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ABSTRACT

This thesis derives a Gaussian quadrature rule from a complete set of orthogonal lacunary poly-
nomials. The resulting quadrature formula is exact for polynomials whose even part skips powers,
with a set of sample values that is much smaller than the degree. The weight for these quadra-
tures is a generalized Gaussian, whose negative logarithm is an even monomial; the powers of this
monomial make up the even part of the polynomial to be integrated. We first present Rodrigues for-
mulas for generalized Hermite polynomials (GHPs) that are complete and orthogonal with respect
to the generalized Gaussian. From the Rodrigues formula for even GHPs we establish a three-term
recursion relation and find the normalization constants. We present a slight modification to the
Christoffel-Darboux identity and the Lagrange interpolation polynomials, and proceed to derive
the roots, weights, and estimate of the error for the generalized Hermite-Gauss quadrature rule
applied to sufficiently smooth functions. We illustrate the quadrature rule by applying it to two
examples. Finally, we apply a major result from compressive sensing relating a matrix’s coherence

and sparse recovery guarantees to the quadrature setting.
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1 Introduction

It is a remarkable fact in the theory of orthogonal polynomials that interpolating a polynomial of
degree d on the real line requires at least d+1 sample values, while integrating it against a sufficiently
regular weight function (or measure) can be done with about half the samples. In addition, the
quadrature formulas that give the precise value of the integral for degree-limited polynomials can
also serve as an estimate for integrals of a larger class of functions that are well approximated by
their interpolants [20].

In general, a quadrature rule expresses an integral of a polynomial of the form f; p(t)w(t)dt
using a set of sampling points {¢; }5?:1 and their respective scaling factors {w;}*_;, such that

j:l?

b k
/ pHwt)dt =Y wp(t;) (1.1)
a j=1

[12, 03], 14, [6]. Here, w is a weight function with sufficiently many moments, and we include the
case of improper integrals with ¢ = —oo and b = +o0.

In this thesis we continue the tradition of using orthogonal polynomials to derive quadrature
rules. The main result developed here shows that the number of sample points can be chosen
far smaller than half the degree of the polynomial in a special case: if the non-zero coefficients
of the polynomial occur at exponents that are odd or multiples of some even integer, so p(t) =
Zf:o Cornt?™ + Zéﬁo cor41t? ! with n € N. In short, the even part of the polynomial is lacunary,
it skips powers with a step size of 2n. The weight for the quadrature formula is chosen to be a

—t*"/n The development of a quadrature rule for the generalized

generalized Gaussian, w(t) = e
Gaussian using generalized Hermite polynomials was inspired by [19], in which there is a discussion
for finding the sampling nodes and weights corresponding to a weight function w(z) = e~V @),
where V(z) = 2™ + O(2m — 1).

For the derivation of the quadrature rule we introduce generalized Hermite polynomials (GHPs).

These polynomials are not the generalized Hermite polynomials of [5], which satisfy only a partial

orthogonality condition. Like the polynomials to be integrated, the GHPs skip powers of t. That is,



for some generalized Hermite polynomial indexed by &, the expanded form is Héz) (t) = Z?:o al(k)tm"
or Hg(zzrl(t) = Zfill bl(k)t%”_1 depending on whether the polynomial is even or odd (further details
on GHPs are given in the following section). The absence of some of the exponents allows the
sequence of polynomials to be orthogonal with respect to the chosen weight function.

Some treatments of weight functions start with computing entries of its Jacobi operators and
subsequently finding the sampling nodes and weights [2I]. From the GHPs we find the sampling
nodes and weights using a method similar to that presented in [I4]. We begin with the three-term
recursion relation of the orthogonal polynomials. From the Rodrigues formula definition for the
GHPs we can determine their recursion relation and subsequently compute the entries of the Jacobi
matrix using exact expressions.

This thesis is organized as follows: After introducing the GHPs in Section [2] we derive two
separate three-term recursion relations and normalization constants for the even and odd GHPs.
We select sampling points for the quadrature rule based on the real and positive roots of the even
GHP. We modify the Christoffel-Darboux identity and the Lagrange interpolation polynomials to
accommodate the skipping of powers of ¢, and from these we derive expressions for the quadrature
rule weights. We subsequently obtain an expression for the quadrature error and identify a class
of functions for which the error goes to zero as k — oo. We also present two examples. The first
example demonstrates that by applying the quadrature rule to a monomial we can calculate exact
values of the gamma function for certain arguments. The second example numerically calculates the
error bound of an integral approximation as k — oco. Finally, we apply techniques of compressive
sensing to recover a linear combination of Hermite polynomials f when the sample nodes are not
identical to roots of a Hermite polynomial. We address the requisite sparsity of solutions necessary

for guaranteed sparse recovery.



2 Generalized Hermite polynomials (GHP)

The Hermite polynomials with the normalization constants appearing in the physics literature are

generated by the Rodrigues formula [I]

Hy(t) = (—1)ke’ (%)ke—t?

This succinct formula can be expressed as two different formulas by considering the even and odd

Hermite polynomials separately and noting that %e‘t2 = —2te 1"
s d? Nk _2 2/ d? \FK 2
Hop(t e (—) e H t) = e <—> ote .

2k( ) dtQ 2k+1< ) dt2

With these formulas, we have expressed the Hermite polynomials in terms of the Laplacian instead
of the derivative operator.

In this thesis, we use a singular Laplacian appearing in a Fourier-like transform studied earlier
[23] to derive another class of orthonormal polynomials. In the context of the Fourier transform,
the differential operator C‘Ii—; is diagonalized by the Fourier transform. This is a direct consequence

of the Fourier kernel \/%e_w being an eigenfunction of the differential operator %. In previous

work (ibid.), it was shown that the the operator D,, = —%t%%?% is diagonalized by a generalized
Fourier transform. This motivates us to define
(") _ B2 g 2
HE(t) = (—1)ke's Dk (2.1)
and
(n) kBN ko 2n—1,
Hyo oy (t) = (=1)%e = Dp(2t e ) (2.2)

where the Hz(Z) and the HSZL are the even and odd generalized Hermite polynomials (GHPs),

respectively. We first claim that these formulas, in fact, do yield polynomials, and that these

polynomials are of a particular form.



Theorem 2.1. Define HQ(Z) by formula , wheren € N and k is a nonnegative integer, then HZ(Z)

is a polynomial of degree 2kn that consists of only terms with powers 2ln, where l € {0,1,... k}.

(n)

Proof. We prove by induction, starting with Hén) (t) = 1. Now suppose that HZZ (t) = ag +ayt®™ +

2n 2n
.. + apt?*™. From () it follows that Dfle_tT = (=1)*(ag + a1t®" + ... + akt%n)e_tT. Applying
2n

2" multiplying e~ since

D,, to both sides yields another polynomial in powers of

2n

¢ t2n
Dpe” w = (2 —4t*™)e” (2.3)

and

t2"

2n
Dn(t2l"e_t7) = [e 2D ot gt (2 — 4t?)]e” (2.4)

2n
This is a polynomial multiplying the n-Gaussian (e_tT) and combining terms gives another poly-

nomial times the n-Gaussian. Furthermore, since Hén) is a constant, the first application of D,
yields a polynomial of degree 2n, and each subsequent application of D,, increases the degree of the
polynomial by 2n while maintaining terms of only t2", by 1) Therefore, HQ(Z) (t) is a polynomial

of degree 2kn consisting of a linear combination of monomials %", and the theorem is proved. [

Theorem 2.2. Define HSIZ)H by formula , where n € N and k is a nonnegative integer, then

252ln—1

Hé:l_l is a polynomial of degree 2(k + 1)n — 1 that consists of terms with powers , where

lef{l,....k+1}.

Proof. Again, we prove by induction. Clearly, H fn) (t) = 2t>"~ ! is a polynomial of the claimed form.

2n
Suppose that H. (n) | is a polynomial with terms of t2m=1 Then DfL(ZtQ"_le_tT) is a polynomial

2k+

t2ln—1

with terms of multiplying the n-Gaussian. Applying D,, to this yields another polynomial

t2ln—1

multiplying the n-Gaussian with terms of the form of degree greater than that of the previous

polynomial by 2n. Since an) is a polynomial of degree 2n — 1, H. (n)

oka1 18 a polynomial of degree

2(k + 1)n — 1, proving the theorem. O

In the following subsection, we will show that the GHPs are orthogonal and complete. After-

wards we will show that two separate recursion relations exist for the generalized Hermites: one for



the even polynomials and one for the odds. The recursion relation will allow for stable construction

of the generalized Hermites for numerical purposes.

2.1 Orthogonality and completeness

Orthogonality for the GHPs is very similar to that of the standard Hermite polynomials, with
the exception that the weight function is the appropriate generalized Gaussian for the GHPs, as

opposed to the standard Gaussian for Hermite polynomials.

Theorem 2.3. If m and m' are nonnegative integers such that m # m’, then

[ (o) (o) =0

—00

Proof. We already know that the even and the odd GHPs are mutually orthogonal with respect
to the weight function eJZTn, because with an even polynomial, an odd polynomial, and an even
weight function, the integrand would be overall odd and vanish. Now consider the case of even
GHP, where m = 2k and m’ = 2k’. Without loss of generality, assume &’ > k. Then we have that

| (0 =) (a0 )ar

—00

When D,, acts on HQ(Z) (t) (since HQ(Z) (t) is a polynomial), it decreases the degree by t2". By

successive integration by parts, this becomes

| (a5 0e =) (0 = )
> (2.7)
:(_1)k’/_ Dk (H( )t )) DY ke~ dt.

D,’jHéZ) (t) is a constant (call it C'), so we need only to show that



$2n

2n
/ i . I fe_1 1. .
ffzo Dfl ke~ dt = 0. Since we have that %ﬁ%Df{ k=1e=7 is integrable, we get

/ h (HQ(Z) (t)e*f*:) (Hé’,;‘? (t)e’%)dt

4 1 d_, an

_ —(—1)’@/ O e DE e (2.8)
1 d ’ 21 |00

k4l 4 k-1 2

=(-1) Ct%_2 dtD” e .

—0. (2.9)

Thus if k # k', we get that the integral vanishes and so the even GHP are orthogonal. An identical
analysis holds for the odd GHP. O

To show that the GHP are complete, we use a standard approximation argument. The approx-
imation properties of lacunary polynomials have already been explored, but mostly for uniform
approximation of continuous functions on compact sets [I7], see also [2]. Here, we treat the com-

pleteness in the Hilbert space L2(R,e™t"/"dt).

Theorem 2.4. The polynomials {Hf,?) _o form a complete set in

L2(R, e " /ndt).

Proof. 1t is enough to show that the closed linear span of the GHP contains each constant function,
any even square-integrable function whose integral is zero, and any odd square-integrable function.
Furthermore, after treating the constant function, we can specialize to even and odd functions
whose support is compact and does not contain 0. In that case, an even function f is of the form
f(t) = t"g(t*") and an odd function f is of the form f(t) = " 1g(#*") where g has compact support
excluding 0. After a change of coordinates, the result then follows from polynomials being dense

in L2(R*, e~tdt). O

2.2 Three-term recursion relations

Because there are two Rodrigues formulas (one for the even polynomials and one for the odd

polynomials), it follows that there must also be two separate recursion relations for the odd and



even GHPs. We begin with the relation between the even polynomials.

Theorem 2.5. Let k and n be nonnegative and positive integers, respectively, as they are in

and . The three-term recursion relation between the even GHPs is
HéZZ@(t) = (agt® + B HS (1) + W HSY -

with the coefficients

Bk = —8kn — 2,

vk = —16k*n? 4 16kn® — 8kn.
Proof. Before beginning the proof, it is convenient to evaluate the following expression

2n
D, (tﬂ"e—%) = [(—412n2 + 4ln? — 2n)¢20-Dn (2.10)

2n
+ (8In 4 2)¢2n — 42D~ 5

2n
= [e_ (D 4 e 4 cf (DD e~ 5 (2.11)
and introduce the notation
c_(l) = —4I*n?* + 4in* — 2In, (2.12)
co(l) = 8In + 2, (2.13)
cy(l) = —4. (2.14)

Let H2(Z) be some arbitrary even GHP indexed by some nonnegative integer k, as defined by
(2.1), such that when n = 1, the polynomial becomes the standard even Hermite polynomial Hoy.

As shown before, Héz) (t) is a linear combination of terms of the form #*", where [ € 0,1,2, ..., k.



We write HZ(Z) (t) in terms of its coefficients a;:

Hy(¢)

R0 g 2 : 2n
(—DFew Dren =Y at*". (2.15)
=0

$2n

2n
By rearrangement, ([2.15) implies that DfL(eJT) = (—1)’“(2?;0 alt2l”> e n . We then write the

2n
next two generalized Hermite polynomials by successive operations on H2(Z) (t)eftT by D,:

2n 2n
H{p, (1) = (—1)* e Dit e (2.16)
$2n k $2n
= (—1)eTDn[(Zalt2ln>e_T} (2.17)
1=0
k
= (—1) [Z arfe_ (DEEDR g o1y 4 c+t2<l+1>n]] . (2.18)
1=0
(n) k2 B8 gt 20
H®, () = (~1)F 2 Di2e 5 (2.19)
k
2n
_ etTDn |:< Z a [C, (l)t2(l—1)n (220)
1=0

k
- [c_(l — 1)e_(1)20-2n (2.21)

+e () (co(l 1)+ co(l)>t2(l’l)"
(e Wer + ool + e+ ey )2
tey (CO(Z) + el + 1))t2<l+l>"

2 ,2(1+2
+c+t( )”}.

Next, we see that a three-term recursion relation exists between the even GHP, and that relation
takes the form

S L(8) = (at® + BYHD (1) + vHSP (1) (2.22)



with «, 8,7 € R. By substituting the polynomial forms of the GHP into the recursion relation and

combining like powers of £, we find that:

a =4, (2.23)

B=—8kn—8n—2, (2.24)

7:(16k2n2--48kn2+8k:n--8n)+"’2*1(3271). (2.25)
k

Recall that ax and ai_1 are the coefficients of the highest and second-highest powers, respec-

(n)

tively, in the polynomial HQZ . To further simplify the expression for v, we define by 1 and by to

be the first and second coefficients of HéZi_Q and derive a relation between b:ﬁ and 2= Careful

ap

examination of ([2.18]), the polynomial form of H2(er27 shows that

bk+1 = —Cyag, (2.26)

b = —crap—1 — co(k)ag. (2.27)

Define the ratio of the second and the first coefficients of a GHP Héz) (t) to be Qi (ie. Qr =

ak—1
ag

). The relation between the ratios then becomes

Qror = @+ 2F) (2.28)
C+

Recognizing that Qy = 0 (since Hén) (t) = 1), one can show that

Qv =— ki (2jn + ;) (2.30)

§=0
k

= —k(k = n -3, (2.31)



and so

v = (16k*n? — 48kn? + 8kn — 8n) + Q1 (32n) (2.32)
= —16k*n? — 16kn? — 8kn — 8n. (2.33)
Finally, replacing k by k& — 1 in (2.22)), (2.24)), and (2.33]) proves the theorem. O

By the same method, one can derive the recursion relation between the odd GHP. Without

proof, the odd GHP recursion relation is
HYD (1) = (bt + B HY (6) + R H (2.30)

where the coefficients are defined as follows:

By = —8kn — 8n + 2, (2.36)
v = —16k%n? — 16kn? + 8kn. (2:37)

This recursion relation makes explicit computation of the polynomials straightforward and efficient.
The polynomials can be stored as coefficients in an array of a computer program, and only addition,
multiplication, and shift operations on the arrays are necessary to generate polynomials up to a

desired index.

2.3 Normalization constants

$2n

While the GHPs are orthogonal with respect to the weight function w(™ () = e~ =, they are not

orthonormal. We compute the required normalization constants.

10



Theorem 2.6. Let Hz(z) be as defined above and
gy (1) = Ay (1)

with
k—1

1
Ay = [(23kk!nkj1;[1[2jn + 1]) (ni—lr(%))] 2

then {hé’;)}zo:o forms an orthonormal sequence in L2(R,e""/ndt).

Proof. All that remains is to fix the normalization of the GHPs. The derivation of the even

polynomials’ normalization constant begins the same way as the proof for the orthogonality of the

GHP, only we let m = 2k = 2k’ = m/. Split the integrand into the product of two generalized

Hermite functions
AL P W) P
(H%() 2n)(H2k (t)e 2n)dt
2n 2n 2n 2n
/ HS (e 5 ((~1)ke's Dhe 5 Yo ar (2.38)

/ H{V(t)Dke Gt (2.39)

and perform successive integration by parts, just like in the proof for orthogonality:

/ (e 5 (B e 5 )
o0 N (2.40)
- (—1)k/ D} (H§) (1)) e d.

We recognize that D,’jﬂéz) (t) is a constant. Finding A? results from evaluating
0 $2n
I(n) = / e ndt (2.41)

and

C =DEHY (1) (2.42)



where
1

VEDFI(n)C

We consider I(n) first. Using the improper integral definition of the gamma function, we find that

Ay, = (2.43)

I(n) = ni—lr(%). (2.44)

Now we tackle the value of C. Consider the effect of D, on the monomial t2*", where k is a

nonnegative integer:

d 1 d
Dn 2kn - _ Y 12kn 2.4
! Qe dr (245)
— %n (2(/-e 1)+ 1)t2<k—1>n. (2.46)
Repeated application of D,, yields
D22k — (—1)? [an@(k — n+ 1)]
x [(2(k: - 1)n) (2(k; — )+ 1)} 12(k=2n (2.47)
DEg2kn — (—1)R2FEInF[2(k — 1)n + 1][2(k — 2)n + 1]
x [2(1)n 4 1][2(0)n + 1]¢2F—F)m (2.48)
k—1
= (—1)k2" kI T T [2jn + 1. (2.49)
j=1

12



(n)

Since only the leading coefficient aj, = 4% of HQZ (t) remains after k applications of D,

C = 4k ply2hn (2.50)
k—1
= 4F(—1)F2FkmF TT124n + 1) (2.51)
j=1
k—1
= (=1)F2%kin® T (2n + 1]. (2.52)
j=1
Therefore
k—1 1
_ 3k, k . =1 i 2
4y = [(2*kin Hl[zjn +1]) (n2 r(2n))] , (2.53)
]:

(n)

which gives the normalization. Together with the orthogonality of the functions H. ZZ , this completes

the proof. 0

The odd GHP normalization constant can also be obtained through a similar means. Without

proof, it is given as

k 1
1 —=
By = [ (2% 2k* T[12G + Vn — 1]) (7202 = )] (2.54)
7=1
where
hg, 1 (8) = BRHG), | (2). (2.55)

Substituting HQ(Z) (t) for hg,z) (t) into the recursion relation of Theorem yields a three-term

recursion relation in terms of the hg;) (t):

n A n n A n
h’(2k)+2(t> = 137:1 (ath + ﬁk) h(2k) (t) + Azi thgk)f2(t)' (2.56)

This relation will be used in the following sections.

13



3 The matrix equation

We proceed by setting up the matrix equation used in finding the roots of the GHPs. Tailoring the

method employed by [12], [14], and [22] for our own purposes, we rearrange (2.56|) and isolate the

term containing t2":

2ny (n) 1y _ A () BJ (n) 4
PO = 5 0~ T+

(n)
X . 1
Fiary ;o) (31)

We then index j from 0 to some k — 1, allowing us to generate a system of k equations from (3.1)):

A
£2np) (1) = —@h 0 R4 3.2
) 0+ 5=h5() (32)
2np (n) Am (n) By m) A1 ()
RS () = R ) + =200 + ) (33
n A 62 n A2 n
t2nh( ) t) = 272 h( n) _7h( ) h( ) 4
0 = 22000 + () +52h (0 (3.4)
on; (n) A o2, () ~ Br—2, () Ar—2 ()
UG (1) = I EERG) o(0) + — A0+ 5 h () (3.5)
on; (n) A1, () ~ Br-1, () A1 (n)
£ hyyo(t) = A o0ir 1h2k—4(t>+ o 1h2k—2(t)+Akak_1h2k (t) (3.6)
Next, we define the matrices
he" (1)
BsY(#)
BV (2)
h(™ (1) = (3.7)

Sy ()

14



and

_bBo Ag
v Arog 0 0 .o . 0
_Aim _ B Ay
Ao o Ao 0 .. . 0
_ Ay _ B2 Az
0 Aias (o) Az : : 0
T — (3.8)
Ag—17-1 Br—1
L 0 0 0 0 C T Agsop—1 g1

and condense ([3.2)) through (3.6)) in the matrix equation
Ak=1, (n) /1
£2rh(™ (1) = Th™ (1) + #h;; (t)ex (3.9)

where &, is the unit vector with zeros in all but the k*" row. Let t; be a root indexed by j of the

polynomial hg,? (t). By plugging in the root t;, we point out that 1' reduces to
t2"h(™ (t;) = Th("(t;), (3.10)

which is an eigenvalue problem with eigenvalue \; = t?". Solving for the set of eigenvalues \; will
be a critical step in finding the set of roots ¢; necessary for the quadrature rule.

But there is a minor complication; not all the roots of hgz) (t) (or equivalently, H2(Z) (t)) are real.
We can easily see this in the case that n is even, for which even if all the A; are positive, t7 can be
negative, and ¢; would subsequently be complex. This property is a byproduct of our formulation of
the generalization of Hermite polynomials, particularly their property of consisting only of terms of
2" We prefer not to use complex numbers in our Gaussian quadrature rule for real integrals. For

this reason, in Section [ we will determine which roots are important for quadrature rule sampling.

Alternatively, the matrix T can be formulated with the entries

(3.11)
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and

—%i
Tiiv1=Tig1,=——

1 (3.12)

since the matrix is symmetric.

Theorem 3.1. The tridiagonal matrix T is symmetric, and its nonzero elements are given by

and (5T3)

Proof. We only need to simplify the expressions for the off-diagonal elements of T in (3.8]). Consider

the ratio
L _1
- . - i—2 rey - 1 2
A - 23(2 1) (Z _ 1)'77,2 1 H;:1[2Jn + 1] (n2n 1F (%)) (3 13)
Ai ity [T 2 + 1] (n27 1T (55)) ’
= /16i2n2 — 16in? + 8in, (3.14)
== (3.15)
Therefore,
A vV i
2,0+1 Aiai—l 4 (3 6)
and
Avi V=
T, .= — — 3.17
i+1,2 Ai—lai 4 ( )
proving the theorem. O
4 Roots

The matrix T is a k x k tridiagonal matrix whose eigenvalues A; will provide us with the roots
of hgz) (t). We show that solving the eigenvalue equation 1) will yield k& distinct and positive

values of A;, of which we will take the positive roots

tj=+A¥ (4.1)



for quadrature rule sampling.
Theorem 4.1. Fach even GHP hg,z) has k real, distinct, and positive roots ti, ..., .

Proof. Before beginning with the proof inspired by a similar proof from [22], it is convenient to
make a minor modification to the orthogonality relation. Since the integrand is even, we make the
argument based on symmetry that

[e’e} 2n oo 2n
[ eoniee T =2 [T apemgiee Fa o (42)
—00 0

which is the case if k # k’. Let 7 = ¢?", then

1

[e8) 2n 0o _ . 5,1
2 / B R (e dt = 2 / MR (e T —dr =0 (4.3)
0 0

Now we can consider an even GHP in 7 on only the positive real line:

k !
hg’;) (t) = Z at?ln = Z ar = hé’,? (7). (4.4)
=0 =0

We proceed with a proof by contradiction. Let &' =0 and k > 1 in (4.3):

1

dr = 0. (4.5)

n

0o N
2 [7 g e E T
0 2

1 _ ~
Since 2hén) and 6_5% are positive for 7 > 0 (yet the integral vanishes), it follows that hg;;)

must change sign at least once on the interval (0,00). Let r be a natural number less than k that

denotes the number of roots of i’bgli)(’i') on the positive real line for which iLg;) changes sign. These

roots would have odd multiplicity (the powers py, ..., p, are odd integers), and so we factor Béz) :
RS () = (7 = )P (7 = 7)Pr (7). (4.6)
1 is then a polynomial of degree k — (p1 + ... +p,) that by itself does not change sign for any 7 > 0.

17



Multiplying both sides by (7 — 71)...(7 — 7,.), we get
WD () = 7)o(r = 7)) = (1 — )P (7 — )Pt l(r), (4.7)

and note that neither side now ought not to change sign on the positive real line. Yet, by integrating

both sides over the integrable singularity with respect to the weight function,

1
17'%71

/00 iléz)(T)(T —T71)e (T —Tp)e
0

dr =0, (4.8)

the integral vanishes due to the product
(1= 7)ol —7) = Y cth) (1) (4.9)

=0

producing a polynomial that can be expressed as a linear combination of GHP indexed below

- T
hg,i) (1), since r < k. We have our contradiction. Therefore, r = k, and by taking ¢; = Tf" we prove
the theorem. 0

Corollary 4.1. The k x k square matrix T has k positive eigenvalues.

Proof. In Theorem it was shown that ﬁg;) (1) was guaranteed k positive real roots 71, ..., 7. By

(3.10)) we know that these k roots are eigenvalues of the matrix T. O

In practice, we apply the QR algorithm to T to find the eigenvalues A\; = 7;. We are then able

to find the real, positive roots of the GHP ¢; = 7Y/2" The roots are then stored for later use as

J

sampling points for the quadrature rule.

4.1 A Christoffel-Darboux identity

Before proceeding with the derivation of the quadrature weights, it is necessary to establish a

general form of the Christoffel-Darboux identity. From (3.9) we replace ¢ with s to produce a sister
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equation:

s27h(™ (s) = Th(™(s) + h{ (s)éy.. (4.10)

Aksak 1

Take the dot product of with h(” and - with h(" ) and subtract one from the other

to yield an identity similar to that of Christoffel-Darboux,

(2" — s*) (W™ (), W™ (s))

A1 ()0 n .
C Apag [hgk) (t)hé’f)—Q(S) - hgk)(s)hgk)_z(t)]-

(4.11)

We can also reduce the left side to its scalar form. This is the form of which we will make use,

?T‘
H

Ap_1 hgzi) (t)hg/?—z(s) - héﬁ)@hé’i)_a(t)
Apag_q (t2n — s21)

h(n)( )h(”)( ) = (4.12)

S
Il
=)

5 Weights

We wish to establish a quadrature rule which is only dependent on the t;, the roots specified in

(4.1). With regular orthogonal polynomials, such a quadrature rule would take the form

— 00

00 k
/ p(Hw(t)dt = 3 wiplt;) (5.1)
j=1

where w; are the weights corresponding to the roots t; and p is a suitably degree-limited polynomial.
2n

However, since the weight function w( (t) = e~ s even, both in the special n =1 case and the

general case, we know that any evaluation of (5.1 for which p is odd must vanish. (This is why

we have omitted any discussion of the odd GHP since the section on their normalization constant.)
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Therefore, we can rewrite (5.1]) in terms of even and odd components of p:

/_Zp(t)w(")(t)dt _ /_Z (p(t) +2p(—t) n p(t) —2p(—t)>w(n)(t)dt
(7

_ ooi p(t) —|—2p(—t)) (n)(t)dt
k
—;§¥%MW+M%ﬁ- (52)

This way, only the even component of p is singled out and integrated. We will develop a quadrature
rule of the form ([5.2)) rather than (5.1]) to accommodate functions that have nonzero odd and even

components.
Our first main result states that we can integrate certain polynomials of degree up to 4kn — 1

by evaluating them at 2k points {£t;, tto, ..., £tx}.
Theorem 5.1. Let p be a polynomial of the form

2k—1 2kn

= 3 a3 b

1=0 =1

with real coefficients a; for 1 € {0,1,...,2k — 1} and by forl € {1,2,...,2kn}. For the weights
k—1 .
wy = (W) )P) = (). h (1)

v=0

the quadrature Tule holds.

Proof. To derive the w;j, we first define an intermediate function lj(-n) (t)

(n)
lj(.")(t - hd . )(n) (53)
e,
G P g e -
(= )G = 2 (= 20, — ) |
where we define the operator £ = L1724 (gince 7 = ¢2"). We emphasize that factoring hg;) (t)
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from ([5.3) to (5.4) is only possible because of Theorem hence its importance to the determi-
nation that the GHPs are suitable for the construction of a quadrature rule. The intermediate

function has the property that

7 (ty) = 650 (5.5)

We now define a Lagrange interpolating polynomial Lg?_2(t):

k
L8 L0 = S 1M ) 1(t)). (5.6)

This polynomial has degree 2(k — 1)n and passes through the points (t;, f(¢;)) (i-e. Lg,?_z(tj) =
f(t5))-
(n)

Observe that the zeros of the polynomial h,,’ (t) are also the zeros of the polynomial Lgki)_Q(t) -

f(t). Therefore, there exist polynomials r(t) and s(t) where
e 7(t) consists of terms ¢;#?", where [ € [0,k — 1], and
e 5(t) consists of terms djt?"~!, where [ € [1, k],

such that

F(t) = LG () = WS (0)[r () + s(1))- (5.7)

Note that r(¢) and s(t) are linear combinations of the even and odd generalized Hermite polynomials

of degree less than 2kn. Rearrange (5.7) and multiply by w(™(¢). Then, integrating over R yields

/_ T ™ (1)t = / T L (™ (1)t

—00

& o0 S ()w™ (t)
=5 ft)) 2k dt (5.9)
]z; J /_oo (t2n _ t?n)% [hérli) (t):| e
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The term containing 7(t) and s(¢) on the right of (5.8]) evaluates to zero because r(t) and s(t) are
linear combinations of the even and odd generalized Hermite polynomials of degree less than 2kn,
and hg,? (t) is orthogonal to those polynomials.

(n)

Since hs,’ is even, for every positive root ¢; there exists a negative root —t;. Therefore, a similar

derivation can be performed such that one receives a parallel result with that of (5.9)):

) - (n) (n) (¢
w™ () dt = vy hy (w710 . e
/_OO f(®) (t)dt ]Ez:lf( t;) /_OO (t2n — th) [hé’,?( )LZ_tj t | |

Add (5.9) and (5.10]), and divide by 2:

[ roueen=s);

=—t;

1

=35> (1) +f(—tg))
j=1
h h (™) () (5.1)
e ]
Comparing with we get that
e ng (™) (5.12)
o w (Tt |

&ns o]

t=t;

But in its current form, (5.12)) is impractical, since the problem of evaluating an integral from —oo
to 0o has been converted to evaluating k integrals from —oo to oc.
To eliminate this problem, let s = ¢; in (4.12)), the scalar form of the Christoffel-Darboux

identity:

A h(”) h(”) ts
Zhn ey — Arr MPORE (1)

(t;) 5.13
v J Akak 1 (t2n —t?n) ( )
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Multiply by w(™ (t) and integrate from —oo to oo,

i [ o
= B )2 (1) 0)] (5.15)

and solve for wj,
wy = B2 e ], ] 16

This expression for the weights is more practical than its integral form, but is still not ideal for
quick computation due to the presence of the % operator. Again, go back to 1| the scalar

form of the Christoffel-Darboux identity, but this time, take the limit as s — ¢:

e
—

h(”)

(n)
2 Ak-1 T o2(8) = hoy_o(t)
O] = i ) 1) (P2 )

@
Il
o

(n) (n)
+hy (1) (h% ,fQ — ?225 (8))} (5.17)

Ak ) 4 ()
- Akak,1 [_ h2k (t) dr <h2k72(t)>

FRGL 0 (h5 )] (5.18)

Evaluate t = t;,

T
L

Mot (100), _, | = o (5.19)

() 2 _ Ak
() =

@
Il
o

and solve for w; to prove the theorem:

k—1 B
wi = (SIS R) " = (), ) (5.20)

O

The form ([5.20]) for the weights is much more usable since there are no integral or derivative
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operators necessary for the computation. The brunt of the computation is the evaluation of the
even GHPs indexed from 0 to £ at ¢;.

Equation shows an expression for the weights of the generalized Hermite-Gauss quadra-
ture rule that is very similar to those shown for standard orthogonal polynomials. The expression
suggests that to calculate the roots and weights for a generalized weight function we can look to
the standard orthogonal polynomials and generalize them such that they are compatible with the

weight function of interest, as we have done with the generalized Gaussian.

6 Hermite interpolation and the quadrature error

We retrieved the weights by deriving the Lagrange interpolation polynomial from the GHPs. How-
ever, to obtain the error in the quadrature rule, we must derive a type of Hermite interpolation
polynomial in our setting. The Hermite interpolation polynomial seeks to approximate a function
f(t) by matching its values at points {t; };?:1 and at the same matching the values of its derivative.

In our case, if y(¢) is the Hermite interpolation polynomial, then

y(ty) = f(t)) (6.1)

and

(tl—%jty(t))ttj - <t1‘2”;if(t))ttj (6.2

[15] compare]. Since the GHPs are complete, we know we can approximate f(¢) as a linear combi-

nation of the GHPs, and therefore, there is a series of polynomials
k
pr(t) = at’™ (6.3)
1=0

indexed by k that converges in L?(R, et/ ™) to a given even f as k — oo.

Theorem 6.1. If f is integrable with respect to the n-Gaussian and its even part is 2k-times
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continuously differentiable on (0,00), then the approximation given by the quadrature rule has

(554) (1),
c2(2k)!

an error

E =

where ¢ is the leading coefficient for hg,? (t) and £ is a value between the smallest and largest of

the sampling points t;.

. . . . d __ tl—?n d
Proof. To simplify notation, we abbreviate 7= = 55— .

Suppose values of f(t) and % <f(t)> are known for ¢t = t1,t, ..., tx. Assume a polynomial y(t)
of degree 4kn — 2n such that y(t;) = f(t;) and d% <y(t)) = % (f(t)) . Define a polynomial
t t=t;

=t;

y(t) which takes the form:

k k
v(0) = 05+ 3 B0 5 (50), (6.9

t=t;

p;(t) and p;(t) are polynomials of maximum degree 4kn — 2n, to be determined. y(t) is the Hermite
interpolation polynomial, which not only seeks to match f(¢) at the roots, but also %( f (t)) at
the roots.

We will be using the same definition for 1) (t) as before:

J

() = (6.5)

EEEECADN

pi(tj) = dij, pi(tj) =0, (6.6)
% (pi(t))t:tj =0, % (7i(t) t=t; = 0ij- (6.7)

(n)

Recognize that [I;"/ (¢)]? is a polynomial of degree 4kn —4n having the property that [ll(n) ()] = 4,
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and so it follows that

pit) = r (O ()2, pilt) = st ()], (6.8)

where r;(t) and s;(t) are polynomials with degree 2n. From the above four conditions we deduce

the following properties for r;(t) and s;(t):

Ti(ti) = 1, Si<tl‘) = 0, (6.9)
. L0 _ L _
dr (Tl(t)>t:ti + 2d7' (li (t))t:ti =0 dr (Sl(t) t=t; L (6.10)
Then, it follows that
. 1 _ i (n) 2n _ 42n . _42n _ 42n
ri(t) =1-2- (zi (t))t:ti(t £2n), si(t) = 20 — ¢2n, (6.11)
Then,
d n n n n
pit) = [1-25-(57®),_, @ -] u (6.12)
and
pi(t) = (2 = &) 1 (02 (6.13)
Define the error function
E(t) = f(t) —y(?) (6.14)

and notice that E(t), th) (t), and %E(t) all vanish at each of the roots t1, ..., tx. Define the auxiliary

function

F(t) = f(t) —y(t) — K[hS ()] (6.15)

which has the same properties of vanishing at the roots t1, ..., tx, and let K be such that F'(t) also
vanishes at an additional point ¢ = £. Since F(t) vanishes at the k+1 points t, ..., tj, and £, = F(t)

must vanish at at least k intermediate points by Rolle’s Theorem. But %F (t) also vanishes at the
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k points tq, ..., tx, since

(re) = (r0) - (Go0) - (Gspor) o
J=<$K%&&ﬁpﬁ | R
=<$AKH@?@PXt;%@§i(m$uwﬁlt, (6.19
=<$un%ﬂmﬁu;(QMQw;w$@duj (6.19)
—0. (6.20)

Therefore, it vanishes at least 2k times on the positive real line. Thus, %F(t) vanishes at least
2k — 1 times, %F(t) at least 2k — 2 times, and so on. Hence, %F(t) vanishes at least once on
the interval [t1,?;]. Recall that y(t) is a polynomial of degree 4kn — 2n, and so di%y(t) =0. If at

the value ¢ the function j;—ko(t) vanishes, then

2k 2k
0= CEZT%(F(t)>t:5 = szk<f(t))t:§ — Kci(2k)! (6.21)

where ¢y, is the leading coeflicient for hg,i) (t). Rearrange for K:

K=" /=t (6.22)
Since F(t) = 0, it follows that
E(f) = f() — y(B) = K[hS; ) (6.23)

By suppressing the bars [15], it follows that

s O, (6.24)



where £ is somewhere between the smallest and largest of the roots tq, ..., tg.
As of now, this is the error in the Hermite interpolation polynomial. However, we need the
error in the Lagrange interpolation polynomial. We will show that they are one and the same. We

first write

1) = y(t) + E(1) (6.25)

and take the integral of both sides after multiplying by the weight function:

/ T W™ ()t = / T ™ (t)dt + / T B®w™ (1)t (6.26)

Evaluate the first integral on the right,

oo k o
/ Yt Bdt =3 £(t5) / p; (Hyw™ ()t
i=1

L -
" ; i (1) =) / B (Bt (6.27)
- Y4 i
=2+ 3 (1), (6:29)
j=1 j=1 J

where H; and H ; are the Hermite weights. We work out the first set of weights:

Hj = / " pi(e™ @t (6.29)
B /_Z g (0 0),_, @ = 6] 1 @Pe @) (6.30)
= / I @w™ @t 61
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We then work out the second set of weights:

i, - /_ B (™ (t)dt (6.32)
- / h (t% —t§n) 19 ()™ (¢)dt (6.33)
—0. (6.34)

We then obtain a quadrature rule based on Hermite polynomial interpolation, which bears a striking

resemblance to the quadrature rule from Lagrange polynomial interpolation:
/ Py @dt = 3" £(t)H; + / E(yw™ (t)dt. (6.35)
—00 j=1 —00

The quadrature rule derived from Hermite interpolation is the same as the quadrature rule derived
from Lagrange interpolation. We show this by showing that H; = w;. In (6.35), the Hermite

interpolation quadrature rule, let f(t) = lgn) (t):

k

/ T ™ ()t = 310 (4) H; + / T Bw™ (t)dt (6.36)
—00 =1 -0

e E(t)w™ (t)dt (6.37)

_m, (6.38)

= w;. (6.39)

2k

(The fact that ddT%lZ(") (t) = 0 and the definition of w; produce the last two lines.) And so “both”

quadrature rules are really the same rule. Therefore, the error of the Lagrange-derived rule is the

same as the error of the Hermite-derived rule.
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Define E as the evaluation of the integral containing E(t) in (6.26)),

= (10) e
E=— = oy (8)]2w'™ (t)dt 6.40
STl INCAC0 (6.40)
d2k
t
_ dr2k (f( )>t:§ (6 41)
c(2k)! '
thus proving the theorem. O
Therefore, the final statement of the generalized Hermite-Gauss quadrature rule is
1-2n d 2k
RPN B ("= #) (f(t))t_g
SO =53 () + F-4) + S (6.42)

We conclude with more concrete error bounds for a class of functions that includes polynomials,

the bandlimited distributions.

Definition 6.1. Define for any compactly supported function ¢ € C°(R), the Sobolev norm
||l n = max{¢®)(z): z € R,0 < k < N}. A function f is a distribution of order N if N is the
smallest integer so that for each compact set K there is Cx > 0 such that | [} fodx| < Ck|d||n
holds for each ¢ € C*°(R) with support in K.

A function f that is analytic in the entire complex plane and satisfies that for some v, > 0
the growth condition

(21 +iz2)| < (1 + |21 + izg]) Ve
holds for all z1,z2 € R is called an Q-bandlimited distribution.

Using integration by parts, we see that polynomials of degree NV are indeed bandlimited distri-
butions of degree N for any 2 > 0. However, such distributions of degree N can be more general.
For example, multiplying a polynomial of degree IV with a smooth function whose Fourier transform
has support in [—€, Q] retains the degree [I8, p. 159] and gives an Q-bandlimited distribtution.

This is a consequence of the next theorem.
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Theorem 6.2. [18, Theorem 7.23] Let f be an entire function that is an Q-bandlimited distribution,
then there is a sequence of signed measures 5, j € {0,1,..., N + 1} with support in [—$, Q] such

that
N+1

1) =3 [ pedusto).
=0

We obtain a growth bound for the derivatives of such distributions.

Theorem 6.3. Let f be an entire function that is an Q-bandlimited distribution of degree N, then

there is a constant Cy such that for n € N, the n-th derivative of f is bounded by
F"M (@) < O (n+ 2V

Proof. From the representation of f,

N+1

19 =3 [ iyetan(e).
jzo/dz K

Using the commutation relation d%z =(z+ 1)%Z repeatedly and estimating the integrand gives

N+1 ) N+1 '
F ) <Y /("n+ |27 [l (£) < Q™Y (n+ |27 gl
j=0 =0

where ||1]|7v is the total variation norm of the signed measure ;. Next, replacing the summation

index j by N + 1 and summing the total variation norms gives the claimed bound with Cy =

N+1
> im0 il O

This permits us to conclude an error bound for the quadrature of functions that are related to

bandlimited distributions.

Theorem 6.4. Let f be a function that is integrable with respect to the n-Gaussian weight and

such that f(t) + f(—t) = 2g(t*") where g is an entire function and an Q-bandlimited distribution
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of degree N, then for any k € N,

00 \2n k 2k 2n\N+1
[ s T ae- 53w () + 1) < S 2@;;“ . (6.43)

Proof. We take the error for the generalized Hermite-Gauss quadrature as stated in Equation (6.42)).
We then define g(7) = (f(71/?") 4 f(—71/?"))/2 which extends to an entire function by assumption.
If g is an Q-bandlimited distribution of degree N, then the growth bound from the preceding

theorem applies,

l9®0 ()] < G (2k + [2])V 1.

The error bound is maximized for z = ti". O

Theorem 6.5. The spectral radius p(T) of the tridiagonal matriz T grows at most polynomially

with k.

Proof. 1t is a well-known fact that the spectral radius of a matrix is bounded by any matrix norm
[16]. We will show the the Frobenius norm of the matrix grows polynomially, and therefore the

spectral radius must grow at most polynomially. The Frobenius norm of the matrix T is

IT|[r = ZZ T35 (6.44)
i=1 j=1
1
k—1 27 2
Bi1|?
= [Z - (6.45)
=1 =
1], ’
1 ﬁk 1 +Z 2% (6.46)
1 1
=3 (4k — 24kn + 24k*n + 32kn* — 64k*n” + 32k°n?)> (6.47)

which is a polynomial in k. Therefore, since p(T) < ||T||F, the spectral radius grows at most

polynomially in k. O
In the context of the error expression in (6.43)), since the largest eigenvalue A grows at most
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polynomially, the condition for the error to vanish as k — oo occurs when Q%* decreases more
rapidly than cik. We conclude a class of functions for which the error vanishes as the number of

sample points increases.

Corollary 6.1. Let f be a function that is integrable with respect to the n-Gaussian weight and
such that f(t) + f(—t) = 2g(t*™) where g is an entire function and an Q-bandlimited distribution

of degree N. If Q < 2/n, then the quadrature error goes to zero as k — oo.

Proof. We recall that the normalized polynomial hg,? (t) = Akﬂéz) (t) has a leading coefficient of

k—1 1
ep = 45 A = 25 [ (ki TTi2jn + 1) (n3T(=))] 2. (6.48)
(= = (o T 1) (o)
Consider
k(2k)!
2 (2k)! = 2 - (6.49)
’ (Kn* T 25 = D+ 1)) (nan ()
and
& 2k + 1)) = 2 (2k + 2)! (6.50)

k411, 1
(G + 1) T 20 = D+ 1)) (n25 T )
as subsequent terms in a sequence. If we consider the ratio between the two and take its limit as

k — oo,
2k + 1)) 22k +1)(2k +2) 4

lim LSS Ty, == 6.51
Koo c2(2K) Fooo (k+ )n(2kn+1)  n? (6.51)

we find that for n = 1, the sequence diverges, and for at least n > 3, the sequence converges
exponentially to zero, since for large enough k, the following term is the product of the previous term
and a factor approaching %. However, by assumption 92%2 < 1, so we obtain that Q2*/ (c2(2k)!) —

0. O

7 Examples

In this section we provide two examples of integrals that can be approximated using generalized

Hermite-Gauss quadrature. The first of these examples demonstrates an application of Theorem
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[b.1} where the approximation of the integral given by the quadrature rule turns out to be exact for
a sufficiently large and finite k. The second example demonstrates that, for sufficiently small €2, the
error of the quadrature approximation goes to zero as k increases for cases where the quadrature

rule is inexact (Corollary .

7.1 Example 1: monomials

Consider the integral

oo $2n
I—/ t2Me” T dt (7.1)

—0o0
where ¢ = In and | € {0,1,...,2k — 1}, as stated in Theorem m This integral is compatible with
the generalized Hermite-Gauss quadrature rule and, through a change of variables, the improper

integral formulation of the gamma function

I'(z) = /000 " e dx. (7.2)

If we define x = t%n and z = % (q + %), we get two methods for calculating I:

k
I=n*"'T(z) = ijtiq. (7.3)
j=1

Solving for I'(z) and substituting ¢ = nz — 1

k
T(z) =n'"*> wjt?* ! (7.4)
j=1
where z = [ + %

Figure [I] is a plot that contains these calculations for various n and compares them to the

gamma function.
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Figure 1: The plot of I'(z) (blue line) compared to the values computed using the quadrature rule
for 1 € {0,1,2,3,4,5} and n € {2,3,4}. n = 2 is plotted using circular markers, n = 3 using square
markers, and n = 4 using diamond markers. For very specific values of z the quadrature is exact
and so the calculation for I'(z) at those points is also exact.

7.2 Example 2: error bound of successive approximations

Consider the integral

oo ; Qt2n 2n
I= / (3t4m 4 27 4 4)Smg(2t2n>e_tndt (7.5)

—o0
where ) = % Since the integrand meets the condition that Q < %, by Corollary the error
should vanish as £k — oco. To explicitly calculate the example, take n = 3. Then we are able to
generate Figs [2| and [3| for the quadrature approximation of the integral [ and the error of each

approximation Fj, respectively. The expression for Ej is given by (6.43]).

8 Quadrature in the setting of compressive sensing

So far, we have developed a theory for integrating lacunary polynomials using Gaussian sampling
methods. We have shown that for a given polynomial, the number of sample points to integrate
that polynomial exactly can be made far fewer than half its order. The underlying scheme of

Gauss quadrature is polynomial interpolation - the creation of Lagrange polynomials that match
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Figure 2: Successive approximations of the integral I in Example 2 and their corresponding errors.
Since Q = X < 2 the error decreases exponentially. For n = 3 and k = 7, the quadrature
approximation yields 14.82.

n n’

the target function at specific arguments, particularly at the roots of an orthogonal polynomial.
From the error expression we have shown that these sample points are necessarily ideal points for
the integration of the target function. This begs the question: what if samples at the roots of the
orthogonal polynomial are unavailable? That is, what if we are left with knowledge of the function’s
values at points that are not the roots of some Hermite polynomial? Is one doomed to sustain some
amount of error because Gauss quadrature is no longer an option?

Not quite. At least, not if we assume that our function is sparse in the orthogonal polynomial
basis, meaning that it is comprised of a linear combination of only a few Hermite polynomials,
and most Hermite polynomials have no contribution. In this section we will demonstrate that in
the setting of compressive sensing we can integrate an unknown polynomial exactly with a number
of samples less than half its order even if the samples are not at the Gauss quadrature nodes.
First, we will establish some major definitions and results that are of interest to us in the field
of compressive sensing. Next, we will show that our ability to recover a sparse function in the
Hermite polynomial space will largely depend on error expressions in numerical quadrature. This

occurs when we compute the coherence, a property of the sensing matrix which ensures sparse
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Figure 3: Asymptotically, the error Ej in Example 2 vanishes as k — oo. We have plotted log,, (E}))
vs. k.

recovery with /j-minimization techniques. We tackle in detail the uniform sample sparse recovery
problem and provide an example for which recovery of the polynomial (and its integral) is possible
given sparsity in the Hermite polynomial basis and a number of measurements of the unknown
polynomial that is less than the order of the polynomial. Moreover, these measurements do not lie
on the Gauss quadrature nodes. Finally, we extend the lessons gleaned from the uniform sample
sparse recovery problem to Gauss quadrature and generalized Gauss quadrature, and we compare

coherence results.

8.1 Definitions and theorems

Compressive sensing aims to solve the following underdetermined linear system

m = ®a (8.1)

where m € RM a ¢ RY and ® ¢ RM*N gsuch that M < N. [3] and [8] showed that given
knowledge that the solution a is sparse is some basis, it could be reconstructed with fewer samples

than required by the Nyquist-Shannon sampling theorem. @ is called the sensing matriz, and m
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is the set of measurements that we have on the solution. Before developing our own results in
applying compressive sensing to Gauss quadrature, we wish to provide background on a few key

concepts. The following results are summarized from [9, [10].

Definition 8.1. A signal a is called k-sparse if it has at most k nonzero values when represented

i a basis W. If a signal a is k-sparse we say that a € Xy,

The idea behind solving the underdetermined system is that we do not want one set of mea-
surements to correspond to two more more possible solutions. That is, for each m there ought to
exist a unique sparse solution a € ¥ to the underdetermined linear system. Let us mathematize

this idea by saying for a,a’ € ¥}, where a # a’, we want

da + Pa’. (8.2)

Otherwise, it would be very difficult to differentiate between the two solutions based on the mea-

surements alone. Observe that if we are indeed in that predicament, then

d(a—a')=0 (8.3)

with a —a’ € Y9 in general. Therefore we can formalize a condition on the sensing matrix ¥ that
will be beneficial to us: that its null space N'(®) contains no vectors in 3g;. We follow up on this

idea with the definition of the spark of a matrix.

Definition 8.2. The spark of a matriz ®, denoted spark(®), is the smallest number of columns

of ® that are linearly dependent.

Now, we present a key result which links the spark of a matrix and the uniqueness of a solution

a to a set of measurements m.

Theorem 8.1. For any vector m € RM | there exists at most one signal a € ¥y, (at most one

k-sparse signal) such that m = ®a if and only if spark(®) > 2k.
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Proof. We prove both directions of the theorem. First, assume that for any m € RM | there exists at
most one signal a € ¥, such that m = ®a. For the sake of contradiction, suppose spark(®) < 2k.
Then there exists some set of at most 2k columns that are linearly dependent, which implies that
there exists an h € N/(®) where h € Yg;. Since h € Yoj we can write h = a—a’, where a,a’ € %.
Also, since h € N(®) we have that ®(a — a’) = 0 and hence ®a = ®a’. This contradicts our
assumption that there exists a unique signal a € ¥ such that m = ®a. Therefore, it must be that
spark(®) > 2k.

Now, suppose that spark(®) > 2k. Assume that for some m, there exist vectors a,a’ € 3y
such that m = ®a = ®a’. Therefore ®(a —a’) = 0. Let h = a — a’, and write this as ®h = 0.
Since spark(®) > 2k, all sets of columns up to 2k in size are linearly independent, and therefore it

must be that h = 0. This implies that a = a’. O

Remark 8.1 (Measurements and sparsity). Clearly, since ® € RM*N | spark(®) is upper-bounded
such that its mazimum value is M + 1. Therefore, for our sensing matriz to be useful, the theorem

requires that M + 1 > 2k, or M > 2k.

The spark gives a characterization for when sparse recovery is possible in the case of exactly
sparse vectors, but when dealing with approximately sparse vectors, we must introduce somewhat
more restrictive conditions on the null space of ®. Moreover, for practical purposes, an even
stronger condition is imposed on the sensing matrix which makes sparse recovery more robust
to noise. These two conditions are called the null space property (NSP) and restricted isometry
property (RIP), respectively. Beyond this general description of these two properties, this thesis
will not cover the NSP or the RIP. Further reading can be done in [4} [7, [10].

In practice, the spark, NSP, and RIP are difficult to compute, and therefore we turn to the

coherence.

Definition 8.3. The coherence of a matriz ®, denoted u(®), is the largest absolute inner product
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between any two distinct normalized columns @;, p; of ®:

(i, ©5)]
u(®) = max_ 1EeLill
1<i,5<N || il 2] 5] |2

We present a useful and well-established lemma, with the proof given by [I1], to develop our

understanding of the relationship between the spark and coherence of ®.

Lemma 8.1. For any matriz P,

Proof. First, modify the matrix ® by normalizing its columns to be of unit ls-norm, and obtain
&. This operation preserves both the spark and the coherence. The entries of the resulting Gram

matrix,

G=2"T9, (8.4)
satisfy the following properties:
e G;;=1for1<i<N,and
o |Gij| <pu(®), for1<i,j<N, wherei# j.

Consider an arbitrary leading minor from G of size p X p, built by choosing a subgroup of p columns
from ® and computing their sub-Gram matrix. From the Gershgorin disk theorem, if this minor
is diagonally-dominant, i.e. if

> 1G4l < |Gl (8.5)
i

for every i, then this submatrix of G is positive definite, and so those p columns from & are linearly

independent. The expression

1> (p—1)u(®) (8.6)
implies positive-definiteness of every p x p minor. Thus, by rearrangement, p = 1 + ﬁ is the
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smallest number of columns that might lead to linear dependence, and thus

proving the lemma. O

Remark 8.2 (Gershgorin disk theorem). The ezpression 1 > (p—1)u(®) was obtained by applying
the Gershgorin disk theorem to an arbitrary p X p positive-definite sub-Gram matriz. The left-
hand side was obtained by recognizing that & is a normalization of the sensing matriz, so that
(pi, i) = 1. The right-hand side recognizes that there are (p— 1) off-diagonal elements in each row

of the sub-Gram matriz, and that each one has a mazimum value of u(P).

We develop the final piece of background that will be useful in our approach to applying com-

pressive sensing to quadrature.

Theorem 8.2. If
1 1
k<3 (142 )
2 1(®)

then for each measurement vector m € RM there exists at most one signal a € Xy, such that

m = Pa.

Proof. From Theorem we are guaranteed a unique solution a € Y, to our measurement vector
m € RM if spark(®) > 2k. Also, from Lemmawe place a lower bound on the spark: spark(®) >
1+ﬁ. Therefore, in relating the coherence to the sparsity of a for which we can guarantee recovery

we get the following inequality:

1
spark(®) > 1+ (®) > 2k. (8.8)

Which leads to the following criterion that we wish for our sensing matrix to fulfill so we can

guarantee sparse recovery:

k<;<1+ ! ) (8.9)



8.2 Sparse recovery with uniform samples

Now that we have developed the necessary background, we present a general problem which can
be solved with techniques from compressive sensing. Suppose that we are presented a function f

that is a linear combination of Hermite functions:

N-1
f($) = Z anfn(-T) (8.10)
n=0

22

where the Hermite function H fj(x) = Hj(x)e” z. (We use the regular Hermite polynomials to
simplify our problem, but in general the problem can be posed in terms of any set of orthogonal
polynomials, including the generalized Hermite polynomials.) However, we are not given the N
coefficients in the Hermite polynomial basis. Rather, we are given M < N uniform samples of f

starting from the origin, m € RM such that its elements
m; = f((i — 1)Ax) (8.11)

with i = 1,2,..., M and Az > 0 fixed. Our goal is to recover the vector of coefficients a € RY with
its elements as the coefficients of f:

a; = bj_, (8.12)
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with 7 = 1,2,..., N. The sensing matrix is

[ Hf(0) HA©O) . .. Hfya(0) ]
H fo(Ax) H fi(Az) S Hfn-1(Ax)
e = . : o : : (8.13)
| Hfo((M —1)Az) HA(M-1)Az) . . . Hfya((M—-1)Az)]

Since the Hermite functions are orthogonal on the interval [0,00), we can expect that p(®) is

minimized as M grows larger and Az gets smaller. We formalize this notion with a theorem.

Theorem 8.3. The coherence of ®, u(®), is upper-bounded by the error of a left Riemann sum,

i.e.
|3M(A2)* L [Hfi(@)H f;(2)],_, + 7|
1<i,j<N H<PiH2HSOjH2

(8.14)

where ¢ = argmax, s % [H fi(x)H fj(x)], and T is the area unaccounted for by the left Riemann

sum scheme due to M < o0o.

Proof. Consider the error of interpolating an arbitrary function f over an interval [a, b] using left-
sided rectangles of equal width. [15, Section 2.6] states that if f is approximated by a polynomial
p of degree n which coincides with f at the n + 1 distinct points xg, x1, ..., T, then the error F is

given by
f(n+1) n

B(x) = f(z) ~p(2) = Ty, Hx—xz (8.15)

where € is a value located in the interval [a, b]. Interpolation of f based on its value on the left end

of the interval with a zero-order polynomial (a constant) results in
E(z) = f(x) = f(a) = f'(§)(z - a). (8.16)
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Integrating both sides over the interval yields the quadrature error for a single rectangle:

E, = f(e) (b—a)? (8.17)

When we compute the inner product between any two columns of ®, we effectively compute a left

Riemann sum of the product of two Hermite functions. This inner product is

M-1
il = | D Hfima(nAa)H fj—1(nAx) (8.18)
n=0
00 M-14d Hf;(x)H f;(x)| _
=| | Hfi@)Hfi(z)de - = = )2 Fthese, ((n+ 1Az - nAz)® — 7| (8.19)
0 n=0
M-14d Hf;(x)H f;(x)| _
_ s i >2 Ji(@ome, (Az)% + 1 (8.20)
n=0
where 7 = [71, Hfi(x)H fj(x)dz. Let ¢ = argmax 4 [Hfi(x)H f;(z)]. Then
M d
i < |y o (RS, (3 47| (5.21)
which, when substituted into the expression for u(®), proves the theorem. ]

Corollary 8.1. Let

: [$M(A2)* 4 [H fi(@)H fy(@)],, + 7|

1<i,j <N 1@illzll ]2

1 1
E<-(1+—
2( +u’>’

then for each measurement vector m € RM there exists at most one signal a € ¥y, such that

If

m = Pa.

Proof. This follows from p < p/, and hence % (1 + %) < % (1 + i) Ifk < % (1 + i), then our

recovery condition is guaranteed by Theorem O
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Figure 4: Three iterations (in order: orange, green, red) of orthogonal matching pursuit to recover
a 3-sparse function f with M = 7 uniform samples (blue points) and N = 17. In this example, f
is a polynomial of degree 12.

Corollary demonstrates the weakness of uniform sampling. The quadrature error of left
Riemann sums is controlled merely by a single derivative. For higher order polynomials y’ is poorly
bounded. This is especially true for the generalized Hermite polynomials, whose powers increase
by 2n. Nevertheless, we present the sensing matrix for a uniformly sampled function which is a

linear combination of generalized Hermite polynomials:

Hf™(0) HM(0) S HEM (0)
Hf"(Ax) HfM(Ax) o HfW (Ax)
Hf™ (2Az) HfM @A)y . . . HEY (2Ax)
) = . . o : . (8:22)
HfV(M —1)Az) Hf(M —1)Az) . . . HN (M~ 1)Az)]

$2n

where Hfz(ln)(t) = Hé?) (t)e™ zn.
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Figure[4 demonstrates an example of using an orthogonal matching pursuit algorithm to recover
a linear combination of Hermite functions from sparse measurements. The algorithm was taken

from [I1].

8.3 Sparse recovery with Gauss quadrature nodes

Looking at the possibility of sparse recovery of f with uniform samples, where f is a linear combi-
nation of Hermite functions, demonstrated that there is a link between quadrature error and when
sparse recovery is guaranteed. This link manifests as the upper bound of the coherence of the
sensing matrix u(®) < y/, and in the case of uniform sampling, the coherence is bounded by the
error of taking left Riemann sums.

The coherence is a metric which evaluates how effectively we pick our samples, and this idea
motivates us to experiment with sparse recovery by sampling at the roots of the normalized Hermite

polynomial hp(z):

[ ho(x[)) hl({L'o) ... hN_l(xo) ]
ho(xl) hl(xl) e hN_l(xl)
ho(xg) hl(.%'g) e hN_l(xQ)
® = : : S : (8.23)
ho(znv—1) Pa(@av—1) - - o hn—i(@v-1))

where {z; Jj\i o} are the M roots of the the M normalized Hermite polynomial, hp(z). Note
that we have abandoned our use of the Hermite functions in the sensing matrix, and that now we
are preferring to use the normalized Hermite polynomials, which are orthonormal on the measure
e dx. If f(z) = Zg;ol bnhn(z) is our function of interest, then m € RM is our measurement
vector with m; = f(z;_1) and a € RY our unknown coefficient vector with a; = b;_1. Our matrix

equation is then, as usual, m = ®a. However, we ought to take advantage of the discrete inner
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product naturally provided to us by Gauss quadrature, and thus, we write an M x M matrix

containing the square roots of the quadrature weights on the diagonal and zeros for the off-diagonal

elements: )
_wo 0 0 0 1°
0 w 0 0
0 0 wo 0
wW=1|. . . . (8.24)
00 0 . . . wy-)

Then, we take both sides of the matrix equation and multiply by W on the left to obtain

Wm = Wea (8.25)

where W® is our new sensing matrix and Wm are our weighted measurements. Like in the

previous section, we bound the coherence of this sensing matrix with the error of the quadrature.

Theorem 8.4. The coherence of W®, un(W®), is upper-bounded by the error of Gauss quadrature

with the nodes and weights of hy(x), i.e.

1 (dN2M
W(W®) < max 2, (2M)! (d) [hi(@)hj(@)],—¢

ERERES [lpillalll 2

(8.26)

)2M

where § = argmax g (4 [hi(x)h;(x)].

Proof. Observe that the inner product |(y;,¢;)| is simply an application of the Hermite-Gauss
quadrature rule of order M to distinct Hermite polynomials. The theorem follows easily from a
similar argument made for Theorem [8.3 where instead, the error in the numerator is substituted

with that of Gauss quadrature. O

47



1.2

1.0 4 e e 00 0gg00 00

0.8 °

0.6 e o o

0.4 1

0.2

0.0 1 e o o o

-0.2

Figure 5: Comparison of coherence values between sensing matrices of uniform (blue) and Gaussian
(red) sampling schemes for varying N and fixed M. These values were computed for M = 5
measurements and upwards of N = 17 polynomials. Note that in the compressive sensing regime
(underdetermined system where N > M) the Gaussian sample scheme performs poorer (higher
coherence) than the uniform sample scheme.

With this formulation it is easy to incorrectly assume that the presence of higher-order deriva-
tives more strongly controls the coherence of the sensing matrix. Actually computing the coherence
of the weighted sensing matrix reveals that in fact these Gaussian sample nodes are a terrible choice
for compressive sensing - much worse than sampling uniformly. Figure [5| plots the values of the
coherence of both the uniform and Gaussian samples for increasing NV, the maximum order orthog-
onal polynomial we include in our basis, and fixed M, . We can see that in the underdetermined
case, when N > M, Gaussian sampling proves to be absolutely useless for sparse recovery.

The reason Gaussian sampling performs so poorly with compressive sensing is because the
three-term recursion relation guarantees that all our orthogonal columns with order n > M are
linear combinations of the polynomials with order less than M, with at least the (M + 1)t and

(M + 2)”d columns appearing simply as rescalings of existing columns. Take, for example, a general

three-term recursion relation centered about H;:

Hyri1(2) = (emz + Bu)Hu (@) + vy Har-1(2). (8.27)
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Let {JUj}j]Vi1 be the roots of Hys. Evaluating the three-term relation at the roots yields

HM+1($j) = (aMx + ,BM)HM<1'3) +’YMHM—1($]')

= ymHyr—1(x;). (8.28)

A similar argument holds for Hys4+o and Hjps—2, where we can use the Rodrigues formula imple-
menting the Laplacian operator to write one as a rescaling of the other.

Now in the compressive sensing setting it is easy to see that sampling at the Gaussian nodes
causes the column corresponding to Hjs41 to look exactly like Hps—1. Our sensing matrix cannot
distinguish between these two elements in our basis. This causes our sensing matrix to have
maximum coherence, since there is now a linear dependency that involves a rescaling of an already
exisiting column in our matrix. Therefore, sampling at the roots of an orthogonal polynomial results
in poor results for sparse recovery guarantees. In the context of Gaussian quadrature, we incorrectly
assume that Gaussian quadrature is “more accurate” than standard Riemann sums. This is true in
the case where the function we are trying to integrate is of order 2M + 1 (exact approximation), or
in the case where the function’s coefficients, when expressed as a linear combination of orthogonal
polynomials, decay sufficiently rapidly. In the upper bound for the sensing matrix’s coherence,
neither of these things are true, and therefore uniform samples work better than Gauss samples.

Our exercise in placing upper bounds for the coherence in the previous two sensing matrices
teaches us that compressive sensing techniques repurpose the error imposed by polynomial interpo-
lation in our reconstruction of the target function. In the case of classical quadrature, we interpolate
the function at a number of samples using polynomials and integrate over the interpolation to get
an estimate of the value of the definite integral. This is true of the left Riemann sum, Gaussian,
and generalized Gaussian quadratures. However, we showed that in the Gaussian case, the samples
poorly approximate the integral of the square of orthogonal polynomials of order higher than the
number of measurements. This quadrature error manifests in the coherence of the sensing matrix,

which is maximized for N > M.
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In compressive sensing, these interpolation errors translate not to errors in our computation of
the definite integral, but restrictions in the sparsity of our recoverable solutions. Moreover, sparse
recovery does not discriminate based on the order of the terms; it only cares if they are nonzero.
Hence, with compressive sensing it becomes possible to reconstruct (and subsequently integrate)
the unknown function, even if that function is a polynomial of order that far exceeds the number

of samples.

9 Conclusions

We have presented Rodrigues formulas for the even and odd generalized Hermite polynomials.
We demonstrated that these polynomials have the property of being orthogonal, complete, and
normalizable, and we subsequently developed separate three-term recursion relations for the even
and odd polynomials. We recognized that any odd component of the function f integrated over
the infinite real line with respect to the generalized Gaussian would vanish, and we used that as
justification for needing to include only the even polynomials in the matrix equation and Christoffel-
Darboux identity. From the tridiagonal matrix in the matrix equation we used the QR algorithm to
find the eigenvalues and subsequently the positive real roots of the generalized Hermite polynomial
hg,?, and from the Christoffel-Darboux identity we derived an expression for the weights.

We then determined an expression for the quadrature rule error. In the special case where the

)

function f in the integrand consists only of terms of ¢ shared by hglz , the generalized quadrature
rule can yield an exact result. Moreover, for {2-bandlimited distributions where Q < 2/n, the
quadrature approximation error goes to zero as k — co. We concluded our discussion by providing
two applications of the generalized quadrature rule; the first demonstrated the exactness of the
quadrature rule in the context of calculating exact values for the gamma function, while the second
numerically verified the exponentially decreasing error bound of the integral approximation. Finally,

we demonstrated sparse recovery for linear combinations of Hermite functions and showed that in

computing the coherence of the sensing matrix, quadrature error limits sparse recovery guarantees.
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