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ABSTRACT 

This thesis examines lidar (light detection and ranging) scans collected from a 

Terrestrial Laser Scanner (TLS) during varying snowfall events with the goal of 

determining its capability to make measurements in a degraded visual environment 

and the feasibility of using it as a meteorological instrument. The ability to estimate 

visibility, snowfall intensity rate, particle size and velocity of hydrometeors are 

explored by comparing metrics derived from lidar scans with estimations obtained 

from an optical disdrometer.  

Statistics based on return counts, ranges and reflectance values from the TLS 

measurements of hydrometeors and static targets were used for comparisons and 

modeling the parameters of interest. Estimated hydrometeor sizes are much smaller 

than the laser footprint, preventing bulk statistical comparisons from revealing clear 

correlations. The TLS is capable of estimating hydrometeor velocities when conditions 

are conducive; however, results are sporadic and selection of returns must be 

considered as systematic errors yield unreasonable estimations. Regression between 

TLS metrics and the optical disdrometer estimates for visibility and snowfall intensity 

proved statistically significant. This indicates that a TLS provides informative 

measurements during varying atmospheric conditions of snowfall.  

 Results show that TLS has potential to estimate visibility and a snowfall intensity 

rate, but has difficulty estimating hydrometeor size and speed. Visibility estimations 

from a laser scanner with a larger range of spatial measurements will be an 

improvement compared to the optical disdrometer, which samples a static position and 
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extrapolates based on the assumption of atmospheric homogeneity. This would allow 

the ability to monitor a larger spatial extent with a higher degree of accuracy. 
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1. INTRODUCTION 

Snow is a natural phenomenon that affects various aspects of human life and 

global climate ranging from transportation to water resources. Snowfall degrades the 

visual environment with occlusions from snow particles and by scattering visible light. 

Snow can create hazardous conditions for vehicles and aviation when visibility 

conditions approach whiteout, resulting in partial or total loss of visibility. Lowered 

visibility is responsible for many multi-vehicle collisions. In 2019, whiteout 

conditions in Neenah, Wisconsin resulted in 131-vehicle pileup that caused one 

fatality and injured 71 others (CNN 2019). The severity of these types of accidents 

could easily be minimized if drivers are alerted to reduce their speeds, allowing 

drivers adequate time to stop if there is an accident up ahead. Considering these types 

of collisions still occur to this day, could an automated warning system exist to better 

alert drivers?  

In addition to civilian applications, the military has significant interest in 

exploring technology that can mitigate the effects of a Degraded Visual Environment, 

DVE. The U.S. Army Combat Readiness Center Director of the Aviation Directorate, 

Lt. Col. Mike Higginbotham, reported in 2014 that a DVE accounted for 24% of the 

Army’s flight accidents in the past 12 years (Higginbotham 2014). The Command, 

Control, Communications, Computers, Cyber, Intelligence, Surveillance and 

Reconnaissance, has a directorate dedicated to research and development of night 

vision and electronic sensors. Integrating new sensors and tactics can improve the 

ability to acquire targets and aid in navigation of vehicles that must operate in a DVE. 
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The US Army Combat Capabilities Development Command is conducting a multi-

year program addressing DVE mitigation. Interest is in creating a fusion of multiple 

sensor modalities to be able to operate in all types of DVE. In comparison to how 

night vision goggles allowed Army Aviation to “own the night”, the ability to safely 

operate in any weather conditions will enable the army to “own the environment” 

(Bratt and Walker 2019).  

Visibility is a complex metric to estimate due to the many variables and 

conditions that affect it, such as the environment, light sources, object reflectance and 

scattering of light. These conditions can change in localized areas within a matter of 

minutes due to microclimate changes. Most commercially available visibility sensors 

rely on measurements of light scattered at a certain angle from a small sample volume, 

which is unable to account for spatial variance and is difficult to accurately correlate 

to human visibility, especially during precipitation events (Wang et al. 2014). 

From a meteorological standpoint, snowfall measurements at a single location and 

estimation across a larger spatial area is also a complex problem, due to variations in 

shape, size, and microphysical properties of hydrometeors. The World Meteorological 

Organization, WMO, defines a hydrometeor as a liquid or solid that is either 

suspended in the atmosphere, falling through the atmosphere or blown by the wind 

from the Earth’s surface (WMO 2008). Precipitation gauge analyses show that wind-

induced losses can significantly reduce hydrometeor catch by up to 80% (Sevruk et al. 

2009). Precipitation gauges measure accumulation over time and do not provide any 

additional properties of the hydrometeors. They only collect data at a single location, 
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as extrapolation to broad areas is challenged by the high spatial variability of snow 

accumulation and transport.  

The development of radar systems to estimate precipitation on a larger spatial 

scale has been ongoing since the 1970’s (Sekhon and Srivastava 1969). “A detailed 

understanding of the geometric, microphysical, and scattering properties of ice 

hydrometeors is a vital prerequisite for the development of radar-based quantitative 

precipitation estimation (QPE) algorithms” (Huang et al. 2019). The utility of accurate 

forecasts generates strong scientific interest in measuring hydrometeor size and 

velocity. Instruments that are capable of these measurements are known as a 

disdrometer and measurements of various physical principles have been explored and 

studied in the past such as impact techniques, imaging techniques and scattering 

techniques (Löffler-Mang and Joss 2000).  

Locatelli and Hobbs (1974) created one of the first optical instruments to measure 

the fall speeds of solid precipitation (Figure 1). It uses incandescent lamps to create 

two parallel beams of light separated by a small gap; photomultiplier tubes are used to 

measure the change in intensity as particles fall through. The velocity is calculated 

using the time interval between the peak intensity differences. Extensive manual labor 

was required for observing hydrometeors that fell through the optical sensor: 

classifying the hydrometeor type, collecting their dimensions, and weighing their 

mass. Once sufficient data was collected for a certain type of hydrometeor, various 

models could be derived to compare velocity, size, and mass. These mass/fall speed 

models have been used as a reference in later studies of solid precipitation.  
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Figure 1: Instrument for measuring fall speeds of solid precipitation (Locatelli and Hobbs 
1974) 

Kwon (2004) collaborated with the Minnesota Department of Transportation to 

research visibility measurements by processing images acquired from video cameras 

along a highway that frequently experiences low visibility due to snow squalls and 

fog. This research introduced a relative visibility concept by using image processing 

from video cameras and revealed some of the shortcomings of this method. Images 

acquired from highway video cameras have limited resolution and accuracy, making it 

difficult to capture accurate luminance due to camera noise. Images are also not able 

to provide spatial information, requiring multiple targets to be set up at varying 

distances. In addition, the camera’s inability to capture images at night requires use of 

external light sources to illuminate targets. 

The use of lidar (light detection and ranging) in laser scanning systems has 

revolutionized many branches of engineering and Earth sciences with its ability to 

create dense 3D models, often referred to as point clouds, from laser-pulse echo 



 

5 

returns of the environment surrounding the scanner. As technology has advanced, laser 

scanning system capabilities have improved and become more accessible to 

researchers and industry professionals. This has enabled a variety of new applications 

to be explored and investigated with this new technology (Barup et al. 2010, Bhardwaj 

et al. 2016, Telling et al 2017). 

Terrestrial Laser Scanner (TLS) systems have been used for many different snow 

studies, most often mapping snow depths (water equivalence) or monitoring critical 

areas that are susceptible to avalanches (Prokop 2008, Deems et al 2015). These 

studies require repeat scans, the first scan is before the snow season to get ground 

conditions; sequential scans are performed after snow events to assess snow surface 

height. Acquiring a scan in the field can be time consuming, cost-prohibitive, and 

potentially dangerous depending on the location. The presence of hydrometeors in the 

atmosphere introduces noise and potential occlusions that can reduce the effective 

range and accuracy of a TLS scan; therefore, these conditions are usually avoided. 

However, rather than avoiding these conditions, this thesis examines whether the 

noise, occlusions, and reduced range experienced by TLS measurements during a 

hydrometeor event can be used to extract metrics describing the current weather 

conditions.  

Pfenningbauer et al. (2014) conducted an experimental setup using a Riegl VZ-

1000 inside a fog chamber to evaluate the scanners ability to acquire target returns in 

adverse atmospheric conditions. Figure 2 shows the range, amplitude, reflectance and 
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pulse-shape deviation from returns collected by the TLS targeting a black and a white 

panel at a distance of 30 meters for various visibility conditions. These results show  

Figure 2: Point return metrics from visibility study (Pfenningbauer et al. 2014) – full visibility 
(left column), 40-meter visibility (middle column), 10-meter visibility (right column). 
First return – blue points, second return – green points. 

that the scanner is capable of observing a target with partial obstruction from fog 

particles and is capable of experiencing whiteout conditions due to dense fog. Figure 3 

shows full-waveform (FW) results from fog returns for six different visibility ranges 

and the insert provides the corresponding mean waveforms for comparison in one 

single chart. The study proposed that the visibility range could be determined by the 

distance from the center of mass to the rising edge of the fog’s echo waveform. There  
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Figure 3: Waveforms from the VZ-1000 in varying foggy conditions (Pfenningbauer et al. 
2014). 

is interest to examine FW results during heavy snowfall events to see if waveform 

characteristics can provide more insight than a single return point. 

The Cold Regions Research and Engineering Laboratory (CRREL) conducted a 

novel research project attempting to identify and characterize the different conditions 

that affect the optical transmissivity of falling and blowing snow using a TLS system 

co-located with a first-order meteorological station. This thesis analyses lidar scans 

collected during the 2019-2020 winter season at Mammoth Lakes California, with the 

goal of answering or informing the following questions: 

• Can a TLS provide similar or enhanced snowfall metrics compared to other 

meteorological sensors? 

• Does FW scanning provide any additional insight during snowfall events? 

• Can hydrometeor velocities be determined from a TLS? 
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• Are there any noticeable variations in TLS metrics due to hydrometeor size? 

• Is a TLS able to estimate a snowfall intensity rate? 

• Do variations in TLS measurements relate to visibility? 

If successful, TLS systems could potentially improve or supplement spatial-

temporal snowfall measurements to further aid the meteorological community and 

regions that experience extreme snow events leading to hazardous visibility 

conditions.  
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2. INSTRUMENTATION 

2.1. Site Location 

The Sesame Street Snow Study Plot (Sesame; Figure 4), is located in Mammoth 

Lakes, California (37°39’0” N, 119°2’30” W) at an elevation of 2743 m. Sesame is a 

primary weather station for Mammoth Mountain ski resort. Trees surround the Sesame 

site, which helps reduce wind effects, but also limits the range the TLS is able to scan. 

The region receives heavy winter precipitation with an average of 890 mm snow water 

equivalent (SWE) and 7.2 m of snow depth from December through March (Bair 

2013). The high elevation of Sesame leads to colder temperatures and infrequent mid-

winter rains. CRREL has a worked at this location in the past for various snow studies 

and has a weather station, CUES, on the mountain in collaboration with the University 

of California – Santa Barbara (Davis et al. 1999, Bair et al. 2015).  

Figure 4: Sesame street snow study plot location. 
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The Sesame TLS was permanently installed with the intention of collecting data 

when hydrometeors are present. To avoid the need for an operator to initiate the 

scanner whenever there was a snowfall event, an automated system was setup. The 

scanner operated autonomously via programmed scripts throughout the entire snow 

season. This created a large lidar database of the snow surface conditions and many 

scans acquired during snowfall events of varying intensity. Details on the data 

acquisitions from the TLS sensor are given in Chapter 3. 

To help measure system performance, a calibration framework was setup using a 

Spectralon target. Spectralon is a diffuse reflectance material composed of pure 

polytetrafluoroethylene polymer resin that is compressed into a hard porous white 

material in a proprietary procedure (Goldstein et al. 1999). These panels are very 

durable, hydrophobic, and have very high reflectance values across a broad range of 

the electromagnetic spectrum, from approximately 250-2,500 nm, which makes them 

excellent calibration targets for optical sensors. A Spectralon panel approximately 0.5 

by 0.5 m was installed ~8 meters from and orthogonal to the TLS on a tree (Figure 5).  

Figure 5: Spectralon panel installed at Sesame site. 



 

11 

Figure 6 shows typical reflectance values for a 99% Spectralon panel. The dotted line 

represents the wavelength of the TLS system used in the study (described in Section 

2.2). The calibration report of the Spectralon panel used in at Sesame can be found in 

Appendix A. Examining lidar points returned from the Spectralon panel during 

snowfall events may show a reduction in intensity that could be correlated to the 

intensity of snowfall or visibility. 

Figure 6: Typical reflectance for a 99% Spectralon panel. 

2.2. Riegl VZ-400  

The TLS system installed at Sesame is the Riegl VZ-400 (Figure 7), a single, 

near-infrared laser system capable of FW and multiple-return pulse-based data 

capture. The conditions at Sesame drop below the instrument recommended operating 

temperature, so a special housing was designed to heat and protect the instrument. The 

VZ-400 is able to scan 360° horizontally with a 100° vertical field-of-view. Some of 

the instrument’s specifications can be seen in Table 1. The maximum range assumes 

that the target is larger than the illuminated laser beam area and that the target material 

has a high reflectance value for the given laser wavelength. This will not be applicable  
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Figure 7: Riegl VZ-400 in protective housing unit at Sesame. 

Table 1. Riegl VZ-400 specifications. 

Sensor Specifications 
 

Diameter 180 mm 
Length 308 mm 
Weight 9.6 kg 
Standard Temperature Operation 0-40°C   

Max Laser Pulse Repetition Rate 300 kHz 
Max Measurement Range 600 m 
Min Angular Resolution 0.0024° 
  
Laser Wavelength 1550 nm 
Laser Beam Divergence 0.3 mrad   

Accuracy 5 mm 
Precision 3 mm 

 

to hydrometeors as they are much smaller than the laser beam area and have a 

relatively low reflectance at 1550 nm. Since materials have different reflectance 

properties at different wavelengths, it is important to consider the wavelength in use. 

Figure 8 (Deems et al. 2013) shows the varying reflectance values of snowpack with 
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different snow particle sizes for common wavelengths used in laser systems. The low 

spectral albedo for snow in the 1550 nm wavelength means that not much of the laser 

energy will be reflected back to the sensor. Note that these are measurements of a 

snow surface on the ground and not individual particles. 

Figure 8: Spectral reflectance properties for snow (Deems et al. 2013). 

The VZ-400 is capable of scanning the laser in two different modes, frame scan 

and line scan, both of which will be used for collecting data in this study. For a frame 

scan, the instrument rotates about its vertical axis to collect returns of the surrounding 

area. The instrument does not rotate for a line scan, but collects data from a fixed 

orientation for a predetermined amount of time. The sensor captures a time series of 

reflected intensities, which is what constitutes FW data. The VZ-400 digitizes the 

backscattered laser pulse energy at a 500 MHz (2-ns) sampling rate (Hartzell et al. 

2014).  

The V-line series of Riegl scanners employs an onboard processor to analyze the 

FW data in real-time and determine the corresponding target ranges for each laser 
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pulse. For every target identified from an incoming digitized echo signal, the 

corresponding amplitude and temporal position with respect to the emitted laser pulse 

is determined by applying a 2-dimensional optimization algorithm (Pfennigbauer and 

Ullrich 2010). The V-line series online processing is also used to calibrate the 

amplitude, give a relative reflectance and calculate a pulse-shape deviation for every 

determined target. Amplitude calibration is a logarithmic ratio of the echo return 

power over a device-specific detection threshold for the entire measurement range of 

the instrument. The relative reflectance accounts for the range dependency and is the 

ratio of the amplitude of an identified target to the amplitude of a flat, white target at 

the same range. This calibration, known as the system response, is done for the entire 

operating range of the sensor and is utilized in real-time when the instrument is 

collecting data (RIEGL Laser Measurement Systems Gmbh 2017). Each target is 

compared with the expected system response to determine its pulse shape deviation. 

As the target varies from that of the system response, the pulse shape deviation 

increases. The TLS can record only the multi-return targets or also include the FW 

data; however, all of the measurements are derived from the FW results.  

Intensity is a term that frequently gets used interchangeably for both amplitude 

and relative reflectance. It is a dimensionless unit that is arbitrarily scaled by the 

instrument and depends on both sensor and target properties. Figure 9 shows both 

amplitude and relative reflectance collected by the TLS located at Sesame. The foliage 

and snow show how amplitudes diminish at farther ranges. The relative reflectance is 
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the sensors attempt to correct for this range dependence. All intensities reported herein 

will be of the relative reflectance unless otherwise noted.  

Figure 9: Intensity values from amplitude (left) and relative reflectance (right) of a frame 
scan. 

Figure 10 shows the amplitude output of a VZ-400 when measuring a calibration 

target from 1 to 50 meters. A least squares cubic spline is fit and extrapolated from 50 

to 1000 meters assuming 1/R2 amplitude decrease, based on the laser radar range  

Figure 10: VZ-400 amplitude return ranges from a calibration target (Pfennigbauer and 
Ullrich 2010). 

7 m 7 m 
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equations (P.W. Wyman 1969). The 1/R2 inverse-square law is only applicable for 

ranges greater than 20 m, as the amplitude drops about 20 dB per decade in range. “In 

the far-field the amplitude of the echo from a large diffusely reflecting object usually 

follows the 1/R2-law from the laser radar range equations when neglecting the 

atmospheric attenuation, the characteristics in the near field is more complex due to 

vignetting or central obscuration, depending on the specific optical setup of the 

instrument. The range of transition between near-field and far-field also depends on 

the optical setup; it is, for example, considerably larger for biaxial systems than for 

coaxial systems.” (Pfennigbauer and Ullrich 2010) It is suspected that these physical 

configurations and characteristics will affect the scanner’s ability to detect laser 

energy returning from hydrometeors in both the near and far field. The Spectralon 

panel located approximately 8 m away is considered to be in the transition region and 

the TLS will have no issue getting point returns from the panel. However, the laser 

pulse travels through very little atmosphere before reaching the panel which may limit 

the intensity reductions observed due to snowfall. 

2.3. OTT Hydromet Parsivel2 Disdrometer 

In 2000, PM Tech Inc. released the first commercially available optical 

disdrometer, Parsivel (Particle Size and Velocity), and these were included in many 

precipitation studies in the following years (Löffler-Mang and Blahak 2001, Yuter et 

al. 2006, Tokay 2013). OTT Hydromet, a German based company, purchased the 

rights to the Parsivel in 2005. They redesigned and improved the instrument with 

knowledge from past performance and released a second version of the instrument in 
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2011, the OTT Parsivel2 disdrometer, which collected measurements at the Sesame 

site and will be referred to as PD (Parsivel2 Disdrometer). It provides estimates of 

hydrometeor size, speed, visibility and snowfall intensity, which are provided through 

proprietary algorithms that are not accessible. 

The PD uses a 180 x 30 mm, 650 nm wavelength laser-optical sensor that is 

emitted and received by the two sensor heads, shown in Figure 11. Microprocessor 

controlled heating within the instrument provides de-icing protection making the 

sensor very durable with little need for maintenance, which is ideal for continuous 

remote observations. It has the ability to classify precipitation by type (drizzle, rain,  

Figure 11: OTT Hydromet Parsivel2 Disdrometer (OTT Hydromet). 

snow, etc.) and categorize 32 classes of size and speed ranging from 0.2-25 mm and 

0.2-20 m/s respectively. These classifications are based upon an extinction principal of 

the particle passing the optical plane of the sensor. The amount of dimming of the 

received signal is utilized to derive the size, velocity and type of the hydrometeor 

(Figure 12).  
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Figure 12: Extinction illustration (OTT Hydromet). 

Battaglia et al. (2010) performed a critical assessment of Parsivel snow 

observations. The instrument’s measuring principle was reexamined to detect 

limitations when applied to solid precipitation. The study used co-located data from 

two Parsivel disdrometers and a two-dimensional video disdrometer acquired during 

the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation, CALIPSO, 

Validation Project. Only one size parameter is estimated from the PD, namely, an 

equivalent volume diameter of a sphere. Reduced output voltage from the PD is 

converted to the size estimate using a few assumptions. The PD assumes that: particles 

have an oblate spheroid raindrop like shape, only one particle is crossing the laser 

beam at a time and that particles are falling with their axis vertically aligned. 

Additional assumptions are made for the particle shape based on the size estimate and 

these assumptions become arbitrary when applied to solid precipitation. Based on their 

studies, Battaglia et al. found that for solid precipitation 5 mm and larger, the 

derivation of widest horizontal dimension from the equivalent volume diameter to be 

quite accurate. Larger uncertainties exist for smaller particles caused by unknown 

shape and orientation. Figure 13 gives a visual example of different particle sizes 

being recorded by a Parsivel disdrometer.  
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Figure 13: Results from Parsivel measurements (Battaglia et al. 2010). 

The particle velocity is related to the beam dimming amplitude and duration 

(Angulo-Martínez et al. 2018). “The comparison between the PARISVEL simulated 

and measured data shows a PARSIVEL underestimation of fall velocities for small 

particles and an overestimation for large particles (up to 30% - 40%). The accuracy of 

snow velocity measurements does not fulfill the requirements needed to develop snow 

velocity parameterizations.” (Battaglia et al. 2010) The PD assumptions favor liquid-

phase precipitation characteristics and irregularities of hydrometeor shape, orientation 

and the presence of wind can affect the measurements of solid precipitation.  

2.4. Snow Pillow 

The California Department of Water Resources installed a snow pillow designed 

to measure the weight of overlaying snowpack at the Sesame site in 2013 (Bair et al. 

2018). Snow pillows constrain snowpack density, and improve accuracy of SWE 
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estimates. The snow pillow is so close to the TLS that it is not within the scanning 

range of the sensor, however, nearby snow elevations should be equivalent and 

approximate the same relative density (density of the snowpack divided by the density 

of water) for the snowpack.  

2.5. Lufft WS600-UMB Smart Weather Sensor 

The WS600 is a compact all-in-one sensor capable of measuring temperature, 

relative humidity, precipitation intensity, wind speed and direction. The sensor uses a 

Doppler radar to estimate precipitation rates using a mass fall speed relationship. 

Although the sensor performs well for liquid precipitation, estimated accuracy for 

snow remains low (Bair et al. 2018). This sensor will be utilized to help characterize 

the weather conditions during TLS scans. 

Figure 14: WS600-UMB smart weather sensor (Lufft). 
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2.6. Judd Ultrasonic Depth Sensor 

The Judd Ultrasonic Depth Sensor (JUDS) is a device that measures the snow 

surface height by measuring the travel time for an ultrasonic pulse to reflect off the 

snow surface. The sensor is located directly above the snow pillow at the sesame site 

and will be used for calculating the relative density of the snowpack. The accuracy for 

the sensor is +/- 0.4%, which results in a maximum 2.5 cm uncertainty for the nominal 

Sesame snowpack. 

Figure 15: Judd ultrasonic depth sensor (Judd Communications). 
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3. METHODS 

3.1. TLS Lidar  

3.1.1. VZ-400 

The TLS system was installed at the Sesame site in September of 2019. The laser 

scanner was programmed to take a frame scan every hour (Figure 16). After a frame 

scan is collected, a programmed script analyzes the point cloud and checks if there are 

laser returns in two predetermined 1-m3 volumes above the ground. In order to classify 

a scan as a snowfall event, a threshold of 15 returns are needed in both sample  

Figure 16: Frame scan collected before snow season with ground (brown) and tree (grey-
scaled intensity) returns. 

volumes. If the frame scan identifies a snow event, the laser then proceeds to collect a 

single vertical line scan for approximately 30 seconds. The direction of the line scan 

was oriented vertically with minimal tree interference. After February 21st, 2020, an 

additional script was added to collect a second line scan that intersects the Spectralon 

10 m 
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panel. The scanner settings for the various scans are provided in Table 2. The original 

line scan has a 100° vertical angle range and with a 0.04° resolution equals 2,500 

measurements per line scan cycle. For 100 kHz sampling rate, a cycle happens 

approximately 40 times per second or 1,200 times for the 30-second duration. Figure 

17 shows a frame scan with both the original line scan and the Spectralon line scan. 

Table 2. TLS settings for different data collections. *Frame scan settings were adjusted 
midway through the season  

 
Pulse 

Repetition 
Rate (kHz) 

Vertical 
Angle 
Range 

Vertical 
Angle 

Resolution 

Point 
Spacing 
at 10 m 
(mm) 

Horizontal 
Angle 
Range 

Horizontal 
Angle 

Resolution 

Duration 
(sec) 

Frame 
Scan 100 50-130° 0.08°, 0.04°* 7 110-280° 0.04° 38, 87* 

Line Scan 100 30-130° 0.04° 7 195° - 30 
Spectralon 
Line Scan 100 115-125° 0.02° 3.5 276° - 30 

 

Figure 17: Frame scan with ground (brown) and tree (grey-scaled intensity) returns overlaid 
with both line scans (blue). 

10 m 
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FW lidar scans were only collected until December 12, 2019, because 

discontinuing the FW data collection would reduce file size of the point clouds and 

ease bandwidth demands for uploading data. However, for the entire collection period, 

each lidar scan records the X, Y, Z position, the calibrated amplitude, relative 

reflectance, pulse deviation, time stamp, pulse return number and the total number of 

returns acquired for every laser pulse. In total, over 5000 frame scans were collected 

from September 2019 to June 2020. From those frame scans, the automated 

hydrometeor detection process identified 335 snowfall events (Figure 18). Of the 335 

identified events, 59 were marked as discrepant due to the disdrometer and other 

instruments not clearly indicating it was snowing at the time (discussed later in 

Section 4.5). 

Figure 18: Timeline of data acquisitions. Blue depicts confirmed snow events, red depicts 
discrepant snow events and black depicts a frame scan. 

There were instances where the TLS failed to collect a frame scan causing small 

data gaps due to an error indicating an overloading current occurred. The TLS’ 

firmware was never updated after the protective housing was installed, so the 
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additional weight of the housing occasionally overloaded the frame rotation motor. An 

extended power outage also produced a long data gap in mid-February 2020. 

Figure 19 shows a scaled reference of sizes involved in the collection process for 

snowflakes, laser beam footprints and the disdrometer sampling area. Most of the PD 

size estimates were between 1-5 mm and the TLS ranges from the line scans reach 

about 75 meters. This illustrates the difficulty for smaller snowflakes to backscatter 

enough laser energy to be detected as a target return at larger ranges.  

Figure 19: Size reference for data collection. 

3.1.2. Data Processing 

All of the lidar point clouds were georeferenced to the Universal Transverse 

Mercator (UTM) zone 10 N reference frame (EPSG number 32610), stored as a 

compressed .laz file and uploaded to an Amazon Web Services simple storage service 

bucket after they were acquired. Time was recorded in Coordinated Universal Time 

(UTC) and time forms the basis of the lidar file naming convention.  

First, the georeferenced line scans were transformed back to the Scanners Own 

Coordinate System (SOCS), so that the raw range and angle relative to the scanner 
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origin could easily be computed for each point. A 4 x 4, Project Orientation and 

Position (POP), transformation matrix (equation 1) was applied to convert coordinates 

 from UTM back to World Geodetic System 1984 (WGS 84),  

utilizing the Point Data Abstraction Library (PDAL) in python. This matrix contains a 

3D-rotation matrix and a translation vector. Equations 2, 3, and 4 show the rotation 

matrices for the X, Y, and Z-axes respectively as follows:  

 
Rx(ω)  =  �

1 0 0
0 cos (𝜔𝜔) sin (𝜔𝜔)
0 −sin (𝜔𝜔) cos (𝜔𝜔)

�, (2) 

 

 
Ry(φ) =  �

cos (𝜑𝜑) 0 −sin (𝜑𝜑)
0 1 0

sin (𝜑𝜑) 0 cos (𝜑𝜑)
�, (3) 

and 

 
Rz(κ) =  �

cos (𝜅𝜅) sin (𝜅𝜅) 0
−sin (𝜅𝜅) cos (𝜅𝜅) 0

0 0 1
�. (4) 

The final rotation matrix, which is a matrix multiplication of the three axes rotations 

M = Rz(κ)*Ry(φ)*Rx(ω), is shown in its extended form 

 M =             

�
cos (𝜅𝜅)cos (𝜑𝜑) cos(𝜔𝜔) sin(𝜅𝜅) + cos(𝜅𝜅)sin(𝜔𝜔)sin(𝜑𝜑) sin(𝜅𝜅) sin(𝜔𝜔) − cos(𝜅𝜅) cos(𝜔𝜔)sin (𝜑𝜑)

−cos(𝜑𝜑) sin(𝜅𝜅) cos(𝜅𝜅) cos(𝜔𝜔) − sin(𝜅𝜅)sin(𝜔𝜔) sin(𝜑𝜑) cos(𝜅𝜅) sin(𝜔𝜔) + cos(𝜔𝜔) sin(𝜅𝜅)sin (𝜑𝜑)
sin(𝜑𝜑) −cos(𝜑𝜑) sin(𝜔𝜔) cos(𝜔𝜔) cos(𝜑𝜑)

�.          
(5) 

The rotation angles ω, φ, κ that rotate the points about their respective X, Y, Z, axes 

can be determined with some simple trigonometry from the final rotation matrix 

shown by the following equations:  

 
𝑃𝑃𝑃𝑃𝑃𝑃 =  �

0.874268495900 −0.485442681556 0.000000000000 0.000000000000 
0.296522721271 0.534029007700 0.791762145284 20675.785437908489 

−0.384355138961 −0.692212699869 0.610829522285 −6370166.497704507783
0.000000000000 0.000000000000 0.000000000000 1.000000000000

� (1) 
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and 

 κ = tan-1(-M21 / M11). (8) 

Note subscripts are row and column locations within the final rotation matrix. A 4 x 4 

matrix is needed to transform 3D coordinates, because it is necessary to translate the 

coordinate positions in addition to applying the axes rotations. The translation vector, 

T, is simply appended to the end of the rotation matrix as shown in equation 9, 

 
�

𝑥𝑥′
𝑦𝑦′
𝑧𝑧′
1

� =  �

𝑀𝑀11 𝑀𝑀12 𝑀𝑀13 𝑇𝑇𝑥𝑥
𝑀𝑀21 𝑀𝑀22 𝑀𝑀23 𝑇𝑇𝑦𝑦
𝑀𝑀31 𝑀𝑀32 𝑀𝑀33 𝑇𝑇𝑧𝑧

0 0 0 1

� ∗ �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

�. (9) 

The Sensor’s Orientation and Position (SOP) transformation is applied to convert 

the WGS 84 coordinates back to the SOCS  

 
𝑆𝑆𝑃𝑃𝑃𝑃 =  �

0.243466990948 0.834583002822 0.494160940895 −1371.356756454145
−0.958570643796 0.284725256939 −0.008593455998 −7.178285891526
−0.147872052968 −0.471595948900 0.869327968815 −2362.346996182266
0.000000000000 0.000000000000 0.000000000000 1.000000000000

�. (10) 

Note that these transformation matrices are the inverse of the original transformations 

applied to the point clouds. The inverse of a 4 x 4 matrix can be calculated with 

Gauss-Jordan elimination or by use of the adjugate matrix. All points and metadata 

were then output as comma-separated values (CSV) files so that they could be read 

into Matlab for further analysis and classification.  

The next step was classifying whether or not each point from the line scans are 

hydrometeors. The maximum range is calculated for a series 0.05° angle bins across 

the entire vertical range of the line scan. The maximum range of each angle bin is 

 ω = tan-1(-M32 / M33), (6) 

 φ = sin-1(M31), (7) 
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considered to be in a static position and is therefore not a hydrometeor. This accounts 

for the changing snow elevations and trees observed in the line scan. All point ranges 

in a given angle bin are then compared to its maximum range and other conditional 

statements to classify points as a hydrometeor or not. A pseudocode for hydrometeor 

classification is shown as 

 if Point Return(Range) < Max Range - 0.5 meters AND                
Point Return(Range) < 73 meters OR Point Return(Angle) > -47.5° 
then 
Point Return = hydrometeor; 
else 
Point Return = not hydrometeor; 
end. 

(11) 

 

Figure 20 - Figure 22 demonstrate the performance of the classification process. 

The algorithm misclassifies points when there are little or no points collected from the 

tree in the background, approximately 75 m away. There were only a few events that 

were poorly classified, like the line scan taken on January 17 2020 (Figure 22).  

Figure 20: Good line scan classification - hydrometeors (red) and non-hydrometeors (blue). 



 

29 

Figure 21: Few line scan misclassification - hydrometeors (red) and non-hydrometeors (blue). 

  

Figure 22: Many line scan misclassification - hydrometeors (red) and non-hydrometeors 
(blue). 

The poorly classified line scan in Figure 22 was reprocessed with additional 

conditional statements to correct the misclassified point returns. The original 

classification classified 292,098 hydrometeors and after the correction only 864 points 
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were added, which equates to 0.3% of the observations made. Figure 23 shows the 

corrected line scan plot. Note the few blue points remaining in the scan are branches 

from nearby trees. These do contribute false positive misclassifications of 

hydrometeors when an angle bin is able to penetrate through the branches and reach 

the ground surface. These misclassifications will be shown in the range scan 

histograms in Section 4.1.3 and should be taken into consideration when evaluating 

results derived from the line scans. Statistics for the presented line scans can be found 

in Table 3. 

Figure 23: Corrected line scan classification - hydrometeors (red) and non-hydrometeors 
(blue). 
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Table 3: Hydrometeor count and corrections of presented line scans. 

 
Original 

Classified 
Hydrometeors 

Corrected 
Classified 

Hydrometeors 

% 
Increase 

Figure 
20 73,114 - - 

Figure 
21 130,260 130,287 0.02 

Figure 
22 292,098 293,004 0.31 

3.2. Target Statistics 

Statistics were examined for different targets located within the frame scan. The 

Spectralon panel was installed near the TLS at the beginning of the snow season, but 

was only sampled with its own specific line scan starting at the end of February 2020, 

which resulted in 115 datasets captured during snowfall events that aligned with the 

original line scans. Since the Spectralon panel appears in every frame scan, additional 

processing extracted the return points from the Spectralon panel for all of the frame 

scans, including events not identified with snowfall. Additionally, returns from a tree 

trunk approximately 16 meters away were also extracted. Location of the tree trunk in 

relation to the frame scan and Spectralon panel can be seen in Figure 24. Comparison 

of return behavior for both a calibrated and natural target during hydrometeor events 

will indicate feasibility of utilizing natural targets located in the environment 

surrounding the TLS for modeling purposes. 
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Figure 24: Location of returns examined from the Spectralon panel and tree trunk. 

3.3. Disdrometer Data 

The PD was configured to record observations every minute resulting in 350,000 

records from September 2019 to May 2020. Since the PD logged data in local time, all 

time stamps were adjusted to UTC to match the lidar data. PD outputs include particle 

size, speed, snowfall intensity rate and the visibility metric Meteorological Optical 

Range (MOR).  

The WMO classifies MOR as the length of path in the atmosphere required to 

reduce the luminous flux in a collimated beam from an incandescent lamp, at a color 

temperature of 2,700 K, to 5 % of its original value (WMO 2008). The PD estimates 

MOR with a range from 0 – 20,000 meters. Visibility is computed based on the 

reduction of laser intensity on the receiving sensor and does not exclusively use 

5 m 

Tree trunk returns 

Spectralon panel 
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hydrometeor observations in the process, i.e., reduced visibility can be measured 

without the presence of hydrometeors. OTT has not conducted validation experiments 

to evaluate accuracy of MOR estimates (OTT Hydromet customer support, personal 

communication, October 27, 2020). Snowfall intensity rate is estimated as millimeters 

per hour with a +/-20% accuracy and is derived from the observed particle extinctions.  

A batch process was executed in Python utilizing the Pandas library, creating an 

accompanying CSV dataset for each line scan that includes PD data 5 minutes before 

and after the line scan was collected to observe variations in sensor observations and 

weather conditions. Figure 25 shows an example of the number of hydrometeors that 

were classified per cycle of a line scan and the PD intensity rates for both liquid and 

solid precipitation. Precipitation phase is determined from particle size and speed 

estimates, so solid precipitation can be misclassified on occasion. Large variations 

were observed for both the laser line scans and disdrometer datasets, which shows 

how quick conditions can change (Figure 25). Figure 26 and Figure 27 show a more 

consistent example and one of the discrepant scans respectively.  

Figure 25: TLS snow count with disdrometer intensities – large variations. 
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Figure 26: TLS snow count with disdrometer intensities – small variations. 

 

Figure 27: TLS snow count with disdrometer intensities – discrepant scan. 
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3.3.1.  Hydrometeor Size and Velocity 

The PD estimates hydrometeor size and fall speed for every detected particle 

during a collection interval. Output is organized as a 32 x 32 matrix with different size 

and speed classes in which the particles are binned. Total counts and median values 

were calculated for each matrix (Figure 28-Figure 29). The one-minute median 

Figure 28: Example of estimated particle size count from disdrometer. 

Figure 29: Example of estimated particle speed count from disdrometer. 
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disdrometer size, MDS, was examined in attempt to identify patterns in the TLS data 

collection and is presented in Section 4.7.  

An attempt to measure particle velocity was made by comparing the speed 

estimates from the PD with estimates made from the TLS point clouds by using the 

differences in time and displacement for what was believed to be measurements of the 

same hydrometeor. This analysis was conducted in CloudCompare 

(www.danielgm.net/cc/), which is a free open-source program used for analyzing point 

clouds. Co-linear points that appear as streaks within the scan are suspected to be 

repeat measurements of the same particle (Figure 30). Note that the point streaks are 

not necessarily the actual path the hydrometeor travels. Point returns are assigned 

coordinates at the center of the laser footprint, regardless of where the return energy 

originates from within the laser beam. Therefore, these streaks are likely sequential 

observations of a particle and only depend on the range of the returned energy. 

Figure 30: Example of point streaks from hydrometeors in a section of the frame scan. 

4 m 
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A frame scan with point streaks, shown in Figure 31, was selected to compare 

with the PD estimated particle speed measurements. This frame scan was collected on 

December 23, 2019 at 10 PM. The PD records show this was a light snow event with a 

rate of 2 mm/h and the WS600 indicates there was very little wind at the time of 

capture. Note that the obstacles observed within the frame scan are labeled. 

CloudCompare has a tool that allows geometric features to be computed from a point 

cloud. This tool estimates geometric features based on arithmetic combinations of 

eigenvalues and eigenvectors (Hackel et al. 2016). Processing the point cloud based 

upon linearity, the streaks become more visible as the points surrounding them are 

filtered out (Figure 32). Further filtering the points that have a strong linearity value 

over 0.99, reveals the point return streaks of interest (Figure 33). Note the variation in 

types of streaks as some are well defined with a longer length, whereas other streaks 

resemble more of a point. All streaks were used to estimate hydrometer velocities 

from the TLS system and the analysis is presented in Section 4.8. 

Figure 31: Point returns from a frame scan. 

Obstacles 
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Figure 32: Point streaks from a frame scan classified by linearity. 

Figure 33: Point streaks from a frame scan with classified linearity values over 99%. 
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4. RESULTS 

In this section, the various statistical relationships observed between the lidar scan 

metrics and other instruments are presented. The derived measurements from the 

disdrometer (visibility, snowfall intensity rate, particle size and speed) cannot 

ultimately be considered as truth, as they are only estimates; there are inherent 

uncertainties in these measurements and there are no controls in place to validate their 

estimates. However, instrument performance can be evaluated through comparative 

analysis, helping to address the science questions given earlier. Therefore, these 

results are used to characterize the Riegl VZ-400’s performance in a DVE and its 

ability to model estimates derived from the PD.  

4.1. Line Scan Statistics 

Line scan statistics were calculated from point returns classified as hydrometeors. 

Point returns were grouped by their echo return number within the pulse, 1st through 

4th, and the total number of returns for a given pulse, 1 through 4. Bulk statistics of 

count, range and reflectance were computed for all of the groupings. This analysis 

helped determine which statistics had a correlation with snowfall characteristics that 

could be utilized for modeling purposes. 

4.1.1. Count Statistics 

Total counts were calculated for all of the groupings. Counts of first echo returns 

exceed all other returns (Figure 34). On average, the first echo returns have over 

170,000 points per line scan. Less than half of the 276 line scans have more than ten 
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third returns and only one line scan has more than ten fourth returns. There are many 

line scans where neither third nor fourth returns are observed, so these statistical 

groupings provide little value. Total point returns acquired per laser pulse (Figure 35) 

shows that most laser pulses acquire two returns. Most second returns come from 

terrestrial points, not hydrometeors. A table of all count statistics calculated is given in   

Appendix B. 

Figure 34: Echo return counts from line scans. 

Figure 35: Total laser returns per laser pulse counts. 
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Another trend observed for the hydrometeor count was the variation in total 

counts in the near range less than or equal to 5 meters. A bar graph of the near count 

totals for all of the line scans sorted by magnitude shows that the TLS exhibits an 

exponential trend for the amount of hydrometeors observed within the first 5 meters 

(Figure 36).  

Figure 36: Bar graph of near count totals for TLS line scans. 

In the near range, the laser beam will overlap for adjacent pulses, which can result 

in oversampling of hydrometeors. Bair et al. (2012) developed a sampling theory that 

estimates sampling efficiency based on range and physical characteristics of the Riegl 

LMS-Z390i TLS, which has the same laser aperture and beam divergence as the VZ-

400, such that results are comparable. From 3-4 meters, the TLS sampling efficiency 

is estimated to be 1.9 to 1.1 respectively. This means that a hydrometeor at 3 meters is 

likely to be sampled twice within a scan cycle, due to the laser footprint overlapping 

between adjacent pulses. However, since snowfall intensity could affect oversampling 
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and there is no way to distinguish when oversampling occurs, no corrections were 

made and all results were left as bulk observations in effort to keep all TLS 

observations consistent.  

4.1.2. Range and Reflectance Statistics 

The minimum, maximum, average and variance of the range and relative 

reflectance were calculated for each return number grouping. Since there are 

significantly more first returns from hydrometeors compared with other return values, 

the average range of first returns were the most informative. The total number of 

returns per pulse includes all first returns, therefore they do not provide much value or 

distinction between different line scans. A table of all the range statistics that were 

calculated can be found in Appendix C. 

Similar to the range statistics, the relative reflectance statistical groupings for total 

number of returns are affected by the first return echoes. In addition, reflectance 

returns observed after the first return are not expected to be completely accurate due to 

the unknown reduction in laser energy caused by the first return. Therefore, the 

inconsistencies in third and fourth return observations rendered these statistics useless 

for modeling purposes. The reflectance statistics that were calculated can be found in 

Appendix D. 

4.1.3. Range Histograms 

Range histograms of classified hydrometeor returns revealed some insights into 

snow events during line scans. During light snow events, there are large return peaks 
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at around 10 and 18 meters. These peaks are due to false positive hydrometeor 

classifications within the tree branches that obstruct the line scan. Heavy snow events 

produced an exponential decay for returns at range from the scanner. In addition, the 

scanner has difficulty observing hydrometeor targets beyond 30 meters. Figure 37 

shows a few range histograms for heavy and light snowfall events. The exponential 

decay observed for heavy snowfall could be related to the Beer-Lambert Law, which 

states that the amount of absorption of light is proportional to the length traveled and 

the concentration of absorbing species (Camps et al. 2017). This law is used for 

various atmospheric applications. 

Figure 37: Line scan range histograms - light snowfall (top), heavy snowfall (bottom). 

Exponential fits were modeled for each line scan and an e-folding length was 

calculated for each fitted model. The e-folding length is a common metric for 
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exponential models and is the length at which the initial value decreases by a factor of 

the mathematical constant e. Figure 38 shows the exponential models and e-folding 

lengths for the range histograms shown in Figure 37. Due to the misclassifications, 

there is a bias for e-folding lengths at and beyond 10 meters. However, e-folding 

lengths shorter than 10 meters could be used as a metric for modeling visibility. This 

will be evaluated in Section 4.10. 

Figure 38: Line scan range histograms with exponential fits and e-folding lengths. 
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4.2. Target Statistics 

4.2.1. Spectralon Panel 

Plotting the first return average relative reflectance of the Spectralon panel from 

the frame scans shows that the average reflectance when no hydrometeors are present 

is around 78% of the TLS reflectance scale (Figure 39). Frame scans that were 

automatically identified as having hydrometeors present are shown in orange. There 

are reflectance reductions of first returns when there are hydrometeors present, which 

could be caused by hydrometeors absorbing and scattering the laser energy, but not 

reflecting enough to be identified as a target. After further examining the frame scans 

from December 5th-16th with reduced reflectance (highlighted in red), it appears the 

automatic hydrometeor identification algorithm failed to identify a these events as 

having hydrometeors, as PD records indicate snowfall occurring during the time of 

these scans.  

Figure 39: First return average reflectance of Spectralon panel from frame scans. Undetected 
snow events from December 5th-16th highlighted in red. 
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A cyclical variation in return reflectance was observed in the spring; Figure 40 

shows a close up of the return reflectance behavior. There appears to be a diurnal 

pattern with a peak at midnight and trough around noon UTC. Examining the first 

returns more closely throughout the year reveals the diurnal variation always occurs 

when there are no hydrometeors present; however, the variation appears to have a 

smaller amplitude in the fall and winter. Figure 41 shows the cyclical variation in 

November.  

Figure 40: Daily cyclical variation of average reflectance from Spectralon panel – May. 

Figure 41: Daily cyclical variation of average reflectance from Spectralon panel – November. 
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Figure 42 includes the reflectance average of both the first and second returns 

from the Spectralon panel. When no second returns were identified, the return 

reflectance is zero. The max reflectance reduction caused by hydrometeors appears to 

be around 20% from the average when no hydrometeors are present. 

Figure 42: First and second average reflectance returns of Spectralon panel from frame scans. 

Figure 43 shows that a greater reduction in reflectance typically occurs for the 

second return reflectance average. The first return reflectance is on average 4% higher 

than the second return with a standard deviation of 2.3% during hydrometeor events.  

Note that the unidentified December dates in Figure 39 appear with second returns 

from the Spectralon panel in Figure 43, suggesting that the automatic hydrometeor 

detection algorithm may not have been operating correctly during this time. 
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Figure 43: First and second average reflectance returns of Spectralon panel from frame scans 
– November-December. 

4.2.2. Tree Trunk 

The tree trunk exhibited similar return behavior as the Spectralon panel. It had a 

consistent average reflectance around 70% when no hydrometeors are present and the 

max reflectance reduction is just over 35% (Figure 44). The reduction in the averages 

could be caused by surface properties and the increased length the laser must travel. 

The tree trunk also exhibits similar behavior in the fall and spring with diurnal 

reflectance fluctuations, but the variations are smaller than those of the Spectralon 

panel. Figure 45 shows the cyclical variation in reflectance from the tree trunk in May.  
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Figure 44: First and second average reflectance return of a tree trunk from the frame scan.  

 Figure 45: Daily cyclical variation of average reflectance from a tree trunk.  
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4.3.  Reflectance Fluctuations 

It is suspected that changes in temperature are responsible for the reflectance 

fluctuations. Plotting the ambient air temperature along with the Spectralon first return 

reflectance reveals a similar cyclical pattern that is most likely the cause of the 

fluctuations (Figure 46).  

Figure 46: Spectralon first return reflectance average and ambient temperatures in May. 

In effort to validate the hypothesis of temperature causing the cyclical variations 

of the TLS reflectance measurements, a few scans were conducted in an experimental 

setting at the University of Houston. A similar TLS, the Riegl VZ-2000, was setup 

approximately 8 meters away from a metal plate that had been coated with Spectralon 

paint. Scanning parameters were set the same as the frame scan with 0.04° for vertical 

and horizontal resolution and a pulse rate of 100 kHz. To test the effects of 

temperature, the TLS conducted scans with varying internal temperatures on two 

separate days. On February 7, 2021, the ambient temperature was 42 °F and on 
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February 16, 2021, the temperature was 21 °F. The first scans were acquired 

immediately once the TLS was set up, so that the internal temperature did not have 

time to acclimate to the surrounding environment. The TLS was then powered off for 

some time allowing the internal temperature to drop. Figure 47 shows the intensity 

values from the Spectralon scans captured on both days. The reflectance percentage is 

calculated by dividing by the max intensity of 65,536 (216). The internal temperature 

of the scanner and average reflectance can be seen in Table 4. This analysis, 

independent of the TLS at Sesame, shows that the Riegl V-line series reflectance 

values can fluctuate depending on the internal temperature of the instrument. 

 

 

  (a)      (b)        (c) 

        (d)     (e)        (f)  

Figure 47: Spectralon scans of varying internal temperature of TLS: February 16th – (a) 77 °F, 
(b) 55.4 °F, (c) 39.2 °F and February 7th – (d) 78.8 °F, (e) 66.2 °F, (f) 59 °F. 
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Table 4: Spectralon average reflectance for varying internal temperatures of VZ-2000. 

Scan 
Outside 

Temperature 
(°F) 

Internal TLS 
Temperature 

(°F) 

Average 
Reflectance 

(%) 

a 21 77 86.2 
b 21 55.4 84.4 
c 21 39.2 83.9 
d 42 78.8 86.6 
e 42 66.2 84.8 
f 42 59 84.6 

 

4.4. JUDS Comparison 

The JUDS operates in a similar manner as the TLS, by use of two-way time-of-

flight for an active signal. Because the JUDS measurements depend on the air 

temperature, an integrated thermometer is used in its range calculation. Comparing the 

TLS to the JUDS shows similarities between the two instruments and highlights some 

of the added benefits of using a laser scanner. The VZ-400 is capable of measuring 

points 100’s of meters away in every direction, allowing the measurement of the entire 

snow surface surrounding the scanner, whereas the JUDS can only measure one static 

position directly below the sensor. Even though the JUDS makes measurements every 

minute and the TLS makes measurements every hour, the overall change in snow 

depth is consistently captured by both sensors. In Figure 48, the JUDS measurements 

are resampled to coincide with those of the TLS. The small offset between the two 

datasets is likely because the sensors are not able to measure the exact same location, 

as the JUDS is just outside the field of view of the TLS by a few meters. 
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Figure 48: Snow height measurements from TLS and JUDS. 

Table 5 shows the statistics of the differences between the TLS and JUDS 

measurements. On average, the measurements from the TLS are approximately 12 cm 

higher than the JUDS measurements.  

Table 5: Height comparison of TLS and JUDS. 

 
Difference between 

TLS and JUDS 
measurements (cm) 

Minimum -1.6 
Maximum 38.2 
Average 12.6 
Standard 
Deviation 10.1 

 

Multiplying the relative snow density with a height measurement gives an 

estimate for SWE. If the relative density of a snowpack of 1 meter were 20%, after the 

snowpack melts it would yield 20 cm of water. The relative density was calculated 
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from the JUDS and snow pillow measurements and Figure 49 shows the height 

measurements from the TLS and the corresponding SWE estimate. Assuming the 

relative density is similar for a region scanned by a TLS, SWE can be computed for a 

larger area and give better estimates for total SWE than for only a single location.  

Figure 49: TLS snow height and SWE. 

An advantage of using the TLS, aside from being able to measure a large surface 

area, is that it can also provide reflectance measurements of the snow surface. This 

gives an indication when the snow surface has undergone a change as the return 

reflectance is drastically altered depending on the angle of incidence relative to the 

TLS. Figure 50 shows TLS heights with the average reflectance measurements for 

dates in December and January. Lowered intensities can be observed when snow is not 

accumulating, allowing an extended period for the snowpack surface to undergo 

metamorphism. 
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Figure 50: Snow height and average return reflectance. 

4.5. Discrepant Scans 

Of the 335 line scans that were identified as snowfall events, only 276 had 

disdrometer observations that indicated precipitation. The 59 discrepant scans were 

examined more closely to determine why the automatic identification process would 

be triggered if other sensors did not clearly indicate snowfall at the time of the data 

capture. A discrepant scan was normally located during, before or after a series robust 

line scan events (i.e., snowfall was recorded by the disdrometer). Of the 59 scans, 32 

had PD results that indicated snowfall within +/- 5 minutes of the line scan. It is 

suspected that the cause for some of these discrepancies could be due to differences in 

location and size of sampling volume between the two instruments, therefore these 

scans will be omitted from the discrepant scan analysis. General comparisons were 

made between the remaining scans in an attempt to identify any reasons that could 
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have caused these discrepancies. Figure 51 shows differences between time, the 

average count of hydrometeors per line scan cycle and various wind properties. There 

is no clear distinction for the time of day or time of the year. The average laser count 

per cycle is usually lower than 100 for discrepant scans. As wind speeds increase, 

Figure 51: Robust and discrepant line scan comparisons. 
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more discrepant scans are observed up until 4 mph, after which discrepant scans 

become less prevalent. Easterly winds appear to have more discrepant scans compared 

to other directions. 

Upon further analysis of the point clouds, additional discrepancies were 

discovered. Figure 52 shows the first return reflectance of the Spectralon panel colored 

by the count of points returned from the panel. This revealed that scan acquisition 

parameters were adjusted for the frame scan collections. Correspondence with CRREL 

confirmed that after January 28th 2020 the angular increments had been halved, which 

means the scanner sampling density increased (CRREL, personal communication, 

November 2nd, 2020). Because of this, fewer hydrometeors within a check volume 

would result in the threshold count being more easily reached - potentially resulting in 

more uncertain scans, with low snowfall rates. 

Figure 52: Average Spectralon reflectance colored by return count. 
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When reviewing the location of the check volumes, it was also discovered that 

one of the locations had been entered erroneously into the automatic hydrometeor 

detection algorithm. Figure 53 shows the intended and actual locations of the check 

volumes. This error partially negates the spatial decorrelation of using multiple check 

volumes since they are located side by side, however, after further review of the 

discrepant scans, most of these events would have been triggered regardless of the 

location of the check volumes since many returns were observed around the scanner. 

Figure 53: Intended (left side) and actual (right side) check volume locations. 

4.6. Full-waveform 

Riegl’s proprietary software, RiSCAN Pro, is needed to visualize the FW results 

acquired at Sesame. Results show the various FW return behaviors that can be 

acquired from a TLS system in this environment. Figure 54 shows a laser pulse from a 

line scan with the accompanying FW amplitudes. Distinct target returns were typically  
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Figure 54: RiSCAN Pro full-waveform results from a laser pulse.  

acquired when there were no obstructions from multiple targets. One of the derived 

metrics from the FW return is the amount of deviation that occurs from the expected 

system response of a flat, orthogonal target. As stated earlier, the return energy is 

sampled every 2 nanoseconds, which is approximately 60 cm intervals. When targets 

are close to or within this range resolution, the radiometric cross-section will deviate 

from a normal system response.  

Figure 55 shows a line scan colored by pulse deviation. Low deviation indicated 

by blue is a normal return, which is what is predominantly captured for hydrometeors. 

Figure 56 shows the waveform of a hydrometeor return with low deviation. Higher 

deviations are observed when multiple hydrometeors are near each other and 

illuminated by a laser pulse at nearly the same time (Figure 57) or when a 

hydrometeor is illuminated close to a boundary, such as the snow surface or a tree 

branch (Figure 58). These deviations are indicated as green in Figure 55. 

 

4 m 
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Figure 55: Line scan deviation in RiSCAN Pro.  

Figure 56: Full-waveform of single hydrometeor with low deviation. 
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Figure 57: Full-waveform of two hydrometeors with minor deviation. 

Figure 58: Full-waveform of hydrometeor near snow surface with minor deviation. 

Hydrometeors can still have a low deviation when at sufficient distance from a 

surface. Figure 59 shows FW of a return with low deviation just above the boundary 

of green deviations that exists over the snow surface in Figure 55. As two targets get 

closer in proximity, their energy peaks begin to approach each other, which changes 

the overall shape from a normal return. Figure 60 - Figure 62 shows examples of 

higher deviations indicated by yellow, orange and red points in Figure 55. 
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Figure 59: Full-waveform of hydrometeor above the snow surface with low deviation. 

Figure 60: Full-waveform of two closely spaced hydrometeors with higher (yellow) deviation. 

Figure 61: Full-waveform of a hydrometeor near the snow surface with higher (orange) 
deviation. 
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Figure 62: Full-waveform of a hydrometeor near the snow surface with high (red) deviation. 

Fortunately, one of the line scans acquired with FW data experienced range 

reductions (Figure 63). This will show the FW characteristics of returns that reach 

extinction due to interaction with hydrometeors and the atmosphere. Returns were 

Figure 63: Line scan with range reductions 

filtered such that only single returns were examined to ensure no other target impeded 

the laser energy beforehand and making sure no other return was acquired after. FW 

returns during dense snowfall showed that the laser energy is not capable of acquiring 
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many returns from hydrometeors and does not exhibit a unique waveform 

characteristic. Only one dominant return is captured followed by a long trail of low 

amplitudes/noise. Figure 64 shows single returns at different lengths that met 

extinction in the atmosphere. Returns examined at a closer range and further away all 

show similar FW characteristics.  

 

 

 

 

 

 

 

(a)       (b) 

(a)  

 

 

 

 

 

(c)       

Figure 64: FW of returns that met extinction in the atmosphere at different ranges. (a) 15 
meters, (b) 26 meters, (c) 47 meters. 
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4.7. Particle Size 

The MDS calculated from the PD size estimates for a given collection period was 

compared with various TLS metrics. MDS is not an exact, definite proxy for the 

particle size and there is a lot of variability due to the amalgamation of bulk 

observations, sampling of different hydrometeors and inherent uncertainties of the PD 

size estimation for solid precipitation.  

The type of hydrometeor formation (i.e., snow, rain, hail, etc.) depends on the 

vertical temperature profile of the atmosphere (Sankare and Theriault 2016). Figure 65 

plots the ambient air temperature with the MDS to see if temperatures at the surface 

have any impact on the observed estimates of hydrometeor size. There appears to be 

no correlation between ambient temperature and MDS.  

Figure 65: Median disdrometer size vs. ambient air temperature. 

It was suspected that larger hydrometeors would impede more of the laser energy, 

therefore further reducing the second return reflectance on the Spectralon panel. The 
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MDS compared with the Spectralon second return reflectance does not show any clear 

correlation to support this (Figure 66).  

Figure 66: Median disdrometer size vs. Spectralon second return reflectance average. 

Returns in the near field range of the scanner had a large variation of counts 

between all of the line scans. Larger hydrometeors can reflect more of the laser energy 

back to the sensor, which might make them easier to detect in the near range. In Figure 

67, MDS was compared to the near count total within 5 meters of the TLS. Particle 

size is not the only factor for observing targets in the near field, because rate of 

snowfall will also determine how many hydrometeors are present to observe. 

Therefore, points are colored by the PD snow intensity estimate as well. The plot 

indicates that particle size does not impact number of observations in the near field. 

Smaller particle sizes still acquire large near count totals when there is a lot of 

precipitation. None of the larger MDS values were observed at these higher 

precipitation rates.  
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Figure 67: Median disdrometer size vs near count total. 

Since larger hydrometeors occlude more of the laser energy, the MDS was also 

compared with the average range of hydrometeors observed for each line scan (Figure 

68). Again, PD snow intensity rate estimate is used to color the points. Size does not 

appear to be correlated with the average range hydrometeors are observed. Occlusion 

of the TLS’ range depends more on the rate of precipitation.  

Figure 68: Median disdrometer size vs average hydrometeor range. 
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4.8. Particle Speed 

Velocity estimates from the PD were compared with estimates that were derived 

from streaks observed in the TLS point clouds. Streaks could be observed in 

approximately 70% of the frame scans during hydrometeor events. A manual and 

automated process were both evaluated. For the manual evaluation, 38 streaks were 

examined and results were found to be comparable to those of the PD. Figure 69 

shows the PD speed estimates and the manually calculated speeds from the TLS point 

streaks. All of the measured velocities from the TLS are within the measured range of  

Figure 69: PD speed estimates (top) and manually calculated speeds from TLS (bottom). 
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the PD. Note that these streaks were manually selected because they visually appeared 

to be a good selection choice with ample returns defining a longer streak providing a 

larger signal-to-noise ratio.  

An automated function was then created to calculate the total number of points 

within a streak along with total distance, time interval and velocity. The input to the 

function is a point cloud of returns within five meters of the scanner with a scalar field 

of calculated linearity values from CloudCompare (see section 3.3.1). The function 

then cycles through all of the points to find returns that are within 0.05 seconds of 

each other. This revealed a large variety of streak velocities estimated from the TLS, 

many of which are unreasonable with measurements from 20 m/s up to a few extreme 

values over 1000 m/s. Figure 70 shows a histogram of automatically calculated 

velocities from the point cloud in Figure 31. The extreme velocities have very short 

time differences of a few microseconds and the streaks only contain a few particles. 

Coordinate uncertainty (due to coordinates automatically being placed at the center of 

the laser beam), motion of the scanning laser and oversampling are suspected to be the 

causes for unrealistic estimates. Filtering streaks that have more than two returns and 

limiting velocities to less than 5 m/s shows results similar to those of the PD and 

manually selected streaks (Figure 71). 
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Figure 70: Automatically calculated streak velocities. 

Figure 71: Automatically calculated streak velocities - filtered by count and speed. 

4.9. Snowfall Intensity 

The snow intensity rate estimated by the PD is the instrument’s attempt to 

quantify the amount of snow that will accumulate based on measurements of 

hydrometeors in the air. Obviously, the TLS could just scan the surface at different 

time intervals to estimate accumulation. However, the PD estimate was used as a 

proxy for the amount of hydrometeors present in the air to compare with statistics 
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from the TLS observations. Various regressions were evaluated to determine what 

TLS observations were useful and which model had the strongest correlation with the 

PD snowfall intensity.  

An exponential fit aligns with the reduction of the first return reflectance average 

(Figure 72). Parameters for the non-linear regression model and the goodness of fit are 

given in Table 6. As noted earlier, light snowfall events are influenced by the  

Figure 72: Non-linear regression of 1st return reflectance average vs. disdrometer snow 
intensity. 

 

Table 6: Non-linear regression results from 1st return reflectance average vs disdrometer 
snow intensity. 

 

 

 

 

 

    1st Return Reflectance Average 
vs Disdrometer Snow Intensity 

Model a*exp(b*x) 
a 1.82E+04 
b -0.2907   

R2 0.6845 

RMSE 9.83 
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misclassification of tree branches as hydrometeors, which causes the larger reflectance 

average. As the snowfall intensity increases and more hydrometeors are scanned, a 

reduction in the average first return reflectance is observed. There is little variation 

until the reflectance average drops below 28%. The lowest average just above 15% 

was during the heaviest snowfall event observed in which ranges were most reduced. 

The reduction of the first return reflectance average is believed to be a result of more 

first returns being actual hydrometeors compared to false positive returns in the tree 

branch and returns being observed closer to the scanner where the recorded returns 

have lower amplitudes (see Figure 10).  

Figure 73 shows a point cloud of observations within 5 meters of the scanner 

colored by their reflectance percentage. Clearly, within the first 2 meters the return 

reflectance is significantly smaller. This is confirmed when plotting the first return 

reflectance average versus the average hydrometer range, which shows a strong linear  

Figure 73: Near frame reflectance returns. 
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trend (Figure 74). A large reflectance variation is seen as the average range 

approaches the first tree branch around 10 meters from the scanner. 

Figure 74: Average reflectance 1st return vs average hydrometeor range. 

The near count total, average first return reflectance, single and double returns 

were evaluated in a multi-variable linear regression model (Figure 75) and the 

resulting statistics are given in Table 7. There is a lot of variance for smaller snowfall 

events, but larger snowfall events exhibit a linear trend. The slope of the model proved 

significant with a confidence level of 99%. The RMSE of approximately 10 mm/h 

seems reasonable considering the PD estimated accuracy for snow intensity is 20% 

(OTT Hydromet). This shows that the TLS measurements are correlated with snow 

intensities. 

 

 



 

74 

 

Figure 75: Multi-variable linear regression of near count total, average reflectance 1st return, 
return count 1 and 2 vs disdrometer snow intensity. 

Table 7: Multi-variable linear regression statistics for disdrometer snow intensity model. 

 

 

 

 

 

 

 

 

The Spectralon line scan and a subset of panel returns filtered from the frame 

scans were also evaluated and modeled. Figure 76 shows the second return reflectance 

average of points that hit the Spectralon panel from the frame scan. As the average 

 
Near Count Total, Average Reflectance 1st 

Return, Single Count, Double Count vs 
Disdrometer Snow Intensity 

R2 0.604 

RMSE 10.9 
SSR 49,302 
SSE 32,303 

MSR 12,326 
MSE 119 

F Statistic 103 
F Critical 3.4 

Significant Yes 
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reflectance is reduced, we have an increase in PD snow intensity. The plot is colored 

by the count of second returns that hit the Spectralon panel. Higher count totals are  

Figure 76: Average second return reflectance from Spectralon panel of frame scans identified 
with hydrometeors vs disdrometer snow intensity. 

correlated with a higher PD estimate and a larger reduction in the average reflectance. 

Similar results are shown in Figure 77 for the second return reflectance averages from 

the Spectralon line scan. The main difference between these two datasets (besides the 

Spectralon line scan having fewer observations) is the amount of second returns 

collected. The frame scan on average collects 50 second point returns from the 

Spectralon panel, whereas the Spectralon line scan on average collects 1,700 second 

point returns. When the frame scan plot is zoomed in (due to having some higher PD 

estimates) it resembles that of the Spectralon line scan (Figure 78). These results 

indicate that depending on the target size and range, a limited amount of return points 

can still provide meaningful insight and that a dedicated line scan may not always be 

necessary. Non-linear regressions for the target along with their statistics can be found 

in Appendix E.  
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Figure 77: Average second return reflectance from Spectralon line scan vs disdrometer snow 
intensity. 

Figure 78: Average second return reflectance from Spectralon panel of frame scans identified 
with hydrometeors vs disdrometer snow intensity – zoomed in. 
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4.10. Visibility 

The PD estimates visibility by extrapolating observations from a 54-cm2 area to 

ranges of several kilometers assuming homogeneity in the atmosphere from 0-20 km. 

Human-perceived visibility is much more complex than a single metric of light 

scattering at one specific wavelength. Nevertheless, the PD MOR estimate is modeled 

with different observations derived from the TLS scans. Given the large extrapolation 

of the PD MOR and the TLS being unable to make measurements at those ranges, 

estimates were limited for some of the models to improve the overall fit. MOR 

estimates were limited by their range based upon the variance observed within the 

dataset. 

Figure 79 shows the relationship between the disdrometer snow intensity and 

MOR. The plot is colored by first return reflectance average. Note the lowest visibility 

is from the heaviest snowfall event observed by the laser scanner. Plotting the PD 

MOR with the near count total (Figure 80) revealed a similar trend as the estimated 

PD snow intensity when the plot is zoomed in (Figure 81). 



 

78 

Figure 79:  Disdrometer snow intensity vs MOR. 

Figure 80: Disdrometer MOR vs near count total. 
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Figure 81:  Disdrometer snow intensity vs MOR – zoomed in. 

Nonlinear regression was used to model an exponential fit for the near count total 

with MOR estimates limited to 3,000 meters (Figure 82). As the near count total 

increases beyond 100,000, the estimated visibility is reduced significantly. 

Figure 82: Nonlinear regression of near count total and disdrometer MOR. 
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For smaller near count totals, there is a large variance in the PD estimated visibility. 

The modeled results are given in Table 8. 

Table 8: Nonlinear regression results from near count total and disdrometer MOR. 

 

 

 

 

 

 

 

Regression was also used to evaluate some of the line scan statistics with the PD 

MOR. An additional statistical group, total return count beyond 75 meters, was 

calculated. This essentially treats the trees in the background as a target and uses the 

amount of target returns that were observed from the line scans as an estimate for 

visibility. Figure 83 shows the nonlinear regression of the far count total of returns 

beyond 75 meters with the MOR estimates limited to 1000 meters. Model parameters 

and statistics can be found in Table 9. As the count reaches zero, a target at 75 meters 

is no longer visible for the sensor. Therefore, extinction of targets that are normally 

detectable could serve as an indication of a DVE. 

 Near Count Total vs Disdrometer MOR 

Model a*exp(b*x) + c*exp(d*x) 

a 1.24E+03 
b -4.22E-05 
c 650.2 
d -5.27E-06 
  

R2 0.484 
RMSE 458 
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Figure 83: Nonlinear regression of far count total vs disdrometer MOR. 

Table 9: Nonlinear regression results for far count total vs disdrometer MOR. 

 

 

 

 

 

 

The e-folding lengths calculated from the line scans were also compared with the 

disdrometer MOR (Figure 84). As the e-folding length gets closer to the scanner, the 

density of hydrometeors in the atmosphere has increased which affects visibility. The 

large variance of the results around and beyond 10 meters for e-folding length is 

attributed to the misclassifications of hydrometeors within the line scan. A linear trend 

is observed for e-folding lengths below 10 meters when limiting MOR to 1000 meters 

    Far Count Total vs 
Disdrometer MOR 

Model a*exp(b*x) 
a 58.58 
b 4.72E-06   

R2 0.6234 

RMSE 148 
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(Figure 85). The heaviest estimated snowfalls from the PD are shown to have the 

smallest visibility estimate. The exponential decay of returns surrounding the TLS 

could be used to evaluate whiteout conditions as the sensor becomes saturated with 

returns in the near field. Linear regression was used to analyze correlation between 

MOR and e-folding length (Figure 86) and statistics can be found in Table 10. 

Figure 84: e-folding length vs disdrometer MOR (limited to 5000 meters). Colored by 
disdrometer snow intensity estimate. 

Figure 85: e-folding length vs disdrometer MOR (limited to 1000 meters). Colored by 
disdrometer snow intensity estimate. 
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Figure 86: Linear regression of e-folding length vs disdrometer MOR. 

A multi-variable linear regression was evaluated with the far count total, e-folding 

length and second return reflectance average for the Spectralon panel from the frame 

scans (Figure 87). The statistical results from this model can be found in Table 10. 

Both of the slopes from the e-folding length and multi-variable regression models 

proved to be statistically significant with a confidence level of 99%. The RMSE for 

these models are approximately 150-200 meters. This suggests that TLS observations 

have potential for estimating visibility conditions during heavy snowfall.  
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Figure 87: Multi-variable linear regression of far count total, average hydrometeor range, 
average 2nd return reflectance from Spectralon panel vs disdrometer MOR. 

Table 10: Statistical results of linear regression models of disdrometer MOR. 
 

e-folding length 
vs Disdrometer 

MOR 

Far Count Total, e-folding 
length and Average 2nd 
Return Reflectance of 

Spectralon Panel vs 
Disdrometer MOR 

R2 0.376 0.602 
RMSE 191 156 
SSR 4,115,287 5,056,468 
SSE 6,821,607 3,348,743 

MSR 4,115,287 1,685,489 
MSE 36,093 24,443 

F Statistic 114 69 
F Critical 7 4 

Significant Yes Yes 
 

The PD MOR was also compared with the second return reflectance average from 

the Spectralon line scans and frame scan subsets. There is a large variance for large 

MOR values, but as the second return reflectance average from the Spectralon panel 
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decreases below 70%, the visibility estimates have a larger reduction that is more 

consistent (Figure 88). It is not surprising that the data is poorly correlated for higher 

MOR values, due to the large extrapolation and unknown accuracy of the MOR 

estimates. Similar results were obtained for both the frame scan subset and Spectralon 

line scan, regardless of how many second returns were observed (Figure 89). Linear 

regression was used to evaluate the correlations between these datasets with a MOR 

limit of 1000 meters. The regressions and statistics can be found in Appendix F.  

Figure 88: Frame scan Spectralon panel – Average 2nd reflectance return vs disdrometer 
MOR. 
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Figure 89: Spectralon line scan – Average 2nd reflectance return vs disdrometer MOR. 

An interesting comparison was made between the PD MOR estimates and the 

maximum range of hydrometeors from the line scans. The two lowest observed MOR 

estimates from the PD were 26 and 74 meters and the maximum range from the 

corresponding line scans were 27 and 49 meters respectively. Almost all of the line 

scans were able to collect returns from a tree in the distance, approximately 75 meters 

away, but these two snow events that occurred sequentially on January 16 at 4 and 5 

pm had no returns from the tree. Figure 90 shows the reduced ranges of the line scans 

due to whiteout conditions for the TLS system. Even though the PD samples a small 

area with a different wavelength than the TLS, low estimated visibility within the 

boundary of the tree also resulted in reduced range observations in the line scan.  
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Figure 90: Line scans of maximum line scan range reductions 

A hemispherical webcam, located at the CUES site approximately 1 km away 

from Sesame, provides a limited view of the weather conditions during these reduced 

visibility events. Figure 91 shows two images, one with reduced visibility and one 

without. It is difficult to distinguish some of the edges of the reduced visibility image. 

Ideally, a camera system should be set up to capture images with a longer range and 

more identifiable features that are also observed in the point cloud. If range extinction 

can be modeled to represent human visibility, then the TLS could provide a more 

accurate visible assessment of the environment surrounding the scanner compared to 

that of the PD or a forward scattering visibility meter. 
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Figure 91: Webcam images from CUES site - reduced visibility (top), clear visibility (bottom) 
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5. DISCUSSION 

5.1. Can a TLS provide similar or enhanced snowfall metrics 

compared to other meteorological sensors? 

This analysis has revealed various capabilities of the TLS for use as a 

meteorological sensor. Lidar point clouds are able to detect that a hydrometeor event 

is occurring and are sensitive to the intensity of the snowfall event. The automatic 

detection method for this study searched for returns in the atmosphere, but it was also 

shown that acquiring second returns from a target that typically only produces one 

return is a good indicator of snow as well. It is believed that the discrepant snow 

events stem from a variety of circumstances. Wind is suspected to be a factor by 

transporting settled snow from the ground and nearby trees into the atmosphere. An 

ensemble of smaller particles blown by the wind will more easily be detected by the 

larger volume of the TLS compared to the PD, which is shielded and has difficulty 

observing hydrometeors that are not falling vertically. The TLS system appears to be 

more sensitive to observing point returns compared with the PD classifying a 

hydrometeor for very light snow events.  

The TLS has enhanced capabilities compared to the JUDS, with its ability to 

sample a larger area and record reflectance variations of the surface; this gives more 

details on the snowpack surrounding the scanner. Modeling TLS scan metrics with PD 

estimates proved statistically significant, which is promising for future research, 

showing that returns from the laser scanner can be used to estimate visibility and 

snowfall intensity rate.  
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5.2. Does FW scanning provide better snowfall estimation? 

Examining the FW characteristics of laser pulses during snowfall shows that the 

waveform deviates when different targets are acquired within the range resolution of 

the scanner. Unlike the FW results obtained in fog (Pfenningbauer et al. 2014), the 

returns that met extinction in the atmosphere did not exhibit unique characteristics or 

the ability to penetrate far into dense snowfall. Possible reasons that the FW returns 

differ here is that fog consists of a uniform distribution of particles, which are much 

smaller and possess mie-scattering characteristics. Hydrometeors are significantly 

larger and create occlusions by absorbing and scattering the laser energy. Given the 

small size and low reflectance from hydrometeors at the laser’s wavelength, it is likely 

that the laser energy is being impaired and not enough energy is being reflected back 

to exceed the detection threshold. For these reasons, FW analysis does not appear to 

provide an advantage compared to that of multi-return point clouds during whiteout 

conditions.  

5.3. Can particle velocities be determined from a TLS? 

Frame scans collected during hydrometeor events revealed streaks that are 

believed to be repeat measurements of individual hydrometeors. Of the 276 frame 

scans identified with hydrometeors, approximately 70% had some amount of point 

streaks present. Based on observations of the point clouds, the TLS’s ability to record 

these streaks depends on a few factors, namely, how many hydrometeors are in the air, 

the wind conditions and if the hydrometeor is falling in the direction which the TLS is 

scanning. Heavy snowfall and high winds make it difficult for the scanner to observe 
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streaks. Manual calculations from well-defined streaks were all within the velocity 

range from the PD. Evaluation of automated TLS velocity estimates revealed that 65% 

of the estimates were spurious. This is believed to be due to uncertainty in 

hydrometeor location due to motion of the laser beam when scanning and/or 

oversampling of returns near the scanner. Deriving hydrometeor speeds appears to be 

feasible with a TLS; however, results can be sporadic and inconsistent within scans 

depending on the weather conditions during data capture and snowfall intensity.  

5.4. Are there any noticeable variations in data metrics due to 

hydrometeor size? 

The PD has the ability to estimate a hydrometeor’s size, but fundamental 

assumptions made in the instruments estimates are not ideal for solid precipitation. 

The median size from different collection periods were compared with various metrics 

derived from the TLS. However, based on the bulk statistics, particle size is not 

observable in TLS lidar scans. The range for median size estimates of hydrometeors 

varied from 0.687-2.75 mm. These are much smaller than the laser footprint, which 

varies from 6.5-29 mm for ranges from 0-75 m. TLS metrics are affected more by the 

intensity of snowfall than the median disdrometer size. A better truth metric for 

hydrometeor size is required to compare against TLS observations because the PD is 

not configured to accurately estimate solid precipitation; it only generates bulk 

statistics from snowfall events. The TLS’ ability to discern hydrometeor sizes should 

be examined with controlled tests on hydrometeors of a known size. 
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5.5. Is a TLS able to estimate a snowfall intensity rate? 

TLS statistics derived from hydrometeors and targets varied depending on the 

intensity of snowfall. Most hydrometeor returns occur within 10 meters of the scanner 

and the counts within 5 meters showed distinct variation between snowfall events. The 

return reflectance of hydrometeors within 2 meters of the scanner had significantly 

lower intensities compared with other hydrometeors. This is because the relative 

reflectance calibration is not well suited for small, low-reflectance targets. Heavier 

snowfall leads to more returns near the scanner, reducing the overall reflectance 

average for hydrometeors. First and second return reflectance averages from the 

Spectralon panel and tree trunk suggest that hydrometeors in the atmosphere impair 

the laser’s energy, reducing the target amplitude. These statistics were used for 

modeling the PD estimate for snow intensity rate and all proved statistically 

significant. This indicates that TLS measurements have potential for estimating 

snowfall intensity. The multi-variable regression presented appears to be the most 

promising model for snowfall intensity rate and could be used to indicate differences 

between light, medium and heavy snowfall. 

5.6.  Do variations in TLS measurements relate to visibility? 

A few events observed by the TLS show that it is capable of experiencing 

whiteout conditions due to heavy snowfall. The lowest PD visibility estimates aligned 

with the largest range reductions from the TLS. The PD MOR estimate extrapolates up 

to 20 km away from the single measurement location, which is far beyond the 

measurement range of this TLS, so estimates were limited for some of the correlation 
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estimations. Counts, ranges and intensities were all modeled against the PD visibility 

estimates and proved statistically significant. A large number of hydrometeors 

observed near the scanner increased the near count total and affected the exponential 

decay of return counts, which relate to a DVE. In addition, the inability to acquire 

returns from targets at range indicate that a target is undetectable and likely impaired 

by a DVE.  This suggests that statistics from hydrometeors and targets located around 

a TLS can be utilized in a establishing a framework to model visibility. For this study, 

targets were examined at relatively short distances compared to the TLS maximum 

range, due to the occlusions around the scanner. The use of targets and statistics at 

longer ranges would require the laser energy to traverse more of the atmosphere. This 

would produce greater reflectance reductions and fewer returns from a target, which 

could increase the sensitivity of the TLS to visibility reductions. 
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6. CONCLUSION AND FUTURE WORK 

This thesis examined lidar and meteorological datasets collected during snowfall 

events at the Sesame Street Snow Study Plot in Mammoth Lakes, California. The 

objective was to analyze if the Riegl VZ-400 TLS system has the ability to determine 

visibility around the scanner and/or estimate properties related to hydrometeors by 

comparing results with the OTT Hydromet Parsivel2 optical disdrometer. The 

questions presented in Chapter 1 are readdressed and italicized. 

Can a TLS provide similar or enhanced snowfall metrics compared to other 

meteorological sensors? The VZ-400 demonstrated it is capable of detecting snowfall 

and the variation in measurements suggest that both visibility and snowfall intensity 

rate could be estimated. In addition, the TLS provides the ability to acquire depth and 

reflectance estimates for a large area compared to a static height estimate from an 

ultrasonic depth sensor. Although some snowfall velocity estimates could be obtained 

from the lidar scans, the TLS does not appear to give a reliable measure of particle 

velocity or size.  

Does FW scanning provide better snowfall estimation? Analysis of returns during 

snowfall indicate that FW results can vary when multiple targets are observed within 

the range resolution of the scanner. However, during whiteout conditions, waveform 

characteristics do not yield additional information compared to a discrete returns.  

Can particle velocities be determined from a TLS? There are certain instances 

where long, well-defined particle streaks from the TLS provide similar hydrometeor 

velocity estimates to the PD, but these results are sporadic and inconsistent among the 
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lidar scans. Velocity estimates using small streaks yield erroneous results due to 

coordinate uncertainty and oversampling. Therefore, a TLS does not appear to be a 

reliable instrument for estimating snow particle velocity due to the scanning 

mechanics and the short distance over which the hydrometeors are observed. 

 Are there any noticeable variations in the TLS data metrics due to hydrometeor 

size? Hydrometeors observed in this study are much smaller than the laser footprint. 

The small size and low reflectance of hydrometeors makes it difficult for a TLS to 

distinguish size variations. The median disdrometer size estimate from the PD varies 

by only a few mm and fails to show correlations with any of the TLS observations. 

Is a TLS able to estimate snowfall intensity rate? The slope from the multi-

variable regression model evaluated with TLS observations and the PD estimate for 

snowfall intensity rate proved statistically significant with a confidence level of 99%. 

The model shows the capability to use the TLS to distinguish between light, moderate 

and heavy snowfall events.  

Do variations in TLS measurements relate to visibility? Variations in TLS 

measurements do relate to visibility estimates from the PD. The increase of 

hydrometeor returns in the near range, changes in the e-folding length and a decrease 

of returns in the far range all showed a correlation with the PD MOR estimate. These 

TLS metrics relate to the atmospheric conditions and the sensor’s ability to operate in 

a DVE. 

Return statistics from hydrometeors appear to yield informative data from a TLS. 

Hydrometeors were mostly observed as first or second returns within 10 meters of the 
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scanner; this region was the most affected by varying snowfall conditions. Detection 

of hydrometeors is limited and sporadic beyond 30 meters.  This study has shown that 

hydrometer counts, their range variations and, for the VZ-400 specifically, changes in 

reflectance, have statistical properties that can be used for modeling purposes.  

Reflectance reductions of the first returns from a target and reduced counts from 

large targets at range show that hydrometeors can obstruct the lasers energy in varying 

amounts. Both manmade and natural targets experienced reflectance reductions during 

different visibility conditions. This suggests that targets identified around a scanner 

can be utilized by comparing return counts and intensities during a DVE with values 

obtained from normalized visibility conditions. Since hydrometeors have been shown 

to scatter and absorb the laser’s energy, targets at longer ranges could yield 

information regarding atmospheric conditions along the laser cone of diffraction. The 

laser footprint at longer ranges is likely too big for individual hydrometeors to reflect 

enough energy for a target to be detected; however, the sensor exhibited that it is 

capable of experiencing whiteout conditions from heavy snowfall as returns became 

extinguished at shorter ranges.  

Development of a visibility model for a TLS system using range extinction and 

return statistics could be developed for a sensor’s operable range, which varies from a 

few hundred meters up to a few kilometers. This could serve as an indicator for 

reduced visibility within its measurement range and improved spatial resolution for 

autonomous monitoring of critical areas, such as airports, harbors and highways. 

Although the models developed in the thesis have shown promising results, it is only 
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for one season, using one model of TLS at a specific site with limited range 

observations and is compared against estimates from another instrument. Further 

validation will be required to determine the optimal settings (targets, ranges, statistic 

thresholds, etc.) for a specific instrument/application/location with accurate control 

measurements in place. 

There are a few recommendations the author believes will help this research for 

future analysis. Use of fixed targets at varying distances within the instruments 

measurement range and field of view could allow the TLS to observe more distinct 

reflectance reductions, as the laser pulse has to travel through more of the atmosphere. 

Longer ranges to targets would also provide more meaningful statistics related to 

return counts/extinction. 

It is hard to estimate visibility without having a visual reference, especially 

considering there are many factors besides hydrometeors that affect visibility. Having 

a camera on site collecting images of features around the TLS during each lidar scan 

will help distinguish differences between observations in the visible spectrum of light 

and active observations of the TLS in the near infrared wavelength. 

Past research (Battaglia et al. 2010) has shown that the size estimate from the PD 

for solid precipitation has large uncertainty, especially for smaller particle sizes. In 

addition, the PD only provided bulk observations of hydrometeors for one-minute 

intervals. Performing different experiments with known hydrometer sizes might reveal 

better correlation with TLS statistics that could be utilized for discerning hydrometeor 

size. 
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The Riegl VZ-400 is a very powerful instrument that is capable of making 

accurate measurements of its surroundings, but it was not designed or intended to 

measure small targets with low-reflectance values like hydrometeors. With an 

expensive price point over $100,000, it would be hard to justify employing multiple 

sensors simply for monitoring purposes when there could be more affordable solutions 

available. It would be beneficial to conduct a study with a variety of laser scanners to 

see if other systems have similar observation characteristics. The evolution of 

autonomous vehicles has spurred research and development for various lidar sensors 

and mass production of sensors has reduced the costs significantly. There are now 

TLS sensors available that are 20-200 times less expensive, which if provide 

observations comparable to the Riegl VZ-400, could be a more feasible financial 

option for a network of sensors for monitoring visibility conditions. 

Analysis has shown that a TLS is able to detect and observe variations between 

different snowfall events. Further analysis should be conducted with more controlled 

observations for specific applications to help realize a sensors true potential.  

 

 

 

 

 

 

 

 



 

99 

REFERENCES 

Angulo-Martínez, Marta, Santiago Beguería, Borja Latorre, and María Fernández-Raga. 

“Comparison of Precipitation Measurements by OTT Parsivel 2 and Thies LPM 

Optical Disdrometers.” Hydrology and Earth System Sciences 22, no. 5 (2018): 2811–

37. http://dx.doi.org.ezproxy.lib.uh.edu/10.5194/hess-22-2811-2018. 

Bair, Edward H. “Forecasting Artificially-Triggered Avalanches in Storm Snow at a Large 

Ski Area.” Cold Regions Science and Technology 85 (January 1, 2013): 261–69. 

https://doi.org/10.1016/j.coldregions.2012.10.003. 

Bair, Edward H, Robert E Davis, and Jeff Dozier. “Hourly Mass and Snow Energy Balance 

Measurements from Mammoth Mountain, CA USA, 2011–2017,” 2018, 15. 

Bair, Edward H, Robert E Davis, David C Finnegan, Adam L LeWinter, and Ethan 

Guttmann. “Can We Estimate Precipitation Rate during Snowfall Using a Scanning 

Terrestrial LiDAR?,” 2012, 7. 

Bair, Edward H., Jeff Dozier, Robert E. Davis, Michael T. Colee, and Keran J. Claffey. 

“CUES—a Study Site for Measuring Snowpack Energy Balance in the Sierra 

Nevada.” Frontiers in Earth Science 3 (2015). 

https://doi.org/10.3389/feart.2015.00058. 

Barup, Kerstin, Mikkel Brydegaard, Zuguang Guan, Anders Hedenström, Jenny Hellström, 

Märta Lewander, Patrik Lundin, Patrik Lundin, Christer Löfstedt, Aboma Merdasa, 

Annika Olsson, Anna Runemark, Gabriel Somesfalean, Erik Svensson, Maren 

Wellenreuther, Susanne Åkesson, Sune Svanberg. “Multi-Disciplinary Lidar 

http://dx.doi.org.ezproxy.lib.uh.edu/10.5194/hess-22-2811-2018
https://doi.org/10.1016/j.coldregions.2012.10.003
https://doi.org/10.3389/feart.2015.00058


 

100 

Applications.” In Lasers, Sources and Related Photonic Devices, JTuA4. San Diego, 

California: OSA, 2010. https://doi.org/10.1364/ASSP.2010.JTuA4. 

Battaglia, Alessandro, Elke Rustemeier, Ali Tokay, Ulrich Blahak, and Clemens Simmer. 

“PARSIVEL Snow Observations: A Critical Assessment.” Journal of Atmospheric 

and Oceanic Technology 27, no. 2 (February 1, 2010): 333–44. 

https://doi.org/10.1175/2009JTECHA1332.1. 

Bhardwaj, Anshuman, Lydia Sam, Akanksha Bhardwaj, and FJavier Martin-Torres. 

“LiDAR Remote Sensing of the Cryosphere: Present Applications and Future 

Prospects.” Remote Sensing of Environment 177 (2016): 125–43. 

http://dx.doi.org.ezproxy.lib.uh.edu/10.1016/j.rse.2016.02.031. 

Bratt, Richard M., and Allen D. Walker. “Degraded Visual Environment Paradigm Shift 

from Mission Deterrent to Combat Enabler.” In Situation Awareness in Degraded 

Environments 2019, 11019:1101902. International Society for Optics and Photonics, 

2019. https://doi.org/10.1117/12.2519013. 

  Camps, Adriano, Marc Rodriguez-Cassola, and William Emery. Introduction to Satellite 

Remote Sensing: Atmosphere, Ocean and Land Applications. Elsevier, 2017. 

CNN, By David Williams. “The Terror of a 131-Car Pileup Revealed in Stranded 

Motorists’ 911 Calls.” CNN Digital, February 27, 2019. 

https://www.cnn.com/2019/02/27/us/wisconsin-pileup-911-trnd/index.html. 

Davis, Robert E, Kelly Elder, Daniel Howlett, and Eddy Bouzaglou. “Relating Storm and 

Weather Factors to Dry Slab Avalanche Activity at Alta, Utah, and Mammoth 

Mountain, California, Using Classification and Regression Trees.” Cold Regions 

https://doi.org/10.1364/ASSP.2010.JTuA4
https://doi.org/10.1175/2009JTECHA1332.1
http://dx.doi.org.ezproxy.lib.uh.edu/10.1016/j.rse.2016.02.031
https://doi.org/10.1117/12.2519013
https://www.cnn.com/2019/02/27/us/wisconsin-pileup-911-trnd/index.html


 

101 

Science and Technology 30, no. 1 (December 1, 1999): 79–89. 

https://doi.org/10.1016/S0165-232X(99)00032-4. 

Deems, Jeffrey S., Peter J. Gadomski, Dominic Vellone, Ryan Evanczyk, Adam L. 

LeWinter, Karl W. Birkeland, and David C. Finnegan. “Mapping Starting Zone Snow 

Depth with a Ground-Based Lidar to Assist Avalanche Control and Forecasting.” Cold 

Regions Science and Technology 120 (December 1, 2015): 197–204. 

https://doi.org/10.1016/j.coldregions.2015.09.002. 

Deems, Jeffrey S., Thomas H. Painter, and David C. Finnegan. “Lidar Measurement of 

Snow Depth: A Review.” Journal of Glaciology 59, no. 215 (ed 2013): 467–79. 

https://doi.org/10.3189/2013JoG12J154. 

Dennis H. Goldstein, David B. Chenault, and J. Larry Pezzaniti. “Polarimetric 

Characterization of Spectralon,” Vol. 3754, 1999. https://doi.org/10.1117/12.366323. 

Hackel, T., J. D. Wegner, and K. Schindler. “Contour Detection in Unstructured 3D Point 

Clouds.” In 2016 IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR), 1610–18, 2016. https://doi.org/10.1109/CVPR.2016.178. 

Hartzell, P. J., C. L. Glennie, and D. C. Finnegan. “Empirical Waveform Decomposition 

and Radiometric Calibration of a Terrestrial Full-Waveform Laser Scanner.” IEEE 

Transactions on Geoscience and Remote Sensing 53, no. 1 (January 2015): 162–72. 

https://doi.org/10.1109/TGRS.2014.2320134. 

Higginbotham, Mike. “Army Aviation’s Enduring Challenge.” www.army.mil, June 24, 

2014. https://www.army.mil/article/128754/army_aviations_enduring_challenge. 

https://doi.org/10.1016/S0165-232X(99)00032-4
https://doi.org/10.1016/j.coldregions.2015.09.002
https://doi.org/10.3189/2013JoG12J154
https://doi.org/10.1117/12.366323
https://doi.org/10.1109/CVPR.2016.178
https://doi.org/10.1109/TGRS.2014.2320134
https://www.army.mil/article/128754/army_aviations_enduring_challenge


 

102 

Huang, Gwo-Jong, Viswanathan N. Bringi, Andrew J. Newman, Gyuwon Lee, Dmitri 

Moisseev, and Branislav M. Notaroš. “Dual-Wavelength Radar Technique 

Development for Snow Rate Estimation: A Case Study from GCPEx.” Atmospheric 

Measurement Techniques 12, no. 2 (February 2019): 1409–27. 

https://doi.org/10.5194/amt-12-1409-2019. 

Judd Communications - Home. Accessed March 9, 2021. http://juddcom.com/.  

Kwon, Taek M. “Atmospheric Visibility Measurements Using Video Cameras: Relative 

Visibility,” n.d., 51. 

Locatelli, John D., and Peter V. Hobbs. “Fall Speeds and Masses of Solid Precipitation 

Particles.” Journal of Geophysical Research (1896-1977) 79, no. 15 (1974): 2185–97. 

https://doi.org/10.1029/JC079i015p02185. 

Löffler-Mang, Martin, and Ulrich Blahak. “Estimation of the Equivalent Radar Reflectivity 

Factor from Measured Snow Size Spectra.” Journal of Applied Meteorology and 

Climatology 40, no. 4 (April 1, 2001): 843–49. https://doi.org/10.1175/1520-

0450(2001)040<0843:EOTERR>2.0.CO;2. 

Löffler-Mang, Martin, and Jürg Joss. “An Optical Disdrometer for Measuring Size and 

Velocity of Hydrometeors.” Journal of Atmospheric and Oceanic Technology 17, no. 

2 (February 1, 2000): 130–39. https://doi.org/10.1175/1520-

0426(2000)017<0130:AODFMS>2.0.CO;2. 

Lufft. “Compact Weather Sensors - WS600-UMB Smart Weather Sensor.” Accessed 

March 9, 2021. https://www.lufft.com/products/compact-weather-sensors-293/ws600-

umb-smart-weather-sensor-1832/.  

https://doi.org/10.5194/amt-12-1409-2019
https://doi.org/10.1029/JC079i015p02185
https://doi.org/10.1175/1520-0450(2001)040%3c0843:EOTERR%3e2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040%3c0843:EOTERR%3e2.0.CO;2
https://doi.org/10.1175/1520-0426(2000)017%3c0130:AODFMS%3e2.0.CO;2
https://doi.org/10.1175/1520-0426(2000)017%3c0130:AODFMS%3e2.0.CO;2


 

103 

OTT Hydromet (2016). OTT Parsivel2 [Brochure]. Retrieved from 

https://www.otthydromet.com/en/p-ott-parsivel-laser-present-weather-

sensor/70.210.002.3.0 

Pfennigbauer, Martin, and Andreas Ullrich. “Improving Quality of Laser Scanning Data 

Acquisition through Calibrated Amplitude and Pulse Deviation Measurement.” edited 

by Monte D. Turner and Gary W. Kamerman, 76841F. Orlando, Florida, 2010. 

https://doi.org/10.1117/12.849641. 

  Pfennigbauer, Martin, Clifford Wolf, Josef Weinkopf, and Andreas Ullrich. “Online 

Waveform Processing for Demanding Target Situations,” 9080:90800J–90800J–10. 

SPIE, 2014. https://doi.org/10.1117/12.2052994. 

Prokop, Alexander. “Assessing the Applicability of Terrestrial Laser Scanning for Spatial 

Snow Depth Measurements.” Cold Regions Science and Technology, Snow avalanche 

formation and dynamics, 54, no. 3 (November 1, 2008): 155–63. 

https://doi.org/10.1016/j.coldregions.2008.07.002. 

RIEGL Laser Measurement Systems GmbH. (2017). LAS Extrabytes Implementation in 

RIEGL Software [White paper]. 

http://www.riegl.com/uploads/tx_pxpriegldownloads/Whitepaper_LASextrabytes_imp

lementation_in-RIEGLSoftware_2017-12-04.pdf 

Sankaré, Housseyni, and Julie M. Thériault. “On the Relationship between the Snowflake 

Type Aloft and the Surface Precipitation Types at Temperatures near 0°C.” 

Atmospheric Research 180 (November 1, 2016): 287–96. 

https://doi.org/10.1016/j.atmosres.2016.06.003. 

https://www.otthydromet.com/en/p-ott-parsivel-laser-present-weather-sensor/70.210.002.3.0
https://www.otthydromet.com/en/p-ott-parsivel-laser-present-weather-sensor/70.210.002.3.0
https://doi.org/10.1117/12.849641
https://doi.org/10.1117/12.2052994
https://doi.org/10.1016/j.coldregions.2008.07.002
http://www.riegl.com/uploads/tx_pxpriegldownloads/Whitepaper_LASextrabytes_implementation_in-RIEGLSoftware_2017-12-04.pdf
http://www.riegl.com/uploads/tx_pxpriegldownloads/Whitepaper_LASextrabytes_implementation_in-RIEGLSoftware_2017-12-04.pdf
https://doi.org/10.1016/j.atmosres.2016.06.003


 

104 

Sekhon, R. S., and R. C. Srivastava. “Snow Size Spectra and Radar Reflectivity.” Journal 

of the Atmospheric Sciences 27, no. 2 (March 1, 1970): 299–307. 

https://doi.org/10.1175/1520-0469(1970)027<0299:SSSARR>2.0.CO;2. 

Sevruk, B., M. Ondrás, and B. Chvíla. “The WMO Precipitation Measurement 

Intercomparisons.” Atmospheric Research, 7th International Workshop on 

Precipitation in Urban Areas, 92, no. 3 (May 1, 2009): 376–80. 

https://doi.org/10.1016/j.atmosres.2009.01.016. 

Telling, Jennifer, Andrew Lyda, Preston Hartzell, and Craig Glennie. “Review of Earth 

Science Research Using Terrestrial Laser Scanning.” Earth-Science Reviews 169 

(June 1, 2017): 35–68. https://doi.org/10.1016/j.earscirev.2017.04.007. 

Tokay, Ali, Walter A. Petersen, Patrick Gatlin, and Matthew Wingo. “Comparison of 

Raindrop Size Distribution Measurements by Collocated Disdrometers.” Journal of 

Atmospheric and Oceanic Technology 30, no. 8 (August 1, 2013): 1672–90. 

https://doi.org/10.1175/JTECH-D-12-00163.1. 

Wang, Jingli, Xulin Liu, Xihua Yang, Ming Lei, Shunxian Ruan, Kai Nie, Yupeng Miao, 

and Jincheng Liu. “Development and Evaluation of a New Digital Photography 

Visiometer System for Automated Visibility Observation.” Atmospheric Environment 

87 (April 1, 2014): 19–25. https://doi.org/10.1016/j.atmosenv.2013.12.045. 

World Meteorological Organization. Guide to Meteorological Instruments and Methods of 

Observation. Geneva: World Meteorological Organization, 2008. 

https://doi.org/10.1175/1520-0469(1970)027%3c0299:SSSARR%3e2.0.CO;2
https://doi.org/10.1016/j.atmosres.2009.01.016
https://doi.org/10.1016/j.earscirev.2017.04.007
https://doi.org/10.1175/JTECH-D-12-00163.1
https://doi.org/10.1016/j.atmosenv.2013.12.045


 

105 

Wyman, P. W. “LASER RADAR RANGE EQUATION CONSIDERATIONS:” Fort 

Belvoir, VA: Defense Technical Information Center, December 11, 1969. 

https://doi.org/10.21236/AD0699519. 

Yuter, Sandra E., David E. Kingsmill, Louisa B. Nance, and Martin Löffler-Mang. 

“Observations of Precipitation Size and Fall Speed Characteristics within Coexisting 

Rain and Wet Snow.” Journal of Applied Meteorology and Climatology 45, no. 10 

(October 1, 2006): 1450–64. https://doi.org/10.1175/JAM2406.1. 

 

 

 

 

 

 

 

https://doi.org/10.21236/AD0699519
https://doi.org/10.1175/JAM2406.1


 

106 

APPENDIX A 

Spectralon panel calibration report 
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APPENDIX B 

Count statistics calculated and used from line scan analysis 

Count Statistics Used Discarded 
1st Return Count x 

 

2nd Return Count 
 

x 
3rd Return Count 

 
x 

4th Return Count 
 

x 
Single Return Count x 

 

Double Return Count x 
 

Triple Return Count 
 

x 
Quadruple Return Count 

 
x 

Near Count Total x  
Far Count Total x  
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APPENDIX C 

Range statistics calculated and used from line scan analysis 

Range Statistics Used Discarded 
Average Hydrometeor Range x  

e-folding length x  
1st Return Minimum 

 
x 

1st Return Maximum 
 

x 
1st Return Average x 

 

1st Return Variance 
 

x 
2nd Return Minimum 

 
x 

2nd Return Maximum 
 

x 
2nd Return Average 
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2nd Return Variance 
 

x 
3rd Return Minimum 
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3rd Return Maximum 
 

x 
3rd Return Average 

 
x 

3rd Return Variance 
 

x 
4th Return Minimum 

 
x 

4th Return Maximum 
 

x 
4th Return Average 

 
x 

4th Return Variance 
 

x 
Single Return Minimum 

 
x 

Single Return Maximum 
 

x 
Single Return Average 

 
x 

Single Return Variance 
 

x 
Double Return Minimum 

 
x 

Double Return Maximum 
 

x 
Double Return Average 

 
x 

Double Return Variance 
 

x 
Triple Return Minimum 

 
x 

Triple Return Maximum 
 

x 
Triple Return Average 

 
x 

Triple Return Variance 
 

x 
Quadruple Return Minimum 

 
x 

Quadruple Return Maximum 
 

x 
Quadruple Return Average 

 
x 

Quadruple Return Variance 
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APPENDIX D 

Reflectance statistics calculated and used from line scan analysis 

Reflectance Statistics Used Discarded 
1st Return Minimum 
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1st Return Maximum 
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1st Return Average x 

 

1st Return Variance 
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2nd Return Minimum 
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2nd Return Maximum 
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2nd Return Average 

 
x 

2nd Return Variance 
 

x 
3rd Return Minimum 

 
x 

3rd Return Maximum 
 

x 
3rd Return Average 

 
x 

3rd Return Variance 
 

x 
4th Return Minimum 

 
x 

4th Return Maximum 
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4th Return Average 
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4th Return Variance 
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x 

Single Return Maximum 
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Single Return Average 
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Single Return Variance 
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Quadruple Return Variance 
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APPENDIX E 

Non-linear regression of Spectralon panel second returns vs disdrometer snow intensity 

Linear regression of average 2nd return reflectance from the Spectralon panel from frame 
scans identified with hydrometeors vs disdrometer snow intensity 

Linear regression of average 2nd return reflectance from Spectralon line scan vs disdrometer 
snow intensity  
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Statistical results of linear regression models of disdrometer snow intensities from Spectralon 
panel 

 
Frame Scan Average 

2nd Return Reflectance 
vs Disdrometer Snow 

Intensity 

Spectralon Line Scan 
Average 2nd Return 

Reflectance vs 
Disdrometer Snow 

Intensity 

Model a*exp(b*x) a*exp(b*x) 

a 3.158E+06 2.004E+05 

b -0.1789 -0.1418 

   

R2 0.460 0.396 
RMSE 13.79 8.87 
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APPENDIX F 

Linear regression of Spectralon panel second returns vs disdrometer MOR 

Linear regression of Spectralon average 2nd return intensity from a frame scan vs 
disdrometer MOR 

Linear regression of Spectralon average 2nd return reflectance from the Spectralon line scan 
vs disdrometer MOR 
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Statistical results of linear regression models of disdrometer MOR from Spectralon panel 
 

Frame Scan - Spectralon 
Average 2nd Return 

Reflectance vs Disdrometer 
MOR 

Spectralon Scan Average 
2nd Return Reflectance vs 

Disdrometer MOR 

R2 0.398 0.434 

RMSE 191 182 
SSR 3,342,214 1,677,629 
SSE 5,062,997 2,186,556 

MSR 3,342,214 1,677,629 
MSE 36,424 33,130 

F Statistic 92 51 
F Critical 7 7 

Significant Yes Yes 
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