A Thesis
 Presented to
 the Faculty of the Department of Electrical Engineering University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering
by

Edgar Lee Dohmann
December, 1972

I would like to gratefully acknowledge the encouragement and assistance of my major advisor, Dr. T. N. Whj.taker, in the preparation of this thesis.

My sincere appreciation goes to my wife, Janis, and to my parents for their encouragement and understanding during my college career and particularly during the preparation of this thesis.

I would also like to thank Miss Laverne Spell for her excellent help in typing this thesis.

The research reported here was supported by Houston Engineering Research Corporation (HERCO). I would like to thank my supervisor, Mr. J. E. Coffman, for his assistance and the use of the HERCO computer facility.

A FEASIBILITY STUDY IN APPLYING READ-ONLY MEMORIES TO THE ANALYSIS OF NONLINEAR ANALOG FUNCTION RESPONSES

An Abstract of a Thesis
Presented to
the Faculty of the Department of Electrical Engineering
University of Houston

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Electrical Engineering
by
Edgar Lee Dohmann
December, 1972

ABSTRACT

The measurement of physical qualities such as temperatures, pressures, and flow rates is both desirable and essential in many industrial processes. Devices such as thermocouples and other transducers have been developed which yield a predictable voltage or current response to the external stimulus. The use of such devices which produce voltage and current signals provide economical and convenient capabilities to measure the desired physical qualities because many signals may be terminated and monitored at a central location such as a control room.

Thermocouples for temperature measurement are the most widely used devices in such industrial process applications because of their simplicity, accuracy, and low cost. As most such devices which respond to an external stimulus, the relationship between the voltage generated between thermocouple junctions and the temperature of the junctions is nonlinear.

This nonlinear relationship poses the greatest problem in designing and constructing accurate temperature indicating devices.

Several analog-to-digital conversion techniques have been developed which compensate for the nonlinear function being measured and produce temperature readouts in proper engineering units. All techniques developed for comnercial applications strive to attain satisfactory degrees
of speed, simplicity, accuracy, economics, and reliability. Most techniques offer some advantages in two or more of these qualities but no presently available techniques offers a clear advantage in all five qualities.

Recent developments in the field of semiconductor memory devices have made it possible to design a digital temperature indicator using read-only memories (ROMs) with accuracies approaching those attainable with computer based techniques. The speed, simplicity, and reliability of such a ROM technique would be better than any other presently available technique. Predicted trends in future semiconductor developments also make such a technique very attractive economically.

A computer program has been developed to generate ROM truth tables for a nonlinear response system. The truth tables generated by this program are based on the system of quadratic equations which describe the nonlinear function. The accuracies are limited only by the inherent accuracy of the equations used, the size of the $R O M$, and the dynamic range of the stimulus to be measured.

TABLE OF CONTENTS

PAGE
CHAP TER
I. INTRODUCTION 1
II. CONVENTIONAI LINEARIZATION TECHNIQUES 3
III. READ-ONLY MEMORY CHARACTERISTICS AND APPLICATION 23
.IV. READ-ONLY MEMORY LINEARIZATION APPLICATION. 31
V. GENERATING READ-ONLY MEMORY TRUTH TABLES 39
VI. RESULTS AND CONCLUSIONS 53
BIBLIOGRAPHY. 56
APPENDIX A - FORTRAN COMPUTER PROGRAM FOR ROM TRUTH TABLE GENERATOR 58
APPENDIX B - DERIVATION OF ADC RESOLUTION AND ROM LINEARIZER ACCURACY 64
APPENDIX C - TYPE K THERMOCOUPLE CURVE LINEARIZATION RESULTS. 73

CHAPTER I

INTRODUCTION

Many natural processes are neither linear nor quantitative but behave in continuously smooth, nonlinear ways. It is desirable and necessary to measure such nonlinear natural processes in many applications such as industrial process control and operation, laboratory experimentation, and data analysis.

Many devices have been developed which yield a predictable voltage or current response to an external stimulus. Thermocouples are widely used as temperature transducers because of high inherent accuracy, wide measurement range, fast thermal response, ruggedness, reliability, and low cost. Thermocouple circuits develop an electromotive force (emf) at the measurement terminals whose magnitude and polarity depend on properties of the metals used and the temperature difference between the thermocouple junctions.

Although many materials can be combined to produce a thermoelectric effect, certain pairs of metals have become standard. The four most commonly used types of thermocouples are: Type J (Iron/constantan), Type T (copper/ constantan), Type K (chromel/alumel), and Type E (chromel/ constantan). The type used depends on such factors as desired operating range, external environment, desired emf output range, and installation considerations.

As with most transducer devices which respond to an external stimulus, the relationship between the voltage generated between thermocouple junctions and the temperature of the junctions is nonlinear. Several techniques have been developed to measure thermocouple emf, compensate for the nonlinear function, and produce temperature readouts in proper engineering units. All techniques developed for commercial applications strive to attain satisfactory degrees of speed, simplicity, accuracy, economics, and reliability.

The purpose of this investigation was to evaluate the feasibility of using read-only memory (ROM) devices in the linearization of such quantities as thermocoupleproduced emf and develop techniques of applying ROMs to these tasks. While many of the principles and techniques presented and discussed in this report apply to measurement and analysis of nonlinear functions in general, this investigation was limited to the primary field of thermocouple circuits due to their common and widespread use and the availability of background information.

CONVENTIONAL LINEARIZATION TECHNIQUES

The simplest method of measuring temperature using thermocouple circuits is to use an analog or digital voltmeter to measure the emf produced and then to refer to a National Bureau of Standards (NBS) thermocouple conversion table to determine the corresponding temperature.

While this manual table-look-up method may be simple it can also be extremely time consuming and impractical in industrial process applications where hundreds or thousands of thermocouple circuits may be terminated in a single control room and it is often nesessary to read and/or record many temperature values in a small amount of time.

Figure 2.1 shows a generalized block diagram of a data acquisition system. Such a system permits an operator to select any one of many input points to be monitored and displayed. The control logic of the data acquisition system multiplexes the selected input point onto a single analog channel then measures the selected quantity and displays the resultant value to the operator.

The generalized block diagram is simplified even further in Figure 2.2. This figure shows the basic component parts of the Analog Measurement/Computation Logic and the resultant display output. Figure 2.2 shows only one analog input value as would be the case after the selected point is

Figure 2.1
Typical data acquisition system

Figure 2.2
Basic analog-to-digital conversion/display system
multiplexed onto a single analog input channel. This basic block diagram is referred to throughout the remainder of this chapter as some variation of this block diagram is used in almost every conventional linearization technique. The two most basic means of linearizing an input function are by analog techniques or by digital techniques although some techniques employ a combination of both. It is not the intent or purpose of this chapter to present and discuss every linearization technique that has ever been developed but rather to discuss in general terms the characteristics of some of the most commonly used techniques to provide a basis for comparison of the read-only memory linearization technique to be discussed in a subsequent chapter.

The basic goals of a linearization technique should be to provide a system which is accurate, simple, economic, fast, and reliable. Each of these qualities is used as a basis for comparing the desirability of one technique over another. Often trade-offs must be made between two or more of these qualities to optimize the adherence to another. Accuracy, when applied to linearization techniques, normally refers to the ability of the linearization network or device to conform to the published NBS tables without regard to the inherent inaccuracies of the other system elements such as the sensor itself, the signal conditioning
amplifier, or the analog-to-digital converter.
Simplicity of a linearization technique includes the space required by the technique, the maintenance required, the versatility of the technique, and the difficulty to design and implement the technique. Versatility is very important because some applications require the use of a particular type of $A D C$ or amplifier but if a linearization technique is highly dependent on some other type of $A D C$ or amplifier, it may not be possible to use that technique.

Economics of a linearization technique includes both the cost of the components used and the cost of implementing the technique.

The speed of a linearization technique refers to the time required for the measured quantity to be adjusted to conform to the actual value of the stimulus.

The reliability of a linearization technique includes the expected life of the components used in the technique and the ability of the technique to continue to conform to the published NBS tables over an extended period of time. The simplest linearization technique based on using a circuit like that shown in Figure 2.2 would be to scale the displayed data to a value that could be conveniently referenced in an NBS look-up table. This technique would be similar to that mentioned at the beginning of this chapter with the exception that automatic analog multiplexing
is implied by the system shown in Figure 2.2. Even though automatic signal multiplexing is provided by this technique, the procedure of conversion by reference to a table is not simple and is certainly not reliable since each reference is subject to human error. The method is also very slow and costly in terms of time and effort expended. Since all five of the desired qualities are severely lacking in this method it is readily evident why automatic linearization techniques are preferred over manual methods.

AMPLIFIER, DIODE FUNCTION GENERATOR FEEDBACK TECHNIQUE One of the most commonly used linearization techniques is the Amplifier DFG feedback technique. This technique uses the very popular piecewise linear approximation as do most other conventional linearization techniques. The accuracy of any method using piecewise linear approximation is determined by the number of line segments used and the inherent accuracy of the circuitry generating the line segments. Figure 2.3 illustrates the basic piecewise approximation of a nonlinear curve.

The Amplifier DFG feedback technique employs a diode function generator (DFG) network in the amplifier feedback circuit to generate a function which is the inverse to the input voltage. The block diagram of such a system is shown in Figure 2.4 and the typical response curves are shown in Figure 2.5.

Figure 2.3
Piecewise approximation of a nonlinear function

Figure 2.4
Amplifier diode-function-generation feedback technique

Figure 2.5
Linearization of curves by a DFG circuit

The complexity of such a system depends on the number of line segments used and the capabilities provided for temperature-compensation of the breakpoint diodes. Precision limiter circuits using operational amplifiers to simulate ideal diodes can greatly improve the accuracy but would also greatly increase the cost and complexity of the system. This method has the significant advantage of being very versatile and essentially independent of the type of amplifier and ADC used. This system usually depends very much on the reference voltage used to bias the DFG circuit and, normally, each segment of the curve requires a separate adjustment because of inherent variations in diode characteristics. This method has the advantage of being very fast since the time required for the output voltage from the amplifier to stabilize depends only on such factors as amplifier slew rate and settling time and diode switching time.

RAMP LADDER LINEARIZATION TECHNIQUE
One analog-to-digital conversion technique is to allow a counter to accumulate pulses at a fixed rate while a ramp generator is running; then, when the ramp output matches the unknown input signal, the total count accumulated is proportional to that input signal. If the input current to the ramp generator is changed in steps depending

On the number of pulses counted, a piecewise linear ramp can be generated as shown in Figure 2.6. If the polarity and magnitude of the ramp is properly calculated, the resultant ramp can approximate the transducer response curve as shown in Figure 2.7 .

Figure 2.8 illustrates how such a nonlinear ramp generator might be used in a linearizing data acquisition system. The basic accuracy of such a system depends on the number of line segments used and the inherent accuracies of the components used. Precision components can be used in the ramp ladder circuit to simplify implementation and calibration and to increase reliability. The cost also depends on the desired accuracy and simplicity of calibration requirements. The two major disadvantages of the ramp ladder linearizer are speed and flexibility. The ADC counter must start at zero at the beginning of the conversion cycle and must count up to the unknown value. For a full scale analog input voltage $2^{n}-1$ clock pulses are required before the conversion is complete (n is the number of bits in the digital word). The frequency of the clock pulses driving the ADC counter is limited also by the response time of the switches in the ramp ladder circuit and the slew rate of the ramp generator.

Figure 2.6
Typical nonlinear ramp generator

Figure 2.7
Piecewise linear approximation of transducer output

Figure 2.8
Ramp ladder network technique

The ramp ladder linearizer technique requires that a counter-ramp type of $A D C$ be used. This type of $A D C$ must be either a specially designed $A D C$ or one which provides access to the digital count during the conversion cycle and access to the ramp generator input so the decoder/ramp control circuitry and ramp ladder circuitry can be added externally.

VARIABLE SPEED ADC COUNTER TECHNIQUE
Another linearization technique using the basic counter-ramp $A D C$ is the variable speed $A D C$ counter. This is a digital linearization technique as shown in Figure 2.9 using a fixed ramp to control the conversion time but using more than one clock frequency to control the speed of the ADC counter. The resultant output of such a device is shown in Figure 2.10. The number of pulses accumulated in the ADC counter varies with time to approximate the response function.

The accuracy and complexity of the circuitry used in this technique depends on the number of clock frequencies available and the complexity of the decoder circuit used to control the selection of the frequency to drive the counter. The theoretical accuracy obtainable by this method is dependent also on the number of line segments used in the piecewise approximation. The number of precision components needed to make a circuit which is easy to calibrate and

Figure 2.9
Variable speed ADC counter

Figure 2.10
Piecewise linear approximation by varying counter speed
maintain is much less than required by the ramp ladder technique. A severe limitation of this technique is the requirement that the $A D C$ be specially designed for this application. Another limitation is the speed of the system. In general, however, it should be possible to operate the ADC counter for this method at faster speeds than for the ramp ladder method because the response time of the digital switches controlling the counter pulse frequency is less than the response time of the analog switches on the ramp ladder network. A one-digit ambiguity exists each time the oscillators are switched if discrete oscillators are used to vary the $A D C$ counter speed. If a resistor is switched in the frequency determining network of a single oscillator, this ambiguity does not arise.

ACCUMULATED ADC COUNT CORRECTION TECHNIQUE
Another digital linearization technique accomplishes the same overall effect in a slightly different manner. This method which corrects the accumulated pulse count of the ADC counter has essentially the same general composition as the method shown in Figure 2.9. A fixed ramp generator produces a linear output until a comparison is made with the unknown input. During the conversion cycle the ADC counter is driven at a constant rate but when the decoder/control circuitry detects a "correction point", a pulse is either
added to or subtracted from the total accumulated count. The counter correction circuit can either increment or decrement the $A D C$ counter when the correction point is detected if an up/down counter is used or the total of all additions and subtractions can be maintained until the end of the conversion cycle and the final accumulated value corrected before presentation to the display. The net effect of either method of correcting the accumulated value of the $A D C$ counter is to approximate the response curve by shifting line segments with the same slope.

The major advantage of the two digital techniques is that for the same or less degree of complexity and cost than analog techniques, a piecewise approximation can be realized with many more line segments thereby yielding a more accurate device.

The reliability of the digital techniques discussed here is very good since highly accurate, stable, and reliable components are available to construct these devices and very little calibration of the system would be required.

Even though the ADCs discussed for the counterramp conversion techniques used a ramp generator to compare with the unknown input the dual-slope $A D C$ technique could be applied to all 3 linearization methods discussed here. The dual-slope method employs an integrating ramp on the analog input to charge a capacitor to the unknown value. The
capacitor is then discharged at a constant rate until the unknown voltage reaches zero and the accumulated pulses in the ADC counter during this discharge time is proportional to the unknown input. If the unknown value were discharged at a non-linear rate or if the clock pulse frequency were varied, or if the accumulated value were adjusted by appropriate values this $A D C$ technique could be used in essentially the same manner as the counter-ramp method.

DIGITAL COMPUTER PROGRAMMING TECHNIQUES
Another commonly used technique is to use a digital computer program to perform the linearization. Such a method as shown in Figure 2.11 would merely examine the digitized value of the analog input and either evaluate a series of polynomial or straight-line equations describing the response function or use a table look-up technique.

The computer program linearization offers the advantage of being very versatile. The method is essentially independent of the type of amplifier and ADC used.

To justify the computer program linearization approach economically, however, the computer would have to be an inherent part of an overall system and the measured data would have to be required by other programs in the overall system. The cost of a stand-alone system as shown in figure 2.ll would, in general, be prohibitive.

Figure 2.11
Computer program linearization

In addition to the conversion time of the ADC used in the method of Figure 2.ll, the device access time and program execution time would be prime factors in the overall speed of the system. In general a table look-up technique would be faster than a polynomial equation evaluation technique but would also occupy more memory space.

The straight forward processing technique of the computer program linearizer presents a very simple design concept but the actual implementation of the system may be very complicated depending on the structure and purpose of the overall system.

Of all the commonly used linearization techniques presented here, none possesses extreme advantages over any other. Perhaps the most commonly used techniques in the past have been manual table-look-up and DFG feedback circuits. The ramp ladder and variable clock techniques have been used when simpler circuitry and less calibration were desired. The computer program technique has been widely used in systems in which computers are employed for other uses. The digital techniques have become increasingly popular in the last two years because continuing advances in digital technology make the circuitry required to support such techniques simpler and more economical to use.

Indications are that the application requirements will continue to dictate the technique used but continuing
advances in digital technology should make digital techniques more and more attractive in the future.

Recent innovations in economical modular analog circuitry components such as power supplies, multiplexers, sample and hold devices, analog-to-digital converters, digital-to-analog converters, and amplifiers make it increasingly more attractive to search for linearization techniques which are as independent of the other circuit modules as possible.

READ-ONLY MEMORY CHARACTERISTICS AND APPLICATIONS

A read-only memory ($R O M$) is a circuit which can accept a digital code at its input terminals and provide a unique digital code on its output terminals. The relationship between the input and output codes is fixed and is usually alterable only by replacing all or part of the circuitry.

Many advances in read-only memory technology have been made since the mid-1960's and although ROMs have received much publicity recently, they certainly are not new devices. Read-only memories have been used in digital circuitry for many years but their usage in the past has been rather limited.

The most common form of read-only memory is the diode matrix which has been used since the early days of electronic digital computers. A typical example of such a diode matrix is shown in Figure 3.1. The matrix shown has 4 input bits and 5 output bits which makes the circuit a 20bit ROM, meaning that the circuit has 20 memory calls which may be programmed with a logic "0" (no diode) or a logic "1" (diode present).

The most common use of such diode matrix circuits has been the implementation of Boolean logic equations. The truth table shown in Figure 3.2 illustrates how the matrix

Figure 3.1
Diode matrix read-only memory

INPUT BIT PATTERN				OUTPUT BIT PATTERN				
Y_{3}	Y_{2}	Y_{1}	Y_{0}	${ }^{\mathrm{X}} 4$	X_{3}	X_{2}	X_{1}	X_{0}
0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	1
0	0	1	0	1	0	1	0	0
0	0	1	1	1	1	1	0	1
0	1	0	0	1	0	0	0	0
0	1	0	1	1	1	0	0	1
0	1	1	0	1	0	1	0	0
0	1	1	1	1	1	1	0	1
1	0	0	0	0	0	1	0	1
1	0	0	1	0	1	1	0	1
1	0	1	0	1	0	1	0	1
1	0	1	1	1	1	1	0	1
1	1	0	0	1	0	1	0	1
1	1	0	1	1	1	1	0	1
1	1	1	0	1	0	1	0	1
1	1	1	1	1	1	1	0	1

Figure 3.2
of Figure 3.1 solves the following set of logic equations:

$$
\begin{aligned}
& X_{0}=Y_{0}+Y_{3} \\
& X_{1}=0 \\
& X_{2}=Y_{1}+Y_{3} \\
& X_{3}=Y_{0} \\
& X_{4}=Y_{1}+Y_{2}
\end{aligned}
$$

Such diode matrix circuits have also been popularly used in code-conversion circuits such as BCD-to-decimal, binary-to-BCD, and BCD-to-binary. Each of these examples and many others qualify as read-only memory circuits since a unique digital code can be applied to the input terminals and a unique digital code obtained on the output terminals.

Typical applications for devices which can generate a group of unique output bits for every group of unique input bits include implementing logic and counting functions, performing code conversion, function generating, character generating, micro-programming of digital processes, and performing table look-up functions.

Many devices which qualify as read-only memories have been developed to perform these tasks, although most of them, such as the diode matrix, are not commonly referred to as ROMs. A very popular technique is to store the bit pattern of a particular function in a common read-write memory (core memory, semiconductor memory, drum storage, etc) then activate a write-disable circuit to prevent inadvertent destruction of the stored information but still permit access
to the stored information. Such a device would properly be classified as a ROM while the write-disable circuit remained active but would still provide the option of changing the contents of the memory at a later time.

Even though many devices qualify as read-only memories, the term "read-only memory" or ROM, is in general used to refer to semiconductor integrated circuit devices satisfying the definition of a read-only memory. Semiconductor memories incorporate high-gain and high-speed digital elements. Consequently they are a faster and more ideal storage device than their magnetic counterparts which depend on the analog properties of a slower device and exhibit no gain.

Memories built with semiconductor devices are becoming cost-competitive with ferrite-core memories. In addition they offer superior performance and greater freedom of organization. Many types of semiconductor memories, based on both metal-oxide silicon (MOS) and bipolar technologies, are becoming available. These memories differ primarily in cost, organization, and performance.

MOS technology is presently the most popular for the fabrication of read-only memories. The high density possible in this memory matrix cannot be achieved by any other present technology. In addition the circuitry required for address decoding and input-output buffering can be included
on the same substrate as that which contains the memory matrix. The result is a very dense, low-cost array that can be used easily.

A general diagram of a MOS read-only memory is shown in Figure 3.3. The ROM is organized as a l6-word 2-bits-per-word memory. The basic storage element of the MOS ROM is the MOS transistor. The ROM shown in Figure 3.3 has 32 possible transistor locations or memory "cells". A logic "l" is coded by inserting a transistor in a particular position and a logic "0" by omitting the transistor. The truth table for this ROM is illustrated in Figure 3.4.

Semiconductor memories (except read-only memories) are, in general, volatile storage devices. For a volatile storage device to retain stored data, power must be applied continuously. Read-only memories, while difficult to alter, eliminate this storage volatility problem. Most ROMs are fabricated by using a photographic mask with a customized memory matrix on it which stores the desired bit patterns. ROMs manufactured in this manner must be replaced if the bit pattern is to be changed later. Some ROMs are termed "programmable" read-only memories (PROMs) meaning that they can be programmed after the integrated circuit wafer has been packaged. Most PROMs are manufactured with logic "l"s in all bit positions and the programming consists of removing certain "l"s by applying a large reverse-biased voltage

Figure 3.3
MOS read-only memory (l6 word x 2 bit)

ROM		
WORD NO.	0_{1}	0_{2}
1	1	0
2	1	1
3	0	0
4	1	0
5	0	1
6	1	1
7	1	0
8	0	1
9	0	1
10	0	1
11	0	1
12	0	1
13	1	0
14	0	1
15	1	0
16	1	1

Figure 3.4
MOS read-only memory truth table
to certain terminals in order to destroy the corresponding transistor. Some PROMs are even erasable (E-PROMs) by x-rays or ultra-violet rays. Applying such energy sources to an E-PROM returns all bit positions to logic "l" permitting the device to be re-programmed.

Some factors significantly affecting the cost of ROM devices are the type, size, method of programming, and quantity purchased. All of these factors must be considered when purchasing ROMs because an absolute comparison between devices cannot be made unless these factors are defined. MOS memories are, in general, less expensive than bipolar memories and can be obtained with more memory capacity in the same physical area. Memory costs are often compared on a price-per-bit basis. Read-only memories in the 1024 to 4096 bit range may be priced as low as li per bit in quantities of 1000 devices but may cost 5 ¢ per bit in unit quantities. Also a ROM in the 64 to 256 bit range may cost more per bit than a 1024 to 4096 bit ROM, because the actual device costs may be approximately equal. Another factor greatly affecting the cost of ROMs is the programming of the ROM. ROMs which are produced by photomasks are in general less expensive than equivalent ROMs which are PROMs or E-PROMs. If a custom mask must be made for a particular application, about 50 to 100 such ROMs would have to be produced from the mask to bring the total overall cost below that of a PROM
or E-PROM. In general, for very small quantities of custom memory patterns the PROM or E-PROM is the most economical. It is necessary to evaluate the actual costs and the projected requirements of a particular memory configuration to determine the most economical type of ROM to use in a particular application.

READ-ONLY MEMORY LINEARIZATION APPLICATION

The basic characteristic of read-only memories (ROMs) is that a unique digital code on the input terminals results in a unique digital code on the output terminals. This makes them extremely useful for performing code conversion and table look-up functions. One of the many applications of such functions is the conversion of digitized values of nonlinear analog functions to suitably coded engineering units.

By effectively programming a NBS thermocouple table into a ROM, a temperature can be determined by measuring the emf produced by a thermocouple. Referring to an NBS "manually" (as discussed in Chapter 2) can be performed automatically. A simplified block diagram of such an automatic device is shown in Figure 4.l. If in such a device as shown in Figure 4.1, the amplifier and $A D C$ are used to generate a binary code proportional to the input analog value, the ROM can be used to generate a corresponding human-oriented engineering unit value for each discrete ADC value. The display is used to present the ROM output in alpha-numerical form to the person desiring to measure the physical quantity.

A technique such as that shown in Figure 4.1 offers many of the qualities desirable in linearization techniques. The technique is very simple in concept and is fairly simple to implement once it is designed. There are several important

Figure 4.1
ROM linearizer block diagram
considerations in the design of the system and the programming of the ROM; however, these considerations are not extremely difficult and not altogether different from those required in the design of systems using other linearization techniques. The considerations peculiar to the ROM linearizer are discussed in detail in Chapter 5.

The system is very versatile since the type of amplifier and ADC used may be almost any type as required by the particular application the system is to be used in. The ROM may require different programming for different types of $A D C s$ but the technique in general is virtually $A D C-$ independent. A variety of display devices may also be used as the output code of the ROM may be programmed in many ways although some methods require more bits per word, hence a "larger" ROM which may result in a more costly ROM.

Another advantage of the ROM linearizer is the simplicity of maintenance and calibration. An important characteristic of this system is the absence of feedback loops in the overall block diagram. This eliminates most of the calibration and maintenance problems associated with many of the techniques discussed in Chapter 2. Another important characteristic of the system is that once a ROM has been programmed (truth table generated) many identical ROMS can be manufactured with very liitle testing time needed. Once an overall system is designed, many can be built requiring only minor calibration of the amplifier and $A D C$.

The ROM linearizer is probably the fastest linearizing technique available. Since there are ROMs available with access speeds of one microsecond or less, the response time of the overall system is essentially dependent only on the amplifier, $A D C$, and display response times.

The use of a ROM linearizer is an extremely reliable technique. One inherent characteristic of read-only memories is that they never forget and have a normal life expectancy of many years. Extremely reliable amplifier, $A D C$, and display devices are also available so it is possible to construct highly reliable ROM linearizer systems.

The accuracy of a ROM linearizer is dependent on the inherent accuracies of the amplifier and the $A D C$ and the ROM itself. The progranming of the ROM is the most important consideration in the overall accuracy of the system. If a ROM is chosen which has the same number of "words" as the ADC has discrete values and each "word" has an adequate number of bits to code the engineering unit value to be represented, then the overall accuracy depends on the number of discrete $A D C$ values used to represent the analog input and the method used to generate the ROM truth table. The considerations involved in determining the accuracy of a ROM Iinearizer are discussed in detail in Chapter 5.

The economics of the ROM linearizer may range from a very economical system to a very expensive system
depending on a number of factors. The two most important considerations in determining the cost of a ROM are the programming technique used and the size of the ROM. The size of the ROM is usually determined by the range and accuracy desired and the method of coding the output data. The two most popular methods of coding the output data would probably be binary and BCD. Binary is the most commonly used code in digital applications so the ROM addresses (word numbers) are usually coded in binary, BCD is a very popular code for display purposes since each BCD quad may be decoded to drive a numeric display using the familiar decimal numbers. There are a number of BCD-to7 segment and BCD-to-decimal decoder/driver/display devices that are very economical, reliable, and simple to use, and which can be adapted to a wide variety of applications.

The ROM output data can be coded in binary or BCD format with essentially the same degree of effort. Coding the data in $B C D$ eliminates the necessity of converting the binary data to $B C D$ for display purposes but also requires more bits per word for any numbers greater than 9. For example a 2048 ROM arranged 256 words by 8 bits per word, could be used to generate output data from 0 to 99 if coded in BCD but could generate output data from 0 to 255 if coded in binary.

If it is necessary to generate output displays from 0 to 99,8 bits would be required for $B C D$ coding but only 7 for binary coding. If the ROM has to have 256 words, then a 2048-bit ROM would be required for $B C D$ output code and a 1792-bit ROM would be required for binary output. If the ROM used costs 5 cents per bit then the cost difference is $\$ 12.80$. If it is necessary to convert the binary data to $B C D$, the cost of the ROM should include the cost of performing the conversion externally if the binary coded ROM is used.

Another consideration in performing the binary-to-BCD conversion externally to the ROM is the fact that doing so introduces more components and more complexity into the system. However, as mentioned previously, ROMs are ideally suited for code conversion applications so the binary-toBCD conversion could be another highly-reliable easilydesigned ROM. There are also some very economical 4-bit binary-to-BCD and BCD-to-binary converter integrated circuits available which can be configured in arrays to perform n-bit binary-to-BCD and BCD-to-binary conversion.

Figure 4.2 shows a typical application where it might be desirable to use a binary-to-BCD conversion external to the ROM performing the linearization. The system shown has four analog input types each with a different response curve therefore requiring four ROMs for linearizing. If the ROMS

Figure 4.2
ROM linearizing data acquisiton system
used permit having their outputs tied together, they may all be used to drive a common binary-to-BCD converter and the number of bits per word saved in each linearizing ROM may be more than enough to justify the external binary-toBCD conversion.

GENERATING READ-ONLY MEMORY TRUTH TABLES

The procedure of using read-only memories (ROMs) to convert digitized values of nonlinear analog functions to corresponding engineering units is very similar to the procedure described in Chapter II using a computer program to perform the linearization. The ROM actually performs as a special-purpose computer program for the purpose of linearizing a particular function.

There are two very popular techniques used in the computer program linearization method to determine the physical value to attach to the measured analog quantity. The first procedure involves comparison of voltages by tabular look-up in an appropriate table (such as an NBS thermocouple table)which has been stored in the computer memory. In the second procedure, the table or response curve may be approxmiated by polynomial equations either by a single power series or a set of second order equations.

The single equation power series technique uses an equation of the form:

$$
\begin{equation*}
T=C_{0}+C_{1} E+C_{2} E^{2}+C_{3} E^{4}+C_{4} E^{5}+C_{6} E^{6} \tag{5.1}
\end{equation*}
$$

The string of second order equations uses equations of the form:

$$
\begin{align*}
& T=C_{0}+C_{1} E+C_{2} E^{2} \text {, each equation having a } \tag{5.2}\\
& \text { a specified range of applicability. }
\end{align*}
$$

For each measuring device as thermocouples, the accepted standard is the set of tables published in NBS circular 561. Accuracies of linearization techniques for thermocouples are usually measured in terms of degrees of variation from these tables. For thermocouple curve approximation by equations (5.1) and (5.2) the values of the coefficients are determined by curve-fit techniques. Equation (5.1) is usually used when it is desired to use one equation over a broad range of the thermocouple curve. Equation (5.2) is usually used over narrow ranges of thermocouple curves either when the values of interest are confined to a narrow range or when several second order equations are more desirable to evaluate than one high ordered equation. Coefficients for equations (5.1) and (5.2) can be calculated to conform to NBS table values within $0.5^{\circ} \mathrm{F}$ for most common thermocouple types.

For thermocouple curves the most accurate technique would be to store the NBS look-up tables in a computer program. However, due to the amount of memory storage and time required to store the tables in memory this may not be a very economical approach. Using equations like (5.1) or (5.2) to calculate temperatures from measured emf is a more general approach to nonlinear function measurement. Many nonlinear functions can be easily expressed easily by polynomial equations as in equations (5.1) or (5.2). By merely changing a
few coefficients the same program can be used to evaluate a different nonlinear function. If the table look-up technique is used the entire table would have to be recalculated if a new function is to be evaluated.

Even though the ROM linearizer employs a table lookup technique to perform the linearization, the same arguments apply to calculating the ROM truth table. The truth table for a thermocouple curve can be calculated by hand for a readonly memory but the same procedure would have to be used for every truth table to be generated.

The Fortran program in Appendix A was developed to generate truth tables for ROMs by evaluating a series of equations like equation (5.2). Data required by the program includes the coefficients C_{0}, C_{1}, and C_{2} of equation (5.2), the range for which the equation is valid, and the number of equations used to approximate the curve.

The values for the coefficients and the best ranges for the equations used to describe the function may be determined by any of several commonly used curve-fit techniques. Tables 5.1 and 5.2 give the results obtained by using the simple trial-and-error technique of entering breakpoints into a computer program, permitting the program to generate a second-order equation, then adjusting breakpoints and recalculating until an acceptable small maximum error was reached. The best technique to use may depend on the type

COEFFICIENTS			RANGE OF EQUATION $\left({ }^{\circ} \mathrm{F}\right)$	MAX. DEV FROM NBS TABLES $\left({ }^{\circ} \mathrm{F}\right)$
C_{0}	C_{1}	C_{2}		
31.94469	35.63730	-0.28722	$0-200$	0.308
33.91171	34.33704	-0.10397	$200-400$	0.301
43.19788	32.26427	0.00762	$400-700$	0.289
18.28229	34.47177	-0.04064	$700-960$	0.291
-46.70140	39.30495	-0.13029	$960-1220$	0.335
-40.58614	39.18289	-0.13151	$1220-1400$	0.297
308.71375	22.99346	0.05607	$1400-1600$	0.395

Table 5.1
Type J (iron/constantan) thermocouple calibration curve data

COEFFICIENTS			RANGE OF EQUATION (${ }^{\circ} \mathrm{F}$)	MAX. DEV. FROM NBS TABLES $\left({ }^{\circ} \mathrm{F}\right.$
C_{0}	C_{1}	C_{2}		
31.68816	46.15694	-0.65195	0-140	0.356
36.65155	42.12250	0.16779	140-280	0.292
18.50809	47.10442	-0.14561	280-700	0.313
45.33263	43.60689	-0.03162	700-1080	0.371
114.41992	37.89775	0.08633	1080-1380	0.347
169.81726	34.45381	0.13980	1380-1800	0.370
272.45447	29.44804	-0.20083	1800-2240	0.432
447.60522	21.93095	0.28114	2240-2480	0.349

Table 5.2
Type K (chromel/alumel) thermocouple calibration curve data
of curve to be linearized. Some functions which respond as, for instance, the square root of a stimulus may have a very simple characteristic equation which can be described without requiring use of a curve-fit technique.

The data generated by the ROM Truth Table Generator of Appendix I is a ROM truth table with the ROM address given in decimal and binary format and the data for each ROM word given in decimal and BCD. The decimal representation is provided for easy reference and the binary and BCD codes are provided as the actual bit pattern that would be programmed into the ROM. BCD is chosen for this discussion since it readily lends itself to numeric display in decimal form. The truth table could be easily changed from $B C D$ to binary values by changing just one statement in the main program from a call to a $B C D$ conversion routine to a call to a binary conversion routine.

Besides the calibration curve data, other input data to the ROM Truth Table Generator is the number of ROM words and the ADC resolution (counts per analog input unit). The number of ROM words (NWDS) is used by the program to determine the stopping point of the program. The ADC resolution (NCTS) is used as a scaling factor for the set of equations used to approximate the response curve. For example, the coefficients for Types J and K thermocouples given in Tables 5.1 and 5.2 are based on the units of E for equation (5.2) being in
millivolts. The value of NCTS used in the program would represent the number of $A D C$ counts per millivolt of analog input.

The value chosen for NCTS is the key to the accuracy of the ROM table and the eventual size of ROM required for the desired range of the physical stimulus to be measured. The derivation of the choice for NCTS is given in Appendix B along with some examples of how the choice of NCTS affects the inherent system accuracy.

As an analysis example, assume that a Type K thermocouple is to be used in the range of $32^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}$ and that it is desired to measure temperatures to the nearest degree in this range. The calibration curve data given in Table 5.2 could be used to calculate the ROM truth table. A Type K thermocouple circuit referenced to $32^{\circ} \mathrm{F}$ will generate a nonlinear emf from 0 millivolts to 2.66 millivolts for this range.

If the response curve of a Type K thermocouple were linear, only 119 discrete ADC values would be required to display each temperature value between $32^{\circ} \mathrm{F}$ and $150^{\circ} \mathrm{F}$ with the amplifier and $A D C$ of Figure 4.1 scaled so 0 ADC counts would represent $32^{\circ} \mathrm{F}$ and 118 ADC counts would represent $150^{\circ} \mathrm{F}$.

However, the thermocouple curve is nonlinear for this range so a ROM is chosen to adjust the $A D C$ values from 0 to 118 to "linearize" the response curve. The derivation in

Appendix B reveals that the best choice of the approximate slope S used to determine the value of NCTS for the program of Appendix A is one which approximates the curve as closely as possible with all points of the curve falling below the approximation slope.

Figure 5.1 shows how such a curve might be selected for a Type K thermocouple. The slope of the curve shown in Figure 5.1 would result in an NCTS value of 45 ADC counts per millivolt. The results of using this value for a 512 word ROM are given in Appendix C.

Tables 5.3 through 5.7 show the ROM truth tables for Type K thermocouples that would be obtained for 36 -word ROMs using values of $20,40,45,50$, and 60 for NCTS. The Type K thermocouple response curve is nonlinear between $32^{\circ} \mathrm{F}$ and $68^{\circ} \mathrm{F}$ but the nonlinearity is very slight and the results obtained by using a value of 45 for NCTS shows that the temperature over this small range could be measured within one degree of accuracy without any linearization techniques at all. However, most practical application require temperature measurement over a much broader range than $46^{\circ} \mathrm{F}$. Sometimes accuracies greater than one degree may be required and many transducer response curves deviate more from a straight line approximation than thermocouples do. Tables 5.3 through 5.7 are presented for purposes of illustrating the importance of a good choice for the value of NCTS.

Using a value too low such as 20 ADC counts per miliivolt results in a number of "gaps" in the truth table output data. For example an emf of 0.37 millivolts which should correspond exactly to $49^{\circ} \mathrm{F}$ would be displayed as $48^{\circ} \mathrm{F}$. It is readily obvious that many temperatures could not be displayed since they are not programmed into the ROM.

Using a value too high such as 60 ADC counts per millivolt results in a number of "repeated" values in the truth table output data. While this increases the accuracy of the ROM rather than decreases it, using excessively high values for NCTS may increase the size of the ROM unnecessarily and may increase the cost of the ROM linearizer significantly. As a comparison, a value of 20 for NCTS permits a temperature range of $32^{\circ} \mathrm{F}$ to $113^{\circ} \mathrm{F}$ to be linearized by a 36-word ROM. A value of 45 for NCTS permits a temperature range of $32^{\circ} \mathrm{F}$ to $68^{\circ} \mathrm{F}$ to be linearized by a 36 -word ROM. A value of 60 for NCTS permits a temperature range of $32^{\circ} \mathrm{F}$ to $59^{\circ} \mathrm{F}$ to be linearized by a 36 -word ROM. Thus it is readily obvious that the desired inherent accuracy directly affects the required "size" of the ROM and often the cost of the ROM is heavily dependent on the size of the ROM.

Figure 5.1
Type K (chromel alumel) response curve approximation

FIOM WGED	RIM DATA	FOM WOROCEIA	FOM DATACELCD
9	32		606060106019120610
1	34	06810608018	6060660606116165
2	36	600606010	6040696060116119
3	39	6066006112	
4	41	60600601E0	60606060612060681
5	43	6060160161	6600600681606011
6	45	6060460110	6060601601080161
7	45	606016dx111	
8	59	606104161006	
9	52	6060601601	6060606061016016
19	55	960ematara	6000600001010161.
11	57	6060601611	
12	59		6660606601611961
13	61	0606081101	6060601061160601
14	64	6060101119	606010010011001001
15	65	6060061111	96066060e1160110
16	69	60601816060	
17	76	06010816041	
13	73	60661616610	606060emer1120611
19	75	600610611	6060606081116101
29	77	06040921640	6060664061116111
21	79	60601916181	6EESG60901111061
22	82	6064016110	
23	84	6066016111	
24	8	60606212060	6060601018060110
25	88	6066011061	6060606016E1016616
26	91	6060611016	6060606016016061
27	93	E060411611	6606406016E16011
28	95	60606011160	
29	97	6060611161	60606016016416111
36	99	6066011110	60666104016011601
31	102	E0601211111	06006001066046016
32	184		
33	165	6060160061	
34	108	Edericuele	
35	116	6066160111	

Table 5.3
$\operatorname{NCTS}=20$

FOM WOED	FOM DATA	FOM HOFDCEIN	FOM DATACECD
6	32		
1	33	606060960	6060606060110911
2	34		
S	35	6016403012	E600603060110161
4	36	60406016160	6860606060110110
5	37	6006060161	006006060c110111
E	39	0606010116	0669060160161116191
7	46	E08040460111	
ε	41	60606061060	
3	42	606660161061	
16	43	6806401619	
11	44	E606001611	
12	45	6060601169	
13	47		
14	45	060680161110	06061961001661660
15	49	E6060161111	
16	56	0060610600	6060006061010606
17	51	060618168181	
18	52	6006016016	6060604601610619
19	53	0601616011	6060461601610611
20	55	61816816160	066816601616161
21	5	6006016101	E0609606016101:10
22	57	6086191216	60661046E161616111
23	58	6006016111	
24	59	60808110610	60906016191611601
25	ES	6060021-1061	
26	61	6061611610	
27	$E 3$	6006011011	
26	$E 4$	0666011160	
29	65	04681011101	
36	$E E$	E060111116	6060604061106116
S1	67	60160111111	6060 6006116011.1
22	6	606616aday	
33	69	6196011601601	06010866061161041
34	76	606016010	60600606061110060
35	72	0106100011	6066016101110619

$$
\begin{aligned}
& \text { Table } 5.4 \\
& \text { NCTS }=40
\end{aligned}
$$

FOM WIRE	FOM DATA	FOM WOEDCEIN	FOM DATFEECD
\square	32	6060160060	6000601000120610
1	33		606mabemer 16011
2	34	60601006020	E606ETE060110160
3	25		60646E1606110161
4	36	G606063160	
5	37	6060060161	
E	36	6examedile	
7	39	0060060111	606060060601111001
8	46	E060164160	
3	41	E060061061	E601060601604601
16	42	6060461616	
11	43	6616461611	
12	44	60040161100	
15	45	606ederiler	6060604061006101
14	45	6060061116	
15	47		6060600601606111
16	45	E660616060	
17	49	06060610601	61006010601061501
13	56	E060610610	
19	51	0600016011	6060606061016061
20	52	606edele100	9606060601010619
21	5	6060016101	
22	54	6060616110	6060606001016100
23	55	G61601616111	
24	56	6066011006	0606060601E16110
25	57	E606011601	
26	58		
27	59	E060til1011	0606046011611601
25	69	0060011100	
29	$E 1$	6060011161	618606010011200601
36	62	E606011119	
S1	63	60104611111	
32	$E 4$	E606106069	
32	65	E060 160161	60606enceer1106101
34	E	6080106016	
35	67	61086160611	E6669606061186111

Table 5.5
NCTS $=45$

FOM HORD	FIM LIATA	FOM WOFCCEIN	FOM DATFCETCO)
\square	32		606060196091.10610
1	33		0600619060116011
2	34		
3	34	E046046011	
4	5	01060040109	E060601606118161
5	36	60666160101	
5	37	60161016119	
7	38	061006111	Q606060606111069
8	39	60860161664	6860606060111501
9	48	06060961061	
10	41	66066E161E	6060606001606601
11	42	6080091611	
12	43	6060461150	
13	44	06001091161	601606004616091601
14	45	6060601119	616960600601096101
15	45	6060161111	
16	45	60601016060	
17	47	0680616061	
13	45	G606016016	660660606100616016
19	49	60601610611	
20	56	6006010109	6060606061016061
21	5.1	60640415401	60606048061816691
22	52	0604616116	6096046061010916
23	53	E640616111	
24	54	0689611860	68104610401616160
25	55		6060604061610161
26	56	6 E 0611010	61606010601616116
27	56	6060911011	6006060461618110
26	57	6060er11106	6066060601616111
29	58	0686111101	
36	59	6066011110	60606010601011601
31	$E 6$	01060011111	
32	61	Guburember	Q606060601160602
E3	$\theta 2$	E600120601	601604619116016
34	E	6064100619	66506016061160611
35	64	6060160611	6060604601106160

Table 5.6

$$
\text { NCTS }=50
$$

FOM HOFD	FOM LAFTH	FOM HDEDCEIP	FOM DATACECD
6	$\underline{2}$		
1	32	E060060but	6060060060116016
2	33	606064619	
3	34	6060emeeril	6060600606110160
4	35		
5	36	E604606161	
E	36		
7	57	Egememblil	
Ξ	3 s	061060810601	660660606911.1009
9	39	606EdG1601	
19	39	6066041019	
11	46	606E0161611	
12	41	6uncerblicg	
13	42	60660011101	618961060601096019
14	42	606E0161116	
15	43	606embilili	6060606061060611
15	44		606mbebery
17	45	610660916061	
13	45	6066016010	66060600616E0161
19	46	6606016011	
29	47	6060016160	606Euctocimgelil
21	43	0666018161	
22	49	606E010110	66060166061601601
23	49	6060418111	6060604061061601
24	59	E06E011809	06060060619106046
25	51	6060611001	6E60606061610601
26	52	6006011916	
27	52	0606011911	6060604014010016
28	5	E0606011164	
23	54	0604011191	
30	55	E606011119	
31	5	6060011111	6016016061916191
32	56	60061060160	6060606061016110
33	57		06010106010161.11
34	58	6060100610	
35	58	0600100611	6060601061611604

Table 5.7
NCTS $=60$

RESULTS AND CONCLUSIONS

Using the formulas derived in Appendix B and the results discussed in Chapter V it can be determined readily that to "linearize" a Type K thermocouple curve from $32^{\circ} \mathrm{F}$ to $500^{\circ} \mathrm{F}$ requires a 512 word by 11 bits per word if the result is to be in BCD to the nearest degree. A truth table for such a ROM is given in Appendix C. The required 512 x 11 ROM is a 5632-bit ROM. If the outpui data of the ROM were in binary and converted to BCD externally to the linearizing ROM, the required ROM would be 512 words by 9 bits per word or a 4608bit ROM.

It is relatively simple to implement either a 512 x 11 or a 512×9 ROM using one or more presently available semiconductor ROM integrated circuits. Some of the more popular types available are 1024-bit ROMs arranged 128 x 8 ; 2048-bit ROMs arranged 256 x 8 or 512 x 4; 4096-bit ROMS arranged 512×8 or 1024×4; and 8192 -bit ROMs arranged 1024×8.

The present cost of such semiconductor ROMs is between ly and 5 $\dot{\text { b }}$ per bit in quantities of 100 or more while unit quantities may range from $3 \dot{\xi}$ to $10 \hat{\beta}$ per bit.

Measurement accuracies within $1^{\circ} \mathrm{F}$ for Type K thermocouples can be obtained with one straight-line approximation segment between $0^{\circ} \mathrm{F}$ and $500^{\circ} \mathrm{F}$ with such conventional techniques as the ramp ladder network. This same technique can
attain the same accuracy from $0^{\circ} \mathrm{F}$ to $2000^{\circ} \mathrm{F}$ for Type K thermocouples with 6 straight-line approximation segments.

The ROM linearization technique presented here requires 512 words x ll bits (BCD output) or 512 words x 9 bits (binary output) for the same degree of accuracy between $0^{\circ} \mathrm{F}$ and $500^{\circ} \mathrm{F}$ and a 2048 x 14 ROM (BCD output) or 2048 x 11 ROM (binary output) for the same degree of accuracy between $0^{\circ} \mathrm{F}$ and $2000^{\circ} \mathrm{F}$.

In most industrial process applications accuracies within one or two degrees Farenheit of the actual value are acceptable. In such cases it is probably better in most applications to use a conventional linearization technique, such as one of those discussed in Chapter II, rather than the ROM linearization technique presented here. This is particularly true since the largest single-chip ROM presently available is 8192 bits and the cost of ROMs is still high enough that conventional linearization techniques are more economical for wide-range, low degree of accuracy applications.

Semiconductor industry predictions estimate that by 1975 single chip memories of 16,000 bits and greater will be available between 0.l\& and l¢ per bit. If these predictions prove to be correct the ROM linearization technique presented here may become economically attractive for some applications between now and 1975.

Presently for most industrial process applications the advantages of the ROM linearization technique are probably outweighed by the cost of implementing such a system. While this may be true in particular for thermocouples and other "almost linear" response curves, there may be some applications that more readily lend themselves to the characteristics of the ROM linearizer.

Several articles have been written about techniques using ROMs to synthesize complex waveforms. Such devices are very similar to implementing the ROM linearizer in reverse by using an up/down counter to sequentially address the inputs of a ROM programmed with a complex function look-up table and using the ROM. output to drive a digital-to-analog converter. The derivation given in Appendix B shows how a ROM can easily be programmed to analyze complex equations. The program developed here for generating ROM truth tables is based on describing the response function by one or more quadratic equations. The program could easily be changed to evaluate almost any type of simple or complex characteristic equation of complex function to generate truth tables.

If it is desired to analyze highly complex functions it may be more desirable to use a ROM linearizer rather than a conventional technique just as it has already been shown that is is sometimes more desirable to use ROMs to synthesize the functions.

BIBLIOGRAPHY

1. Bowers, John O. "Modern Analog-to-Digital Converters For Instrumentation Systems,"'Electronic Instrument Digest, Vol. 6, pp. 7-12, November, 1970.
2. Conversion Tables for Thermocouples. Pennsylvania: Leeds and Northrup Company, 1964.
3. Graeme, Jerald G., Gene E. Tobey, and Dr. Lawrence P. Huelsman. Operational Amplifiers - Design and Application. New York: McGraw-Hill Book Company, Inc., 1971.
4. Hoeschele, David F., Jr. Analog-to-Digital/Digital-to$\frac{\text { Analog Conversion Techniques. New York: John Wiley \& }}{\text { Sons, Inc. } 1968 \text {. }}$
5. Hoff, Marcian E. "Application Considerations for Semiconductor Memories," EEE, Vol. 18, pp. 62-69, June, 1970.
6. Howard, Harry T. "Semiconductor Memories," EDN, Vol. 15, pp. 22-32, February, 1970.
7. Huehne, Karl. "Programmable ROMs Offer Digital Approach to Waveform Synthesis," EDN, Vol. 17, pp. 38-41, August, 1972.
8. Keyser, David R. "Optimized Thermocouple Calibration," Instruments and Control Systems, Vol 44, pp. 81-84, June, 1971.
9. McCoy, Michael R. "MOS Read-Only Memories," EEE, Vol. 18, pp. 46-50, August, 1970.
10. Reiner, Robert. "Digitally Controlled Function Sythesizer," Instruments and Control Systems, Vol. 43, pp. 103-105, August, 1970.
11. Schmoll, Ronald H. "Temperature Measurements with Thermocouples," Instruments and Control Systems, Vol. 44, pp. 87-90, June, 1971.
12. Sclater, Neil. "Handbook on $A / D-D / A$ Converters," Electro Procurement, Vol. 14, pp. 17-22, September, 1972.
13. Scott, R. E. Linear Circuits. Massachusetts: AddisonWesley Publishing Company, Inc., 1964.
14. Sheingold, Daniel H. Analog-Digital Conversion Handbook. Massachusetts: Analog Devices, Inc., 1972.

APPENDIX A

FORTRAN COMPUTER PROGRAM FOR
ROM TRUTH TABLE GENERATOR


```
    FNNHME DEGCRIEES FGNOTION TG LINERRIIE
    NHDS IS RUPIEEF GF FOM WOFOOS
    NETS SFECIFIES SCFLIPNG OF FIOC
    REQN IS NUMEER OF EDURTIORS REFREEENGTIAG CURUE
    COEFF 1FE THE F, E,,C COEFFILIENTS OF THE EGUHTIDNS
    t Is the ciflculated wrlue of the egurtigars
```

 DIMERSION NEINCIO), NELD(1E), EP(1G), COEFF(SG), FRNME (20)

WRITE (4. 1GG) FMAME
FEFTOKS, 1GOD RUOE, RCTS, NEGW
WRITE (4. 1ET) NEQN
DG $21=1$, AE QN
$\mathrm{J} J=3 * 1-2$
$J K=3 * 1$
FEFRD(S, 10こ)(COEFF(J), J=,IJ, JK)
WRITE(4, 1GE) (CUEFF (J), J=JJ, JK)
CONT IPNIE
WRITE (4, 169)
FEAD (3, 101) (EP(I), I=1, 16)
WRITE(4, 1E1) (EFF(I), I=1, 10)
WRITE (4, 119)PCTS
HRITE (4, 111.) NHOS
CGLL FGRM
WRITE (4, 165)FRAMME
HRITE (4.103)
HRITE (4, 106)
DO $5 \quad I=1$, RHOS
$\mathrm{t}=\mathrm{I}-1$
$x=F L O A T(M) \cdot F L O R T(F L T S)$
$\mathrm{DO} 3 \mathrm{~J}=1,10$
$J E P=\mathrm{J} * 3$

IF(EF(T)-T)S,4,4
cont IrNuE
CONTINUE
$\mathrm{NT}=\mathrm{IFI} \mathrm{X}(\mathrm{T}+\mathrm{S}$ 5)
CRLL EIN(H, MEIN)
CFLLL EEDC(NT, NETCD)
WRITE(4, 1G4) $H, N T,(N E I M(K), K=1,1 日),(N E C D(K), K=1,16)$
CORT IRUE
GO TO 1
FORMAT (315)
FOFMITT(1GFE. 1)
FOFMAT(SF20.10)

FORMFT ($8 \times 14,8 \times, 14,8 x, 16 I 1,16 \times, 1611$)
FOFMAT (2GH4)

1 13HRWM DATR

196	
189	
116	
111	FOFMFT（サナナSX，13HSIZE OF ROM $=14$ ，BH WOROS） ERD END
0．＊こIこE	6913：3
1，$*: S I$ IE	E60194

C
C INTEGEF TO 1日－EIT EINAR＇T COR＇EFTER
C
C
C NAT IS RUMEEE TO CORVERT
C WEIN IS EINAF＇t vFllue OF PIMPEER
C
EUEFOUTIME EIR（MN，REIN）
DIMEREIDN NEIN（IG）
$K \mathrm{~K}=\mathrm{FAN}$
DO $4 \mathrm{I} \quad \mathrm{I}=1,10$
$I J=11-I$
$K=K R / 2$
K K＝ドが2
NEIN（IJ）＝KR－KN
$K R=K$
4 CONTIPUE
FETURN
END
EPHD
6．＊SIZE E190905
1，＊SIZE GGBG24

C
C
C
C
C
c
C
WTA IS RUMEEF TO COHNERT reico is eico value of rumber in eit format

SUERGOUTINE ELCD(NTM, NELCD)
OIMERSION NECO(IE)
NTTH=NTH 16010
$\mathrm{N}_{1}=\mathrm{NTTH}$
$\mathrm{DO} 51 \mathrm{I}=1,4$
I $J=5-1$
$K=N 1 / 2$
$k 1=k+2$
$\mathrm{NEED}(\mathrm{I} J)=\mathrm{NI}-\mathrm{KI}$
$\mathrm{N}:=\mathrm{K}$
cont indue
NTTH1=NTTH*10695
NTTHE=NTA-RTTHX
NTH=NTTHZ/109
$\mathrm{N}=\mathrm{NTH}$
bu $52 I=1,4$
$\mathrm{I} J=9-1$
$k=N 1$ 亿
$K: L=K * 2$
$\operatorname{NECD}(I J)=N 1-K I$
$\mathrm{d}=\mathrm{K}$
CORTINLIE
NTH $=$ NTH: $\times 160$
NTHZ=NTTH2-NTH1
NTT=RTH2/10
$\mathrm{N} .1=\mathrm{NTT}$
$0053 \quad 1=1,4$
$I \mathrm{~J}=13-\mathrm{I}$
$k=12,2$
$K 1=K * 2$
$\mathrm{NECO} \mathrm{CO}(\mathrm{J})=\mathrm{N} 1-\mathrm{K} 1$
$\mathrm{B} \cdot \mathrm{L}=\mathrm{K}$
53 CORTIRAJE
$\mathrm{NTT} 1=\mathrm{NTT} *+15$
NTO=NTHE-NTT1
$\mathrm{NI}=\mathrm{NTO}$
DI $54 \quad I=1,4$
$1 J=17-1$
$K=N 1,2$
$k 1=k+2$
$\operatorname{NECD}(I J)=N 1-K 1$
NI=K
54 COHTIRUE
RETURIN
END
END
B, $x S I Z E \quad 06 B 344$

APPENDIX B

DERIVATION OF ADC RESOLUTION
AND ROM LINEARIZER ACCURACY

$\mathrm{P}=\mathrm{range}$ of physical stimulus $M=r a n g e ~ o f ~ m e a s u r e d ~ q u a n t i t y ~$ S=approximate slope of curve $\mathrm{R}=\mathrm{ADC}$ resolution $\mathrm{V}=$ value of ADC counts $T=$ total $A D C$ counts required $N=$ number of ADC bits
(physical units $-{ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}, \mathrm{GPM}, \mathrm{etc}$)
(measured units-mw,ma, etc)
(slope of P_{2} or P_{3})
(ADC counts per physical unit)
(ADC counts per measured unit)
(ADC counts, ROM words)
(binary coding)

1. Assume that P is the range of the physical stimulus to be measured and some device responds to this stimulus generating a measurable quantity M and that the characteristic equation for this response from 0 to 1 units of P is

$$
P=-M^{2}+2 M
$$

Assume also for analysis purposes that the units of M are in millivolts and the units of P are in gallons per minute (GPM).

The appropriate slope of this curve is given by

$$
S=P / M
$$

where P is a full scale value of P and M is a full scale value of M. The figure given shows two approximation for $S, S_{1}=1$ and $S_{2}=1.6$. Both approximations are highly inaccurate but one shows all true values of P above the approximation and the other shows all values of P below the approximation. Any value of S between 1 and 1.6 would yield an approximate curve with some real values of P above and some values below the approximation line.
2. Let R represent the resolution of the $A D C$ in counts per physical unit. In this case the resolution would be expressed in counts per GPM. Assume that it is desired to display values of GPM to the nearest tenth between 0 and 1 , then the value of R would be 10 counts per GPM.
3. Let V represent the measurable value of each $A D C$ count.

This is given by

$$
\mathrm{V}=\mathrm{RS}
$$

which has the units of counts per measured value or in this case counts per millivolt.

Thus it follows that

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathrm{S}_{1} \mathrm{R}=(1)(10)=10 \text { counts per mv } \\
& \mathrm{V}_{2}=\mathrm{S}_{2} \mathrm{R}=(1.6)(10)=16 \text { counts per mv }
\end{aligned}
$$

4. Let T represent the number of $A D C$ counts required to represent the maximum desired value of P. This is given by

$$
T=V M
$$

or in this case the value of T is

$$
\begin{aligned}
& \mathrm{T}_{1}=\mathrm{V}_{1} \mathrm{M}=10 \text { counts } \\
& \mathrm{T}_{2}=\mathrm{V}_{2} \mathrm{M}=16 \text { counts }
\end{aligned}
$$

This points out the fact that as the slope of the approximation curve gets steeper more $A D C$ counts, and hence, the more ROM words will be required to generate the displayed values.

But also the accuracy of the ROM linearizer is more accurate with a 16 count ADC than with 10.
5. Let $N=$ the number of bits representing a full-scale ADC word. This is given by

$$
N=\log _{2} T
$$

For this example

$$
\begin{aligned}
& \mathrm{N}_{1}=\log _{2} \mathrm{~T}_{1}=\log _{2} 10=3.322 \\
& \mathrm{~N}_{2}=\log _{2} \mathrm{~T}_{2}=\log _{2} 16=4.0
\end{aligned}
$$

. Hence, to fully represent the desired values of P, using slope S_{1} would require a 4 -bit $A D C$ and a 10 word $R O M$ and using slope S_{2} would require a 4 -bit $A D C$ and a 16 word ROM.
6. The results of using a 10 -word and a 16 -word ROM to "linearize" the curve of this example are given in Tables B.1 and B.2. Note that in Table B.l the approximation does not permit displays to the nearest tenth of the full scale range but as shown in Table B.2, using a l6-word ROM does permit displays to the nearest tenth.

Figures B. 1 and B. 2 illustrate the relative accuracies of using 10 and 16 -word ROMs for this example. Note that a l0-word ROM results in a maximum error of about 0.12 while a l6-word ROM results in a maximum error of 0.08 . Thus the 16-word ROM with a 4-bit ADC satisfies the design criteria for this example.

The accuracy of the ROM linearizer can be improved by using a larger $A D C$ to get more counts per input unit and a larger ROM with more words and perhaps also with another BCD quad per word to display the nearest hundredth of the linearized data.

T'TFICAL DUADEATIC FESFONEE CUF'WE

FOM HOPE	FOM DATA	FOM HIPEDEIS	FOM DATFCECD
\square	0	606006060	
1	2	60660460461	
2	4	96106160816	
3	5	6066006011	
4	E	E906060160	
5	ε	60601601610	
6	8	006060110	600606060064161650
7	9	60601060111	
ε	16	606061060	606060600601060
9	10	9060601601	

Table B.l
NCTS $=10$


```
**:*:**FEEFO OHL'r MEMOR''' TEUTH THELEE*:*:*:%:*
```


0	\square	60060erabe	
1	1	6060ecter	
2	2	680606061616	
3	3		
4	4	60606061E6	60606006060468180
5	5	6060emeler	
6	ε	6060606120	
7	7	6606606111	
8	8	6060601606	
9	8	6060601E61	
10	9	60600401619	
11	9	6060601011	
12	9	666461120	6060660606061041
13	19	$6 \mathrm{EDE061161}$	E606061060616069
14	19	g6Embelila	
15	16	6060601111	6060606006016060

```
Table B.2
NCTS = 16
```


Figure B.l
ROM linearizer results for NCTS $=10$

Figure B. 2

APPENDIX C

TYPE K THERMOCOUPLE LINEARIZATION RESULTS

T'TFE K THEEMOMOLFLE
E EDUATIOAS
-. $65194985 \%+2+$ 45. 1569565\% + 31. 68515612
. 167796010\%**: $2+$
-. 14560997\% \% $2+$

- 0 162 $160 \%+2+$

. $13975955 \% * 2+$
. 206ecescw wa +
. $28112957 \% 42+$

42. 12949656\% +
43. 65155563
$47.10441589 \%+18.56808715$
$43.5606 \pi 82+45.3326254$
$37.89735668+114.41369136$
$34.459969 \%+16931719971$
44. $4486519 \%+272.45446777$
45. $9364655 \times 447.60516254$

EREFHFGIINTS RT

45 FDC GOUNTE FER INFUT UNIT
SIZE OF ROM = 512 MOROS

FOM HOFE	FOM DATA	FOM WORDCEIM	FOM DATF(ECD)
9	32		
1	33	60606016060	606006080100110011
2	34	6006006016	6060040603110160
3	35		
4	36		6006010600110110
5	37	Q604040161	
6	38	6066060110	
7	39	6060606111	606060606011.1601
8	46	6060601060	
5	41	6060601601	
16	42	6061061519	
11	43	606E6E1E11	
12	44	6066061160	
13	45	6060601161	6ackex
14	46	6606061116	606E606601606116
15	47	6066061111	
16	45		
17	49		
16	50	E6E1040610	
19	51	6060616E11	
29	52	6060610100	6006060661010910
21	53	0060616101	6E606060 1610611
22	54	6006010116	
23	55	6066616111	
24	56	E606011606	6060606061616116
25	57	0060611061	0606006061610111
26	58	6606011610	
27	59	6060011011	
28	66	6086011160	E606040601200606
29	61	E6606eliler	
36	62	60600411119	606060x601200616
31	Es	Q606011111	
32	6.4	6060160600	6060060601200100
33	65	0660160601	
34	66	6060106E16	6ES6E4G6E1160116
35	67	06061200611	0600606041106111
S6	69	06181616169	
37	6	0606160161	606060601101601
38	75	6060160110	
39	71	6060100111	0696060681116061
49	72	60801916016	6806804061116010

41	73	6060101001
42	74	00046101016
43	75	E060161E11
44	TE	E006101200
45	77	601012101101
46	76	6808101116
47	79	E606161111
46	80	E6016116066
49	81	
55	82	6060110610
51	83	6006116011
52	84	6160119169
53	85	E6060116181
54	86	0860116110
55	87	6069116111
55	8	60101111606
57	89	60606111601
58	99	6906111016
59	91	6060111011
ES	92	06016111169
61	93	60609111161
62	94	6006111116
53	95	6ablillil11
64	96	6001606060
65	97	E60160604
66	98	6861661616
67	99	G60106012
66	166	08610061061
69	101	6001006161
76	102	6061606112
71	103	06191606111
72	104	
73	165	
74	165	6041091616
75	167	6016161011
76	108	6091601169
77	169	6061601161
73	119	9601601119
79	111	6061061111
8	112	B601916046
81	113	6061616061
82	114	60161610616
83	115	6001610011
84	116	6061016160
85	117	E601616101

E6ngederg 110

 E6世

 6G6606ch10606116

 06806016016916060
 G606060416016016 6060 6101016916011 E606066016616160 6066E6E618616161 06060601016016110 6060616016016111 60101060416011606 6060060616011661

 E4606061606T1011: 00160616106061060 6016660181601601
 G606ex 168016061
 606606016E1016011

 6016061061016110

86	118	609181E1． 0
87	113	E6161610111
89	113	E6W16110cas
89	128	E601011801
960	121	6001011616
91	12こ	E601011011
92	123	001012109
53	124	6061611101
94	125	6061011116
95	126	E101011111
95	127	6061105060
97	128	E601160601
96	129	E601180610
93	130	E1091206011
18G	$1 \geq 1$	E601180160
$10 \cdot 1$	132	600120161
162	$1 こ ゙$	GE011EE110
193	134	6001109111
164	$1 \leq 5$	6061191800
195	12 E	6091016101
185	137	9681161816
107	135	6091101611
103	139	6061101106
169	149	W00161101
116	141	6061161110
111	142	0061101111
112	143	601110606
115	143	
114	14.4	6061110616
115	14.5	E661116011
116	145	601219109
117	147	901210161
118	143	060110110
113	149	6601116111
1－9	150	E60111． 60
121	151	6061111601
1ここ	152	60011．1．619
123	155	E601111611
124	154	6601111109
125	15	E601111101
126	156	6001111116
127	157	6061111111
123	159	E616EETEGE
129	159	60160060 61
130	160	E6106E6016

G0606g6109611060
 E606506180412061
 60100 016161060101 GEENG010100150610
 6060609106100160 E606E15160160161 GE096016106106115

 602065061651．15065 E60190651061160161

 61506506160116106 G6ETESE16E116161
 60106010106116111

 6060650161605018
 G061969161604011

 G060600161606116 601066061161606111
 E6EE0E6161561601
 E606060161810061 E060106101610616 Eng606E101018011
 E606660161010101 60606に以 91616116 E606060101610111 6060601510101． 606 60090060161011001 E6ENOEN1011606006

131	161
132	$1 E 2$
153	16さ
134	164
135	1E5
13E	16．5
137	185
12 S	1ET
139	108
146	16E
141	178
142	171
$14 \pm$	172
144	173
145	174
14E	175
147	17E
148	177
149	178
156	173
$15 \cdot 1$	189
152	181
15゙5	18\％
154	183
155	184
156	185
157	185
158	187
159	186
160	189
161	196
1Eこ	196
153	191
164	192
165	193
166	194
167	135
168	156
169	157
17区	193
171	193
1アシ	E60
173	261
174	29
175	こめ3

61010606011 60160601016 0610000101 E61E06012． $8610 \mathrm{EDG111}$ E61ETG16E6 601EEG1EE1 6以106101816 001E10 1011 G616019190 061E091181 661ETG1110 6016561111 GEIEG1EWETE Q6101016061 6010610619 6015010611 6018015106 E1010010151 8016010110 6510616111 60160101000 GEIEG1E61 6016011615 6616011011 601601116日 6E161011101 6010011116 6010011111 6E1E16006T 6018160401 0610101010 G610160 101 6010106105 6016100151 0010100110 601玉18玉111 6010161606 6516101501 66161E1616 E610161611 651018：160 E6101E1．E1 6016101110 00101011111

 E60602010101100011 E060010151506106 6006010101160161 60606016181160101 66EGELE161166119
 E0E1060161161900 010150050181161601 606060 101116060 EWETEUE1E111E001
 E6EE60610111E611 6606506161110106 E0060101101116181 66世61691区1116116 EGGEGED1E1116111
 W606100218111： 601

 60100601060101

 EGETE106110061051 6060060110616006
 E60101061106151561 E16E1020116010615 6061060101109106011 E5605006110618180 6世66EGE118610101 6060606116916116
 E601006118011E60 ERGGEGE118011501

175	204	0010116000
177	205	00101160101
175	20e	6016116019
179	207	6010110011
18 B	208	6816110160
151	209	6616116161
182	216	6016116119
193	211	6016116111
184	212	6016111609
185	213	6616111661
186	214	61610111616
187	215	E610111611
1E8	216	0816111165
183	217	6016111101
199	217	6616111110
191	218	6016111111
192	219	
193	220	60110080101
194	ここ1	6011061616
195	222	6011606011
195	223	0611600106
197	224	0611600101
198	225	G6118106119
199	226	0611006111
290	227	Q612092006
261	286	6011061601
202	229	601100161E
293	230	6011061611
204	231	0611081160
295	232	6611601121
265	233	6B11091116
207	234	6011601111
208	255	0611616069
269	236	6011016961
216		g1011916016
211	256	6011016011
212	239	6011016160
213	246	g611616161
214	241	0911010110
215	242	6011610111
215	243	E611611600
217	244	E611611061
215	245	6011611610
219	246	6011011611
229	247	6011911160

 666061610616161
 6060601600606111
 608060160601610

 0060101606016010 6060601606016011 6060601606016160
 0460616016619119 6060601606e16111
 60109601600011060 606061601011061 61060041669160606

 E10060419012109109 E6E46461601206161
 606ETM100160111 E060691065161606 610401461060161001 E1096041061916006 E0460061606116061
 60406016160116011
 60106041000110101 64060 01600110110 8046161641116111
 E61606616GE111601
 E616061601606061 601610010616010410 6106B601001606011
 6040601061060101 606061010616E16116 6046019616010111

221	248	6011011101
222	249	E011E11116
223	256	6011811111
224	259	E6111060ng
225	251	68111061691
225	252	$0 \mathrm{CL11106910}$
297	253	0611161611
228	254	06111061015
229	255	6011160161
2301	25E	01611106119
231	257	6011106111
232	258	0611161615
235	259	6011101601
234	269	6611101615
235	261	0811161611
256	252	60111011E6
237	263	0611101101
253	264	6011161119
239	265	01811101111
249	26E	6811116060
241	267	0611116061
242	26\%	6011116616
245	269	6011110611
244	279	6 E 1111616 s
245	271	6611116161
245	272	01611116116
247	273	6011116111
248	274	60.111116006
243	275	60111111081
250	276	6011111016
251	277	6011111011
252	278	6611111186
253	2r9	6 6 11111161
254	2あ10	6611111116
255	281	61011111111
256	2ce	6150961960
257	283	616060601
258	284	6150606016
259	285	B1060161911
260	286	6106060100
261	287	6160606161
262	285	6160606110
263	289	61060619111
264	296	6106061060
265	291	01601081601

G10461920161601606 E060 0161601616101

 E6460616016166E1 G6046161616106161 6060601001616011 6060101601016160 E460861601016161 6064641611616116 E4060 1601616111
 6E60601601611001 66606101611666615 E0060601061160801 6060641601106016 E00606101601160611 04010601601160169 E10606E1001160161 6060061061160118 0606061001106111 6096061601101606 6060601801161001 60160161601116060 06810141601110601 0606601601116016 60160601601116011 6e06E601601110160 60606E1601116161 606661601116116 0060101601110111 6060601601111606 0606161601111601
 60601616160t10461
 E60 60101616016911 E460610101660 180 60166101616506161 grabericingencilg Genceraviecter111 6060601616001606 6010601010061601 0601641616016060 0606161616410610

265	292	0100601616
26.7	293	6106061011
208	294	0160401169
269	295	0168610161
275	296	816186101119
271	297	0108001111
272	298	Q1060166069
273	293	6161016001
274	2000	0166016016
275	301	6160016011
275	202	6160916169
277	36]	61600161E1
278	364	6161616119
279	365	010616111
2cs	TE6	0160911609
261	367	6160161201
292	309	6160611616
263	309	6160911611
284	315	6160611160
285	311	E164611161
285	312	616世611116
289	313	6156c11111
2es	314	01601086019
2cs	315	0164016041
296	31E	6100106016
291	317	0160160611
292	313	0160160106
293	315	6160160161
294	320	0160160116
295	321	Q160160111
296	322	0160161600
297	323	6100191041
298	324	6106101616
299	225	61E16101611
364	326	01001611008
361	327	6160161161
302	22s	6160161116
303	329	6160161111
3 E 4	3 30	0160110006
3 ES	331	6164115601
36\%	252	6160116016
367	333	6160116611
308	334	61E6118106
369	35	0160110161
319	3SE	6160110116

60461041610616016
 E640491616016160 061661616101016101 6060601616016116 06049691616516111 E60 6061016011806 06066101616011661 606060120601060
 E606606116861461E

 04610011606102161

 E06040110060 1601 60180641160616064 E0660661160616061 6046061160916015 E606061106016011 E646606116E616164 6660691160616161 E606061160616110 6006061106610111 EGE6E6B11606116EG 6060601106011601
 E6460481106106061 E6060461160196016 6060661106160611 6466661160160160 0040601160106161 E606061106100116 0109061104106111
 G04010641160191601 0460641160116066 6E406611661166161 6060641166116010 6060601160116011 6090681169116169 E040641106110161 E060461186118110

311	337	0196116111
312	335	01610111689
313	389	61E6111601
314	346	6189111615
315	341	0160111611
316	342	6160111160
317	343	E1E6111161
315	344	0160111116
319	345	6106111111
320	34E	01616061601
321	347	616106061
329	348	8161606019
323	349	0161060911
324	354	8161600160
325	351	0101606161
32E	こ52	6161606119
327	352	E101606111
326	254	0161601619
329	355	6161601601
359	256	9101061016
331	357	9161061611
352	358	6161001160
335	359	0161601161
354	360	E1616E1119
355	361	B1020m1121
32e	362	E161016060
357	363	01616160161
35	364	8101016516
39	365	6161616E11
3419	TEE	6161616156
341	367	8101610161
342	36s	6161610116
3.45	369	6161616111
344	378	6161011610
345	371	0161011601
346	3 Cz	6161011616
347	375	6101611611
346	374	6101611169
349	375	0161611161
3513	375	0101611116
351	37	6161611111
35	375	9101106040
35	375	61011661601
354	3E9	0161106016
355	381	0101106011

 60160161108111601

 E460461161601611 60606061181606160 E646861161606161
 6060 0110160111 060601011010610616 60060091161001601 604606110181686日 6060101161616061 E6B60161161616016 0666061101616011 6060161161616160 E681861161810161 0606001161016110 6006681161010111 6006011101611606 604681101611601
 6060691101168061 E0606511611E4019 6046101101161011 E0606061101160160 60600601101106161 0616041101106119 061641101106111 E6060101161161664 60606411611616E1 E4064012101116060
 0646061101110010
 60646日1101116160 06401691101116191 06060101161116110 6606011101116111 E0968611811116E6 6646061161111661 6060061110606086 6060661116016012

356	382	0161106160
357	383	6101160161
358	384	6101100110
259	385	6161106111
368	36\%	018130106010
SE1	387	2101101091
3E2	36s	6101101616
353	289	0101101011
364	300	6101101160
365	391	Q101161161
365	392	6101101119
367	293	6161101111
368	394	0161116006
365	395	E161110601
376	396	6101116019
371	397	E181116011
372	398	E161116160
373	399	0161116161
374	499	6161116119
575	401	9101116111
376	492	0161111006
377	403	6101111E61
378	484	6161111616
373	465	6161111611
380	465	6161111160
381	407	6161111161
382	468	6161111116
3 s 3	469	Q161111111
384	410	611606060
385	411	Q110966091
3Es	412	0110646919
3er	413	6110606011
368	414	E116961169
289	415	E116060161
351	415	6116806116
391	417	0116860111
392	415	6110061060
393	419	0110601601
394	429	6116001616
355	421	E1106mati
356	422	0110061169
397	423	0110601101
298	424	6110601119
399	425	Q110061111
465	426	011091864

0601061116900910 04641011106401011 E0640601110601610 606046111106016161 064104111960116

 E606061110001061
 6014061011104161512 0604061110618010 6046191110616011
 E6403061116016161 6061001110610116 60106661116016111 G0406061116011060 6060019110411601

 604061006046011 606061006080t106

 E040619040101040 604061E01061E611
 6040610160610101 E6164916061610116
 6060
 E60601606016060 E646016060160601 E6016016030160610 646101696164611

401	427	0110016001
405	423	0116016010
405	429	0110016011
484	430	011616160
405	431	0110610201
465	432	0110010110
407	435	0116016111
465	434	611611060
469	435	
419	436	6110011016
411	437	6116011611
4.12	4 SE	E110911106
413	439	0110911191
414	446	0116011110
41.5	441	Q110011111
41E	442	611016060
417	443	6116160601
418	443	Q110160616
419	444	6116106E11
420	445	01101010160
421	445	6110160161
422	447	Q116169119
423	443	6116160111
424	449	
425	459	8116161601
426	451	6116101616
427	452	6116161611
428	453	9119101100
429	454	0116161161
439	455	6116191119
431	456	0110101111
432	457	6110116000
435	458	6116110061
434	459	Q116116016
435	466	0110116011
4 SE	451	6116116160
437	462	6116110181
438	463	6116116110
439	464	0110110111
449	465	0110111606
441	4EE	9110111001
442	467	Q110111610
443	468	0116111011
444	463	E110111160
445	476	0116111101
445	471	6110111116
447	472	0110111111
448	475	611106gemg
449	474	8111606061
456	475	0111060910

E606016060160111 6eber 106010161609 6060616E01201601

 G600410606116010 E060616060110611
 B606016060112161 6060616060110116 6000161600110111
 G606121206111061
 6060610601640601
 6060610601606011 06061160101080611
 0096018061606161

 6046916801041601 6060616061016060
 606061600J610616 060610610601618011 0600610401026180 006018061010161 8060616001610116 6060416041616111 6060610601011660 6060
 606016041166061 6060616061160 10 060610601164011 6069016061160160 60606160101106101 06061104011018116 61060116001106111 6066016061101064 0600010061161001 6060610601116060
 E6061010601110610 060GM106E1110011 0610616061116160 60186010061110101

451	476	0111006011
452	477	0111000100
453	475	0111006161
45.4	475	611100119
455	460	6111060111
45	481	0111061069
457	482	0111061661
459	483	0111001010
4.59	4E4	0111601011
460	485	0111062108
461	485	0111601101
462	487	0111001116
463	489	0111661111
464	489	0111616000
465	490	Q111610601
46	491	6111016018
467	492	0111610011
468	493	6111610160
469	494	0111616101
47 B	495	0111016116
471	496	6111610111
472	497	0111011060
473	498	0111011061
474	493	6111011610
475	459	6111011611
475	56 E	E111011160
477	561	6111011101
478	562	0111611116
479	563	6111611111
489	564	E111168560
491	506	0111180601
482	56	011116 Gela
485	507	Q111160611
484	5 Ec	0111166160
485	569	Q111166191
4Es	516	W111164116
$4 E 7$	511	0111169111
483	512	0111101680
489	513	0111161601
490	514	E111161610
491	515	0111101611
492	516	6111101160
493	517	Q111101101
494	515	0111161110
495	513	E111161111
496	520	0111110060
497	521	0111116091
498	522	0111110610
499	523	$\underline{0} 111118911$
568	524	Q111116160
581	525	0111110161
510	525	Q111116119
563	527	Q111116111
564	523	E1111116日
50.5	529	0111111601
596	530	E111111616
567	531	6111111611
569	532	9111111169
509	533	Q111111161
515	534	Q111111116
511	525	Q111111111

0409616461110116
 00106140401111609 G0601206101111601

 Q606120410640610 6040010410004011
 0600110410010101

 E1E1010160160101606 0606010616401801 E60601601601606e 06060180160160101 6460x16918616016 606461661EM1E611 0606010416016100 6040410616018101 6046515016010110 06601010416410111 60601616416811606 0040610610811801

 6060418160404061 6660110160606816 6060116166401911 606060616060w166 B6064102060046101 6060016100601116 $0606016 t e t 006111$ 0660610160601606 0060616160641801
 0606016160610601 6060615160610616 0606012100610611 60661610160610100 6401010106310161 0606016160610116 6060610166016111 0696010166011600 E460 18168611601 60601616160106E66 0606016106106061 0600610160100610 0606018106100911 0600610100106160 6090101010160101 06001610106109110 6060610100100111 E06061616106101006 60601610106101001 0606016106116006 606EdT16108116061 0606010106110016 6060610160116011 6EGW01010E116106 6060610160118161

