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Abstract

The clinical goal of radiation therapy (RT) is to maximize the tumor damage and kill all

the cancerous cells while minimizing toxic effects on surrounding healthy tissues during

the course of treatment. Adaptive radiation therapy (ART) has been widely used to adjust

the radiation dose in response to potential changes in tumor volume during the treatment to

reduce the radiation toxicity in healthy organs. One of the key challenges in ART is to de-

termine the best time to adapt the plan in response to uncertain tumor biological responses

to radiation during the treatment. Tumor biological response change dynamically over time

and can be different from one patient to another. Therefore, considering tumor biological

responses to radiation in ART treatment planning is challenging due to the high levels of

uncertainty in biological factors. Determining the possibility of treatment side-effects for

each patient before starting the treatment is another challenge in radiation therapy treatment

planning. This dissertation focuses on a combination of optimization, deep learning, and

statistical methods to address the aforementioned challenges in this field and improve the

survival of cancer patients treated with radiation therapy. We will tackle this problem from

two different perspectives: (1) developing effective personalized radiation therapy treat-

ment plans and (2) predicting possible critical side-effects of the treatment for each patient

before the treatment.

First, we propose an automated radiation therapy treatment planning framework using

reinforcement learning (RL) which incorporates uncertainty in tumor biological responses

during treatment to find the optimal policy for ART. We also provide a novel tumor response

model to estimate tumor volume changes and radiation responses during the treatment. This

approach helps the decision-maker to control both biological and physical aspects of the

treatment and achieve a robust solution under biological uncertainties without dealing with

complex optimization models. The presented method provides much-needed flexibility in

which a plan can be customized based on the patient case, cancer type, and the decision-

maker’s preference on treatment outcomes.
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Second, we address one of the critical radiation therapy treatment side-effects known

as radiation-induced lymphopenia (RIL). RIL occurs due to a severe reduction in the ab-

solute lymphocyte count (ALC) after radiation exposure and can seriously affect patient

survival. Therefore, we aim to assess the role of radiation therapy in ALC depletion to de-

termine high-risk patients. To accomplish this goal, two mathematical models are proposed

to approximate lymphocyte depletion based on radiation dose distributions and the ALC

baseline for radiation therapy patients. Finally, we compare the potential post-treatment

lymphocyte survival outcomes in cancer patients for photon and proton-based RT modali-

ties.

Third, we develop a hybrid deep learning model in a stacked structure to predict the

ALC depletion trend throughout radiation therapy treatment for cancer patients based on

the pretreatment clinical information. Then, we extend the model to account for making

predictions after the initial phase of treatment (e.g., at the end of week 1). A discriminative

kernel is also developed to extract and evaluate the importance of temporal features. The

presented deep learning structure can efficiently use information from different groups of

clinical features to predict ALC depletion without requiring a large amount of data to pro-

cess too many features while reducing bias and generalization error. This approach helps

the physicians to identify patients at risk of severe RIL who might benefit from modified

treatment approaches which ultimately improve survival of the patients.

In the last part of this dissertation, we provide an approach to estimate prediction inter-

vals for ALC values. The proposed approach enables practical implications of predictive

models in clinical decision-making by estimating the individualized predictive uncertain-

ties. Finally, a comprehensive hybrid decision-making framework is proposed to assess

RIL risk for a given patient based on a given treatment plan and its predicted post-treatment

lymphocyte survival outcome. This decision-making framework can be used as a guide for

physicians to take advantage of advanced deep learning models and make appropriate de-

cisions in selecting the safest treatment plan for an individual patient in clinics.
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Chapter 1

Introduction

1.1 Background & Motivation

Cancer is one of the primary health problems in the world, and it is the second leading

cause of death in the United States, accounting for 21% of all deaths. In 2020, about 1.8

million new cases of cancer are projected to occur in the United States, according to the

American Cancer Society [1]. There are several cancer treatment options available that can

be selected based on the type of cancer and the patient’s health condition. Among these

methods, radiation therapy (RT) is a common treatment modality for many cancer patients.

In most cases, patients receive radiotherapy in addition to surgery or chemotherapy, but in

some cases, it can be used alone as a primary treatment.

1.1.1 Radiation Therapy Treatment

Radiation therapy delivers high-energy ionizing radiation to the tumor to kill cancerous

cells by damaging the tumor cells’ DNA and causing a double-strand break. The DNA

damage to the tumor cells stops them from growing and dividing. As a result, the tumor

cells will die and will cease to regenerate. It takes days or weeks of treatment to sufficiently

damage the tumor cells’ DNA enough to kill the cells. After the treatment, cancer cells

continuously proceed to die for weeks or months in order to be completely eradicated.
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The two main types of radiation therapy based on the source of radiation are internal

radiation therapy and external beam radiation therapy. This study focuses on external beam

radiation therapy, which is the most widely used type of radiation therapy treatment. In

external beam radiotherapy, the ionizing radiation (e.g., photon, proton, etc.) is delivered

from a machine outside of the patient’s body targeted towards the cancerous area and goes

through a particular part of the patient’s body to eradicate tumor cells. The external beam

radiation therapy machine can move around and deliver the radiation from many different

angles through different beams. There are different types of beam modalities used for exter-

nal beam radiation treatment, such as photon beams and proton beams. In a photon therapy

treatment (e.g., Intensity modulated radiation therapy (IMRT)), photon beams are used to

treat tumor cells, whereas proton therapy treatment (e.g., Intensity modulated proton ther-

apy (IMPT)) uses beams of proton particles for the operation. Each beam of radiation is

partitioned into a large set of “beamlets” with individually adjustable intensities to deliver

different doses of radiation across the tumor. Our work in this study spans both of these

treatment modalities.

During radiation therapy treatment, the radiation can also damage healthy cells in the

surrounding organs. Although the normal cells are less sensitive to radiation and can heal

from radiation damage, radiation can cause serious health problems in some critical or-

gans. A schematic illustration of clinical targets including the gross tumor volume (GTV),

clinical target volume (CTV), planning target volume (PTV), as well as the organs at risk

(OAR) are denoted in Figure 1.1. High doses of radiation are required to eradicate the

tumor for the majority of cancer patients, which is usually higher than the OAR tolerance.

Thus, the surrounding OARs require maximal protection. Therefore, the main clinical goal

of radiation therapy is to maximize the tumor damage and kill all cancerous cells while

minimizing the toxic effects on surrounding healthy tissues during treatment. Thus, such

treatment must be carefully planned to achieve this goal and improve the patient’s survival.
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Figure 1.1: Schematic illustration of clinical targets (the gross tumor volume (GTV), clinical target volume
(CTV), planning target volume (PTV)) and the organ at risk (OAR) volumes

1.1.2 Radiation Therapy Treatment Planning Procedure

Generally, the starting point to create a treatment plan is to acquire digital images of

the patient’s internal anatomy using medical imaging techniques, such as Computed To-

mography (CT), magnetic resonance imaging (MRI), and positron emission tomography

(PET). The images will be used to identify the structures and determine the geometry in-

formation, such as organs and tumor locations, organ sizes, and the isocenter. Then, target

volumes and normal structures are manually contoured on the axial slices of the planning

CT scan by a physician. Based on the extracted information, a treatment protocol will be

defined for the patient by a radiation oncologist, which includes prescription doses to the

target volumes and constraints to OARs, known as the maximum OAR dose tolerance. A

prescription dose is the dose level necessary to eradicate target cells, while a tolerance dose

is the level above at which complications for healthy tissues may occur. The radiation dose

is measured in Gray (Gy) and mostly varies from 60 to 80 Gy.

Next, the planners usually use mathematical modeling and optimization techniques to

deliver enough doses to the tumor while sparing the healthy tissue around the tumor as
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much as possible. Finally, after the physician’s approval, the generated plan and the ex-

tracted details will be utilized to set the treatment machine and begin the treatment. In

general, the treatment region will be divided into three parts: (1) target(s) or planning tar-

get volume, (2) the healthy organs located close to the targets, which are called critical

structures or organs at risk (OARs), and (3) normal healthy tissues. Figure 1.2 showcases

the summary of the radiation therapy treatment process.

Figure 1.2: The steps of the radiation therapy planning workflow

1.1.3 Radiation Therapy Treatment Fractionation

The prescribed RT dose is usually divided into several sessions called fractions to

achieve tumor control while enabling OAR cells to recover. This procedure in radiation

therapy treatment planning is known as “fractionation”. Fractionation not only provides

enough time for OARs to recover and reduce the damage to healthy cells, but it also allows

us to deliver the radiation dose during the radiation-sensitive phase of the tumor cell cycle

and avoid the radio-resistant phase of the cycle. However, there are still some challenges

and unanswered questions at this point, What is the best fractionation schedule for each

patient? When is the optimal time to change the dose per fraction? How can we improve

the quality of the treatment plan under uncertainties?
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1.2 Problem Description

The primary goal of this dissertation research is to address some of the unanswered

challenges in radiation therapy treatment planning to enhance the quality of the treatment

and ultimately improve patients’ survival. The following introduce the challenges we at-

tempt to resolve:

1.2.1 Radiobiological Effects of Radiation Therapy and Tumor Cell

Dynamics

Recent studies showed that both tumor and OAR cells are changing dynamically, and

their biological responses are different over time [2, 3]. Other than the dose of radiation

absorbed, there are some biological factors that affect the tumor’s biological response to

a given radiation dose. The most important biological factors in determining the tumor

biological response are known as the five R’s of radiation therapy, which include repair,

repopulation, radiosensitivity, redistribution, and re-oxygenation [2, 4]. Tumor and healthy

tissue cells can repair the sublethal damage of radiation. The radiation dose and the avail-

able time to repair could significantly affect the repair capacity of the cells. Therefore, a

repair can be considered an important factor in fractionated radiation therapy to reduce the

OAR toxicity, because healthy tissue cells are less sensitive to radiation, they are able to

repair some of the radiation damage between fractions. Both tumor and healthy cells can

proliferate during the course of treatment. Tumor cells can proliferate at different rates

during the treatment due to the different amounts of damage and cell death that occur dur-

ing the radiation. Tumors with higher rates of proliferation may need a larger amounts of

radiation dose to be completely eradicated. Radiosensitivity indicates the relative suscepti-

bility of the cells to radiation. Some tissues are highly radiosensitive (i.e., early responding

tissues), and some tissues have lower radiosensitivity (i.e., late responding).

Furthermore, there are two more biological factors that address the biological response
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of a tumor to radiation therapy and affect the total dose required for treatment, including re-

distribution and reoxygenation. Redistribution refers to the fact that the radiosensitivity of

the cells can vary while in the different phases of the cell cycle (see Figure 1.3). Basically,

the radiosensitivity of the cells is lowest during the synthesis phase (S), and it is highest

when in the mitotic phase (M). During several radiation therapy treatment fractions, the

tumor cells become radio-resistant after DNA damage caused by radiation and will enter

into the resting phase to repair the sublethal damages. Variable radiosensitivity of the cells

during the RT treatment can affect the treatment efficiency and outcome. Moreover, re-

oxygenation of hypoxic cells happens during fractionated treatment as a result of tumor

shrinkage. Thus, the cells will be more radio-resistant and a larger dose of radiation will be

needed to eradicate them.

Figure 1.3: Schema of tumor cell cycle phases

Hence, biological factors vary based on cell cycle phase and gene level activities during
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the radiation therapy treatment, which can result in different biological responses. Addi-

tionally, the biological response of a tumor is different from patient to patient [5]. There-

fore, a general monotone treatment plan might not be efficient for all patients. However,

conventional plans mostly ignore the dynamic nature of biological processes. In this re-

gard, developing a personalized treatment plan that considers variable tumor biological

response can significantly improve the quality of treatment. Aside from biological factors

and patient characteristics, variable dose fractionation can also affect the tumor’s biological

response during radiation therapy treatment. Better treatment outcomes can be achieved by

modifying the amount of dose per fraction in fractionated radiation therapy based on the

tumor’s biological response. Thus, understanding the cell dynamics and variable biologi-

cal response of a tumor to the radiation can have a significant role in finding the optimal

fractionation treatment plan.

1.2.2 Adaptive Radiation Therapy Considering Biological Response

of a Tumor

The dynamic biological response of the tumor cells signifies the importance of using

fractionation and adapting the treatment plan to tumor volume changes during the radiation

therapy treatment. Adaptive radiation therapy (ART) is an iterative process that adjusts

radiation dosage based on the information acquired between fractions. This type of treat-

ment modification allows for customized fractionated dose delivery to mitigate treatment

variations and re-optimize the treatment plan early during therapy. Figure 1.4 represents

the workflow for ART treatment planning.

The ideal approach for considering dynamic tumor changes in determining the next

treatment session dosage is to image patients during each visit and use updated tumor con-

tours from the patient’s image to adapt the treatment plan and find the fraction dose. This

approach is not clinically practical because imaging the patient during each visit amidst
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the treatment period can be costly, time-consuming, and prone to human error. In practice,

trade-offs must be made considering costs, timing, and the recommended number of adap-

tive plans. Therefore, finding the optimal timing and policy for adaptation is necessary to

improve the clinical feasibility of ART.

Figure 1.4: Adaptive radiation therapy workflow

Considering biological effects in ART treatment planning is challenging due to the

inherent uncertainty of biological factors, the quality of treatment can be compromised.

Also, the complexities of tumor biological responses and uncertainty inherent in biological

factors make it difficult to determine how a treatment plan should be adapted. Therefore,

one of the key challenges in ART is determining the best time to adapt the plan in response

to tumor biological response and volume changes during the course of treatment to improve

the final treatment outcome.

1.2.3 Radiation-Induced Immunosuppression

The effectiveness of radiation therapy treatment relies on the body’s immune system

response to the treatment. However, radiation therapy also suppresses the immune system

through the killing of circulating lymphocytes in the radiation field. Lymphocytes have a

significant role in the body’s anticancer immune response, and they are highly radiosensi-

tive even at low doses. So, lymphocytes can be killed as a result of low and moderate doses
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of radiation exposure. Severe reduction in absolute lymphocyte count (ALC) will happen

which will cause radiation-induced lymphopenia (RIL). Severe RIL can be diagnosed by

measuring the ALC in the patient’s blood. Grade 3 and grade 4 lymphopenia, according to

the National Cancer Institute’s Common Toxicity Criteria for Adverse Events, version 5.0,

are defined as an ALC less than 200 cells/µL and 500 cells/µL during and immediately

following the course of RT, respectively.

ALC has been shown to be an independent predictor of survival from cancer; and High-

grade RIL (i.e., grade 3 with ALC ≤ 500 cells/µL or grade 4 with ALC ≤ 200 cells/µL)

has been highly associated with reduced overall patient survival for most of the tumor

types, such as lung, esophagus, pancreas, breast, and bladder cancer. Also, preservation of

the lymphocytes will increase treatment effectiveness and improve overall patient survival.

Thus, it is critical to analyze the role of radiation therapy in ALC depletion and understand

the clinical features such as dosimetric factors, patient- and treatment-specific characteris-

tics affecting RIL risk for RT patients. Dosimetric factors have been considered as one of

the most important factors affecting RIL severity and incidents. Therefore, RIL risk could

be further minimized by using a different radiation modality and changing the treatment

plan. Nevertheless, the true impact of pretreatment clinical factors in determining RIL risk

is still unclear and requires further study and elaborations.

Moreover, predicting RIL before treatment based on pretreatment clinical information

would improve RT treatment planning and help physicians identify patients with a high-

risk of severe lymphopenia occurrence and avoid RT treatment for these patients. As a

result, mitigation strategies could be developed, or modified treatment approaches could

be used for the identified patients that may ultimately improve their survival. However,

comprehensive models or explicit approaches that can forecast the kinetics of lymphocyte

loss after radiation exposures in order to identify patients at a high risk of developing severe

RIL have not been explored yet.

9



It is critical to develop efficient prediction models based on pretreatment clinical infor-

mation to forecast ALC depletion during RT treatment and identify patients who are at high

risk of severe RIL. However, any prediction has uncertainties and reporting the uncertainty

of a prediction is very important in clinical decision-making problems because poor perfor-

mance of prediction models in clinical practice may have serious adverse consequences for

patients. Therefore, it is crucial for clinicians to have some sense of prediction uncertainty

for a given individual patient.

In summary, one of the key challenges in RT treatment planning is predicting severe

radiation-induced ALC depletion and the associated predictive uncertainty for individual

patients. Also, most of the comprehensive and advanced prediction models are too complex

for use in clinics. So, providing a straightforward and flexible decision-making framework

based on the prediction models could be very helpful to make the best use of advanced

prediction models in clinical practices.

1.3 Objectives & Contributions

This thesis aims to address the aforementioned radiation therapy treatment planning

challenges in three research studies by presenting the following contributions:

• In the first work, we develop a novel comprehensive biological response model that

incorporates tumor cell death, repopulation, reoxygenation, radiosensitivity for tu-

mor cells, and repair of healthy tissues cells to predict the radiation response of the

tumor and OARs during the course of treatment without taking a significant amount

of time and effort to collect large-scale data sets and the necessity for expensive CT

images. Then, we propose an automated personalized radiation therapy treatment

planning framework by combining Reinforcement Learning (RL) and an optimiza-

tion method to find the optimal adaptation points for ART and dynamically adapt the
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plan to the uncertain tumor biological responses over time. The proposed approach

not only controls the biological aspect of the treatment and incorporates tumor bi-

ological response uncertainty, but it also ensures the dose-volume requirements and

clinical limits of the treatment with no need for dealing with complex optimization

models. Moreover, the reinforcement learning framework for ART planning helps

the decision-maker achieve a robust solution under high levels of uncertainty in the

biological parameters while reducing the variability in the solution and improving

control on the worst-cases. Furthermore, this approach provides much needed flexi-

bility in which a plan can be customized based on the patient case and the planner’s

preference on treatment outcomes and extended for wider applications.

• The second work studies radiation-induced immunosuppression challenges. We de-

velop two mathematical prediction models to approximate lymphocyte depletion

based on dose distributions. In the first model, we use a piecewise-linear relation-

ship between lymphocyte survival and radiation dose. The second model assumes an

exponential function for ALC depletion, and it uses a non-linear regression to esti-

mate post-treatment ALC. Moreover, we investigate the relationship between severe

lymphopenia and poor treatment outcomes and compare the potential post-treatment

lymphocyte survival outcomes in esophageal cancer patients for photon and proton-

based modalities.

• For the third work, we propose a hybrid deep learning model in a stacked structure

to predict the ALC depletion trend during RT treatment for cancer patients based on

pretreatment clinical information. The proposed model consists of four channels, one

channel based on long short-term memory (LSTM) network and three channels based

on a deep neural networks, to process four categories of features followed by a fully

connected neural network to integrate the outputs of the four channels and predict the
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weekly ALC values. The hybrid deep-stacked structure can efficiently use informa-

tion from different groups of features with different characteristics to predict weekly

ALC without requiring a large amount of data to process too many features while

reducing bias and the adverse effects of any noise in the data. The developed model

is flexible and can be extended easily to account for early-treatment predictions (i.e.,

at the end of week 1 or 2). So, a discriminative kernel was developed to extract tem-

poral features and assign different weights to each part of the input sequence which

enables the model to focus on the most relevant parts. This approach helps the physi-

cians to identify high-risk patients and select them for modified treatment approaches

or mitigation strategies.

• In the last part of this study, we develop a deep learning model to predict the weekly

ALC values and their associated uncertainties in form of prediction intervals for in-

dividual patients. Estimation of prediction intervals for a given individual patient

enables practical implications of predictive models in clinical decision-making by

considering individualized prediction risks. Moreover, different groups of patients

with different pretreatment characteristics can be assessed in terms of ALC predic-

tion uncertainties based on results from the proposed deep learning model. We also

propose a comprehensive hybrid decision-making framework to select patients for

RT treatment using the predicted values of ALC and their associated risk to be used

in clinical practice with the goal of avoiding severe RIL for cancer patients. This

decision-making framework is flexible, straightforward, easy to interpret by clini-

cians, and can be modified to account for different levels of risk. This approach

enables physicians to easily take the advantage of complex advanced deep learning

models in their decisions and identify high-risk patients who may benefit from treat-

ment modifications. Also, the proposed decision-making framework can be used to

evaluate the effect of any treatment modifications on RIL risk for a given patient; so,
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the safest treatment plan can be chosen for the patient.
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1.5 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we review

the relevant literature on the tumor biological response model, biological-based treatment

planning, ART, and radiation-induced immunosuppression. In Chapter 3, we develop our

automated ART framework based on the predicted tumor biological response using re-

inforcement learning. Solution approaches are provided, and the models are tested and

evaluated. In Chapter 4, we propose our mathematical prediction models to estimate ALC

during radiation therapy treatment based on dose distributions. The relationship between

severe lymphopenia and poor treatment outcomes are investigated for proton and photon

radiation modalities in esophageal cancer patients. In Chapter 5, we develop a hybrid deep

learning model to predict weekly ALC depletion trends during the course of RT treatment

based on pretreatment and early treatment clinical information. The training procedure,

data descriptions are provided, and the performance of the model is evaluated and tested

for a cohort of esophageal cancer patients. In Chapter 6, we provide an approach to es-

timate prediction intervals for estimated ALC values based on our proposed hybrid deep

learning model. The effect of different patient- and treatment-specific factors on RIL risk

are analyzed. Moreover, a comprehensive hybrid decision-making framework is proposed

to assess RIL risk for a given patient based on a given treatment plan. The decision-making

framework is evaluated using real data under different scenarios. Finally, we conclude this

dissertation and discuss the directions of the future research in Chapter 7.
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Chapter 2

Literature Review

2.1 Tumor Biological Response Models

Recent studies have shown that both tumor and OAR cells change dynamically, and

their biological responses differ over time. The repairing of healthy cells, reoxygenation

of tumor cells, repopulation of tumor cells, and radiosensitivity are important biological

factors in determining the tumor and OAR response to radiation therapy treatment [2, 3].

Biological factors have been addressed in modeling tumor response to radiation during the

treatment to determine fractionation dose and evaluate treatment plans.

A linear-quadratic (LQ) model [6, 7] is one of the most common radiation response

models in fractionated radiation therapy. In this model, the tumor or OAR survival fraction

is defined as a function of the radiation dose and can be used to find the fractionation dose

[7]. More comprehensive tumor response models were developed to consider different

biological factors, such as tumor repopulation [8–10].

Several studies have explored the effect of tumor repopulation status on the amount

of dose per fraction and the total number of fractions [8, 9]. They suggested that faster-

growing tumors need to be treated in a shorter treatment length using a higher radiation

dose at each fraction. Further, Bortfeld et al. [10] included tumor repopulation in the

LQ model for radiation therapy treatment planning to find the total number of treatment
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days and fraction dose. Also, multiple studies have investigated tumor growth models

considering exponential growth models [11–13] or Gompertzian growth curves [14, 15].

The advantages of using Bayesian modeling approaches to develop a patient-specific tumor

growth model have been explored in several studies [16–19].

Besides tumor repopulation, other important factors, such as redistribution, repair of

sublethal damage, and reoxygenation were considered in several studies to address the bio-

logical response of tumors [20, 21]. Yang and Xing [21] developed an LQR-based radiation

therapy fractionation planning framework to minimize the ratio of the OAR’s biological ef-

fective dose to the biological effective dose of the tumor. Furthermore, Jeong et al. [22]

developed a tumor response model to assimilate hypoxia and proliferation interplay by con-

sidering three cell compartments including proliferating, intermediate, and hypoxic based

on different levels of oxygen and glucose availability. As a result of mitotic death, they as-

sumed that intermediate and hypoxic cells move into the proliferative and the intermediate

compartments, respectively. They also proposed an approach to determine the initial com-

partmental cell distribution based on local growth fraction (GF) and volume doubling time

(DT) values. Moreover, OAR repair is a major biological factor in healthy tissue response,

which is higher than tumor cells’ repair capacity and can be considered in the radiation

therapy treatment planning [4].

None of the above studies considered all of the main biological factors. In this study, we

develop a novel biological response model that incorporates tumor cell death, repopulation,

reoxygenation, radiosensitivity, and OAR repair.

2.2 Biological-Based Treatment Planning

Several studies have shown the possibility of achieving better treatment outcomes by

modifying the dose of radiation per fraction in fractionated radiation therapy based on the

tumor biological response. Information from biological images has been used in several
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studies to find biologically conformal nonuniform doses [23–25].

Various models have been proposed to incorporate biological response in radiation ther-

apy treatment planning. Dynamic programming has been used in several studies to account

for dynamic tumor response during radiation therapy and to find the optimal tumor frac-

tionation dose [26], OAR repair [27], tumor repopulation [10, 28] and tumor shrinkage

[29].

Kim et al. [27] used an LQ based response model through a finite-horizon Markov

Decision Process model to find the tumor fractionation dose. Ghate et al. [28] reviewed a

stochastic control framework based on biological images and response models to achieve

personalized treatment plans that dynamically adapt to a tumor’s uncertain biological re-

sponse over time. Another study by Bortfeld et al. [10] included tumor repopulation in

the response model in a dynamic programming framework for radiation therapy treatment

planning to find the total number of treatment days and the optimal dose per fraction.

A recent study by Nohadani and Roy [30] showed that utilizing robust optimization

techniques to account for cell oxygenation during radiation therapy can improve tumor

control in a prostate cancer case. Unkelbach et al. [29] proposed a dynamic model to

account for tumor shrinkage and tumor cell repopulation in liver cancer. In this dynamic

model, the number of viable tumor cells at each stage is calculated by multiplying two

exponential functions based on cell kill and cell repopulation in the previous stage. How-

ever, a comprehensive model to incorporate all important biological factors in a dynamic

framework has not been studied yet.

Biological response to radiation varies from one patient to another [5]. Also, radiosen-

sitivity and tumor proliferation are associated with tumor cell cycle phases and gene level

activities [31]. Huang et al. [32] showed the advantages of personalized modeling on bi-

ological mechanisms by developing a volume-based tumor response model to predict the

clinical outcome of radiation therapy for cervical cancer patients. Therefore, personalized
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radiation therapy treatment planning has attracted researchers’ attention in biological ra-

diation therapy planning, which claims the importance of developing a different treatment

plan for each patient as a response to the varied tumor response. Therefore, in this study,

we focus on developing planning approaches that enable personalization of RT treatment

plans.

2.3 Adaptive Radiation Therapy Treatment Planning

The literature shows that adapting a fractionated radiation therapy treatment in response

to changes that occur during the course of treatment, known as adaptive radiation therapy

(ART) method, improves treatment quality in terms of normal-tissue sparing and tumor cell

reduction [33–36] as well as treatment cost and time [37, 38].

Veresezan et al. [38] recommended that error calculations and imaging studies should

be repeated to verify treatment accuracy. So, an ideal approach to consider dynamic tumor

changes will be to take images of the patient at every visit, update tumor contours, and

revise the treatment plan if a significant change was observed in the tumor geometry. How-

ever, daily imaging may not be useful in practice because any changes over the span of a

day may not be significant enough to modify the existing treatment plan. More importantly,

imaging the patient at every visit during the treatment period can be costly, time-consuming

and prone to human errors. Therefore, a compromise must be made considering tumor ge-

ometry change, costs, timing, and the recommended number of adaptive plans. This is the

primary motivation for finding the optimal timing for adaptation to improve the clinical

feasibility of ART.

Several approaches have been proposed to optimally determine how often to conduct

adaptation during the treatment based on the latest tumor geometry information, focusing

on target-volume reduction [35, 39, 40] and the dose per volume received in the tumor

[19, 41–43].
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Saka et al. [39] developed an image-based adaptive IMRT optimization approach in

which an adaptation was suggested once before the 25th fraction and once after the 25th

fraction on the basis of the latest tumor geometry information. Guckenberger et al. [40]

proposed adapting the plan once or twice in week 3 or week 5 for a non-small cell lung

cancer (NSCLC) patient. Zheng et al. [41] proposed that the plan adaptation for lung

cancer treatment should occur at the 15th fraction. They also showed that the adaptation

point should be before the 31st fraction to provide the most clinical benefit. Berkovic

et al. [42] demonstrated that an adaptation performed around the 15th fraction was most

beneficial in IMRT for lung cancer patients.

Several approaches have been proposed to optimally determine the frequency of adap-

tation during the treatment based on the latest tumor geometry information, focusing on

target-volume reduction [35, 39, 40] and the dose per volume received in the tumor [19, 41–

43]. Most studies suggest that the optimal time for adaptation is when an adequate target

volume reduction was observed and maintained [38–40]. However, there are some conflict-

ing reports regarding the time of the largest tumor volume reduction and the best time to

adapt the plan to the tumor volume changes for different patients with different biological

response characteristics. Therefore, more studies must be done towards customization of

an ART treatment plan for each patient based on biological response to the treatment.

2.4 Reinforcement Learning

Recent studies have proposed machine learning (ML) techniques to predict radiation

therapy outcomes [44, 45], classify patients who would benefit from ART [46], and deter-

mine the ideal time for adaptation in ART [42, 47]. However, most of these approaches

require large data sets which are not available for different types of cancer.

Reinforcement learning (RL) is one of the modern machine learning algorithms that

features modeling of sequential data based on the interactions between an agent and an
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environment. RL can be a good alternative to dynamic programming when there is a high

level of uncertainty in a sequential decision-making problem because RL can generate a

robust and risk-averse solution by incorporating the uncertainty in its environment.

Deep reinforcement learning (DRL) algorithms have been applied to find the best pol-

icy (a sequence of decisions) in many diverse fields such as robotics [48], computer vision

[49], energy [50, 51], and healthcare [52, 53]. DRL approaches have been successfully

used in many applications in healthcare domain such as treatment regime development

[54–56], automated medical diagnosis [57, 58], resource scheduling and healthcare man-

agement systems [59, 60]. Among all of these applications, developing dynamic treatment

regimes and sequential clinical decision-makings are becoming increasingly attractive for

researchers [61]. Several DRL models have been developed in several studies to select the

best treatment policy for some critical diseases such as cancer [53], sepsis [62, 63], dia-

betes [54, 55], and human immunodeficiency virus (HIV) [56] with goal of improving the

long-term treatment outcome for the patients.

El Naqa et al. (2016) investigated the feasibility of RL for two stage adaptive radiation

therapy using a simplified Q-learning algorithm with linear regression considering clinical

covariant history as states and tumor control probability as the reward function. Their

results demonstrated a promising feasibility of RL models in adaptive radiation therapy.

However, more advanced nonlinear models are needed to be able to address biological

aspects of multi-stage ART planning. Later, Jalalimanesh et. al. (2017) developed an

agent-based model to simulate the tumor growth during radiation therapy and used a tabular

Q-learning algorithm to find the optimal RT plan. Their results suggested that agent-based

approach combined with RL is useful for simulating and optimizing Rt plans. However,

they did not consider the uncertain biological response of the tumor and OAR cells in their

model. Moreover, the tabular Q-learning cannot map high-dimensional state space due

to the complexity. Also, finding the optimal action based on Bellman’s equation is hard
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when we have stochastic and non-linear dynamics in the decision-making environment

[64]. Alternatively, using a neural network to map input states to (action, Q-value) pairs

can help handling high-dimensional state space, uncertainty in tumor response dynamics

and nonlinear rewards [49].

Tseng et al. [53] explored the feasibility of using deep reinforcement learning (DRL)

based on historical treatment plans for automated knowledge-based ART for NSCLC pa-

tients. They developed a three-component neural network framework that includes a gen-

erative adversarial network (GAN) to learn patients’ characteristics, a deep neural network

(DNN) to estimate transition probabilities, and a deep Q-network (DQN) to find the op-

timal action. Their results showed that DRL can be used to achieve clinically acceptable

results for knowledge-based ART while maximizing tumor local control. Their proposed

approach is only useful in situations in which we have access to large-scale historical pa-

tient data and the certain value of tumor and OAR dosimetric and biological parameters.

Collecting such a large-scale treatment plan data set for each cancer site needs a significant

amount time and effort and is not accessible for everyone and all cancer cases. Moreover,

the accuracy of the data set may not be guaranteed and can be prone to human errors.

On the other hand, extracting the patients’ characteristics from a large-scale data set is a

time-consuming process and can be prone to overfitting. Therefore, in this dissertation, we

introduce an automated decision-making framework by combining RL and optimization

methods to find the optimal adaptation time for ART and dynamically adapt the plan to the

tumor’s uncertain biological response over time.

2.5 Radiation-Induced Lymphopenia

Significant lymphocyte count depletion (i.e., lymphopenia) is a common toxicity of

radiation therapy and is associated with worse-off disease control in a number of solid

tumors [65–68]. Because lymphocytes have a substantial role in the body’s anticancer
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immune response, severe lymphopenia can reduce patient survival even in the early stages

of tumor progression [68–72].

Multiple recent studies have shown that severe lymphopenia is strongly associated with

poor treatment outcomes in a number of solid tumors such as cervical [72, 73], pancreatic

[74, 75], rectal [76], lung [69, 77], and esophageal [66, 78] cancers. Thus, preservation of

the lymphocytes from radiation damage is crucial for the effectiveness of radiation therapy,

and it is critical to understand the clinical and dosimetric factors affecting the severity and

incidence of radiation-induced lymphopenia (RIL) and develop strategies for its mitigation.

Moreover, RIL risk likely varies by treatment modality. Recent studies have reported

greater lymphocyte depletion in patients treated with photon therapy than with proton ther-

apy [66, 68, 77–79]. For example, Shiraishi et al. [66] reported that proton beam ther-

apy was associated with a lower risk of grade 4 lymphopenia compared with IMRT in

esophageal cancer patients receiving neoadjuvant chemoradiotherapy. RIL commonly oc-

curs in conventional photon radiation therapy, presumably due to the high radiosensitivity

of lymphocytes and the large low and medium dose bath of photon therapy. Dose distribu-

tion patterns from protons and photons can differ greatly, and the dosimetric advantages of

state-of-the-art proton therapy over photon therapy in terms of sparing organs at risk and

normal tissue have been demonstrated in several clinical studies [80, 81]. Also, intensity-

modulated proton therapy (IMPT) performs better than intensity-modulated radiation ther-

apy (IMRT) in terms of dose sparing and robustness towards common anatomical changes

in esophageal cancer patients [82]. Nevertheless, the true impact of dosimetric factors in

determining RIL risk is still unclear and requires elaboration.
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2.6 Prediction of Radiation-Induced Lymphopenia

Preservation of the lymphocytes from radiation damage is crucial for the effectiveness

of RT [77, 78, 83]. Therefore, the ability to reliably predict RIL based on pretreatment

factors (i.e., dosimetric factors, clinical, and patient-specific characteristics) would improve

RT treatment planning.

Several studies have reported the strong associations between pretreatment factors in-

cluding treatment-related characteristics (e.g., treatment modality, dose distribution pat-

terns, fractionation regimens, etc.) [72, 77, 78, 84] and patient-specific factors (e.g., age,

BMI, total blood volume, ALC baseline, etc.) [66, 71, 84–86]. Some of these studies have

attempted to predict RIL based on different sets of pretreatment parameters.

Van Rossum et al. [85] showed the significance of age, planning target volume, body

mass index, radiation modality, and baseline ALC in relation to grade 4 RIL for esophageal

cancer patients and developed a pretreatment clinical nomogram based on these factors to

determine the risk of grade 4 RIL for new patients. Later, Zhu et al. [86] developed a hybrid

deep learning model to classify patients with grade 4 RIL based on patient characteristics

and dosimetric features but they did not investigate the ALC kinetics during RT treatment

for individual patients. However, comprehensive models that can forecast the kinetics of

lymphocyte loss after fractionated radiation exposures in order to identify high-risk patients

have not been explored yet. It is critical to fill this gap and provide a comprehensive pre-

diction model that can forecast the ALC regressions during RT to develop RIL mitigation

strategies at the right time and improve the effectiveness of RT for cancer patients.

2.7 Deep Learning Approaches for Treatment Outcome Prediction

The application of artificial intelligence and machine learning methods to extract in-

sights from data is becoming increasingly attractive in many fields, including healthcare.
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Although many healthcare applications have been developed, those that can predict disease

progression [87], [88], treatment outcomes [89], or potential side effects [90], [91] play an

important role in improving patient care.

Deep learning models have been developed to extract information from various kinds

of data and for many tasks [92], [93]. Recurrent neural networks (RNNs) achieved sig-

nificant results in extracting temporal information from sequential data such as text, audio,

video, and time series [92]. The main advantage of RNNs is that they can maintain memory

of recent events and update their current state based on both past states and current input

data [94], [95]. Hochreiter and Schmidhuber [96] proposed the long short-term memory

(LSTM) network as an improved variant of the RNN to handle the long-term dependency

and vanishing gradient issues of RNNs. LSTM networks have been widely used for vari-

ous kinds of tasks, including speech recognition [97], [98], image captioning [99], [100],

trajectory prediction [101], [102], and text embedding [103], [104]. However, an LSTM

network cannot be used alone for the current problem because the significant features that

may predict RIL do not have uniform characteristics. A potential solution for this issue is

to develop a stacked structure.

In a stacked structure, the algorithm nonlinearly integrates predictors in order to achieve

higher prediction accuracy and reduce generalization error. Deep-stacked models can out-

perform state-of-the-art deep learning and machine learning models such as tree-based en-

semble models and extreme gradient boosting algorithms [105], [106]. Therefore, we can

take advantage of stacked deep structures to improve the deep learning model performance.
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2.8 Predictive Uncertainty Quantification

Despite the success of standard deep learning methods in solving various healthcare

problems, they may not be able to provide information about the reliability of their pre-

dictions [107]. Since decision-making in medical applications are mostly life-and-death

decisions, quantifying reliability of predictions is crucial. However, most efforts in devel-

opment of prediction models in this field have focused on improving the average accuracy

of the algorithm, with little consideration for risk management.

The ability to identify patients who are at high risk of grade 4 RIL based on predic-

tion models is very helpful to improve patient survival. However, poor performance from

prediction models in clinical practice can have adverse consequences for patients. There-

fore, it is important for clinicians to have some sense of when they can trust the prediction

model results. Also, improving the management of risk and uncertainties in clinical deci-

sions is reported as a potential opportunity to enhance the treatment outcome in a medical

practice [108]. Nevertheless, model evaluation only on the basis of model performance

measures (e.g., accuracy, mean squared error) cannot guarantee whether an individual pre-

diction on a given patient should be trusted in clinical practice [109].

There are two main uncertainties in prediction results: (1) aleatoric uncertainty which

is inherent noise and randomness in the real data due to the measurements and data col-

lection errors. (2) epistemic uncertainty or model uncertainty due to inductive assumptions

or an inadequate model, knowledge, and data [110, 111]. These two uncertainties need

to be estimated sufficiently by uncertainty quantification models to account for prediction

uncertainty. Consequently, in this study, we aimed to develop a hybrid deep learning struc-

ture that can estimate the uncertainty associated with each predicted ALC value for a given

individual patient.

Several methods have been developed to quantify the uncertainty of linear/nonlinear
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regression models and more complex prediction models such as neural networks in dif-

ferent applications by calculating prediction intervals [112–115] or determining a trust

score [116]. A prediction interval can be computed for a neural network model with the

assumption of normally distributed error for the neural network to account for aleatoric

uncertainties [112, 114]. Neural network-based prediction intervals have been widely used

in predicting health conditions and detecting diseases [116–119]. However, most of these

methods require a large data set and long training. Moreover, Bayesian inference has shown

good performance in quantifying uncertainty of predictions for traditional machine learn-

ing models such as random forest [120], support vector machines (SVM) [121], and vari-

ety of deep learning models, including neural network [122–124], long short-term mem-

ory (LSTM) network [125], convolutional neural network (CNN) [126–128], and recur-

rent neural network (RNN) [129]. However, these methods are computationally expensive

and require significant modifications in the training process. Furthermore, deep Gaussian

processes are effective alternative way to model the uncertainty of predictions as a non-

parametric Bayesian approach by considering a Gaussian distribution over latent variables

with respect to the input samples [130–132]. Unlike the Bayesian methods, this approach is

easy to implement and achieves high quality predictive uncertainty estimates. In this study,

we take advantage of this method in an ensembled neural network structure to estimate the

uncertainty of ALC prediction.

Additionally, it is important to make the best use of prediction models and their esti-

mated uncertainties to improve patient survival in clinical practice. However, there is no

straightforward decision-making framework that can help physicians to easily use the re-

sults of complex deep learning models in their clinical decisions for each individual patient.

Therefore, to fill this gap, we propose a hybrid decision-making framework to select pa-

tients for RT treatment using the predicted values of ALC and their associated risk to be

used in clinical practice with the goal of avoiding grade 4 RIL for cancer patients. Such
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a decision-making framework enables physicians to identify patients who are at high risk

of grade 4 RIL and who may stand to benefit from treatment replanning, use of a different

modality, or a pharmacological intervention and ultimately improve survival outcomes.
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Chapter 3

A Reinforcement Learning Approach for

Finding Optimal Policy of Adaptive Radiation

Therapy Considering Uncertain Tumor

Biological Response

3.1 Introduction

Cancer is one of the primary health problems in the world, and it is the second leading

cause of death in the United States [133]. Radiation therapy (RT) is a common treatment

modality for cancer patients. External beam radiotherapy is one of the most commonly used

types of RT, in which ionizing radiation (e.g., photon, proton, etc.) goes through a particular

part of patient’s body to eradicate tumor cells. Unfortunately, it also damages healthy

organs around the tumor called organs at risk (OARs). A high dose of radiation is required

to control tumor cells from growing, while a maximal protection on the surrounding OARs

must be ensured. The prescribed RT dose is usually delivered in multiple fractions to

achieve tumor control while enabling OARs cells repair. In conventional RT, an equal

amount of radiation dose is delivered to the patient in each fraction based on the computed
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tomography (CT) images used to develop the treatment plan [134].

Recent studies showed that both tumor and OARs cells are changing dynamically dur-

ing the treatment, and their biological responses to radiation also changes over time. Yet,

the conventional plans mostly does not fully consider the dynamic nature of biological pro-

cesses. Healthy cells repair, reoxygenation and repopulation of tumor cells and radiosen-

sitivity are important biological factors in controlling efficiency of fractionated RT [135].

These factors play a significant role in the tumor and/or OAR response to RT treatment

[2, 3]. Several studies have shown the possibility of achieving better treatment outcomes

by modifying the amount of dose per fraction in fractionated RT based on the tumor's bio-

logical response. Information from biological images have been used in several studies to

find biologically conformal nonuniform dose [23–25].

Most researchers have considered biological factors in modeling tumor response to ra-

diation during the treatment. The linear-quadratic (LQ) model [6, 7] is one of the common

radiation response models in fractionated RT. More comprehensive tumor response models

have also been developed considering different biological factors, such as tumor repopula-

tion [8–10]. Other factors in RT planning include redistribution, repair of sublethal damage,

and reoxygenation [20, 21]. Furthermore, [22] developed a tumor response model to as-

similate hypoxia and proliferation interplay by considering three cell compartments (i.e.,

proliferating, intermediate, and hypoxic) based on different levels of available oxygen and

glucose. Similarly, OAR repair and radiosensitivity should also be considered to measure

the OAR’s biological response to radiation in the RT treatment planning [4].

The biological response to radiation varies from one patient to another [5]. Also, ra-

diosensitivity and tumor proliferation are associated with the tumor cell cycle phase and

gene level activities [31]. Therefore, personalized RT treatment planning has attracted

researcher’s attention in biological RT planning. Various models have been proposed to

incorporate the biological response in RT treatment planning. Dynamic programming has
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been used in several studies to account for dynamic tumor response during RT and finding

tumor fractionation dose [26], OAR repair [27], tumor repopulation [10, 28] and tumor

shrinkage [29]. However, a comprehensive model incorporating important biological fac-

tors in a dynamic framework has not been well studied.

The literature shows that the adaptive radiation therapy (ART) method improves treat-

ment quality in terms of normal-tissue sparing and tumor cell reduction [33–36] as well as

treatment cost and time [37, 38]. An ideal approach to consider dynamic tumor changes

will be to take images of the patient at every visit, update tumor contours, and revise the

treatment plan if a significant change was observed in the tumor geometry. However, daily

imaging may not be useful in practice because any changes over the span of a day may not

be significant enough to modify the existing treatment plan. More importantly, imaging

the patient at every visit during the treatment period can be costly, time-consuming and

prone to human errors. Therefore, a trade-off must be made considering tumor geometry

change, costs, timing, and the recommended number of adaptive plans. This is the primary

motivation for finding the optimal timing for adaptation to improve the clinical feasibility

of ART.

Several approaches have been proposed to optimally determine the frequency of adap-

tation during the treatment based on the latest tumor geometry information, focusing on

target-volume reduction [35, 39, 40] and the amount of dose per volume received in the

tumor [19, 41–43]. Most studies suggest that the optimal time for adaption is when an ad-

equate target volume reduction was observed and maintained [38–40]. However, there are

some conflicting reports regarding the time of the largest tumor volume reduction occurred

and the best time to adapt the plan to the tumor volume changes for different patients with

different biological response characteristics. Therefore, a treatment should be customized

for each patient.

Recent studies have proposed machine learning (ML) techniques to predict radiation
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therapy outcomes [44, 45], identify patients who would benefit from ART [46], and de-

termine the ideal time for adaptation in ART [42, 47]. ML techniques can help identify

patients who will have high tumor volume reduction during RT and select them for ART

by predicting the tumor regression during the course of treatment. Reinforcement learning

(RL) is a machine learning algorithm that features modeling of sequential data based on

the interactions between an agent and an environment. RL can be a good alternative to

dynamic programming when there is a high level of uncertainty in a sequential decision-

making problem because RL can generate a robust and risk-averse solution by incorpo-

rating the uncertainty in its environment. Deep reinforcement learning (DRL) algorithms

have been applied to find the best policy (a sequence of decisions) in many diverse fields

such as robotics [48], computer vision [49], energy [50, 51], and healthcare [52, 53].

Tseng et al. [53] explored the feasibility of using deep reinforcement learning (DRL)

based on historical treatment plans for automated knowledge-based ART for NSCLC pa-

tients. They proposed a three component neural networks framework consisting of a gen-

erative adversarial network (GAN) to learn patients’ characteristics, a deep neural network

(DNN) to estimate transition probabilities, and a deep Q-network (DQN) to find the op-

timal action. The results of their study shows that DRL can be used to achieve clinically

acceptable results for knowledge-based ART while maximizing tumor local control. Their

proposed approach can be useful if one has access to large-scale historical patients’ data

and the certain value of tumor and OAR dosimetric and biological parameters are known.

However, collecting such large-scale data for each cancer site needs significant time and

effort, and it is not accessible for everyone and all cancer cases. Moreover, the accuracy of

the data set may not be guaranteed and prone to human errors. On the other hand, extract-

ing the patients’ characteristics from a large-scale data set is a time consuming process and

prone to overfitting [89].

Therefore, this chapter introduces a novel biological response model that incorporates
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tumor cell death, repopulation, reoxygenation, radiosensitivity for tumor cells, and healthy

tissues cell repair to predict radiation response of the tumor and OARs during the course of

treatment. Using the model, an automated optimization framework is proposed by combin-

ing Reinforcement Learning (RL) and optimization method to find the optimal adaptation

points for ART and dynamically adapt the plan to the tumor’s uncertain biological response

over time.

The contributions of this study are stated as (1) A biological-based treatment plan-

ning framework is proposed such that it not only controls the biological aspect of the

treatment and incorporates the tumor biological response uncertainty, but also ensures the

dose-volume requirements and clinical limits of the treatment without the need of dealing

with complex optimization models; (2) The proposed reinforcement learning framework

for ART planning can help the decision maker to achieve a robust solution under high lev-

els of uncertainty in the biological parameters while reducing the variability in the solution

and improving the control on the worst-cases which minimizes the undesirable effects of

worst-cases on the treatment outcome; (3) Using the proposed comprehensive biological

response model, the tumor volume regressions can be estimated without taking significant

time and effort to collect large-scale data sets and avoid the need for expensive CT images.

Also, an ART treatment plan can be determined in a shorter time compared to employing

imaging information for the clinical implementation of ART considering the patient wait

time and data collection time; (4) This approach enables the physicians to find an appropri-

ate personalized ART policy in terms of fraction dose and timing of the adaptations using

the volumetric and biological information to adapt the plan to the updated patient anatomy.

It also can be used to identify patients who would benefit from ART as an alternative to the

conventional equal-dose plan; and (5) The proposed approach is flexible enough to support

a wide range of treatment objectives and preferences based on different decision makers

for various cancer types.
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The rest of this chapter is organized as follows. Section 2 explains how the tempo-

ral evolution of the tumor due to the radiation response is modeled. We then develop an

RL framework for ART decision-making and discuss the associated mathematical formu-

lations. Section 3 provides the sensitivity analysis of the model and the results from our

experimental study using clinical lung cancer patient data. We conclude the chapter in

Section 4.

3.2 Methodology

3.2.1 Problem Description

The goal of this study is to find the optimal policy for ART (i.e., the optimal timing

of adaptation and the associated dose at each adaptation point) considering biological un-

certainties that can improve the quality of treatment in terms of tumor control and OAR

sparing. To accomplish this goal, first, we introduce a novel biological response model to

estimate the tumor volume regressions with zero or minimal imaging during the treatment.

Second, we propose an automated framework that combines RL and optimization methods.

In this algorithm, the adaptation points are found based on an RL framework that encoun-

ters both tumor and OAR biological responses to radiation based on the response model

considering the uncertainties in the values of biological parameters. We aim to achieve a

maximum final tumor control while minimizing or maintaining the OARs toxicity levels

by finding the actions to maximize the RL reward function. Third, to achieve the ultimate

goal of RT treatment planning (i.e., maximizing the dose to the tumor while minimizing the

dose to the OARs), beamlet intensities are optimized to satisfy dose-volume requirements

and clinical limits for the patient based on the current predicted tumor volume and the pro-

posed fraction dose from RL optimal policy at each adaptation point. As a result, we will

find a robust optimal ART treatment plan that is biologically and clinically acceptable. The
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list of sets, parameters, and variables used in the proposed tumor response model and RL

algorithm are summarized in Table 3.1 and Table 3.2, respectively.

Table 3.1: Notations used in the dynamic biological response model and biological metrics

Notation Description
Sets
I Set of treatment sessions (decision epochs)
T Tumor structure
φ OAR structure

Dynamic variables
vi Tumor volume after delivering fraction i
ui Number of viable tumor cells after delivering fraction i
wi Number of dead tumor cells after delivering fraction i
mi Number of doomed tumor cells after delivering fraction i
di Amount of dose in fraction i

Parameters
N Total number of treatment sessions
ti Time gap between fraction i and i-1
τg The repopulation parameter
τd Tumor decay parameter
τφr OAR repair parameter
τφg OAR repopulation parameter
OER Reoxygenation parameter (Oxygen Enhancement Ratio)
αTp Linear tumor radiosensitivity parameter in proliferating phase
αTh Linear tumor radiosensitivity parameter in hypoxic phase
βTp Quadratic tumor radiosensitivity parameter in proliferating phase
βTh Quadratic tumor radiosensitivity parameter in hypoxic phase
αφ Linear radiosensitivity parameter of OAR
ρ Ratio of dead cells at each stage

Biological metrics
BEDT

i Cumulative biological effective dose of the tumor after delivering fraction i
BEDφ

i Cumulative biological effective dose of the OAR after delivering fraction i
SFi Total surviving fraction of the tumor after delivering fraction i

3.2.2 Dynamic Tumor Response Model

In this section, we introduce a model that incorporates the temporal evolution of the

tumor due to radiation response. In this study, we assumed to have two cell compartments:

(1) Proliferating, and (2) Hypoxic. This classification is consistent with the study by Jeong

et al. [22] with one exception that we merged intermediate and hypoxic compartments
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Table 3.2: RL algorithm notations

Notation Description
Sets
S Set of possible states
A Set of possible actions

RL components
R Immediate reward function
P Transition probability
Q Q-value function
Q∗ Optimal Q-value function
si State of the system at step i
ai Decision set at step i
ri Immediate reward at step i
γ discount factor for long-term reward

DDQN components
w DQN weights
w− Target network weights
L Loss function
ND Replay memory capacity
Ne The total number of episodes
Ne The total number of steps (treatment sessions)
ξ Exploration decay rate

to one called hypoxic to be account for reoxygenation and hypoxia. The proliferating

compartment contains cells that have adequate principle nutrients (i.e., glucose and oxygen)

and they are in proliferating phase. Hypoxic compartment comprises cells without enough

nutrients. Most of the cells in hypoxic component are starving and extremely hypoxic.

Presumably, cells in hypoxic compartment cannot proliferate and the starving cells can

die without RT exposure (necrotic cell death due to starving [136]). Only a fraction of

cells in proliferating compartment are in cell-cycle and can proliferate. Therefore, we

also incorporated three sub-compartments into each compartment to track different cell

conditions (i.e., reoxygenation, cell-kill, cell decay caused by starving, cell cycle effect)

during the course of treatment: (1) viable cells that are in the cell cycle, (2) doomed cells

that are not in cell cycle, and (3) dead cells that are hypoxic and they are in decay process

caused by cellular necrosis, apoptosis, metastasis, and cell migration. Figure 3.1(a) shows
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(a)

(b)

Figure 3.1: (a) Visualization of two tumor cells compartments and three sub-compartments (i.e., viable,
doomed, and dead) (b) Redistribution of tumor cells sub-compartments after receiving radiation
dose

the visualization of assumed tumor cell compartments and sub-compartments.

Doomed cells are the middle sub-compartment between metabolically active cells (in-

termediate) and hypoxic cells. Because of the increased mitotic cell death, proliferation

of doomed cells do not have significant effect on number of cells in hypoxic compartment

[22]. So, we assumed that doomed cells cannot proliferate as long as they get enough oxy-

gen (i.e., move to viable sub-compartment). In contrast, doomed cells can move to dead

sub-compartment if they receive enough radiation. At each stage of treatment, a propor-

tion of viable cells can be moved into doomed and/or dead sub-compartment as a result of

RT exposure. Figure 3.1(b) shows the redistribution of tumor cells sub-compartments after

receiving the radiation dose.

Our proposed model considers proliferation and hypoxia as two important factors in
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tumor radiation response and repopulation. The traditional L-Q model does not account

for the necrotic cell death and exponential decay of the dead cells. Based on our model,

only a fraction of lethally damaged cells are truly dead. The remaining cells are doomed,

which means they are metabolically active without having enough oxygen to proliferate

and are radioresistant [22]. As the doomed cells are hypoxic, higher doses of radiation are

needed to kill these cells. This characteristic of hypoxic cells can be incorporated into the

response model by adding the Oxygen Enhancement Ratio (OER). The OER indicates the

required extra dose to achieve the same level of cell-kill/cell-survival of the hypoxic cell

compared to the non-hypoxic (normoxic) cells [137]. The oxygen level can vary based

on the distance from the tumor to blood vessels and blood vessel damage during radiation

therapy [138]. We assume that surviving doomed cells can receive oxygen and return back

to the proliferating phase as alive cells (reoxygenation of hypoxic cells). Necrotic cell

loss is assumed to follow an exponential decay with parameter τd. Also, we consider an

exponential tumor growth with parameter τg. Based on these assumptions, the number of

cells in each sub-compartment at each time epoch can be calculated for viable (ui), dead

(wi), and doomed (mi) cells as

ui+1 = ui · exp(−αTp di − βTp d2
i ) · exp(

ti
τg

) +mi · exp(−αTp
di

OER
− βTp

d2
i

OER2
), (3.1)

wi+1 = ρ ui · (1− exp(−αTp di − βTp d2
i )) · exp(−

ti
τd

)

+mi · (1− exp(−αTp
di

OER
− βTp

d2
i

OER2
)) · exp(− ti

τd
) + wi · exp(−

ti
τd

),

(3.2)

and mi+1 = (1− ρ) ui · (1− exp(−αTp di − βTp d2
i )). (3.3)

Where di is the dose for fraction i and ti is the time gap between fraction i − 1 and

i. Tumor volume changes during RT can be estimated using cell compartment distribution

at each time epoch and based on the initial total number of tumor cells. In addition to the
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viable cells, doomed and dead cells (hypoxic cells) were also included in the total tumor

volume calculation [29, 139]. Therefore, the tumor volume at each time epoch can be

estimated as

vi+1 = ui+1 + wi+1 +mi+1. (3.4)

Moreover, we consider cell cycle radiosensitivity variations as described by Jeong et al.

[139] for proliferating cells. So, the surviving fraction of proliferating (viable) cells can be

calculated as

SF p
i = fG1 exp(−αG1di − βG1d

2
i ) + fS exp(−αSdi − βSd2

i )

+ fG2/M exp(−αG2/Mdi − βG2/Md
2
i ) = exp(−αeffdi − βeffd2

i ),

(3.5)

where αeff and βeff are effective α and β for proliferating phase, di is the fractional dose

at stage i, and fX , αX and βX are the fraction of cells, linear parameter, and quadratic

parameter for a given cell cycle X (G1, S, or G2–M).

The increased radioresistance of hypoxic cells compared to proliferating cells can be

quantified as αTh = αTp /OER and βTh = βTp /OER
2 [137]. Hence, we propose the response

models for the three cells types as

ui+1 = ui SF
p
i .exp(

ti
τg

) +mi exp(−αThdi − βTh d2
i ), (3.6)

wi+1 = ρ ui(1− SF p
i ). exp(− ti

τd
)

+mi (1− exp(−αThdi − βTh d2
i )).exp(−

ti
τd

) + wi exp(−
ti
τd

),

(3.7)

and mi+1 = (1− ρ) ui(1− SF p
i ). (3.8)
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Figure 3.2: Flowchart of the proposed algorithm

3.2.3 Reinforcement Learning Framework for ART Problem

Our aim is to develop an automated framework that combines an RL and optimization

methods, in which the adaptation points are found using the RL based on the biological ef-

fects and responses of the tumor and OAR to radiation using the proposed response model.

Figure 3.2 shows the entire process of the proposed algorithm.

The goal of the agent in RL is to take actions that maximize the expected value of a pre-

defined reward function. The RL environment can be described by the various states. The

agent receives a reward (rt) according to the selected decision being made under a specific
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state (st), which leads to the next state (st+1). Using this feedback mechanism between the

state and its corresponding reward, the agent can optimize its subsequent strategy for future

actions. Figure 3.3 shows the RL procedure and its components.

Figure 3.3: Reinforcement Learning Procedure

We propose a general RL framework based on a Markovian environment generated by

the dynamic tumor response model to find the optimal policy of ART in which the environ-

ment can be customized based on the tumor biological parameters and patient information.

Each time this framework is used for a specific cancer patient, the agent is learning so that

its ability to find optimal actions gets improved for future patients with the same cancer

type. Instead of taking images frequently to detect tumor volume changes during the treat-

ment, our approach enables us to estimate the tumor volume regressions based on the pro-

posed tumor response model used in the RL environment quantification. These estimates

can be validated and/or corrected using a minimum number of imaging. Our approach is

a continuous adaptation protocol on a weekly/daily basis, and we aim to find the optimal

number of adaptations and the corresponding time as well as the radiation dose to be used

until the next adaptation point.
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3.2.3.1 Components of RL Framework For ART Problem

The environment in the proposed RL algorithm is a virtual environment to simulate

ART treatment planning considering tumor volume changes using the proposed dynamic

tumor response model. After the execution of the selected action, the agent obtains infor-

mation on the next state and its corresponding reward value.

Algorithm 3.1 Action set construction method

Input: d, d, d̄ and ∆
if 0 < d̄− d ≤ ∆ and 0 < d− d ≤ ∆ then

a ∈
{
d, d, d̄

}
;

else if d̄− d > ∆ and 0 ≤ d− d ≤ ∆ then

a ∈
{
d, d, d+

|d̄−d|
p , ..., d+ i(

|d̄−d|
p )

}
, ∀i = 1, 2, ..., p and p =

⌈
|d̄−d|

∆

⌉
;

else if d− d > ∆ and 0 ≤ d̄− d ≤ ∆ then
a ∈

{
d− i( |d−d|p ), ..., d− ( |d−d|p ), d, d̄

}
, ∀i = 1, 2, ..., p and p =

⌈
|d−d|

∆

⌉
;

else if d− d > ∆ and d̄− d > ∆ then

a ∈
{
d− i( |d−d|p ), ..., d− ( |d−d|p ), d, d+

|d̄−d|
p̄ , ..., d+ j(

|d̄−d|
p̄ )

}
,

∀i = 1, 2, ..., p, ∀j = 1, 2, ..., p̄, p =
⌈
|d−d|

∆

⌉
and p̄ =

⌈
|d̄−d|

∆

⌉
;

else
a ∈ {d−∆, d, d+ ∆}.

At each time stage, a number of scenarios for tumor biological factors are generated.

For each scenario, the tumor response to radiation and its immediate reward are calculated

based on the current state and the action taken to determine the best action and next state.

The set of actions includes possible decisions such as dose increase (+∆), maintain, de-

crease (−∆) as a result of the plan adaptation, where ∆ is an amount of dose deviation

from the conventional prescription dose d. For a given cancer type and its clinical pro-

tocols for treatment, some key input parameter values for reinforcement learning method

can be given to the planner such as daily fractional dose d, ∆, dose lower-bound (d), and

dose upper-bound (d̄). In some cases, the action sets may include more than the three ac-

tions, which could be multiples of ∆. Therefore, Algorithm 3.1 is developed to facilitate
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constructing an appropriate action set for a given cancer case.

Our aim here is to find the optimal action at each time epoch (e.g., beginning of each

week) to determine optimal adaptation points. We first show in Theorem 3.1 the existence

of an optimal dose d∗i of each fraction for a concave reward function on the closed interval

[d, d̄].

Theorem 3.1. For a concave reward function at each fraction,R(di), there exists an optimal

fractional dose d∗i = argmaxR(di) for di ∈ [d, d̄] as


d∗i = d, if ∂R(d∗i )

∂di
< 0

d∗i ∈ [d, d̄], if ∂R(d∗i )

∂di
= 0

d∗i = d̄, if ∂R(d∗i )

∂di
> 0

.

Proof. See Bolzano-Weierstrass Theorem [140].

Using Theorem 3.1, one can find the relation between the optimal fractional dose d∗i

and the equal fraction dose d ∈ [d, d̄] of the conventional reference plan. Hence, the

corresponding action can be increase, maintain, or decrease, and the range of d∗i can be

determined by Corollary 3.1.1.

Corollary 3.1.1. The relation between the optimal fractional dose, d∗i , to the conventional

reference dose, d ∈ [d, d̄], can be determined by the gradient, ∂R(di)
∂di

, of the reward function

at di = d as


d∗i ∈ [d, d), if ∂R(di)

∂di
|di=d < 0

d∗i = d, if ∂R(di)
∂di
|di=d = 0

d∗i ∈ (d, d̄], if ∂R(di)
∂di
|di=d > 0

.

Proof. The proof is trivial following Theorem 3.1.
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Few performance measures are commonly used to evaluate an RT treatment plan includ-

ing BED, tumor control probability (TCP) and normal tissue control probability (NTCP).

BED is a measure to estimate the amount of radiation damage received in any structure. A

higher tumor BED is known to give a better tumor control. In contrast, a lower OAR BED

is desirable to have lower OAR toxicity. Therefore, we developed a multi-stage optimiza-

tion model, in which the biological response of the treatment is defined based on the BED

of the tumor and OAR. At each adaptation point determined by the RL (i.e., at stage k), an

optimization problem is used to find the optimal fraction dose of the stage (dk) as follows

max
k∑
i=1

BEDT
i (di), (3.9)

s.t.
k∑
i=1

BEDφ
i (γ di) ≤ BED

φRef
k (

k

N
γ Dpres), (3.10)

k∑
i=1

BEDT
i (di) ≥ BED

TRef
k ((1− k

N
) DL

pres), (3.11)

SFk SF
Ref
N−k ≤ ε, (3.12)

SF Ref
N−k = SF ((1− k

N
) Dpres), (3.13)

SFk = SF (dk−1) · SF (dk), (3.14)

and dl ≤ dk ≤ du. (3.15)

The objective function (3.9) maximizes the total BED on the tumor (T ) by delivering

d1, d2, ..., and dk at stages 1, 2, ..., k. Constraint (3.10) controls the BED deviations from the

conventional reference plan (i.e., an equal fraction dose di = d,∀i) for the OAR biological

tolerance to achieve the same or better OAR (φ) toxicity. Constraint (3.11) sets a lower-

bound for tumor BED based on a set of biological parameters and delivered dose using the

lower bound of the prescription dose to be account for the required clinical tumor BED.
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Constraint (3.12) is to ensure that tumor cells will be completely eradicated at the end of

treatment even if we continue the rest of treatment with the conventional plan (i.e., di =

d, i = N −K, · · · , N ). Where, SFk is the total surviving fraction at the end of stage k by

delivering d1, d2, ..., and dk at stages 1, 2, ..., k, and SFRef
N−k is the the total surviving fraction

after N − k fractions based on the reference plan (labeled as Ref ). Constraints (3.13) and

(3.14) represent the calculation of SFRef
N−k and SFk, respectively. Finally, constraint (3.15)

ensures that the amount of the fraction dose is within its lower and upper bounds.

We can formulate a reward function based on the proposed biological optimization

model by relaxing constraints and penalizing weighted constraint violations. Our proposed

reward function of RL is defined as follows

R(si, ai) = λ1 BED
T
i (si, ai)− λ2

(
BED

TRef
i (si)−BEDT

i (si, ai)
)+

− λ3

(
SFi(si, ai) SF

Ref
N−i (si, ai)− ε

)+

− λ4

(
BEDφ

i (si, ai)−BED
φRef
i (si)

)+

,

(3.16)

where BEDT
i (si, ai) and BEDφ

i (si, ai) are the cumulative BED after taking action ai ∈

{A} (delivering dk dose) in state si ∈ {S} at each time stage i and (.)+ is a sign function

defined as

(x)+ =


x, x > 0

0, x ≤ 0

. (3.17)

The BED estimate of the tumor is calculated considering the surviving fraction of viable

and doomed cells, tumor repopulation of viable cells, and decay of dead cells. Hence, the
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proposed formulation for the BED of the tumor at each time stage is

BEDT
i (di) = −

(
ui−1

vi−1

)
∆ti
α τg

+

(
wi−1

vi−1

)
∆ti
α τd

+

(
ui−1

vi−1

)(
di +

d2
i

α/β

)
+

(
mi−1

vi−1

)(
di

OER
+

d2
i

OER2 α/β

)
.

(3.18)

Theorem 3.2. There exists a lower bound (dl) on di such that BEDT
i (di) is a non-negative

and monotonically increasing function for all di ≥ dl,∀i = 1, · · · , N .

• If ui−1

wi−1
≤ τg

τd
, then dl = 0 and BEDT

i (di) ≥ 0.

• If ui−1

wi−1
> τg

τd
, then dl = −b+

√
δ

2a
> 0, and BEDT

i (di) > 0

where,

a = OER2 ui−1+mi−1

OER2 α/β vi−1
,

b = OER ui−1+mi−1

OER vi−1
,

c = −
(
ui−1

vi−1

)
∆ti
α τg

+
(
wi−1

vi−1

)
∆ti
α τd

,

δ = b2 − 4ac.

Proof. TheBED function in (3.18) is a quadratic function of di. It is continuous and twice

differentiable. The first derivative of BEDiT (di) with respect to di is strictly positive for

all di ≥ 0 as

∂BEDiT (di)

∂di
=
OER ui−1 +mi−1

OER vi−1

+ 2

(
OER2 ui−1 +mi−1

OER2 α/β vi−1

)
di > 0. (3.19)

Also, the second derivative of BEDiT (di) with respect to di is strictly positive for all di as

∂2BEDiT (di)

∂d2
i

= 2

(
OER2 ui−1 +mi−1

OER2 α/β vi−1

)
> 0, (3.20)

hence, BEDiT (di) is strictly convex and it is an increasing function for di ≥ 0.

Next, we show the existence of a lower bound (dl) on dose di. For the notational
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convenience, we use the following abstract form of BEDiT (di) function, ad2
i + bdi + c,

where a, b, and c are defined as

a =
OER2 ui−1 +mi−1

OER2 α/β vi−1

, (3.21)

b =
OER ui−1 +mi−1

OER vi−1

, (3.22)

and

c = −
(
ui−1

vi−1

)
∆ti
α τg

+

(
wi−1

vi−1

)
∆ti
α τd

. (3.23)

The lower bound dl can be found by examining the roots of ad2
i + bdi + c = 0. The roots

of a quadratic function are given by di = −b±
√
δ

2a
, where δ = b2 − 4ac. If δ ≤ 0, then

the BEDT
i (di) is non-negative for any di ≥ 0. If δ > 0, then there are two roots for

BEDT
i (di) = 0. Since the first derivative of the function is equal to zero (∂BED

T
i (di)

∂di
= 0)

for a negative di, at least one of the roots must be negative. For a positive δ, there are two

possibilities: (1) no positive root if BEDT
i (0) ≥ 0 or (2) a positive root if BEDT

i (0) < 0.

In the former case, the c value is positive and we have ui−1

wi−1
≤ τg

τd
. If we consider two

negative roots as d1 and d2 where d1 > d2, the BEDT
i (di) is non-negative for any di ≥ d1;

since d1 < 0 we conclude that BEDT
i (di) is non-negative for any di ≥ 0. In case (2), the

c value is negative and we have ui−1

wi−1
> τg

τd
. For the positive root as in d1, BEDT

i (di) is

non-negative for any di ≥ d1. Therefore, the lower bound is dl = −b+
√
δ

2a
for this case.

We consider OAR repair and repopulation, which are major biological factors affecting

the response to radiation on healthy tissues. The following equation is used to capture the

OAR’s biological response to radiation during the RT treatment:

vφi+1 = vφi exp(−αφd
φ
i − βφd

φ
i

2
) exp(

ti

τφg
) exp(

ti

τφr
), (3.24)
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using the general BED formulation, the BED of an OAR can be calculated as

BEDφ
i =

(
dφi +

dφi
2

αφ/βφ

)
− ∆ti

τφg αφ
− ∆ti

τφr αφ
. (3.25)

We assume that the OAR receives a heterogeneous dose with a sparing factor of γ,

which indicates the ratio of the average dose received by the OAR to the average dose

received by the tumor (dφk = γ dk). We can also consider a variable γ at each stage of the

treatment as γi. Unkelbach et al. [29] proposed that γi can be calculated as γi = γ.v
2/3
i in

which the sparing factor (γi) decreases as the area of radiation field needed to treat tumor

decreases. As it is explained in section 3.2.2, we can estimate the tumor volume based on

the number of tumor cells. The tumor volume at the beginning of stage i can be calculated

by multiplying the number of tumor cells at the beginning of this stage (vi−1) by the volume

of each tumor cell (Vcell). If we assume to have spherical tumor volume, then we have

vi−1 × Vcell =
4

3
πr3 (3.26)

and r =

(
3

4π
vi−1 × Vcell

)1/3

, (3.27)

where r is radius of the estimated disk. So, the area of the area of radiation field needed to

treat tumor can be estimated as

πr2 =

(
3
√
π

4
vi−1 × Vcell

)2/3

, (3.28)

as a result, the sparing factor (γi) can be found as

γi = γ

(
3
√
π

4
vi−1 × Vcell

)2/3

. (3.29)
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3.2.3.2 Deep Double Q-learning Network for Learning Process

The training data is a tuple of {S,A,R} in a finite horizon (treatment duration) and the

goal is to develop an optimal policy (sequence of decision rules) for ART to maximize the

long-term reward which is defined based on RT performance metrics (e.g., BED, SF) for

the treatment outcome. Therefore, the effect of the actions is evaluated not only based on

the immediate reward but also the long-term or subsequent rewards. The value function

V (s) presents the value of a state which is defined as the total expected reward starting

from the state expressed as Q-value function Q(s, a) which can be calculated as follows

Qπ(s, a) = E
[
Rt + γRt+1 + γ2Rt+2 + ...|s, a

]
= Es′ [Rt + γQπ(s′, a′)|s, a] . (3.30)

A Q-value function can be used to find the optimal value function Q∗(s, a) as

Q∗(s, a) = Es′ [Rt + γ max Q∗(s′, a′)|s, a] . (3.31)

Q-learning is a common approach to find the optimal Q-values in RL. Recent studies by

Google DeepMind have shown that the Q-function can be evaluated efficiently using deep

Q-network (DQN) that provides a stable solution to deep value-based RL [49, 141]. Sev-

eral studies showed that DQN algorithm achieved better computational performance than

Q-learning algorithm in complex RL environments [64, 142]. The time complexity is sub-

linear in the length of state period (i.e., the number of steps per episode multiplied by the

total number of episodes), and the space complexity is sublinear in the number of state

space, action space, and steps per episode (Leem et al., 2020, Liu et al., 2021). Since the

same weights are using for estimating both target and Q-values in the DQN algorithm, both

Q-values and target values are shifting and there is a big correlation between the target

network and the output weights that are changing for training. So, we consider the idea
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of fixed Q-targets introduced by DeepMind and employ a separate network with a fixed

parameter (w−) for estimating the target values, and update the target network at every τ

steps based on the current DQN parameters. Therefore, we will have more stable learning

process. An over-estimation of Q-values at the early stages of the training can be an issue

in Q-learning. Hence, we use the Double DQN structure ([143]) to handle the problem. We

use two networks to separate the action selection from the target Q value generation dur-

ing the learning process to reduce a false positive error that resulted from a noisy Q-value.

Therefore, the DQN network selects the best action first to take for the next state (i.e, the

action with the highest Q value). Then, the target network calculates the target Q value

according to the action taken at the next state. This results in a faster training and more

stable learning process. The value function can be represented using a DQN with weights

w as Q(s, a, w) Qπ(s, a) and the loss function is

L(w) = E
[
(R + γ max Q(s′, a′, w−)−Q(s, a, w))2

]
. (3.32)

The entire learning process is summarized in Algorithm 3.2.
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Algorithm 3.2 Reinforcement Learning Process
Initialization: Initialize replay memory buffer D to capacity ND, initialize network weights
(w1), initialize target network (w−1 ← w1), initialize the environment, initialize decay rate ξ,
episode counter e = 0 ;
for e ≤ Ne do

Reset the environment, t = 0, observe the first state
for step t ≤ N do

Increase decay rate (ξ ← ξ + ∆ξ)
Use Epsilon Greedy Strategy, with probability ε select a random action at
Otherwise select action at = argmaxaQ(st, a;w)
Execute action at, calculate reward rt and observe next state st+1

Store the transition (st, at, rt, st+1) in the replay memory D
Sample a random minibatch of the transitions (sj, aj , rj , sj+1) from D
if If the episode ends at next state (j + 1) then

Set target Q̂ = rj
else

Set Q̂ = rj + γ Q(sj+1, argmaxa′ Q(sj+1, a
′;w), w−)

Perform a gradient descent step with loss
(
Q̂−Q(sj , aj ;w)

)2

Every τ steps ((e.N) + t > τ ) reset the target network weights (w−t ← wt)

3.2.4 RT Optimization Model

Using the proposed RL approach, we can find the optimal adaptation points to improve

the biological response of the tumor and OARs by maximizing the reward function. The

agent’s action is based on the biological-based reward function, but the treatment plan

also needs to meet physical dose requirements for the clinical purpose. Since it is far too

complicated to consider all aspects of an RT treatment (i.e., biological and physical) in one

reward function, an optimization model is proposed to control the dose-volume clinical

requirements. Once the adaptation points are determined using the RL approach, a beamlet

optimization model is solved to satisfy the dose-volume constraints.

This optimization model will be adapted at each adaptation point based on the corre-

sponding predicted tumor volume. For this purpose, the tumor response model can be used

to estimate tumor volume changes. The tumor volume change ratio at each stage rTk (dk) is

a function of a delivered dose at the stage (dk) and can be calculated as rTk (dk) = vk(dk)
vk−1(dk−1)

.
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Therefore, at each adaptation point determined by RL (i.e., at stage i = k), an optimization

model is solved to find the optimal beamlet intensities as follows

min
∑

s∈{T∪S}

Cs
|V k
s |
∑
v∈V ks

Dk
v , (3.33)

s.t.

Dk
v ≤ Uk

v , ∀ v ∈ Vs, s ∈ {T ∪ S} , (3.34)

Dk
v ≥ Lkv , ∀ v ∈ Vs, s ∈ {T} , (3.35)

Dk
v =

∑
b∈B

∆v,k,b wb, ∀ v ∈ Vs, s ∈ {T ∪ S} , (3.36)

and wb ≥ 0, ∀ b ∈ B. (3.37)

3.3 Numerical Experiments and Results

3.3.1 Experiment Setup

We evaluate the proposed tumor response model using simulation and compare the re-

sult with the conventional LQ response model. Then, a sensitivity analysis is performed to

explore the effect of variability in the corresponding parameters and evaluate the observa-

tions based on clinical practices. Since tumor growth and radiosensitivity are two main bi-

ological factors in determining tumor radiation response, we consider four types of tumors

based on the range of radiosensitivity parameter (α) and tumor growth factor (τg). Figure

3.4 shows tumor volume after delivering 2 Gy radiation dose to a tumor with the initial

volume of 10,000 voxels considering α ∈ [0.03, 0.0365] Gy−1 and τg ∈ [0.5, 15] days−1.

We categorize the tumor response types into four groups and their corresponding ranges of

model parameters as summarized in Table 3.3 [9, 21, 144, 145]. Case I and Case II refer

to the fast-growing tumors with low levels of radio sensitivity, and high radiosensitivity
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(a) (b)

Figure 3.4: Number of tumor cells after delivering 2 Gy radiation to a tumor with the initial volume of 10000
voxels using α ∈ [0.03, 0.0365](Gy−1) and τg ∈ [0.5, 15](days−1)

(i.e., Early responding tumors), respectively. Case III and Case IV are for slow-growing

tumors with low radiosensitivity (i.e., Late responding tumors) and high radiosensitivity

(i.e., Intermediate to late responding tumors), respectively.

Table 3.3: Tumor volume cases used in the sensitivity analysis of tumor response model

Low radiosensitivity
(α ∈ [0.03, 0.25] Gy−1)

High radiosensitivity
(α ∈ [0.25, 0.365] Gy−1)

Fast growing tumor
(τg ∈ [0.5, 7] days−1)

Case I Case II

Slow growing tumor
(τg ∈ [7, 60] days−1)

Case III Case IV

3.3.2 Sensitivity Analysis of Tumor Response Model

3.3.2.1 Tumor Response during The Course of RT Treatment

To see the effect of radiation on tumor volume changes, we have simulated the tumor

volume and tumor cells distribution in each sub-compartment. We used an specific set of

parameters as Td = 60 (days), τd = 3 (days−1), ρ = 0.8, α = 0.282 (Gy−1), α/β =
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Figure 3.5: Illustration of dose response curves for the tumor volume, three sub-compartments, and plot of
the relative tumor volume changes rate (vi/vi−1)

10(Gy), OER = 1.8. We also assumed that the total number of tumor cells at the begin-

ning of the time frame is 104 cells. First, we simulate the tumor volume before RT for a

period of 4 weeks to see the effect of tumor growth. Then, we assumed that the treatment

was started at the beginning of week 5.

Dose response curves for the whole tumor volume and three tumor cell sub-compartments

and relative tumor volume changes rate (vi/vi−1) are shown in Figure 3.5. As it is shown

in the figure, the model estimates that the number of alive tumor cells and tumor volume

is increasing before RT due to tumor growth and it is decreasing after starting RT treat-

ment.The number of doomed and dead tumor cells increase after at the early stages of RT

treatment then it starts to decrease due to the decay of dead cells and mitotic cell death.

The relative rate of tumor volume changes shows the tumor volume changes between two

consecutive weeks and it is also increasing before RT and starts to decrease after beginning

of RT treatment to reach a constant value.

3.3.2.2 The Effect of Biological Parameters

We study the effect of radiosensitivity (α) and the tumor growth factor (τg) on tumor

volume response considering four tumor cases (see Table 3.3). The following parameters

were selected based on the ranges in Table 3.3: τd = 4 (days−1), ρ = 0.8, α/β =
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10 (Gy), OER = 1.8 for all cases, α = 0.135 (Gy−1) and τg = 5 (days−1) for Case I, α =

0.282 (Gy−1) and τg = 5 (days−1) for Case II, α = 0.135 (Gy−1) and τg = 15 (days−1)

for Case III, α = 0.282 (Gy−1) and τg = 15 (days−1) for Case IV. Experimental results

of the proposed tumor response model will be compared with those of the conventional

LQ response model. As it is common in practice, we assumed that the treatment plan is

to deliver five equal fractional doses of 2 Gy in 6 weeks and no treatment will be given

on the weekends. For each case, we simulated the weekly tumor response based on the

LQ model and the proposed response model. Figure 3.6 shows the tumor response curves

and cumulative tumor cell-kill rate compared with the conventional LQ response model for

each tumor case. Figure 3.7 presents the tumor volume changes for each tumor case based

on LQ tumor response model (Figure 3.7(a)) and biological tumor response (BTR) model

(Figure 3.7(b)).

As shown in Figure 3.6, both models behaved similarly for Case IV which is assumed

to have the highest α and τg values. The difference between the two models is more notice-

able when the tumor is less radio-sensitive (e.g., Case II and Case IV), and the impact of

tumor growth and reoxygenation (which is not considered in the LQ model) became more

apparent. The results indicate that our tumor response model is more sensitive to tumor re-

occurrence risk and shows more realistic results than the LQ model for less radio-sensitive

tumors (e.g., Case I and Case III).

The best treatment outcome (i.e., no more remaining tumor cells after the fourth week

of treatment) was observed in Case IV, which is the most radio-sensitive case with slow

proliferation. Increasing the proliferation rate (Case II) resulted in a slightly worse treat-

ment outcome by taking six weeks to eradicate the whole tumor. However, we observed

that a lower tumor radio-sensitivity lead to a less desirable treatment outcome for both

slow proliferating (Case III) and fast proliferating (Case I) tumors. As expected, the worst

treatment outcome was observed in Case I, which has the lowest radio-sensitivity with fast
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(a)

(b)

Figure 3.6: Radiosensitivity effect based on tumor response model versus LQ model; (a) tumor response
curves, (b) cumulative tumor cell-kill rate curves

tumor cell proliferation.

We consider exponential tumor growth with constant rate of 1/τg which can be found
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(a) (b)

Figure 3.7: Illustration of tumor volume changes for each tumor case based on (a) LQ tumor response model
and (b) biological tumor response (BTR) model

Figure 3.8: Tumor growth comparison

based on the tumor doubling time (τg = Td/Ln(2)). Higher value of the tumor growth rate

(τg) would lead to higher tumor doubling time and slower tumor growth. We considered one

tumor case with high radiosensitivity (α = 0.282) and another one with low radiosensitivity

(α = 0.135) and simulate the tumor response using four different Td of 3, 15, 30, and 120

days with the same treatment plan (5 equal fractional dose of 2 Gy during a period of six

weeks). Figure 3.8 represents the tumor respond curves for four assumed tumor cases with

different values of Td. The tumor response curves of both cases show that tumor volume and

number of viable tumor cells are higher for lower Td values (fast growing tumor) during

the course of treatment. Moreover, the effect of changing Td is more noticeable for less

radiosensitive case as expected based on previous observations. The radioresistance case
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Figure 3.9: OER parameter effect on the tumor response curves from the proposed tumor response model

with the lowest doubling time or fastest proliferation (Td = 3 days) has the highest final

number of remaining tumor cells which means that the number of repopulated tumor cells

were higher than the number of cells killed by RT.

The effect of changing OER parameter on tumor volume regressions based on the pro-

posed tumor response model is explored for the four assumed cases and it is shown in

Figure 3.9. Increasing the value of OER means that the hypoxia effect is more severe for

the tumor; therefore, the tumor would be less radiosensitive. As shown in figure 3.9, chang-

ing OER does not affect the tumor response curves for radio sensitive tumors (Case II and

Case IV) because the value of radiosensitivty parameter (α) is still high even in hypoxic

phase. However, higher value of OER can lead to larger volume of tumor at the end of

treatment. Also, faster tumor growth can enhance the effect of increasing OER value.

To find the impact of changing tumor decay parameter (τd) in tumor radiation response,
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Figure 3.10: Decay parameter effect on the tumor response curves from the proposed tumor response model

we considered three common values for this parameter for each case and the results is

presented in Figure 3.10. This figure shows that changing the value of τd only affect the

number of dead cells which are in the process of decay. Having longer tumor decay time

leads to have less decay of dead cells; as a result, the total number of tumor cells will

increase. Also, we can see that changing τd affects the tumor response for all cases in a

same way.

We assumed the same α/β ratio for all previous analyses and we investigate the sensi-

tivity of the tumor response model to α/β values for tumors with high and low radiosensi-

tivity. Figure 3.11 shows the simulated tumor radiation response using four α/β values of

2, 4, 8, 10 Gy for high and low radiosensitive tumors. The results shows that higher α/β

decrease tumor volume regression rate during the course of treatment. This depletion is

more noticeable for low radiosensetive tumors because tumors with high radiosensetivity
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Figure 3.11: α/β parameter effect on the tumor response curves from the proposed tumor response model

can make up the changes in α/β.

3.3.2.3 The Effect of Variable Fractionation Scheme

The variable dose fractionation is another important factor affecting the tumor biologi-

cal response during radiation therapy treatment. We investigated the impact of having dif-

ferent fractionation plans on the tumor BED, OAR BED, and tumor cell killing rate for the

four cancer cases. We assumed that the treatment protocol is to deliver 60 Gy prescription

dose five fractions per week for 6 weeks. We considered one plan with an equal fraction

dose of d = 2, and two other plans with the variable fraction dose d ∈ {1.8, 2, 2.2} with

approximately same OAR toxicity (BEDφ±1%) as equal dose plan. Table 3.4 summarizes

the weekly dose per fraction and the values of BEDT , BEDΦ, and tumor cell killing rate

(1 − SF ) for the four tumor cases. As shown in the table, the BEDΦ for both variable

plans were the same, and it was increased by 0.3% compared to the equal dose plan. The

value of BEDT was also increased for Plan (a) by 0.50% and decreased by 0.44% for Plan

(b), on average.

Figure 3.12 shows the Tumor BED comparison based on these three plan for four tu-

mor cases. As we can see from the figure, Plan (a) has higher BED than the Equal dose

plan while Plan (b) has lower BED than the two other plans. Also, Case I shows the most

60



sensitivity to fractionation scheme. Furthermore, the tumor cell killing rate (1-Surviving

fraction) was the highest for Plan (a) and the lowest for Plan (b) for all cases. This dif-

ference was more noticeable for cases with a worse treatment outcome (e.g., Case I). The

results suggest that the variable fractionation can change the treatment outcome in terms

of the tumor BED. The treatment outcome can be improved by changing the fractionation

scheme specifically for the cases with a low BED.

Table 3.4: Weekly dose per fraction, tumor BED, OAR BED and tumor cell killing rate (1 − SF ) based on
each plan for the four tumor cases

Weekly dose per fraction (Gy)
W1 W2 W3 W4 W5 W6 BEDT BEDΦ 1− SF (%)

Case I
Equal dose plan 2 2 2 2 2 2 55.61 23.02 97.70
Plan (a) 2 2.2 2.2 1.8 1.8 2 55.94 23.20 97.92
Plan (b) 2 2 1.8 1.8 2.2 2.2 55.25 23.20 97.28
Case II
Equal dose plan 2 2 2 2 2 2 57.15 23.02 99.42
Plan (a) 2 2.2 2.2 1.8 1.8 2 57.40 23.20 99.50
Plan (b) 2 2 1.8 1.8 2.2 2.2 56.93 23.20 99.28
Case III
Equal dose plan 2 2 2 2 2 2 72.77 23.02 99.42
Plan (a) 2 2.2 2.2 1.8 1.8 2 73.17 23.20 99.48
Plan (b) 2 2 1.8 1.8 2.2 2.2 72.32 23.20 99.33
Case IV
Equal dose plan 2 2 2 2 2 2 78.44 23.02 99.90
Plan (a) 2 2.2 2.2 1.8 1.8 2 78.72 23.20 99.91
Plan (b) 2 2 1.8 1.8 2.2 2.2 78.31 23.20 99.90

3.3.3 RL Environment Generation and Variability Analysis

The environment of RL algorithm is ART treatment planning environment which in-

cludes all possible ART policies based on all possible tumor volume changes scenarios. At

each time stage, a number of tumor volume cases and their associated BED and surviving

fraction based on the state and action in the previous time stage are calculated and used in
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Figure 3.12: The effect of variable fractionation scheme on tumor BED for all four cases

determining state and immediate reward. To incorporate the variability inherent in biolog-

ical parameters within the RL environment, we choose a set of values for each parameter

based on the possible range of it at each episode for a specific cancer site. As a result, the

RL agent can see all possible values of parameters and take robust actions.

To better understand the existing biological uncertainty in tumor radiation response,

the RL environment was generated based on the assumed ranges for the four general tumor

cases. A set of values for each parameter was chosen randomly using uniform distribution.

Since the tumor response model is very sensitive to α and τg values, we chose five random

values for each one. two values for Td are considered because the variability within the

possible range of Td was lower than α and τg. Since the observed effect of OER on tumor

radiation response was negligible, We assumed α/β = 10 and OER = 1.8 which are the

most common reported values for them.
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Figure 3.13 shows the number of remaining tumor cells (tumor volume) in RL envi-

ronment for each assumed tumor case based on one set of values for uncertain parameters

after delivering one fraction and 35 fractions of 2 Gy. Based on this figure, We can see that

the uncertainty inherent in biological parameters can result in having variable treatment

outcome in terms of tumor cell survival. This figure includes the variability caused by each

uncertain biological parameter in RL environment for Case I (3.13(a)), Case II (3.13(b)),

Case III (3.13(c)), and Case IV (3.13(d)). The number of remaining tumor cells for each

value of α is shown by different colors in which the blue color and purple color repre-

sent the lowest and highest value of α, respectively. Circle is marker of fast tumor decay

(τd = 2 days) and triangle is marker of slow tumor decay (τd = 6 days). Also, different

marker size represents τg values such that larger values of τg are shown with larger marker

size.

As shown in the figure, the variability in treatment outcome (residual tumor volume)

is higher for less radiosensitive cases (Case I and Case III) than high radiosensitive cases

(Case II and Case IV) which confirms the previous observations about high sensitivity of

tumor response model to radiosensitivity parameter (α). Therefore, we can say that for

each tumor case there is a threshold for α parameter that any α value larger than this

threshold will result in total removal of tumor cells. Also, lower values of τg leads to have

higher number of remaining tumor cells and higher variability among scenarios. Moreover,

slower tumor decay (τd) lower tumor volume at each treatment stage and lower variability

in final treatment outcome. In summary, we can conclude that variability among scenarios

is almost the same for all four cases after the first fraction but the tumor volume range is

different. Furthermore, the final treatment outcome in terms of residual tumor volume is

the worst for case I which has low radiosensitivity and high rate of proliferation and the

best outcome is for case IV with high radiosensitivity and slow proliferation as expected

based on the parameters. Also, Case III shows more variability and worse final outcome
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than case II which shows the higher sensitivity of response model to radiosensitivity than

growth rate.

(a) Case I

(b) Case II

(c) Case III

(d) Case IV

Figure 3.13: Tumor volume variability in the RL environment for four tumor cases
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Figure 3.14: Tumor BED comparison based on different models for all four tumor cases

3.3.4 Sensitivity Analysis of BED Function

As discussed in section (2.3.1), we proposed equation (3.18) to estimate BED based

on biological parameters, tumor response model, and tumor volume sub-compartments.

In this section, we compare the proposed BED function with the BED formulations in

the literature including BED based on LQ model1 [6, 7], LQ model with repopulation 2

[10, 29], and LQ model with repopulation and decay 3 [29]. Figure 3.14 shows the tumor

BED during the course of treatment (35 fractions of 2 Gy) based on four BED formulations

for each assumed tumor case.

As shown in the figure, LQ model estimates an equal BED for all cases because of

1BEDi = di(1 + di
α/β )

2BEDi = di(1 + di
α/β )− ∆ti

α τg
3BEDi = di(1 + di

α/β )− ∆ti
α τg

+− ∆ti
α τd
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the assumed equal α/β ratio. So, BED based on LQ model cannot reflect the different

treatment outcome of these cases. Moreover, incorporating tumor growth in LQ model

results in having lower BED values which is the same for cases with the same tumor growth

rate and cannot reflect the variability in treatment outcome between these cases (e.g., Case

I and Case II). Also, considering both tumor decay and growth can neglect the effect of

tumor growth and result in misleading information about the treatment outcome due to the

inaccurate value of tumor decay parameter. Therefore, we proposed a weighted formulation

for BED that considers tumor growth and decay and hypoxia effect in each volume sub-

compartment based on the tumor response to radiation.

Figure 3.14 represents that the estimated BED based on the proposed model is the lower

than the BED from LQ model and greater than the BED from LQ model with repopula-

tion. Case IV and Case I show the highest estimated BED (closest to LQ model) and

lowest estimated BED (closest to LQ model with repopulation), respectively, which con-

firms the previous observation for treatment outcome in terms of remaining tumor volume

cells after 6 weeks of treatment. Also, Case II shows the slightly higher BED than Case

III as expected. As a result, we can conclude that higher radiosensitivity and slower tumor

repopulation increase the proposed estimated BED and eradication of tumor cells.

3.3.5 A Case Study on a Clinical Lung Cancer Cancer Case

We evaluated the performance of our proposed RT treatment planning framework on an

actual clinical non-small cell lung cancer (NSCLC) case obtained from the MD Anderson

Cancer Center (MDACC), Houston, TX. The patient went through a four-dimensional CT

imaging as a part of a routine treatment simulation before starting the radiation therapy.

The target volume and normal structures were manually contoured on axial slices of the

planning CT scan by a physician. The anatomy was discretized into voxels of 2.5 mm (L)

× 2.5 mm (W) × 2.5 mm (H). Table 3.5 lists the organs of interest, voxel counts of each
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organ, and the prescribed treatment protocol and requirements.

Table 3.5: Organs of interest, voxel counts of each organ, and dose-volume requirements for the volumes of
interest

Structure Structure Number Dose Requirements
Type of Voxels

Planning target Target 59,030 Volume receiving at least
volume (PTV) the prescribed dose: ≥ 95%

Heart OAR 43,180 Volume receiving doses
higher than 45 Gy: ≤65%

Total lung OAR 287,616 Volume receiving doses
higher than 20 Gy: ≤45%

We made the following assumptions to construct the RL environment. As it was done

in the clinic, five fractions of radiation dose are to be delivered to the target in each week,

skipping the treatment during the weekends to allow healthy tissues to recover. A total of

35 fractions, N = 35, will be delivered to complete the treatment. The optimal plan allows

the total delivered dose to be in the range between dl = 68 Gy and du = 72 Gy [146] based

on the tumor biological characteristics. The set of possible actions (i.e., fraction dose)

of A = {1.8, 2.0, 2.2} was assumed to include a 0.2 Gy deviation from the conventional

fraction dose, which is reasonable in ART fractionation scheme [146, 147].

Increasing the tumor’s BED while keeping the OAR BED at a safe level can help im-

prove tumor control without elevating the OAR toxicity. Therefore, our goal is to increase

the BED of the tumor compared to the one from the reference plan, while keeping the

OAR BED to be, at most, +5% from the reference plan. Also, the surviving fraction was

capped at 0.01% to ensure the elimination of all tumor cells. The corresponding penalty

coefficients in the reward function were determined by manual adjustments to achieve the

desired goal of the treatment plan according to the treatment planner’s preference.

Ranges of biological parameters for lung cancer were chosen based on the literature to

set up the RL environment for tumor response during the treatment period. We assumed
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an exponential tumor growth rate of τg ∈ [10, 60] days [144, 148, 149] and and a tumor

decay factor of τd ∈ [2, 6] days [139, 150], the uncertain ranges of αp ∈ [0.20, 0.365]

Gy−1 [139, 144] and α/β ∈ [4, 10] Gy [139, 145, 151, 152]. The standard value of oxygen

enhancement ratio for lung cancer was considered as a constant value of OER = 1.7.

The total lung radiation toxicity is one of the most important metrics in determining the

quality of RT plan for lung cancer. In this study, we assumed the total lung as an OAR with

α = 0.3 Gy−1 and αφ/βφ = 3 [10, 153, 154], OAR repopulation rate τφg = 15 days, and

repair rates τφr = 3.5 days [9, 21] in the RL environment. We also considered a constant

OAR dose sparing factor of γ = 0.7 [10].

At each episode of the training process, three values for α and τg, and two values for

τd are randomly chosen from the defined ranges which resulted in generating 50 tumor

volume cases. At each time stage i within an episode (i.e., each fraction), 50 tumor volume

cases and their associated BED(si, ai) and surviving fraction based on the current state

si and selected action ai were calculated and used in determining the state and immediate

reward.

To find the optimal adaptation points, we need to determine the optimal action at each

time epoch (i.e., the beginning of each week). Hence, we trained the RL model using

Algorithm 1 to find the optimal Q value function Q∗(s, a), as a prediction of the reward

function, with a minimum loss function value L(w) in Equation (3.32). The model with the

minimum loss value was achieved at 44000th episode of training, which is the last episode

before over-fitting happens. The network loss within an episode in every 1000 iterations is

depicted in Figure 3.15. As shown in the figure, the network training loss has fluctuations

at the beginning of training and it decreased as the episode increased. This behavior is

reasonable as the RL model tries to learn over time to predict the Q value function with the

highest precision.
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Figure 3.15: Training loss value in every 1000 episodes

The best trained RL model is used to find the optimal fractionated plans for 500 sce-

narios, which are generated based on different sets of selected biological parameters (i.e.,

α, τg, τd) of a lung cancer patient. For each scenario, an optimal action (i.e., dose) was

selected to obtain the optimal plan per fraction. Then, the expected dose amount over

500 scenarios was calculated to generate the optimal fractionation scheme. Figure 3.16(a)

shows the distribution of optimal actions at each fraction. Note that a weekly fractionation

is typically used for ART in a clinical practice. Hence, we determined the distribution of

optimal actions for each week by concatenating distributions of five fractions within a week

(see Figure 3.16(b)). As shown in Figure 3.16, the most probable policy is to increase the

fraction dose at the beginning of the treatment then decrease the dose at some point.

Using the weekly distribution of optimal actions, the expected dose amount over 500

scenarios for each week, sum of the probability of each dose in action set multiplied by

the dose, was calculated to determine the optimal fractionation scheme (i.e., di = P (di =

2.2)×2.2+P (di = 2)×2+P (di = 1.8)×1.8). Since changing the weekly fractionated dose

by a small amount is not feasible in clinical practice, we considered week i as an adaptation

point if the difference between the current dose regime and the projected dose for week i

is greater than a threshold (i.e., |di − di−1| ≥ 0.03 Gy). Once the adaptation points are
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(a) Distribution of optimal actions for 35 fractions

(b) Distribution of optimal actions for 7 weeks

Figure 3.16: Distribution of optimal actions; (a) distribution of optimal actions for 35 fractions, (b) distribu-
tion of optimal actions for 7 weeks of treatment.

identified, the ART weekly dose fractionation scheme is determined in such a way that the

new weekly dose amount will be the average dose over all previous weekly doses since

the last adaptation point. We used the conventional fractionation schedule with an equal

weekly fractionated dose as a reference plan to compare with our proposed plan. Table 3.6

presents the weekly fractionation for the lung cancer patient based on the expected value

of actions over the week, corrected values for ART, and the reference plan.

The optimal ART schedule (ART(I)) is to have an initial radiation dose of 2.13 Gy for

the first three weeks, and decrease it to 2.04 Gy at week four, and finally drop the dose to

1.86 Gy for the rest of the treatment. This implies that delivering a higher radiation dose

at the beginning of the treatment will cause more damage to the tumor cells and this will
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Table 3.6: Weekly dose per fraction and total dose for the generated ART plan and the reference plan

Weekly dose per fraction (Gy)
W1 W2 W3 W4 W5 W6 W7 Total Dose

Optimal fractionated plan 2.12 2.13 2.13 2.04 1.89 1.85 1.85 70.05
Optimal ART plan 2.13 2.13 2.13 2.04 1.86 1.86 1.86 70.05
Reference plan 2.00 2.00 2.00 2.00 2.00 2.00 2.00 70.00

Figure 3.17: Box plot of the weekly tumor volume as a percentage of initial tumor volume among the as-
sumed scenarios

change the dose requirement for the rest of the treatment to be lower.

The total dose of the proposed plan is slightly higher than the reference plan. This is

because delivering a higher amount of radiation dose in a treatment will likely increase the

total biological effective dose of the tumor and OARs cells. However, we can only increase

the total dose by a certain amount (i.e., at most +5% of the reference plan) to maintain

the desired range of OAR BED based on the assumed preferences. Figure 3.17 shows the

box plot of the weekly tumor volume as a percentage of initial tumor volume among the

assumed scenarios which has a decreasing trend during the course of treatment.
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3.3.5.1 Plan Evaluation: Biological Comparisons

To quantify the extent of potential biological benefits of the proposed approach, final

surviving fraction (SF) of the tumor and biological effective dose (BED) of tumor and OAR

for reference plan and the optimal ART plan based on the assumed decision policy were

compared. BED is one of the most important biological measures to evaluate the quality

of a RT treatment plan because BED of a structure can represent the biological damage

in the structure very well. So, increasing the tumor BED while keeping the OAR BED

in a acceptable level can help to achieve more damage to the tumor without increasing

the harm to the healthy organs. Tumor’s surviving fraction is also important to ensure the

effectiveness of the treatment plan in term of removing all tumor cells which was set to be

lower than a desired ε value (0.01 %) in the current experiment.

Table 3.7 summarizes these biological metrics from the experiments based on the gen-

erated scenarios for the reference plan and the developed ART plan. In terms of BED, the

generated ART plan performed better than the reference plan for the tumor, increasing the

mean value by 2.01%, while affecting the OAR BED by 0.49% (compared to the reference

plan). Furthermore, The tumor’s surviving fraction was also well controlled in the gener-

ated plan and the probability of having lower values of SF (P (SF < 0.01%)) among the

scenarios was improved by 42.31%.

Table 3.7: Biological measures for the optimal and the reference plan

BEDT BEDΦ 1− SF (%) P (SF < 0.01%)

Optimal 84.74 26.63 99.98 0.37
ART plan (95% CI [84.48,85.01])

Reference 83.07 26.50 99.97 0.26
plan (95% CI [82.74, 83.41])

Measuring the outcome solely based on the mean BED value may hide some individual

worst-case scenarios whose values are much lower than the desired value for the tumor,
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which can lead to undesirable effects on the treatment outcome. Therefore, it is important

to reduce the variability of tumor BED values under different scenarios, where the RL

framework can help address the issue.

Figure 3.18 shows the histogram, the estimated probability density function, and the

box plot of the final BED of the tumor for each of the plans corresponding to 500 scenar-

ios. The sum of the probability densities is equal to 1. The optimal ART plan resulted in

the final BEDT distribution, which appears to follow a normal distribution with a small

variance and higher values around the average BED. As a comparison, the reference plan’s

distribution has a wider variance and is skewed left. Also, the ART plan has a shorter left

tail distribution compared to the reference plan, which means that the ART plan will result

in a smaller number of undesirable worst-cases for BEDT . This suggests that the ART

plan is more likely to produce a treatment plan with a greater final tumor BED than the

reference plan.

We further evaluate the variability in the solution for each plan using commonly used

variability metrics in statistics, including median, range, and interquartile range (IQR). In

Figure 3.18, mean and median values are marked with a red dash line and a blue line,

respectively. We observed that the ART plan resulted in a smaller variability compared

to the reference plan. First, the BED distribution of the ART plan has a narrower spread.

Second, both the mean and median values of the ART plan are higher than those of the

reference plan. Furthermore, the ART plan resulted in a smaller difference between the

mean and median values compared to the reference plan. Third, the IQR can be visualized

using the box width in the box plot. We can see that the ART plan exhibited a 25% narrower

IQR than the reference plan. Also, the range of tumor BED values is reduced by 21%.

Overall, all variability measures of the optimal ART plan were lower than those of the

reference plan. This can be interpreted as meaning that the ART plan performs better than

the reference plan in terms of improving the final BEDT and reducing its variability in
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(a) ART plan (b) Reference plan

Figure 3.18: Histogram, estimated probability density function (PDF), and box plot of the final tumor BED
for the 500 generated scenarios based on (a) the ART plan, and (b) the Reference plan.

uncertain biological parameters.

We used the normal distribution for estimating the PDF for the BED values because it

has the best fitting results compared with other well-known distributions (i.e., Lognormal,

Gamma, and Beta), which can be explained based on the central limit theorem [155] and

randomness of biological parameters. However, a lognormal distribution was used to esti-

mate PDF of SF values because the relationship between the SF and the BED of the tumor

is logarithmic. Figure 3.19 shows the histogram, the estimated probability density function,

and the box plot of the final tumor’s SF from each plan.

The ultimate goal of treatment planning is to produce a plan whose final SF is min-

imized. As shown in the figure, the final SF distribution is skewed right. The long tail

on the right side corresponds to less undesired cases having a large SF (i.e., worst-cases).

Comparing the two treatment plans in Figure 3.19, the ART plan reduced the right tail dis-

tribution of the final tumor SF as well as the upper quartile of the box plot. Hence, the

ART plan outperformed the reference plan in terms of controlling the worst-case tumor SF.

Moreover, the final SF values of the ART plan showed a tighter distribution and higher

density around lower values compared to the reference plan. The ART plan also resulted

in reducing the IQR and value ranges by 11.95% and 46.79%, respectively. Therefore, we
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claim that the ART plan has an advantage over the reference plan in developing treatment

plans under the biological parameter uncertainty.

(a) ART plan (b) Reference plan

Figure 3.19: Histogram, estimated probability density function (PDF), and box plot of the final tumor SF for
the 500 generated scenarios based on (a) the ART plan, and (b) the Reference plan.

3.3.5.2 Effect of Different Decision-Making Preferences

We further investigate the effect of changing a planner’s preference and assumptions

on the final optimal fractionation schedule as well as the quality of treatment in terms of

biological and dosimetric measures. Based on the patient’s characteristics and the type of

cancer, the treatment planner can set different priorities and goals in the RT treatment plan-

ning. For instance, one may want to develop a plan to ensure that the target is receiving the

required dose by controlling the surviving fraction (SF < ε), while reducing the radiation

damage to OARs in terms of the BED. This can be done by assigning a higher weight on the

OAR BED part of the reward function than the tumor BED, while satisfying the surviving

fraction. We expect that the OAR toxicity will improve as a result, and this leads to a better

patient recovery from radiotherapy. In this regard, we also explored the effect of changing

OARs sparing factor (γ) in the BED formulation by finding the optimal plan based on two

values of γ = 0.7 and γ = 0.4. Table 3.8 shows the optimal fractionation schedule, total
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dose, and OAR BED reduction percentage (∆BEDΦ) based on this plan along with dif-

ferent values of γ. Compared to the conventional plan with a prescription dose of 70 Gy,

the ART plan reduced the total dose by 2.14% and 0.71% based on the new preference (or

priority) with γ = 0.7 and γ = 0.4, respectively. This reduction in total radiation dose may

not seem to be significant, but this will result in better OAR sparing with a lower amount

of radiation. In both plans, the total treatment dose is decreased because the priority was

made to reduce the OAR BED, while having the same or better surviving fraction of the

tumor cells and limiting the BED in target volume to a clinically desired level. As we can

see from Table 3.8, the OAR BED is improved by 9.26% and 16.12% using γ = 0.7 and

γ = 0.4, respectively, compared to the reference plan on tumor.

Furthermore, the ART with γ = 0.7 resulted in a more aggressive plan than the one with

γ = 0.4. This is because the OAR will likely reduce the radiation exposure by lowering

the value of γ. Thus, a lower penalty value was assigned to the OAR BED in the reward

function and we can see a higher BEDΦ depletion even with a smaller amount of dose

reduction. The results from this experiment show that the proposed treatment planning

framework is effective to develop a plan that preserves more healthy cells. Therefore, the

planner can develop the best plan according to the patient characteristics and the physician’s

preference.

Table 3.8: Weekly dose per fraction and OAR BED based on the new policy and different values of γ

Weekly dose per fraction (Gy)
W1 W2 W3 W4 W5 W6 W7 Total Dose ∆BEDΦ

γ = 0.7 2.00 2.00 1.90 1.90 1.90 2.00 2.00 68.50 -9.26%
γ = 0.4 2.00 2.00 2.00 2.00 1.95 1.95 2.00 69.50 -16.12 %
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(a) First adaptation point (b) Second adaptation point

Figure 3.20: The simulated residual tumor volume (blue points) and the removed voxels (red points) at (a)
the first adaptation point (beginning of week 4), and (b) the second adaptation point (beginning
of week 5).

3.3.5.3 Plan Evaluation: Dose-Volume Results

Dose-volume metrics are commonly used to evaluate the treatment plan quality. For the

purpose of simulating the ART procedure in this section, treatment plans were adapted to

the patient volumetric changes at each adaptation point. Planning target volumes (PTVs)

were generated analogously on the basis of the average estimated residual tumor volume

over all scenarios using the proposed tumor response model. We removed the tumor cells

receiving a dose higher than the tolerance threshold from k outer layers (i.e., 2.5mm per

layer) of the tumor volume until achieving the estimated residual tumor volume at each

adaptation point. Figure 3.20 shows the residual tumor volume and the removed voxels at

each adaptation point after the first iteration.

To evaluate the OAR toxicity of the generated plans, the dose-volume metrics were

calculated for the heart and total lung for three plans: the reference plan, ART(I) with

γ = 0.7 (see Section 3.3.5), and ART(II) with γ = 0.7 (see Section 3.3.5.2). For the

heart, V45 and D2 were measured to examine the level of a high dose of radiation, which

is critical for a serial organ. Also, V20 and mean dose were measured to account for the

average spread of radiation dose in the total lung, which is a parallel organ. Table 3.9

summarizes these dose-volume metrics for the proposed plan and the reference plan. Note
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that all dose-volume values were normalized to have 95% of PTV receiving at least 70

Gy for the comparison purpose. We make the following observations regarding the ART

plans in comparison to the reference plan based on the table. First, all metrics of the ART

plans for the heart and total lung were lower compared to the reference plan. Second,

ART(I) reduced V45 and D2 of the heart by 3.78% and 0.10%, respectively. Third, ART(II)

decreased V45 and D2 of the heart by 6.01% and 2.48%, respectively. Finally, both ART(I)

and ART(II) reduced V20 of total lung by 3.56% and 4.28%, and mean lung dose by 2.14%

and 5.63%, respectively.

Overall, the ART plans outperformed the reference plan by reducing OAR toxicity.

ART(II) showed slightly lower values on all measured dose-volume metrics, which is a

direct result of the planner’s preference to keep the OAR toxicity at the desired level.

Table 3.9: Comparison of dose-volume metrics for optimal plans under two policies and the reference plan

Optimal ART plan
Policy I Policy II Reference plan

Heart
V45(%) 11.69 11.42 12.15
D2(Gy) 71.84 70.13 71.91

Total Lung
V20(%) 30.85 30.62 31.99
Mean(Gy) 18.77 18.10 19.18

3.4 Conclusion

Multiple studies demonstrate the benefits of ART in terms of healthy tissue sparing and

tumor cell reduction. Considering the biological features of tumor and healthy organs in

treatment planning and adapting the plan to biological changes during the course of treat-

ment is the key motivation for ART. In this paper, we developed a novel biological response
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model that incorporates important biological factors for tumor and healthy organs to pre-

dict the tumor volume regressions during the treatment. Then, we proposed an automated

framework using Reinforcement Learning and an optimization method to find the optimal

adaptation points for ART and dynamically adapt the plan considering the tumor’s uncer-

tain biological response over time. We aimed to achieve a plan with a maximum final tumor

control, while minimizing or maintaining the OARs toxicity levels by finding the actions

to maximize the RL reward function. After finding the adaptation points, an optimization

model was solved to find the optimal beamlet intensities satisfying clinical dose-volume

requirements for the patient based on the predicted tumor volume and the proposed frac-

tionation dose determined by the RL approach at each adaptation point.

We evaluated the performance of our proposed RT treatment planning framework us-

ing a clinical non-small cell lung cancer (NSCLC) case. We also analyzed the proposed

approach under various assumptions and decision priorities to see the trade off in terms of

tumor coverage and OARs toxicity. The proposed ART plans were assessed and compared

with the reference plan (i.e, equal dose fractionation) based on biological and dose-volume

metrics. The results showed that the proposed approach can help the treatment planner

to achieve a robust solution under high levels of uncertainty in the biological parameters.

Using the proposed method, it is not only possible to control the biological aspect of the

treatment and tumor biological response uncertainty, but it also helps satisfy dose-volume

requirements and clinical limits of the treatment. Furthermore, the proposed reinforcement

learning framework can help achieve a robust solution under uncertainty in the biological

parameters, while reducing the variability in the solution and improving the control on the

worst-cases. The proposed approach enables the physicians to find an appropriate personal-

ized ART plan in terms of fractionation dose and the timing of the adaptations. Two major

benefits of this approach are to reduce the time and effort to collect large-scale datasets and

avoid the need for taking expensive CT images at each visit. The proposed RL approach
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can be easily applied to various types of cancer, ART methods, and different treatment

planning preferences.

For the future work, the predicted tumor response to the radiation should be validated or

corrected by obtaining actual imaging data for every visit during the course of RT treatment

(e.g., at the determined adaptation points). This will help further enhance the proposed

approach. Moreover, robust optimization techniques can be used in a beamlet optimization

model to handle physical uncertainties while controlling the biological uncertainties within

the reinforcement learning framework.
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Chapter 4

Assessment of Radiation-Induced Lymphopenia

Risk for Cancer Patients Treated with Photon

Versus Proton Therapy

4.1 Introduction

Significant lymphocyte count depletion (i.e., lymphopenia) is a common toxicity of

radiation therapy and is associated with worse disease control in a number of solid tumors,

including esophageal cancer [65–68]. Because lymphocytes have a substantial role in the

body’s anticancer immune response, severe lymphopenia can reduce a patients’ survival

even in the early stages of tumor progression [68–72].

Multiple recent studies have shown that severe lymphopenia is strongly associated with

poor treatment outcomes in a number of solid tumors such as cervical [72, 73], pancreatic

[74, 75], rectal [76], lung [69, 77], and esophageal [66, 78] cancers. Thus, preservation of

the lymphocytes from radiation damage is crucial for the effectiveness of radiation therapy,

and it is critical to understand the clinical and dosimetric factors affecting the severity and

incidence of RIL and develop strategies for its mitigation.
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Radiation-induced lymphopenia (RIL) commonly occurs in conventional photon radia-

tion therapy, presumably due to the high radiosensitivity of lymphocytes and the large low

and medium dose bath of photon therapy. Dose distribution patterns from protons and pho-

tons can differ greatly, and the dosimetric advantages of state-of-the-art proton therapy over

photon therapy in terms of sparing organs at risk and normal tissue have been demonstrated

in several clinical studies [80, 81]. Also, intensity-modulated proton therapy (IMPT) per-

forms better than intensity-modulated radiation therapy (IMRT) in terms of dose sparing

and robustness towards common anatomical changes in esophageal cancer patients [82].

Moreover, RIL risk likely varies by treatment modality. Recent studies have reported

greater lymphocyte depletion in patients treated with photon therapy than with proton ther-

apy [66, 68, 77–79] For example, Shiraishi et al. [66] reported that proton beam therapy was

associated with a lower risk of grade 4 lymphopenia compared with IMRT in esophageal

cancer patients receiving neoadjuvant chemoradiotherapy.

In this study, we aimed to evaluate the relationship between severe lymphopenia and

delivered radiation dose to the patient using both measured and estimated absolute lympho-

cyte count (ALC). We also modeled expected ALC depletion kinetics in esophageal cancer

patients treated with three different modalities: IMRT, passive-scattering proton therapy

(PSPT), and IMPT.

4.2 Methodology

In this section, we will describe two prediction models for lymphocyte depletion based

on radiation doses and then report the patient selection for model validation as well as

treatment planning of IMRT and IMPT for patients treated with PSPT.
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4.2.1 Patient Selection and Treatment Planning

Ten esophageal cancer patients treated with PSPT (delivered in 28 fractions) at MD

Anderson Cancer Center were included in this study. Baseline ALC and weekly ALC mea-

surements during radiation treatment were recorded. Five patients had six weekly measure-

ments; four patients had five measurements; and one patient had only four measurements.

ALC nadir was defined as the lowest among the weekly measurements for each patient.

The average ALC nadir for the 10 patients was 0.34 K/µL, ranging from 0.07 K/µL to

0.68 K/µL. Three of the patients had grade 2 lymphopenia, four had grade 3, and Three

had grade 4. All patients received concurrent chemoradiation therapy, during which chemo

regimens were doublets of a taxane, fluorouracil, or platinum-based compound. Examples

of the PSPT dose distributions for all patients can be found in Figure 4.1.

Figure 4.1: Dose distributions on an axial plane of PSPT plans for 10 esophageal cancer patients.

We used MatRad [156], a research-oriented treatment planning system, to create IMRT

and IMPT plans for each patient. The prescription dose to the clinical target volume (CTV)

was 50.4 Gy in 28 fractions for all patients. In optimization of the IMRT and IMPT plans,

the same dosimetric criteria were used for each patient, but objective weights and con-

straints were adjusted, when necessary, to achieve the best possible target coverage and

normal tissue sparing. All three plans were normalized to have 95% of the planning target
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volume (PTV) receive the prescription dose per patient.

4.2.2 ALC Depletion Prediction Using a Piecewise-linear Lymphocyte

Survival Function

On the basis of the dose distributions in each patient, we estimated the ALC during

treatment by using a piecewise-linear relationship between lymphocyte survival and dose

per fraction for each modality. The piecewise-linear function was modeled by interpolating

previous findings about radiation-induced lymphocyte death (Yovino et al 2013, Nakamura

et al 1990). Nakamura et al. (1990) reported the percentages of surviving lymphocytes as

90%, 50%, 10%, and 0% for radiation doses of 0.5 Gy, 2 Gy, 3 Gy, and 6 Gy or higher

for each fraction, respectively. This estimation assumes that all circulating blood cells may

receive doses by the end of treatment (after 28 fractions in this study). The lymphocyte

survival probability for each voxel i, Si, after receiving a fractional dose d (in Gy), can be

calculated using the following piecewise-linear function

Si(d) =



−0.2 d+ 1 0 ≤ d < 0.5

−0.26 d+ 1.03 0.5 ≤ d < 2

−0.4 d+ 1.3 2 ≤ d < 3

−0.03 d+ 0.2 3 ≤ d < 6

0 6 ≤ d.

. (4.1)

We assumed that the initial number of lymphocytes in 1 µL of body volume can be

estimated by multiplying the pretreatment ALC value for each patient by the percentage

of blood in 1 unit of body volume. We also assumed that all lymphocytes are in the blood

and lymphocytes are distributed uniformly throughout the irradiated volume. The average
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percentage of blood in the human body is 7% of body weight/volume [157], so the number

of lymphocytes in 1 µL of body volume before treatment can be calculated asL0 = ALC0×

0.07 (cells × 1000/µL). Therefore, the total number of lymphocytes in the whole-body

volume before radiation was

Nb = (ALC0 × 0.07)× (body volume) = L0 × (ν ×Nν) , (4.2)

where ν is the volume of each voxel and Nν is the total number of voxels in the body for

each patient.

The total number of remaining lymphocytes in the body volume after 1 fraction was

calculated by summing the number of surviving lymphocytes in all voxels as follows

N1 =
Nν∑
i=1

Si(d) ν L0. (4.3)

To find the ALC value after treatment, the total probability of lymphocyte survival after

delivering k fractions (TPk) was calculated using the ratio of the remaining lymphocytes

to the initial number of lymphocytes in the body as follows

TPk =

∑Nν
i=1 S

k
i ν L0

ν L0 Nν

=

∑Nν
i=1 S

k
i

Nν

. (4.4)

Thus, the expected final value of ALC after k fractions (k ≥ 1) can be estimated using

the following equation

ALCk = TPk × ALC0 (cells/µL). (4.5)

In this planning study, the total number of fractions was assumed to be 28 for all pa-

tients, i.e., k = 28. Note that the weekly ALC measurements available were for 6, 5, or 4
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weeks for the 10 patients and we assume the measurements were taken in the end of each

week of 5 fractions. Meanwhile, the predictions of ALC use 28 fractions for all patients.

4.2.3 ALC Prediction Using Exponential Curve Fitting

For all 10 patients undergoing PSPT for esophageal cancer, ALC counts during PSPT

exhibited exponential decay as treatment proceeded. Thus, alternatively, we modeled pa-

tient ALC using an exponential function of accumulated delivered dose. We used the

weekly ALC data points to fit an exponential function based on the total delivered dose

to the body (i.e., the sum of doses in all voxels in treatment field) after k fractions (Dk > 0)

as

ALC(Dk) = a. exp(−b. Dk) + c, (4.6)

where a is a fixed parameter indicating the initial ALC before starting the treatment ALC0,

b is an index of an individual patient’s lymphocytes’ sensitivity to dose, and c is added to

the exponential function to account for the replenishment of lymphocytes after irradiation.

Note that previous studies have shown that ALC loss follows exponential decay in setting

of total body radiation in primates [158] and in humans (accidental exposure) [159]. An

exponential fitting method was also used to study ALC loss in partial body radiation therapy

[84].

Using the weekly ALC data points and delivered dose in each week, we found the fitted

values of the b and c parameters. Then, we used the same fitted function to predict ALC

during treatment for PSPT, IMRT, and IMPT plans. The goodness of fit was tested using

PSPT data.

In addition, we used the first three weeks’ data to fit the exponential ALC function

of dose to predict the final ALC after the entire treatment course. The rationale for this
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approach was to determine whether patient-specific factors, including lymphocyte radiation

sensitivity, derived from initial treatment fractions, is predictive of loss of lymphocytes by

the end of treatment.

4.3 Numerical Experiments and Results

4.3.1 Model Validation

Fifteen esophageal cancer patients, treated with IMRT, PSPT, and IMPT (5 per modal-

ity) at MD Anderson Cancer Center with the same treatment prescription delivering 50.4

Gy in 28 fractions and identical normal tissue constraints, were selected to validate the

models. Important metrics for measured values and predictions are summarized in 4.1.

The average mean body doses were 14.44, 7.37, and 6.12 Gy for IMRT, PSPT, and IMPT

treatments, respectively. The average ALC nadir for the 15 patients treated with IMRT,

PSPT, and IMPT was 0.17, 0.33, and 0.39 K/µL, respectively. The average predicted

ALC nadirs after treatment were 0.15, 0.32, and 0.37 K/µL after IMRT, PSPT, and IMPT

treatments using the piecewise-linear model, respectively, and 0.12, 0.30, and 0.36 K/µL

using the exponential model. The mean squared error was 0.005, 0.023, and 0.003 for

IMRT, PSPT, and IMPT treatments based on the piecewise-linear model, and 0.005, 0.005,

and 0.004 based on the exponential model.

Table 4.1: Mean body dose, ALC baseline, real and predicted ALC nadirs, and associated errors for patients
treated with IMRT, PSPT, and IMPT. Unit for ALC values isK/µL. Values for ALC are presented
as mean±SD deviation.

RT
modality

Mean
Body
Dose

ALC0
Real
ALC

Piecewise-linear model Exponential model
Predicted

ALC MSE MAE Predicted
ALC MSE MAE

IMRT 14.44 1.42 ± 0.46 0.17 ± 0.10 0.15 ± 0.09 0.005 0.064 0.12± 0.06 0.005 0.053
PSPT 7.37 1.41 ± 0.57 0.33 ± 0.18 0.32 ± 0.15 0.023 0.104 0.30 ± 0.16 0.005 0.057
IMPT 6.12 1.55 ± 0.57 0.39 ± 0.26 0.37 ± 0.24 0.003 0.040 0.36± 0.24 0.004 0.058

For each group of patients, ∆ALC (baseline − nadir) using the piecewise-linear and
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the exponential models were also calculated. The real values and predictions are sum-

marized in Table 4.2. The average predicted ∆ALC for IMRT patients were 1.27 K/µL

and 1.30 K/µL using piecewise-linear and exponential model, respectively, which were in

agreement with the measured ∆ALC of 1.25 K/µL with a mean squared error of 0.005

for both models and mean absolute error of 0.064 and 0.053 for piecewise-linear and ex-

ponential model, respectively. Similarly, for PSPT patients, the average ∆ALC were 1.08

K/µL, 1.09 K/µL, and 1.11 K/µL for the measured, piecewise-linear model predictions

and exponential model predictions, respectively. The estimated ∆ALC and ALC nadirs

had a mean squared error of 0.023 and 0.005, and a mean absolute error of 0.104 and 0.057

for piecewise-linear and exponential model, respectively. Finally, the average predicted

∆ALC for IMPT patients were 0.99 K/µL and 0.99 K/µL using piecewise-linear and

exponential model, respectively, compared with the measured value of 0.97 K/µL . The

mean squared error and mean absolute error of estimated values were 0.003 and 0.04 for

the piecewise-linear model, and 0.004 and 0.058 for the exponential model. These results

reassure that these two simple models of lymphocyte survival can provide reasonably good

predictions for different radiation modalities.

Table 4.2: Real ΔALC, predicted values and associated errors for patients treated with IMRT, PSPT, and
IMPT. Unit for ALC values is cells × 1000/µL. Values for ALC are presented as mean±SD
deviation.

RT
modality

Real
ΔALC

Piecewise-linear model Exponential model
Predicted
ΔALC MSE MAE Predicted

ΔALC MSE MAE

IMRT 1.25±0.44 1.27±0.43 0.005 0.064 1.30 ± 0.46 0.005 0.053
PSPT 1.08±0.52 1.09±0.52 0.023 0.104 1.11 ± 0.54 0.005 0.057
IMPT 0.97±0.58 0.98±0.60 0.003 0.040 0.99±0.59 0.004 0.058
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4.3.2 Dosimetric Characteristics of IMRT, PSPT, and IMPT Plans

We first evaluated the dose distributions of the PSPT plans employed to treat the 10

patients and the IMRT and IMPT plans generated for this comparison study in terms of

dose-volume metrics (e.g., mean body dose, V5, V10, etc.). An example of the dose distri-

butions of IMRT, PSPT, and IMPT plans for a patient (Patient 5) can be found in Figure

4.2. As expected, the radiation dose using the IMPT plan conformed more closely to the

PTV than did the PSPT and IMRT plans, and the IMRT plan delivered the highest doses

(and largest dose baths) to the body.

Figure 4.2: Dose distributions on an axial plane of IMRT, PSPT, and IMPT plans on an axial plane for Patient
5

The mean body doses (MBD), averaged among the 10 patients, were 7.46 Gy, 4.84 Gy,

and 3.85 Gy for IMRT, PSPT, and IMPT plans, respectively. The fractions of the body

volume that received different doses were consistently higher for photon therapy (IMRT)

plans than for proton therapy (IMPT and PSPT) plans, especially at low doses such as 5 Gy

or 10 Gy. For each dose-volume index, IMPT plans outperformed PSPT plans. More de-

tailed comparison of body dose-volume metrics for the 10 patients among the 3 modalities

can be found in Figure 4.3.
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Figure 4.3: Box plots illustrating different dose-volume indices for the total irradiated volume for three treat-
ment plans (IMRT, PSPT, and IMPT) in 10 patients. Vx is the fraction of volume receiving more
than x Gy dose.

4.3.3 Lymphocyte Survival Based on Piecewise-linear Function of Dose

Using the piecewise-linear lymphocyte survival function, we estimated ALCs as a func-

tion of delivered radiation dose to each voxel in the patient body for IMRT, PSPT, and IMPT

plans for each patient. Note that several studies have shown that patients who receive con-

current chemotherapy exhibit greater treatment-related lymphocyte depletion than patients

who receive radiotherapy alone [66, 77, 78]. Also, chemotherapy type is a significant fac-

tor in determining the level of ALC nadir (the minimum ALC value over the course of or

after radiation therapy), along with radiation modality and mean body dose [66]. As all

of our patients had undergone chemotherapy during the course of radiation therapy, we

added a factor for “chemo effect” to correct the predicted ALC in this linear dose model.

The chemo effect factor was determined by the average of the differences between mea-

sured and predicted ALCs for PSPT data and was applied to all final predictions. It was
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calculated as 26% (SD=0.08) in this study and then applied to the final prediction of ALC.

The average predicted ALCs after treatment were 0.27 K/µL (95% CI [0.21, 0.33]),

0.35 K/µL (95% CI [0.27, 0.42]), and 0.37 K/µL (95% CI [0.29, 0.44]) for IMRT, PSPT,

and IMPT plans, respectively. Figure 4.4(a) shows box plots of predicted ALCs at the

end of treatment courses for the 3 treatment modalities. Figure 4.4(b) shows box plots of

predicted ALC changes before and after treatment (∆ALC = baseline − nadir). Proton

plans showed smaller ALC reductions than did photon plans, and the differences between

PSPT and IMPT were relatively small.

Figure 4.4: Box plots of the piecewise-linear model prediction results for (a) final ALCs, (b) ALC changes
after the three treatment modalities for 10 esophageal cancer patients

The predicted ALC changes for the 10 patients based on the 3 plans are shown in

Figure 4.5(a). ∆ALC values for IMRT plans were higher than those of IMPT and PSPT

plans for all 10 patients. This supports the hypothesis that proton modalities cause less

ALC depletion than do photons. Actual ALC changes from measured ALC data for PSPT

treatments are indicated by black diamonds. We observed that the ALC estimates for PSPT

plans were relatively close to the real measured data, with a mean absolute error of 0.075

and a mean squared error of 0.010.
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Figure 4.5: (a) Comparison of predicted ∆ALC using the piecewise-linear method for IMRT, PSPT, and
IMPT plans for 10 esophageal cancer patients. (b) Predicted ALC nadirs for IMRT and IMPT
treatments using the piecewise-linear method versus the measured ALC nadir for PSPT plans.

Grade 4 lymphopenia (G4L) and grade 3 lymphopenia (G3L), according to the Na-

tional Cancer Institute’s Common Toxicity Criteria for Adverse Events v5.0, are defined as

ALC < 200 cells/µL and ALC < 500 cells/µL, respectively. Recent studies reported a

lower risk of grade 4 lymphopenia for patients treated with proton therapy compared with

patients treated with photon therapy [66, 78, 79]. Figure 4.5(b) shows the predicted ALC
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nadirs for IMRT and IMPT treatments, which were calculated by subtracting the predicted

ALC change from the measured ALC baseline, for each of the 10 patients. In other words,

this figure demonstrates the predicted ALC nadir if each patient had been treated by IMRT

or IMPT instead of PSPT. Grade 4 lymphopenia occurred in Patients 5, 7, and 8 after PSPT

treatment. Based on the predicted ALC nadirs, grade 4 lymphopenia might have been

avoided for Patient 8 if she or he had been treated with IMPT instead of PSPT. Patients 6

and 10 had grade 3 lymphopenia after PSPT; however, they may have developed grade 4

lymphopenia if they had been treated with IMRT. Patients 3 and 4 were predicted to have

developed grade 3 lymphopenia if IMRT had been used instead of PSPT.

4.3.4 Lymphocyte Survival Based on Exponential Fitting

Weekly measurements of ALC and the total delivered dose for PSPT were used to fit an

exponential curve for each patient. Figure 4.6 (a) shows box plots of predicted posttreat-

ment ALC values for all patients using this approach for all 3 modalities, and Figure 4.6

(b) shows box plots of predicted ALC changes before and after treatment (∆ALC). The

predicted final ALC was the lowest for IMRT; IMPT was estimated to result in a higher

ALC than PSPT. These results agree with those of the piecewise-linear function approach.

The fitted exponential curve and data points used for fitting for all patients are shown in

Figure 4.7. The average estimated ALCs after treatment, calculated using exponential fit-

ting, were 0.14 K/µL (95% CI [0.08, 0.19]), 0.22 K/µL (95% CI [0.14, 0.30]), and 0.33

K/µL (95% CI [0.19, 0.45]) for IMRT, PSPT, and IMPT plans, respectively, which shows

the same trend as the previous approach.

93



Figure 4.6: Box plots of the exponential fitting method prediction results for (a) final ALCs, (b) ALC changes
after the three treatment modalities for 10 esophageal cancer patients

Figure 4.7: The exponential curves fitted with measured weekly ALC data for 10 esophageal cancer patients
treated with PSPT.

A comparison of the predicted ALC change using the exponential model is shown in

Figure 4.8(a). The ∆ALC values for IMRT were higher than those for IMPT and PSPT for

all 10 patients. Meanwhile, the estimated ALCs had a mean absolute error of 0.125 and a
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mean squared error of 0.023, higher than for the piece-wise linear method. Figure 4.8(b)

shows the predicted ALC nadirs for IMRT and IMPT treatments, similar to Figure 4.6(b).

For example, Patients 7 and 8 may have avoided grade 4 lymphopenia if treated with IMPT,

and Patients 1 and 6 had grade 3 lymphopenia with PSPT, but might have had grade 4 if

treated with IMRT.

Figure 4.8: (a) Comparison of predicted ∆ALC using the exponential fitting method for IMRT, PSPT, and
IMPT plans for 10 esophageal cancer patients. (b) Predicted ALC nadirs for IMRT and IMPT
treatments using the exponential fitting method versus the measured ALC nadir for PSPT plans.
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To predict lymphopenia in the early stages of treatment, we used the ALC-dose data

for the first three weeks to estimate the exponential ALC function. The fitted exponential

curves using 3-week data for all patients are shown in Figure 4.9. Figure 4.10(a) illustrates

the measured ALC nadirs and the estimated final ALC based on 3-week and all-week data

after PSPT treatment. ALC predictions based on 3-week data were lower than ALC pre-

dictions using all weekly data. Figure 4.10(b) shows an R-squared comparison between

2 exponential fittings, which was higher for the first exponential fitting for all 10 patients.

The average R-squared values for exponential fitting using all weekly data and 3-week data

were 93.5% and 90.0%, respectively.

Figure 4.9: The fitted exponential curve based on the measured ALC of the first 3 weeks for 10 esophageal
cancer patients treated with PSPT
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Figure 4.10: (a) Measured ALC nadirs and estimated posttreatment ALC based on the fitted exponential
model using the first three weeks data and all weekly data from PSPT treatments for 10 patients.
(b) R-squared comparison for two exponential fittings.

4.4 Discussion

The present planning study indicates that IMPT treatment might lead to less lymphocyte

depletion than PSPT and that IMRT may produce the most lymphocyte depletion. It is

worth noting that this study focuses on comparing RIL risks from different treatments for
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the same individual patient, rather than associating RIL with treatments for prospective

patients. Studies like this one can generate hypotheses for clinical trials for investigating

the RIL risks entailed by different radiation modalities. Further studies based on clinical

data of photon therapy (e.g., IMRT, VMAT) are required to support the hypothesis that

proton therapy outperforms Photon therapy in terms of reducing RIL risk.

The piecewise-linear model of lymphocyte survival based on fractional voxel dose

was able to predict the trend of ALC changes during treatment according to the PSPT

data. While this model is simplistic, it could be a straightforward method to compute a

population-based estimate of ALCs before the start of treatment once the dose distribution

is known. However, one limitation of the linear methods is the assumption that lymphocyte

distribution throughout the treatment field is homogeneous. This is not be the case where

organs, for example, spleen in the upper abdomen, may have concentration of lymphocytes,

and may have a greater influence on lymphocyte depletion than the body as a whole.

The exponential lymphocyte survival model of total body dose, built from fitting mea-

sured ALC data, was also able to predict ALC depletion during treatment. However, it

was less accurate than the linear method for predicting the ALC nadir. One possible cause

may be uncertainty in ALC measurement. For example, erroneous increases in ALC were

seen for Patients 2, 4 and 7 (see Figure 4.7). In order to mitigate the sensitivity of this

model to uncertain fitting data (i.e., ALC measurements) and, more importantly, improve

the predictive power, we will investigate approaches to incorporate pre-clinical predictors

into the model in our future work, such as patient age and BMI [85]. Figure 4.11 shows

the comparison of measured and predicted ALC nadirs based on the linear and exponential

methods for all patients. The predicted ALC nadirs are mostly lower than the measured

ones because the predictions were calculated for 28 fractions but the measured nadirs only

were from 4 to 6 weeks among patients. In addition, the impact of increased dose (or more

fractions) on ALC depletion appears to be higher for the exponential method than the linear
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method, for example, Patient 3 as an extreme case where ALC nadir was measured in week

4 (i.e., after 20 fractions).

Figure 4.11: Measured ALC nadirs and the estimated posttreatment ALC based on fitted exponential model
and piecewise-linear model.

Although it is not clear that the exponential fitting approach will be of benefit in pre-

dicting ALC for new patients, as it requires large data sets, this approach is useful in com-

parative studies of different dose patterns for individual patients, such as in the present

work. In addition, by only fitting the ALC data in initial weeks of treatment (of the first

few fractions), one could estimate of ALC nadir early in treatment course based on the dose

distribution and the consideration of individual patients’ lymphocyte sensitivity and make

mid-course correction with adaptive plans if and when needed.

This study also motivates further studies to investigate the clinical factors that affect

RIL risk of different radiation modalities. With help of research on continuing better un-

derstanding of lymphocyte distribution throughout the treatment field, radiation dose could

be optimized accordingly to avoid lymphocyte killing. For example, IMPT and IMRT plans

in this study were optimized using the same conventional dosimetric criteria as the PSPT
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plans. Additional immune sparing could be possible by optimizing plans with constraints

on dose received by volumes of the body (and immune organs at risk such as the spleen,

heart, etc.), which is most promising for IMPT due to its high complexity and flexibility in

modulation. Such methods to enhance the ability of IMPT to minimize lymphopenia risk

but without compromising tumor coverage and other normal tissues at risk will be studied

in our future work.

4.5 Conclusion

This treatment planning study assessed RIL risk and the impact of different dose distri-

butions of IMRT, PSPT, and IMPT on ALCs for 10 esophageal cancer patients. Two meth-

ods are proposed to estimate posttreatment ALC. Results from both approaches showed

significant lymphocyte reduction associated with treatment. Proton plans showed a lower

risk of lymphopenia after the treatment course than did photon plans, and IMPT plans

outperformed PSPT plans in terms of lymphocyte preservation.
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Chapter 5

A Hybrid Deep Learning Model for Forecasting

Lymphocyte Depletion During Radiation

Therapy

5.1 Introduction

Radiation therapy (RT) is an effective treatment option for many cancer patients. An RT

patient undergoes a series of treatment sessions over several weeks to deliver a prescribed

dose of radiation to the tumor. The clinical goal of RT is to maximize the radiation-induced

damage to the tumor, killing all cancerous cells, while minimizing toxic effects on sur-

rounding healthy tissues [160].

Recent studies have shown that the absolute lymphocyte count (ALC) is very sensi-

tive to radiation exposure; by killing the circulating lymphocytes in the radiation field, RT

suppresses the immune system [68], [70]. The resulting reduction in ALC causes radiation-

induced lymphopenia (RIL), a common toxic effect of RT [69], [71]. Clinical studies have

shown that severe lymphopenia can reduce the survival of patients with a number of solid

tumors, including esophageal cancer [78], [66]. Severe RIL can be diagnosed by measuring

the ALC in the patient’s blood. Grade 4 RIL, according to the Common Toxicity Criteria for
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Adverse Events, version 5.0, is defined as an ALC less than 0.2 cells×1000/µL during and

immediately following the course of RT. The ability to reliably predict radiation-induced

ALC depletion on the basis of pretreatment factors (i.e., dosimetric factors, treatment fac-

tors, and patient-specific factors) would improve RT planning. Specifically, predicting the

risk of lymphocyte depletion during early RT fractions could identify patients who are at

high risk of severe lymphopenia (i.e., grade 4 RIL) and who may stand to benefit from

RIL mitigation strategies and modified treatments that may ultimately improve their sur-

vival [84, 85].

Several studies have shown strong associations between pretreatment factors and the

risk of severe RIL in various cancers [66, 71, 78, 84–86, 161]. Some of these studies have

attempted to predict RIL based on different set of pretreatment parameters which are sum-

marized in Table 5.1. van Rossum et al. [85] showed the significance of age, planning target

volume, body mass index, radiation modality, and baseline ALC in relation to grade 4 RIL

for esophageal cancer patients and developed a pretreatment clinical nomogram based on

these factors to determine the risk of grade 4 RIL for new patients. Zhu et al. [86] devel-

oped a hybrid deep learning model to classify patients with grade 4 RIL based on patient

characteristics and dosimetric features but they did not investigate the ALC kinetics during

RT treatment for individual patients. Ebrahimi et al. [161] performed a posttreatment anal-

ysis based on weekly ALC measurements for ten esophageal cancer patients and showed

that the ALC depletion during the course of RT can be fitted to a piecewise-linear or an

exponential model as a function of radiation dose for ten esophageal cancer patients. How-

ever, they did not consider other significant patient-specific clinical factors in their models.

Therefore, comprehensive models that can forecast the kinetics of lymphocyte loss after

fractionated radiation exposures in order to identify high-risk patients are lacking. It is

critical to fill this gap and provide a comprehensive prediction model that can forecast the
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ALC regressions during RT to develop RIL mitigation strategies at the right time and im-

prove the effectiveness of RT for cancer patients. In this study, we aimed to predict weekly

radiation-induced lymphocyte depletion in esophageal cancer patients during the course of

RT on the basis of significant pretreatment or early-treatment information.

Table 5.1: Summary of recent studies on RIL prediction

van Rossum et al. [85] Zhu et al. [86] This Paper

Considered
Variables

Dosimetric Features X X
Patient Clinical Characteristics Xa X X
ALC Measurements X

Method
RIL Patient Classification X
RIL Risk Prediction X
Forecasting weekly ALC values X

aAmong all clinical features, only age, planning target volume, body mass index, radiation modality, and baseline
ALC were considered.

The application of artificial intelligence and machine learning methods to extract in-

sights from data is becoming increasingly attractive in many fields, including healthcare.

Although many healthcare applications have been developed, those that can predict dis-

ease progression [87], [88], treatment outcomes [89], or potential side effects [90], [91]

play an important role in improving patients’ care. Deep learning models have been de-

veloped to extract information from various kinds of data and for many tasks [92], [93].

Recurrent neural networks (RNNs) achieved significant results in extracting temporal in-

formation from sequential data such as text, audio, video, and time series [92]. The main

advantage of RNNs is that they can maintain memory of recent events and update their

current state based on both past states and current input data [94], [95]. Hochreiter and

Schmidhuber [96] proposed the long short-term memory (LSTM) network as an improved

variant of the RNN to handle the long-term dependency and vanishing gradient issues of

RNNs. LSTM networks have been widely used for various kinds of tasks, including speech

recognition [97], [98], image captioning [99], [100], trajectory prediction [101], [102], and

text embedding [103], [104]. However, an LSTM network cannot be used alone for the
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current problem because the significant features that may predict RIL do not have uniform

characteristics. A potential solution for this issue is to develop a stacked structure.

In a stacked structure, the algorithm nonlinearly integrates predictors in order to achieve

higher prediction accuracy and reduce generalization error. Deep-stacked models can out-

perform state-of-the-art deep learning and machine learning models such as tree-based

ensemble models and extreme gradient boosting algorithms [105], [106]. Therefore, we

propose a hybrid deep-stacked model that combines a deep neural network with an LSTM

network for different groups of features in a stacked structure. The proposed structure

consists of 4 channels to process 4 categories of features with different characteristics;

LSTM is used to process the sequential features. We established 3 models to predict an

ALC depletion trend on the basis of pretreatment, first-week, and second-week treatment

information. To evaluate the performance of our proposed hybrid deep-stacked model, we

calculated well-known prediction metrics and compared the results with other common

prediction methods.

In summary, the contribution of this paper is:

• A hybrid deep-stacked structure based on pretreatment information is proposed to

predict RIL for new esophageal cancer patients during the course of RT.

• The proposed hybrid deep-stacked structure can use information from different groups

of features with different characteristics to predict weekly ALC without requiring a

large amount of data to process too many features at the same time, while reducing

bias and the adverse effects of any noise in the data.

• The developed model is flexible, interpretable, and can be extended easily to account

for early-treatment predictions (i.e., at the end of week 1 or 2), and a discriminative

kernel layer was developed to distinguish the importance of each value in the input

sequence at different times by assigning different weights to each one.
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• The ability to predict ALC depletion trend during the course of RT based on pretreat-

ment clinical information would enable physician to evaluate individual RT treatment

plans for lymphopenia risk and identify patients at high risk who would benefit from

modified treatment approaches.

The rest of this paper is organized as follows: section 2 covers the data description, data

preprocessing, and our proposed hybrid deep-stacked model; section 3 presents the exper-

imental results and discusses the key findings of our study; and section 4 concludes and

provides directions for further research.

5.2 Materials and Methods

5.2.1 Data description

This study was approved by the University of Texas MD Anderson Cancer Center in-

stitutional review board. All methods performed here were in accordance with the Health

Insurance Portability and Accountability Act. Data from 860 patients who received con-

current chemoradiotherapy (with or without surgery) for biopsy-proven esophageal cancer

between January 2004 and November 2017 at MD Anderson Cancer Center were used for

this study. All patients were treated with proton or photon radiation modalities with a total

radiation dose of 50.4 Gy over five weeks. All included patients also had available baseline

ALC values and 3 or more documented weekly ALC values during treatment.

5.2.2 Variable Selection

The variables of interest for the prediction were ALC after each week of treatment.

Predictor variables were selected on the basis of their clinical relevance, their low level of
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missingness (<20%), and the results of the correlation analyses presented in previous stud-

ies on this data set by Zhu et al. [86] and van Rossum et al. [85]. As a result, 53 features

were selected as predictors and categorized into 4 main groups on the basis of their clinical

and analytical characteristics: (1) dosimetric features contained 30 dose-volume metrics

such as V5, V10, ... , V45 (Vx refers to the percentage of the organ volume that received at

least x Gy radiation dose) and mean dose for 3 organs at risk: the lung, heart, and spleen;

(2) other numerical treatment-related and patient-specific parameters were nondosimetric

numerical features including age, body mass index (BMI), total blood volume, planning

target volume, and blood component profiles at baseline (red blood cells, white blood cells,

and others); (3) nondosimetric categorical features such as RT modality (proton or photon),

race, sex, tumor location, tumor histologic characteristics, and use of induction chemother-

apy; (4) sequential features included the sequence of 5 weekly ALC values. The features

groups and variables description are also summarized in Table 5.2.

Zhu et al. [86] reported high collinearity between dosimetric features based on the high

variance inflation factor of each dosimetric predictor. This is because of the sequential and

highly intercorrelated nature of dose-volume histograms. Dimensionality reduction tech-

niques can be used to address the collinearity problem by combining highly correlated vari-

ables into a set of uncorrelated variables [162, 163]. The literature showed that t-distributed

stochastic neighbor embedding (t-SNE) is highly capable of non-linear embedding and re-

taining the main information while preserving the non-linear variance and local structure

of data [164–166]. Moreover, we tested the performance of t-SNE over other common

linear and non-linear dimensionality reduction methods such as principal component anal-

ysis (PCA), linear discriminative analysis (LDA), Isomap, locally linear embedding (LLE),

uniform manifold approximation and Projection (UMAP) in a prediction model based on

the dosimetric features. t-SNE outperformed rest of these methods in terms of features
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Table 5.2: Features groups and variables description

Features Groups Variables

Dosimetric
Features

V Heart
x , V Lung

x , V Spleen
x (%);

Vx ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45}
Mean heart dose, mean lung dose, mean spleen dose (Gy) b

Nondosimetric
Numerical
Features

Age
Body mass index (kg m−2)
Total blood volume (l)
Planning target volume (cm3)
Blood component profiles at baseline: RBC (107µl−1),
HB (g/dl) , HT (%), WBC (109 l−1), ANC (103 µl−1),
PLC (103 µl−1), MC (103 µl−1) c

Nondosimetric
Categorical

Features

RT modality
−Proton beam
−Photon beam
Race
−white
−Other
Sex
−Female
−Male
Tumor location
−Upper and middle of esophagus
−Distal
Tumor histologic characteristics
−Adenocarcinoma
−Squamous cell carcinoma
Induction of chemotherapy
−Yes
−No

Sequential
Features

ALC baseline (103 µl−1)
ALC values after each week of RT treatment:
ALCx(103 µl−1); ∀x ∈ {1, 2, 3, 4, 5}

a Vx Refers to the percentage of the volume that received at least x Gy radiation
dose
bAverage radiation dose delivered to heart, lung, and spleen structures
cAbbreviations: RBC, red blood cell count; HB, hemoglobin level; HT, hematocrit
level; WBC, white blood cell count; ANC, absolute neutrophil count; PLC, platelet
count; MC, monocyte count; ALC, absolute lymphocyte count.

variance in the reduced dimension and weekly ALC prediction error based on the dimen-

sionality reduced dosimetric features. Therefore, we used t-SNE dimensionality reduction
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method to reduce the effect of this severe collinearity among dosimetric features without

losing main information. t-SNE is a nonconvex and nonlinear method to reduce the dimen-

sionality of data by considering the similarity between features that follow a conditional

exponential probability distribution as

P (j|i) =

exp
‖xi − xj‖2

2σ2
i∑

i 6=j exp
‖xi−xj‖2

2σ2
i

, (5.1)

where p(j|i) is the similarity between features xi and xj considering the original data fea-

tures as x1, xi, ... , xN . The total similarity between these 2 variables is the mean value of

2 conditional probabilities divided by the number of features (pij = p(j|i)+p(i|j)
2N

). The new

d dimensional data y1, yi, ... , yd must reflect the pij as much as possible. So, qij can be

estimated as

qij =

(
1 + ‖yi − yj‖2)−1∑

i 6=j
(
1 + ‖yi − yj‖2)−1 . (5.2)

The values of new features can be calculated by minimizing the Kullback–Leibler (KL)

divergence between the distributions of data before (P ) and after (Q) dimensionality re-

duction as follows

min KL(P | (Q) =
∑
i 6=j

pijlog
pij
qij
. (5.3)

In our proposed model, t-SNE was implemented with 3 components, an optimal perplexity

value of 60, a learning rate of 10, and principal component analysis (PCA) initialization in

a maximum of 5000 iterations.
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5.2.3 Data Preprocessing

There were some missing values for some features in the data set; these were considered

missing at random. To avoid losing information by removing the missing values, they

were imputed. Missing values in nondosimetric numerical features and dosimetric features

were imputed by median value, and missing values in sequential features were handled

with multiple imputation. Multiple imputation with Bayesian ridge regression was used to

impute missing ALC values for weeks 4 and 5 in 2 steps: first, we imputed 9 missing ALC

values for week 4; then, we imputed 124 missing ALC values for week 5. The imputation

did not change the data distribution and variability.

Due to the uncertainty caused by ALC measurement error, there were some patients

with odd weekly ALC trends, which we considered as outliers. Since removing these

outliers from the data set was not feasible because of the size of the data set, we used

Holt’s double exponential smoothing (DES) method to remove noise from the data. DES is

a popular smoothing method for time series with trends. It assigns exponentially decreasing

weights to observations as the observations get older [167]. The smoothing method helps

to remove or reduce volatility or other types of noise and allows important patterns to stand

out. The equations used to determine the smoothed values with this method are

Ft+m = St +mTt , (5.4)

Tt = β(St − St−1) + (1− β)Tt−1 , (5.5)

and St = αyt + (1− α)(St−1 + Tt−1), (5.6)

where yt refers to the actual value at time t, Ft+m, Tt, and St are the forecast for the

period t + m, the trend estimate, and the exponentially smoothed series, respectively.

α denotes the process smoothing constant, and β refers to the trend smoothing constant
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(−1 ≤ α, β ≤ 1). DES with a damped trend was done only for patients with unreasonable

trends, which was defined by RT experts as having an increased ALC after weeks 2 or 3, or

an increase in ALC value greater than 0.1 after weeks 4 or 5. Min-max normalization (i.e.,

x = x−xmin
xmax−xmin ) was applied to all features, and the data were split into training and test

sets in a ratio of 7:3 (602:258), respectively, using a stratified random sampling scheme.

5.2.4 Hybrid Deep-Stacked Model Structure

The general idea of developing our hybrid stacked model was to combine the knowl-

edge from 4 channels of features and train a meta-model. This was expected to reduce

bias and achieve a robust model that reduced the effect of any possible noise caused by the

imputation or the randomness of the data. The hybrid deep-stacked model with 4 chan-

nels of input (based on the 4 categories of features) was developed to predict the weekly

ALC depletion trend during RT using pretreatment information. Each channel of input was

separately processed to predict weekly ALC values for five weeks of RT treatment (out-

put layer size of 5 nodes). Then, a fully connected neural network integrated the outputs

of 4 channels to do the final prediction. The first 3 branches of the structure consisted of

dense layers that parallelly predicted a sequence of 5 weekly ALC values from dosimetric,

nondosimetric numerical, and nondosimetric categorical features. Since the nondosimetric

categorical features were sparse, the least absolute shrinkage and selection operator (Lasso)

regularization and dropout methods were added for nondosimetric categorical features to

avoid the adverse effect of sparsity on the prediction and overfitting. The last branch in the

structure considered the sequential features, for which we developed an encoder-decoder

LSTM network structure to encode the sequential input (i.e., the encoder) and to predict

a sequence of weekly ALC values (i.e., the decoder). Since we aimed to make our pre-

treatment predictions on the basis of pretreatment information only, we only included the

baseline ALC value at the beginning of the treatment (i.e., week 0) as an input; thus, we had
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a one-to-many LSTM structure. Then, all predictions from each branch were concatenated

and fed into combined dense layers to predict the weekly ALC values. Fig 1. represents the

model structure schema and data preprocessing flow. We refer to this model as "HDS-t0"

throughout the paper.

Figure 5.1: The model structure for predictions based on pretreatment data (HDS-t0)

The inner connections of the LSTM cells for prediction based on sequential features

were based on the mathematical expressions as follows

ft = σ (Wfh ht−1 +Wfx xt + bf ) , (5.7)

it = σ (Wih ht−1 +Wix xt + bi) , (5.8)

c̃t = tanh (Wc̃h ht−1 +Wc̃x xt + bc̃) , (5.9)

ct = ft · ct−1 + it · c̃t, (5.10)

ot = σ (Woh ht−1 +Wox xt + bo) , (5.11)

and ht = ot tanh (ct) . (5.12)
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Where ht−1, xt, ct−1 denote the current hidden state, the input of the cell, and the current

cell state vectors of the LSTM, respectively. W and b are the weight matrices and bias

vector parameters of each layer in the LSTM cells. ft is the forget gate’s activation vector,

which decides what information will be discarded from the cell state. This decision was

made by a sigmoid function that returned 1 when it completely kept the information or 0

when it completely discarded all the information. Moreover, c̃t, it, ot are the cell input, the

input/update gate, and output gate activation vectors, respectively. The input gate decides

what information is to be updated (sigmoid function in it) and what new information (hy-

perbolic tangent function in c̃t) is to be added and stored in the cell state, and the output

gate uses updated cell state and hidden state information to decide what information can be

output.

It is feasible to change the treatment plan for RT patients to avoid or mitigate grade 4

RIL. Therefore, the ability to predict lymphopenia at the early stages of RT could help to

validate pretreatment predictions or prompt modification of the treatment plans for high-

risk patients without losing much time. Thus, we extended our model to account for early-

treatment predictions at the first and second weeks of RT to be used for validation or correc-

tion of pretreatment predictions. The model was extended to make predictions at the end of

the first week of RT by adding the measured ALC value data for the first week to the input

sequence in LSTM encoder. Also, the second week data was added to make predictions

at the end of the second week of treatment. Therefore, a sequence-to-sequence (many-to-

many) LSTM structure combined with a deep discriminative kernel was proposed to make

predictions at the end of the first or second week of the RT treatment. The discriminative

kernel was developed to reflect the correlation between input and output sequences by gen-

erating importance weights for each item in the input sequence to predict each item in the

output sequence. The discriminative kernel automatically assigned higher weights to the

most relevant part of the input sequence for each output and enabled the model to focus on
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the most important information. The output of this layer were discriminative weights and

weighted values of LSTM encoder output (i.e., context vector), which were calculated as

αts = W1 tanh
(
W2 ht +W3 h̄s

)
, (5.13)

wts =
exp (αts)∑S
s′=1 exp (αts′ )

, (5.14)

and acontext =
S∑
s=1

wts h̄s , (5.15)

where αts was used to evaluate the encoder hidden state at time t, ht, and the decoder hidden

state at time s, h̄s, which were normalized using a softmax function as shown in equation

5.14. Then, the context vector was calculated as a weighted average over all decoder hidden

states as shown in equation 5.15.

Throughout this paper, we refer to the modified structure for predictions after 1 and 2

weeks of treatment as "HDS-t1" and "HDS-t2", respectively. Fig. 2 and Fig. 3 show the

HDS-t1 and HDS-t2 model structures, consecutively.

Figure 5.2: The model structure for predictions after 1 week of treatment (HDS-t1)
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Figure 5.3: The model structure for predictions after 2 weeks of treatment (HDS-t2)

5.2.5 Training Algorithm and Model Configuration

Algorithm 5.1 shows the training flow of the proposed models. Each deep learning

model was trained with 75 epochs using a batch size of 16 and was implemented using

Adam optimizer [168] with a learning rate of 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8. The

L1 regularizer weight of 0.2 and dropout rate of 0.2 were considered for the dense layers

of nondosimetric categorical features. The regularization of the hyperparameters of the

training set was adjusted empirically until the loss functions of both the training and testing

sets declined according to similar trends and without significant gaps between them.

5.2.6 Evaluation Metrics

In order to evaluate the performance of the proposed models, several important pre-

diction metrics were calculated using predictions for the test data, including mean square

error (MSE), normalizeroot mean square error (NRMSE), mean absolute error (MAE), and
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Algorithm 5.1 Training process
Initialization: Initial state, initial network weights θ0 → θ, size of output sequenceNout, number
of epochs Ne, number of batches Nb, e = 1, b = 1;
for e ≤ Ne do

for b ≤ Nb do
Feed each feature group to the corresponding branch and obtain the output:
YDose = fDose(XDose)
YNonDose = fNonDose(XNonDose)
YNonDoseCat = fNonDoseCat(XNonDoseCat)
Xencode, h0, c0 = fencode(XSeq, initial state)
Obtain each LSTM output sequence starting from i = 1:
if |XSeq| > 1 then

acontext, w0 = fdiscr(Xencode, h0)
for i ≤ Nout do

Xi
encode, hi, ci = fencode(acontext, hi−1, ci−1)

acontext, wi = fdiscr(Xencode, hi)

else
for i ≤ Nout do

Xi
encode, hi = fencode(Xencode, hi−1)

Xdecode =
[
X1
encode, X

2
encode, · · · , X

Nout
encode

]
Yout = ffinal(YDose, YNonDose, YNonDoseCat, Xdecode)
Optimize the loss using Adam optimizer

Calculate the batch total loss using MSE =
∥∥∥Y − Ŷ ∥∥∥2

Update network weights θ + ∆θ → θ

explained variance (EV). These evaluation metrics were defined as

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2

, (5.16)

NRMSE =

√∑n
i=1(Yi−Ŷi)

2

n

(Ymax − Ymin)
, (5.17)

MAE =
1

n

n∑
i=1

∣∣∣Yi − Ŷi∣∣∣ , (5.18)

and EV = 1−
(
V ar(Yi − Ŷi)/V ar(Y )

)
, (5.19)

where Yi and Ŷi are the true values and predicted values, respectively.
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5.2.7 Comparison Models

To evaluate the performance of our proposed hybrid deep-stacked model, we compared

the results with other off-the-shelf prediction methods. Support vector machine (SVM),

linear regression (LR), LR with lasso regularization (LR-Lasso), LR with ElasticNet (LR-

ElasticNet), regression with stochastic gradient descent (SGD), decision tree, extra tree,

and random forest models were developed for comparison with the proposed model. The

same training and testing sets used for the hybrid deep-stacked model were used for all of

these models. The hyperparameters for each model were selected based on a grid search to

make the best possible predictions.

5.3 Results

5.3.1 Prediction Based on Pretreatment Data

The data were split into training and test sets in a ratio of 7:3 (602:258), respectively,

using a stratified random sampling scheme. So, the proposed model was trained using data

from 602 patients in the training set and another 258 patients in the test set. The MSE

value of predictions using the baseline hybrid deep-stacked (HDS-t0) model for the 258

patients in the test set was 0.046. Fig. 4 shows the true ALC depletion trends versus the

predicted curves for 15 randomly selected patients in the test set. As shown in the figure, the

model provided accurate predictions with only small errors; these predictions are therefore

suitable for use in pretreatment analysis to opt out patients at high risk of significant ALC

reduction after RT.

As explained in section 5.2.7, eight off-the-shelf prediction methods were employed

for comparison with the proposed model using the same training and test set. Table 5.3
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Figure 5.4: Predicted ALC trends using the HDS-t0 model (orange) versus the real values (blue) for 15
randomly selected patients in the test set. Unit for ALC values is cells × 1000/µL and ALC at
week 0 refers to the baseline ALC.

compares the performance metrics of eight prediction models: SVM, LR, LR-Lasso, LR-

ElasticNet, SGD, decision tree, extra tree, random forest, and the proposed hybrid model

for pretreatment predictions (HDS-t0). As we can see from the table, LR achieved the best

results among the eight prediction methods, with the lowest MSE, 0.0657. The proposed

HDS-t0 model outperformed the LR model, with a reduction of 30.6% in the MSE of

the predicted values. Our model also improved upon several other metrics, including the

normalized RMSE (NRMSE) (−16.8%), MAE (−5.82%), and EV (+21.2%), compared to

the best off-the-shelf model (i.e., LR).

5.3.2 Predictions After 1 and 2 Weeks of Treatment

As discussed in section II.D, the proposed hybrid deep-stacked model was extended to

use the ALC value obtained after 1 week of RT to forecast an ALC trend for the rest of

the treatment. Fig. 5 shows the true ALC depletion trends versus the predicted curves for
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Table 5.3: Comparison of prediction performance metrics (MSE, NRMSE, MAE, and EV) of eight com-
mon prediction models and the proposed HDS-t0 model for predictions based on pretreatment
information

MSE NRMSE MAE EV
HDS-t0 0.0456 0.0332 0.1457 0.7260
SVM 0.0736 0.0422 0.1635 0.5552
Random Forest 0.0698 0.0411 0.1596 0.5745
LR-Elastic Net 0.0859 0.0456 0.1771 0.4764
Decision Tree 0.0776 0.0433 0.1716 0.5269
Extra Tree 0.0691 0.0409 0.1593 0.5787
SGD 0.0839 0.0450 0.1722 0.4891
LR-Lasso 0.0859 0.0456 0.1771 0.4764
Linear Regression 0.0657 0.0399 0.1547 0.5992

the same 15 patients in the test set. As shown in the figure, the extended model, HDS-

t1, provided more accurate predictions than did the HDS-t0 model. The HDS-t1 model

achieved an MSE value of 0.014 for the test set predictions, a reduction of 69.6% com-

pared to the HDS-t0 model. These results suggest that data from early stages of RT can

be used to estimate the final patient response to treatment with more confidence than the

pretreatment data. Therefore, our model’s predictions after the first week can be used to

validate the pretreatment predictions or modify the treatment plan for patients at high risk

of grade 4 RIL during the early stages of treatment. To evaluate the effect of collecting

more data during treatment on our model’s ALC predictions, we also predicted the future

ALC values after 2 weeks of treatment using the same test set with the HDS-t2 model. Fig.

6 shows the true ALC depletion trends and the predicted curves using the HDS-t2 model

for the same 15 patients in the test set. Prediction metrics were calculated for the predic-

tions based on pretreatment data using the HDS-t0 model and data from after the first and

second weeks of treatment using the HDS-t1 and HDS-t2 model structures, respectively.

Table 5.4 summarizes the MSE, NRMSE, MAE, and EV of each model for the predicted

weekly ALC values of patients in the test set. As shown in the table, using the first-week
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Figure 5.5: Predicted ALC trends based on the HDS-t1 model (orange) versus real values (blue) for 15
randomly selected patients in the test set. Unit for ALC values is cells × 1000/µL and ALC at
week 0 refers to the baseline ALC.

Figure 5.6: Predicted ALC trends based on the HDS-t2 model (orange) versus real values (blue) for 15
randomly selected patients in the test set. Unit for ALC values is cells × 1000/µL and ALC at
week 0 refers to the baseline ALC.
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data reduced the MSE of predictions by 69.6% compared to the model based on pretreat-

ment data. Moreover, adding second-week data improved the MSE value by 42.9% over

the HDS-t1 model and 82.6% over the HDS-t0 model. Therefore, we can conclude that

augmenting the model with the first-week treatment data can significantly improve the pre-

treatment predictions, although the magnitude of improvement is smaller when additional

weekly data (i.e., week 2 data) are included. This suggests that the difference between the

baseline ALC value and that measured after the first week can provide very useful infor-

mation to predict the ALC trend during the rest of treatment. By updating the predictions

with the measured ALC after the first week of treatment, we can reduce the risk of false-

negative pretreatment risk predictions. Also, physicians could use this method to validate

the pretreatment predictions, update treatment plans, or develop mitigation strategies. This

model could be also used after delivery of 1 fraction of radiation instead of after 1 week to

reduce time and cost. Fig. 7 and Fig. 8 show the scatter plots and distributions of weekly

Table 5.4: Comparison of prediction performance metrics (MSE, NRMSE, MAE, and EV) for predictions
based on HDS-t0, HDS-t1, and HDS-t2 models

MSE NRMSE MAE EV
HDS-t0 0.046 0.033 0.146 0.726
HDS-t1 0.014 0.018 0.069 0.917
HDS-t2 0.008 0.014 0.046 0.954

ALC values for real and predicted values based on each model. As shown in these figures,

the distribution of predicted values using the HDS-t1 model was closer to the distribution

of real values than were the pretreatment predictions using the HDS-t0 model. Similarly,

the HDS-t2 model achieved more accurate predictions than the HDS-t1 model. Fig. 9 rep-

resents the box plot of the residual values (i.e., ALCi − ÂLCi) normalized by the mean

ALC value within each week. This figure shows that the median of the error (i.e., the nor-

malized residual value) within each week was almost zero for all 3 models, which suggests

that the models performed well to predict weekly ALC for more than 50% of the patients
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Figure 5.7: Scatter plots of weekly ALC values for real and predicted values from each model. Unit for ALC
values is cells× 1000/µL.

in the test set. Moreover, the range and interquartile range of the error in weeks 3 to 5 was

the lowest for the HDS-t2 model, and the HDS-t1 model showed lower error values than

the HDS-t0 model. This result is in agreement with our previous results comparing the

models’ performance.

The minimum ALC value during treatment, known as the ALC nadir, is an important

factor in determining the occurrence of grade 4 RIL for RT patients. Thus, we determined

the minimum ALC value during the five weeks of treatment for the real data and 3 predic-

tions. Fig. 10 shows the histogram, box plot, and kernel density estimation of the ALC
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Figure 5.8: The distribution of weekly ALC values for real and predicted values based on each model. Unit
for ALC values is cells× 1000/µL.

Figure 5.9: Box plots of predicted ALC values normalized to the mean ALC value for each week based on
each model.
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nadir during five weeks of treatment based on the real values and the predicted values from

the HDS-t0, HDS-t1, and HDS-t2 models. As shown in the figure, the HDS-t2 model

achieved the best predictions and the most similar distribution to the real data in terms of

the range (real: 1.722, HDS-t2: 1.915 ), mean (real: 0.298, HDS-t2: 0.315), median (real:

0.25, HDS-t2: 0.318), interquartile range (real: 0.189, HDS-t2: 0.142), and kernel density

estimation.

Figure 5.10: Histograms, box plots, and kernel density estimations (KDE) of minimum ALC values during
five weeks of treatment for (a) real data; (b) predicted values using HDS-t0; (c) predicted values
using HDS-t1; (d) predicted values using HDS-t2 models.

For the two extended models, HDS-t1 and HDS-t2, a discriminative layer was added

to evaluate the importance weight of each value in the input sequence. The importance

weights of each data value in the input sequence for each predicted value in the output
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sequence were obtained from this discriminative layer. Using the HDS-t1 model, the input

sequence contained the ALC value at the baseline (i.e., week 0) and after the first week of

treatment (i.e., week 1), and the output sequence was the predicted ALC values at the ends

of weeks 2 to 5. Fig. 11 (a) shows the importance weights for each input-output pair of

the HDS-t1 model. As shown in the figure, the importance of baseline ALC was higher

for the predicted ALC values of the last weeks of treatment (i.e., weeks 4 and 5) than the

early ones (i.e., weeks 2 and 3). Likewise, Fig. 11 (b) presents the importance weights for

each input-output pair based on the obtained results from the HDS-t2 model, which suggest

the same conclusion as HDS-t1. Therefore, we can conclude that the models were able to

capture long-term as well as short-term dependencies.

Figure 5.11: Heatmaps of importance weights from output of the discriminative kernel for each input-output
pair based on the obtained results from HDS-t1 (a) and HDS-t2 (b) models

5.4 Discussion

In this paper, a hybrid deep-stacked model is proposed to predict RT-induced lympho-

cyte depletion for esophageal cancer patients during the course of RT. The proposed stacked

structure processed 4 categories of features in 4 channels, which reduced the bias and ad-

verse effects of any possible noise in the data, followed by a fully connected neural network
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to integrate the outputs from 4 channels and make final predictions. First, the model was

used to predict weekly ALC values during RT treatment course based on pretreatment in-

formation. Then, the model was extended to account for predictions made after the initial

part of treatment (i.e., at the end of weeks 1 or 2), and a discriminative kernel layer was

developed to evaluate the importance weight of each value in the input sequence. To our

best knowledge, this is one of the first works to develop a comprehensive deep learning

prediction model that can effectively use different categories of clinical features to forecast

the weekly ALC regression during RT in order to identify high-risk patients.

In order to evaluate the performance of the proposed models, important prediction met-

rics were compared with those from eight off-the-shelf prediction methods. The results

showed that the proposed model outperformed these off-the-shelf prediction methods in

predicting weekly ALC values. Moreover, using the extended model based on the first-

week data reduced the MSE of predictions compared to the model based on the pretreat-

ment data. We conclude that augmenting the model with data from early stages of treat-

ment (i.e., weeks 1 or 2) can significantly improve ALC predictions. Therefore, the HDS-t0

model using pretreatment data can be used in RT treatment planning to predict lymphocyte

depletion during the course of RT. This prediction will help to select patients for RT and

develop lymphopenia-mitigating strategies to ultimately improve patients’ survival. After

treatment is started, further predictions in the early stages of treatment can be used to vali-

date the pretreatment predictions and, if necessary, modify the treatment plan for high-risk

patients in order to preserve lymphocytes.

Although our proposed model has achieved good prediction performance compared to

other state-of-art prediction methods, there is still some room for future work. First, the

model evaluation only on the basis of model performance measures (e.g., mean squared er-

ror) cannot guarantee whether an individual prediction on a given patient should be trusted

in clinical practice. Therefore, it is important to quantify the risk associated with each
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prediction for a given individual patient to evaluate the reliability predictions to be used

in clinical practice. In future work, we will investigate the benefits of using probabilistic

deep learning approaches to predict RIL risk for RT cancer patients. Secondly, although

the size of our data set might be sufficient to validate the rationale of the proposed model,

it would be ideal to use data from a different institution and cancer type to further evaluate

the robustness of our approach. In the next step, further analysis and discussions will be

made based on different patient profiles to investigate the impact of different clinical fac-

tors on RIL and to estimate the risk associated with each predicted ALC value. This study

also motivates further studies to investigate the effect of 1 fraction of radiation instead of 1

week by using fraction-based clinical data to reduce time and cost of identifying high-risk

patients.

5.5 Conclusion

In this study, we proposed a new deep learning model based on deep neural network

and long short-term memory (LSTM) network in a stacked structure to predict ALC deple-

tion trend using pretreatment clinical information. The proposed model performed well in

predicting radiation-induced lymphocyte depletion. Also, this model was implemented to

account for predictions after 1 and 2 weeks of RT treatment which significantly improved

ALC predictions. The ability to predict weekly ALC values during the course of RT treat-

ment will enable physicians to identify patients who are at high risk of severe RIL and who

would benefit from treatment replanning, use of different modality, or developing mitiga-

tions strategies. Moreover, our proposed deep learning method is interpretable and it is

capable of providing the weights of each feature group in making the final prediction. It is

flexible and can be transferred to predict other related toxic effects of RT.
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Chapter 6

A Decision-Making Framework for Radiation

Therapy Treatment Selection Including

Lymphopenia Risk and Its Predictive

Uncertainty

6.1 Introduction

Radiation therapy (RT) is one of the most common treatment options for cancer pa-

tients. The effectiveness of radiation therapy treatment relies on body’s immune system re-

sponse [169]. However, RT also suppresses the immune system by killing circulating lym-

phocytes in the radiation field since lymphocytes are highly radiosensitive [68, 70, 170].

As a result, RT causes a reduction in absolute lymphocytes count (ALC) which leads to

radiation-induced lymphopenia (RIL), a common toxicity of RT [67, 69, 72]. Several clin-

ical studies showed that high-grade RIL (grade 3 ALC ≤ 500 cells/µL or grade 4 ALC ≤

200 cells/µL) correlates with poorer overall survival of patients with solid tumors, includ-

ing cervical, pancreatic, rectal, lung, and esophageal cancer [71, 75, 77, 78, 83, 171].
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Several studies have reported the strong associations between pretreatment factors in-

cluding treatment-related characteristics (e.g., treatment modality, dose distribution pat-

terns, fractionation regimens, etc.) [72, 77, 78, 84] and patient-specific factors (e.g., age,

BMI, total blood volume, ALC baseline, etc.) [66, 71, 84–86]. Recent studies have re-

ported greater lymphocyte depletion and higher risk of grade 4 lymphopenia in patients

treated with photon therapy than with proton therapy [66, 68, 85, 161, 172]. For example,

Ebrahimi et al. [161] assessed the RIL risks for ten esophageal cancer patients comparing

proton and photon treatment modalities based on two models (i.e., a piecewise-linear and

an exponential model) as a function of radiation dose distribution. Their results showed

that proton plans carried a lower risk of lymphopenia after the RT treatment course than

did photon plans.

Preservation of the lymphocytes from radiation damage is crucial for the effectiveness

of RT [77, 78, 83]. Therefore, the ability to reliably predict RIL based on pretreatment fac-

tors (i.e., dosimetric factors, clinical, and patient-specific characteristics) would improve

RT planning. van Rossum et al. [85] developed a pretreatment clinical nomogram based

on age, planning target volume, body mass index, radiation modality, and baseline ALC to

determine the risk of grade 4 RIL for new patients. Zhu et al. [86] introduced a hybrid deep

learning model to classify patients with grade 4 RIL using dosimetric and clinical informa-

tion. Recently, Ebrahimi et al. [173] proposed a hybrid deep learning model to forecast

radiation-induced ALC depletion trend before or at the early stages of RT treatment using

dosimetric, treatment- and patient-related clinical information. Although most of the pre-

diction models achieved a good performance on large data sets using the standard statistical

measures (e.g., accuracy, mean squared error), these metrics are based on averages over pa-

tients who may have a different characteristics and we cannot evaluate the prediction risks

for a given individual patient using these measures alone [109].

The ability to identify patients who are at high risk of grade 4 RIL (G4RIL) based
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on prediction models is very helpful to improve patient survival. However, poor perfor-

mance for prediction models in clinical practice can have adverse consequences for pa-

tients. Therefore, it is important for clinicians to have some sense of when they can trust

the prediction model results. Also, improving the management of risk and uncertainties in

clinical decisions is reported as a potential opportunity to enhance the treatment outcome

in medical practice [108]. Nevertheless, the model evaluation only on the basis of model

performance measures (e.g., accuracy, mean squared error) cannot guarantee whether an

individual prediction on a given patient should be trusted in clinical practice [109].

There are two main uncertainties in prediction results: (1) aleatoric uncertainty which is

inherent noise and randomness in the real data due to the measurements and data collection

errors. For example, in our data the weekly ALC values are subject to measurement errors

since the measured ALC values are rounded to the nearest 100. (2) epistemic uncertainty

or model uncertainty due to inductive assumptions or inadequate model, knowledge, and

data [110, 111]. These two uncertainties need to be estimated sufficiently in uncertainty

quantification models to account for predictions uncertainty. Consequently, in this study,

we aimed to extend the deep learning model in Ebrahimi et al. [173] and develop a hybrid

deep learning structure that can estimate the uncertainty associated with each predicted

ALC value for a given individual patient.

Several methods have been developed to quantify the uncertainty of linear/nonlinear

regression models and more complex prediction models such as neural networks in dif-

ferent applications by calculating prediction intervals [112–115] or determining a trust

score [116]. A prediction interval can be computed for a neural network model with the

assumption of normally distributed error for the neural network to accounts for aleatoric

uncertainties [112, 114]. Neural network-based prediction intervals have been widely used

in predicting health conditions and detecting diseases [116–119]. However, most of these

methods require a large data sets and long trainings. Moreover, Bayesian inference has
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shown a good performance in quantifying uncertainty of predictions for traditional ma-

chine learning models such as random forest [120], SVM [121], and variety of deep learn-

ing models, including neural networks [122–124], LSTM [125], CNN [126–128], and

RNN [129]. However, these methods are computationally expensive and require significant

modifications in training process. Furthermore, Deep Gaussian Processes are another effec-

tive alternative way to model the uncertainty of predictions as a non-parametric Bayesian

approach by considering a Gaussian distribution over latent variables with respect to the in-

put samples [130–132]. Unlike the Bayesian methods, this approach is easy to implement

and archives high quality predictive uncertainty estimates. In this study, we take an advan-

tage of this method in an ensembled neural network structure to estimate the uncertainty of

ALC prediction.

Ebrahimi et al [173] showed that the ALC depletion prediction could be highly im-

proved by incorporating the ALC measurement after one week of the treatment. Because it

is still feasible to change the treatment plan at early stages of treatment (e.g., week 1 or 2)

we can validate/correct the decision based on the pretreatment data using the new predic-

tions. As a result, we can improve identification of high-risk patients and minimize false

negative risk which is very important in current problem (i.e., determining grade 4 RIL for

RT patients). Therefore, it is important to make the best use of prediction models before

or at the early stages of the treatment and their estimated uncertainties to improve patient

survival in clinical practice. A general decision-making framework based on the prediction

models that can help physicians to use the results of complex deep learning models easily

in their decisions for a given individual patient in the clinical practice is lacking. There-

fore, to fill this gap, we propose a hybrid decision-making framework for selecting patients

for RT treatment using the predicted values of ALC and their associated risk to be used in

clinical practice with the goal of avoiding grade 4 RIL for cancer patients. This decision-

making framework enables physicians to identify patients who are at high risk of grade 4
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RIL and who may stand to benefit from treatment replanning, use of a different modality,

or a pharmacological intervention and ultimately improve survival outcomes.

In summary, the contribution of this study is:

• We developed a deep learning model to predict the weekly ALC values and uncer-

tainty associated with each predicted ALC value for individual patients to be used

in estimation of prediction intervals. Estimating the prediction intervals for individ-

ual patients enables practical implications of predictive models in clinical decision-

making by considering individual prediction risks.

• Different groups of patients with different pretreatment characteristics were assessed

in terms of ALC predictions uncertainties based on results from the proposed deep

learning model.

• We also proposed a comprehensive hybrid decision-making framework for selecting

patients for RT treatment using the predicted values of ALC and their associated

risk to be used in clinical practice with the goal of avoiding grade 4 RIL for cancer

patients.

• This decision-making framework is flexible, straightforward, easy to interpret by

clinicians, and can be modified to account for different levels of risk and enables

physicians to easily take the advantage of complex deep learning models in their

decisions for an individual patient.

• The effect of any treatment modifications (e.g., changing treatment modality) on

the individual risk of G4RIL for each patient can be assessed using the proposed

decision-making framework.

The rest of this chapter is organized as follows: section 2 covers the data description,

data preprocessing, and our proposed hybrid deep learning model and decision-making
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framework; section 3 presents the experimental results of the models; section 4 discusses

the key findings of our study and directions for further research; finally, section 5 concludes

this study.

6.2 Materials and Methods

6.2.1 Data Description and Preprocessing

Data of 860 esophageal cancer patients who received concurrent chemoradiotherapy

were used for this study. All patients were treated with protons or photons radiation modal-

ities with a dose of 50.4 Gy between January 2004 and November 2017 at MD Anderson

Cancer Center. Pre- and weekly during RT ALCs, clinical characteristics and dosimetric

parameters were extracted from data bases. All included patients also had available base-

line ALC values and 3 or more documented weekly ALC values during treatment.

The variables of interest for the prediction were ALC after each week of treatment and

estimated uncertainty of each prediction. We used the same predictor variables as the pre-

vious study on this data set by Ebrahimi et al. [173] which were selected on the basis of

their clinical relevance, their low level of missingness (<20%), and the results of the cor-

relation analyses as presented by Zhu et al. [86] and van Rossum et al. [85]. Therefore,

52 features were categorized into 4 main groups on the basis of their clinical and ana-

lytical characteristics: (1) dosimetric features contained 30 dose-volume metrics such as

V5, V10, ... , V45 (Vx refers to the percentage of the volume that received at least x Gy

radiation dose) and mean dose for 3 organs at risk: the lung, heart, and spleen; (2) other

numerical treatment-related and patient-specific parameters were nondosimetric numeri-

cal features including age, body mass index, total blood volume, planning target volume,

and blood component profiles at baseline (red blood cells, white blood cells, and others);

(3) nondosimetric categorical features such as RT modality (proton or photon), race, sex,
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tumor location, tumor histologic characteristics, and use of induction chemotherapy; (4)

sequential features included the sequence of 5 weekly ALC values.

Data preprocessing steps has been done based on the instructions in Ebrahimi et al

[173] including handling the high collinearity among dosimetric features using t-distributed

stochastic neighbor embedding (t-SNE) dimensionality reduction [166], imputing the miss-

ing values in in sequential features using multiple imputation approach, and removing the

noise from the sequential ALC measurements by implementing Holt’s double exponential

smoothing (DES) method [167].

6.2.2 Deep Learning Model for Uncertainty Quantification of Predicted

ALC Values

We aim to develop a deep learning model that can predict its own uncertainty. Consid-

ering y as all possible values of target variable and θ as the distribution parameters (e.g.,

µ and σ for a Gaussian distribution), f(y|θ) represents the likelihood of y given distri-

bution parameters of θ. We assumed that the target variables (i.e., ALC values at each

week) for each patient follows a Gaussian distribution with shape and scale parameters of

µ and σ , respectively. So, a deep learning model must be developed to predict the dis-

tribution parameters (θ) instead of y. In current study, we used the hybrid deep learning

model proposed by Ebrahimi et al. [173] to forecast ALC depletion during the course of

RT treatment as a reference model and modified it to account for uncertainty predictions.

This model consists of 3 channels of dense neural networks and one channel of LSTM

network to process 4 categories of features including dosimetric, nondosimetric numerical,

nondosimetric categorical, and ALC sequential values to predict weekly ALC values par-

allelly. Then, the information from each channel concatenated in a fully connected neural
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network to make the final prediction. This structure showed a good performance in pre-

dicting weekly ALC depletion during the RT treatment course. The modified deep learning

structure for predicting weekly ALC values and their predictive uncertainties is shown in

Figure 6.1.

Figure 6.1: The proposed network structure for uncertainty quantification of ALC predictions

Firstly, we increased the size of output layer in each channel to match the number of

distribution parameters in θ. So, µ and σ of ALC will be predicted for each week. Secondly,

we used the nonnegative activation functions (i.e., ReLU) in each dense layer so that the

output will be consistent with the logical upper bound and lower bound of the parameters in

the chosen distribution. Finally, we need to adjust the loss function accordingly. Since the

mean square error loss function cannot capture prediction uncertainty, we used maximum

likelihood estimation (MLE) method to calculate the loss function. To find the correct

values of θ which best describe the target distribution, we maximized the likelihood L(θ|Y )

given the value of the target variable y = Y . As minimizing the negative log likelihood

is equivalent to maximum likelihood estimation [174], we used a negative log likelihood
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as the loss function to find the values of θ that maximize the likelihood L(θ|Y ) having the

value of the target variable y = Y [131]. The loss function can be calculated as

Loss = − logL(θ | Y ) = − log

(
1√
2πσ

exp

(
−(Y − µ)2

2σ2

))
. (6.1)

By minimizing the negative log likelihood loss function during the training, the model

will converge to the correct θ. For multiple samples, we can take average of the distributions

and calculate mean negative log likelihood (MNLL) as

LMNLL =

∑Ns
i=1 L(θi, yi)

Ns

. (6.2)

The training process is summarized in Algorithm 6.1. The model was trained with 100

epochs using a batch size of 16. Adam optimizer with a learning rate of 0.001, β1 = 0.9,

β2 = 0.999, ε = 10−8 was used to minimize the loss during the training. The L1 regularizer

weight of 0.2 and dropout rate of 0.2 were considered for the dense layers of nondosimetric

categorical features. The regularization of the hyperparameters of the training set was

adjusted empirically.

After the training, we will have a model that takes a set of input features, X , and return

a set of parameters, θ, which represent the probability distribution of the target variable, Y .

Therefore, we can calculate prediction intervals to evaluate the reliability of the prediction

and insure whether the model is confident about the predicted target value or not.
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Algorithm 6.1 Training process
Initialization: Initial state, initial network weights θ0 → θ, size of output sequenceNout, number
of epochs Ne, number of batches Nb, sample size Ns, µ(0)=0, σ(0)=1, i = 1, j = 1;
for i ≤ Ne do

for j ≤ Nb do
Feed each feature group to the corresponding branch and obtain the output:
Y

(i,j)
Dose = fDose(X

(i,j)
Dose)

Y
(i,j)
NonDose = fNonDose(X

(i,j)
NonDose)

Y
(i,j)
NonDoseCat = fNonDoseCat(X

(i,j)
NonDoseCat)

X
(i,j)
encode, h0, c0 = fencode(X

(i,j)
Seq , initial state)

Obtain each LSTM output sequence starting from k = 1:
if
∣∣∣X(i,j)

Seq

∣∣∣ > 1 then

acontext, w0 = fdiscr(X
(i,j)
encode, h0)

for k ≤ Nout do
Xk
encode, hk, ck = fencode(acontext, hk−1, ck−1)

acontext, wk = fdiscr(X
(i,j)
encode, hk)

else
for k ≤ Nout do

Xk
encode, hk = fencode(X

(i,j)
encode, hk−1)

X
(i,j)
decode =

[
X1
encode, X

2
encode, · · · , X

Nout
encode

]
Y

(i,j)
out = θ

(i,j)
= [µ(i,j), σ(i,j)] = ffinal(Y

(i,j)
Dose, Y

(i,j)
NonDose, Y

(i,j)
NonDoseCat, X

(i,j)
decode)

Calculate loss = − logLMNLL(µ(i,j), σ(i,j), Ytarget)
Optimize the loss using Adam optimizer
Update network weights θ(i,j) + ∆θ(i,j) → θ(i,j+1)

Update µ and σ as µ(i,j) + ∆µ(i,j) → µ(i,j+1) and σ(i,j) + ∆σ(i,j) → σ(i,j+1)

if σ ≤ 0 then
σ = 0

6.2.3 Hybrid Decision-Making Framework for RT Patient Selection

We proposed a decision-making framework to decide if a given RT treatment plan is

safe for a patient considering the G4RIL risk. The general idea of developing this decision-

making framework was to create a use case for the ALC prediction models (e.g., pretreat-

ment and early treatment prediction models) in clinical practice with the goal of improving

identification of patients at high risk of G4RIL and minimizing false negative risk (i.e.,

missing the patients at high-risk of G4RIL). Therefore, in this decision-making framework,

we consider the predicted weekly ALC values and their associated uncertainties to decide
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whether we can trust the pretreatment predictions or we need to be cautious and make

another prediction after finishing a part of the treatment (e.g., one week of treatment) to

validate/correct the pretreatment predictions. Figure 6.2 shows the flowchart of our pro-

posed decision-making framework. The possible ranges for ALC prediction intervals are

also marked by letters in the figure.

Figure 6.2: Flowchart of the proposed decision-making framework for selecting patients for RT treatment

As shown in the flowchart, following steps will be taken based on the proposed decision-

making framework. In the first step, we use the pretreatment clinical information to predict

weekly ALC values and their estimated uncertainty in terms of normal distribution parame-

ters (e.g., mean and standard deviation). Then, we determine the ALC nadir (ÂLC) and its

uncertainty based on the predicted values. Since we want to be risk averse as much as pos-

sible, we avoid the treatment whenever the predicted ALC nadir plus an uncertainty term

∆, which is adjustable based on physicians preferences, is lower than ALC threshold for

the grade 4 RIL (i.e., ÂLC<0.2). Otherwise, to be more confident about the risk of G4RIL,

we also compare the predicted ALC nadir with grade 3 RIL threshold (i.e., ÂLC<0.5) in
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the second step. If the predicted ALC nadir is greater than the threshold of 0.5, we can con-

clude that the patient will not experience neither of grade 3 nor grade 4 RIL so that the RT

treatment is safe for the patient. If not, there is a possibility that the patient might develop

grade 3 RIL and we need to be more cautious; so, we consider the uncertainty of predic-

tion by looking at the prediction intervals based on the selected confidence level α (i.e.,

ÂLC ± zα/2) to decide if we can trust the pretreatment predictions or not. In the third step,

if the lower prediction interval lb and the upper prediction interval ub were greater than the

G4RIL and G3RIL thresholds, respectively, which means we are (1− α) % confident that

the patient will not experience grade 4 RIL considering the uncertainties. Also, the risk of

grade 3 RIL is low because the upper prediction interval is not less than 0.5. As a result,

we can conclude that the RT treatment is safe for the patient in terms of risk of grade 4

RIL. Otherwise, although ÂLC is greater than G4RIL threshold, there is a risk that the

patient experience either grade 3 RIL (i.e., ub < 0.5) or grade 4 RIL (i.e., lb < 0.2) due

the uncertainty in the predictions. Therefore, we should begin the first part of treatment

(e.g., one week) with caution then measure the ALC and make predictions using the early

treatment prediction model. Next, since it is feasible to change the treatment plan only

in the early stages of the treatment, we repeat the steps 1-3 until a predefined tMax which

can be selected by physician based the treatment modality, cancer type, and patient char-

acteristics. When we could not make a decision for a given patient in early time steps (i.e.,

t < tMax) and the tMax is reached, we need to finalize the decision; so, in step 4, we check

if we reached to tMax point or not. Then, we use a linear regression based on the predicted

ALC nadirs and their associated uncertainty, in terms of standard deviation, to calculate the

expected ALC nadir and compare it with grade 4 RIL threshold (step 5). This regression

line can be fitted using the same training set as we used for the prediction models. Then,

the fitted parameters determine the weight of predicted ALC nadir at each time step and the
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weighted sum of them can be calculated for final decision as

yR = β0 ÂLC0 + β1 ÂLC1 + · · ·+ βtMax
ÂLCtMax

+ γ0 σ̂ÂLC0
+ γ1 σ̂ÂLC1

+ · · ·+ γtMax
σ̂
ÂLCtMax

,

(6.3)

where βt and γt refer to the weights for predicted ALC nadir ÂLCt and the associated

standard deviation σ̂
ÂLCt

at time step t, ∀t ∈ {0, 1, . . . , tMax}.

In summary, the output of this decision-making framework will be a decision about a

proposed RT treatment plan for a patient which minimized the risk of G4RIL. Therefore,

different treatment plans and modalities can be evaluated for individual G4RIL risk and the

safest treatment can be chosen for the patient.

6.2.4 Evaluation Metrics

In order to evaluate the performance of the proposed deep learning model in predicting

weekly ALC values, two important prediction metrics were calculated using predictions

for the test data, including mean square error (MSE) and mean absolute error (MAE), these

evaluation metrics were defined as

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2

, (6.4)

and MAE =
1

n

n∑
i=1

∣∣∣Yi − Ŷi∣∣∣. (6.5)

For the decision-making framework, since the output is whether a patient could be se-

lected for a specific RT treatment based on G4RIL risk or not, this problem can be inferred

as a classification problem in which we classify the patients into two group: (1) patients

at high risk of G4RIL as the positive class, (2) patients at low risk of G4RIL as the neg-

ative class. Therefore, the ability of the decision-making framework to classify high-risk
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patients can be assessed using common classification evaluation metrics such as accuracy,

recall, precision, and F1 score. These metrics can be calculated as

Accuracy =
TP + TN

TP + TN + FP + FN
, (6.6)

Precision =
TP

TP + FP
, (6.7)

Recall =
TP

TP + FN
, (6.8)

and F1 Score =
2×Recall × Precision
Recall + Precision

, (6.9)

Where TP indicates the number of true positive cases (i.e., high-risk patients who are cor-

rectly identified); FP, false positive cases (i.e., low-risk patients who are incorrectly classi-

fied as high-risk patients); FN, false negative cases (i.e., high-risk patients who are incor-

rectly classified as low-risk patients); and TN, true negative cases (i.e., low-risk patients

who are correctly identified).

6.3 Results

6.3.1 Evaluation of Predictive Uncertainty Quantification Method

The proposed deep learning model was trained using data from 602 patients in the train-

ing set and tested for another 258 patients in the test set. For each patient, parameters of

Normal distribution (µ and σ) were predicted for ALC value in 5 weeks of treatment. The

predicted µ and σ for each week were considered as the estimated ALC and its uncertainty

at that week. The model achieved MSE value of 0.054 for weekly ALC predictions for the

258 patients in the test while using the pretreatment information. Moreover, using the early

treatment prediction model and augmenting the measured ALC value after the first week

of treatment resulted in a reduced MSE of 0.017 as we expected based on the results of the
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previous study by Ebrahimi et al. [173]. Figure 6.3 shows the true weekly ALC values ver-

sus the predicted curves based on pretreatment information along with the 90% and 95%

prediction intervals for 10 randomly selected patients in the test set. As shown in the figure,

although the model provided accurate predictions with only small errors, but the width of

prediction interval varied for different patients. This observation confirms that we cannot

trust the predictions for all patients and shows the importance of estimating the uncertainty

of the predictions for each individual patient. Having the prediction intervals helps physi-

cians to evaluate the predictions and use them for pretreatment analysis in clinical practice

with more confidence.

Figure 6.3: Predicted ALC trend and its 90% and 95% prediction intervals using the model based on pre-
treatment information (blue) versus the real values (blackdots) for 10 randomly selected patients
in the test set

To further evaluate the performance of the model, we calculated the average of predicted

ALCs, prediction intervals, and real ALCs over all patients in the test set for each week.

Table 6.1 summarizes the comparison of important statistical metrics including mean, stan-

dard deviation (SD), median, interquartile range (IQR), and prediction intervals (PI) for

predicted versus real weekly ALC values for all patients in the test set. We can see from

the table that the variability of real ALC measurements after each week of treatment in

terms of IQR and SD decreased as we go from week 1 to week 5 of the treatment. The
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same trend for SD and IQR as the real data was observed in the predicted ALCs. More-

over, the mean and median ALC had a decreasing trend from week 1 to week 5 of the

treatment as a result of RT based on the predicted values which is also in agreement with

the real ALC measurements. Furthermore, the model performed very well in prediction of

weekly ALC values with small MSE and MAE which improved for last weeks because of

the improvement of the information in hidden states of LSTM network.

Table 6.1: Comparison of important statistical metrics including mean, standard deviation (SD), median, in-
terquartile range (IQR), and prediction intervals (PI) for predicted versus real weekly ALC values
for all patients in the test set

Real ALC nadir Predicted ALC nadir MSE MAEMean SD Median IQR Mean, (95%PI) SD Median IQR
Week 1 0.99 0.46 0.91 0.49 0.97, (0.84, 1.11) 0.31 0.91 0.31 0.096 0.228
Week 2 0.66 0.34 0.59 0.36 0.66, (0.50, 0.81) 0.21 0.61 0.22 0.064 0.180
Week 3 0.48 0.28 0.43 0.28 0.47, (0.31, 0.64) 0.16 0.44 0.15 0.052 0.166
Week 4 0.37 0.23 0.32 0.25 0.37, (0.20, 0.54) 0.13 0.34 0.13 0.041 0.150
Week 5 0.32 0.21 0.27 0.24 0.32, (0.15, 0.49) 0.13 0.30 0.11 0.032 0.133

Figure 6.4(a) represents the box plot of weekly ALC values based on the real data

versus the predictions using pretreatment information. This figure shows that the prediction

model could capture the distribution and variability of the real data very well. Also, Figure

6.4(b) depicted the average 99%, 95%, 90% prediction intervals of predicted ALC for each

week. In this figure, the mean value of predicted ALC is in the middle of the intervals and

the mean of real ALC values is shown by red diamonds. As we can see from the figure,

real ALC weekly means are within the prediction intervals based on different confidence

levels. Also, the mean of predicted ALCs for each week and mean of real ALCs for each

corresponding week were very close to each other which means that the model achieved

very good performance in predicting weekly ALC values.
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(a)

(b)

Figure 6.4: Analysis of weekly ALC values; (a) box plot of weekly ALC values based on the real data
versus the predictions using pretreatment information; (b) the average 99%, 95%, 90% prediction
intervals of predicted ALC for each week.

6.3.2 Decision-making Framework Results

6.3.2.1 Comparison of Decision-making Framework with Classification Methods

To evaluate the performance of our proposed decision-making framework, we com-

pared the results with a recently published classification deep learning model on the current

data set developed by [86]. They showed that their proposed classification model achieved

superior performance in classification of patients at high risk of G4RIL compared with

the popular classification models such as logistic regression, support vector machines, and

random forest.
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To have a fair comparison, we used the same data inclusion exclusion criteria as [86]

and trained the pretreatment and early treatment prediction models using the same training

set with 505 patients, then, we tested the decision-making framework using the same test

set with 216 patients based on the predictions made by the models.

As we mentioned earlier, our proposed decision-making framework is flexible and risk

parameters (i.e., ∆ and confidence level α for prediction intervals), time threshold for mod-

ifying the treatment (tMax) can be adjusted based on the physician’s preference for consid-

ering the predictions uncertainties in their decisions. In this experiment, we assumed ∆=0

since we wanted to be risk averse about low ALC nadirs as much as possible and avoid

the treatment for any patient with predicted ALC nadir lower that 0.2. We also assumed

that tMax = 1 (week) and the treatment can be modified up to the beginning of the second

week. Moreover, the linear regression model in Equation (1) was fitted using the same

training set as we used for the prediction models. The standard deviation of the predicted

ALC nadir based on pretreatment information (σ̂
ÂLC0

) and predicted ALC nadir after the

first week of the treatment (ÂLC1) were significant variables with the p-value of 0.034 and

0.001, respectively. The fitted regression line was as

yR = β1 ÂLC1 + γ0 σ̂ÂLC0
= 1.1 ÂLC1 − 0.93 σ̂

ÂLC0
. (6.10)

First, we tested the model for different values of α to select the best one based on our an-

other preference which is minimizing the false negative rate (i.e., high-risk patients who are

incorrectly classified as low-risk patients) to improve RT patients survival. Therefore, we

calculated recall, precision, and F1 score using (1−α)%ε{68, 85, 90, 93, 95, 97, 99, 99.7}

in the decision-making framework for patients in the test set. Figure 6.5 shows the com-

parison of these 1− α values. As we can see from the figure, increasing the 1− α resulted
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in higher precision and lower recall as we were stricter about classifying patients as posi-

tive class, this is similar to a classification problem in which we set a high discriminative

threshold for positive class. As a result, lower number of patients classified as positive class

and number of false positive cases decreased, so, the precision increased. At the same time,

we might misclassify some positive class cases as negative class, therefore, the number of

false negative cases increased which resulted in lower recall value. In order to have a rea-

sonable balance between false negative and false positive errors, we considered F1 score as

our metric to select the best α value. As shown in Figure 6.5, (1 − α)% = 95% achieved

the highest F1 score value. So, we used α =0.05 for the rest of the numerical experiments

to calculated prediction intervals in decision-making framework.

Figure 6.5: Comparison of recall, precision, and F1 score of decision-making framework results for different
levels of α used in prediction intervals

The decision-making framework results for the 216 patients in the test set were eval-

uated using important classification metrics including accuracy, recall, precision, and F1

score, which were also reported in [86]. The results showed that using the decision-making

framework increased recall and precision by 8.2% (0.656→0.710) and 2.6% (0.759→0.740),

respectively, compared to the results from [86] model. So, we can conclude that the num-

ber of both false negative and false positive cases decreased and the amount of improve-

ment in the number of false negative cases were about 3 times more than the improvement
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in the number false positive cases as we wanted to be more cautious about false nega-

tive cases. Also, the F1 score and accuracy increased by 5.5% (0.695→0.733) and 1.2%

(0.769→0.778), respectively. Since the classification model by [86] achieved the best re-

sults among common classification models, we can conclude that our proposed decision-

making framework also outperformed logistic regression, support vector machines, and

random forest models in classifying G4RIL patients. Table 6.2 also represent the sum-

mary of classification metrics for the classification results based on the decision-making

framework and models in [86].

Table 6.2: Summary of classification metrics including accuracy, recall, precision, and F1 score for the clas-
sification results based on the decision-making framework and classification methods

Accuracy Recall Precision F1 Score
Decision-making framework 0.778 0.710 0.759 0.733
Classification model by Zhu et al.[86] 0.769 0.656 0.740 0.695
Logistic regression 0.717 0.563 0.681 0.616
Logistic regression with elastic-net regularization 0.722 0.575 0.621 0.589
Random forest 0.718 0.644 0.651 0.621
Support vector machines 0.699 0.736 0.604 0.575

6.3.2.2 Examples of Decision-making Framework Results for Individual Patient Cases

To further assess the performance of the proposed decision-making framework, we took

one individual patient example for five possible actions in the decision-making framework.

Having tMax = 1 (week), there are five possible actions based on the decision-making

framework: (I) Avoid or modify the treatment, (II) Begin the treatment when ÂLC > 0.5

, (III) Begin the treatment when ÂLC ≤ 0.5, lb > 0.2 and ub > 0.5, (IV) Begin the

treatment with caution for one week then continue the treatment, (V) Begin the treatment

with caution for one week then stop the treatment. Table 6.3 presents some pretreatment

characteristics of the selected patients, real treatment outcome, and the selected action

based on the decision-making framework.

As shown in the table, the predicted ALC nadir for Patient I was lower than 0.2; so,
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Table 6.3: Pretreatment characteristics, real treatment outcome, and selected action based on the decision-
making framework for five randomly selected patient cases

Patient I Patient II Patient III Patient IV Patient V
Age 76 56 65 55 79
BMI 27.74 22.66 22.92 33.05 21.52
Baseline ALC 1.37 3.65 2.92 3.06 1.77
Treatment Modality IMRT IMRT IMRT IMRT IMPT
ALC nadir 0.10 0.55 0.46 0.47 0.14
G4RIL Yes No No No Yes
Predicted ALC nadir
at t=0, (95%PI)

0.18,
(0.07, 0.29)

0.54,
(0.16, 0.93)

0.46,
(0.22, 0.71)

0.30,
(0.03, 0.56)

0.28,
(0.15, 0.39)

Predicted ALC nadir
at t=1, (95%PI)

0.41
(0.26, 0.55)

0.28
(0.19, 0.36)

Decision-making
framework decision

(I) Avoid
the treatment

(II) Begin
the treatment

(III) Begin
the treatment

(IV) Begin the
treatment

with caution
for one week
then continue
the treatment

(V) Begin the
treatment

with caution
for one week

then stop
the treatment

the decision-making framework recommended to avoid the proposed RT treatment for this

patient which is in agreement with the real data that this patient developed G4RIL during

the RT treatment course. For Patient II, the decision-making framework suggested to begin

the treatment as the predicted ALC nadir was greater than 0.5 and the risk of both G4RIL

and G3RIL were low for this patient. The real data also showed that this patient did not ex-

perience neither of G4RIL nor G3RIL and the decision was correct. The decision-making

framework decided to begin the RT treatment for Patient III as ÂLC > 0.2, lb > 0.2 and

ub > 0.5 and we are 95% confident that the real ALC nadir is within this prediction in-

terval and higher than 0.2, so, the risk of G4RIL is low for the patient. This action is also

consistent with the real data in which the patient did not developed G4RIL. Although the

predicted ALC nadir for Patient IV was greater than 0.2 and lower than 0.5 but the lower

prediction interval lb was lower than the critical threshold of 0.2; so, the decision-making

framework considered this prediction as an uncertain prediction and recommended to Begin

the treatment with caution for one week then measure the ALC and make another predic-

tion based on early treatment prediction model after one week. The predicted ALC nadir
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based on the new prediction was also greater than 0.2 but it showed less uncertainty than

the pretreatment prediction as the width of prediction interval decreased and lb > 0.2 and

ub > 0.5. Therefore, the decision-making framework advised that completing the RT treat-

ment is safe for the patient which agrees with the real data as this patient did not developed

G4RIL. For Patient V, the decision-making framework recommended to begin the treatment

with caution for one week then measure the ALC and make another prediction afterwards

because ÂLC < 0.5 and both G4RIL and G3RIL are probable based on the 95% predic-

tion intervals. Although the predicted ALC nadir based on the predictions after week 1 was

greater than 0.2 and lower than 0.5 but the prediction intervals were lb < 0.2 and ub < 0.5

and there was still a high chance of G4RIL, we needed to be more cautious about the de-

cision. However, we reached to the tMax = 1 and we cannot make another prediction, so,

we should use the linear regression model to make a decision. Since the yR ≤ 0.2 the

decision-making framework identified this patient at high risk of G4RIL and suggested to

stop the treatment which is consistent with the real data as the patient developed G4RIL

in real practice. Figure 6.6 shows the real ALC depletion, predicted weekly ALCs and the

associated 95% and 90% prediction intervals for these patient examples.

6.4 Discussions

6.4.1 Analysis of ALC Prediction Risk for Different Treatment Modal-

ities and ALC Baseline Values

Deep learning has shown great potential in many medical applications such as disease

progression [88, 175], treatment outcomes [89], or potential side effects [90, 91]. Despite

the success of standard DL methods in solving various healthcare problems, they cannot

provide information about the reliability of their predictions [107]. The decision-making

in medical applications are mostly life-and-death decisions; so, quantifying reliability of
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Figure 6.6: The real and predicted weekly ALCs and the associated 95% and 90% prediction intervals for
five randomly selected patient examples.

predictions is crucial. However, most efforts in development of prediction models in this

field have focused on improving average accuracy of the algorithm, with little consideration

of risk management

In this study, we developed a deep learning model to predict the uncertainty of predicted

ALC values for each individual patient to be considered in clinics for identifying patients

who may experience a large lymphocyte depletion after RT treatment course. The model

achieved a good performance in prediction weekly ALC and their associated prediction in-

tervals for patients in the test set. This model can also be used to assess different groups of

patients with different pretreatment characteristics in terms of ALC predictions uncertain-

ties. The significance of treatment modality and baseline ALC in predicting G4RIL have

been shown in several studies [66, 85, 86, 173]. Therefore, we analyzed the effect of these
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significant parameters on the final predicted ALC nadir and its uncertainty for the patients

in the test set.

First, we separated the patients in the test set based on their treatment modality to two

groups of proton and photon therapy patients and calculated the mean of predicted ALC

nadir, associated prediction intervals, and real ALC nadir for each group. Figure 6.7(a)

shows the average 99%, 95%, 90% prediction intervals of predicted ALC for proton ther-

apy and photon therapy patient groups. As we can see from the figure, the mean ALC

nadir based on predicted and real values were lower for the photon therapy patients than

the proton therapy patients which is consistent with the results of previous studies that

photon therapy caused greater lymphocyte depletion compared to the proton therapy treat-

ment. Moreover, the prediction intervals were slightly wider for photon therapy patients

as the variability in the real ALC nadir values for photon therapy patients in terms of stan-

dard deviation was higher (proton: 0.11, photon: 0.12). For each group of patients, ALC

depletion, ∆ALC (i.e., baseline ALC – ALC nadir), based on the real ALC values and

predictions were calculated and the box plot of the predicted and real ∆ALC for patients

treated with proton therapy and photon therapy is shown in Figure 6.7(b).

We also explored the effect of baseline ALC value on the final predicted ALC nadir

and its uncertainty. We splinted the patients based on the median of baseline ALC into

two groups of bottom 50% (0 < ALC0 < 1.54) and top 50% (1.54 ≤ ALC0). Table 6.8

summarizes the predicted and real ALC nadir values and their uncertainties in terms of sta-

tistical metrics including mean, prediction interval width, median, and standard deviation

for these two groups of patients. The average predicted ALC nadirs for patients in the first

and second group were 0.25 K/µL and 0.39 K/µL, respectively, which were close to the

real measured ALC nadirs of 0.22 K/µL and 0.35 K/µL in each group with relatively small

errors. Figure 6.8 shows the average 99%, 95%, 90% prediction intervals of predicted

ALC for patients in each group of patients. As we can see from the table and figure, the
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(a)

(b)

Figure 6.7: Analysis of RT modality; (a) the average 99%, 95%, 90% prediction intervals of predicted ALC
for proton therapy and photon therapy patient groups; (b) the box plot of the predicted and real
∆ALC for patients treated with proton therapy and photon therapy.

patients in the top 50% (1.54 ≤ ALC0) group, which were the half with the largest ALC

baseline values, showed higher mean ALC nadir based on both real data and pretreatment

predictions. Also, the prediction interval was the widest for patients in this half compared

to another one which can be explained by the higher variance in real ALC nadirs for these

patients. Therefore, we can conclude that the model was able to successfully reflect the

uncertainty of real data in the uncertainty quantification of predictions. Moreover, we can

observe that larger baseline ALC led to larger final ALC nadir predictions which is consis-

tent with the trend in the real ALC nadir values.
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Table 6.4: Comparison of important statistical metrics including mean, standard deviation (SD), median, and
prediction intervals (PI) for predicted versus real weekly ALC values for the patients within the
top 50% and bottom 50% based on ALC baseline

ALC0±SD Real ALC nadir Predicted ALC nadir
Mean±SD Median Mean, (95% PI) Median

0<ALC0<1.54 1.14±0.27 0.25±0.14 0.22 0.25, (0.13, 0.37) 0.25
1.54 ≤ ALC0 2.10 ±0.62 0.35±0.26 0.28 0.39, (0.19, 0.58) 0.35

Figure 6.8: The average 99%, 95%, 90% prediction intervals of predicted ALC for patients in the bottom
50% (0 < ALC0 < 1.54) and top 50% (1.54 ≤ ALC0) groups based on baseline ALC.

6.4.2 Discussions on Decision-Making Framework

Although deep learning methods showed a good performance in predicting severe RIL

but most of these approaches are like a black box and too complicated to be used in clinical

practice. Therefore, it is important to make the best use of prediction models in a general

decision-making framework that is easy to interpret and use in clinics. Moreover, Ebrahimi

et al. [173] reported 70% improvement in MSE of weekly ALC predictions after augment-

ing the measured ALC at the end of the first week of RT treatment. However, it is not

feasible to begin the treatment for all patients and measure the ALC in clinical practice as

it is time and cost consuming and may have adverse consequences for high-risk patients.

Therefore, it is important to identify highly uncertain predictions, which need to be vali-

dated or corrected after delivering initial part of the treatment, for some patients. In this

study, A decision-making framework was proposed with the goal of providing the best use
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of prediction models in clinical practice by making reliable decisions. In this regard, this

framework detects the pretreatment predictions with high uncertainty and improves them

by delivering a portion of treatment to a patient and using the measured data at early stages

of the treatment.

As mentioned in the results section, the MSE of weekly ALC predictions were 0.054

and 0.017 based on the predictions using the pretreatment data for all patients and early

treatment prediction after the first week of treatment for all patients. Using the decision-

making framework resulted in MSE of 0.024 which was 55% lower than the pretreatment

predictions and 41% higher than the predictions after the week 1. Although the MSE is still

higher than the predictions made after the first week but this approach is more applicable in

clinical practice as it can reduce time, cost, and effort by using early treatment predictions

only for the patients with high prediction uncertainties.

Our results showed that the proposed decision-making framework showed a good per-

formance in identifying patients at high risk of G4RIL. Therefore, it can be used to evalu-

ate different RT treatment plans for an individual patient with the goal of minimizing the

G4RIL risk and improving the patient survival. Using this decision-making framework

enables the physicians to predict the effect of any possible modification in the RT treat-

ment plan which can benefit the patient. For example, several studies reported that proton

therapy treatments showed a lower risk of G4RIL than photon therapy patients [66, 161].

Therefore, changing the treatment modality from photon to proton could be a potential

treatment modification that may help reduce G4RIL risk for a patient.

In this study, we evaluated the impact of changing the treatment modality to proton

therapy, for photon therapy patients who were identified at high risk of G4RIL based on the

decision-making framework. The equivalent proton therapy treatment plans were created

based on the same dosimetric criteria and prescription dose to the clinical target volume
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(CTV) of 50.4 Gy in 28 fractions using MatRad [156], a research-oriented treatment plan-

ning system. For optimization of proton therapy (i.e., IMPT) plans, we used a constant

relative biological effectiveness (RBE) of 1.1 [176] and all plans were normalized to have

95% of the planning target volume (PTV) receive the prescription dose. Table 6.5 presents

the summary of treatment and patient characteristics as well as the prediction results for

each patient based on proton and photon treatment modalities.

Table 6.5: Important treatment- and patient-related features and prediction results for three patients that se-
lected by decision-making framework for treatment modifications

Patient 1 Patient 2 Patient 3

Patient
characteristics

Age 68 53 56
BMI 26.30 34.25 28.57

ALC0 1.57 2.42 2.10
Real ALC nadir 0.03 0.07 0.06

G4RIL Yes Yes Yes

Treatment
characteristics

Treatment
Modality IMRT IMPT IMRT IMPT IMRT IMPT

Mean lung dose 18.17 12.61 13.43 7.04 14.13 9.19
Mean heart

dose 38.36 10.95 34.41 20.20 40.42 23.27

Mean spleen
dose 13.92 11.59 38.27 16.21 22.33 13.98

Prediction
results

Predicted ALC
nadir 0.18 0.31 0.17 0.48 0.22 0.40

95% Prediction
Intervals [0.06, 0.30] [0.22, 0.41] [0.01, 0.34] [0.26, 0.70] [0.04, 0.4] [0.22, 0.59]

Decision Avoid
treatment

Begin
treatment

Avoid
treatment

Begin
treatment

Avoid
treatment

Begin
treatment

As shown in the table, changing the treatment modality from IMRT to IMPT for pa-

tient 1 reduced the mean dose to three considered organs at risk (OARs) of lung, heart, and

spleen. Therefore, we changed the treatment modality and all dosimetric features in the

data to make new predictions for weekly ALCs during the course of RT treatment. The

modified treatment plan achieved higher predicted weekly ALCs and the decision-making

framework changed the decision for this patient based on the predicted ALC nadir and its

prediction intervals. The results suggested that this patient would benefit from changing

the treatment modality from IMRT to IMPT. We can also see the same observation for pa-

tient 2 and 3. Therefore, we can conclude that the proposed decision-making framework
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performed well in discriminating different treatment modalities and showing the effect of

treatment modifications on treatment outcome. This will help the physicians to evalu-

ate several treatment plans (e.g., different treatment modalities) for an individual patient

and select the one with the lowest risk of G4RIL. Figure 6.9 also shows the real weekly

ALC, predicted weekly ALCs and the associated 95% and 90% prediction intervals for

both IMRT and IMPT modalities for the three patient cases.

Figure 6.9: The real weekly ALC, predicted weekly ALCs and the associated 95% and 90% prediction in-
tervals for both IMRT and IMPT modalities for the three randomly selected patient cases
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6.4.3 Directions for Further Research

Although our proposed decision-making approach has achieved a good performance in

identifying patients at high risk of G4RIL compared to other classification methods, there

is still some room for future work. First, although the size of our data set might be sufficient

to validate the rationale of the proposed model, it would be ideal to use data from a different

institution and cancer type to further evaluate the robustness of our approach. Secondly,

this study motivates further studies to investigate the effect of treatment modifications in

different aspects such as changing treatment modality, beam angles, using variable frac-

tionation and adaptive RT, using the decision-making framework for a large number of

patients. Third, we assumed that the ALC predictions have a normal distribution and we

estimated the parameters of a normal distribution for each predicted ALC to account for

prediction uncertainties. So, alternative distributions such as Weibull and Log normal can

be tested to investigate the effect different distribution on the prediction intervals. More-

over, as Bayesian deep learning approaches showed a good performance in uncertainty

quantification of prediction models; In future work, we will also investigate the benefits

of using Bayesian deep learning approaches to improve prediction RIL risk for RT cancer

patients.

6.5 Conclusion

In this study, we proposed a deep learning approach to predict the weekly ALC val-

ues and uncertainty associated with each predicted ALC value for individual patients to be

used in estimation of prediction intervals. The proposed model performed well in predict-

ing radiation-induced lymphocyte depletion and predictive uncertainty quantification. The
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ability to estimate the uncertainty of predictions will enable physicians to assess the individ-

ual predictions risk in clinical practice. Moreover, we proposed a novel hybrid decision-

making framework for selecting patients for RT treatment using the predicted values of

ALC and their associated risk. Our results showed that the decision-making framework

yielded a good performance in classifying patients at-high risk of G4RIL. This decision-

making framework can help physicians to easily take the advantage of complex deep learn-

ing models in their decisions for each individual patient and identify patients who are at

high risk of severe RIL and who would benefit from treatment replanning, use of different

modality, or developing mitigations strategies. Furthermore, this approach is flexible, ad-

justable based on clinical preferences, and can be transferred to predict other related toxic

effects of RT.
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Chapter 7

Summary and Future Work

In summary, the primary goal of this dissertation was to address the current challenges

of radiation therapy treatment planning and provide practical and reliable solutions to im-

prove treatment quality and patient survival.

In Chapter 3, a biological-based treatment planning framework was proposed such that

it not only controls the biological aspect of the treatment and incorporates the uncertainty

of the tumor’s biological response, but also ensures the dose-volume requirements and clin-

ical limits of the treatment without needing to deal with complex optimization models. The

proposed reinforcement learning framework for ART planning can help the decision-maker

to achieve a robust solution under high levels of uncertainty in the biological parameters

while reducing the variability in the solution and improving the control on the worst cases.

Furthermore, using the proposed comprehensive biological response model to estimate tu-

mor volume regressions can reduce the time and effort from collecting large-scale data

sets and avoid the need for taking expensive CT images at each visit. The performance

of the proposed RT treatment planning framework was tested using a clinical non-small

cell lung cancer (NSCLC) case. The results were compared with the conventional frac-

tionation schedule (i.e, equal dose fractionation) as a reference plan. The results showed

that the proposed approach performed well in achieving a robust optimal ART treatment
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plan under high uncertainty in the biological parameters. This approach enables the physi-

cians to find an appropriate personalized ART plan in terms of dose fractionation and the

timing of the adaptations. It also can be used to identify patients who would benefit from

ART as an alternative to the conventional equal-dose plan. The proposed approach is flex-

ible enough to support a wide range of treatment objectives and preferences for different

decision-makers and various cancer types. Moreover, the contribution of this chapter can

be extended by adjusting the reinforcement learning environment to account for another

radiation therapy treatment planning problem, such as radiation beam angle optimization.

In this case, the environment should reflect variable tumor response to radiation based on

different sets of beam angles and the agent aims to find the optimal set of beam angles

which maximize treatment effectiveness and patient survival considering the biological un-

certainties. Also, robust optimization techniques can be used in a beamlet optimization

model to handle physical uncertainties while controlling the biological uncertainties within

the reinforcement learning framework.

In Chapter 4, we addressed the role of RT in immunosuppression caused by signifi-

cant lymphocyte loss during the course of radiation therapy treatment. Two mathematical

models were proposed to approximate lymphocyte depletion based on radiation dose dis-

tributions for cancer patients. In the first model, we use a piecewise-linear relationship be-

tween lymphocyte survival and radiation dose. The second model assumes an exponential

function for ALC depletion, and it uses a non-linear regression to estimate post-treatment

ALC. Moreover, the impact of different radiation modalities and dose distributions on de-

veloping severe lymphopenia after the treatment were assessed for ten esophageal cancer

patients and the potential post-treatment lymphocyte survival outcomes based on the pro-

posed models were compared for photon and proton-based modalities. Results showed

significant lymphocyte reduction is associated with treatment modalities and proton plans
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outperformed photon plans in terms of lymphocyte preservation. This study motivates fur-

ther research to investigate the clinical factors that affect RIL risk of different radiation

modalities. With help of research on continuing better understanding of lymphocyte dis-

tribution throughout the treatment field, the radiation dose could be optimized accordingly

to avoid lymphocyte killing. Moreover, additional immune protection could be possible

by optimizing plans with constraints on dosages received by volumes of the body (and im-

mune organs at risk such as the spleen, heart, etc.). Such methods to enhance the ability of

treatment plans to minimize lymphopenia risk without compromising tumor coverage and

other normal tissues at risk should be studied in future research into this area of study.

In Chapter 5, a novel hybrid deep learning model in a stacked structure was proposed

to predict RT-induced lymphocyte depletion during the course of RT treatment for cancer

patients based on the pretreatment clinical information. The proposed model structure con-

sisted of four channels, one channel based on a long short-term memory (LSTM) network

and three channels based on deep neural networks, to process four categories of features

followed by a fully connected neural network to integrate the outputs of four channels

and predict the weekly ALC values. Using this structure, we can efficiently use informa-

tion from different groups of features with different characteristics to predict weekly ALC

without requiring a large amount of data to process too many features while reducing bias

and the adverse effects of any noise in the data. As a result, this approach can help the

physicians to identify high-risk patients and select them for modified treatment approaches

or mitigation strategies. The proposed model was trained and tested on a data set of 860

esophageal cancer patients who received RT treatment. First, the model was used to pre-

dict weekly ALC values during RT treatment course based on pretreatment information

for a cohort of esophageal cancer patients. Then, the model was extended to account for

predictions made after the initial part of treatment (i.e., at the end of weeks 1 or 2). So,

a discriminative kernel was developed to extract temporal features and assign different
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weights to each part of the input sequence which enables the model to focus on the most

relevant parts. In order to evaluate the performance of the proposed models, we compared

the model with 8 commonly used prediction models by calculating important prediction

metrics. The results showed that the proposed model outperformed these off-the-shelf pre-

diction methods in predicting weekly ALC values. Moreover, using the extended model

based on the first-week data reduced the MSE of predictions compared to the model based

on the pretreatment data. Therefore, we can conclude that augmenting the model with data

from early stages of treatment (i.e., weeks 1 or 2) can significantly improve ALC predic-

tions. Unlike most deep learning models, the proposed stacked structure is interpretable,

and it can provide the weights of each feature group in making the final prediction. Al-

though our proposed model achieved a good prediction performance compared to other

state-of-art prediction methods, there is still some room for future work. As the next step,

we investigated the benefits of using probabilistic deep learning approaches to estimate the

risk of prediction for individual patients in Chapter 6. Another way to extend the contribu-

tion of this chapter is to take advantage of clustering methods to define clusters of patients

based on the similarity in clinical characteristics and consider them as a feature to be fed

into the deep learning model. Moreover, further analysis and risk assessments should be

made based on different patient profiles to investigate the impact of different clinical factors

on RIL and to estimate the risk associated with each predicted ALC value.

In Chapter 6, we extended our proposed deep learning model and provided an approach

to predict the weekly ALC values and their associated uncertainties in form of predic-

tion intervals for individual patients. The performance of the model was evaluated using

a data set of esophageal cancer patients. Furthermore, the effect of different patient- and

treatment-specific factors on RIL risk were assessed. The results showed that the proposed

model performed well in predicting radiation-induced lymphocyte depletion and predictive

uncertainty quantification. Estimation of prediction intervals for a given individual patient
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enables practical implications of predictive models in clinical decision-making by consid-

ering individualized prediction risks. Next, we proposed a comprehensive hybrid decision-

making framework to select patients for RT treatment based on the ALC prediction and

its predictive uncertainty for a given patient with the goal of minimizing severe RIL risk

for the patient. The decision-making framework was tested to identify high-risk patients

using real data under different scenarios and compared with commonly used classification

methods. Our results showed that the decision-making framework yielded a good perfor-

mance in classifying patients at high-risk of severe RIL. The proposed decision-making

framework can help physicians to take the advantage of complex deep learning models in

their decisions and identify high-risk patients who may benefit from treatment modifica-

tions. Also, the effect of any treatment modifications on RIL risk for a given patient can

be evaluated and the safest treatment plan can be chosen for the patient. Furthermore,

this approach is flexible based on clinical preferences, and can be transferred to predict

other related toxic effects of RT. For future work, one can combine the beamlet intensity

optimization with this decision-making framework to find the optimal beamlet intensities

for a given treatment plan. Therefore, we can generate a personalized treatment plan that

meets dose-volume requirements while minimizing the RIL risk for the patient. Moreover,

further statistical analysis should be made to investigate the impact of uncertainty in each

pretreatment clinical feature on the estimated uncertainty of predicted ALC values. As a

result, physicians can understand the effect of noise and uncertain data on performance of

prediction models.
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