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Brain cancer is a common type of childhoodmalignancy, and radiotherapy (RT) is amainstay of treatment. RT is effective for tumor
eradication, and survival rates are high. However, RT damages the brain and disrupts ongoing developmental processes, resulting in
debilitating cognitive “late” effects that may take years to fully manifest. These late effects likely derive from a long-term decrement
in cell proliferation, combined with a neural environment that is hostile to plasticity, both of which are induced by RT. Long-term
suppression of cell proliferation deprives the brain of the raw materials needed for optimum cognitive performance (such as new
neurons in the hippocampus and new glia in frontal cortex), while chronic inflammation and dearth of trophic substances (such
as growth hormone) limit neuroplastic potential in existing circuitry. Potential treatments for cognitive late effects should address
both of these conditions. Exercise represents one such potential treatment, since it has the capacity to enhance cell proliferation, as
well as to promote a neural milieu permissive for plasticity. Here, we review the evidence that cognitive late effects can be traced to
RT-induced suppression of cell proliferation and hostile environmental conditions, as well as emerging evidence that exercise may
be effective as an independent or adjuvant therapy.

1. Introduction

Brain tumors are the second most common form of child-
hood cancer, after acute lymphoblastic leukemia (ALL) [1].
Treatment for both brain tumors and ALL includes cranial
RT. Given 5-year survival rates that approach 90% for
children treated for ALL and 70% for those treated for
brain tumors [2], there are currently a great many survivors
of these cancers that suffer from the consequences of RT,
including adverse physiological, psychological, and cognitive
side effects that manifest both acutely and years later. These
so called “late effects” result in lowered quality of life (QOL)
[3] in survivors, for which there is at present no effective
treatment.

RT for pediatric cancer has long been acknowledged
as a primary cause of neurological complications and neu-
rocognitive decline [4–8]. Childhood RT is associated with

a significant decrease in IQ scores [8–14], thought to result
from deficits in core processing functions impaired by RT,
including processing speed [15], attention [15–18], working
memory, and other executive functions [7, 19]. In addition
to cognitive impairments, adult survivors of childhood RT
also experience elevated rates of emotional distress, such as
anxiety and/or depression [20, 21] and posttraumatic stress
disorder [22]. These cognitive and emotional consequences
of RT result in decreased QOL that manifests in a variety of
ways. For example, adult survivors of childhood RT are less
likely to obtain a college education [23, 24] or marry [5, 20]
and more likely to be unemployed [24, 25].

Improving QOL for survivors necessarily involves atten-
uating the long-term neural consequences of RT. Ionizing
radiation damages the brain directly, but in addition, it
chronically suppresses cell proliferation, thereby depriving
the brain of the raw materials needed for repair. Evidence
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indicates that it also creates a milieu that is hostile to regener-
ative processes. When the brain is irradiated in childhood,
there is a further consequence of RT, as suppressed cell
proliferation and hostile environmental conditions disrupt
ongoing developmental processes. What is needed, therefore,
is a treatment that can both “jump-start” cell proliferation and
foster a neural environment that is conducive to plasticity.
Exercisemay represent one such treatment, and its restorative
potential for the post-RT brain is discussed.

2. RT Disrupts Brain Development

RT damages the brain regardless of age. However, the brains
of children are still developing, and RT profoundly affects
ongoing developmental processes.The potential mechanisms
underlying this disruption are many, such as perturbations
of vasculature [26] and suppression of cell proliferation [27–
29]. Damage to the endocrine system [30, 31] has been
shown to play a role, in particular, decreased expression
of growth hormone (GH). GH deficiency results from the
effects of a brain tumor or of therapy such as surgery, RT,
or chemotherapy. Merchant et al. [32] report that the peak
GH response within 12 months after the initiation of cranial
RT depends on hypothalamic dose-volume effects and may
be predicted on the basis of a linear model that sums the
effects of the entire dose distribution. The rate of decline in
the peak GH response may also be influenced by clinical
factors indicating the severity of the disease and the type and
location of tumor.

Disruption of brain development could also be due in
part to cancer treatment effects on food intake. Treatment-
induced nausea and vomiting, as well as gastrointestinal
toxicity can lead to nutritional deficiency and changes in body
composition [34, 35], which may be long-lasting. Indeed,
survivors of childhood brain cancer are often underweight
[36]. In contrast, survivors of childhood ALL are more likely
to be obese, compared with age-matched controls [37]. Thus,
treatment effects on hormone levels and nutritional intake,
alone or in combination, are likely important contributors
to altered neural development and, ultimately, cognitive
impairments.

Animal models of pediatric RT enable controlled study of
mechanisms that contribute to disrupted development and,
ultimately, cognitive late effects. To model the effects of RT
on the developing brain, we have treated postnatal day 28
(PND28) rats with whole brain irradiation (WBI), using one
of 2 regimens: single dose (20Gy) or fractionated, in which
animals received 20Gy over the course of 5 days (4Gy/d).
Either regimen results in a profound stunting of brain growth
visible to the naked eye (see Figure 1), although the effect is
clearly bigger with single dose treatment.

Using thismodel, we can probe the cellular, chemical, and
structural effects of RT that contribute to decreased brain size
and cognitive impairments in adulthood. To enhance trans-
lational value, we are using imaging techniques to discover
RT-induced changes in vivo that predict future cognitive
impairments before they manifest. For example, we are using
magnetic resonance imaging (MRI) and diffusion tensor

Figure 1: Irradiation of the developing (PND28) rat brain results
in visibly decreased brain size in adulthood. Note that a 20Gy total
dose of X-ray radiation resulted in a smaller brain when it was
administered as a single dose. A fractionated dose (4Gy/d for 5 days)
was less detrimental to brain size.

imaging (DTI) to assess RT-induced structural changes and
1H magnetic resonance spectroscopy (MRS) to assess chem-
ical changes following RT (see Figure 2). DTI has the added
advantage of providing information on fractional anisotropy
(FA), a measure of the functional integrity of white matter
tracts. Our preliminary 1H MRS findings showed changes
in glutamate, alanine, and lactate in RT brains, compared to
sham controls. In addition, FA analysis showed a significant
decline in fimbria volume and mean fimbria FA value in RT
brains compared to controls. These changes were observed
three months prior to the detected cognitive changes shown
in Figure 3, suggesting that imaging changes can be used as
early markers of cognitive decline.

3. RT-Induced Suppression of
Cell Proliferation Contributes to
Cognitive Impairments

Because ionizing radiation kills dividing cells, it is effective
at treating cancer, yet devastating to noncancerous tissue
in the brain. Although mature neurons are postmitotic and
therefore not directly affected by radiation, the brain’s actively
dividing neural stem cells (NSC) are largely wiped out, even
by very low doses [28]. This is problematic, as it decreases
the availability of new neurons in neurogenic regions of the
brain and of new glia (oligodendrocytes and astrocytes) in
nonneurogenic areas.

The dentate gyrus (DG) of the hippocampus, along with
the lining of the lateral ventricles (the subventricular zone,
or SVZ), is one of the few neurogenic regions of the adult
mammalian brain (see [38] for review). Animal studies
indicate that ongoing neurogenesis in this region is important
for cognition. For example, newly generated neurons are kept
alive by effortful learning (for review see [39]) and are needed
for the formation of long-term spatial memory [40]. Analysis
of postmortem human tissue following cancer treatment
shows an almost complete lack of hippocampal neurogenesis
[41], the functional importance of which is attested to by the
cognitive impairments observed in survivors [42].

Animal models have yielded direct links between RT-
induced decrements in hippocampal neurogenesis and
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(a) (b)

Figure 2: Data from our group indicates that measurable imaging changes precede cognitive decline. (a) An image of a rat brain acquired
using a 9.4 TMRI. The pink box indicates where 1H MRS was performed. Changes in glutamate, alanine, and lactate preceded cognitive
impairments. In addition, FA analysis detected a decrease in volume of the fimbria. (b) An FA map of the rat brain.
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Figure 3: Data from our group showing RT-induced cognitive deficits. (a) Schematic illustration of the 5-CSRTT apparatus. (b) Fractionated
X-ray radiation (4Gy/d for 5 days) restricted to the frontal cortex of young rats significantly reduced choice accuracy on a 5-CSRTT 6 and
9 months following RT (∗𝑃 < 0.05). (c) Fractionated WBI in young rats impaired pliancy on a hippocampus-dependent strategy-switching
task in the Morris water maze [33] 3-4 weeks following RT (∗𝑃 < 0.05).
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cognitive impairments. Many studies have focused on
deficits in spatial performance (place learning or spa-
tial memory) and trace fear conditioning, since these
are hippocampus-dependent functions. Spatial impairments
have been observed in conjunction with decrements in DG
cytogenesis following both fractionated [43, 44] and single-
dose WBI [45, 46]. Our group also has noted performance
deficits in a spatial task after fractionated irradiation (see
Figure 3(c)). Decreased fear conditioning has also been asso-
ciated with radiation-induced suppression of DG cytogenesis
[47–49]. In sum, an increasing body of evidence implicates
suppression of hippocampal neurogenesis as a causative
factor in cognitive impairments following RT.

However, suppression of hippocampal neurogenesis is
likely only part of the story. NSCs in nonneurogenic brain
regions, such as the cortex, differentiate into glia [50]. A
plentiful supply of glial cells is essential for neuronal health
and function [51, 52], so reduced proliferation of NSCs due
to RT could contribute to cognitive impairments by reducing
the availability of glia. For example, problems with executive
functions are widely reported in adult survivors of childhood
RT. Executive functions develop linearly during adolescence,
in apparent conjunction with myelination of the frontal
lobes [19]. Frontal lobe white matter appears particularly
vulnerable to RT [53], and RT-induced damage to white
matter tracts may, in large part, underlie the neurocognitive
deficits experienced by adult survivors of childhood cancer
[19, 54]. Myelination is dependent on a ready supply of
healthy oligodendrocytes, which is in turn dependent on
adequate proliferative activity of NSCs. RT-induced ablation
of NSCs in nonneurogenic regions could therefore contribute
to cognitive impairments.

To provide direct evidence that RT-induced suppression
of gliogenesis contributes to frontal lobe dysfunction, animal
models of frontal lobe-dependent tasks are important. The
5-choice serial reaction time task (5-CSRTT) is a reliable
means by which to assess prefrontal cognitive processes in
the rodent. This automated task measures several aspects of
visual attention, specifically divided, sustained, and selective
attention, as well as processing speed and impulsivity [55].
The task requires the animal to detect brief flashes of light
that appear in one of five apertures (see Figure 3(a)) and
then nose-poke into the aperture that the light appeared in.
The animal is given 5 seconds in which to make the nose-
poke response. Correct responses are rewarded by a food
pellet being dispensed into a magazine at the rear of the
testing chamber (see Figure 3(a)). To provide motivation,
animals are food restricted. Between stimulus presentations,
there is an intertrial interval (ITI), and the animal must
inhibit responding during this interval, because premature
responses result in a short time-out period during which
there are no trials, and thus food reward cannot be obtained.
In performing this task, the animal has to sustain attention to
all 5 of the apertures in order to constantlymonitor where the
light stimulus will be presented. Incorrect responses (nose-
pokes into an aperture other than that in which the light was
presented) indicate impaired attention. Measures of impul-
sivity are collected through responses that are characterized
as perseverative and/or premature. Perseverative responses

are defined as continuous nose-pokes in additional apertures.
Nose-pokes made before the light is presented are considered
premature responses. Processing speed measures are based
on various latency times that are collected throughout the
task.

We have used the 5-CSRTT to probe for impairment of
prefrontal cognitive processes following fractionated irradia-
tion (4Gy/d for 5 days). Irradiated animals and shams were
trained to perform the 5-CSRTT and then tested 6 and 9
months postirradiation. Our preliminary findings indicate
that the irradiated animals are significantly less accurate
at nose-poking into the correct aperture, suggesting that
they have attentional impairments (see Figure 3(b)). Future
experiments will focus on replicating these impairments in
irradiated animals and determine whether they are linked to
reduced gliogenesis in frontal regions.

4. RT Creates a Brain Milieu
Hostile to Plasticity

Themicroenvironment of the brain is regulated and protected
by specific barriers, which include the vascular endothelial
barrier (also called the blood-brain barrier, or BBB) at the
capillary-parenchyma interface and the epithelial barrier
(blood-cerebrospinal fluid barrier) at the choroid plexus [56].
The BBB is more than a physical barrier: it plays a fundamen-
tal role in regulating the movement of substances between
the blood and the CNS (see Figure 4(a)). The microvascular
network is also the site of the BBB, and the endothelial cells
(ECs) that make up the microvascular network barrier con-
tain fewpinocytotic vesicles and adhere to each other via tight
junctions [57]. Tight junctions limit paracellular transport of
hydrophilic compounds into the CNS as compared to non-
CNS vessels [58, 59]. Also, astrocytes in close proximity to
the ECs add another impediment to paracellular transport
by biochemically conditioning the ECs and strengthening the
tight junctions between them [60]. ECs coat, in a single layer,
the interior of all blood vessels. Because of this intertwined
fate with the circulatory system, ECs play a unique role
in maintaining physiological homeostasis, controlling the
movement of substances across from the blood compartment
into the different tissues and organs with varying demands
and function [61]. The ECs also play an important immune
function through leukocyte surveillance and extravasation
by regulating adhesion integrins and cytokine production
[62]. In particular, they have been shown to directly secrete
tumor necrosis factor (TNF) [63]. Thus, damage to the ECs
compromises the integrity of the BBB.

When the barrier between the vascular supply of the brain
and the CNS parenchyma is disrupted, excess extravasation
of proteins, biologic-responsemolecules (e.g., growth factors,
cytokines, and clotting factors), inflammatory cells, and
therapeutic drugs can damage the brain [56, 64–66]. The
disruption of the BBB (see Figure 4(b)) has been identified as
a consequence of various diseases/injuries such as multiple
sclerosis, ischemia, HIV, hypertension, brain tumors, CNS
injury, and radiation exposure [66–70], wherein inflamma-
tory cells are able to penetrate the BBB and destroy themyelin
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Figure 4: This diagram depicts a cross section of brain parenchyma showing the structure of the BBB and the damage induced by RT. (a)
Normal BBB showing intact tight junctions (TJ), lack of vesicles, astrocytes and pericytes abutting the ECproviding additional barrier support,
and a neuron with thick, healthy myelin. (b) Damaged BBB in which astrocytes and pericytes have pulled away from the EC, a leukocyte has
adhered to the EC, and there is formation of vesicles and loss of TJ integrity.

surrounding the axons. Demyelination and myelin thinning
have been reported in the CNS following RT [71–74]. Felts
et al. have also shown that RT-induced BBB permeability
prolonged the induced demyelination of neurons [75, 76].
We and others [77–80] have demonstrated that there is an
increase in BBB permeability following RT, which is caused
in part by EC damage, as expressed by changes in tight
junction integrity and by vesicle formation postirradiation.
RT-induced EC damage has been investigated [81–83] with
the aim of elucidating the effect on initiating and/or sus-
taining radiation side effects. Eissner et al. [84], as well as
others [82, 83], have shown that when irradiated, ECs in vitro
and in vivo undergo apoptosis at a higher percentage than
other cells. Our studies using electron microscopy show that
RT causes damage to the tight junctions [78], which is also
connected to the observed increase in BBB permeability. In
addition, several studies, including our own, have shown an
increase in BBB permeability and an increase in the number
of vesicles following fractionated cranial irradiation [78–80].

Such damage to the microvasculature and breach of the
BBB can disturb the delicate brain microenvironment and
expose the brain parenchyma and neural cells to noxious
substances [70, 78, 85]. This microenvironment imbalance
can set into motion a chain of events (such as cytokines
release), magnifying the original signal and finally causing
measurable late-term tissue damage in the irradiated brain
that may play a role in cognitive impairment [86]. We and
others have shown that RT induces an inflammatory response
as indicated by an increase in TNF-𝛼 and intercellular
adhesion molecule-1 (ICAM-1) signaling in the brain [87–
90]. We have reported activated astrocytes after treatment
with single and fractionated RT [78, 91]. Prolonged gliosis
can create glial scar sites, which have been theorized to
inhibit axonal regeneration or remyelination [92, 93]. We
have demonstrated that this inflammation response is related
to an increase in BBB permeability following RT and that
it is abrogated when treated with antibodies to TNF-𝛼 or
ICAM-1 [77, 90]. In a histological study on mouse brains we

observed significant changes 120 days following fractionated
RT: fewer neurons, a significant decrease inmyelin suggesting
complete destruction of the parts of the white matter at 120
days following RT, and at 90 days following RT, we observed
swelling of nerve fibers and increased thickening of the
myelin sheaths (see Figure 5(b)) indicative of dying axons.

5. The Restorative Potential of
Exercise for the Post-RT Brain

Given its myriad beneficial effects on the brain, exercise has
been suggested as a treatment for a wide variety of brain
maladies, from aging [94] to alcoholism [95]. In the case of
aging, exercise has been shown to have a remarkable restora-
tive effect, encouraging the resurgence of atrophied regions
such as white matter tracts [96] and the hippocampus [97],
and improving cognition [98]. Such effects are particularly
encouraging for the post-RT brain, since it shares many
things in common with the aged brain, such as decreased
cell proliferation, decreased growth hormone, and increased
inflammation. Moreover, in both cases these conditions
worsen over time, to ultimately create a neural milieu in
which plasticity is suppressed.

In aged rodents, exercise can increase proliferation of
NSCs [99], suggesting that it has neurogenic potential even
in a system in which cell proliferation is drastically reduced.
Encouragingly, exercise has been reported to increase hip-
pocampal neurogenesis in the irradiated brain in rodent
models [100, 101]. There are likely multiple mechanisms of
this enhanced neurogenesis. Neurogenesis is tightly linked to
the microenvironment [102] and is known to be suppressed
under conditions in which there is unchecked inflammation
[27] or a lack of trophic [103] or hormonal support [104].
Exercise has been shown to increase growth hormone [104]
and reduce inflammation [105], two potential ways in which
it could counteract the suppressive environment created by
RT.
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Figure 5: Histological markers of radiation injury in the mouse brain at 90, 120, 180, and 300 days after RT. (a, b) Luxol fast blue staining
showing loss of myelin. (c, d) Sections of brain nerve fibers showing structural changes, microglial (outlined in green) inflammation, and
myelin sheath thickening indicative of cell death (images at 50x). (e, f) Yellow and blue arrow heads point at myelin sheath surrounding the
neurons and at mitochondria, respectively (scale bar = 1 𝜇m). (g) Necrosis detected at 120 days. (h) Yellow arrows point at pericyte pulling
away from endothelial cell, a sign of inflammation, with white edematous area causing vascular constriction.
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Figure 6: Effect of a single 4Gy dose of X-ray radiation on microglia in the developing rat brain 24 hr after exposure. (a, b) A schematic
representation of microglia distribution (gray dots) in the cerebral cortex showing that RT-induced loss of microglia is more pronounced in
inner layers relative to superficial layers. (c, d) Representative 20x images of Iba1+ staining in the retrosplenial cortex showing that RT not
only reduces the number of microglia but also alters their morphology.

Recent research has begun to elucidate the impor-
tant role that microglia have in maintaining the neuro-
genic niche [106–108]. Unfortunately, radiation severely dis-
rupts microglial distribution, alters their morphology (see
Figure 6), and decreases their numbers [109], effects that
likely contribute to RT-induced neurogenesis impairment. It
has been shown that, after radiation, microglia in the SVZ
reboundmore quickly than those in theDG.Thismay explain
whyneurogenesis recovers better in the SVZ, compared to the
dentate [110]. Voluntary exercise has been shown to increase
microglia [111], suggesting a further means by which exercise
could help to restore a microenvironment conducive to cell
proliferation.

Exercise might also have an enhancing effect on glio-
genesis in the post-RT brain. As described above, glia are
essential for the integrity and function of the cortex. Exercise

has been shown to enhance cortical gliogenesis in the intact
brain [112], and our future efforts will include determining
whether post-RT exercise enhances cortical gliogenesis and
ameliorates impairments in the 5-CSRTT.

In addition to these many direct benefits, it is impor-
tant for survivors of childhood RT to exercise, in order
to counteract chronic conditions that arise from cancer
treatment, such as impaired pulmonary and cardiac function
[113]. Emotional problems like depression and anxiety may
also decrease with regular exercise. Unfortunately, treatment-
induced fatigue, cardiorespiratory problems, and muscular
deconditioning tend to promote sedentary habits during
treatment that linger into adulthood, with the result that
childhood cancer survivors are much less physically active
than their healthy peers (see [113] for review). Cranial RT in
particular is associated with sedentary habits in adulthood
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[114, 115]. However, recent studies suggest that physical fitness
is an achievable goal for childhood cancer survivors [36, 113],
so the beneficial effects of exercise observed in animalmodels
can be followed up in human patients.

Fortunately, rodents show no reluctance to exercise after
RT, and initial studies suggest that exercise is capable of
ameliorating RT-induced deficits in both neurogenesis and
cognition. Voluntary running in adulthood has been shown
to restore neurogenesis in mice irradiated early in life [100],
suggesting that exercise may be a feasible means by which
to promote cell proliferation in adult survivors of childhood
RT. Furthermore, it may be able to attenuate RT-induced
cognitive impairments. A recent study showed that volun-
tary running ameliorated radiation-induced spatial memory
decline 4 months after radiation as well as partially restored
neurogenesis in the DG [101].

While these results are encouraging, continued study of
the effects of exercise on the RT brain in animal models is
essential. For one thing, it is important to better understand
the effects of exercise in the context of the RT brain. In
particular, it is necessary to determine whether exercise has
an adequate neural substrate on which to work. For example,
one well-established effect of exercise is its ability to induce
angiogenesis [116, 117], an effect that depends upon the brain’s
capacity to produce new ECs. Given the suppressive effect of
RTon cell proliferation, it is possible that the angiogenic effect
of exercise would be limited in the post-RT brain. In short,
it is possible that the effects of exercise would be dampened
in the post-RT brain, reducing its potential as a stand-alone
treatment. Further study may indicate that exercise would be
most useful as an adjuvant therapy. For example, stem cell
replacement shows promise in the irradiated rodent brain
[118] and may eventually be possible in humans if the hostile
environment created by RT can be made more permissive
for growth and repair. Exercise represents a viable means by
which to achieve this, and future studies should address the
potential of exercise to neutralize the hostile environment
created by RT, as a preliminary step in restorative treatments.

6. Conclusions

Both human and animal studies indicate that suppressed cell
proliferation and the hostile neural environment induced by
cranial RT contribute to subsequent cognitive impairments.
These effects of RT may be alleviated, at least to some extent,
by exercise. It has been well established that exercise can
both promote cell proliferation as well as foster a neural
environment permissive for plastic change. Early evidence
from animal models indicates that exercise has the capacity
to do both in the post-RT brain. However, further studies are
needed, in order to determine whether RT-induced pertur-
bations of the microenvironment could limit the plasticity-
enhancing effects exercise has to offer.
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