

plays a significant role in exploring and mining useful information to upgrade the safety 

driving. Recently, the technology with combination of Automotive Navigation System 

(ANS) and Mobile Millennium System (MMS) provided powerful capability to navigate 

drivers and provide the real-time traffic indication, where ANS is supported by map 

database and vehicle GPS data, which are from high-accuracy tracking of GPS devices 

placed in vehicles. In addition, Vehicular Communication System (VCS) and the 

Intelligent Transportation System (ITS)  are proposed to integrate communication 

between vehicles and fixed roadside units to achieve safety driving assistance [6], [7], 

[8]. Those systems transform great amount of traffic data “visible” to help drivers make 

safe driving decision.  In 2012, Ford Motor Company Research and Development Center 

constructed a platform called Data Acquisition and communications Platform (DAP). 

DAP provides a mechanism for storage, analysis and reporting of operating vehicles data 

by interfacing to the GPS, telematics server (via various wireless communication 

methods), vehicle CAN networks [9] (Figure 1.1). Cloud platform can access DAP, do 
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data analysis, and communicate with telematics server to share the information with other 

vehicles. The cloud platform provides great potential in vehicle driving data analysis and, 

therefore, safety driving assistance.  

 

Figure 1.1: DAP data flow diagram.  

 

1.2 Severe Driving Events and Safety Driving Assistance System 

    Among the vast data provided by DAP, two types of data highly relative to safety 

driving are severe braking data and handling limit minder data. The severe braking data 

and handling limit data are generated from the two vehicle driving events, severe driving 

event and handling limit event.  A severe braking event refers to the situation in which a 

driver drastically reduces vehicle speed through sudden braking. A handling limit event is 

the event generated at the limit point of losing control of a vehicle due to hard 

manipulation.  

    Severe driving events pose potential dangers for drivers’ safety and are known as a 

source of traffic flow instability. Analyzing the occurrence and distribution of events can 

help to avoid or prevent this kind of unsafe and unstable effects on traffic. Although 
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severe driving events may be due to a large variety of random reasons, they statistically 

and associatively occur at a particular time and location. For example, during rush hour 

the possibilities of severe driving events are higher than at other times. Similarly, a high 

concentration of severe driving events occurrence exists at some locations with a special 

infrastructure, construction or other road situation. 

    Identification of the correlation of severe driving events with time and location is 

helpful for knowing the events distribution and forecasting the potential risks. However, 

there is a limited research effort taken to explore such driving events. In this work, we 

will employ clustering methods to explore severe driving event data to obtain the 

correlation between the occurrence of severe driving events associated with time and 

location [10], [11]. The correlation of severe driving events with time and location is 

presented as clusters of severe driving events in time and location domain. Combined 

with map database, real-time correlation can be notified to the drivers by screen interface 

in vehicles. The continuous variations of the cluster-based correlations with respect to 

time in areas are formulated as events count time series, which are modeled by different 

models accounting for event occurrence description and prediction.  

    The correlation identification procedure can be constructed as an intelligent analyzer 

installed in a vehicle computer-unit. With real-time communication with DAP and cloud 

platform, the intelligent analyzer identifies real-time correlation and shares the real-time 

correlation with DAP and other vehicles (Figure 1.1). Therefore, the system combining 

intelligent analyzer operation with DAP data storage and cloud platform data process is 

called as severe driving assistance system; the system assists drivers to recognize the 

risks caused by severe driving events and avoid the risks caused by severe driving events. 
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1.3 Contribution 

    To summarize the context of this work, a new form of advanced driver assistance 

system (ADAS), known as severe driving assistance system (SDAS), is designed in this 

work. The SDAS specifically assists drivers to recognize the potential risks caused by 

severe driving events and help drivers avoid the risks. The new ADAS uses intelligent 

analyzer employing clustering method to identify the events correlation with time and 

location. Based on the identified cluster-correlation, the statistical and probabilistically 

models are proposed in this dissertation for modeling the count of severe braking events 

occurrence at times and sites. The primary contribution is that we use clustering 

algorithms to recognize risk of the severe driving events at different times and locations, 

and construct different models for describing and predicting the risk.   

    The rest of the dissertation is organized as follows. Chapter 2 presents the background 

knowledge of the clustering algorithms used in the intelligent analyzer. Chapter 3 

elaborates on the correlation identification procedure which uses batch clustering 

algorithm and real-time clustering algorithm for off-line and on-line implement, 

respectively. In Chapter 4, severe braking events are used as an example in the proposed 

correlation identification procedure to examine the correlations of the severe braking 

events with times and locations. In Chapter 5, continuing with the example of the severe 

braking events, we demonstrate the statistical time series modeling procedure for the 

variation of severe driving events occurrence with time at different locations to estimate 

and predict the severity of the potential risks in the future.   In Chapter 6, we expand the 

modeling with probabilistic model and Hidden Markov model to describe the severe 

braking events stochastic process. 
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Chapter 2 

Literature Review and Clustering Preliminary  

    Space-time scan statistics is a widely used method to detect and surveil event in time 

and space. In [12 - 15] researchers have used the method to identify incident disease 

clusters temporal trends and geographical patterns. It is possible to apply space-time scan 

statistics method for detecting and surveilling severe driving events with time and 

location. However, due to great variability of traffic flow and mutability of vehicle 

driving, a method with strong driving data dependency and driving data-learning ability 

is required to recognize the severe driving events occurrence in time and space. 

Clustering methods is such data-based pattern recognition method which intelligently 

provides instant clusters analysis. 

    Clustering is a method of partitioning and grouping objects into clusters where the 

objects in the same cluster share common characteristics [16]. The common 

characteristics can be interpreted as the correlations of the objects with the features upon 

which the clustering is applied [17], [18], [19]. Cluster algorithms have been widely used 

in various applications. In artificial vision or face recognition area, k-means clustering 

and k-nearest neighbor (K-NN) clustering are sought to compress visual data to generate 

clusters for finding facial objects and body objects [20], [21]. In speech recognition or 

acoustic inspection, hierarchical clustering and leader-follower clustering are employed 

to find adaptive clusters and detect abnormal clusters to identify different data sources 

[22], [23]. In medical data process, such as, syntactic EEG analysis, evolving Gustafson-

Kessel Like (eGKL) and fuzzy-c means meaning clustering are used to grouping the 
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EGG data to examine EEG correlation to genetic predisposition to alcoholism [24]. 

Among different clustering algorithms, fuzzy c-means (FCM) is widely used for the 

process of partitioning. Although FCM has some drawbacks, e.g., noise sensitivity [25], it 

is useful in the beginning process of clustering while it can be improved in the sequel by 

using other clustering algorithms [24]. When using FCM, the number of clusters needs to 

be known a priori. Previous work has proposed criteria and methods on the number of 

clusters, such as rate distortion theory [26], gap statistic [27], [28], and weighted gap 

statistic [29], [30]. Subtractive clustering is another method capable of generating the 

number of clusters based on the criterion of potential reduction of the cluster centers [31]. 

While subtractive clustering is on the one hand fast to implement, on the other hand the 

number of clusters is dependent on the density and concentration of the data points. Thus, 

when examining a batch of data, the combination of subtractive clustering and FCM can 

efficiently produce appropriate clusters. However, it fails to implement on real time due 

to their batch clustering property. To circumvent this shortcoming, in this work we will 

employ evolving clusters matching with the dynamic performance of data stream to 

construct a real-time clustering algorithm [32], [33]. The evolving Gustafson-Kessel like 

(eGKL) algorithm is specifically used for online learning and evolving the pattern of 

clusters [24], [32]. In this paper, FCM will be initially used to recognize the correlation 

patterns of severe driving events with their features, time and location. Subsequently, 

eGKL clustering is implemented to update and improve the correlation patterns in a real-

time framework. In [20] and [34], the k-means clustering has shown to provide higher 

reliability and better run-time than FCM clustering and subtractive clustering. However, 

we use FCM clustering, as it is the only method to match the eGKL algorithm and 
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calculate the memberships of data points to clusters. This cannot be accomplished by k-

means clustering since it is a crisp clustering algorithm. Moreover, we use FCM in the 

initial stage of the correlation identification procedure and real-time clustering will be 

used then to update the correlation thereafter. Hence, the run-time difference between 

FCM and k-means clustering will be negligible subtractive clustering to suggest an 

appropriate number of clusters to initial the clustering. 

    In the following of this chapter, the background knowledge of the clustering algorithms 

used in the intelligent analyzer for the correlation of the severe driving events with time 

and location is presented. The algorithms include subtractive clustering, FCM and eGKL 

algorithm.  

2.1 Subtractive Clustering 

    Subtractive clustering is a fast, one-pass algorithm to estimate the number of clusters. 

The number of clusters, 𝑐𝑐, is estimated based on the calculated potentials of data points. 

Considering a data set 𝑋𝑋 = 𝑋𝑋1, … ,𝑋𝑋𝑁𝑁 in an 𝑛𝑛 dimension space, the potential of the data 

point 𝑋𝑋𝑘𝑘 is calculated as 

𝑃𝑃𝑘𝑘 = ∑ 𝑒𝑒
− 4
𝑟𝑟𝑎𝑎
2�𝑋𝑋𝑘𝑘−𝑋𝑋𝑗𝑗�

2
𝑁𝑁
𝑗𝑗=1 ,                                                   (2.1) 

where 𝑟𝑟𝑎𝑎 is the radius defining a neighborhood. A data point with many neighboring data 

points will therefore have high potential of forming a cluster. After the potential 

calculation for every data point, the data point with the highest potential is selected as the 

first cluster center and the potential of all the other data points are updated as 

𝑃𝑃𝑘𝑘 ⇐ 𝑃𝑃𝑘𝑘 − 𝑃𝑃1∗𝑒𝑒
− 4
𝑟𝑟𝑏𝑏
2‖𝑋𝑋𝑘𝑘−𝑋𝑋1

∗‖2
,                                              (2.2) 
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where 𝑋𝑋1∗ denotes the first cluster center and 𝑃𝑃1∗ is its potential value. A new 

neighborhood 𝑟𝑟𝑏𝑏 is defined to update the clustering potential of the other data points. 

During the updating process, the potentials of the data points far away from the first 

cluster center are minimally affected. To avoid obtaining closely spaced cluster centers, 

𝑟𝑟𝑏𝑏 is set to be 𝑟𝑟𝑎𝑎 < 𝑟𝑟𝑏𝑏 < 2𝑟𝑟𝑎𝑎. After updating the clustering potential, the data point with 

the highest remaining potential is selected as the second cluster center. Further update of 

the potentials of the remaining data points is carried out according to their distance to the 

second cluster center. Following this rule, after obtaining the 𝑖𝑖-th cluster center, the 

potential of a remaining data point 𝑋𝑋𝑘𝑘 is obtained as 

𝑃𝑃𝑘𝑘 ⇐ 𝑃𝑃𝑘𝑘 − 𝑃𝑃𝑖𝑖∗𝑒𝑒
− 4
𝑟𝑟𝑏𝑏
2�𝑋𝑋𝑘𝑘−𝑋𝑋𝑖𝑖

∗�2

,                                       (2. 3) 

where 𝑋𝑋𝑖𝑖∗ is denoted the 𝑖𝑖-th cluster center, 𝑃𝑃𝑖𝑖∗ is 𝑖𝑖-th cluster center potential value and the 

superscript 𝑖𝑖 is also equal to the number of updates. 

    To obtain the appropriate number of clusters, an acceptance ratio (𝜀𝜀) and a rejection 

ratio (𝜀𝜀) are introduced to determine the acquirement or abandonment of a new cluster 

center. If 𝑃𝑃𝑖𝑖∗ > 𝜀𝜀 𝑃𝑃1∗, then 𝑋𝑋𝑘𝑘∗ is accepted as the 𝑖𝑖-th cluster center; otherwise if, 𝑃𝑃𝑘𝑘∗ <

𝜀𝜀 𝑃𝑃1∗, then 𝑋𝑋𝑖𝑖∗ is rejected and the subtractive clustering is over. However, if 𝜀𝜀 𝑃𝑃1∗ < 𝑃𝑃𝑘𝑘∗ <

𝜀𝜀 𝑃𝑃1∗, the potential of 𝑋𝑋𝑖𝑖∗ drops into a grey area. Chiu [31] has used an assistance variable 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚, which is the shortest distance between 𝑋𝑋𝑘𝑘∗ and existing cluster centers. The variable 

helps to check the inequality 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑎𝑎

+ 𝑃𝑃𝑖𝑖
∗

𝑃𝑃1∗
≥ 1. If the inequality is valid, the point is accepted 

as a new center, if not, it is rejected.  
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2.2 Fuzzy c-means Clustering 

    Fuzzy c-means clustering (FCM) [10], [11] is derived from minimizing an objective 

function 𝐽𝐽 that represents the fitting error of the clusters regarding the data,  

𝐽𝐽(𝑉𝑉,𝑈𝑈) = ∑ ∑ (𝑢𝑢𝑖𝑖𝑖𝑖)𝑚𝑚𝑁𝑁
𝑘𝑘=1

𝑐𝑐
𝑖𝑖=1 𝑑𝑑𝑖𝑖𝑖𝑖

2,                                        (2.4) 

where 𝑁𝑁 is the number of data points, 𝑐𝑐 is the number of clusters given in advance,  𝑢𝑢𝑖𝑖𝑖𝑖   

is denoted as the membership degree of data point 𝑘𝑘 to cluster 𝑖𝑖, and the distance 𝑑𝑑𝑖𝑖𝑖𝑖 is 

measured between the 𝑘𝑘 − 𝑡𝑡ℎ data point 𝑋𝑋𝑘𝑘 = [𝑥𝑥𝑘𝑘1, … , 𝑥𝑥𝑘𝑘𝑘𝑘], and the 𝑖𝑖 − 𝑡𝑡ℎ cluster 

centers 𝑉𝑉𝑖𝑖 = [𝑣𝑣𝑖𝑖1, … , 𝑣𝑣𝑖𝑖𝑖𝑖], 𝑖𝑖 = 1, … 𝑐𝑐 ; 𝑛𝑛 is the number of selected features describing 

each data point 𝑋𝑋𝑘𝑘 ∈ ℝ𝑛𝑛. The parameter 𝑞𝑞 ∈ [1,∞) controls the degree of fuzziness. If 𝑞𝑞 

is unity, the membership is regarded as crisp, and while 𝑞𝑞 increases, the membership 

becomes fuzzier. Usually, the Euclidean norm is selected for the calculation the distance 

between centers and the points that measure their similarities, 

𝑑𝑑𝑖𝑖𝑖𝑖
2 = (𝑋𝑋𝑘𝑘 − 𝑉𝑉𝑖𝑖)(𝑋𝑋 − 𝑉𝑉𝑖𝑖)𝑇𝑇 = ‖𝑋𝑋𝑘𝑘 − 𝑉𝑉𝑖𝑖‖2

2.                               (2.5) 

In addition, the following constrains are introduced to avoid trivial solution, 

𝑢𝑢𝑖𝑖𝑖𝑖 ∈ [0,1], 1 ≤ 𝑖𝑖 ≤ 𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁,                                  (2.6a) 

    ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑐𝑐
𝑖𝑖=1 = 1, 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁, and                                      (2.6b) 

0 ≤ ∑ 𝑢𝑢𝑖𝑖𝑘𝑘𝑁𝑁
𝑖𝑖=1 ≤ 𝑁𝑁, 1 ≤ 𝑖𝑖 ≤ 𝑐𝑐.                                      (2.6c) 

    Lagrange multiplier method is used to solve the minimization problem with constrains. 

Initialize the membership matrix 𝑈𝑈𝑐𝑐×𝑁𝑁 = 𝑈𝑈0, and iteratively solve the membership 𝑢𝑢𝑖𝑖𝑖𝑖 

and cluster centers 𝑉𝑉𝑖𝑖. The membership 𝑢𝑢𝑖𝑖𝑖𝑖 and cluster centers 𝑉𝑉𝑖𝑖 are updated by Eq. (2.7) 
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and Eq. (2.8), 

𝑢𝑢𝑖𝑖𝑖𝑖 = 1

∑ (
𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑗𝑗𝑗𝑗

)1/(𝑞𝑞−1)𝑐𝑐
𝑗𝑗=1

 and                                         (2.7) 

𝑉𝑉𝑖𝑖 = ∑ (𝑢𝑢𝑖𝑖𝑖𝑖)𝑞𝑞𝑁𝑁
𝑘𝑘=1 𝑋𝑋𝑘𝑘
∑ (𝑢𝑢𝑖𝑖𝑖𝑖)𝑞𝑞𝑁𝑁
𝑘𝑘=1

.                                              (2.8) 

    This iteration will stop until membership matrix convergent, which means ‖∆𝑈𝑈‖ < 𝜖𝜖, 

and 𝜖𝜖 is a small termination value. 

2.3 Evolving Gustafson-Kessel Like Algorithm 

    Fuzzy c-means (FCM) clustering uses Euclidean norm to calculate the distance of data 

points to cluster centers, and the formulated clusters are circle shape. The Gustafson-

Kessel algorithm (GK) [35] is developed to identify ellipsoidal clusters by employing an 

adaptive distance norm (Mahalanobis norm), where the distance are calculated as 

𝑑𝑑𝑖𝑖𝑖𝑖
2 = (𝑋𝑋𝑘𝑘 − 𝑉𝑉𝑖𝑖)𝑆𝑆𝑖𝑖(𝑋𝑋𝑘𝑘 − 𝑉𝑉𝑖𝑖)𝑇𝑇 = ‖𝑋𝑋𝑘𝑘 − 𝑉𝑉𝑖𝑖‖𝑆𝑆𝑖𝑖

2,                       (2.9) 

 in Eq. (2.9) 𝑉𝑉𝑖𝑖 is the 𝑖𝑖-th cluster center and 𝑆𝑆𝑖𝑖 is a positive definite symmetric matrix 

dependent on a covariance matrix 𝐹𝐹𝑖𝑖 as 

𝑆𝑆𝑖𝑖 = 𝜌𝜌𝑖𝑖|𝐹𝐹𝑖𝑖|1/𝑛𝑛𝐹𝐹𝑖𝑖−1,                                        (2.10) 

where 𝜌𝜌𝑖𝑖 is the cluster volume and 𝐹𝐹𝑖𝑖 is the fuzzy covariance matrix of 𝑖𝑖-th cluster and is 

calculated as 

𝐹𝐹𝑖𝑖 = ∑ (𝑢𝑢𝑖𝑖𝑖𝑖)𝑞𝑞(𝑋𝑋𝑘𝑘−𝑉𝑉𝑖𝑖)𝑇𝑇(𝑋𝑋𝑘𝑘−𝑉𝑉𝑖𝑖)𝑁𝑁
𝑘𝑘=1

∑ (𝑢𝑢𝑖𝑖𝑖𝑖)𝑞𝑞𝑁𝑁
𝑘𝑘=1

.                                   (2.11) 

In Eq. (2.11), 𝑢𝑢𝑖𝑖𝑖𝑖 is calculated as Eq. (2.7). The parameter 𝑞𝑞 does not only control the 

degree of fuzziness, but also is a weighting exponent that determines how much the 

clusters may overlap. 
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    The evolving Gustafson-Kessel Like (eGKL) algorithm uses the similarity between the 

stream of data through monitoring the process in statistical process control (SPC) and the 

stream of data in evolving clustering to determine the radius of the ellipsoidal clusters. 

The radius of the cluster is determined by the Chi-square distribution constant 𝜒𝜒𝑛𝑛,𝛽𝛽
2  and 

the determinant of the covariance matrix as 

𝑟𝑟𝑖𝑖2 = 𝜒𝜒𝑛𝑛,𝛽𝛽
2 |𝐹𝐹𝑖𝑖|

1
𝑛𝑛,                                                 (2.12) 

where 𝑛𝑛 is the dimension of data space and 𝛽𝛽 is the possibility of false alarm. The 

similarity between 𝑋𝑋𝑘𝑘 and each of the existing clusters is evaluated by checking the 

similarity relation, 

𝐷𝐷𝑖𝑖𝑖𝑖2 < 𝜒𝜒𝑛𝑛,𝛽𝛽
2 , 𝑖𝑖 = [1, 𝑐𝑐],                                                    (2.13) 

where the unit-less distance parameter 𝐷𝐷𝑖𝑖𝑖𝑖 is determined as 

𝐷𝐷𝑖𝑖𝑖𝑖2 = (𝑋𝑋𝑘𝑘 − 𝑉𝑉𝑖𝑖)𝐹𝐹𝑖𝑖−1(𝑋𝑋𝑘𝑘 − 𝑉𝑉𝑖𝑖)𝑇𝑇.                                          (2.14) 

    The following steps present the eGKL algorithm implementation in real time. 

Step 1. Choose the probability of a false alarm 𝛽𝛽 and define the 𝜒𝜒𝑛𝑛,𝛽𝛽
2 . Usually, the 

probability of false alarm 𝛽𝛽 is chosen as 0.0455 in accordance with the 2𝜎𝜎 (𝜎𝜎 is the 

variance of the distribution) of the process control band in the single variable SPC.  

Step 2. Based on the results of fuzzy c-means, calculate the inverse covariance matrices 

𝐹𝐹𝑖𝑖−1 and the cluster centers 𝑉𝑉𝑖𝑖.  

Step 3. Choose the minimum number of points in the cluster as a function of the data 

point dimension 𝑛𝑛 as 

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑛𝑛(𝑛𝑛+1)
2

.                                                (2.15) 

Step 4. Read the new data point 𝑋𝑋𝑘𝑘, calculate the membership 𝑢𝑢𝑖𝑖𝑖𝑖of 𝑋𝑋𝑘𝑘 to all credible 
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clusters and the distance to all cluster centers by Eqs. (2.9) and (2.11). 

Step 5. Check the similarity of 𝑋𝑋𝑘𝑘 to the existing clusters, i.e. Eq. (2.14), and identify the 

closest 𝑝𝑝-th cluster, 

𝑝𝑝 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖(𝐷𝐷𝑖𝑖𝑖𝑖), 𝑖𝑖 = 1, … , 𝑐𝑐.                                      (2.16) 

Step 6(a). If 𝐷𝐷𝑝𝑝𝑝𝑝2 < 𝜒𝜒𝑛𝑛,𝛽𝛽
2 or the number of points in the 𝑝𝑝-th cluster is 𝑀𝑀𝑝𝑝 < 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 then 

update 𝑝𝑝-th cluster as follows.  

• Update the parameters associated with the 𝑝𝑝 − 𝑡𝑡ℎ cluster, 

𝑉𝑉𝑝𝑝,𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑉𝑉𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜 + 𝛼𝛼�𝑋𝑋𝑘𝑘 − 𝑉𝑉𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜�,                                   (2.17) 

𝐹𝐹𝑝𝑝,𝑛𝑛𝑛𝑛𝑛𝑛
−1 = 1

1−𝛼𝛼
(1 − 𝐺𝐺𝑝𝑝)𝐹𝐹𝑝𝑝,𝑜𝑜𝑜𝑜𝑑𝑑

−1 ,                                       (2.18) 

�𝐹𝐹𝑝𝑝,𝑛𝑛𝑛𝑛𝑛𝑛� = Γ(1 − 𝛼𝛼)𝑛𝑛−1𝛼𝛼�𝐹𝐹𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜�, and                                  (2.19) 

𝑀𝑀𝑝𝑝,𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑀𝑀𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜 + 1,                                            (2.20) 

where  𝛼𝛼 is the learning rate, 𝐺𝐺𝑝𝑝 = 𝛼𝛼Γ𝑝𝑝−1�𝑋𝑋𝑘𝑘 − 𝑉𝑉𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜�
𝑇𝑇
�𝑋𝑋𝑘𝑘 − 𝑉𝑉𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜�𝐹𝐹𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜

−1 , and Γ𝑝𝑝 = 1 −

𝛼𝛼 + 𝛼𝛼�𝑋𝑋𝑘𝑘 − 𝑉𝑉𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜�𝐹𝐹𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜
−1 �𝑋𝑋𝑘𝑘 − 𝑉𝑉𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜�

𝑇𝑇
. 

• Update the centers of the remaining clusters accordingly as 

𝑉𝑉𝑖𝑖,𝑛𝑛𝑒𝑒𝑒𝑒 = 𝑉𝑉𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 − 𝛼𝛼�𝑋𝑋𝑘𝑘 − 𝑉𝑉𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜�, 𝑖𝑖 ∈ {1, … , 𝑐𝑐}, 𝑖𝑖 ≠ 𝑝𝑝.           (2.21) 

Step 6(b). If none of the conditions  𝐷𝐷𝑝𝑝𝑝𝑝2 < 𝜒𝜒𝑛𝑛,𝛽𝛽
2 or 𝑀𝑀𝑝𝑝 < 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 satisfied then apply the 

following. 

• Increase the number of clusters by one, i.e., 𝑐𝑐 = 𝑐𝑐 + 1. 

• Initialize the new cluster with the associated parameters as 

𝑉𝑉𝑐𝑐 = 𝑋𝑋𝑘𝑘;  𝐹𝐹𝑐𝑐,𝑛𝑛𝑛𝑛𝑛𝑛
−1 = 𝐹𝐹0−1; �𝐹𝐹𝑐𝑐,𝑛𝑛𝑛𝑛𝑛𝑛� = |𝐹𝐹0|;𝑀𝑀𝑐𝑐 = 1,                 (2.22) 

where 𝐹𝐹0 is an initial estimate of the fuzzy covariance matrix. Usually, the matrix is 

initialized as a diagonal matrix 𝐹𝐹0−1 = 𝛾𝛾𝛾𝛾, where 𝛾𝛾 is sufficiently large positive number.    
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Chapter 3 

Correlation Identification Procedure  

    In last chapter, we reviewed the clustering algorithms which would be employed in the 

following proposed correlation identification procedure. In this chapter, the correlation 

identification procedure will be elaborated to construct as an intelligent analyzer using 

clustering algorithms. The clusters recognized from the procedure represent the 

correlations of events data points with the features time and location. At the beginning of 

the procedure, initial cluster-based correlations identified from clustering for a batch of 

historical severe driving events data with the features time and location reveal the 

historical correlation of the driving events with time and location. The, the correlations 

are continuously developed with time reflected by the variation of the modes of the 

recognized clusters with clustering process on the real-time data stream. Thus, the 

proposed correlation identification procedure is presented as two parts: namely, batch 

clustering and real-time clustering.  

3.1 Batch clustering 

    The batch clustering structure is presented in the left side of the flowchart in Figure 

3.1. It includes data acquisition, data transformation, time domain clustering and two-

stage geographical domain clustering. The right hand side of the flowchart represents the 

batch clustering procedure implementation exemplified by severe braking event. 
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Figure 3.1: Batch clustering procedure. 

3.1.1 Data Acquisition 

    Data acquisition involves the process of acquiring historical data from Data 

Acquisition and communications Platform (DAP). The severe driving events (severe 

braking events or handling limit minder (HLM) events) contain location data, event time 

data and event indicator data. Location data includes the location coordinates at the 

respective time data, which is the time when the events are invoked. Events indicator data 

indicate the characteristics of the events. For example, the location data of severe braking 

events data are denoted as [𝑋𝑋𝑘𝑘1,𝑋𝑋𝑘𝑘2,𝑇𝑇𝑘𝑘], where 𝑋𝑋𝑘𝑘1 and 𝑋𝑋𝑘𝑘2 are the sampled latitude and 

longitude coordinates of the driving vehicle at the corresponding time data 𝑇𝑇𝑘𝑘. The severe 

braking event indicator data are denoted as [𝐴𝐴𝑘𝑘], where 𝐴𝐴𝑘𝑘 is the vehicle deceleration at 

the corresponding time 𝑇𝑇𝑘𝑘. Therefore, a severe braking event data point is denoted as 

𝑋𝑋𝑘𝑘 = [𝑋𝑋𝑘𝑘1,𝑋𝑋𝑘𝑘2,𝑇𝑇𝑘𝑘,𝐴𝐴𝑘𝑘]. Analogously, a HLM event data contains the same feature data, 

location data, time data, and event indicator data. The event indicator data of HLM of 
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severe curving and severe bumping are chosen as the vehicle centrifugal acceleration and 

the ratio of vehicle jolting magnitude versus jolt frequency, respectively. Other event 

indicator data of HLM resulting from other reasons can be presented by other certain 

measures.   

3.1.2 Data Transformation 

    Data transformation is the preparation step prior to clustering process. In this step, a 

pre-process called “contraction” is implemented on the severe driving events data. The 

severe driving events occur at different times and different dates. To identify the 

correlation of severe driving events with time, severe driving events data are compacted 

into one day. After the contraction, the severe driving events are transformed into daily-

pattern events data. For example, severe driving events are transformed into  𝑋𝑋�𝑘𝑘 =

[𝑋𝑋𝑘𝑘1,𝑋𝑋𝑘𝑘2,𝑇𝑇�𝑘𝑘,𝐴𝐴𝑘𝑘].  

3.1.3 Time Domain Clustering 

    Time domain clustering is the clustering process applied on the time of the events to 

partition the events data points into different clusters where each of them shares the 

common time characteristics [28]. The clustering process is composed of the subtractive 

clustering and the fuzzy c-means clustering (FCM). The subtractive clustering suggests 

an appropriate number of clusters for the FCM clustering, which produces the common 

time characteristics clusters. When implementing subtractive clustering, parameters, such 

as, the neighborhood radius 𝑟𝑟𝑎𝑎, update radius 𝑟𝑟𝑏𝑏, and acceptance ratio 𝜀𝜀 are required to 

supplied firstly (since we expect as many clusters as possible, we choose rejection ratio 𝜀𝜀 

to be zero). We propose a potential-based objective function for the selection of the three 

parameters. The objective function measures the goodness of “potential” of the generated 
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cluster centers. Good potential is defined by the following criteria: i) the mean value of 

the cluster centers potentials (𝑃𝑃𝑖𝑖∗) is large; ii) few of the potentials of cluster centers fall 

into the gray areas (𝜀𝜀 𝑃𝑃1∗ < 𝑃𝑃𝑖𝑖∗ < 𝜀𝜀 𝑃𝑃1∗); iii) if some potential inevitably fall into the gray 

area, they should be as close as possible to the acceptance ratio 𝜀𝜀. We expect that the 

potential of cluster centers are as great and far away from the gray area as possible and, at 

the same time, as many clusters as possible. This leads to the maximization of the 

objective function with a subject constrain described by Eq. (3.1) and Eq. (3.2) as 

Min   𝐽𝐽 =  𝑎𝑎 ∙ 𝑒𝑒(−𝑟𝑟𝑎𝑎∗𝑐𝑐) + 𝑏𝑏 ∙ 𝑐𝑐𝜀𝜀
𝑐𝑐
∙ � 1

𝑐𝑐𝜀𝜀
∑ 𝑃𝑃𝑖𝑖
𝑐𝑐𝜀𝜀
𝑖𝑖=1 − �𝜀𝜀 − 1

𝑐𝑐𝜀𝜀
∑ 𝑃𝑃𝑗𝑗
𝑐𝑐𝜀𝜀
𝑗𝑗=1 �� and    (3.1) 

𝑠𝑠. 𝑡𝑡.  𝑎𝑎 + 𝑏𝑏 = 1,                                      (3.2) 

where  𝑎𝑎 and 𝑏𝑏 are the balance ratios, 𝑐𝑐 is the number of clusters, 𝑐𝑐𝜀𝜀 is the number of 

such clusters whose center potentials are greater than 𝜀𝜀, and 𝑐𝑐𝜀𝜀 is the number of the rest 

clusters whose center potential are less than 𝜀𝜀, but greater than 𝜀𝜀. Thus, 𝑐𝑐 = 𝑐𝑐𝜀𝜀 + 𝑐𝑐𝜀𝜀.  

    Generally, chosen the clustering parameters in the ranges 0 < 𝑟𝑟𝑎𝑎 < 0.5, 0.5 ≤ 𝜀𝜀 ≤

0.85, and 𝑟𝑟𝑎𝑎 ≤ 𝑟𝑟𝑏𝑏 ≤ 2𝑟𝑟𝑎𝑎, one can solve this maximization by a searching algorithm as 

shown in the following pseudo code.  

For 𝑟𝑟𝑏𝑏 = {1.25, 1.5, 2}𝑟𝑟𝑎𝑎 
        For 𝑟𝑟𝑎𝑎 = 0.05: 0.5 
               For 𝜀𝜀 = 0.5: 0.85 
                      Maximize 𝐽𝐽 with 𝑎𝑎 = 0.4 and 𝑏𝑏 = 0.6 
              End 
       End 
End 

 

    Utilizing this searching algorithm, the optimal combination of the three parameters is 
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obtained. Then, the subtractive clustering algorithm is implemented to suggest the 

number of clusters for FCM. For severe driving events, the events data points {𝑋𝑋�𝑘𝑘} are 

partitioned into 𝑐𝑐 time-based clusters 𝑣𝑣𝑖𝑖 = �𝑋𝑋�𝑘𝑘𝑖𝑖 �, where 𝑖𝑖 = 1, … , 𝑐𝑐. 

3.1.4 Geographical Domain Clustering 

    Geographical domain clustering is the process of distance-based re-clustering on the 

feature location to obtain further correlations of the severe driving events with location. 

The clustering process is implemented on latitude and longitude of the 𝑖𝑖-th time-based 

cluster 𝑣𝑣𝑖𝑖. The clustering process, similar to that of time domain clustering, consists of 

subtractive clustering and FCM clustering. However, the parameters used in this 

subtractive clustering are not solved from the optimization problem (Eqs. (3.1) and (3.2)), 

but they are inferred from that how large area is expected to be covered by a resulting 

cluster. For example, at Detroit (42.3° 𝑁𝑁, 83° 𝑊𝑊), if we require the size of the resulting 

cluster around 11𝑘𝑘𝑘𝑘 by 8𝑘𝑘𝑘𝑘 (latitudinal by longitudinal), the parameter 𝑟𝑟𝑎𝑎 is chosen to 

be 0.1 on the latitudinal and longitudinal coordinates. If we require the size of the 

resulting cluster around 1𝑘𝑘𝑘𝑘 by 1𝑘𝑘𝑘𝑘 (latitudinal by longitudinal), the parameter 𝑟𝑟𝑎𝑎 is 

chosen to be 0.01 on latitudinal and longitudinal coordinates (at 42.3° 𝑁𝑁 and  83° 𝑊𝑊, 

0.1 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 in the latitudinal and longitudinal directions is 11𝑘𝑘𝑘𝑘 and 8𝑘𝑘𝑘𝑘, respectively, 

and 0.01 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 are around 1𝑘𝑘𝑘𝑘 and 1𝑘𝑘𝑘𝑘, respectively). Apparently, 𝑟𝑟𝑎𝑎 plays a 

significant role in determining the number and size of the clusters.  

    In this dissertation, we construct a two-stage geographical domain clustering using two 

different value for 𝑟𝑟𝑎𝑎. In the first stage, by using 𝑟𝑟𝑎𝑎 = 0.1, FCM generates clusters, which 

represent general correlation of events with location in a greater area, 11𝑘𝑘𝑘𝑘 × 8𝑘𝑘𝑘𝑘. We 

will call these cluster “general clusters”. In the second stage, by using 𝑟𝑟𝑎𝑎 = 0.01, FCM 
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generates clusters, called “accurate clusters”, which represent accurate correlation of 

events with specific locations in a smaller area, 1𝑘𝑘𝑘𝑘 × 1𝑘𝑘𝑘𝑘. In the safety driving 

assistance system, more than two stages of geographical domain can be implemented 

depending on the coverage area that drivers interest. When more accurate correlations of 

severe driving events with location are needed, a smaller value of 𝑟𝑟𝑎𝑎 is provided with 

further stage of geographical domain clustering implementation. 

    Performing the first-stage geographical clustering results in clusters 𝑣𝑣𝑖𝑖,𝑗𝑗 = �𝑋𝑋�𝑘𝑘
𝑖𝑖,𝑗𝑗�, 

which are the 𝑗𝑗-th subbranch cluster from the cluster 𝑣𝑣𝑖𝑖 with 𝑗𝑗 = 1, … ,𝑚𝑚𝑖𝑖, and 𝑚𝑚𝑖𝑖 is the 

number of clusters resulting from the cluster 𝑣𝑣𝑖𝑖. The clusters 𝑣𝑣𝑖𝑖,𝑗𝑗 refer to the general 

correlations of the severe driving events with time and area. By running the second-stage 

geographical clustering, clusters 𝑣𝑣𝑖𝑖,𝑗𝑗,ℎ = �𝑋𝑋�𝑘𝑘
𝑖𝑖,𝑗𝑗,ℎ� are obtained. Following the same rule, 

𝑣𝑣𝑖𝑖,𝑗𝑗,ℎ is the ℎ-th subbranch cluster from the subbranch cluster 𝑣𝑣𝑖𝑖,𝑗𝑗, where ℎ = 1, … ,𝑤𝑤𝑖𝑖,𝑗𝑗, 

and 𝑤𝑤𝑖𝑖,𝑗𝑗 is the number of clusters from the subbranch cluster 𝑣𝑣𝑖𝑖,𝑗𝑗. The accurate clusters 

𝑣𝑣𝑖𝑖,𝑗𝑗,ℎ refer to accurate correlations of severe driving events with time and location. 

3.2 Real-time Clustering 

    After the implementation of the batch clustering, numbers of cluster are generated 

representing the correlations between the severe driving events and time and location. 

However, the batch clustering fails to supply two major aspects of useful information: 

firstly, we cannot get knowledge of the very recent correlations of the severe driving 

events with time and location, and secondly, we cannot get knowledge of how the 

correlations are developed or transformed in a certain time span. In other words, batch 

clustering fails to provide dynamic information of the correlation between the events and 
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time and location. To circumvent this problem, we will consider the real-time clustering. 

3.2.1 Real-time Data Acquisition 

    In this step, the severe driving data are queried in real time. When a severe driving 

event occurs, the corresponding data will be acquired at the same time, and the new data 

point 𝑋𝑋𝑘𝑘 is sent into the following separation step. 

3.2.2 Time Domain Separation 

    Time-based clusters have been generated from the time domain clustering step in the 

batch clustering. In this step, the time of the new data point is recognized and used to 

compare with the boundary time of the clusters, 𝑣𝑣𝑖𝑖, 𝑖𝑖 = 1, … , 𝑐𝑐, to determine which 

cluster the new data point belongs to. 

3.2.3 Geographical Domain Separation 

    In the geographical domain separation, the new data point 𝑋𝑋𝑘𝑘 either belongs to an 

existing cluster, 𝑣𝑣𝑖𝑖,𝑗𝑗 or 𝑣𝑣𝑖𝑖,𝑗𝑗,ℎ, when the distance between the point and a cluster center is 

less than an admittance distance, or it defines a new cluster otherwise. According to 

evolving Gustfson-Kessel Like (eGKL) algorithm, the boundary of a cluster is 

determinant by the cluster covariance matrix and the probability of false alarm 𝛽𝛽 

parameter according to Eq. (2.12). Accordingly, the distance between the new data point 

and each of the existing clusters is evaluated by Eq. (2.5). The eGKL algorithm proposed 

in Chapter 2.3 is implemented in real time to update existing clusters 𝑣𝑣𝑖𝑖,𝑗𝑗 or 𝑣𝑣𝑖𝑖,𝑗𝑗,ℎ or 

define new clusters. 
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Chapter 4 

Example of the Implementation of Correlation Identification 

Procedure and Results  

    In this section, we take the severe braking event as example of the general severe 

driving events to describe the implement the correlation identification procedure. After 

the procedure, the corresponding correlations of severe braking events with time and 

location are discussed to exemplify the general correlation of severe driving events with 

time and location from safety driving assistance system. 

    The historical driving data of seven vehicles from 04/01/2013 to 07/09/2013 were 

acquired from Data Acquisition and Communication Platform (DAP) for batch clustering. 

Based on the batch clustering result, the real-time clustering was then implemented on the 

driving data of the vehicles from 10/01/2013 to 02/25/2014 in real time framework. 

    The real-time correlation identification procedure is implemented as presented in 

Figure 4.1. The vehicle driving data have been transmitted from vehicle to DAP with 1 

Hz frequency. The data transmission and storage time is taken less than 0.33 second by 

the database management system. Once the severe driving event data have been detected, 

the real-time clustering computation (Eqs. (2.9) – (2.22)) is implemented in cloud 

platform. The real-time clustering processing time with 2.8 GHz commercial processor is 

obtained as 0.19 second. Then at the next sampling time, the updated real-time 

correlations are queried and reported to vehicles. The reporting time on vehicles to 

drivers takes less than 0.4 second. Generally, the process from event data transmission 

and storage, to real-time clustering computation, to correlation notification to drivers 
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takes less than 1 second based on experiments on the testing vehicles.” 

    The August data and September data are not available due to DAP system upgrade. In 

the following, the details of the correlation identification procedure are presented. 

 

 
Figure 4.1: Correlation identification procedure real-time implementation. 

 

4.1 Batch Clustering 

    The batch clustering process is implemented on the severe braking events. It includes 

data acquisition, data transformation, time domain clustering and geographical domain 

clustering (see the right-hand side of the flowchart in Figure 3.1).  

4.1.1 Data Acquisition 

    The historical driving data available in DAP were from seven testing vehicles of Ford 

Motor Company. The relevant data of severe braking data are GPS data and braking data. 

GPS data are gathered from GPS tracking devices placed in vehicles. Braking data are 

gathered from accelerometer sensor recording the speed change per second at the moment 

of brake start. Severe braking is defined as the braking with large deacceleration value 
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and greater than a defined threshold value. The threshold value is calculated from the Eq. 

(4.1), 

𝐴𝐴𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = |𝐴̅𝐴 + 1.5 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴)|,                                           (4.1) 

where 𝐴𝐴 is the historical braking deacceleration data set and 𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴) is the standard 

deviation of the data set. 𝐴𝐴𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 in this testing case is 3.7 𝑚𝑚𝑚𝑚ℎ 𝑠𝑠⁄ . After the relevant 

data acquisition, the severe braking event data points are formed by the combination of 

the GPS data and severe braking indicator data according to the severe braking events 

time, 𝑋𝑋𝑘𝑘 = [𝑋𝑋𝑘𝑘1,𝑋𝑋𝑘𝑘2,𝑇𝑇𝑘𝑘,𝐴𝐴𝑘𝑘]. Dotted points in Figure 4.2 represent the location data of 

the seven testing vehicles in the longitude-latitude graph. Figure 4.3 shows the severe 

braking indicator data of the seven testing vehicles with respect to the occurrence time. 

4.1.2 Data Transformation 

    The contraction procedure compacts the severe braking events data, {𝑋𝑋𝑘𝑘}, based on 

their daily times to form daily-pattern severe braking events data, {𝑋𝑋�𝑘𝑘}. In Figure 4.4, the 

left-hand side shows the distribution of the events of seven testing vehicles with 

respective to time and date, and the right side shows the daily-pattern distribution of 

compacted severe braking events. In next step, time domain clustering is implemented on 

the compacted daily-pattern severe braking events data, {𝑋𝑋�𝑘𝑘}. 

4.1.3 Time Domain Clustering 

    The optimal parameters for subtractive clustering solved from the maximization 

problem proposed in Chapter 2.1.3 are 𝑟𝑟𝑎𝑎 = 0.3, 𝑟𝑟𝑏𝑏 = 1.5𝑟𝑟𝑎𝑎, and 𝜀𝜀̅ = 0.50. With these 

parameters, subtractive clustering suggests two clusters for fuzzy c-means (FCM) 

clustering. Solving the FCM clustering, 2 clusters, i.e. 𝑣𝑣𝑖𝑖, 𝑖𝑖 = 1, 2 with the clusters 

centers 𝑉𝑉1 = 0.5196 (around time 12:28) and 𝑉𝑉2 = 0.8529 (around time 20:28), we 
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name the first cluster as “daytime” cluster and second cluster as “nighttime” cluster. The 

boundary between the two clusters is 𝑇𝑇� = 0.7362 (around 17:40).  

4.1.4 Geographical Domain Clustering 

    The first-stage geographical domain clustering generated numbers of 𝑚𝑚1 = 14 and 

𝑚𝑚2 = 20 from FCM clustering on the two time-based clusters, 𝑣𝑣1 and 𝑣𝑣2, respectively. 

The resulting clusters were denoted as 𝑣𝑣1,𝑗𝑗, where 𝑗𝑗 = 1, … ,14 and 𝑣𝑣2,𝑗𝑗 with 𝑗𝑗 = 1, … ,20, 

which are general clusters whose centers are denoted as 𝑉𝑉𝑖𝑖,𝑗𝑗 representing the general 

correlation of the severe braking events with time and location. Since the general clusters 

fail to provide accurate correlation of the events with time and location, a second-stage 

geographical domain clustering is implemented on each of the general clusters 𝑣𝑣𝑖𝑖,𝑗𝑗 to 

generate 𝑤𝑤𝑖𝑖,𝑗𝑗 subbranch clusters. The number of subbranch clusters generated from 

general clusters 𝑣𝑣𝑖𝑖,𝑗𝑗, when 𝑖𝑖 = 1 and 𝑗𝑗 = 1, … ,14 are 

𝑤𝑤1,𝑗𝑗 = 24, 17, 16,19, 32, 11, 19, 3, 9, 25, 4, 21, 21, and 1; when 𝑖𝑖 = 2 and 𝑗𝑗 = 1, … ,20, 

𝑤𝑤2,𝑗𝑗 = 2,13,32,1,3,13,20,14,13,10,17,3,10,14,16,17,9,13,15, and 4. This branch-

branching clustering structure is illustrated in Figure 4.5. The subbranch clusters are 

called accurate clusters denoted as 𝑣𝑣𝑖𝑖,𝑗𝑗,ℎ, where ℎ = 1, … ,𝑤𝑤𝑖𝑖,𝑗𝑗. The respective centers of 

the accurate clusters are denoted as 𝑉𝑉𝑖𝑖,𝑗𝑗,ℎ, presenting accurate correlation of the severe 

braking events with time and location.  

4.1.5 Batch Clustering Results 

    From the batch clustering, 165 qualified clusters were identified if the minimum 

number of data points in a cluster is 3 from Eq. (2.15). The clusters statistics is 

summarized in Table 4.1. 𝒞𝒞𝒩𝒩 denotes the clusters containing 𝒩𝒩 data points (𝒞𝒞𝒩𝒩, 
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𝒩𝒩 = 13, denotes the clusters contain more than 12 data points). “𝔇𝔇” and “𝔑𝔑” denotes the 

clusters in daytime and in night-time, respectively. 

 
Figure 4.2: Location of the severe braking event from 04/01/2013 to 07/09/2013.  

 

 
Figure 4.3: Severe braking events indicator data from 04/01/2013 to 07/04/2013. 
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Figure 4.4: Sever braking events time distribution and daily-pattern distribtuion. 

 

 
Figure 4.5: Structure of batching clustering process. 

 

Table 4.1: Effective clusters statistics 

 C3 𝒞𝒞4 𝒞𝒞5 𝒞𝒞6 𝒞𝒞7 𝒞𝒞8 𝒞𝒞9 𝒞𝒞10 𝒞𝒞11 𝒞𝒞12 𝒞𝒞𝒩𝒩>12 

No. 56 36 20 14 16 4 5 6 3 1 4 

𝔇𝔇 33 11 7 8 6 0 3 2 0 0 3 

𝔑𝔑 23 25 13 6 10 4 2 4 3 1 1 

 

    Among the 165 clusters, nearly 70% clusters are 𝒞𝒞3−5, and 10% clusters are 𝒞𝒞10−13. We 

further make three groups of clusters according to the concentration of a cluster: 

• Sparse concentration cluster: the number of data points in a cluster is smaller 

than 5. 
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• Dense concentration cluster: the number of points in a cluster is between 6 

and 9. 

• Super-dense concentration cluster: the number of data points in a cluster is 

equal or greater than 10. 

    Since each cluster center is in essence a prototypical data point that represents the 

characteristic behavior of the cluster, in the following we use cluster centers to analyze 

the distributions and concentrations of different cluster groups. Nearly 70% clusters 

belong to sparse concentration clusters. We plotted the centers of those clusters as “×” 

markers in Figure 4.6 to show the primary distribution of the severe braking events at 

daytime (blue marker) and nighttime (red marker). Density-based scan algorithm with 

noise (DBSCAN) clustering is applied on the cluster centers to find the coverage regions 

to illustrate the distribution of the coverage regions (regions formed by lines in Figure 

4.6). It is noted that two of the regions at daytime were overlapped with two of the 

regions at nighttime. It means that the severe braking events constantly occur daytime 

and nighttime in these regions. For the other regions, severe braking events either occur 

at daytime or nighttime. Here, this distribution knowledge is useful for directing drivers 

to differentiate the regions that are persistently excited by severe braking events all day 

long. 
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Figure 4.6: The distribution of sparse concentration clusters and the respective coverage regions. Blue  
                   markers represent daytime cluster centers, red markers represent nighttime cluster centers,  
                   blue lines form the coverage regions at daytime, and red lines form the coverage regions at  
                   nighttime. 

 
 

    A super-dense concentration cluster contains many more data points than sparse dense 

concentration clusters; however, the number of such clusters is very limited. The super-

dense concentrated clusters indicate specific locations where the severe braking event 

occurs with a high possibility. Four examples of the locations are displayed by employing 

Google Maps API to display the events data points in Figure 4.7. Via the usage of Google 

Maps, road infrastructures with the events data points are provided for drivers. Drivers 

can avoid the potential dangers by choosing the alternative paths. 

    The thresholds differentiating the types of clusters (sparse concentration clusters, dense 

concentration clusters, and super-dense concentration clusters) are based on the 

percentage ratio of the number of each type of clusters to total number clusters, which is 

selected by designer. We use the percentage ratio as 70%:20%:10%. This percentage ratio 

is from the sense that most of clusters are not very concentrated. However, in the revised 

version of the paper, it is shown that the use of threshold 80% instead of 70% for the 
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sparse concentration clusters is not. Super-dense concentration clusters denote specific 

locations which are notified on maps. Designers give the threshold for viewing the 

specific locations with high potential of occurrence of severe driving events. We choose 

the 10% clusters as the super-dense concentration clusters; other designers can choose 

other percentage of clusters as super-dense concentration clusters to view them on maps. 

There is no necessary to discuss the sensitivity for this percentage threshold. 

    So far, the analysis on the severe braking events distribution and concentration with 

respect to location and time is static. In the next section, we implement real-time 

clustering to update the clusters coordination to investigate the variation of the correlation 

of the severe braking events with the time and location. 

 
 

Figure 4.7: Concentrated clusters with more than 12 points: a) 𝑣𝑣1,6,2; b) 𝑣𝑣1,6,11; c) 𝑣𝑣1,7,7; d) 𝑣𝑣2,10,1. The red  
                   points represent the severe braking events locations, and the black point is the cluster center. 

 

4.2 Real-time Clustering 

    Initial correlation of severe braking events with time and location were identified from 

batch clustering represented by recognized clusters. Real-time clustering, on the basis of 

the clusters, modifies and updates the clusters with real-time events data acquisition. The 
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variation of the models of the clusters represents the development of the events 

correlation with time and location. 

4.2.1 Real-time Data Acquisition 

    In this step, the severe braking data are queried in real time. Real-time clustering is 

implemented with the severe braking events data of the testing vehicles queried from 

10/01/2013 to 02/25/2014 in real time. The clustering is implemented based on the results 

of batch clustering. 

4.2.2 Time Domain Separation 

    When a new severe braking event data (𝑋𝑋𝑘𝑘) is queried and recognized in real time, it 

goes to time domain separation. The data goes to one of the two time-based clusters, 𝑣𝑣1 

and 𝑣𝑣2 by comparing the daily time of 𝑋𝑋𝑘𝑘 to the boundary between the two clusters, 

which are resulted from time domain clustering in batch clustering.  

4.2.3 Geographical Domain Separation 

    The eGKL algorithm is implemented in the geographical domain separation. The new 

severe braking event data point (𝑋𝑋𝑘𝑘) goes to one of the existing clusters, if Eq. (2.13) is 

satisfied. Otherwise, it defines a new cluster. The radius of the existing clusters can be 

calculated from Eq. (2.12) with a predetermined probability of false alarm (𝛽𝛽). Since the 

determination of β is similar to determining quality process control band in a single 

variable statistical process control, we initially choose 𝛽𝛽 to be 0.68 to mimic 1𝜎𝜎 process 

control band. Thus, at the beginning of the real-time clustering, the red ellipses in Figure 

4.8 and Figure 4.9 define the boundaries of the general clusters 𝑣𝑣𝑖𝑖,𝑗𝑗 and accurate clusters 

𝑣𝑣𝑖𝑖,𝑗𝑗,ℎ, respectively. When implementing the real-time clustering, as the new data point 
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goes into a cluster, the covariance matrix of the cluster is changed, and the boundary of 

the cluster is changed and updated (Eq. (2.12)). It is apparent that the determinant of the 

covariance matrix is sensitive to the number of data points in the cluster and dropping 

position of the new data point with respect to the boundary of the cluster. In one case, if 

the new data point drops close to the boundary of the cluster, it will affect greatly the 

value of the determinant of the covariance matrix of the cluster. In this case, the new data 

point will more significantly affect the pattern of the cluster when the number of data 

points in the cluster is small than when the number of data points in the cluster is large; 

and it will more increase the radius when the number of data points in the cluster is large 

than when the number of data points in the cluster is small. Based on this observation, in 

order to stabilize patterns of clusters and avoid continuously increasing or decreasing the 

sizes of clusters, we use the varying 𝛽𝛽 to balance the effect of determinants of clusters on 

radius. The 𝛽𝛽 is made experientially decrease from 0.68 to 0.3 with respect to the number 

points in the cluster. It means we gradually shrink force on the core data points close to 

the center of the cluster. In another case, if the new data point drops close to the center 

and far away from the boundary, it has little effect on the value of the determinant of the 

cluster, and the variation of 𝛽𝛽 has little effect on the size of the cluster. In a third case, if 

the coming data point does not belong to any existing clusters, it will define a new 

cluster, and a circle pattern with a default radius is used to define its boundary. In Figure 

4.8 and Figure 4.9, the blue lines define the boundaries of the general clusters and 

accurate clusters, respectively, at the end of the real-time clustering. One could easy 

identify the variation of the sizes of the general clusters in Figure 4.8, and observe that 

the number of accurate clusters is large and their sizes are small in Figure 4.9.  
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Figure 4.8: Comparison between the general clusters boundaries in the beginning of the real time  
                   clustering and at the end of the real time clustering. 
 

 
Figure 4.9:  Comparison between the accurate clusters boundaries in the beginning of the real time  
                    clustering and at the end of the real time clustering. 

 
 
 

4.2.4 Real-time Clustering Results 

    There are two issues need to be considered when generating accurate clusters during 
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the real-time clustering. The first issue is the credibility of generated clusters. A credible 

cluster should have at least 3 data points as mentioned in Chapter 2.3. However, in Figure 

4.9, any new event data point would define a new cluster once it does not belong to any 

of the existing clusters. It is not unusual that a new event point, once defining a new 

cluster, could be noisy data point. In other words, there will be no more or very low 

possibility of another occurrence of the event in the area for a long time. Thus, the 

clusters generated by the noisy data point should be ignored. The second issue is that 

some credible clusters could be inactive, i.e., no data point dropping in for a long time. 

From dynamic perspective, the noisy clusters and inactive clusters should be gradually 

vanished by using evolving-forgetting mechanism. Therefore, we define the following 

mechanism using the lifetime terminology and forgetting logic regarding the activity of 

clusters. We call a cluster is active means there are at least one event data point dropping 

into the cluster. Oppositely, a cluster is inactive means there is not event data point 

dropping into the cluster.  

i) Temporary cluster: It is the cluster whose number of data points is less than 3 all 

its life time. We consider the lifetime of such clusters to be 10 days. If it is still a 

temporary cluster after 10 days, it will be neglected. Otherwise, it will be evolved 

to be a short-term cluster.  

ii) Short-term cluster: It is the cluster growing from temporary cluster and its 

lifetime is 10 days too. If, within 10 days, it keeps inactive then it will be moved 

out. If it keeps active more than 20 days, it will be evolved to be a mid-term 

cluster. Otherwise, it is still a short-term cluster. 
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iii) Mid-term cluster: It is the cluster created from short-term clusters. Its lifetime is 

considered as 1 month. If, within 10 days, it is inactive, it will be discarded. If it 

keeps active more than 2 months, it will be evolved to be a long-term cluster. 

Otherwise, it is still a medium-term cluster. 

iv) Long-term cluster: It is the cluster generated by mid-term cluster. If within 10 

days it keeps inactive, it will canceled out. Otherwise, it is still a long term cluster. 

    We implemented the real-time clustering and applied the evolving-forgetting 

mechanism for the accurate clusters [3]. Figure 4.10 demonstrates the results of 

09/15/2013, 11/19/2013 and 01/09/2013. In the figures, temporary clusters, short-term 

clusters, mid-term clusters and long-term clusters are denoted by blue, green, yellow and 

red ellipses, respectively. By means of differentiating clusters according to the lifetime of 

the clusters, drivers are informed the spots where the severe braking events mostly take 

place. 

 
Figure 4.10: Three samples of real time clustering. (Top left part is sampled at 09/15/2013, top right part  
                     is sampled at 09/19/2013, and bottom part is sampled at 01/09/2014). 
 
 

    The defined lifetime thresholds differentiate the types of clusters’ activities. The 
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lifetime thresholds are chosen by the designers. However, a sensitivity analysis was 

examined for the four types of clusters by changing the lifetime thresholds. ±20% 

variations of the defined lifetime thresholds (7 days, 23 days, and 60 days) were 

considered, respectively. The robustness of the defined lifetime thresholds has been 

illustrated in the added Figure 4.11. 

 
Figure 4.11: Sensitivity analysis of the lifetime thresholds of different types of clusters. 

 

    The variation of the severe braking events with time and regions can be presented by 

the variations of the general clusters over a certain time span, which can be indicated by 

events data points activities in the clusters over the period. The events data points 

activities over the period formulate the time series of the events count of the severe 

braking events occurrence. If we number the general clusters as in Figure 4.12, the 

activities of the severe braking events from 10/01/2013 to 02/25/2014 in the region 

denoted by cluster 7 formulate a time series of the events count data shown as Figure 

4.13. With the events count data time series, one could construct time series models to 

describe the activities of the events in different. The time series models of multiple 
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regions are capable of providing spatial-time models of multi-variables, which can be 

used in analyzing and forecasting the severe braking events correlation between the 

different regions [36], [37].  

 
Figure 4.12: Number the recognized general clusters (Cluster 8 and Cluster 11 are not considered as they  
                    are outside of the window region). 

 
Figure 4.13: Time series of cluster 7 from 10/01/2013 to 02/25/2014 

 

    The correlation of two time series can be simply measured by 
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𝜌𝜌𝑧𝑧1𝑧𝑧2 =
∑ ��𝑧𝑧1−𝜇𝜇𝑧𝑧1��𝑧𝑧2−𝜇𝜇𝑧𝑧2��
𝑁𝑁
𝑡𝑡=1

(𝑁𝑁−1)𝜎𝜎𝑧𝑧1𝜎𝜎𝑧𝑧2
,                                   (4.2) 

where 𝑧𝑧1and 𝑧𝑧2 denote the time series of two neighbor clusters,  𝜇𝜇𝑧𝑧1 and 𝜇𝜇𝑧𝑧2 are the 

means of the two time series, and 𝜎𝜎𝑧𝑧1and 𝜎𝜎𝑧𝑧2 are the covariance of the two time series. 

Taking cluster 7 as an example, we examine the correlation between Cluster 7 with its 

neighbor clusters. The correlation indexes are calculated by Eq. (4.1) and presented in 

Table 4.2. We can conclude that there is a stronger correlation between Cluster 7 with 

Cluster 5 than thereof other clusters. It is a little counterintuitive that the correlation 

between clusters is not strongly dependent on the distance of   clusters, observing that the 

cluster 6 is much closer to the cluster 7 than cluster 5. 

Table 4.2: Correlation of cluster 7 with its neighbor clusters 

Cluster 7 and Neighbor Clusters Correlation Index 

Cluster 7 – Cluster 5 0.8017 

Cluster 7 – Cluster 6 0.4625 

Cluster 7 – Cluster 9 0.0422 

Cluster 7 – Cluster 13 0.4148 

Cluster 7 – Cluster 15 0.2420 

 

4.3 Correlation Identification Procedure Concludion 

    The identification of severe driving events correlation with location and time 

procedure can be built as an intelligent analyzer embedded in vehicle to support severe 

driving events avoidance assistance. In Chapter 3, the correlation identification procedure 

which is composed of batch clustering and real-time clustering is presented. In Chapter 4, 

we take severe braking events as example of severe driving events to illustration the 
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implementation of the procedure. The procedure working on historical vehicle driving 

data provides initial correlation pattern of severe driving events with time and location; 

working on real-time vehicle driving data provides the variation of the correlation. Such 

correlations can alert the drivers the time and specific location the severe driving events 

take place. It helps enhance the drivers awareness to potential driving risk.  

    Another side of valuable information supplied by correlation identification procedure 

is that it can extract time series of severe driving events occurrence for any interested 

regions. The time series of events occurrence in a region is an index of measuring the 

correlation variation in the region represented by the general cluster variation (Figure 

4.12 and Figure 4.13). The time series can be daily count, hourly count, fifteen minutes 

count, or any periodical count of the events occurrence depending on the timespan we 

use. Analyzing the events time series of a region is measuring the correlation of the 

events with the region during the timespan; forecasting the events time series in a region 

is predicting the future correlation of the events with the region in certain time. At the 

same time, besides of intra-regional correlation, the inter-regional correlation can be 

measured by adequate time series models to reveal the correlation among different 

regions. In addition, anther factors, such as weather, climate, or vehicle speed and other 

vehicle data, can be considered for modeling the correlation with the events. Essentially, 

with the help of the time series models, we could take measure to avoid and reduce the 

events to improve safety driving.  It is potentially supplies a method of reducing the 

severe driving events. Therefore, besides the intelligent analyzer, correlation 

identification procedure, we continually propose the time series modeling methods for 
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severe braking events count data.  The modeling procedure is designed as another module 

of the safety driving assistance system. 

    In next two chapters, we provide time series modeling procedure and suggest different 

time series models. Similarly, we take the time series of severe braking events in the 

region denoted by Cluster 7 from 10/01/2013 to 02/25/2014 (as Figure 4.13) as example 

to demonstrate the modeling procedure. 

  

40 



Chapter 5 

Time Series Modeling for Severe Driving Events Count Data 

    A set of successive outcomes of a game, an experiment, or some natural phenomenon 

is regarded as a sample realization from all possible outcomes that could have been 

generated by stochastic process. A stochastic process is a rule that maps every possible 

outcome (𝑒𝑒) to a function 𝑍𝑍(𝑡𝑡, 𝑒𝑒) [38], [39]. The individual outcomes denoted by 𝑒𝑒 are 

called elementary events. The set of all possible elementary events is called the sure event 

and is denoted by Ω. Usually, we denote a subset of Ω as 𝐵𝐵. If we observe the outcome 𝑒𝑒 

is in 𝐵𝐵, we say that 𝐵𝐵 has occurred. Intuitively, we specify 𝑃𝑃(𝐵𝐵) as the probability that 𝐵𝐵 

will occur. Thus, let (Ω,Ρ) be a probability space.  

    Define 𝑇𝑇 to be a time index set. A real valued time series is a real valued function 

𝑍𝑍(𝑡𝑡, 𝑒𝑒) defined on 𝑇𝑇 × Ω. The function 𝑍𝑍(𝑡𝑡, 𝑒𝑒) is often written 𝑍𝑍𝑡𝑡 for fixed event 𝑒𝑒. A 

time series can be considered as a collection of observations {𝑍𝑍𝑡𝑡: 𝑡𝑡 ∈ 𝑇𝑇} of a random 

variable indexed sequentially over several time points 𝑡𝑡 = 1,2, … ,𝑇𝑇 [40].  

    In this and next chapter, we will use severe braking events as examples to investigate 

modeling for severe driving events count data. Here, the random variable, 𝑍𝑍𝑡𝑡, represents 

the severe braking events count data. The sequence over several times points of 𝑍𝑍𝑡𝑡 

represents for the time series of severe braking events. We specifically use the severe 

braking events count data in Region 7 (the Region denoted by Clusters shown as in 

Figure 4.12) from 10/01/2013 to 02/25/2014 shown as Figure 4.13 as example to 

investigate the statistical time series modeling. The goal of the statistical time series 

modeling is to find a compact representation of the severe driving event count data 
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generating process and, based on the past observations on the variable, to predict the 

future count values.  

    Before start the statistical time series modeling, we briefly review the following 

definitions for a stochastic process {𝑍𝑍𝑡𝑡: 𝑡𝑡 = 0,1,2, … } which are necessary for the 

statistical time series modeling [41]. 

Definition 1: The mean function is defined by 

𝜇𝜇𝑡𝑡 = 𝐸𝐸(𝑍𝑍𝑡𝑡), for 𝑡𝑡 = 1,2, …,                                               (5.1) 

where 𝜇𝜇𝑡𝑡 is the expected value of the process at time 𝑡𝑡. 

Definition 2: The autocovariance function, 𝛾𝛾𝑡𝑡,𝑠𝑠, is defined as  

𝛾𝛾𝑡𝑡,𝑠𝑠 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑡𝑡,𝑍𝑍𝑠𝑠) = 𝐸𝐸[(𝑍𝑍𝑡𝑡 − 𝜇𝜇𝑡𝑡)(𝑍𝑍𝑠𝑠 − 𝜇𝜇𝑠𝑠)], for 𝑡𝑡, 𝑠𝑠 = 1,2, ….     (5.2) 

Definition 3: The autocorrelation function, 𝜌𝜌𝑡𝑡,𝑠𝑠, is given by  

𝜌𝜌𝑡𝑡,𝑠𝑠 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑡𝑡,𝑍𝑍𝑠𝑠) = 𝐸𝐸[(𝑍𝑍𝑡𝑡−𝜇𝜇𝑡𝑡)(𝑍𝑍𝑠𝑠−𝜇𝜇𝑠𝑠)]
�𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍𝑡𝑡)𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍𝑠𝑠)

= 𝛾𝛾𝑡𝑡,𝑠𝑠

�𝛾𝛾𝑡𝑡,𝑡𝑡𝛾𝛾𝑠𝑠,𝑠𝑠
.                               (5.3) 

Definition 4: The sampled autocorrelation function, 𝑅𝑅𝑘𝑘, at lag 𝑘𝑘 is defined as 

𝑅𝑅𝑘𝑘 = ∑ (𝑍𝑍𝑡𝑡−𝑍𝑍�)(𝑍𝑍𝑡𝑡−𝑘𝑘−𝑍𝑍�)𝑁𝑁
𝑡𝑡=𝑘𝑘+1

∑ (𝑍𝑍𝑡𝑡−𝑍𝑍�)2𝑁𝑁
𝑡𝑡=1

, for 𝑘𝑘 = 1,2, ….                                (5.4) 

Definition 5: The partial autocorrelation function, 𝜙𝜙𝑘𝑘𝑘𝑘, at lag 𝑘𝑘 is defined to be the 

correlation between the prediction errors; that is 

 𝜙𝜙𝑘𝑘𝑘𝑘 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑡𝑡 ,𝑍𝑍𝑡𝑡−𝑘𝑘|𝑍𝑍𝑡𝑡−1, … ,𝑍𝑍𝑡𝑡−𝑘𝑘+1).                           (5.5) 

Definition 6: Autoregressive (AR) processes are processes that the current value of the 

series is a linear combination of the 𝑝𝑝 most recent past values of itself plus an 

“innovation” term 𝑒𝑒𝑡𝑡. Specifically, a 𝑝𝑝-th autoregressive process satisfies the equations 

𝑍𝑍�𝑡𝑡 = 𝜙𝜙1𝑍𝑍�1 + 𝜙𝜙2𝑍𝑍�𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑝𝑝𝑍𝑍�𝑡𝑡−𝑝𝑝 + 𝑒𝑒𝑡𝑡, where                                  (5.6) 

𝑍𝑍𝑡𝑡 = 𝑍𝑍�𝑡𝑡 + 𝜇𝜇𝑡𝑡.                                                              (5.7) 
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Definition 7: Moving Average (MA) processes are processes that the current value of the 

series is a weighted linear combination of present and past white noise. A moving average 

process of order 𝑞𝑞 satisfies the equation 

𝑍𝑍�𝑡𝑡 = 𝑒𝑒𝑡𝑡 + 𝜃𝜃1𝑒𝑒𝑡𝑡−1 + 𝜃𝜃2𝑒𝑒𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑙𝑙𝑒𝑒𝑡𝑡−𝑞𝑞.                                (5.7) 

    The AR(𝑝𝑝) process and MA(𝑞𝑞) process can be conveniently interpreted as AR(𝑝𝑝) 

model and MA(𝑞𝑞) model, respectively. We can obtain a quite general time series model if 

the series is partly autoregressive and partly moving average. That is 

𝑍𝑍�𝑡𝑡 = 𝜙𝜙1𝑍𝑍�𝑡𝑡−1 + 𝜙𝜙2𝑍𝑍�𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑝𝑝𝑍𝑍�𝑡𝑡−𝑝𝑝 + 𝑒𝑒𝑡𝑡 + 𝜃𝜃1𝑒𝑒𝑡𝑡−1 + 𝜃𝜃2𝑒𝑒𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑞𝑞𝑒𝑒𝑡𝑡−𝑙𝑙.       (5.8) 

Definition 8: We call this model a mixed autoregressive moving average process of 

orders 𝑝𝑝 and 𝑙𝑙, abbreviated as ARMA(𝑝𝑝, 𝑞𝑞).  

    ARMA(𝑝𝑝, 𝑞𝑞) model provides a powerful ability for describing stationary time series, 

whose mean and variance are constant over time. For nonstationary time series, we 

always take difference operation for the nonstationary time series to make it close to 

stationary. The first difference operation of 𝑍𝑍𝑡𝑡 is ∇𝑍𝑍𝑡𝑡 = 𝑍𝑍𝑡𝑡 − 𝑍𝑍𝑡𝑡−1, and 𝑑𝑑-th difference 

operation is presented as ∇𝑑𝑑𝑍𝑍𝑡𝑡. Combining with difference operation, autoregressive 

integrated moving average (ARIMA) model can be used to describe both stationary and 

nonstationary time series. Usually, we use ARIMA(𝑝𝑝, 𝑑𝑑, 𝑞𝑞) denoting 𝑝𝑝-th order AR part, 

𝑑𝑑-th order difference, and 𝑞𝑞-th order MA part. 

5.1 ARIMA Modeling for Severe Braking Events Count Data Time 

Series in Region 7 

    Autoregressive integrated moving average (ARIMA) models family has been used as a 

very useful methodology in developing the statistical time series modeling. There have 
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been paid great efforts on the ARIMA modeling for time series in different areas from 

economics [42], [43], social science [44], [45] to different engineering fields [3], [46], 

[47]. The ARIMA models also known as the Box-Jenkins models do not involve 

independent variables in their construction; but they make use of the information in the 

series itself to generate the models. Thus, the ARIMA models rely heavily on their 

autocorrelation patterns in the data. 

    The Box-Jenkins methodology is an interactive three-step process for identifying, 

selecting, and assessing conditional models. The three-step process can be summarized 

as: model identification, model estimation and model diagnosis.  In the first step, the 

original time series is pre-processed to establish the stationary time series. Based on the 

stationary time series, we then identify a stationary conditional mean model for the data. 

In the second step, we specify the model, and estimate the model parameters. In the third 

step, we implement residual analysis to ensure the model describes the data adequately. If 

the model describes the data adequately and not too complex, we could use it to forecast 

the data over a future time horizon.    

    In the following, we use the Box-Jenkins methodology to build ARIMA models for the 

example time series of severe braking events daily count data in Region 7 from 

10/01/2013 to 02/25/2014. Due to vehicle maintenance, the data from Day 1 to Day 16 

and Day 88 to Day 100 are missed (we define Day 1 as 10/01/2013). Thus, we could use 

the first continuously time series (Day 17 – Day 89) for building ARIMA models, and 

employ the second continuously times (Day 101 – Day 134) for validating the proposed 

models.  
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5.1.1 ARIMA Modeling: Model Identification 

    We use the variable 𝑍𝑍𝑡𝑡
(7) to denote the stochastic process to generate the time series of 

severe braking events count data in region 7 from 10/01/2013 to 02/25/2014 shown as in 

Figure 5.1. The time series of 𝑍𝑍𝑡𝑡
(7) is not stationary, which means that the mean and 

covariance function is not constant over time. One operation for the time series 𝑍𝑍𝑡𝑡
(7) to 

make it stationary is first-difference operation. Figure 5.2 displays the plot of the first-

order difference of the time series 𝑍𝑍𝑡𝑡
(7).  

 
Figure 5.1: Time series of 𝑍𝑍𝑡𝑡

(7) from 10/01/2013 to 02/25/2014. 

 
Figure 5.2: First-order difference of the time series 𝑍𝑍𝑡𝑡

(7) from 10/01/2013 to 02/25/2014. 
     

    After the first-difference operation, we can start with the ARIMA model structure: 
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∇1𝑍𝑍𝑡𝑡
(7) = 𝜙𝜙1∇1𝑍𝑍𝑡𝑡−1

(7) +∙∙∙ +𝜙𝜙𝑝𝑝∇1𝑍𝑍𝑡𝑡−𝑝𝑝
(7) + 𝑒𝑒𝑡𝑡 − 𝜃𝜃1𝑒𝑒𝑡𝑡−1 −∙∙∙ −𝜃𝜃𝑞𝑞𝑒𝑒𝑡𝑡−𝑞𝑞 and                  (5.9) 

𝑍𝑍�𝑡𝑡
(7) = 𝜙𝜙1𝑍𝑍�𝑡𝑡

(7) +∙∙∙ +𝜙𝜙𝑝𝑝𝑍𝑍�𝑡𝑡−𝑝𝑝
(7) + 𝑒𝑒𝑡𝑡 − 𝜃𝜃1𝑒𝑒𝑡𝑡−1 −∙∙∙ −𝜃𝜃𝑞𝑞𝑒𝑒𝑡𝑡−𝑞𝑞.                        (5.10) 

5.1.2 ARIMA Modeling: Model Estimation 

    Model estimation is to specify a class of model out of ARIMA, suggest the orders for 

the model and estimate the parameters in the model. The autocorrelation (ACF) and 

partial autocorrelation (PACF) functions help to specify the class of model and decide the 

order for the model. Once we have a candidate model, many methods, such as the method 

of moment, the (recursive) least squares estimation, maximum likelihood estimation, etc., 

can be employed to estimate the parameters. We choose the maximum likelihood 

estimation (MLE) method here and afterward. 

    Theoretical autocorrelation and partial autocorrelation for conditional mean model AR, 

MA, and ARMA are quite different for each model. The following table summarizes the 

autocorrelation function (ACF) and partial autocorrelation function (PACF) behavior for 

these models. In Figure 5.3, the autocorrelation and partial correlation of the time series 

of 𝑍𝑍�𝑡𝑡
(7) from Day 16 to Day 87 with different time lags are presented. In the ACF and 

PACF plot, the cut value shown as dotted line in the plots is decided by that how much 

confidence level of accepting the examined series as white noise. The cut value is 

calculated as ±1.96 √𝑁𝑁⁄ , where 𝑁𝑁 is number of samples and in this example 𝑁𝑁 = 72, 

and  1.96 comes from 𝐹𝐹(𝑥𝑥 = 1.96) = 0.95, if 𝑥𝑥~𝑁𝑁(0,1). We say we are 95% confident 

that the series is not white noise and autocorrelated if ACF values are not within the 

within the interval (the stems of ACF are bounded by the two dotted lines). 
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Table 5.1: ACF and PACF behavior for different classes of ARMA models. 
 

Conditional Mean 
Model ACF PACF 

𝐴𝐴𝐴𝐴(𝑝𝑝) Decay exponentially with time 
lags Cuts off after 𝑝𝑝 lags 

𝑀𝑀𝐴𝐴(𝑞𝑞) Cuts off after 𝑞𝑞 lags Decay exponentially with time 
lags 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑞𝑞) Decay exponentially with time 
lags 

Decay exponentially with time 
lags 

     

    PACF and ACF plots suggest that an 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1) model. 

    Model 1: 𝑍𝑍�𝑡𝑡
(7) = 𝜙𝜙1𝑍𝑍�𝑡𝑡−1

(7) + 𝑒𝑒𝑡𝑡 − 𝜃𝜃1𝑒𝑒𝑡𝑡−1.                                         (5.11) 

 
Figure 5.3: ACF and PACF of 𝑍𝑍�𝑡𝑡

(7) from Day 16 to Day 87. 
 

The model parameters 𝜙𝜙s and 𝜃𝜃s can be estimated by maximum likelihood estimation 

(MLE) method. The unobserved error 𝑒𝑒𝑡𝑡 can be rewrite as, 

𝑒𝑒𝑡𝑡 = 𝑍𝑍�𝑡𝑡
(7) − 𝜙𝜙1𝑍𝑍�𝑡𝑡−1

(7) + 𝜃𝜃1𝑒𝑒𝑡𝑡−1.                                              (5.12) 

We assume the errors, 𝑒𝑒𝑡𝑡, is normal distribution with mean 0 and variance equal to 𝜎𝜎𝑒𝑒2, 
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which means that the probability density function (PDF) of each 𝑒𝑒𝑡𝑡 is  

𝑓𝑓(𝑒𝑒𝑡𝑡|𝜎𝜎𝑒𝑒) = (2𝜋𝜋𝜎𝜎𝑒𝑒2)−
1
2 exp �− 𝑒𝑒𝑡𝑡2

2𝜎𝜎𝑒𝑒2
�.                                          (5.13) 

Then the joint PDF for 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛 is 

𝑓𝑓(𝑒𝑒1, 𝑒𝑒2 … , 𝑒𝑒𝑁𝑁|𝜎𝜎𝑒𝑒) = (2𝜋𝜋𝜎𝜎𝑒𝑒2)−
1
2 exp �− 1

2𝜎𝜎𝑒𝑒2
∑ 𝑒𝑒𝑡𝑡2𝑛𝑛
𝑡𝑡=1 �.                           (5.14) 

    Likelihood function is a function to estimate the probability parameters or parameters 

of a statistical model to fit a specific event outcome that has already occurred. It is a 

“reverse” sense of probability function: probability function is a function of the unknown 

data 𝑍𝑍 for the given parameters 𝜇𝜇 and 𝜎𝜎, whereas the likelihood is a function of the 

unknown parameters 𝜇𝜇 and 𝜎𝜎 for the given data  𝑍𝑍 [48]. Therefore, likelihood is event 

outcomes oriented method to find out the probability function or statistical model.  Then 

the likelihood function can written as the follows when using the observed 𝑍𝑍𝑡𝑡 instead, 

𝐿𝐿(𝜙𝜙,𝜃𝜃,𝜎𝜎𝑒𝑒|𝑍𝑍1,𝑍𝑍2 … ,𝑍𝑍𝑁𝑁) = (2𝜋𝜋𝜎𝜎𝑒𝑒2)−
1
2 exp �− 1

2𝜎𝜎𝑒𝑒2
 𝑆𝑆(𝜙𝜙,𝜃𝜃)�,                  (5.15) 

where, 

𝑆𝑆(𝜙𝜙,𝜃𝜃) = ∑ 𝑒𝑒𝑡𝑡2𝑛𝑛
𝑡𝑡=1 .                                                (5.16) 

    Maximum likelihood estimation (MLE) is the method to identify the values of the 

parameters of probability function or statistical model which most likely generates the 

specific event outcome [41]. Therefore, the following maximization is formulated, 

max𝜙𝜙,𝜃𝜃: 𝐽𝐽 = 𝐿𝐿(𝜙𝜙,𝜃𝜃,𝜎𝜎𝑒𝑒|𝑍𝑍1,𝑍𝑍2 … ,𝑍𝑍𝑁𝑁),                               (5.17) 

or equivalently, we transform the maximization to be minimization with log-likelihood 

function, 

  min𝜙𝜙,𝜃𝜃: 𝐽𝐽 = −log 𝐿𝐿(𝜙𝜙,𝜃𝜃,𝜎𝜎𝑒𝑒|𝑍𝑍1,𝑍𝑍2 … ,𝑍𝑍𝑁𝑁).                               (5.18) 

    We can solve the unconstrained optimization problem by well-known Newton-
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Raphson algorithm in MATLAB or R [49], [50], [51], [52]. In Table 5.2, the parameters 

of Model 1 are solved by MLE implemented by “nlm” command in R.  

Table 5.2: Model 1 parameters estimation from MLE by R. 
 

Maximum Likelihood Estimates for ARIMA(1,1,1) 
 
Coefficients:                              𝜙𝜙1                              𝜃𝜃1                              intercept 
                                          -0.1418                               -1                                -0.0263 
Standard errors                   0.1186                                0.037                           0.0619       
Sigma^2 estimated as 92.71: log likelihood = -267.23, AIC = 542.46 
 

    Any estimated parameter that proved to be statistically insignificant should be removed 

from the model. We usually use the ratio � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�  to check if the 

coefficient is significant. If the ratio is larger than 1.96 (𝐹𝐹(𝑥𝑥 = 1.96) = 0.95, if 

𝑥𝑥~𝑁𝑁(0,1)), we say we are 95% confident that the true value of the coefficient is in the 

confidence interval and the coefficient is acceptable at the 0.05 level.  The lag 1 

autocorrelation term is insignificant (|−0.1418 0.1186⁄ | = 1.196 < 1.96). Thus, we 

drop this insignificant term and reduce the Model 1 to a subset model MA(1) model, 

Model 2, and recalculate the estimation for 𝜃𝜃1 in Table 5.3, 

Model 2: 𝑍𝑍�𝑡𝑡
(7) = 𝑒𝑒𝑡𝑡 − 𝜃𝜃1𝑒𝑒𝑡𝑡−1.                                       (5.19) 

 
Table 5.3: Model 2 parameters estimation from MLE by R. 

 
Maximum Likelihood Estimates for ARIMA(0,1,1) 
 
Coefficients:                              𝜃𝜃1                              intercept 
                                                   -1                                -0.0263 
Standard errors                  0.0382                                  0.0539       
Sigma^2 estimated as 94.19: log likelihood = -267.94, AIC = 541.88 
 

    Sigma^2 is the variance of the errors, 𝑒𝑒𝑡𝑡. Akaik information criterion (AIC) is a 
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measure of the relative quality of a statistical model for a given set of data from the 

perspective of information entropy, as measured by Kullback-Leibler divergence. If we 

denote log 𝐿𝐿(𝜃𝜃) as the value of the maximized likelihood objective function for a model 

with 𝑘𝑘 parameters fit to 𝑁𝑁 data points, then AIC for the model is −2 log 𝐿𝐿(𝜃𝜃) + 2𝑘𝑘. AIC 

is commonly used for model selection when comparing candidate models: the smaller 

value of AIC of the model, the better interpretation of the model to the actual data. When 

do the comparisons of AIC between the Model 1 and Model 2, the value is almost same. 

Thus, we choose the Model 2 as the selected model for diagnosis. Model 2 indicates that 

the time series of 𝑍𝑍�𝑡𝑡
(7) is mutually independent and it is more like to come from linear 

combination from white noise. 

5.1.3 ARIMA Modeling: Model Diagnosis 

    After a candidate model has been found, the model should be diagnostic checking to 

determine if the model adequately represents the time series. The candidate model can be 

inadequacy with a significant correlation among the residuals, or with the estimated 

parameters proved to be statistically insignificant. The residuals from an adequate fitted 

model should be closed to white noise, i.e. should be distributed normally with mean zero 

and variance equal to 𝜎𝜎2. In Figure 5.4, the ACF and PACF plots of the residuals of 

Model 2 prove the residuals to be insignificant correlated. However, in Figure 5.5, the 

histogram of the residuals of 𝑍𝑍𝑡𝑡
(7) to Model 2 simulation rejects the residuals to be white 

noise. 
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Figure 5.4: ACF and PACF of the residuals of Model 2. 
 

 

 
Figure 5.5: Histogram of the residuals of Model 2. 
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Figure 5.6: Comparison between actual data with simulation results from Model 2. 

 
 

    The histogram of the residuals of Model 2 does not perform in normal distribution. The 

model is not fitted well with the actual data observed illustrated by Figure 5.6 as well. 

Noticed in Table 5.3, the standard variation of the model residual is very large. Therefore, 

we conclude that the ARIMA modeling does not provide a good fitting for this time series 

only using the information of the time series itself. However, it does not mean the 

ARIMA modeling is meaningless. ARIMA modeling can be possible valuable for other 

time series data with different sampling time in the region or other regions. It is always 

chosen as the first step for building statistical time series models for the interested 

regions.  
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    In next section, we will consider an important factor, the count time series of neighbor 

regions, to show how big the affectedness of other regions to the interested region and 

improve the ARIMA modeling. 

5.2 Space-Time ARIMA modeling for Severe Braking Events Count 

Data Time Series in Region 7 

    Single time series ARIMA modeling only consider the time series of itself and 

unavoidably miss other information, e.g., spatial effect. Space-time time series modeling 

expresses the observation at time 𝑡𝑡 and zone 𝑖𝑖, 𝑍𝑍(𝑖𝑖)(𝑡𝑡) or 𝑍𝑍𝑡𝑡
(𝑖𝑖), as linear combination of 

past observations at zone 𝑖𝑖 and the neighboring zones. The advantage of spatial-time 

series modeling is that it correlates spatial factor to consider multi-regional time series as 

a necessary part of the model to improve the modeling adequacy for single region.  

    Space-time ARIMA time series modeling proposed by Pfeifer and Deutsch in 1980s 

provides powerful methodology to develop STARIMA models ranging from 

environmental to epidemiological and econometric [53], [36], [54], [55]. The STARIMA 

modeling used in traffic flow modeling starts in early 2000s [37], [58], [57]. Similar to 

ARIMA modeling, the STARIMA modeling is a three-stage procedure as well: 

identification, estimation and diagnostic checking. In the following, we will build 

STARIMA models for severe braking event count data time series in Region 7 as 

example to illustrate the three-stage procedure.  

    To assist in the formulation of this STARIMA model, the definition of the spatial lag 

operator is provided.  

Definition 9: Analogous to the lag operator in the time domain, define 𝐿𝐿(𝑙𝑙) be the spatial 

lag operator of spatial order 𝑙𝑙, and the operation rule is: 
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𝐿𝐿(0)𝑍𝑍𝑖𝑖(𝑡𝑡) = 𝑍𝑍𝑖𝑖(𝑡𝑡), 𝐿𝐿(𝑙𝑙)𝑍𝑍𝑖𝑖(𝑡𝑡) = 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑙𝑙)𝑍𝑍𝑗𝑗(𝑡𝑡),                              (5.20) 

where 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑙𝑙) are a set of weights with ∑ 𝑤𝑤𝑖𝑖𝑖𝑖

(𝑙𝑙)𝑚𝑚
𝑗𝑗=1 = 1 and 𝑖𝑖 stands for the region of interest 

for analyzing. The spatial order 𝑙𝑙 in 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑙𝑙) reflects the distance level between the region of 

interest 𝑖𝑖 to a neighbor region 𝑗𝑗. 𝑙𝑙 = 0 reflects the neighbor region 𝑗𝑗 is the region of 

interest; when 𝑙𝑙 =1, it reflects a neighbor region 𝑗𝑗 that is closest to the region of interest; 

when 𝑙𝑙 =2, it reflects a neighbors 𝑗𝑗 that is further away from the region of interest than 

the neighbors reflected by 𝑙𝑙 = 1, but closer than the neighbors reflected by 𝑙𝑙 = 3. The 

value of 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑙𝑙) is dependent on the number of neighbors with the same spatial order 𝑙𝑙 to the 

site of interest. For example, there are two neighboring regions with spatial order 𝑙𝑙 = 2 to 

region 𝑖𝑖, then, for each of the two regions 𝑗𝑗, 𝑤𝑤𝑖𝑖𝑖𝑖
(2) = 1

2
. 

    Based on the identified 13 Regions in Figure 4.12, we have the following distance 

level table (Table 5.4) and weight matrices. 

Table 5.4: Distance level between the regions in Figure 4.12. 
 

Order 1 2 3 
Region 1    
Region 2 4 14 13,15 
Region 3   5,9,15 
Region 4 2 14  
Region 5  7,15 3,6,9 
Region 6 7 13 5,14,15 
Region 7 6 5 9,13,15 
Region 8   11 
Region 9   3,5,7 
Region 10   12 
Region 11   8 
Region 12   10 
Region 13  6,15 2,7,14 
Region 14  2,4 6,13 
Region 15  5,13 2,3,6,7 
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Therefore, we deduce the weighting matrices for the regions with order 1, 2 and 3, 

respectively. 
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In general, the STARMA model can be presented as 

𝑍𝑍(𝑖𝑖)(𝑡𝑡) = ∑ ∑ 𝜙𝜙𝑘𝑘𝑘𝑘𝐿𝐿(𝑙𝑙)𝜆𝜆𝑘𝑘
𝑙𝑙=0

𝑝𝑝
𝑘𝑘=1 𝑍𝑍(𝑖𝑖)(𝑡𝑡 − 𝑘𝑘) − ∑ ∑ 𝜃𝜃𝑘𝑘𝑘𝑘𝐿𝐿(𝑙𝑙)𝑚𝑚𝑘𝑘

𝑙𝑙=0
𝑞𝑞
𝑘𝑘=1 𝜖𝜖(𝑖𝑖)(𝑡𝑡 − 𝑘𝑘) + 𝜖𝜖(𝑖𝑖)(𝑡𝑡), (5.21) 

where  𝑝𝑝 is the autoregressive order, 𝑞𝑞 is the moving average order, 𝜆𝜆𝑘𝑘 is the spatial order 

of 𝑘𝑘𝑡𝑡ℎ autoregressive term, 𝑚𝑚𝑘𝑘 is the spatial order of 𝑘𝑘𝑡𝑡ℎ moving average term, 𝜙𝜙𝑘𝑘𝑘𝑘 and 

𝜃𝜃𝑘𝑘𝑘𝑘 are parameters, and 𝜖𝜖𝑖𝑖(𝑡𝑡) are random normal errors. 

5.2.1 STARIMA Modeling: Model Identification 

    In univariate time series modeling, autocorrelation and partial autocorrelation are 

employed as primary tools in model identification. Similarly, we use space-time 

autocorrelation and partial autocorrelation to identify an adequate model, where the 
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space-time autocorrelation and partial autocorrelation are deduced from autocovariance 

and Yule-Walker equation. 

Definition 10: Space-time covariance between 𝑙𝑙𝑡𝑡ℎ and 𝑘𝑘𝑡𝑡ℎ order neighbors at time lag 𝑠𝑠 

is defined as 

𝛾𝛾𝑙𝑙𝑙𝑙(𝑠𝑠) = 𝐸𝐸 �∑ �𝐿𝐿(𝑙𝑙)𝑧𝑧𝑖𝑖(𝑡𝑡)�
𝑇𝑇
�𝐿𝐿(𝑘𝑘)𝑧𝑧𝑖𝑖(𝑡𝑡+𝑠𝑠)�
𝑁𝑁

𝑁𝑁
𝑖𝑖=1 � = 𝐸𝐸 �∑ [𝑊𝑊𝑙𝑙𝑧𝑧𝑖𝑖(𝑡𝑡)]𝑇𝑇[𝑊𝑊𝑘𝑘𝑧𝑧𝑖𝑖(𝑡𝑡+𝑠𝑠)]

𝑁𝑁
𝑁𝑁
𝑖𝑖=1 �.         (5.22) 

Therefore, space-time autocorrelation function (STACF) between 𝑙𝑙𝑡𝑡ℎ and 𝑘𝑘𝑡𝑡ℎ order 

neighbors at time lag 𝑠𝑠 is, 

𝜌𝜌𝑙𝑙𝑙𝑙(𝑠𝑠) = 𝛾𝛾𝑙𝑙𝑙𝑙(𝑠𝑠)
[𝛾𝛾𝑙𝑙𝑙𝑙(0)𝛾𝛾𝑘𝑘𝑘𝑘(0)]1/2.                                              (5.23) 

The space-time partial autocorrelation function (STPAF) between 𝑙𝑙𝑡𝑡ℎ and 𝑘𝑘𝑡𝑡ℎ order 

neighbors at time lag 𝑠𝑠 is solved from the Yule-Walker equations, 
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(5.24) 

The coefficients 𝜙𝜙𝑘𝑘𝑘𝑘 solved from the above Yule-Walker equation as 𝑙𝑙 = 0,1, … , 𝜆𝜆 and 

𝑘𝑘 = 0,1, … are called the space-time partial correlation function of spatial order 𝜆𝜆. The 

spatial order 𝜆𝜆 is at least as large as the maximum spatial order of hypothesized model. 

    When choose a class of ARMA models for a stationary time series, we have the 

autocorrelation function (ACF) and partial autocorrelation function (PACF) behavior 
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suggestion for the candidate model. Similarly, when choose a class of STARMA models 

for a stationary time series, we have the similar STACF and STPACF behavior suggestion 

table for a candidate STARIMA model. In the following, the space-time autocorrelation 

and partial correlation are calculated for site 7, respectively. 

 

Table 5.5: STACF and STPACF behavior for different classes of STARIMA models. 
 

Model STACF STPACF 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝𝜆𝜆) Decay exponentially with space 
and time 

Cuts off after 𝑝𝑝 lags in time and 
𝜆𝜆𝑝𝑝 lags in space 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑞𝑞𝑚𝑚) Cuts off after 𝑞𝑞 lags in time and 𝑚𝑚 
lags in spatial lags 

Decay exponentially with space 
and time 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝𝜆𝜆, 𝑞𝑞𝑚𝑚) Decay exponentially with space 
and time 

Decay exponentially with space 
and time 

 

 
Table 5.6: Space-Time autocorrelation 𝒌𝒌 = 𝟎𝟎, 𝒍𝒍 = 𝟎𝟎 − 𝟑𝟑, 𝑻𝑻 = 𝟏𝟏𝟏𝟏. 
 

Time lag Site Lag 0 Lag 1 Lag 2 Lag 3 
1 -0.3934 0.0806 -0.0970 -0.0273 
2 -0.0959 -0.0689 -0.0798 -0.0109 
3 0.0033 0.0104 -0.0383 -0.0107 
4 -0.0091 -0.0390 0.0288 -0.0267 
5 -0.0571 -0.0019 -0.0581 0.0194 
6 -0.0122 0.0007 0.0152 -0.0268 
7 0.1313 0.0403 0.0731 0.0328 
8 -0.0173 0.0066 -0.0013 -0.0016 
9 -0.0586 -0.0455 -0.0805 -0.0173 
10 -0.0035 0.0569 0.0605 0.0442 

 
 
 
Table 5.7: Space-Time partial autocorrelation  𝒌𝒌 = 𝟎𝟎, 𝒍𝒍 = 𝟎𝟎 − 𝟑𝟑, 𝑻𝑻 = 𝟐𝟐𝟐𝟐. 
 

Time lag Site Lag 0 Lag 1 Lag 2 Lag 3 
1 -0.9030 0.1623 0.0967 -0.0554 
2 -0.9522 0.1318 0.1193 -0.0370 
3 -0.9602 0.1325 0.0539 -0.1090 
4 -0.9826 0.1514 0.1177 -0.1125 
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Table 5.7 (continued): Space-Time partial autocorrelation  𝒌𝒌 = 𝟎𝟎, 𝒍𝒍 = 𝟎𝟎 − 𝟑𝟑, 𝑻𝑻 = 𝟐𝟐𝟐𝟐. 
 

Time lag Site Lag 0 Lag 1 Lag 2 Lag 3 
5 -1.0354 0.1806 0.0982 -0.1198 
6 -1.0358 0.1746 0.1198 -0.2272 
7 -0.9049 0.2860 0.2113 -0.1879 
8 -0.9326 0.2669 0.2321 -0.1905 
9 -0.9778 0.2441 0.2029 -0.2399 
10 -0.9742 0.3410 0.3330 -0.1771 
11 -0.9652 0.2971 0.2980 -0.2618 
12 -0.9469 0.2222 0.1813 -0.2375 
13 -0.8582 0.2620 0.2299 -0.1911 
14 -0.8717 0.2045 0.1380 -0.2466 
15 -0.8378 0.1856 0.1830 -0.2767 
16 -0.7783 0.1721 0.1793 -0.1639 
17 -0.8305 0.0463 0.0813 -0.1903 
18 -0.7377 0.0265 0.1537 -0.2023 
19 -0.5959 0.0934 0.2979 -0.0964 
20 -0.5222 0.0743 0.2830 -0.1073 
21 -0.4012 0.1082 0.2705 -0.0037 
22 -0.3551 0.1134 0.2837 0.0010 
23 -0.2790 0.1173 0.1795 -0.0437 
24 -0.1870 0.1217 0.1967 0.0083 
25 -0.0895 0.1073 0.0571 0.0807 

 
 

 
 

Figure 5.7: Spatial-time autocorrelation plot. 
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Figure 5.8: Spatial-time partial autocorrelation plot. 
 

    From the above calculation and plots, we notice that the lag 𝑙𝑙 = 2 is significant in ACF 

plot. For Region 7, the region with the spatial lag 2 is the Region 5 from the Table 5.4. 

Thus, we can conclude that the Region 5 and Region 7 are more correlational than other 

neighbor regions, which is convinced by Table 4.2. Therefore, we can imply a STARIMA 

model as: 

 𝑍𝑍�𝑡𝑡
(7) = 𝜙𝜙02𝑊𝑊2𝑍𝑍�𝑡𝑡

(7) + 𝑒𝑒𝑡𝑡 − 𝜃𝜃10𝑒𝑒𝑡𝑡−1 − 𝜃𝜃11𝑊𝑊1𝑒𝑒𝑡𝑡−1 − 𝜃𝜃12𝑊𝑊2𝑒𝑒𝑡𝑡−1.                (5.25) 

If we combine the 𝑒𝑒𝑡𝑡−1 terms, then the model is changed to be 

Model 3: 𝑍𝑍�𝑡𝑡
(7) = 𝜙𝜙02𝑊𝑊2𝑍𝑍�𝑡𝑡

(7) + 𝑒𝑒𝑡𝑡 − 𝜃𝜃�10𝑒𝑒𝑡𝑡−1.                           (5.26) 

Since 𝑊𝑊2𝑍𝑍�𝑡𝑡
(7) = 𝑍𝑍�𝑡𝑡

(5), we can rewrite Model 3 as  

Model 3: 𝑍𝑍�𝑡𝑡
(7) = 𝜙𝜙02𝑍𝑍�𝑡𝑡

(5) + 𝑒𝑒𝑡𝑡 − 𝜃𝜃�10𝑒𝑒𝑡𝑡−1,                               (5.27) 

where 𝑍𝑍�𝑡𝑡
(5) = ∇1𝑍𝑍𝑡𝑡

(5). The time series of 𝑍𝑍𝑡𝑡
(5) and its first-order difference time series 

from 10/01/2013 to 02/25/2014 are plotted as Figure 5.9 and Figure 5.10, respectively.  
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Figure 5.9: Time series of 𝑍𝑍𝑡𝑡

(5) from 10/01/2013 to 02/25/2014. 

 
Figure 5.10: First-order difference of the time series 𝑍𝑍𝑡𝑡

(5) from 10/01/2013 to 02/25/2014. 
 

5.2.2 STARIMA Modeling: Model Estimation 

    After the candidate STARMA Model 3 has been selected from the identification phase, 

we will estimate the parameters of the candidate model. Similar to the parameter 

estimation in ARIMA modeling, we use maximum likelihood estimation (MLE) method 

as well. 

    The model is rewritten as 

𝑒𝑒𝑡𝑡 − 𝜃𝜃�10𝑒𝑒𝑡𝑡−1 = 𝑍𝑍�𝑡𝑡
(7) − 𝜙𝜙02𝑊𝑊2𝑍𝑍�𝑡𝑡

(7).                                      (5.28) 
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If we assume the error terms is from same normal distribution process, the error 

distribution function can be presented as 

𝑓𝑓�𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛�𝜙𝜙,𝜃𝜃,𝜎𝜎𝑒𝑒 ,𝑍𝑍�𝑡𝑡
(7)� = (2𝜋𝜋𝜎𝜎𝑒𝑒2)−𝑛𝑛/2 exp �− 1

2𝜎𝜎𝑒𝑒2
𝑆𝑆(𝜙𝜙,𝜃𝜃,𝜎𝜎𝑒𝑒 ,𝑍𝑍𝑡𝑡)�,             (5.29) 

where   

𝑆𝑆�𝜙𝜙, 𝜃𝜃,𝜎𝜎𝑒𝑒 ,𝑍𝑍�𝑡𝑡
(7)� = ∑ 𝑒𝑒𝑡𝑡2𝑛𝑛

𝑡𝑡=1 = ∑ �𝑍𝑍
�𝑡𝑡

(7)−𝜙𝜙02𝑊𝑊2𝑍𝑍�𝑡𝑡
(7)

1−𝜃𝜃�10
�
2

𝑛𝑛
𝑡𝑡=1 .                         (5.30) 

The function 𝑆𝑆(𝜙𝜙,𝜃𝜃,𝜎𝜎𝑒𝑒 ,𝑍𝑍𝑡𝑡) is called the conditional sum-of-squares function of the 

candidate model. The corresponding likelihood function is then deduced as 

𝐿𝐿�𝜙𝜙,𝜃𝜃,𝜎𝜎𝑒𝑒�𝑍𝑍�𝑡𝑡
(7)� = (2𝜋𝜋𝜎𝜎𝑒𝑒2)−𝑛𝑛/2 exp �− 1

2𝜎𝜎𝑒𝑒2
𝑆𝑆(𝜙𝜙, 𝜃𝜃,𝜎𝜎𝑒𝑒 ,𝑍𝑍𝑡𝑡)�.                  (5.31) 

The parameters 𝜙𝜙,𝜃𝜃 and 𝜎𝜎𝑒𝑒 can then be identified by maximize the likelihood under the 

observation of 𝑍𝑍�𝑡𝑡
(7) and 𝑍𝑍�𝑡𝑡

(5). To make the MLE convenient, we proceed with the 

likelihood function to be log-likelihood function for optimization, as the logarithm of the 

likelihood function is more convenient to work with. The log-likelihood function denoted 

as ℒ(𝜙𝜙, 𝜃𝜃,𝜎𝜎𝑒𝑒) is given by 

ℒ(𝜙𝜙,𝜃𝜃,𝜎𝜎𝑒𝑒) = −𝑛𝑛
2

log(2𝜋𝜋) − 𝑛𝑛
2

log(𝜎𝜎𝑒𝑒2) − 1
2𝜎𝜎𝑒𝑒2

𝑆𝑆(𝜙𝜙, 𝜃𝜃,𝜎𝜎𝑒𝑒).                   (5.32) 

Then we can formulate the minimization problem as Eq. (5.33), 

min𝜙𝜙,𝜃𝜃: 𝐽𝐽 = −ℒ(𝜙𝜙, 𝜃𝜃,𝜎𝜎𝑒𝑒).                                               (5.33) 

The minimization problem is solved with unconstrained minimization algorithm and the 

parameters of the STARIMA model is solved in Table 5.8. 

Table 5.8: Model 3 parameters estimation from MLE by unconstrained minimization algorithm. 
 

Maximum Likelihood Estimates for STARIMA(12,1,10) 
 
Coefficients:                     𝜙𝜙01                    𝜙𝜙02                    𝜃𝜃�10                    intercept 
                                            0                 1.0338                     0.9                                0 
Sigma^2 estimated as 25.3830: log likelihood = -218.5904, AIC = 441.1809 
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Therefore, the STARIMA model is formulated as 

𝑍𝑍�𝑡𝑡
(7) = 1.03338 𝑍𝑍�𝑡𝑡

(5) + 𝑒𝑒𝑡𝑡 − 0.9𝑒𝑒𝑡𝑡−1.                                       (5.34) 

All the parameters estimated in Model 3 are assumed to be significant. Compared with 

Model 2, the 𝑀𝑀𝑀𝑀(1) part is still kept and additional term is the spatial factor of Region 5. 

The AIC of Model 3 and standard deviation of model error are all less than those indices 

of Model 2. In next section, we implement diagnostic checking with residuals and 

prediction of Model 3 to demonstrate the adequacy of Model 3. 

5.2.3 STARIMA Modeling: Model Diagnosis 

    The initial diagnosis for residuals of the Model 3 to actual data is to check whether the 

residuals are significantly autocorrelated. Figure 5.11 shows the residuals are not 

significantly autocorrelated.  The histogram plot of the residuals of Model 3 to actual data 

is then presented in Figure 5.12. The histogram is close to normal distribution shape. 

However, the histogram has a positive displacement away from zero and presents a short 

and wide shape, which means the standard deviation of the errors is large.  
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Figure 5.11: ACF and PACF of the residuals of Model 3. 
 

 
Figure 5.12: Histogram of the residuals of Model 3. 
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Figure 5.13: Comparison between actual data with simulation results from Model 3. 

 

    Figure 5.13 illustrate the fitting of model simulation and prediction to actual data. A 

random walk affect is gradually obvious and hence leads to a trend noticed from the 

comparison between actual data to Model 3 simulation. This is the reason to cause the 

positive displace of the histogram plot. However, when compare the prediction of Model 

3 to actual data, the Model 3 is proved to be advantage. Also, it is notices that the starting 

30 days of simulation of Model 3 is close to actual data. Therefore, we conclude Model 3 

is specifically adequate for describing the severe braking events count data in shot time 

space. For large time space, Model 3 needs to be modified with certain offset.  
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5.3 Statistical Time Series Modeling Conclusion 

    In this chapter, time series modeling procedure for severe driving events count data in 

a region is investigated. ARIMA modeling for univariate time series modeling procedure 

and STARIMA modeling for multivariate time series modeling procedure are proposed 

respectively. The sever braking event count data in Region 7 denoted by Cluster 7 from 

10/01/2013 to 02/25/2014 is utilized as an example to illustrate the implementation of the 

procedures. Time series from Day 17 to Day 89 is used for building adequate statistical 

models, and time series of Day 101 to Day 134 is used to validate the models from the 

procedures. Improvement of adequacy from ARIMA modeling to STARIMA modeling 

demonstrates a stronger correlation of spatial factor than daily temporal factor for this 

exemplified severe braking event count time series.  

    In next chapter, we will continue the time series modeling and give other two modeling 

procedures which are more focusing on the nature property of event occurrence and event 

count patterns.  
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Chapter 6 

Generalized Linear Time Series Modeling and Nonparametric 

Time Series Modeling Expansion 

    In last chapter, the ARIMA and STARIMA methodologies are investigated for 

modeling the time series of the severe braking events count data in Region 7. The 

modeling procedures use only the self-information of the time series. They give adequate 

data description and supply embracive future data prediction. However, when using 

ARIMA or STARIMA methodology, the time series variable is always assumed to be 

normal distributed, which is conflict to the fact that the count data are relative to the 

Poisson distribution. The original count data is not appropriate for ARIMA and 

STARIMA modeling and, thus, we employ first difference operation processing the count 

data time series in ARIMA and STARIMA procedure. This difference operation for count 

data results in approximate normal distributed data, and the modeling procedures are 

essentially avoid discussing the natural property of the count data. In this chapter, we will 

continue to investigate the appropriate models for describing the count data time series 

and predicting future count data based on the Poisson distribution property. Since the 

spatial factor is proved to be a very influential factor in Section 5.2, the models in this 

chapter use the spatial factor as explanatory variable for examining the relations of the 

region of interest with its neighbors, and improve the count data description and 

prediction based on the spatial relations. 

    In Section 6.1, in the beginning, the Poisson distribution property is briefly reviewed. 

Then we formulate the generalized linear model with Poisson distribution for examining 
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the Poisson distribution property of severe driving events count data in Region 7. In 

Section 6.2, nonparametric models are developed to provide better description of the 

severe braking events count stochastic process and to give better interpretation on the 

limit of the generalized Poisson model. The nonparametric models are inspired by 

Poisson Hidden Markov Modeling and by observed Poisson distribution patterns of the 

count data. The generalized linear model and the nonparametric model are developed 

with count data time series from Day 17 to Day 89, and validated by the count data time 

series from Day 101 to Day 134, respectively.  

6.1 Generalized Linear Model with Poisson Distribution 

    Before we formulate the generalized linear model with Poisson distribution for the 

severe braking event count data time series, let us briefly review the Poisson distribution 

property in advance.  

6.1.1 The Poisson Distribution [48] 

    A random variable 𝑌𝑌 is said to have a Poisson distribution with parameter 𝜇𝜇 if it takes 

integer values 𝑦𝑦 = 0,1,2, … with probability  

Pr{𝑌𝑌 = 𝑦𝑦} = 𝑒𝑒−𝜇𝜇𝜇𝜇𝑦𝑦

𝑦𝑦!
,                                                 (6.1) 

for 𝜇𝜇 > 0. The mean and variance of the this distribution can be shown to be 

𝐸𝐸(𝑌𝑌) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) = 𝜇𝜇.                                             (6.2) 

6.1.2 Generalized Linear Models Formulation 

    Generalized linear models extend linear models by allowing some non-linearity in the 

model structure; this extension is much more flexible in the specification of the 

distribution of the response variable 𝑌𝑌 [58]. Analogous to linear model structure, 
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𝑦𝑦𝑖𝑖 = 𝑋𝑋𝑖𝑖𝛽𝛽 + 𝜖𝜖𝑖𝑖, where 𝜖𝜖𝑖𝑖~𝑁𝑁(0,𝜎𝜎2), the generalized linear model structure is presented as 

𝔼𝔼(𝑦𝑦𝑖𝑖) = 𝑋𝑋𝑖𝑖𝛽𝛽, where 𝔼𝔼(∙) is the smooth monotonic function. Cited from Nelder and 

Wedderburn [59], a generalized linear model (GLM) consists of three components: 

1. A random component for the response named response variable, 𝑌𝑌, which has a 

distribution following the exponential family.  

2. A linear systematic component relating the linear predictor, 𝜂𝜂 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 +

𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘, to the product of explanatory variable  𝑋𝑋𝑖𝑖 and the parameters 

𝛽𝛽𝑖𝑖.   

3. A smooth and invertible linearizing link function 𝑔𝑔(∙), which transforms the 

expectation of the response variable, 𝜇𝜇 = 𝐸𝐸(𝑌𝑌), to the linear predictor: 

𝑔𝑔(𝜇𝜇) = 𝜂𝜂 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘.                             (6.3) 

    Generalized linear modeling (GLM) used in transportation field focuses mostly on 

traffic accidents data. In [60 - 63], the authors illustrated that generalized linear models 

are suitable models for determining relationships between accidents and characteristics of 

traffic and road geometry. In the works, the response variable is the count of accidents 

and the explanatory variables are chosen as the characteristic of traffic, e.g., traffic flow 

rate, and road geometry, such as, lane width, length of the segment, curve radius, etc.. 

Generalized linear models are formulated incorporating the traffic characteristics and 

road geometry in the form of linear predictor (Eq. (6.3)) for describing and predicting 

future accidents data. Goodness-of-fitting tests (GOF), such as, Pearson’s 𝑋𝑋2and the 

scaled deviance (𝐺𝐺2), are employed to address the adequacy of the GLMs. GOF tests use 

the properties of a hypothesized distribution to access whether or not observed data are 

generated from a given distribution [64].  
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    Intuitively similar to accidents property, we use GLM for addressing the relationship 

between severe driving events with location. The response variable is the severe braking 

events count data in Region 7, denoted as 𝑌𝑌(7) (we use 𝑌𝑌(7) instead of 𝑍𝑍𝑡𝑡
(7) due to 

ignoring the temporal factor in GLM at this section). The explanatory variable is chosen 

to be the corresponding severe braking events count data in Region 5, denoted as 𝑌𝑌(5). 

Thus, the linear predictor 𝜂𝜂 will be linear combination of the count data in Region 5 

(denoted as 𝑌𝑌(5)) and the design parameters 𝛽𝛽𝑘𝑘, which is 𝜂𝜂 = 𝛽𝛽0 + 𝛽𝛽1𝑌𝑌(5). For the counts 

data with Poisson distribution, the link function used in generalized linear modeling is 

always chosen as log function, which means 𝜂𝜂 = 𝑔𝑔(𝜇𝜇) = ln𝜇𝜇, where 𝜇𝜇 is the parameter 

of the Poisson distribution of the response variable 𝑌𝑌(7),  

𝜂𝜂 = ln𝜇𝜇 = 𝛽𝛽0 + 𝛽𝛽1𝑌𝑌(5).                                                  (6.4) 

    In Figure 6.1, we reorganize the severe braking events count data time series in Region 

5 in an order of increasing value and remaining the time order for the count data if the 

values of the daily counts are same. Corresponding to the reorganization, the severe 

braking events count data time series in Region 7 is also changed. From this plot we have 

an observation that the count data in Region 7 have a weak trend of increasing when the 

count data in Region 5 is strictly increase. This observation convinces the proposed 

Poisson model presented by Eq. 6.4. 
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Figure 6.1: Reorganized severe braking events count series in Region 5 and Region 7 in an increasing order 

of count data in Region 5. 
 

6.1.3 The Poisson Regression for Generalized Linear Poisson Model 

    Poisson distribution belongs to the exponential family of distributions. In [40], [41], 

the general form of the exponential family is provided with canonical parameter (𝜃𝜃). In 

the general form each of the 𝑦𝑦𝑖𝑖 observation has been defined in terms of the parameters 

𝜃𝜃. The joint probability density function may be expressed as likelihood function of 𝜃𝜃 

given the observations 𝑦𝑦𝑖𝑖.The parameter 𝜃𝜃 can be estimated by maximum likelihood 

function and then the coefficients of the generalized linear model is estimated. We 

describe this procedure in details below.  

    The Poisson probability density function (Eq. 6.1) can be rewritten in exponential-

family form as  

𝑓𝑓𝑦𝑦(𝑦𝑦; 𝜇𝜇) = exp {𝑦𝑦 ln(𝜇𝜇) − 𝜇𝜇 − ln Γ(𝑦𝑦 + 1)}.                                   (6.5) 

The log-likelihood function can be abstracted from the exponential form as 

ℒ(𝜇𝜇;𝑦𝑦) = ∑ {𝑦𝑦𝑖𝑖 ln(𝜇𝜇) − 𝜇𝜇 − ln Γ(𝑦𝑦𝑖𝑖 + 1)}𝑛𝑛
𝑖𝑖=1 .                                 (6.6) 

The log-likelihood function can then be parameterized in terms of 𝑋𝑋𝑋𝑋 through the log 
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link function. Substituting the inverse link, exp(𝑋𝑋𝑋𝑋), for 𝜇𝜇 in the above formula, 

ℒ(𝜇𝜇;𝑦𝑦) = ∑ {𝑦𝑦𝑖𝑖 ln(exp(𝑋𝑋𝑋𝑋)) − exp(𝑋𝑋𝑋𝑋) − ln Γ(𝑦𝑦𝑖𝑖 + 1)}𝑛𝑛
𝑖𝑖=1   

= ∑ {𝑦𝑦𝑖𝑖 exp(𝑋𝑋𝑋𝑋) − ln Γ(𝑦𝑦𝑖𝑖 + 1)}𝑛𝑛
𝑖𝑖=1 .                                              (6.7) 

Measurement of model discrepancy (or goodness-of-fitting of model with data) in a form 

of logarithm of a ratio of likelihoods always is the scaled deviance (𝐺𝐺2). Suppose there 

are 𝑁𝑁 observations we can fit models to the observations containing as many as 𝑁𝑁 

parameters. The simplest model, named the null model, has one parameter 𝜇𝜇 representing 

all observations [65]. At the other extreme the saturated model, has 𝑁𝑁 parameters, 

dedicating one parameter to each observation and consequently match the data exactly 

[65].  The saturated model gives us a baseline for measuring the discrepancy for a 

proposed model. The residual deviance for a proposed GLM is 

𝐷𝐷𝑚𝑚 = 2(lnℒ𝑠𝑠 − lnℒ𝑚𝑚),                                               (6.8) 

where ℒ𝑚𝑚 is the maximized likelihood of the proposed GLM and ℒ𝑠𝑠 is the maximized 

likelihood of a saturated model [65]. The scaled deviance (𝐺𝐺2) is simply the difference in 

the residual deviances for models. Suppose that Model 0 ,with 𝑘𝑘0 + 1 coefficients, is 

compared with Model 1, with 𝑘𝑘1 + 1 coefficients. Suppose 𝑘𝑘0 < 𝑘𝑘1, in other words, 

Model 0 would simply omit some of the repressors in Model 1. We test the null 

hypothesis that Model 0 are corrected by computing the deviance 

𝐺𝐺02 = 𝐷𝐷0 − 𝐷𝐷1.                                                     (6.9) 

Under the hypothesis, 𝐺𝐺02 is asymptotically distributed as Chi-square with 𝑘𝑘1 − 𝑘𝑘0 

degrees of freedom, 𝐺𝐺02~𝜒𝜒,𝑘𝑘1−𝑘𝑘0
2 . The confidence interval for design parameters 𝛽𝛽𝑗𝑗 for the 

hypothesis 𝐻𝐻0: 𝛽𝛽𝑗𝑗 is acceptable at 𝑝𝑝 value can be calculated for 

 2(lnℒ1 − lnℒ0) ≤ 𝜒𝜒1−𝑝𝑝,𝑘𝑘1−𝑘𝑘0
2 .                                        (6.10) 
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    The Poisson model is formulated in Eq. (6.4) and the generalized linear model is 

solved by maximum likelihood estimation method. In Table 6.1, the Poisson model 

details are presented. 

Table 6.1: Poisson model parameters estimation from MLE by R. 
 

Poisson Model: glm(formular = y~x, family = poisson) 
 
Deviance Residuals: 
    Min                         1Q                          Median                      3Q                      Max 
-5.776                  -3.2392                          -0.5722                1.4667                  6.7054 
 
Coefficients: 
                               Estimate                  Std. Error                 𝑧𝑧 value              Pr > |𝑧𝑧|         
(Intercept) 𝛽𝛽0        1.657494                     0.05935                   27.93                 <2e-16 
            𝛽𝛽1              0.090573                   0.005585                   16.22                 <2e-16 
 
(Dispersion parameter for Poisson family taken to be 1) 
       Null deviance: 853.09 on 72 degrees of freedom 
Residual deviance: 614.58 on 71 degrees of freedom 
AIC: 816.98  
 

Therefore, the Poisson model is estimated as  

ln 𝜇𝜇 = 1.66 + 0.09𝑌𝑌(5).                                            (6.11) 

 
Figure 6.2: Poisson Model fitting vs actual data. (Explanatory variable is severe braking events count data 

in Region 5 and response variable is severe braking events count data in Region 7.) 
 
 

    The solved Poisson model fitting versus the actual data is presented in the Figure 6.2, 
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whose explanatory variable is the event count data in Region 5 and the response variable 

is the corresponding daily count data in Region 7. The design parameters are statistically 

significant confirmed by the p-value (Pr > |𝑧𝑧|) which are quite near to zero. The residual 

deviance (deviance between saturate model with the Poisson model, 2(lnℒ𝑚𝑚 − lnℒ0)) is 

very large. When solve 𝑝𝑝-value from Eq. 6.10, 𝑝𝑝-value is approximately zero showing 

that there is a significant lack of evidence to reject the Poisson model compared with the 

Null model.  

    We rewrite the Poisson model in term of time series form describing the severe braking 

events count data in Region 7 as 

𝑍̂𝑍𝑡𝑡
(7) = 𝑒𝑒𝑒𝑒𝑒𝑒1.66+0.09𝑍𝑍𝑡𝑡

(5)
,                                           (6.12) 

where 𝑍̂𝑍𝑡𝑡
(7) is the prediction of events count data time series in Region 7 from the 

observation of the events count data in Region 5. The errors are 𝑒𝑒𝑡𝑡 = 𝑍𝑍𝑡𝑡
(7) − 𝑍̂𝑍𝑡𝑡

(7), and are 

convinced that they are white noise by the ACF and PACF plots in Figure 6.3. The 

histogram of the errors histogram is presented in Figure 6.4, which improves the fitting 

when compare with Model 3 on this example. However, there is a deviation from zero in 

the histogram. It is because that the exponential operation in Eq. (6.12) causes the 

minimum value is 5.26 when 𝑍𝑍𝑡𝑡
(5) = 0. Therefore, we revise the Eq. (6.12) to be Eq. 

(6.13) to eliminate the deviation,  

𝑍̂𝑍𝑡𝑡
(7) = 𝑒𝑒𝑒𝑒𝑒𝑒1.66+0.09𝑍𝑍𝑡𝑡

(5)
− 5.26.                                           (6.13) 

The simulation of the revised Poisson model from Day 17 to Day 89 and validation from 

Day 100 to Day 134 are presented in Figure 6.5, respectively. 
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Figure 6.3: ACF and PACF of the errors between prediction from Poisson model and actual data.  

 

 
Figure 6.4: Residuals of Poisson model to actual severe braking events count series. 
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Figure 6.5: Comparison between actual data with simulation results from revised Poisson Model. 

 

    The revised Poisson model is proved to be adequately describing the actual count data 

and predict the future count data from Figure 6.5, respectively. However, there is a strong 

overdispersion phenomenon when use the Poisson model interpreting the actual data 

noticed in Figure 6.2. For example, the variance of 𝑌𝑌(7) is quite different from the mean 

of 𝑌𝑌(7), as its variance 𝜎𝜎72 = 94.5 and mean 𝜇𝜇72 = 9, which is not consist with a single 

Poisson distribution property. In addition, the Poisson model cannot interpret the 

stochastic distribution of the response variable when 𝑌𝑌(5) = 0. Although the Poisson 

model is able to model the actual data adequately, it is unable to catch up details of the 

stochastic process. In next section, a nonparametric model, inspired by Poisson Hidden 
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Markov Modeling and by observed Poisson distribution patterns of the count data is 

proposed to solve the overdispersion phenomenon and the stochastic distribution 

phenomena.  

6.2 Nonparametric Independent Mixture Poisson Model and Hidden 

Markov Model 

    One method of dealing with overdispersion is to use a mixture model of multimodal 

distribution. Mixture models are the models consisting unobserved groups, each having a 

distinct distribution for the observed variable [66]. Since the severe braking events count 

data, 𝑍𝑍𝑡𝑡
(7), is not strong autocorrelated proved by Model 2, we start modeling the count 

data supposing that each daily count data is generated from an independent mixture 

model. The independent mixture modeling is thus investigated in Section 6.2.1. The 

independent mixture model could very adequately describe the actual data; however, it is 

weak in perdition. As proved in the STARIMA model and Poisson model, the spatial 

factor is very influential in improving the prediction the future data; we use the count 

data series in Region 5 as hidden states which influence the count data in Region 7 to 

construct the final Hidden Markov Model (HMM) [67] in Section 6.2.2. The simulation 

and prediction results illustrate the adequacy of the model. 

6.2.1 The Independent Mixture Poisson Model 

    The independent mixture model uses the information of the time series itself as well. 

We suppose that each count in Region 7, 𝑌𝑌(7), is generated from an independent mixture 

model, which consists of a finite number, say 𝑚𝑚, of Poisson distributions with means 𝜆𝜆1, 

𝜆𝜆2,…, 𝜆𝜆𝑚𝑚. The probabilities assign to the different components is 𝛿𝛿1, 𝛿𝛿2,…, 𝛿𝛿𝑚𝑚, 
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respectively, and let 𝑝𝑝1, 𝑝𝑝2,…, 𝑝𝑝𝑚𝑚 denote their density functions. To specify the 

component, we define a discrete random variable 𝒞𝒞 which perform the mixing: 

𝐶𝐶 = �

1 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝛿𝛿1 
2 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝛿𝛿2
… …
𝑚𝑚 𝑤𝑤𝑖𝑖𝑖𝑖ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 − ∑  𝛿𝛿𝑖𝑖𝑚𝑚−1

𝑖𝑖=1

. 

It is easy to show that the probability of 𝑌𝑌(7) is given by 

Pr�𝑌𝑌(7) = 𝑦𝑦� = ∑ Pr�𝑌𝑌(7) = 𝑦𝑦�𝐶𝐶 = 𝑖𝑖� Pr(𝐶𝐶 = 𝑖𝑖)𝑚𝑚
𝑖𝑖=1 = ∑  𝛿𝛿𝑖𝑖𝑝𝑝𝑖𝑖(𝑦𝑦)𝑚𝑚

𝑖𝑖=1 .        (6.14) 

The structure is represented by the graph in Figure 6.6. 

 
Figure 6.6: Independent mixture model structure. 

 

    Analogously, the estimation of the parameters of a mixture distribution is often 

identified by maximum likelihood (ML). The likelihood of the mixture model with 𝑚𝑚 

components is given as 

𝐿𝐿(𝜆𝜆1, … 𝜆𝜆𝑚𝑚, 𝛿𝛿1, … , 𝛿𝛿𝑚𝑚|𝑦𝑦1, … ,𝑦𝑦𝑁𝑁) = ∏ ∑ 𝛿𝛿𝑖𝑖𝑝𝑝𝑖𝑖�𝑦𝑦𝑗𝑗, 𝜆𝜆𝑖𝑖�𝑚𝑚
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 .                  (6.15) 

Then maximum likelihood can be equivalent and formulated as 

𝑀𝑀𝑀𝑀𝑀𝑀: 𝐽𝐽 = − log(𝐿𝐿) and                                               (6.16 (a)) 

𝑠𝑠. 𝑏𝑏.  ∑  𝛿𝛿𝑖𝑖𝑚𝑚
𝑖𝑖=1 = 1.                                                 (6.16 (b)) 

    By minimization the likelihood function, we can identify the components of the 

mixture model fitted to the count data in Region 7 shown as in Table 6.2. 
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Table 6.2: Poisson independent mixture models fitted to the count data in Region 7. 
model      𝒊𝒊 𝜹𝜹𝒊𝒊 𝝀𝝀𝒊𝒊 − 𝐥𝐥𝐥𝐥𝐥𝐥 𝑳𝑳 Mean variance 
m = 2 1       0.5        0.9 245.9616 9.1 76.4 
 2       0.5      17.4    
m = 3 1       0.39        0.1 214.6215 9.1 85.5 
 2       0.21        6.1    
 3       0.40      19.4    
m = 4 1       0.39        0.1 208.2795 9.1 93.2 
 2       0.16        4.9    
 3       0.33      15.6    
 4       0.11      26.8    
Observations     9.1 94.5 
 

    From Table 6.2, the independent mixture model with 4 components is more appropriate 

describing count data series in Region 7 than other mixture models, as the mean and 

variance is close to the observations. Thus, we have the following model formulation 

Independent Mixture Poisson Model 

Pr�𝑌𝑌(7) = 𝑦𝑦� = ∑ Pr�𝑌𝑌(7) = 𝑦𝑦�𝐶𝐶 = 𝑖𝑖� Pr(𝐶𝐶 = 𝑖𝑖)4
𝑖𝑖=1 = ∑  𝛿𝛿𝑖𝑖𝑝𝑝𝑖𝑖(𝑦𝑦)4

𝑖𝑖=1 ,               (6.17 (a)) 

where, 𝑝𝑝1(𝑦𝑦) = 𝑒𝑒−0.10.1𝑦𝑦

𝑦𝑦!
,𝑝𝑝2(𝑦𝑦) = 𝑒𝑒−4.94.9𝑦𝑦

𝑦𝑦!
, 𝑝𝑝3(𝑦𝑦) = 𝑒𝑒−15.615.6𝑦𝑦

𝑦𝑦!
,𝑝𝑝4(𝑦𝑦) = 𝑒𝑒−26.826.8𝑦𝑦

𝑦𝑦!
, and       

(6.17 (b)) 

𝛿𝛿1 = 0.39, 𝛿𝛿2 = 0.16, 𝛿𝛿3 = 0.33, 𝛿𝛿4 = 0.31.                          (6.17 (c)) 

This independent mixture Poisson model is very precise in describing the severe braking 

events daily count stochastic process. The time series of 𝑍𝑍𝑡𝑡
(7) is one experiment from the 

independent mixture Poisson stochastic process. Ideally, we can simulate the independent 

mixture Poisson stochastic process using Monte Carlo method to obtain infinite possible 

sets of count series [68]. With a specified condition, the independent mixture Poisson 

model can generate a set of count series exactly close the time series of 𝑍𝑍𝑡𝑡
(7)from Day 17 

to Day 89. However, the independent mixture model is hard to use for prediction, as a 

Poisson component is uniformly generated based on its probability. For example, Figure 
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6.7 shows best simulation from independent mixture Poisson model and one example set 

of count series prediction from the independent mixture Poisson model. 

 
Figure 6.7: Comparison between actual data with simulation results from Independent Mixture Poisson  
                   Model (IMPM). 

 

6.2.2 The Hidden Markov Model (HMM) Discussion 

    The severe braking event count time series 𝑌𝑌(7) is not strong autocorrelation, in other 

words, the count time series is not serial dependence, therefore, the independent mixture 

Poisson model (Eq. (6.17)) is enough to describe the count series. However, as mentioned 

at the end of Section 6.2.1, we cannot employ the independent mixture Poisson model for 

perdition, because perdition requires data serial dependence. Once we can, using a certain 

rule to reveal a hidden relation connecting the series to be serially dependent, we are able 
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to predict the future count value through modeling the dependence rule.              

    Assuming the parameter process of the count series is serially dependent, a simple and 

mathematically convenient way to model this dependence is Markov chain. The resulting 

model for the observations is called Hidden Markov Model. 

    A Hidden Markov model (HMM) is a mixture model in which the distribution that 

generates an observation depends on the state of an underlying and unobserved Markov 

process [66], [69]. It can accommodate both overdispersion and serial dependence, which 

overcomes the drawbacks of general linear models with Poisson distribution and 

independent mixture Poisson model. 

Definition 11: 

    A Hidden Markov Model {𝑍𝑍𝑡𝑡: 𝑡𝑡 ∈ ℕ} is a particular kind of dependent mixture model, 

with 𝑍𝑍𝑡𝑡 is dependent on the state 𝐶𝐶𝑡𝑡. The state transition is presented as Eq. (6.18), the 

model output 𝑍𝑍𝑡𝑡 is determined dependent on the current state  𝐶𝐶𝑡𝑡, presented by Eq. (6.19), 

   Pr(𝐶𝐶𝑡𝑡) = Pr(𝐶𝐶𝑡𝑡|𝐶𝐶𝑡𝑡−1), 𝑡𝑡 = 1,2, … and                                            (6.18) 

Pr(𝑍𝑍𝑡𝑡) = Pr(𝑍𝑍𝑡𝑡|𝐶𝐶𝑡𝑡), 𝑡𝑡 ∈ ℕ.                                                   (6.19) 

    The model consists of two parts: firstly, an unobserved state process {𝐶𝐶𝑡𝑡: 𝑡𝑡 = 1,2, … } 

satisfying the Markov property, and secondly the ‘state-dependent process’ {𝑍𝑍𝑡𝑡: 𝑡𝑡 =

1,2, … } such that, when 𝐶𝐶𝑡𝑡 is known, the distribution of 𝑍𝑍𝑡𝑡 depends only on the current 

state 𝐶𝐶𝑡𝑡 and not on previous states or observations [66]. This structure is represented by 

the diagram in Figure 6.8. 
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Figure 6.8: Basic Hidden Markov Model diagram. 

 
 

    However, when apply HMM method for the severe braking event count series in 

Region 7, we have to think over two questions: i) what is the unobserved state for the 

count series in Region 7? ii) How could we find a rule to convert the count series in 

Region 7 to be serially dependent?  

    Let’s start with the first question: what is the unobserved state for the count series in 

Region 7. In STARIMA model and general Poisson model reveal a strong correlation 

between the events count series in Region 5 and it in Region 7, thus, let’s start with an 

assumption that the unobserved state is the independent Poisson component of the event 

count series in Region 5. Noticed that the mean of 𝑌𝑌(5) is 4.3 and the variance of 𝑌𝑌(5) is 

32.9, therefore, an independent mixture model is formulated to describe the count series 

of 𝑌𝑌(5), and the Poisson components of 𝑌𝑌(5) are assumed to be unobserved states in the 

Hidden Markov Model. 

First Remark: The Poisson components of 𝑌𝑌(5) are assumed to be unobserved states in a 

Hidden Markov Model for describing the count series of 𝑌𝑌(7). 

    Similarly, we suppose that each count data of 𝑌𝑌(5) is generated from an independent 

mixture model, which consists of 𝑚𝑚 Poisson distributions with means 𝜆𝜆1, 𝜆𝜆2,…, 𝜆𝜆𝑚𝑚. The 

probabilities assign to the different components are 𝛿𝛿1, 𝛿𝛿2,…, 𝛿𝛿𝑚𝑚, respectively, and let 𝑝𝑝1, 
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𝑝𝑝2,…, 𝑝𝑝𝑚𝑚 denote their density functions. Then we have 

𝐶𝐶 =

⎩
⎪
⎨

⎪
⎧

1 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝛿𝛿1 
2 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝛿𝛿2
… …

𝑚𝑚 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 − �  𝛿𝛿𝑖𝑖

𝑚𝑚−1

𝑖𝑖=1

 

and 

Pr�𝑌𝑌(5) = 𝑦𝑦� = ∑ Pr�𝑌𝑌(5) = 𝑦𝑦�𝐶𝐶 = 𝑖𝑖� Pr(𝐶𝐶 = 𝑖𝑖)𝑚𝑚
𝑖𝑖=1 = ∑  𝛿𝛿𝑖𝑖𝑝𝑝𝑖𝑖(𝑦𝑦)𝑚𝑚

𝑖𝑖=1 .            (6.20) 

Analogously, the likelihood function and maximum likelihood problem of the mixture 

model with 𝑚𝑚 components formulated as Eqs. (6.15 – 6.16). 

    Solving the minimization likelihood problem, we can identify the components of the 

mixture model fitted to the series of 𝑌𝑌(5) is presented in Table 6.3. 

Table 6.3: Poisson independent mixture models fitted to the counts data in Region 5. 

model      𝒊𝒊 𝜹𝜹𝒊𝒊 𝝀𝝀𝒊𝒊 − 𝐥𝐥𝐥𝐥𝐥𝐥 𝑳𝑳 Mean variance 
m = 2 1 0.52         0 171.8659 4.3 24.4 

 2 0.48 8.97    
m = 3 1 0.51         0 154.5403 4.3 30.9 

 2 0.13 2.4    
 3 0.36 11.1    

m = 4 1 0.51 0 152.8461 4.2 32.8 
 2 0.12 2.1    
 3 0.30 9.5    
 4 0.07 16.3    

Observations     4.3 32.9 
     

    It is obvious that an independent mixture model with 4 components is more 

appropriate describing series of 𝑌𝑌(5) than other mixture models. The independent mixture 

Poisson model is presented as follows, 

Pr�𝑌𝑌(5) = 𝑦𝑦� = ∑ Pr�𝑌𝑌(5) = 𝑦𝑦�𝐶𝐶 = 𝑖𝑖� Pr(𝐶𝐶 = 𝑖𝑖)4
𝑖𝑖=1 = ∑  𝛿𝛿𝑖𝑖𝑝𝑝𝑖𝑖(𝑦𝑦)4

𝑖𝑖=1 ,       (6.21 (a)) 

where 
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𝑝𝑝1(𝑦𝑦) = �1,     𝑖𝑖𝑖𝑖 𝑦𝑦 = 0;
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟; ,𝑝𝑝2(𝑦𝑦) = 𝑒𝑒−2.12.1𝑦𝑦

𝑦𝑦!
, 𝑝𝑝3(𝑦𝑦) = 𝑒𝑒−9.59.5𝑦𝑦

𝑦𝑦!
,𝑝𝑝4(𝑦𝑦) = 𝑒𝑒−16.316.3𝑦𝑦

𝑦𝑦!
, and 

 (6.21 (b)) 

 𝛿𝛿1 = 0.51, 𝛿𝛿2 = 0.12, 𝛿𝛿3 = 0.30, 𝛿𝛿4 = 0.07.                           (6.21 (c)) 

We denote the four Poisson components as 𝐶𝐶𝑖𝑖, 𝑖𝑖 = 1,2,3, 𝑜𝑜𝑜𝑜 4. According to the First 

Assumption, the four Poisson components of 𝑌𝑌(5) are the unobserved states. 

    Based on the four Poisson components of 𝑌𝑌(5), we can basically partition the count 

series 𝑌𝑌(5) and 𝑌𝑌(7) into four parts corresponding to the four components of the 

independent mixture model shown as Figure 6.8. From the perspectives of waving 

frequency, developing trend, and data magnitude of the count series 𝑌𝑌(7), it is recognized 

four patterns consistent to the four different parts: i) the first pattern consistent to Part I, 

named as Patter I, performs to be randomized from three major Poisson components, one 

components with a small Poisson parameter (between 0 and 10), another one with a 

medium Poisson parameter (between 10 and 20) and the last one with a large Poisson 

parameter (larger than 20); ii) the second pattern consistent to Part II, named Pattern II, 

and the third pattern consistent to Prat III, named Pattern III, are similar, because they 

both have a “broad band” and the Poisson distribution parameter is medium, from 10 to 

20. The last pattern consistent to Part IV, named Pattern IV, is strongly associated with the 

tread of the count series in Region 5; when the counts of 𝑌𝑌(5) is increasing, the tread of 

the counts of 𝑌𝑌(7) is also increasing. The four patterns are recognized based on the 

observation on the series waving frequency, developing trend, and data magnitude. 

Essentially, the series waving frequency is dependent on the possibilities of different 

Poisson components of the certain series. Relatively close possibilities of different 

Poisson components result in zigzag shape, for example, Pattern I; relative very different 
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possibilities to Poisson components result in “board band”, for example, Pattern II and 

Pattern III. Series developing trend are dependent on the positive correlation of 𝑌𝑌(5) and 

𝑌𝑌(7), for example, Pattern IV. Series data magnitude is dependent on the values of 

different Poisson components.  

 
Figure 6.9: 4 partitions of 𝑌𝑌(5) and 𝑌𝑌(7) according to the 4 Poisson components of independent mixture  
                  model of 𝑌𝑌(5). 

 
 

    Therefore, in the following, we use independent mixture models describing each part 

the count series of 𝑌𝑌(7) to validate the proposed patterns and attempt to create 

connections between the Poisson components of 𝑌𝑌(5) and 𝑌𝑌(7).   

The independent mixture Poisson model for Part I of 𝑌𝑌(7) is 

Pr�𝑌𝑌(7) = 𝑦𝑦� = ∑ Pr�𝑌𝑌(7) = 𝑦𝑦�𝐶𝐶 = 𝑖𝑖� Pr(𝐶𝐶 = 𝑖𝑖)3
𝑖𝑖=1 = ∑  𝛿𝛿𝑖𝑖𝑝𝑝𝑖𝑖(𝑦𝑦)3

𝑖𝑖=1 ,          (6.22 (a)) 

where 

 𝑝𝑝1(𝑦𝑦) = �1,     𝑖𝑖𝑖𝑖 𝑦𝑦 = 0;
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒; ,𝑝𝑝2(𝑦𝑦) = 𝑒𝑒−4.34.3𝑦𝑦

𝑦𝑦!
, 𝑝𝑝3(𝑦𝑦) = 𝑒𝑒−18.618.6𝑦𝑦

𝑦𝑦!
 and           (6.22 (b)) 

 𝛿𝛿1 = 0.50, 𝛿𝛿2 = 0.34, 𝛿𝛿3 = 0.16.                                  (6.22 (c)) 

The independent mixture Poisson model for Part II of 𝑌𝑌(7) is 
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Pr�𝑌𝑌(7) = 𝑦𝑦� = ∑ Pr�𝑌𝑌(7) = 𝑦𝑦�𝐶𝐶 = 𝑖𝑖� Pr(𝐶𝐶 = 𝑖𝑖)2
𝑖𝑖=1 = ∑  𝛿𝛿𝑖𝑖𝑝𝑝𝑖𝑖(𝑦𝑦)2

𝑖𝑖=1 ,         (6.23 (a)) 

where 

  𝑝𝑝1(𝑦𝑦) = 𝑒𝑒−0.70.7𝑦𝑦

𝑦𝑦!
, 𝑝𝑝2(𝑦𝑦) = 𝑒𝑒−1616𝑦𝑦

𝑦𝑦!
 and                                      (6.23 (b)) 

𝛿𝛿1 = 0.44, 𝛿𝛿2 = 0.56.                                                   (6.23 (c)) 

The independent mixture Poisson model for Part III of 𝑌𝑌(7) is  

Pr�𝑌𝑌(7) = 𝑦𝑦� = ∑ Pr�𝑌𝑌(7) = 𝑦𝑦�𝐶𝐶 = 𝑖𝑖� Pr(𝐶𝐶 = 𝑖𝑖)2
𝑖𝑖=1 = ∑  𝛿𝛿𝑖𝑖𝑝𝑝𝑖𝑖(𝑦𝑦)2

𝑖𝑖=1 ,        (6.24 (a)) 

where 

  𝑝𝑝1(𝑦𝑦) = �1,     𝑖𝑖𝑖𝑖 𝑦𝑦 = 0;
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒; ,𝑝𝑝2(𝑦𝑦) = 𝑒𝑒−1616𝑦𝑦

𝑦𝑦!
 and                               (6.24 (b)) 

𝛿𝛿1 = 0.21, 𝛿𝛿2 = 0.79.                                                (6.24 (c)) 

The independent mixture Poisson model for Part IV of 𝑌𝑌(7) is  

Pr�𝑌𝑌(7) = 𝑦𝑦� = ∑ Pr�𝑌𝑌(7) = 𝑦𝑦�𝐶𝐶 = 𝑖𝑖� Pr(𝐶𝐶 = 𝑖𝑖)2
𝑖𝑖=1 = ∑  𝛿𝛿𝑖𝑖𝑝𝑝𝑖𝑖(𝑦𝑦)2

𝑖𝑖=1 ,      (6.25 (a)) 

where 

  𝑝𝑝1(𝑦𝑦) = 𝑒𝑒−018.418.4𝑦𝑦

𝑦𝑦!
,𝑝𝑝2(𝑦𝑦) = 𝑒𝑒−29.629.6𝑦𝑦

𝑦𝑦!
 and                                      (6.25 (b)) 

 𝛿𝛿1 = 0.53, 𝛿𝛿2 = 0.47.                                                    (6.25 (c)) 

    The independent mixture Poisson model for each part of 𝑌𝑌(7) is dependent on the 

Poisson component of 𝑌𝑌(7). Thus, we could present a compound mixture Poisson model 

incorporating the independent mixture Poisson models (Eq. (6.21)) of 𝑌𝑌(5) together with 

the independent mixture Poisson models (Eqs. (6.22 – 6.25)) of each part of 𝑌𝑌(7). The 

compound mixture Poisson model is illustrated as Figure 6.10. In the figure, we use term 

𝐶𝐶𝑖𝑖
𝑗𝑗  to denote the 𝑗𝑗-th Poisson component of 𝑖𝑖-th Pattern of 𝑌𝑌(7).  
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Figure 6.10: Relation of the 4 count series patterns of 𝑌𝑌(7) with the 4 Poisson components of 𝑌𝑌(5). 
 

    Essentially, the compound mixture model is the second part of Hidden Markov Model 

presented by Eq. (6.19). With the Initial Remark, we can simulate the count series in 

Region 7 when we have the count in Region 5, i.e., we could predict the count data in 

Region 7 when we obtain the count data in Region 5. The compound mixture model not 

only perfectly interprets the count series in Region 7 and but also it connects the relation 

with the count series in Region 5.  

    Back to the second question, how could we develop rule to reveal the relation to 

connect that the series to be serially dependent? There may be possible answers such as 

bring in a new relative factor to severe braking events, for example, a variable measuring 

visibility or vehicle speed. But in this dissertation, we suppose the count series of  𝑌𝑌(7) to 

be serially dependent according to the four patterns (as Figure 6.9). Therefore, once we 

have count data in Region 5, we could predict the count data in Region 7 according to the 

four patterns. However, since the perquisite of HMM is the data series is autocorrelated, 

we have to confirm that the four patterns’ series are autocorrelated. Figure 6.11 presents 

autocorrlation test for the four partners’ count series. 
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Figure 6.11: Autocorrelation plots of the four pattern series of 𝑌𝑌(7).     

 
 

    We have to admit that except count series of Pattern I, the other three count series do 

not show strong autocorrelation. As we known, the cut value of the ACF is usually 

calculated as calculated as ±1.96 √𝑁𝑁⁄ , where 𝑁𝑁 is number of samples and 1.96 comes 

from 95% confidence interval of accepting the series is white noise if the ACF is within 

the cuts value. In our case, the number of count data in Patter II, III, and IV is very few 

causing the cut value comparably great. So let lower the confidence level to reduce the 

cut values are same with Pattern I, then obviously, thee autocorrelation plots support the 

four pattern series autocorrelated. 

Second Remark: the count series of Pattern II, III, and IV of 𝑌𝑌(7) is autocorrelated with 

a reduced confidence level.  

    Since the count series of the four patterns of 𝑌𝑌(7) is autocorrelated, the assumption that 

count series of  𝑌𝑌(7) is serially dependent according to the four patterns is valid. The 

serially dependence can be presented by Markov chain. 

Markov Chain: A sequence of discrete random variable {𝐶𝐶𝑡𝑡: 𝑡𝑡 ∈ ℕ} is said to be a 
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(discrete-time) Markov chain (MC) if for all 𝑡𝑡 ∈ ℕ it satisfies the Markov property 

Pr(𝐶𝐶𝑡𝑡+1|𝐶𝐶𝑡𝑡, … ,𝐶𝐶1) = Pr(𝐶𝐶𝑡𝑡+1|𝐶𝐶𝑡𝑡).                                          (6.26) 

The conditional probabilities for the transition between the states 𝐶𝐶𝑡𝑡 = 𝑖𝑖 and 𝐶𝐶𝑠𝑠+𝑡𝑡 = 𝑗𝑗 

associated with a Markov chain are called transition probabilities:  

𝛾𝛾𝑖𝑖𝑖𝑖(𝑡𝑡) = Pr(𝐶𝐶𝑠𝑠+𝑡𝑡 = 𝑗𝑗|𝐶𝐶𝑡𝑡 = 𝑖𝑖).                                             (6.27) 

If the states are finite, the matrix Γ(𝑡𝑡) is defined as the matrix with (𝑖𝑖, 𝑗𝑗) element 𝛾𝛾𝑖𝑖𝑖𝑖(𝑡𝑡). 

    The count series of a pattern of 𝑌𝑌(7) can be presented by Markov Chain due to the 

series’ autocorrelation property. However, the states for the count series of a pattern of 

𝑌𝑌(7) is not the independent Poisson components of 𝑌𝑌(5) as mentioned in First Remark, 

because the sequence of count data of a pattern of 𝑌𝑌(7) corresponds to only one 

independent Poisson components of 𝑌𝑌(5), 𝐶𝐶𝑖𝑖. Actually, each pattern series of 𝑌𝑌(7) can be 

formulated by the sequence of the pattern’s independent Poisson components, 𝐶𝐶𝑖𝑖
𝑗𝑗 , and a 

pattern series is composed by a sequence of every two neighbor independent Poisson 

components. In other word, the state for the count series of 𝑌𝑌(7) is the transition between 

two neighbor independent Poisson components of the pattern series. 

    Hence, we have to revise the First Remark for the states in HMM. 

Revised First Assumption: the unobserved states in HMM is not the Poisson 

components of 𝑌𝑌(5), but is the transition between two neighbor independent Poisson 

components of the pattern series. 

    Therefore, in the following, we develop the Markov chain for the each pattern series 

transition to model the count series dependence. Firstly, let notify the state which denote 

the transition between two neighbor independent Poisson components of the pattern 

series.  
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    For Pattern I series, when the independent Poisson components of 𝑌𝑌(5) is 𝐶𝐶1, we have a 

MC which has three states, ‘1’, ‘2’, and ‘3’, 

�
1 ≡ 𝐶𝐶1 → 𝐶𝐶11

2 ≡ 𝐶𝐶1 → 𝐶𝐶12

3 ≡ 𝐶𝐶1 → 𝐶𝐶13
.                                                        (6.28) 

    For Pattern II series, when the independent Poisson components of 𝑌𝑌(5) is 𝐶𝐶2, we have 

a MC which has two states, ‘4’ and ‘5’, 

�4 ≡ 𝐶𝐶2 → 𝐶𝐶21

5 ≡ 𝐶𝐶2 → 𝐶𝐶21
.                                                       (6.29) 

    For Pattern III series, when the independent Poisson components of 𝑌𝑌(5) is 𝐶𝐶3,  we 

have a MC which has two states, ‘6’ and ‘7’, 

�
6 ≡ 𝐶𝐶3 → 𝐶𝐶31

7 ≡ 𝐶𝐶3 → 𝐶𝐶31
.                                                       (6.30) 

    For Pattern IV, when the independent Poisson components of 𝑌𝑌(5) is 𝐶𝐶4, we have a MC 

which has two states, ‘8’ and ‘9’, 

�8 ≡ 𝐶𝐶4 → 𝐶𝐶41

9 ≡ 𝐶𝐶4 → 𝐶𝐶42
.                                                      (6.31) 

    Therefore, the Markov Chains structure is presented as Figure 6.12. 
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Figure 6.12: Markov chain structure for the four pattern of 𝑌𝑌(7).    

 
 

With these Markov chains structure, the Hidden Markov Model structure is constructed 

as Figure 6.13.  

     
Figure 6.13: Hidden Markov Model structure for estimating the count time series of 𝑍𝑍𝑡𝑡

(7).    
 

    After we have the states for each pattern series, we could simply estimate the transition 

probability matrix as follows. The observed Markov chain state sequence of Pattern I 

from Figure 6.9 is  
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“11233 11132 13122 11211 22121 13212 11133 211”, 

then, the matrix of transition counts is developed as 

�𝑓𝑓𝑖𝑖𝑖𝑖� = �
9 6 4
8 2 1
2 3 2

�, 

where 𝑓𝑓𝑖𝑖𝑖𝑖 denotes the number of transitions observed from the state 𝑖𝑖 to state 𝑗𝑗. Since the 

number of transitions from state 1 to state 2 is 6, and the total number of transitions from 

state 1 is 8 + 6 + 4 = 18, we could deduce a transition probability matrix, denoted as Γ, 

and the transition probability matrix for Pattern I series is estimated as 

Γ1 = �
9/19 6/19 4/19
8/11 2/11 1/11
2/7 3/7 2/7

�. 

Similarly, the transition probability matrix for count series of Pattern II, Pattern III and 

Pattern IV is 

Γ2 = �1/3 2/3
2/5 3/5�, Γ3 = � 1/3 2/3

3/15 12/15�, Γ4 = �1/2 1/2
2/4 2/4�, respectively. 

 
    Applying the transition probability matrices for each pattern with the observation on 

the count series in Region 5, we can simulate and predict the severe braking events count 

time series in Region 7, 𝑍𝑍𝑡𝑡
(7). The comparisons of the results of HMM with actual data 

are presented in Figure 6.14 and Figure 6.15.  
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Figure 6.14: Residuals of Hidden Markov Model to actual count data of 𝑍𝑍𝑡𝑡
(7).    

 
Figure 6.15: Comparison between actual data with simulation results from HMM. 

 

    The prediction of HMM is much improved compared with the prediction of IMPM. 
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However, the simulation from Day 17 to Day 89 is not as good as best case of the 

simulation of IMPM. The simulation and prediction can further be improved by use more 

pattern state transition or use a developing transition probability matrix or real-time 

updating transition probability matrix by observer [69 – 70].  
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Chapter 7 

Conclusion and Further Work 

    This dissertation presents the correlation identification of severe driving events with 

time and location. Clustering methods extract the cluster-based correlation. Based on the 

cluster-based correlation, we further model the temporal and spatial correlation variation 

and development in term of modeling the time series of the daily counts of the events 

occurrence in regions. The two functions consists the thought of constructing safety 

driving assistance system aiming to help drivers recognize the severe driving events, 

predict the risk of driving, and reduce the driving risk caused by these events. Severe 

braking events are particularly used as example to illustrate the two system functions: i) 

identify the events cluster-based correlation with spatial and temporal factors and monitor 

the variation and development of the cluster-based correlation, ii) measure and predict the 

correlation variation and development through different proposed mathematical models. 

Four different mathematical models are proposed and verified with example severe 

braking events count series data in a certain region. Each model regards to modeling 

different aspect information of the count series data. ARIMA model is specifically 

proposed to examine the temporal correlation; STARIMA model, on the basis of ARIMA 

model, incorporates the spatial correlation to do both sides examination. General linear 

model (GLM) with Poisson distribution focuses on the spatial correlation of different 

regions in the point view of the events occurrence property. Hidden Markov model 

(HMM) is tempted to describe and predict the event count data in a deep reasoning with 

Poisson components transition between different regions. The four models are all 
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validated by actual data of Region 7 and Region 5 and demonstrated their adequacy. The 

modeling procedures are developed schematically to be applied in the safety driving 

assistance system, hence, used for other interested regions to examine the severe driving 

events occurrence phenomena and employed for other severe driving events, for example, 

Handling limit minder (HLM) events. In realization of the safety driving assistance 

system, some places needs to consider for the use in real vehicles to assure a safer and 

more reliable driving assistance.   

7.1 Safety Driving Assistance System Discussion 

    The core part of safety driving assistance system is the intelligent analyzer, which used 

clustering algorithms to identify the cluster-based correlation of severe driving events 

with time and location. The intelligent analyzer architecture shown as in Figure 1.1, 

replies on the technology of wireless communication and cloud computing. Wireless 

communication technology supports the data flow loop: acquire vehicle data (e.g. driving 

events data) or relative external data (e.g., GPS data, weather data), feedback useful data 

for sharing useful information. Cloud computing, either the computer unit embedded in 

individual vehicles or computation facilities in cloud, supports the data process and 

intelligent analyzer implementation. The wireless communication frequency, speed and 

stability decide the assistance system performance; the intelligent analyzer procedure 

implement speed and algorithms stability determine the assistance system reliability. In 

the side of hardware or facility usage, these two places are critical to be considered. As 

the Ford Motor Company’s Data acquisition and communication platform (DAP) is 

prerequisite for the safety driving assistance system, the database management system is 

directly relevant to the wireless communication speed and frequency. Therefore, powerful 
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database management system is also required to satisfy millions of vehicles data 

acquisition and feedback at the same time.  

    Another core part to the safety driving assistance system is the interface design. The 

interface is the part of interaction between driver and vehicle. In the safety driving 

assistance system, it requires to presents the two core functions, cluster-based correlation 

identification and time series modelling. In detail, the interface should enables driver to 

choose the parameters relative to the clustering, the expected time clusters and 

geographical clusters size, should notify the locations of the severe driving events in 

Maps, should monitor the variation of the severe driving events’ variation in Maps, and 

should alert the risk of driving in a certain region or place though different models 

simulation and prediction. The safety driving assistance system can be designed with 

Graphical user interface (GUI). GUI is a type of interface containing controls called 

components that enable users to interact with electronic devices through graphical icons 

and visual indicators. With capacitive touch screen in vehicles, drivers are convenient to 

perform interactive communication with safety driving assistance system.  

7.2 Future Work Discussion 

    So far, we designed the major two functions for the safety driving assistance system, 

identify the cluster-based correlation of severe driving events with time and location and 

model the count data time series of the severe driving events in regions for future 

correlation prediction. The correlation identification is identified by data clustering and 

modeling the count time series are four basic models. Further development of the system 

design should be focus on other modeling methods and more designed functions. 

    On the model construction side, one place we need to improve is to used more 
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appropriate models to describe actual data in different regions. We specifically discuss 

the count time series of severe braking events in large regions (11𝑘𝑘𝑘𝑘 by 8 𝑘𝑘𝑘𝑘). 

Although the STARIMA methods can be expanded for small regions, but Bayesian Vector 

Autoregressive (BVA) method should be more appropriate according to the introduction 

by [37]. Hence, we should develop a mechanism in the system design to suggest an 

appropriate model according to the size of a region. In addition, we have to notice that 

some assumption is not appropriate. For example, 𝑌𝑌(5) is assumed to determined series 

not statistical probability distributed as explanatory variable in generalized linear 

modeling. This assumption needs to be loose by using Bayesian inference in the future 

GLM.  

    On the model forecasting side, future work can be the extension on upgrade the 

accuracy of the proposed models. The parametric models can be developed with 

incorporating Kalman Filter and nonparametric model can be developed with Bayesian 

inference to update priori and posteriori distribution to improve the future event 

occurrence prediction and models’ self-adaptiveness [69 - 70]. 

    On the clustering methods side, the results presented in Chapter 4 are depending on the 

threshold choices, e.g. different kinds of clusters on concentration and lifetime duration. 

Thus, the sensitive of the thresholds to the resulting clusters are concerned. How the 

change of threshold affects the cluster concentration or cluster lifetime? At the same time 

the clustering accuracy, robustness and efficiency are also concerned to ensure the safety 

driving assistance system high level performance.  

    On the database side, the frequency and speed of data querying decide the instantness 

of the safety driving assistance system. How long vehicles querying vehicle data for real-
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time correlation identification and in ongoing traffic? The issue is strong relevant to 

database structure. Traditional object-oriented database cannot provide fast speed for the 

tens of thousands of vehicle querying data at the same time. Thus, new generation of 

post-relational databases need to be upgraded for very fast data query. In addition, 

appropriate database management system (DBM) is also very important. A DBM is 

computer software applications that interact with user, other applications, and database 

itself, and is designed to allow the definition, creation, querying, update, and 

administration of databases. A powerful DBM will increase the efficiency of data 

querying. 
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