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ABSTRACT

This paper presents a number of methods for testing
the primality of any given number N, A brief history of number
" theory is introduced in Chapter I. The main task of this paper
is to test the primality of any given number. However, if the
test shows a negative result, or that the given number is not
a prime but a composite, then the task is extended to the next
step - factoring the given number. Several methods for facto-
rization of a given number N are discussed in Chepter III., In
addition, a representive example for both tasks as carried out
by a computer program written in the Fortran IV language is

presented,
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CHAPTER 1
INTRODUCTION

As far back as any records can be found, mankind posse-
ssed adequate methods for keeping & tally of things, while our
knowledge of ancient civilizations reveals an already highly
developed art of denoting and operating on numbers as far back
as 3500 B, C. and earlier. A natural number is the original
mathematical concept and the most fundamental, the first rudi-
'ménts of scientific approach to the study of numbers can be
traced back to Pythagoras ( 600 B, C. ). It is believed that
‘the distinction between prime and composite numbers was made
in the Pythagorean school. By définition; a prime is a number
that is divisible only by the number-one and itSelf; while a
:composite is & number that has divisors other than the number
one and itself, The first systematic presentation of results
in number theory with proof is to be found in Euclid's Elementa
{ BOO'B. c. ). Among the later Greek mathematicians, Diophantos
( A. D. 350 ) was responsible for adding further significant
advancement to the development of the theory of numbérs.

A great impulse to the further development of number
theory was not received until the seventeenth century, with the
memorable discqveries of many deep and abstruse properties of
nuwlerS by Feymat ( 1601 - 1665 ). The French mathematician
Fermat may rightly be regarded as the father of the more recent
number theory.

Fermat stated in 1640 that he had a proof of the fact,



now known as Fermat's theorem, that if p is any prime and x is
any integer not divisible by p, then xP-1 _ 1 is divisible by
| p. This is one of the fundamental theorems of the theory of
numbers. The case x = 2 was known to the Chinese as early as
500 B. C. The first published proof was given by Euler in 1736.
Of first importance is the generalization from the case of a
prime p to any integer N, published by Euler in 1760 : If ¢(N)
denotes the number of positive integérs not exceeding N and re-
latively prime to N, then x¢(N) - 1 is divisible by N for every
integer x relatively prime to N. Another elegant theorem states
that, if p is a prime, 1 +{1.2-3---( p = 1 )} is divisible by
p; it was first published by Waring in 1770, who ascribed it to
Sir John Wilson. In 1773, Lagrange was the first one to publish
a proof of Wilson's theorem and to observe that its converse is
true. In 1801, Gauss stated and suggested methods to prove the
generalization of Wilson's theorem : if N denotes the product
of the positive integers less than A and prime to A, then N + 1
is divisible by A if A = L, bm or.me, where p is an odd prime,
while N - 1 is divisible by A if A is not of one of these three
forms. N
Many cases have been found in which a(N’l) - 1 is divisi-
ble by N for a composite numbér N. But, in 1876, Lucas proved
the following converse of Fermat's theorem : if aX - 1 is divi-
sible by N when x = N - 1, but not for x<( N - 1), then N is
& prime, ) _

The last hundred years have been charaterized by an in-



tensive development of number theory in many different direc-
tions.,

In general, the priﬁe numbers may be divided into two
classes according to the remainder they give on division by any
;uﬁber taken as " modulus ", Thus, every prime other than 2,
which is the only even prime, is & multiple of 4 plus or minus
l. This is expressed by saying they are of the form 4n + 1 or
bn - 1. The primes 5, 13, ... belong to ihe form 4n + 1, and
3, 7, 11, 19, ... belong to the form 4n - 1. It is not diffi-
cult to show by a slight extension of Euclid's method for all
ﬁrimes, that each of the above sequences contains an infinite

number of primes.



CHAPTER II
METHODS FOR TESTING PRIMALITY

It is not a simple ﬁatter to determine whether or not N
is prime. Therefore, several computational methods for testing
primality wiil be discussed in this chapter,

Eratosthenes / 10 / devised a systematic method, called
the sieve or crib of Eratosthenes, for obtaining all primes up
to any given number N, Consider all integers from 2 up to N
listed in their natural order., We start with 2-2, striking out
gll the multiples of 2, i.e. 22, 2-3, 24, ..., 2'n for all
n = (1/2)N. The next prime integer will be 3, cancelling again
all multiples of 3, starting with 3-3 , proceed as with the in-
teger 2, i.e. 3-3, 34, 3-5, ..., 3-n for all n=N/3. The next
prime integer remaining in our list after 3_is 5; again we follow
~ the same pattern-as with 2 and 3, i.e. 5-5,-5-6,-..., and so on.
Continue in the same way with all primes not exceeding Nl/2 ,
their multiples being crossed out of all the series; 2, 3, eeey
N. Then the remaining numbers will all be primes not exceeding
N."Therefore; if N is in the reﬁaining number list, then N is
& prime; otherwise N is a composite. As an example :

Suppose N = 39, which is-not a prime number. The list is

-2, 3, 405 6,7, £, 9, 18, 11, IZ, 13, I, 18,
- - 16,17, X8, 19, 78, 2L, 77, 23, 2, 78, 76, 1,
78, 29, 38, 31, 2, 3%, B4, 3%, 26, 37, BB, %9

crossing out all the multiples of primes up to Nl/z. From the

list we know that N was crossed out, so N is not a prime.
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From the above example, we realize that some of the in-
tegers have been crossed out more than once; for instance, 12
and 18 had to be cancelled both as a multiple of 2, and 3 in
the example. This sieve method is a tedious and time-~consuming
method, even though it is quite effective for obtaining a list
of primes up to a reasonably small limit.

Similar to the sieve method, a simple and elementary
method / 11 / for testing the primality of a given number N is
to divide N by primes not exceeding its square root; and if one
division yields no remainder, then the proposed number is com-
posite, otherwise, it is a prime. Let us test, for example,

1009. . Primes not exceeding 10091/2 are

2, 3, 5, 7, 11, 13, 17, 19, 23, 31

and on trial we find that none of them divides 1009. Hence 1009
is a prime number. '

This simple test of primality is quite workable and con-
venient when the numbers to be tested are not large; but with
increasing size of the numbers, the trials become too numerous
and burdensome. Also a table of pfimes must be created. To
obviate this inconvenience other, more expeditious, methods have

been devised to ascertain whether or not a number is prime.

Testing Primality by Final Digit / & /

This method for testing the primality of & number N, is



1/2

to divide it by primes L N ' . By considering the choice of
final digits the number of primes to be so tested can be restri-
cted. Suppose N has the form of 10C + D where C is an integer,
and D=1, 3, 7, or 9, thus extending the obvious range of the
sfandard'procedure by a factor 10. The process depends upon
the representation of N in the decimal system, and is based on
the following lemma.

Lemma : The number 10c + d divides 10c+D (D, d, = 1,
3, 7, 9 ) if it divides C - T(c), where T(c¢) is linear in ¢ de-
pending only on d and D. The 16 values of T(c) are arrayed in

the Table below.

Value of D
) 1l 3 7 9 - )
) ) < 1 5 3¢ 7¢ Q¢
% 3 7¢+2 c |9c+2 | 3c
-% 7 3¢+2 | 9¢+6 c Tc+l,
>
9 9¢c+8 | 7¢+6 | 3¢+2 c

-

It will be seen that if

=,
t

10C + D = - N h
100 + _Nl o e o

= ( 10c dl Y( 10c, + 4. )

2 2

A}

1t
then
'€ - T(ey) = cyr Ny

or



C - T(cz) = cl.N2

For example, let N = 9401 = 10-940 + 1. Thus C = 940,
and D = 1. We need to test for primes 10c¢ + 1, 10c + 9, and
either 10c + 7 or 10c¢c + 3; because the primary condition, in
this case, to accomplish the test is to make dl d, =D=1,
With d = 9, D=1, we have T(c) = 9¢c + 8 so that 940 - T(c¢) is
divisible by 10c + 9 for ¢ = 1, 2, .... This is satisfied for

¢ =7, therefore T(cl) = 71, we have

940 - 71 = 869 = 79-11

and so 02 = 11 and 1002 + 9 = 119 and thus

9401 = 79-119
It is equally obvious that if C -~ T(c) is not a product of the
form ch or ch for all ¢, then N is prime.
This method, possibly with some reflnements, is sometime

used on the electronic computing machines for testlng 1arge num-

bers. But even so, this procedure is 1abor10us and costly.

Testing Primal%ty by Wilson's Theorem
: | [27,/[11]
E. Waring first published the theorem that 1 + ( N -1 )1
iz 2lways divisible by a prime N or in congruence notation,
123- - - (N-1 )+ 1= ( mod N ).

The abbrev1at10n " mod n for modulus is used repeatedly:



Two integers a and b whose difference a - b is divisible by a
given number m, which is not zero, are said to be congruent for
the modulus m or simply congruent mod m. We will use the follow-

ing form to express the number-theoretical concept of congruence

a

1

b ( mod m ) (1)

means that @ ( modm ) = b ( mod m ), that is, the difference

a -bis an ihtegrgl multiple of m. Expression ( 1 ) is read,

" a is congruent to b modulo m ", and b is said to be a " resi-

due " of a ( mod m ). Any subset S of the set of integers is

called a " complete residue system " modulo m if each integer is

congruent to one and only one of the members of the subset S.

The set

{o0,1,2,3 ..., m-1}

is always a complete residue system modulo m.

We shall now state the basic elementary properties of
congruence, All variables in the following formulas are assumed
to be integers. Two integers are said to be " relatively prime "
if they have no common factor,i.e. if their greatest common
divisor is 1. _

A, The congruence relation modulo m is an " equivalence relation"
on‘the set of integers; that is, the congruence relation
modulo m is o i -

(i) reflexive: & =a ( mod m ) for every integer a;
( i1 ) syﬁmetric:_ ifa="% ( modm), thenb=a ( mod m });
( 4ii ) transitive: ifa=b (modm ) and b=c¢ ( mod m },

thena =c¢ ( mod m ).

i
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B. Two congruences with the same modulo can be added or sub-
tracted or multiplied, member by member, like equalities.
In other words, if a =b ( modm ) and x =y ( mod m ), )
thena +x=b+y (modm) and a-x = by ( mod m ).

C. Ifax=by(modm)anda=b( mdm), and if a is re-

latively prime to m, then x =y ( mod m ).‘.

D, a=b ( modm) if and only if an=b'n ( mod mn ), for
n X 0.

E. If r is relatively prime to s, thena = b ( mod rs ) if and

il

only ifa=b(modr )anda=>b ( mod s ).
Theorem ( Wilson's } : ( N ; 1)1 +1=0 {( mod N ) if
and only if N is & prime. |
| Proof : |
(-a )-Suppose ( N.= 1 )!.+1 =0 ( mod N ), we have to prove
N is.a érime. |
. Assume that N is not & prime, so N is a product of two
numbers i.e. N =ab where 1l<<a <N and 1<b <N, so that"
( N-1)! can be diviaed by.a or b, But (N-1)I+1can
not be divided by a or b.. This implies that N does not divide
(N -1)r+l. So that |
- (N=-1)r+1%0 ( mod N ).
This is a contradition to the)hypothesis
- - (N-1)1+1=0 ( mod N ),
therefore N is a prime. .
( ) ( Due to Gauss /11 /). Suppose N is prime, then we have
toprove ( N-1)!I+1=0 ( mod N). '

Suppose x is any number of the sequence
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- 1, 2, 3, by veu, ¥ =1
then

X, 2%, 3%, k%X, eeey ( N =1 )x

forms a complete system of residues ( mod N ) with the exclusion
of O, and one and only one of these numbers is congruent to 1
( mod N ). In other words; toanyx =1, 2, ..., N ~ 1 corre-
sponds one and only one number x' in the same sequence, such
hat,
“sw te oo ieogxt-= 1 - {mod N ) -

x and.x! are:called ¥-.associate numbers ", Numbers which are

RN £ =1 ( mod N )
is .equivalent to; - ' - I = { {molll

woie osvi  (x=1)x+1)=0 ( modUN).

Whence either x =-1:( mod N Y orx.= <X ( mod N ); that is x = 1

ar.x.= N - 1. If mwe: exclude 1l and N -1, all the remaining num-

bers _ - S Y-S JIRTN
rem otz fiviiz@yu 3y by deey Nm 2007 0e0 IR

can-be combined in-pairs of associate numbers, and we have as
many congruences of the type - - . =

oo icoz ocrzoazionXx! 5‘12“1.1‘;m0d'N1)

as there are such pairs. .Multiplying all these congruences,
member -by - member; phg-left-haﬁd side of the congruence will be
the. product 2.3 4. .- (N.-2), while-thé right-hand side will
bgzlf,-Thus,f R

234 - (N-2)=1 ( mod N ) (2)
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Now multiplying
1.(N-1)= -1 ( mod N )
with ( 2 ) we get
1:2-3-4 -+ (N=1)=-1 ( mod N )
which is Wilson's theorem. ,

Let's take an example to illustrate Wilson's Theorem.
Suppose N = 13, then the associate pairs are : 2, 7; 3, 9; 4, 10;
5, 8; 6, 11 and f
| (mod 13 ); 39=1 ( mod 13 )

27 =1
L:10 =1 ( mod 13 ); 58 =1 ( mod 13 )
611 =1 ( mod 13 ).

Multiplying the left-hand sides together, we have
2:7-3:9:4-10-5-8-6-11
and the right-hand side 1. So the result will be
2:3:4:5.6-789-10:'11 =1 ( mod 13 )
multiplying this by
1°12 = -1 ( mod 13 )
we get ' _
1.2:3.4-5-6:7-8:9-10-11- 12 = -1 ( mod 13 )
so | .
(N=-1)r1+1=0 ( mod 13 )
thus, N = 13 is a prime.
. When we want to know whether any given number N is prime
we may apply Wilson's theorem. TFor according to this theorem
N is prime if and only if N is a factor of the expression ( N-1 )!

+ 1i
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" A generalization of Wilson's theorem which can be used
to investigate primality of a given number N is as follows.

- Suppose N is prime, then the following congruence is true

_ N1 120 (modu). (3)

We may rewrite ( 3 ) as

( N-1)(N-2)1+1

]

O ( modN) (&)

the left-hand side can be rearranged as,

N(N -2 )i (N-2)L+1=NN=-2)1 -
(( N -izi)!:-fl Yo

7'..“.-_-_-..,. - ,.’. e sl e e e e mem e T mes e T e

- i~ - e~ - L—
v M s e — e e~ - -~ .o~ .

P

Since ( 4 ) is true, we, have A

- - . ~ -

e VAN{N=-2 )1 2 (( N-2)1°21)-50 -{-mod N ). (5)

~ oo ' :/’—-"‘:‘ -~ ~ . _- .! --

- Y . o~ -— -—— = = e - -

We know that two congruences W1th the same moduli can be added

“l....'.-v

e—

or subtracted member by member, 11ke equalltles so ( 5) can

R 4 - [ -

be split into

, NN - ; )1 =0 (mdN) . (6)
and ST _
N (N -2 )' -1=0_ (mdN), . . (7)

Again, we rewrite ( 7 ) as

- .“—_._-.m——“—-—_—omﬁ--f—‘-—l—v«——

....... NI 2° )( N'-3 )12 17=0"""(mod N ).

,Th.u.s_‘_' ey e T '.QA.—’.z - '.:_.e-vs‘,r T pmmame s v - -
. . 2 - .. .

Tole rriz: INEN ;:jj)gf_TQG‘Ns_f3t)gr_:I .ot

-

- 1. =N(N-3)1 -(2(N-3)1+1)

we have

O ( mod N )




200 N-3)1+1=0

Again, ( 8 ) can be expressed as
2( N=-3)(N-L)1+1=0 (modXN)
2N( N = 4 )! «2-3-( N -4 )! +1

=2N( N -4 )1 =« ( 6( N =4 )1 - 1)

therefore,

6( N -4 )1 -1=0

13

( mod N ). (8)

O ( mod N )

( mod N ). (9)

Now let us write the four congruences ( 3 ), (7)), ( 8 ), and

( 9 ) this way :

Or (N-1)!+1=
11 ( N-2)! -1 =
21 (N =-3)1+1=

o O O

31 (N-4)t-1=0./J

Continuing with this process we obtaiﬁ

al( M- (gl N1+ (-1)%=0

As an illustration,
to 3, then
01(7-1)!
L1( 7 -2 )1
21( 7 -3
310 7 - 4 )1

( mod N )

( mod N ). ( 10)

let us assume N = 7, and q from O

-+

+

1l =721=7-103
1 =119 =717
1=49=77
1=35=75.

By each of these four calculatioﬁé we have shown that 7 is a

prime.

But we could cut these calculations short. In ( 10 ),

choose q =|N/2| , where |N/2l has the value of greatest integer

less than or equal to N/2, and we have

(IN/2lt )P —1=(qr )% -1

-2
0 ( mod N) (11)
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for any odd N.

Therefore, to determine whepher or not 7 is prime, it is
not necessary to compute ( 6! ) + 1, but only ( 3! )2 -1, It
would be & significant saving when the number to be computed is

large. For ( 11 ), we still have a further simplification

2
{qt) -1=(q! =1)(qr+1)
so either . )

1

(q! =1 ) =1|N/21 -1

or
(qr+1)=|N21+1
contains N as factor, then N is a prime. Even so, for largé N
the factors of N/2 ! become very numerous .
In conclusion, while this tests the primality of a given

number N, it is not practical.

Testing Primality by the Lucas-Lehmer Method
3 [3] ? [ZP] e

There are two distinct efficient methods for dete;mining
the primality of & large integer without trying possible divi-
sors.: One of the two methods is the Lucas-Lehmer test which is
particularly well adapted to investigate the Mersenne numbers
which have the form Mp =2P _ 1, where p is prime.

Perhaps’ the most renarkable results of the Lucas-Lehmer

method are included in a set of theorems concernlng the prime

or composite character of Mersenne numbers,
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Let P and Q be relatively prime integers and a, b are

thé roots of the quadratic

Then the Lucas functions are defined by

U = a” b )/(a-1b) ( 12 )
v, = a® + b : o i3 )

where n is a positive integer. It follows from ( 12 ) and ( 13 )

that Un and V are integers for every n, and

n -
Uo =0, Ul =1
Uy = Py - QUn-l (14 )
- - Vo =2 ,7 Vl =P
Voey = PV, - QY . - (15)
U2n = Uﬂ Vn ( 16 )
2 . .
Vv =V -2Q. -- - (17)
2n n

We will state the Lucaé-Lehmer test for lersenne numbers
-and prove its validity using only very simply principles of

number theory. For P =14, Q = l; the equations ( 14 ) and ( 15 )

become '
Uyt 0 Uy=1, U =AU -T (18)
Vo=2 V=4 Vn+1 =4V, - Va1 (19
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According to ( 18 ) and ( 19 ), we have then

n=01 2 3 4 5 6 7 8 ...
U=0 1 4 15 56 209 780 2911 10864...
© V=2 4 1, 52 194 724 2702 10084 3763%...
The following properties can be established :
(i) Un = U - + Vn

4 ( 20 )

Proof : Since a, b are the roots of the quadratic

2
X -Lx+ 1
thus

1
]
c ’

( i1 ) V =10 -0 _ ( 21)
Actually this equation is éArearranged form from { 20 ).

( 111 ) .Um+n = Uﬁ Un+l - Um_l'Un ( 22 )



Proof :

UmUn+1 - pm-lUn

ct

1l

Y S
For our choice of

17

+ - -1 n
am _ bm an+1 _ bn 1l am 1l _ bm an S
a-»>o a-> ) a -b a->b
mn+l ntl m m nt+l m+n+l mn-1
a - a b -ab + b - a
(a-1)
n h~1 m-1l n m+n-1
+ab + a P -D
(a -b)
m+n m+n mn m+n
1 ( a b a b |
+ - -
(a-b )2 b a a b
mtn mtn
a - 1l 1l )
a -b b(a->b) ) a( a - b )
m+n m+n
a -b a «b
a-> ab( a - b )
min mn
a -b
a->»
U .
m+n
Q, the equation ( 17 ) becomes
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2
Vv =V -2 ( 23)

To-develop tests for primality of Mersenne numbers, we

prove the following lemmas,

Lemma 1 : (q-1)/2
=3 1 ( mod q ) | (24)
q
Vq.z L ( mod q ) ( 25 )

where q is an odd prime.
Proof : Since a and b are the roots of x2 - 4x + 1, we
have |
a=2+/3 and b=2 /3.
We can obtain an expression for Uq by substituting ( 2 35[3—)q

in ( 12 ) the binomial expansion of a% and b2, we obtain

(a-2)/2 /o 2k-1 k
q-2k-1
T S O P
q k=0 2k+1

qQ .
If we use the fact that(2k+l> is a multiple of q except when
k=(q-1)/2, we find that

(q-1)/2
3. ( mod q ).

U
- - q

To prove ( 25 ), we expand ( 13 ) in the same way, thus

vV =
q k=0

(a-1)/2 ,q
. q-2k+l k
> 203
2k

In this case all the binomial coefficients except k = O are
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divisible by q. Hence,

+1
2(q ) ( mod q ).

q

q+l q-1+2 q-1 2 q-1
2 =2 =2 2 =L4-2 ’

Since

we get Vq =4 ( mod q ) using Fermat's Theorem.

Lemma 2 : For all primes q=3, either Uq+1 =0 (modq)
or U =0 .( mod q ).
q-1
Proof : If q = 3, then Fermat's Theorem tells us that
(q-1) :
3 =1 (modgq ), so that
(¢-1)/2 (q-1)/2
3 +1)(3 -1)=0 ( modgq)
therefore,
(q-1)/2
3 . ) = ( mod q ).
Since we have proved that Tt T T Tt
(g-1)/2 |

U =3 ( mod q )

q
it follows that , )

U = +1 ( mod q ).

Q- = q
The first case, when Uq = +1 ( mod q ) we have

' =LY -U . =40 -V - .
Uq-l b q q+l v q vq Uq-l

Since

) U =1 (mdq) and V =4 ( modq )
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it follows that

U = U ( mod q )
q-1 q-1
hence
-U. =0 __ —(mod q ).._
oq-1- ==L
The second case, when U ( mod q ) = -1 we have
q
U =40 -U =LU +V -U
- et Q@ gq-1 qQ a gl
80 : .-
Brnl o 1Yy 0 (mod q ). _ .o
27 Now if N.is.any positive integer, and if w = m(N) is the

smallest positlve integer such “that U ( mod N ) = O we have

—_ -
-
- - - - B = ~

:1€;i5;;;Un =0 ( mod N ) if and only if n is a multiple

Qn

(2" e ) =of:m(N) ((rec

-

vhere the number m(N)-.is- called the " rank of apparition " of

- o~

N in the sequence ( Un ) T

- —_— ~

Lemma 3 : Ifﬁw is the'rank of apparition of N, then wzN+1,
l* "O |r\1_ L

Proof : It is obv1ously sufficient to prove that N divides

{ -~

N+l UN-l From lemma 2 we have proved that
e TRTE sEe v =0 ( fod N ) e
e N+1
or 1_-__._”'__‘.____ S
'U’ =0 mod N o
[ N-l ( )

therefore N divides:U -U-. . Hepee lemma. 3 is proved.
c N+1 "N-1 < ’
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We are now in a position to show three theorems.
 Theorem 1 : If N + 1 is the rank of apparition of N, then

N is a prime.

Proof : See [/ 4 /.

Theorem 2 ( Lucas-Lehmer ) : The number N = 2P - 1 is
prime, where p is an odd ﬁrime, if and only if N divides the
( p -2 )nd term of the sequence ( Ln ), t.ec L, =0 ( mod N };

where

) ‘
L, =&, ;.nﬂs(;n-z) ( mod N ).

1

Proof : Equation ( 23 ) and induction, we have

Ln_=_V2n ( mod N ).

( I ) Proof of sufficiency :
Suppose that Lp 2 ( mod N ) = 0, we have to show that N
is a prime.
From ( 18 ) and ( 21 ) we have
= - + ‘
Un+1 hUn Un+1 vn
By or -
2 = + V.,
Un+1 hUn vn

Since Vn is always even and Un has no factor in common with

Un+1’ it follows that Uﬁ and Vn can only have 2 as common
'factor, Therefore, if Lp_2 =0 ( mod N ), we have using

(16)

pzp-l = Uzp-2 Vép-z = Uzp_z Lp-z =0 ( mod N )

but
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Uzp_z =0 ( mod N )
and

U

2P = Uzp'l V2P-1 =0 ( mod N ).

Now let m be any prime factor of N and let w be the rank

of apparition of m, w must divide 2P or 2p-l, but it does

- "1
not divide 2P 2, hence w = 2F or w = 2p .
When w = 2P we have by lemma 3

maw-1l=2 -1=n.

Since m is a prime factor of N, thus m = N, and w is a
rank of apparition of N. By Theorem 1, it follows that
N is a prime. - '

p-1
When w = 2 , Wwe have

m;_w-l=t2p-'1-1. ,
Since 2p-1 - 1 does not divide N = 2P _ 1, this implies
that m & 2P1 - 1. Since m is a factor of N, and can't
be greater than 2p -1, m=N, This implies that N is a
prime, -
( II )Proof of necessity :
- Suppose N = 2P _ 1l is a prime, we must show that

fzp_z =0 (mod N ).

‘Since V

) 5 :
,p-1 = ( V2P’2 ) -2, if suffices to prove that

Vzp_l =2 (mod N ).' Now‘v
. . 2
2+.3 =((J2:/6)/2)

then since
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n
V = an + b
n

SO
2 2P'1
Vo= (UJZ +[8)/2)
2

2 zp’

(/2 -/6)/2)

1

(/z +/812 W s (/7 -/8 2 )Y

(ML)/2 0N w12k 2k
Vea-2" L ( )@ 7E
| k=0 \ 2k
(N 1)/2

k =0

Since N is prime,

G >C.k_>

is divisible by N except when k = O and k = ( N + 1 )/2; hence

(1-N) /2 (N+1) /2
p-1 = 2 (1+3 ) ( mod N )
257+ .
N-1)/2 ' N+1)/2 /
2( M/ =1+ 3( *1)/ ( mod N ).
p-1
Since - i — - - —
M 2=(N+1)2=2"2
- Pl ( 2(p+1)/?- )2 _ |
=2 ( mod N )

sSo
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N-1l)/2 1 -1
( 2( )/ 2(p+ )/2 )(N )

by Fermat's Theoren,

(N-1)/2 (p+1)/2 (N-1)
2 = (2 ) =1 ( mod N ).

Since N ( mod 3 ) =1, and N ( mod 4 ) = 3, so by a simple
case of the law of quadratic reciprocity / 6 /, /11 /, we get

(N-1)/2 |
3 = - ( mod N ).
- But '
: (N+1)/2 (N-1)/2
3 =3 d
thus, -
l'vzp-l =1+ ( -1)-3
= -2 ( mod N ).
This means - - ’ .
B ,: 'V'b;l =2 07 " {mod N )T 7T 7
so i .
Vzb_z =0 ( mod N ).

Thus, we have completed the proof of this theorem.
Theorem 3 ( Lucas-Lehmer ) : Let N be a positive integer
relatively prime to 2P2 -~ 8Q, where P and Q are relatively prime
integers. If U (mod N ) =0, and U_. ( mod N ) ¥ O, where
N+1 m3j
m=(N+1 )/pi for each prime Py dividing N + 1, then N is
& prime.
The proof of this theorem is similar to that of Theorem

2. And this theorem provides a test for any given number.
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The advantage éf this method, of course, is that it em-

ploys the factorization of N + 1, rather than'N -~ 1, so that in
case the complete factorization of N - 1 is not obtainable, we

may still be able to factor N + 1.

Testing Primality by the Converse of
meﬂsT&mmm[B],[S],[?]

In this section we will discuss the converse of Fermat's
Theorem and its use as & method of testing for primality. This
is one of the efficient and practical methods for investigating
primality of a given number N; Therefore, it is the method
which is chosen in this paper to be demonstrated by a computer
program, in Chaptér Iv. -

For a long time it has been known that the simple conver-
se of Fermat's Theorem, which stated : If a(N-l)_E 1 (mod N),
then N is a prime, is not true. We can show this by a simple
'example, .
_ ulh =1 ( mod 15 ),
but obviously 15 is not & prime.

In 1876, Lucas first stated a true converse of Fermat's

Theorem.

Ir a(N'l) =

1 (mod N), but a5 1 ( mod N ) for all
proper divisors of ( N - 1 ), then N is a prime.

Before stating the improved forms, we make the following
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definitions :

Definition 1 : If h is the smallest positive integer such that

ah

1 ( mod N ), then a is said to belong to
the exponent h modulo N, or h is the order of
a (mod N ).

Definition 2 : The number of positivé integers r, not exceeding
N and coprime with N is denoted by §(N) which is
called " Euler é function ", or totient of N.

Theorem 1 : If for each prime divisor p. of ( N -1 ),

- N-1 :
there exists an a; for which a§N 1) ( md N ) =1 but ag )/pl
( mod N ) % 1, then N is prime. '

Proof : Let di be the order of ai ( mod N ), that is

a,l=1 (modN ), and let D be the least common multiple of

a1l d;'s, Then D|( N - 1) that is D divides ( N -1 ). D does

(N-1)/p,

1 1 ( mod N);

!l

not divide ( N - 1)/p,, if it did, then a

and this is contradition to the hypothesis. Thus D=N - 1.

Since

o(N) : 4
8, =1 ( mod XN ) ( by Euler / 6/ ),

6(N) is a multiple of d; for all p;, and O(N) > D. But ¢(N)<N-1
- =—~——-when-N is not prime. This implies that §(N) = N - 1, so N is
prime. -
The most laborious but an important part of the test is
the determining of -~
- el - e e e e e .(N-l) - - - . .
a =1 ( mod N ).
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(N-1) _ 1 ( mod N ) is not true, then N is composite, and

If a
we can use any one pf the methods described in the next chapter
to obtain its prime factors. Otherwise, we need to go on to
test

N-1 .
a( )/pl £ 1 ( mod N ).

There is a rapid " binary method ", for evaluating powers
of a number, so the conditions a(N-l) =1 ( mod N ) and a(N-l)/pi
£ 1 ( mod N ) can be tested efficiently. Usually when we want

to compute x16

, we simply start with x and then multiply fifteen
times by x. But it is possible to obtain the same answer with
pnly four multiplicationé by using the " binary method ".

. In a binary machine, the binary representation of n which
ié th;jéxpéhent ;f # &il} ggidg ﬁé-iﬁ?bgéhkﬁhejfoiiowing §lgo-
rithm : Scanning from left to right,

éfép l: ignére the ieading w1,

Step 2,;-Scan—£he next dlglt. -if it isa " 1 ", first Sqﬁaré x
; _ then multiply by x. Otherwise, equare x oﬁly.

Step 3 : Repeat step 2 until the end of the binary representa-
7 tion is reached, |

Step 4 : Terminate the process.

For example = 23, thus n = 23 and its binary repre-
sentation of n is 10111, VWe éhould successively compute x?, x&,
xS, xlO’ xll’ x22, x23.

If we use a de01ma1 number system, we can divide n by 2

to obtain a remainder of loro, f.e. the binary representation

from right to left. The following procedure is the process of
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the right to left scan binary method based on a decimal number
system : ‘

Step 1 : We first set the initial values to start the process;
Y=1and Z = x. |

Step 2 : We divide n by 2, i.e. Q=|n/d , R=n - n-Q. Then
set n = Q; and at the same time determine whether or
not the remainder R is zero. If R is zero, then go
to step 5. ' |

Step 3 : We multiply Z by Y; i.e. Y = Z-Y,

Step 4 : Checking n. If n = O? then this process terminates
with Y as the answer.

Step 5 : At this point we set Z = Z-Z, then go back to step 2.

As an example, x23 , of this process, the successive

computation is shown below :

o 2 - Z_
- 23 1 x
11 1 x x
i 11 1l x x2
' 5 1l x3 x2
3 1l x3 xA
2 i x! e
. 2 1 < L
] 1 0 x7 x16
— .O — 1 ~ x?B x16

No matter if we use the left to right or the right to
left binary method, we will have the same result. This method
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is usually not of importance for small values of n, say n £ 10,
unless,the time for a multiplication is comparatively large.
The 1eft to right binary method is preferable, and a little bit
faster than the right to left scan binary method., This method

would make an efficient test for the conditions of a(N 1)( mod N )

=1 a (N 1)/p mod N ) = 1.

Theorem 1 has some disadvantages when applied to a par-
ticular N. In the first place, the complete factorization of
N - 1 must be known. Secondly, the number of factors which must

N-1 :
be tried in order to show that a( )/pl ( mod N ) ¥ 1 may be

-large. These two disadvantages.have been circumvented by Raphael
M. Robinson [—7_] He reduces the problem of complete factori-

zation in the follow1ng manner,

' ’ (N-1)
~Lemma : Suppose that a =1 (mod N) and let N =

:kq + 1, where ¢ > k>0, n> 0, and q is prime. Then every
(N-1)/q

prime factor p of N which does not divide a’ - ] satisfies

the congruence

. p=1 ( mod qn ).

(N-1)/q

In partiéular, if ( a -1, N) =1, then every prime

factor p of N satisfies this congruence.

o ggggg : Suppose ‘that a belongs to the exponent d (med p),
i.e. éd =1 ( mod p); therefore, d divides ( p - 1 ). Since

5 is a factor of N; it follows that d divides ( N - 1 ) also.

By the assumption that N = kqn + 1, sb kqn = N,f 1, this implies
that d d1V1des kq". ' ) ) .- '

Since q is & prinme, d does not divide ( N - 1 )/q, thus
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- n-1 n- n
d does not divide kq , i.e. d‘qu . It follows that q
divides d, i.e. qn d, therefore qn [( p~-1). Thus we have

proved the congruence p =1 ( mod qn ) is true.

Theorem 2 : Suppose that a(N-l)
(N-1)/q _

( mod N ) = 1 where N =
kQ + 1 and 0 <k <Q, but (a 1, N ) =1 for every prime
factor q of Q. Then N is prime.

Proof : Suppose p and q are primes, and p is a factor of
- N, and q is factor of Q, therefore, p divides N and q" divides

Q. By the lemma, we have

. n

p=1 ( mod q ).
It follows that : SRR T -
' p = 1 (mod Q).

Thus,

p2>Q2_\—_( k+1)Q>N.

That is, for every prime p which divides N we have p2:> N. It
follows that N is a prime.
The most striking advantage of Theorem 2 over Theorem 1
is that it doeé not.requife the compiéte factorization of N --1.
Although the converse of Fermat's Theorem for testing
primality of a given number N-has disadvantages, it is stiil
an efficient and practical method for testing primality. If
N is in a special form such as the Mersenne numbers,,or if the
factors of N - 1 are too difficult to obtain, then another effi-
cient methgd,_ﬁhich has. been introduced in the section of "Test;

ing Primality by the Lucas-Lehmer Method", should be used.
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CHAPTER III
METHODS OF FACTORING
So far we'have discussed in the previous two chapters
tests for the primality of a given number, There has been no
discussién of cases where the number has been tested and has
been shown not to be a prime. 1In this chapter, we will concen-
trate on factoring a given composite number.

A composite number N can be expressed in the form
ry Ty re
.p . - .p
1 "2 t
where the r's are positive integers and the p's are prime num-
bers. Several computational methods that will simplify the

factoring problem will be discussed individually.

The Method of Factoring by Division /3 /
This method makes use of an auxiliary sequence of "trial

~divisors" | : e

-

d=2, 3’ 5, cee

1/2
.- —— - which includes all prime numbers less than or equal to N .

For any composite number N the following algorithm will
produce a complete factorization in the above form.

Step 1 @ Set the initial index i =0, k=1, p;7= 0.

Step 2 : If N = 0, then terminate the algorithm.

Step 3 : Let N; = LN/@A y No = N - N.-d .
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Step 4 : If Nr L 0, go to step 7.

Step § : If P; = dk’ increase r, by 1. Set N = N, and go to

i 1

étep 2.
Step 6 : ;ncrease ibyl, p; = dk’ set r, = 1l and N = Nl' Go
to step 2. '

K’ increase k by 1, go to step

Step 7 : If Nl is greater than d
3.

Step 8 : Increase i by 1, p; = N and r, = 1, then terminate the

i
process.,
Example :

Suppose N = 135723, we immediately find that N = 3-45241;
| hence p; = 3, Furthermore, N = 45241 = 7- 6463, so P, = 7. Next,
N = 6463 = 23-281; hence Py = 23. Since 281 is a prime, so P, =
‘??}3 such that the original N is a product of 3-7-23-281, i.e.

N = 3-7-23-281, |

This mefhéd reéuires to.have a'table of all_phe necessary
brimes as part of the program. So if N is small,‘éhis method
is workable and rather quick., But if N is large, we run into
the problem : how big a table of primes would we requre ? "
Furthermore, this method requres a lot of iterations to generate

all prime factors of N.

The Method of Factoring by a Difference
- - ofsqures/1/,{3] - - - -

Evidently, the "factoring by division" is too slow to find
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large prime factors of N, The problem of finding large prime.
factors of a number N is solved if we can express N as x? - yz,
i.e. N = x? - yz, ﬁhich was used by Pierre de Fermat / 3/ .

This factoring method is based on the familiar exclusion method

“of Gauss / 11_/ in which the Diophantine equation

is effectively replaced by the combinatorial problem of solving
the set of simultanéous congruences y2 = x2 -~ N ( mod E ) with
various "exclusion" moduli E which are primes. In this exclusion

method, all quadratic nonresidues of E are excluded for solving

‘the congruence # =N ( mod E ). Quadratic residues and qua-
dratic nonresidues are defined by :
If the congruence

- ¥ =N ( mod E )
can be satisfied by some integer x, the number N is said to be
a quadratic residue of the number E, Othérwise, N is said to
be a quadratic nonresidue of E. A table of examples is given

below to show the quadratic residues and nonresidues of primes

not exceeding 19.

" r:0,1 where r denotes residue
E =3 S
n:?2 . ] and n denotes nonresidue

' r:0,1, 4

E=5

B n:2,3 -

- - - - - r:0,1,2,4
E=17

e - ni3,56
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r:0,1, 3,4, 5, 9
E = 11
n:2,6,7, 8, 10
. r:0,1,3, 4 9, 10, 12
E = 13
n:2,5 6, 7,8, 11
r:0,1,2, 4 8,9, 13, 15, 16
E =17
n 3, 5 6) 7, 10, 11, 12, 14
~ r:0,1, 4, 5, 6, 7, 9, 11, 16, 17
E = 19

n:2, 3, 8, 10, 12, 13, 14, 15, 18,

From the above table it is noticed that there are (p-1)/2
qﬁadratic residues and (p-1)/2 nonresidues if p is an odd prime.
When s moduli are used, only oné_x value in 2% will generally_'
survive the exclusion. . ,

To illustrate this method let N = 11111, We may consider
the following table :

E_ ~ if x mod E is
3 0,1, 2
oL 0,1, 2, 3, &
7 0,1,2,3, 4, 5 6
11 0,1, 2, 3, 4, 5,6, 7, 8, 9, 10
E_ - then x2 mod E is B
3 0,1, 1.
0, 1, 4, &4, 1.
7 0,1, 4, 2, 2, 4, 1
11 0, 1, 4,9, 5, 3, 3, 5, 9, 4, 1
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_E_ and ( x2 - N ) mod E is
3 1, 2, 2
4, 0, 3, 3, 0
7 5, 6,2, 0,0, 2, 6
11 10, 0, 3, 8, 4, 2, 2, 4, &, 3, O

If x* - N is to be a perfect square yz, it must have a

quadratic residue mod E for all E, For example, if x mod 3 % O,
then for N = 11111, ( x° = N ) mod 3 = 2, so x> - N cannot be
a perfect square; therefore x must be & multiple of 3 whenever
N =11111 = x2 - y?. Thus, we have narrowed down the search
for x to the table below :

o | ' x mod 3 = C il

- ' xmod 5=0, 1, ork '
.x mod 7 =2, 3, 4, or 5 -
x ﬁod ll-; 1,?5; L;Af;_é, ;; iC;.

L (26)

" TIn this case, we must have x /W | =[ /11111 = 106. This
notation of [N1, called the " ceiling " of N,'had the value of
the least integer greater than or qual to N. It is easy to
verify that the first values of x> 106 which satisfies all of
the conditions in ( 26 ) is x°= 144. But 144% - 11111 = 9625

is no% a square. The first value of xH::lhA which sétisfies
both ( 26 ) and X% - 11111 = y2 is x = 156, So we have the
desired solution x = 156 and y =/ x - N = 115, Since N = x?
¥ = (x-y)x+y)=(156 - 115 )( 156 + 115 ) = 41:271,
thus the two factors of N are 41 and 271.
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The modular method just described is called a " sieve
procedure ", Since we can imagine passing all integers x through
a " sieve " for which only those values with x mod 3 = O come
out, then sifting these numbers through another sieve which
allows only numbers with x mod 5 = O, 1, or 4 to pass, etc,

Each sieve by itself will remove about half of the remaining
values; and when we sieve with respect to moduli which are rela-
tively prime in pairs, each sieve is indebendent of the other,

When the " sieve method " is'émployed to factor a given

odd composite number N, we need to prepare a " sieve table "

1 if j2 -N= y? ( mod By ) has a solution ¥
Si,j = '
0 . . otherwise

where the moduli E, are prime and O< j éin. Only for the va-

i
lues of x which lead to a M1" in the sieve table need to be ex-
amine whether or not x2 - N is a square. This method is most
successful when N has two factors that are close together, There-
fore, this is one of the efficient methods to find prime factors

of N.

The Method of Factoring by Addition and
Subtraction [ 3 /

Another method to fﬁnd large factors is also base on

Fermat's nethod, however,

M= o
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is obtained without using any division.

Assume that N is an odd composite number, i.e. N = U-V,

If we let
x=(U+V)/2, y=(V-9)/
then ‘ . |
N=x2..y2=(U+V)2/ll»-(v-‘U)2/ll'
=0V
where O<y=x<N,

Let a, b, r correépond respectively to 2x + 1, 2y + 1,

x2 - yz - N. Then
. a-1 b-1
X S—— , y
- 2 - 2

it follows that

U.=x—y:.— =

and

a-1fb-1 a+b-2
2 2

v=x+y=

In summary, the procedure for this method is shown in
the following steps. ) | T :
Step 1 : We extract the square root of N, and let a = 2U/K| + 1,
anav=1, r=lm’ - n ‘

Step 2 : If r is zero or negative, then go to step k.

Step 3 : Decrease r by b and. increase b by 2, then go back to
—-r---- -Step 2, — L e -
Step 4 : thcking r.. If r_is zero, this means that we have the

desired solution a, b which satisfy
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Otherwise, we go to the next step.
Step 5 : We increase r by a and a by 2, then go to step 3.
According to the above procedure for N = 9401, the com-

putation proceeds as follows :

a b r a b r ' a b r
193 1 -185 197 13 167 197 29 7
195 1 8 197 15 154 197 31 -22
195" 3 7 197 17 139 199 31 175
195 5 L 197 19 122 199 33 14k
195 7 -1 197 21 103 199 35 111

.-197 7 194 - 197 23 - 8 - 199. 37 76
197 9 187 197 25 59 199 39 39
L197- .11 . 178 .. 197 27 . 34 - 199 41 O
This" gbo1 oo, 297 féhl 2 79 1.

While for large N this calculation can only be executed
efficientely with a computer. _

The Method of Factoring by Final Digit / 8 /
This method has been discussed in detail for testing

primality of a given number N, ( see Chapter ITI ). As we recall,
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if no prime factors could be found, the given number N is a
prime number, If its prime factors are found by this method,
the given number is a composite number. Obviously enough, this
prime factor finding method is also a feasible method for fac-

toring a given number.
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CHAPTER IV
EXAMPLE
An example of a program written in the Fortran IV lan-
guage is shown in this chapter in order to demonstrate the fea-
sibility of automating the testing for primality and, if neces-
sary, to find the prime factors of a given nﬁmber N. For prac-
tical reasons, the converse of Fermat's theorem is employed here
as the method for testing the primality. When the given number,
however, is recognized as composite; the program continues to
find the factors by the dddition and substraction method.
The procedure of this program is as follows :

Step 1 : Generate a suitable table of primes.

Step 2 : Check by the method of division, if N has any prime

- factors within the range of the table in step 1. If

--- - it does, then we divide out those factors to reduce

‘ N to a number whose prime factors all exceed the largest
prime in the table.

. Step 3 : From step 2 we know N must be rélétively prime to the

small primes, for instaﬁée, 3. So we test if N is

primé by coﬁputing 3(N°1) ( mod N ). If B(N'l)( mod N )
¥ 1, N is not prime, then go to step 5. . ‘

Step 4 : Find the factors of N - 1l; in other words, start recur-
sively at step 2, with N replaced by N - 1, and come
back to this point of the procedure when N - 1 has been

_completely factored. Then for each prime factor p; of

N -1find 2a value of a =2, 3, 5, 7, 11, ... such that
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(N-1) (N-1)/p,
a

( mod N ) =1, but a ( mod N ) ¥ 1.
Continue this process until either finding
a(N"l) ( mod N ) * 1, or finding some p; dividing N - 1
such that a(N'l)/pi ( mod N ) = 1 for all primes a
within the range of the table in step 1, then go to
step 5. Otherwise, N is a prime.

Step 5 : Use the method of factoring by addition and substrac-

tion to find the prime factors.
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EXAMPLE OUTPUT



TABLE OF PRIMES

[84]

IR -7 T 11
i3 z3 s
41 43 47
61 e7 71
33 85 57

ic7 ) i13
137 139 143
163 167 1173
121 193 197
223 ZZ7 229
241 251 | . 257
271 211 281
307 511 313
237 347 39
357 373 373
347 4C1 §C3
4351 433 439
LE7 521 5€3
437 591 4359
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3 2 1
.= 2 R |
7 2 15537013%%5
2 7 755403505
z 13 33225024
2 23 1154237319
z 337 372787155
~ 2 1573 4437930319
THE CIVEN MUMLIR IS & FRIpE
#xxsx  JHD ILFUT CF N IS FLZ2722C575 +#t4%
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A P A% (I-2)/9 MOD N
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2 2 2337343
2 3 1
3 3 134955
2 K1 1
3 3 13443553
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2 . 543 T 1314573
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i1 17 17 2337549
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