## A FEASIBILITY STUDY IN APPLYING READ-ONLY MEMORIES TO THE ANALYSIS OF NONLINEAR ANALOG FUNCTION RESPONSES

A Thesis

· · · · · · · · · · · ·

Presented to

the Faculty of the Department of Electrical Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree Master of Science in Electrical Engineering

by

Edgar Lee Dohmann December, 1972

#### ACKNOWLEDGMENT

I would like to gratefully acknowledge the encouragement and assistance of my major advisor, Dr. T. N. Whitaker, in the preparation of this thesis.

My sincere appreciation goes to my wife, Janis, and to my parents for their encouragement and understanding during my college career and particularly during the preparation of this thesis.

I would also like to thank Miss Laverne Spell for her excellent help in typing this thesis.

The research reported here was supported by Houston Engineering Research Corporation (HERCO). I would like to thank my supervisor, Mr. J. E. Coffman, for his assistance and the use of the HERCO computer facility.

## A FEASIBILITY STUDY IN APPLYING READ-ONLY MEMORIES TO THE ANALYSIS OF NONLINEAR ANALOG FUNCTION RESPONSES

An Abstract of a Thesis

Presented to

the Faculty of the Department of Electrical Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree Master of Science in Electrical Engineering

· • · · · · • • • • • · · · · ·

by

Edgar Lee Dohmann

December, 1972

### ABSTRACT

The measurement of physical qualities such as temperatures, pressures, and flow rates is both desirable and essential in many industrial processes. Devices such as thermocouples and other transducers have been developed which yield a predictable voltage or current response to the external stimulus. The use of such devices which produce voltage and current signals provide economical and convenient capabilities to measure the desired physical qualities because many signals may be terminated and monitored at a central location such as a control room.

Thermocouples for temperature measurement are the most widely used devices in such industrial process applications because of their simplicity, accuracy, and low cost. As most such devices which respond to an external stimulus, the relationship between the voltage generated between thermocouple junctions and the temperature of the junctions is nonlinear.

This nonlinear relationship poses the greatest problem in designing and constructing accurate temperature indicating devices.

Several analog-to-digital conversion techniques have been developed which compensate for the nonlinear function being measured and produce temperature readouts in proper engineering units. All techniques developed for commercial applications strive to attain satisfactory degrees

ν

of speed, simplicity, accuracy, economics, and reliability. Most techniques offer some advantages in two or more of these qualities but no presently available techniques offers a clear advantage in all five qualities.

Recent developments in the field of semiconductor memory devices have made it possible to design a digital temperature indicator using read-only memories (ROMs) with accuracies approaching those attainable with computer based techniques. The speed, simplicity, and reliability of such a ROM technique would be better than any other presently available technique. Predicted trends in future semiconductor developments also make such a technique very attractive economically.

A computer program has been developed to generate ROM truth tables for a nonlinear response system. The truth tables generated by this program are based on the system of quadratic equations which describe the nonlinear function. The accuracies are limited only by the inherent accuracy of the equations used, the size of the ROM, and the dynamic range of the stimulus to be measured.

vi

## TABLE OF CONTENTS

| CHAP' | TER |
|-------|-----|
|-------|-----|

.

.

| I.    | INTRODUCTION                                                        | 1  |
|-------|---------------------------------------------------------------------|----|
| II.   | CONVENTIONAL LINEARIZATION TECHNIQUES                               | .3 |
| III.  | READ-ONLY MEMORY CHARACTERISTICS AND APPLICATION                    | 23 |
| .IV.  | READ-ONLY MEMORY LINEARIZATION APPLICATION                          | 31 |
| v.    | GENERATING READ-ONLY MEMORY TRUTH TABLES                            | 39 |
| VI.   | RESULTS AND CONCLUSIONS                                             | 53 |
| BIBLI | OGRAPHY                                                             | 56 |
| APPEN | DIX A - FORTRAN COMPUTER PROGRAM FOR ROM<br>TRUTH TABLE GENERATOR   | 58 |
| APPEN | DIX B - DERIVATION OF ADC RESOLUTION AND<br>ROM LINEARIZER ACCURACY | 64 |
| APPEN | DIX C - TYPE K THERMOCOUPLE CURVE LINEARIZATION<br>RESULTS          | 73 |

.

#### CHAPTER I

#### INTRODUCTION

Many natural processes are neither linear nor quantitative but behave in continuously smooth, nonlinear ways. It is desirable and necessary to measure such nonlinear natural processes in many applications such as industrial process control and operation, laboratory experimentation, and data analysis.

Many devices have been developed which yield a predictable voltage or current response to an external stimulus. Thermocouples are widely used as temperature transducers because of high inherent accuracy, wide measurement range, fast thermal response, ruggedness, reliability, and low cost. Thermocouple circuits develop an electromotive force (emf) at the measurement terminals whose magnitude and polarity depend on properties of the metals used and the temperature difference between the thermocouple junctions.

Although many materials can be combined to produce a thermoelectric effect, certain pairs of metals have become standard. The four most commonly used types of thermocouples are: Type J (Iron/constantan), Type T (copper/ constantan), Type K (chromel/alumel), and Type E (chromel/ constantan). The type used depends on such factors as desired operating range, external environment, desired emf output range, and installation considerations. As with most transducer devices which respond to an external stimulus, the relationship between the voltage generated between thermocouple junctions and the temperature of the junctions is nonlinear. Several techniques have been developed to measure thermocouple emf, compensate for the nonlinear function, and produce temperature readouts in proper engineering units. All techniques developed for commercial applications strive to attain satisfactory degrees of speed, simplicity, accuracy, economics, and reliability.

The purpose of this investigation was to evaluate the feasibility of using read-only memory (ROM) devices in the linearization of such quantities as thermocoupleproduced emf and develop techniques of applying ROMs to these tasks. While many of the principles and techniques presented and discussed in this report apply to measurement and analysis of nonlinear functions in general, this investigation was limited to the primary field of thermocouple circuits due to their common and widespread use and the availability of background information.

#### CHAPTER II

## CONVENTIONAL LINEARIZATION TECHNIQUES

The simplest method of measuring temperature using thermocouple circuits is to use an analog or digital voltmeter to measure the emf produced and then to refer to a National Bureau of Standards (NBS) thermocouple conversion table to determine the corresponding temperature.

While this manual table-look-up method may be simple it can also be extremely time consuming and impractical in industrial process applications where hundreds or thousands of thermocouple circuits may be terminated in a single control room and it is often nesessary to read and/or record many temperature values in a small amount of time.

Figure 2.1 shows a generalized block diagram of a data acquisition system. Such a system permits an operator to select any one of many input points to be monitored and displayed. The control logic of the data acquisition system multiplexes the selected input point onto a single analog channel then measures the selected quantity and displays the resultant value to the operator.

The generalized block diagram is simplified even further in Figure 2.2. This figure shows the basic component parts of the Analog Measurement/Computation Logic and the resultant display output. Figure 2.2 shows only one analog input value as would be the case after the selected point is





Ŧ

Typical data acquisition system







.

ហ

multiplexed onto a single analog input channel. This basic block diagram is referred to throughout the remainder of this chapter as some variation of this block diagram is used in almost every conventional linearization technique.

The two most basic means of linearizing an input function are by analog techniques or by digital techniques although some techniques employ a combination of both. It is not the intent or purpose of this chapter to present and discuss every linearization technique that has ever been developed but rather to discuss in general terms the characteristics of some of the most commonly used techniques to provide a basis for comparison of the read-only memory linearization technique to be discussed in a subsequent chapter.

The basic goals of a linearization technique should be to provide a system which is accurate, simple, economic, fast, and reliable. Each of these qualities is used as a basis for comparing the desirability of one technique over another. Often trade-offs must be made between two or more of these qualities to optimize the adherence to another.

Accuracy, when applied to linearization techniques, normally refers to the ability of the linearization network or device to conform to the published NBS tables without regard to the inherent inaccuracies of the other system elements such as the sensor itself, the signal conditioning

amplifier, or the analog-to-digital converter.

Simplicity of a linearization technique includes the space required by the technique, the maintenance required, the versatility of the technique, and the difficulty to design and implement the technique. Versatility is very important because some applications require the use of a particular type of ADC or amplifier but if a linearization technique is highly dependent on some other type of ADC or amplifier, it may not be possible to use that technique.

Economics of a linearization technique includes both the cost of the components used and the cost of implementing the technique.

The speed of a linearization technique refers to the time required for the measured quantity to be adjusted to conform to the actual value of the stimulus.

The reliability of a linearization technique includes the expected life of the components used in the technique and the ability of the technique to continue to conform to the published NBS tables over an extended period of time.

The simplest linearization technique based on using a circuit like that shown in Figure 2.2 would be to scale the displayed data to a value that could be conveniently referenced in an NBS look-up table. This technique would be similar to that mentioned at the beginning of this chapter with the exception that automatic analog multiplexing

is implied by the system shown in Figure 2.2. Even though automatic signal multiplexing is provided by this technique, the procedure of conversion by reference to a table is not simple and is certainly not reliable since each reference is subject to human error. The method is also very slow and costly in terms of time and effort expended. Since all five of the desired qualities are severely lacking in this method it is readily evident why automatic linearization techniques are preferred over manual methods.

## AMPLIFIER, DIODE FUNCTION GENERATOR FEEDBACK TECHNIQUE

One of the most commonly used linearization techniques is the Amplifier DFG feedback technique. This technique uses the very popular piecewise linear approximation as do most other conventional linearization techniques. The accuracy of any method using piecewise linear approximation is determined by the number of line segments used and the inherent accuracy of the circuitry generating the line segments. Figure 2.3 illustrates the basic piecewise approximation of a nonlinear curve.

The Amplifier DFG feedback technique employs a diode function generator (DFG) network in the amplifier feedback circuit to generate a function which is the inverse to the input voltage. The block diagram of such a system is shown in Figure 2.4 and the typical response curves are shown in Figure 2.5.





Piecewise approximation of a nonlinear function





Amplifier diode-function-generation feedback technique



(a) Transducer output (b) DFG function

(c) Composite transfer curve

# Figure 2.5

Linearization of curves by a DFG circuit

The complexity of such a system depends on the number of line segments used and the capabilities provided for temperature-compensation of the breakpoint diodes. Precision limiter circuits using operational amplifiers to simulate ideal diodes can greatly improve the accuracy but would also greatly increase the cost and complexity of the system. This method has the significant advantage of being very versatile and essentially independent of the type of amplifier and ADC used. This system usually depends very much on the reference voltage used to bias the DFG circuit and, normally, each segment of the curve requires a separate adjustment because of inherent variations in diode characteristics. This method has the advantage of being very fast since the time required for the output voltage from the amplifier to stabilize depends only on such factors as amplifier slew rate and settling time and diode switching time.

#### RAMP LADDER LINEARIZATION TECHNIQUE

One analog-to-digital conversion technique is to allow a counter to accumulate pulses at a fixed rate while a ramp generator is running; then, when the ramp output matches the unknown input signal, the total count accumulated is proportional to that input signal. If the input current to the ramp generator is changed in steps depending

on the number of pulses counted, a piecewise linear ramp can be generated as shown in Figure 2.6. If the polarity and magnitude of the ramp is properly calculated, the resultant ramp can approximate the transducer response curve as shown in Figure 2.7.

Figure 2.8 illustrates how such a nonlinear ramp generator might be used in a linearizing data acquisition system. The basic accuracy of such a system depends on the number of line segments used and the inherent accuracies of the components used. Precision components can be used in the ramp ladder circuit to simplify implementation and calibration and to increase reliability. The cost also depends on the desired accuracy and simplicity of calibration requirements.

The two major disadvantages of the ramp ladder linearizer are speed and flexibility. The ADC counter must start at zero at the beginning of the conversion cycle and must count up to the unknown value. For a full scale analog input voltage 2<sup>n</sup>-1 clock pulses are required before the conversion is complete (n is the number of bits in the digital word). The frequency of the clock pulses driving the ADC counter is limited also by the response time of the switches in the ramp ladder circuit and the slew rate of the ramp generator.







Typical nonlinear ramp generator





Piecewise linear approximation of transducer output





·

Ramp ladder network technique

14

.

The ramp ladder linearizer technique requires that a counter-ramp type of ADC be used. This type of ADC must be either a specially designed ADC or one which provides access to the digital count during the conversion cycle and access to the ramp generator input so the decoder/ramp control circuitry and ramp ladder circuitry can be added externally.

#### VARIABLE SPEED ADC COUNTER TECHNIQUE

Another linearization technique using the basic counter-ramp ADC is the variable speed ADC counter. This is a digital linearization technique as shown in Figure 2.9 using a fixed ramp to control the conversion time but using more than one clock frequency to control the speed of the ADC counter. The resultant output of such a device is shown in Figure 2.10. The number of pulses accumulated in the ADC counter varies with time to approximate the response function.

The accuracy and complexity of the circuitry used in this technique depends on the number of clock frequencies available and the complexity of the decoder circuit used to control the selection of the frequency to drive the counter. The theoretical accuracy obtainable by this method is dependent also on the number of line segments used in the piecewise approximation. The number of precision components needed to make a circuit which is easy to calibrate and









Piecewise linear approximation by varying counter speed

. •

maintain is much less than required by the ramp ladder technique. A severe limitation of this technique is the requirement that the ADC be specially designed for this application. Another limitation is the speed of the system. In general, however, it should be possible to operate the ADC counter for this method at faster speeds than for the ramp ladder method because the response time of the digital switches controlling the counter pulse frequency is less than the response time of the analog switches on the ramp ladder network. A one-digit ambiguity exists each time the oscillators are switched if discrete oscillators are used to vary the ADC counter speed. If a resistor is switched in the frequency determining network of a single oscillator, this ambiguity does not arise.

### ACCUMULATED ADC COUNT CORRECTION TECHNIQUE

Another digital linearization technique accomplishes the same overall effect in a slightly different manner. This method which corrects the accumulated pulse count of the ADC counter has essentially the same general composition as the method shown in Figure 2.9. A fixed ramp generator produces a linear output until a comparison is made with the unknown input. During the conversion cycle the ADC counter is driven at a constant rate but when the decoder/control circuitry detects a "correction point", a pulse is either

added to or subtracted from the total accumulated count.

The counter correction circuit can either increment or decrement the ADC counter when the correction point is detected if an up/down counter is used or the total of all additions and subtractions can be maintained until the end of the conversion cycle and the final accumulated value corrected before presentation to the display. The net effect of either method of correcting the accumulated value of the ADC counter is to approximate the response curve by shifting line segments with the same slope.

The major advantage of the two digital techniques is that for the same or less degree of complexity and cost than analog techniques, a piecewise approximation can be realized with many more line segments thereby yielding a more accurate device.

The reliability of the digital techniques discussed here is very good since highly accurate, stable, and reliable components are available to construct these devices and very little calibration of the system would be required.

Even though the ADCs discussed for the counterramp conversion techniques used a ramp generator to compare with the unknown input the dual-slope ADC technique could be applied to all 3 linearization methods discussed here. The dual-slope method employs an integrating ramp on the analog input to charge a capacitor to the unknown value. The

capacitor is then discharged at a constant rate until the unknown voltage reaches zero and the accumulated pulses in the ADC counter during this discharge time is proportional to the unknown input. If the unknown value were discharged at a non-linear rate or if the clock pulse frequency were varied, or if the accumulated value were adjusted by appropriate values this ADC technique could be used in essentially the same manner as the counter-ramp method.

## DIGITAL COMPUTER PROGRAMMING TECHNIQUES

Another commonly used technique is to use a digital computer program to perform the linearization. Such a method as shown in Figure 2.11 would merely examine the digitized value of the analog input and either evaluate a series of polynomial or straight-line equations describing the response function or use a table look-up technique.

The computer program linearization offers the advantage of being very versatile. The method is essentially independent of the type of amplifier and ADC used.

To justify the computer program linearization approach economically, however, the computer would have to be an inherent part of an overall system and the measured data would have to be required by other programs in the overall system. The cost of a stand-alone system as shown in Figure 2.11 would, in general, be prohibitive.



.

.

.

.

Figure 2.11

Computer program linearization

.

In addition to the conversion time of the ADC used in the method of Figure 2.11, the device access time and program execution time would be prime factors in the overall speed of the system. In general a table look-up technique would be faster than a polynomial equation evaluation technique but would also occupy more memory space.

The straight forward processing technique of the computer program linearizer presents a very simple design concept but the actual implementation of the system may be very complicated depending on the structure and purpose of the overall system.

Of all the commonly used linearization techniques presented here, none possesses extreme advantages over any other. Perhaps the most commonly used techniques in the past have been manual table-look-up and DFG feedback circuits. The ramp ladder and variable clock techniques have been used when simpler circuitry and less calibration were desired. The computer program technique has been widely used in systems in which computers are employed for other uses. The digital techniques have become increasingly popular in the last two years because continuing advances in digital technology make the circuitry required to support such techniques simpler and more economical to use.

Indications are that the application requirements will continue to dictate the technique used but continuing

advances in digital technology should make digital techniques more and more attractive in the future.

Recent innovations in economical modular analog circuitry components such as power supplies, multiplexers, sample and hold devices, analog-to-digital converters, digital-to-analog converters, and amplifiers make it increasingly more attractive to search for linearization techniques which are as independent of the other circuit modules as possible.

#### CHAPTER III

## READ-ONLY MEMORY CHARACTERISTICS AND APPLICATIONS

A read-only memory (ROM) is a circuit which can accept a digital code at its input terminals and provide a unique digital code on its output terminals. The relationship between the input and output codes is fixed and is usually alterable only by replacing all or part of the circuitry.

Many advances in read-only memory technology have been made since the mid-1960's and although ROMs have received much publicity recently, they certainly are not new devices. Read-only memories have been used in digital circuitry for many years but their usage in the past has been rather limited.

The most common form of read-only memory is the diode matrix which has been used since the early days of electronic digital computers. A typical example of such a diode matrix is shown in Figure 3.1. The matrix shown has 4 input bits and 5 output bits which makes the circuit a 20bit ROM, meaning that the circuit has 20 memory calls which may be programmed with a logic "0" (no diode) or a logic "1" (diode present).

The most common use of such diode matrix circuits has been the implementation of Boolean logic equations. The truth table shown in Figure 3.2 illustrates how the matrix





Diode matrix read-only memory

| INP                                            | UT E                                      |                                                     | ATTERN                                              |                                               | PUT                                                 | BIT                                            | PATT                                                          | ERN                                                 |
|------------------------------------------------|-------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|
| <sup>Ү</sup> з                                 | ¥2                                        | Yl                                                  | Y <sub>0</sub>                                      | ×4                                            | <sup>х</sup> з                                      | <sup>X</sup> 2                                 | xı                                                            | х <sub>0</sub>                                      |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1 | 0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0 | 0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0 | <br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>0<br>0 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0 | 0<br>0<br>1<br>0<br>0<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>1<br>1<br>1 |
|                                                | 0<br>1<br>1<br>1<br>1                     | 1<br>0<br>0<br>1<br>1                               | 0<br>1<br>0<br>1<br>1                               | 1<br>1<br>1<br>1<br>1                         | 0<br>1<br>0<br>1<br>0<br>1                          |                                                | 0<br>0<br>0<br>0                                              | 1<br>1<br>1<br>1<br>1                               |

# Figure 3.2

A read-only memory truth table

of Figure 3.1 solves the following set of logic equations:

$$X_0 = Y_0 + Y_3$$
$$X_1 = 0$$
$$X_2 = Y_1 + Y_3$$
$$X_3 = Y_0$$
$$X_4 = Y_1 + Y_2$$

Such diode matrix circuits have also been popularly used in code-conversion circuits such as BCD-to-decimal, binary-to-BCD, and BCD-to-binary. Each of these examples and many others qualify as read-only memory circuits since a unique digital code can be applied to the input terminals and a unique digital code obtained on the output terminals.

Typical applications for devices which can generate a group of unique output bits for every group of unique input bits include implementing logic and counting functions, performing code conversion, function generating, character generating, micro-programming of digital processes, and performing table look-up functions.

Many devices which qualify as read-only memories have been developed to perform these tasks, although most of them, such as the diode matrix, are not commonly referred to as ROMs. A very popular technique is to store the bit pattern of a particular function in a common read-write memory (core memory, semiconductor memory, drum storage, etc) then activate a write-disable circuit to prevent inadvertent destruction of the stored information but still permit access to the stored information. Such a device would properly be classified as a ROM while the write-disable circuit remained active but would still provide the option of changing the contents of the memory at a later time.

Even though many devices qualify as read-only memories, the term "read-only memory" or ROM, is in general used to refer to semiconductor integrated circuit devices satisfying the definition of a read-only memory. Semiconductor memories incorporate high-gain and high-speed digital elements. Consequently they are a faster and more ideal storage device than their magnetic counterparts which depend on the analog properties of a slower device and exhibit no gain.

Memories built with semiconductor devices are becoming cost-competitive with ferrite-core memories. In addition they offer superior performance and greater freedom of organization. Many types of semiconductor memories, based on both metal-oxide silicon (MOS) and bipolar technologies, are becoming available. These memories differ primarily in cost, organization, and performance.

MOS technology is presently the most popular for the fabrication of read-only memories. The high density possible in this memory matrix cannot be achieved by any other present technology. In addition the circuitry required for address decoding and input-output buffering can be included

on the same substrate as that which contains the memory matrix. The result is a very dense, low-cost array that can be used easily.

A general diagram of a MOS read-only memory is shown in Figure 3.3. The ROM is organized as a 16-word 2-bitsper-word memory. The basic storage element of the MOS ROM is the MOS transistor. The ROM shown in Figure 3.3 has 32 possible transistor locations or memory "cells". A logic "1" is coded by inserting a transistor in a particular position and a logic "0" by omitting the transistor. The truth table for this ROM is illustrated in Figure 3.4.

Semiconductor memories (except read-only memories) are, in general, volatile storage devices. For a volatile storage device to retain stored data, power must be applied continuously. Read-only memories, while difficult to alter, eliminate this storage volatility problem. Most ROMs are fabricated by using a photographic mask with a customized memory matrix on it which stores the desired bit patterns. ROMs manufactured in this manner must be replaced if the bit pattern is to be changed later. Some ROMs are termed "programmable" read-only memories (PROMs) meaning that they can be programmed after the integrated circuit wafer has been packaged. Most PROMs are manufactured with logic "1"s in all bit positions and the programming consists of removing certain "1"s by applying a large reverse-biased voltage



Figure 3.3

MOS read-only memory (16 word x 2 bit)

| ROM<br>WORD NO.                                                                     | 01                                                                 | 0 <sub>2</sub>                                                               |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | 1<br>0<br>1<br>0<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>1<br>0<br>1 | 0<br>1<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>1<br>0<br>1<br>0 |

Figure 3.4 MOS read-only memory truth table

to certain terminals in order to destroy the corresponding transistor. Some PROMs are even erasable (E-PROMs) by x-rays or ultra-violet rays. Applying such energy sources to an E-PROM returns all bit positions to logic "1" permitting the device to be re-programmed.

Some factors significantly affecting the cost of ROM devices are the type, size, method of programming, and quantity purchased. All of these factors must be considered when purchasing ROMs because an absolute comparison between devices cannot be made unless these factors are defined. MOS memories are, in general, less expensive than bipolar memories and can be obtained with more memory capacity in the same physical area. Memory costs are often compared on a price-per-bit basis. Read-only memories in the 1024 to 4096 bit range may be priced as low as 1¢ per bit in guantities of 1000 devices but may cost 5¢ per bit in unit quantities. Also a ROM in the 64 to 256 bit range may cost more per bit than a 1024 to 4096 bit ROM, because the actual device costs may be approximately equal. Another factor greatly affecting the cost of ROMs is the programming of the ROM. ROMs which are produced by photomasks are in general less expensive than equivalent ROMs which are PROMs or E-PROMs. If a custom mask must be made for a particular application, about 50 to 100 such ROMs would have to be produced from the mask to bring the total overall cost below that of a PROM

or E-PROM. In general, for very small quantities of custom memory patterns the PROM or E-PROM is the most economical. It is necessary to evaluate the actual costs and the projected requirements of a particular memory configuration to determine the most economical type of ROM to use in a particular application.

### CHAPTER IV

### READ-ONLY MEMORY LINEARIZATION APPLICATION

The basic characteristic of read-only memories (ROMs) is that a unique digital code on the input terminals results in a unique digital code on the output terminals. This makes them extremely useful for performing code conversion and table look-up functions. One of the many applications of such functions is the conversion of digitized values of nonlinear analog functions to suitably coded engineering units.

By effectively programming a NBS thermocouple table into a ROM, a temperature can be determined by measuring the emf produced by a thermocouple. Referring to an NBS "manually" (as discussed in Chapter 2) can be performed automatically. A simplified block diagram of such an automatic device is shown in Figure 4.1. If in such a device as shown in Figure 4.1, the amplifier and ADC are used to generate a binary code proportional to the input analog value, the ROM can be used to generate a corresponding human-oriented engineering unit value for each discrete ADC value. The display is used to present the ROM output in alpha-numerical form to the person desiring to measure the physical quantity.

A technique such as that shown in Figure 4.1 offers many of the qualities desirable in linearization techniques. The technique is very simple in concept and is fairly simple to implement once it is designed. There are several important



.

considerations in the design of the system and the programming of the ROM; however, these considerations are not extremely difficult and not altogether different from those required in the design of systems using other linearization techniques. The considerations peculiar to the ROM linearizer are discussed in detail in Chapter 5.

The system is very versatile since the type of amplifier and ADC used may be almost any type as required by the particular application the system is to be used in. The ROM may require different programming for different types of ADCs but the technique in general is virtually ADC-independent. A variety of display devices may also be used as the output code of the ROM may be programmed in many ways although some methods require more bits per word, hence a "larger" ROM which may result in a more costly ROM.

Another advantage of the ROM linearizer is the simplicity of maintenance and calibration. An important characteristic of this system is the absence of feedback loops in the overall block diagram. This eliminates most of the calibration and maintenance problems associated with many of the techniques discussed in Chapter 2. Another important characteristic of the system is that once a ROM has been programmed (truth table generated) many identical ROMs can be manufactured with very little testing time needed. Once an overall system is designed, many can be built requiring only minor calibration of the amplifier and ADC.

33

÷

The ROM linearizer is probably the fastest linearizing technique available. Since there are ROMs available with access speeds of one microsecond or less, the response time of the overall system is essentially dependent only on the amplifier, ADC, and display response times.

The use of a ROM linearizer is an extremely reliable technique. One inherent characteristic of read-only memories is that they never forget and have a normal life expectancy of many years. Extremely reliable amplifier, ADC, and display devices are also available so it is possible to construct highly reliable ROM linearizer systems.

The accuracy of a ROM linearizer is dependent on the inherent accuracies of the amplifier and the ADC and the ROM itself. The programming of the ROM is the most important consideration in the overall accuracy of the system. If a ROM is chosen which has the same number of "words" as the ADC has discrete values and each "word" has an adequate number of bits to code the engineering unit value to be represented, then the overall accuracy depends on the number of discrete ADC values used to represent the analog input and the method used to generate the ROM truth table. The considerations involved in determining the accuracy of a ROM linearizer are discussed in detail in Chapter 5.

The economics of the ROM linearizer may range from a very economical system to a very expensive system

depending on a number of factors. The two most important considerations in determining the cost of a ROM are the programming technique used and the size of the ROM. The size of the ROM is usually determined by the range and accuracy desired and the method of coding the output data.

The two most popular methods of coding the output data would probably be binary and BCD. Binary is the most commonly used code in digital applications so the ROM addresses (word numbers) are usually coded in binary. BCD is a very popular code for display purposes since each BCD quad may be decoded to drive a numeric display using the familiar decimal numbers. There are a number of BCD-to-7 segment and BCD-to-decimal decoder/driver/display devices that are very economical, reliable, and simple to use, and which can be adapted to a wide variety of applications.

The ROM output data can be coded in binary or BCD format with essentially the same degree of effort. Coding the data in BCD eliminates the necessity of converting the binary data to BCD for display purposes but also requires more bits per word for any numbers greater than 9. For example a 2048 ROM arranged 256 words by 8 bits per word, could be used to generate output data from 0 to 99 if coded in BCD but could generate output data from 0 to 255 if coded in binary.

If it is necessary to generate output displays from 0 to 99, 8 bits would be required for BCD coding but only 7 for binary coding. If the ROM has to have 256 words, then a 2048-bit ROM would be required for BCD output code and a 1792-bit ROM would be required for binary output. If the ROM used costs 5 cents per bit then the cost difference is \$12.80. If it is necessary to convert the binary data to BCD, the cost of the ROM should include the cost of performing the conversion externally if the binary coded ROM is used.

Another consideration in performing the binary-to-BCD conversion externally to the ROM is the fact that doing so introduces more components and more complexity into the system. However, as mentioned previously, ROMs are ideally suited for code conversion applications so the binary-to-BCD conversion could be another highly-reliable easilydesigned ROM. There are also some very economical 4-bit binary-to-BCD and BCD-to-binary converter integrated circuits available which can be configured in arrays to perform n-bit binary-to-BCD and BCD-to-binary conversion.

Figure 4.2 shows a typical application where it might be desirable to use a binary-to-BCD conversion external to the ROM performing the linearization. The system shown has four analog input types each with a different response curve therefore requiring four ROMs for linearizing. If the ROMs





ROM linearizing data acquisiton system



used permit having their outputs tied together, they may all be used to drive a common binary-to-BCD converter and the number of bits per word saved in each linearizing ROM may be more than enough to justify the external binary-to-BCD conversion.

### CHAPTER V

### GENERATING READ-ONLY MEMORY TRUTH TABLES

The procedure of using read-only memories (ROMs) to convert digitized values of nonlinear analog functions to corresponding engineering units is very similar to the procedure described in Chapter II using a computer program to perform the linearization. The ROM actually performs as a special-purpose computer program for the purpose of linearizing a particular function.

There are two very popular techniques used in the computer program linearization method to determine the physical value to attach to the measured analog quantity. The first procedure involves comparison of voltages by tabular look-up in an appropriate table (such as an NBS thermocouple table)which has been stored in the computer memory. In the second procedure, the table or response curve may be approxmiated by polynomial equations either by a single power series or a set of second order equations.

The single equation power series technique uses an equation of the form:

$$T = C_0 + C_1 E + C_2 E^2 + C_3 E^4 + C_4 E^5 + C_6 E^6$$
 (5.1)

The string of second order equations uses equations of the form:

 $T=C_0+C_1E+C_2E^2$ , each equation having a (5.2) a specified range of applicability.

For each measuring device as thermocouples, the accepted standard is the set of tables published in NBS circular 561. Accuracies of linearization techniques for thermocouples are usually measured in terms of degrees of variation from these tables. For thermocouple curve approximation by equations (5.1) and (5.2) the values of the coefficients are determined by curve-fit techniques. Equation (5.1) is usually used when it is desired to use one equation over a broad range of the thermocouple curve. Equation (5.2) is usually used over narrow ranges of thermocouple curves either when the values of interest are confined to a narrow range or when several second order equations are more desirable to evaluate than one high ordered equation. Coefficients for equations (5.1) and (5.2) can be calculated to conform to NBS table values within 0.5°F for most common thermocouple types.

For thermocouple curves the most accurate technique would be to store the NBS look-up tables in a computer program. However, due to the amount of memory storage and time required to store the tables in memory this may not be a very economical approach. Using equations like (5.1) or (5.2) to calculate temperatures from measured emf is a more general approach to nonlinear function measurement. Many nonlinear functions can be easily expressed easily by polynomial equations as in equations (5.1) or (5.2). By merely changing a

few coefficients the same program can be used to evaluate a different nonlinear function. If the table look-up technique is used the entire table would have to be recalculated if a new function is to be evaluated.

Even though the ROM linearizer employs a table lookup technique to perform the linearization, the same arguments apply to calculating the ROM truth table. The truth table for a thermocouple curve can be calculated by hand for a readonly memory but the same procedure would have to be used for every truth table to be generated.

The Fortran program in Appendix A was developed to generate truth tables for ROMs by evaluating a series of equations like equation (5.2). Data required by the program includes the coefficients  $C_0$ ,  $C_1$ , and  $C_2$  of equation (5.2), the range for which the equation is valid, and the number of equations used to approximate the curve.

The values for the coefficients and the best ranges for the equations used to describe the function may be determined by any of several commonly used curve-fit techniques. Tables 5.1 and 5.2 give the results obtained by using the simple trial-and-error technique of entering breakpoints into a computer program, permitting the program to generate a second-order equation, then adjusting breakpoints and recalculating until an acceptable small maximum error was reached. The best technique to use may depend on the type

| COEFFICIENTS                                                                        |                                                          | RANGE OF<br>EOUATION                                                           | MAX. DEV.<br>FROM NBS                                                        |                                                             |
|-------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|
| с <sub>о</sub>                                                                      | cl                                                       | с <sub>2</sub>                                                                 | (°F)                                                                         | TABLES (°F)                                                 |
| 31.94469<br>33.91171<br>43.19788<br>18.28229<br>-46.70140<br>-40.58614<br>308.71375 | 34.33704<br>32.26427<br>34.47177<br>39.30495<br>39.18289 | -0.28722<br>-0.10397<br>0.00762<br>-0.04064<br>-0.13029<br>-0.13151<br>0.05607 | 0-200<br>200-400<br>400-700<br>700-960<br>960-1220<br>1220-1400<br>1400-1600 | 0.308<br>0.301<br>0.289<br>0.291<br>0.335<br>0.297<br>0.395 |

## Table 5.1

Type J (iron/constantan) thermocouple calibration curve data

| COEFFICIENTS                                                                                     |                                                                                              | RANGE OF                                                                                 | MAX. DEV.                                                                                   |                                                                      |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| с <sub>о</sub>                                                                                   | C <sub>1</sub>                                                                               | C <sub>2</sub>                                                                           | EQUATION<br>(°F)                                                                            | FROM NBS<br>TABLES(°F)                                               |
| 31.68816<br>36.65155<br>18.50809<br>45.33263<br>114.41992<br>169.81726<br>272.45447<br>447.60522 | 46.15694<br>42.12250<br>47.10442<br>43.60689<br>37.89775<br>34.45381<br>29.44804<br>21.93095 | -0.65195<br>0.16779<br>-0.14561<br>-0.03162<br>0.08633<br>0.13980<br>-0.20083<br>0.28114 | 0-140<br>140-280<br>280-700<br>700-1080<br>1080-1380<br>1380-1800<br>1800-2240<br>2240-2480 | 0.356<br>0.292<br>0.313<br>0.371<br>0.347<br>0.370<br>0.432<br>0.349 |

# Table 5.2

Type K (chromel/alumel) thermocouple calibration curve data

of curve to be linearized. Some functions which respond as, for instance, the square root of a stimulus may have a very simple characteristic equation which can be described without requiring use of a curve-fit technique.

The data generated by the ROM Truth Table Generator of Appendix I is a ROM truth table with the ROM address given in decimal and binary format and the data for each ROM word given in decimal and BCD. The decimal representation is provided for easy reference and the binary and BCD codes are provided as the actual bit pattern that would be programmed into the ROM. BCD is chosen for this discussion since it readily lends itself to numeric display in decimal form. The truth table could be easily changed from BCD to binary values by changing just one statement in the main program from a call to a BCD conversion routine to a call to a binary conversion routine.

Besides the calibration curve data, other input data to the ROM Truth Table Generator is the number of ROM words and the ADC resolution (counts per analog input unit). The number of ROM words (NWDS) is used by the program to determine the stopping point of the program. The ADC resolution (NCTS) is used as a scaling factor for the set of equations used to approximate the response curve. For example, the coefficients for Types J and K thermocouples given in Tables 5.1 and 5.2 are based on the units of E for equation (5.2) being in millivolts. The value of NCTS used in the program would represent the number of ADC counts per millivolt of analog input.

The value chosen for NCTS is the key to the accuracy of the ROM table and the eventual size of ROM required for the desired range of the physical stimulus to be measured. The derivation of the choice for NCTS is given in Appendix B along with some examples of how the choice of NCTS affects the inherent system accuracy.

As an analysis example, assume that a Type K thermocouple is to be used in the range of 32°F to 150°F and that it is desired to measure temperatures to the nearest degree in this range. The calibration curve data given in Table 5.2 could be used to calculate the ROM truth table. A Type K thermocouple circuit referenced to 32°F will generate a nonlinear emf from 0 millivolts to 2.66 millivolts for this range.

If the response curve of a Type K thermocouple were linear, only 119 discrete ADC values would be required to display each temperature value between 32°F and 150°F with the amplifier and ADC of Figure 4.1 scaled so 0 ADC counts would represent 32°F and 118 ADC counts would represent 150°F.

However, the thermocouple curve is nonlinear for this range so a ROM is chosen to adjust the ADC values from 0 to 1.18 to "linearize" the response curve. The derivation in

Appendix B reveals that the best choice of the approximate slope S used to determine the value of NCTS for the program of Appendix A is one which approximates the curve as closely as possible with all points of the curve falling below the approximation slope.

Figure 5.1 shows how such a curve might be selected for a Type K thermocouple. The slope of the curve shown in Figure 5.1 would result in an NCTS value of 45 ADC counts per millivolt. The results of using this value for a 512 word ROM are given in Appendix C.

Tables 5.3 through 5.7 show the ROM truth tables for Type K thermocouples that would be obtained for 36-word ROMs using values of 20, 40, 45, 50, and 60 for NCTS. The Type K thermocouple response curve is nonlinear between 32°F and 68°F but the nonlinearity is very slight and the results obtained by using a value of 45 for NCTS shows that the temperature over this small range could be measured within one degree of accuracy without any linearization techniques However, most practical application require temperaat all. ture measurement over a much broader range than 46°F. Sometimes accuracies greater than one degree may be required and many transducer response curves deviate more from a straight line approximation than thermocouples do. Tables 5.3 through 5.7 are presented for purposes of illustrating the importance of a good choice for the value of NCTS.

Using a value too low such as 20 ADC counts per millivolt results in a number of "gaps" in the truth table output data. For example an emf of 0.37 millivolts which should correspond exactly to 49°F would be displayed as 48°F. It is readily obvious that many temperatures could not be displayed since they are not programmed into the ROM.

Using a value too high such as 60 ADC counts per millivolt results in a number of "repeated" values in the truth table output data. While this increases the accuracy of the ROM rather than decreases it, using excessively high values for NCTS may increase the size of the ROM unnecessarily and may increase the cost of the ROM linearizer significantly.

As a comparison, a value of 20 for NCTS permits a temperature range of 32°F to 113°F to be linearized by a 36-word ROM. A value of 45 for NCTS permits a temperature range of 32°F to 68°F to be linearized by a 36-word ROM. A value of 60 for NCTS permits a temperature range of 32°F to 59°F to be linearized by a 36-word ROM. Thus it is readily obvious that the desired inherent accuracy directly affects the required "size" of the ROM and often the cost of the ROM is heavily dependent on the size of the ROM.



# Figure 5.1

Type K (chromel alumel) response curve approximation

.

.

\*\*\*\*READ ONLY MEMORY TRUTH TABLE\*\*\*\*\*

| ROM WORD | ROM DATA | ROM WORD(BIN)       | ROM DATA(BCD)             |
|----------|----------|---------------------|---------------------------|
| 0        | 32       | 0000000000          | 0000000000110010          |
| 1        | 34       | <b>0</b> 0000000001 | 0000000000110100          |
| 2        | 36       | 8888888818          | 00000000000110110         |
| 3        | 39       | 0000000011          | 00000000000111001         |
| 4        | 41       | 0000000100          | 8888888881888881          |
| 5        | 43       | 0000000101          | 00000000000000011         |
| 6        | 45       | 0000000110          | 0000000001000101          |
| 7        | 48       | 0000000111          | 0000000001001009          |
| · 8      | 50       | 8666631666          | <b>00000</b> 0000101.0000 |
| 9        | 52       | 0000001001          | 0000000001010010          |
| 10       | 55       | 0000001010          | 0000000001010101          |
| 11       | 57       | 8888881811          | 0000000001010111          |
| 12       | 59       | 0000001100          | 0000000001011001          |
| 13       | 61       | 0000001101          | 0000000001100001          |
| 14       | 64       | 6666661116          | 00000000001100100         |
| 15       | 66       | 0000001111          | 6666666661166116          |
| 16       | 68       | 0000010000          | 0000000001101000          |
| 17       | 70       | 0000010001          | 00000000001110000         |
| 18       | 73       | 0000010010          | <b>0</b> 000000001110011  |
| 19       | 75       | 6666616611          | <b>0</b> 000000001110101  |
| 20       | 77       | 8888616188          | 00000000001110111         |
| 21       | 79       | 0000010101          | 0000000001111001          |
| 22       | 82       | 0000010110          | 0000000010000010          |
| 23       | 84       | 0000010111          | 0000000010000100          |
| 24       | 86       | 0000011000          | 0000000010000110          |
| 25       | 88       | 0000011001          | 0000000010001600          |
| 26       | 91       | 0000011010          | <b>0</b> 000000010010001  |
| 27       | 93       | 0000011011          | 0000000010010011          |
| 28       | 95       | 0000011100          | 0000000010010101          |
| 29       | 97       | 0000011101          | 0000000010010111          |
| 30       | 99       | 0000011110          | 8080888816811681          |
| 31       | 102      | 0000011111          | 0000000100000010          |
| 32       | 104      | 0000100000          | 000000010000100           |
| 33       | 106      | 8888188881          | 0000000100000110          |
| 34       | 108      | 8686168616          | 0000000100001000          |
| 35       | 110      | 0000100011          | 6666666166616666          |

### Table 5.3

NCTS = 20

•.

\*\*\*\*READ ONLY MEMORY TRUTH TABLE\*\*\*\*\*

| ROM WORD | ROM DATA | ROM WORD(BIN)      | ROM DATA(BCD)                      |
|----------|----------|--------------------|------------------------------------|
| Ø        | 32       | 0000000000         | 0000000000110010                   |
| 1        | 33       | <b>00</b> 00000001 | 00000000000110011                  |
| 2        | 34       | <b>00</b> 0000010  | 888888888888118188                 |
| 3        | 35       | 0000000011         | 0000000000110101                   |
| 4        | 36       | 0000000100         | 88688888888118118                  |
| 5        | 37       | 0000000101         | 00000000000110111                  |
| 6        | 39       | 0000000110         | <b>0</b> 0000000000111001          |
| 7        | 40       | 8688666111         | <b>8</b> 868888888 <b>1</b> 888888 |
| 8        | 41       | 0000001000         | <b>0000</b> 00000100001            |
| 9        | 42       | <b>0</b> 066001601 | <b>0</b> 0000000001000010          |
| 10       | 43       | <b>0</b> 000001010 | <b>000</b> 00000001000011          |
| 11       | 44       | 0000001011         | 0000000001000100                   |
| 12       | 45       | 0000001100         | 8888888888888888                   |
| 13       | 47       | 0000001101         | 00000000001000111                  |
| 14       | 48       | 0000001110         | <b>0</b> 0000000001001000          |
| 15       | 49       | 8888881111         | <b>0</b> 000000001001001           |
| 16       | 50       | 0000010000         | 0000000001010000                   |
| 17       | 51       | 0000010001         | <b>00</b> 00000001010001           |
| 18       | 52       | <b>0</b> 000010010 | 00000000001010010                  |
| 19       | 53       | 0000010011         | 0000000001010011                   |
| 20       | 55       | 0000010100         | <b>0</b> 000000001010101           |
| 21       | 56       | 0000010101         | 0000000001010110                   |
| 22       | 57       | 8898818118         | 0000000001010111                   |
| 23       | 58       | 8006610111         | 66666666661611666                  |
| 24       | 59       | 0000011000         | <b>0000000001011</b> 091           |
| 25       | 60       | <b>00</b> 00011001 | 666666666611866666                 |
| 26       | 61       | 0000011010         | 88888888881188881                  |
| 27       | 63       | 0000011011         | 00000000001100011                  |
| 28       | 64       | 0000011100         | 0000000001100100                   |
| 29       | 65       | 0000011101         | 66666666661166161                  |
| 30       | 66       | 0000011110         | 00000000001100110                  |
| 31       | 67       | 0000011111         | 6666666661166111                   |
| 32       | 68       | 0090100000         | 666666661161666                    |
| 33       | 69       | 0000100001         | 0000000001101001                   |
| 34       | 70       | 6000100010         | 66666666611166666                  |
| 35       | 72       | 0000100011         | 00000000001110010                  |

Table 5.4

NCTS = 40

• .

\*\*\*\*\*READ ONLY MEMORY TRUTH TABLE\*\*\*\*\*

| ROM WORD | ROM DATA | ROM WORD(BIN) | ROM DATA(BCD)            |
|----------|----------|---------------|--------------------------|
| Ø        | 32       | 8888888888    | 00000000000110010        |
| 1        | 33       | 0000000001    | 88888888888118811        |
| 2        | 34       | 0000000010    | 88888888888118188        |
| 3        | 35       | 0000000011    | 00000000000110101        |
| 4        | 36       | 0000000100    | 0000000000110110         |
| 5        | 37       | 0000000101    | 0000000000110111         |
| 6        | 38       | 6666666116    | 0600000000111000         |
| 7        | 39       | 0000000111    | 0000000000111001         |
| 8        | 40       | 0000001000    | 0000000001000000         |
| 9        | 41       | 0000001001    | 0000000001000001         |
| 10       | 42       | 0000001010    | 88888888881888818        |
| 11       | 43       | 8888881811    | 888888888888888888       |
| 12       | 44       | 0000001100    | ØØØØØØØØØ1ØØØ1ØØ         |
| 13       | 45       | 8888881181    | 0000000001000101         |
| 14       | 46       | 8666661118    | 0000000001000110         |
| 15       | 47       | 8888881111    | 0000000001000111         |
| 16       | 48       | 6666616666    | 0000000001001000         |
| 17       | 49       | 0000010001    | 00000000001001001        |
| 18       | 50       | 0000010010    | 6666666661616666         |
| 19       | 51       | 0000010011    | 6666666661616661         |
| 20       | 52       | 8888618168    | 0000000001010310         |
| 21       | 53       | 0000010101    | 6666666661616611         |
| 22       | 54       | 0000010110    | 0000000001010100         |
| 23       | 55       | 8088818111    | 00000000001010101        |
| 24       | 56       | 8888811888    | 0000000001010110         |
| 25       | 57       | 0000011001    | 00000000001010111        |
| 26       | 58       | 8888811818    | 0000000001011000         |
| 27       | 59       | 0000011011    | 0000000001011001         |
| 28       | 60       | 0000011100    | 0000000001100000         |
| 29       | 61       | 0000011101    | 6666666661166661         |
| 30       | 62       | 0000011110    | 0000000001100 <b>010</b> |
| 31       | 63       | 8888811111    | 88888888881188811        |
| 32       | 64       | 0000100000    | 0000000001100100         |
| 33       | 65       | 0000100001    | 6666666661166161         |
| 34       | 66       | 0000100010    | 8666666661166118         |
| 35       | 67       | 0000100011    | 0000000001100111         |

Table 5.5

÷

NCTS = 45

•.

\*\*\*\*READ ONLY MEMORY TRUTH TABLE\*\*\*\*\*

| ROM WORD | ROM DATA | ROM WORD(BIN) | ROM DATA(BCD)             |
|----------|----------|---------------|---------------------------|
| Ø        | 32       | 66666666666   | 0000000000110010          |
| 1        | 33       | 8888888881    | 0000000000110011          |
| 2        | 34       | 0000000910    | 0000000000110100          |
| 3        | 34       | 0000000011    | 0000000000110100          |
| 4        | 35       | 0000000100    | 0000000000110101          |
| . 5      | 36       | 0000000101    | 0000000000110110          |
| 6        | 37       | 8868888118    | 0000000000110111          |
| 7        | 38       | 0000000111    | 0000000000111000          |
| 8        | 39       | 6666661666    | 6666666666111661          |
| 9        | 40       | 0000001001    | 66666666616666666         |
| 10       | 41       | 8666691816    | <b>0000000001000001</b>   |
| 11       | 42       | 0000001011    | 8666666661666616          |
| 12       | 43       | 0000001100    | 00000000001000011         |
| 13       | 44       | 0000001101    | <b>00</b> 000000001000100 |
| 14       | 45       | 0000001119    | <b>0</b> 0000000001000101 |
| 15       | 45       | 0000001111    | 88888888881888181         |
| 16       | 46       | 0000010000    | 00000000001000110         |
| 17       | 47       | 0000010001    | <b>0</b> 000000001000111  |
| 18       | 48       | 0000010010    | <b>0000000001001000</b>   |
| 19       | 49       | 0000010011    | 0000000001001001          |
| 20       | 50       | 0000010100    | <b>0</b> 000000091010000  |
| 21       | 51       | 8888819191.   | 8888888881818881          |
| 22       | 52       | 0000010110    | 0000000001010010          |
| 23       | 53       | 0000010111    | 6666666661616611          |
| 24       | 54       | 8888811888    | 68888888881818188         |
| 25       | 55       | 0000011001    | 6666666661616161          |
| 26       | 56       | 0000011010    | 88888888881818118         |
| 27       | 56       | 0000011011    | 0000000001010110          |
| 28       | 57       | 8888811188    | 0000000001010111          |
| 29       | 58       | 0000011101    | 0000000001011000          |
| 30       | 59       | 0000011110    | 0000000001011001          |
| 31       | 60       | 6666611111    | 0000000001100000          |
| 32       | 61       | 0000100000    | <b>0000</b> 000001100001  |
| 33       | 62       | 0000100001    | 0000000001100010          |
| 34       | 63       | 0000100010    | 0000000001100011          |
| 35       | 64       | 0000100011    | 86868888881188188         |

Table 5.6

NCTS = 50

.

.

• .

.

\*\*\*\*READ ONLY MEMORY TRUTH TABLE\*\*\*\*\*

| ROM WORD | ROM DATA | ROM WORD(BIN)      | ROM DATA(BCD)             |
|----------|----------|--------------------|---------------------------|
| Ø        | 32       | 00000000000        | 0000000000110010          |
| 1        | 32       | . 8888888881       | 0000000000110010          |
| 2        | 33       | 0000000010         | 8688888888118811          |
| 3        | 34       | 00000000 <b>11</b> | 00000000000110100         |
| 4        | 35       | 0000000100         | 0000000000110101          |
| 5        | 36       | 0000000101         | 0000000000110110          |
| 6        | 36       | 0000000110         | 00000000000110110         |
| 7        | 37       | 0000000111         | 0000000000110111          |
| 8        | 38       | 0000031008         | 0000000000111000          |
| 9        | 39       | 6666661661         | 00000000000111001         |
| 10       | 39       | 0000001010         | 0000000000111001          |
| 11       | 40       | 0000001011         | 88888888881888888         |
| 12       | 41       | 0000001100         | 0000000001000001          |
| 13       | 42       | 0000001101         | 0000000001000010          |
| 14       | 42       | 0000001110         | 0000000001000010          |
| 15       | 43       | 0000001111         | 0000000001000011          |
| 16       | 44       | 0000010000         | 0000000001000100          |
| 17       | 45       | 0000010001         | 00000000001000101         |
| 18       | 45       | 0000010010         | 88688888881688181         |
| 19       | 46       | 0000010011         | 0000000001000110          |
| 20       | 47       | 6868616168         | 0000000001000111          |
| 21       | 48       | 0000010101         | 06666333661391666         |
| 22       | 49       | 0000010110         | 6666666661661661          |
| 23       | 49       | 8888818111         | 0000000001001001          |
| 24       | 50       | 0000011000         | 00000000001010000         |
| 25       | 51       | 0000011001         | 0000000001010001          |
| 26       | 52       | 0000011010         | 0000000001010010          |
| 27       | 52       | 0000011011         | 8888888881818818          |
| 28       | 53       | 0000011100         | <b>0</b> 0000000001010011 |
| 29       | 54       | 0000011101         | 0020006001010100          |
| 30       | 55       | 0000011110         | 0000000001010101          |
| 31       | 55       | 0000011111         | 0000000001010101          |
| 32       | 56       | 0000100000         | 0000000001010110          |
| 33       | 57       | 0000100001         | <b>0</b> 000000001010111  |
| 34       | 58       | 0000100010         | 0000000001011000          |
| 35       | 58       | 0000100011         | 0000000001011000          |

Table 5.7

.

.

.

NCTS = 60

#### CHAPTER VI

### RESULTS AND CONCLUSIONS

Using the formulas derived in Appendix B and the results discussed in Chapter V it can be determined readily that to "linearize" a Type K thermocouple curve from 32°F to 500°F requires a 512 word by 11 bits per word if the result is to be in BCD to the nearest degree. A truth table for such a ROM is given in Appendix C. The required 512 x 11 ROM is a 5632-bit ROM. If the output data of the ROM were in binary and converted to BCD externally to the linearizing ROM, the required ROM would be 512 words by 9 bits per word or a 4608bit ROM.

It is relatively simple to implement either a 512 x 11 or a 512 x 9 ROM using one or more presently available semiconductor ROM integrated circuits. Some of the more popular types available are 1024-bit ROMs arranged 128 x 8; 2048-bit ROMs arranged 256 x 8 or 512 x 4; 4096-bit ROMs arranged 512 x 8 or 1024 x 4; and 8192-bit ROMs arranged 1024 x 8.

The present cost of such semiconductor ROMs is between 1¢ and 5¢ per bit in quantities of 100 or more while unit quantities may range from 3¢ to 10¢ per bit.

Measurement accuracies within 1°F for Type K thermocouples can be obtained with one straight-line approximation segment between 0°F and 500°F with such conventional techniques as the ramp ladder network. This same technique can

attain the same accuracy from 0°F to 2000°F for Type K thermocouples with 6 straight-line approximation segments.

The ROM linearization technique presented here requires 512 words x 11 bits (BCD output) or 512 words x 9 bits (binary output) for the same degree of accuracy between 0°F and 500°F and a 2048 x 14 ROM (BCD output) or 2048 x 11 ROM (binary output) for the same degree of accuracy between 0°F and 2000°F.

In most industrial process applications accuracies within one or two degrees Farenheit of the actual value are acceptable. In such cases it is probably better in most applications to use a conventional linearization technique, such as one of those discussed in Chapter II, rather than the ROM linearization technique presented here. This is particularly true since the largest single-chip ROM presently available is 8192 bits and the cost of ROMs is still high enough that conventional linearization techniques are more economical for wide-range, low degree of accuracy applications.

Semiconductor industry predictions estimate that by 1975 single chip memories of 16,000 bits and greater will be available between 0.1¢ and 1¢ per bit. If these predictions prove to be correct the ROM linearization technique presented here may become economically attractive for some applications between now and 1975.

Presently for most industrial process applications the advantages of the ROM linearization technique are probably outweighed by the cost of implementing such a system. While this may be true in particular for thermocouples and other "almost linear" response curves, there may be some applications that more readily lend themselves to the characteristics of the ROM linearizer.

Several articles have been written about techniques using ROMs to synthesize complex waveforms. Such devices are very similar to implementing the ROM linearizer in reverse by using an up/down counter to sequentially address the inputs of a ROM programmed with a complex function look-up table and using the ROM output to drive a digital-to-analog converter.

The derivation given in Appendix B shows how a ROM can easily be programmed to analyze complex equations. The program developed here for generating ROM truth tables is based on describing the response function by one or more quadratic equations. The program could easily be changed to evaluate almost any type of simple or complex characteristic equation of complex function to generate truth tables.

If it is desired to analyze highly complex functions it may be more desirable to use a ROM linearizer rather than a conventional technique just as it has already been shown that is is sometimes more desirable to use ROMs to synthesize the functions.

### BIBLIOGRAPHY

- Bowers, John O. "Modern Analog-to-Digital Converters For Instrumentation Systems," 'Electronic Instrument Digest, Vol. 6, pp. 7-12, November, 1970.
- 2. <u>Conversion Tables for Thermocouples</u>. Pennsylvania: Leeds and Northrup Company, 1964.
- Graeme, Jerald G., Gene E. Tobey, and Dr. Lawrence P. Huelsman. Operational Amplifiers - Design and Application. New York: McGraw-Hill Book Company, Inc., 1971.
- 4. Hoeschele, David F., Jr. Analog-to-Digital/Digital-to-Analog Conversion Techniques. New York: John Wiley & Sons, Inc., 1968.
- 5. Hoff, Marcian E. "Application Considerations for Semiconductor Memories," EEE, Vol. 18, pp. 62-69, June, 1970.
- Howard, Harry T. "Semiconductor Memories," EDN, Vol. 15, pp. 22-32, February, 1970.
- Huehne, Karl. "Programmable ROMs Offer Digital Approach to Waveform Synthesis," EDN, Vol. 17, pp. 38-41, August, 1972.
- Keyser, David R. "Optimized Thermocouple Calibration," Instruments and Control Systems, Vol 44, pp. 81-84, June, 1971.
- McCoy, Michael R. "MOS Read-Only Memories," EEE, Vol. 18, pp. 46-50, August, 1970.
- Reiner, Robert. "Digitally Controlled Function Sythesizer," Instruments and Control Systems, Vol. 43, pp. 103-105, August, 1970.
- 11. Schmoll, Ronald H. "Temperature Measurements with Thermocouples," Instruments and Control Systems, Vol. 44, pp. 87-90, June, 1971.
- 12. Sclater, Neil. "Handbook on A/D-D/A Converters," Electro Procurement, Vol. 14, pp. 17-22, September, 1972.

- 13. Scott, R. E. Linear Circuits. Massachusetts: Addison-Wesley Publishing Company, Inc., 1964.
- 14. Sheingold, Daniel H. Analog-Digital Conversion Handbook. Massachusetts: Analog Devices, Inc., 1972.

.

APPENDIX A

.

•

.

.

FORTRAN COMPUTER PROGRAM FOR ROM TRUTH TABLE GENERATOR



С С ROM TRUTH TABLE GENERATOR 60 C С С ANAME DESCRIBES FUNCTION TO LINEARIZE ¢ NWDS IS NUMBER OF ROM WORDS C NCTS SPECIFIES SCALING OF ADC С NEAN IS NUMBER OF EQUATIONS REPRESENTING CURVE С COEFF 1RE THE A, B, C COEFFICIENTS OF THE EQUATIONS C T IS THE CALCULATED VALUE OF THE EQUATIONS С DIMENSION NBIN(10), NBCD(16), BP(10), COEFF(30), ANAME(20) 1 READ (3,105) (ANAME(I), I=1,20) WRITE (4,105) ANAME READ(3, 100) NWDS, NCTS, NEQN WRITE (4, 107) NEQN DO 2 I=1, NEQN JJ≈3\*I-2 JK=3\*I READ(3,102)(COEFF(J), J=JJ, JK) WRITE(4,108) (COEFF(J), J=JJ, JK) 2 CONTINUE WRITE (4,109) READ(3,101) (BP(I), I=1,10) WRITE(4,101) (EP(I), I=1,10) WRITE (4,110)NCTS WRITE (4, 111) NWDS CALL FORM WRITE (4, 105) ANAME WRITE (4,103) WRITE (4,106) DO 5 I=1, NWDS N=1-1 X=FLORT(N)/FLORT(NCTS) DO 3 J=1,10 JBP=J\*3 T=COEFF(JBP-2)\*X\*\*2+COEFF(JBP-1)\*X+COEFF(JBP) IF(EP(J)-T)3,4,4 3 CONTINUE 4 CONTINUE NT=IFIX(T+. 5) CALL BIN(N, NBIN) CALL BCD(NT, NBCD) WRITE(4, 104) N, NT, (NBIN(K), K=1, 10), (NBCD(K), K=1, 16) 5 CONTINUE 1 GO TO 1 100 FORMAT (315) FORMAT(10F8.1) 101 102 FORMAT(3F20.10) FORMAT(2228X) 38H\*\*\*\*READ ONLY MEMORY TRUTH TRELE\*\*\*\*\*/2) 103 FORMAT (8X, 14, 8X, 14, 8X, 1011, 10X, 1611) 104 105 FORMAT (20A4) FORMAT(7%, SHROM WORD, 4%, SHROM DATA, 4%, 13HROM WORD(BIN), 8%, 106 1 13HROM DATA(BCD)/)

107 FORMAT(///3X, 14, 1X, 9HEQUATIONS//)

108 FORMAT(3X, F14, 8, 6HX\*\*2 +, F14, 8, 3HX +, F14, 8)

109 FORMAT(///14HBREAKPOINTS AT/)

110 FORMAT(///3X, 14, 26H ADC COUNTS PER INPUT UNIT)

111 FORMAT(///5X,13HSIZE OF ROM =,14,6H WORDS) END

END

0,\*SIZE 001323

.

.

1,\*SIZE 000104

| С        |                                    |
|----------|------------------------------------|
| С        | INTEGER TO 10-BIT BINARY CONVERTER |
| С        |                                    |
| C        |                                    |
| С        | NN IS NUMBER TO CONVERT            |
| С        | NBIN IS BINARY VALUE OF NUMBER     |
| С        |                                    |
|          | SUBROUTINE BIN(NN, NBIN)           |
|          | DIMENSION NBIN(10)                 |
|          | KR=NN                              |
|          | DO 40 I=1,10                       |
|          | IJ=11-I                            |
|          | K=KR/2                             |
|          | KN=K*2                             |
|          | NBIN(IJ)=KR-KN                     |
|          | KR=K                               |
| 40       | CONTINUE                           |
|          | RETURN                             |
|          | END                                |
|          | END                                |
| 0 46170  | E 000076                           |
|          |                                    |
| 1) #0120 | E 000024                           |
|          |                                    |

÷

٠

•

| с<br>с<br>с   | INTEGER TO 16-BIT BCD (4 DIGIT) CONVERTER 63                          |
|---------------|-----------------------------------------------------------------------|
| . C<br>C<br>C | NTN IS NUMBER TO CONVERT<br>NBCD IS BCD VALUE OF NUMBER IN BIT FORMAT |
|               | SUBROUTINE BCD(NTN,NBCD)<br>DIMENSION NBCD(16)<br>NTTH=NTN/1000       |
|               | N1=NTTH<br>DO 51 I=1,4<br>IJ=5-I                                      |
|               | K=N1/2<br>K1=K*2                                                      |
|               | NBCD(IJ)=N1-K1<br>N1=K                                                |
| 51            | CONTINUE<br>NTTH1=NTTH*1000<br>NTTH2=NTN-NTTH1                        |
|               | NTH=NTTH2/100<br>N1=NTH                                               |
|               | DO 52 I=1,4<br>IJ=9-I<br>K=N1/2                                       |
|               | K1=K*2<br>NBCD(IJ)=N1-K1                                              |
| 52            | N1=K<br>CONTINUE<br>NTH1=NTH*100                                      |
|               | NTH2=NTH2-NTH1<br>NTT=NTH2/10                                         |
|               | N1=NTT<br>D0 53 I=1,4                                                 |
|               | IJ=13-I<br>K=N1/2<br>K1=K*2                                           |
|               | NBCD(IJ)=N1-K1<br>N1=K                                                |
| 53            | CONTINUE<br>NTT1=NTT*10<br>NTO=NTH2-NTT1                              |
|               | N1=NTO<br>D0 54 I=1,4                                                 |
|               | 1J=17-I<br>K=N1/2                                                     |
|               | K1=K*2<br>NBCD(IJ)=N1-K1<br>N1=K                                      |
| 54            | CONTINUE<br>RETURN<br>END                                             |
| 0,*SI         | END                                                                   |

.

•

•

# DERIVATION OF ADC RESOLUTION AND ROM LINEARIZER ACCURACY

APPENDIX B

•

64

.



 $P = -M^2 + 2M$ 

P=range of physical stimulus M=range of measured quantity S=approximate slope of curve R = ADC resolution V = value of ADC counts T = total ADC counts required N = number of ADC bits (physical units-°F,°C,GPM, etc) (measured units-mw,ma, etc) (slope of P<sub>2</sub> or P<sub>3</sub>) (ADC counts per physical unit) (ADC counts per measured unit) (ADC counts, ROM words) (binary coding)  Assume that P is the range of the physical stimulus to be measured and some device responds to this stimulus generating a measurable quantity M and that the characteristic equation for this response from 0 to 1 units of P is

$$P = -M^2 + 2M$$

Assume also for analysis purposes that the units of M are in millivolts and the units of P are in gallons per minute (GPM).

The appropriate slope of this curve is given by

$$S = P/M$$

where P is a full scale value of P and M is a full scale value of M. The figure given shows two approximation for S,  $S_1 = 1$  and  $S_2 = 1.6$ . Both approximations are highly inaccurate but one shows all true values of P above the approximation and the other shows all values of P below the approximation. Any value of S between 1 and 1.6 would yield an approximate curve with some real values of P above and some values below the approximation line.

2. Let R represent the resolution of the ADC in counts per physical unit. In this case the resolution would be expressed in counts per GPM. Assume that it is desired to display values of GPM to the nearest tenth between 0 and 1, then the value of R would be 10 counts per GPM.

3. Let V represent the measurable value of each ADC count.

This is given by

$$V = RS$$

which has the units of counts per measured value or in this case counts per millivolt.

Thus it follows that

 $V_1 = S_1 R = (1)(10) = 10$  counts per mv  $V_2 = S_2 R = (1.6)(10) = 16$  counts per mv

4. Let T represent the number of ADC counts required to represent the maximum desired value of P. This is given by

$$T = VM$$

or in this case the value of T is

$$T_1 = V_1 M = 10$$
 counts  
 $T_2 = V_2 M = 16$  counts

This points out the fact that as the slope of the approximation curvegets steeper more ADC counts, and hence, the more ROM words will be required to generate the displayed values. But also the accuracy of the ROM linearizer is more accurate with a 16 count ADC than with 10.

Let N = the number of bits representing a full-scale
ADC word. This is given by

$$N = \log_2 T$$

For this example

$$N_1 = \log_2 T_1 = \log_2 10 = 3.322$$
  
 $N_2 = \log_2 T_2 = \log_2 16 = 4.0$ 

. Hence, to fully represent the desired values of P, using slope S<sub>1</sub> would require a 4-bit ADC and a 10 word ROM and using slope S<sub>2</sub> would require a 4-bit ADC and a 16 word ROM.

6. The results of using a 10-word and a 16-word ROM to "linearize" the curve of this example are given in Tables B.1 and B.2. Note that in Table B.1 the approximation does not permit displays to the nearest tenth of the full scale range but as shown in Table B.2, using a 16-word ROM does permit displays to the nearest tenth.

Figures B.1 and B.2 illustrate the relative accuracies of using 10 and 16-word ROMs for this example. Note that a 10-word ROM results in a maximum error of about 0.12 while a 16-word ROM results in a maximum error of 0.08. Thus the 16-word ROM with a 4-bit ADC satisfies the design criteria for this example.

The accuracy of the ROM linearizer can be improved by using a larger ADC to get more counts per input unit and a larger ROM with more words and perhaps also with another BCD quad per word to display the nearest hundredth of the linearized data.

## TYPICAL QUADRATIC RESPONSE CURVE

\*\*\*\*READ ONLY MEMORY TRUTH TABLE\*\*\*\*\*

| ROM | NORD | ROM | DATA | ROM WORD(BIN)      | ROM DATA(BCD)                           |
|-----|------|-----|------|--------------------|-----------------------------------------|
|     | Ø    |     | Ø    | 0000000000         | 000000000000000000                      |
|     | 1    |     | 2    | <b>0</b> 000000001 | 000000000000000000000000000000000000000 |
|     | 2    |     | 4    | 0000000010         | 00000000000000100                       |
|     | 3    |     | 5    | 0000000011         | 00000000000000101                       |
|     | 4    |     | 6    | 0000000100         | 00000000000000110                       |
|     | 5    |     | 8    | 0000000101         | <b>88</b> 888888888888881888            |
|     | 6    |     | 8    | 0000000110         | 000000000000001000                      |
|     | 7    |     | 9    | 0000000111         | 00000000000001001                       |
|     | 8    | 1   | .0   | 0000001000         | <b>0</b> 000000000010000                |
|     | 9    | 1   | .0   | 0000001001         | 8666666666616666                        |

Table B.1 NCTS = 10

••

.

# TYPICAL QUADRATIC RESPONSE CURVE

•

\*\*\*\*READ ONLY MEMORY TRUTH TABLE\*\*\*\*\*

| ROM WORD | ROM DATA | ROM WORD(BIN) | ROM DATA(BCD)                                |
|----------|----------|---------------|----------------------------------------------|
| Ø        | Ø        | 8008089089    | <b>00000</b> 0000000000000000000000000000000 |
| 1        | 1        | 0000000001    | <b>00</b> 0000000000000000001                |
| 2        | 2        | 0000000010    | <b>00</b> 000000000000010                    |
| З        | 3        | 0000000011    | <b>00</b> 0000000000000011                   |
| 4        | 4        | 0000000100    | <b>0000000000000000</b> 00000000000000000000 |
| 5        | 5        | 0000000101    | 00000000000000101                            |
| 6        | 6        | 0000000110    | <b>8080808080808</b> 08118                   |
| 7        | 7        | 0000000111    | <b>00</b> 000000000000111                    |
| 8        | 8        | 0000001000    | <b>88</b> 888888888881888                    |
| 9        | 8        | 0000001001    | <b>00</b> 00000000001000                     |
| 10       | 9        | 0000001010    | <b>00</b> 000000000001001                    |
| 11       | 9        | 0000001011    | 86888888888888                               |
| 12       | 9        | 0000001100    | 00000000000001001                            |
| 13       | 10       | 0000001101    | <b>88</b> 866666666616666                    |
| 14       | 1.0      | 6666661116    | <b>00</b> 00000000016000                     |
| 15       | 10       | 0000001111    | <b>0</b> 000000000010000                     |

Table B.2 NCTS = 16









Figure B.2

ROM linearizer results for NCTS = 16

APPENDIX C

.

TYPE K THERMOCOUPLE LINEARIZATION RESULTS

-

#### TYPE K THERMOCOUPLE

### 8 EQUATIONS

| 65194988X**2   | + | 46. 15693665X | + | 31. 68815613  |
|----------------|---|---------------|---|---------------|
| . 16779000X**2 | + | 42. 12249756X | + | 36. 65153503  |
| 14560997X**2   | + | 47. 10441589X | + | 18. 50808716  |
| 03162000×**2   | + | 43. 60688782X | + | 45. 33262634  |
| .08633000×**2  | + | 37.89773560X  | + | 114. 41989136 |
| . 13979995×**2 | + | 34. 45379639X | + | 169. 81719971 |
| . 20082998×**2 | + | 29. 44803619X | + | 272. 45446777 |
| 28113997X**2   | + | 21. 93094635X | + | 447.60510254  |

#### BREAKPOINTS AT

140.0 280.0 700.0 1080.0 1380.0 1800.0 2240.0 2480.0 0.0

45 ADC COUNTS PER INPUT UNIT

SIZE OF ROM = 512 WORDS

\*\*\*\*\*READ ONLY MEMORY TRUTH TABLE\*\*\*\*\*

| ROM WORD | ROM DATA | ROM WORD(BIN)            | ROM DATA(BCD)                                        |
|----------|----------|--------------------------|------------------------------------------------------|
| ø        | 32       | 88888888888              | 6666666666116616                                     |
| 1        | 33       | 00000000001              | 0000000000110011                                     |
| 2        | 34       | 6666666618               | 666666666666118166                                   |
| 3        | 35       | 0000000011               | 0000000000110101                                     |
| 4        | 36       | 0000000100               | 0000000000110110                                     |
| 5        | 37       | 8888888181               | 8888888888118111                                     |
| 6        | 38       | 0000000110               | 8888888888111888                                     |
| 7        | 39       | 0000000111               | 00000000000111001                                    |
| 8        | 40       | 0000001000               | 8888888881888888                                     |
| 9        | 41       | 0000001001               | 00000000001000001                                    |
| 10       | 42       | 0000001010               | 66666666661668616                                    |
| 11       | 43       | 0000001011               | 6666666661666611                                     |
| 12       | 44       | 0000001100               | 666666666666661666166                                |
| 13       | 45       | 6666661161               | 0000000001000101                                     |
| 14       | 46       | 0000001110               | 00000000001000110                                    |
| 15       | 47       | 6666661111               | 8686666661866111                                     |
| 16       | 48       | 0000010000               | 8000000001001000                                     |
| 17       | 49       | 0000010001               | 8888888881881881                                     |
| 18       | 50       | 0000010010               | 0000000001010000                                     |
| 19       | 51       | 0000010011               | 00000000010100 <b>01</b>                             |
| 20       | 52       | 0000010100               | 6666666661616616                                     |
| 21       | 53       | 0000010101               | 00000000001010011                                    |
| 22       | 54       | 0000010110               | 666666666666666666                                   |
| 23       | 55       | 0000010111               | 00000000001010101                                    |
| 24       | 56       | 0000011000               | 0000000001010110                                     |
| 25       | 57       | 0000011001               | 0000000001010111                                     |
| 26       | 58       | 0000011010               | 0000000001011000                                     |
| 27       | 59       | 0000011011               | 0000000001011001                                     |
| 28       | 60       | 0000011100               | 00000000001100000                                    |
| 29       | 61       | 9999911191               | 0000000001100001                                     |
| 30       | 62       | 0000011110               | 000000001100019                                      |
| 31       | 63       | 0000011111               | 99999999911999 <b>11</b><br>99999999911999 <b>11</b> |
| 32       | 64       | 0000100000               | 00000000001100100<br>00000000001100101               |
| 33       | 65<br>62 | 0000100001               | 0000000001100101<br>0000000001100110                 |
| 34<br>35 | 66<br>67 | 0000100010<br>0000100011 | 000000000000000000000000000000000000000              |
| 30       | 68<br>67 | 0000100011<br>0000100100 | 0000000001100111<br>0000000001100111                 |
| 36<br>37 | 69       | 0000100100<br>0000100101 | 000000000000000000000000000000000000000              |
| 38<br>38 | 69<br>70 | 0000100101<br>0000100110 | 000000000000000000000000000000000000000              |
| 39       | 70<br>71 | 0000100110               | 00000000001110000<br>0000000001110000                |
| 37<br>40 | 72       | 0000100111               | 0000000001110001<br>0000000001110010                 |
| 70       | 14       | O O O O T O T CARDO      | SOCCESSION TITCOTS                                   |

75

| .1.1 | 77  | 00004 04 004       |                                  |
|------|-----|--------------------|----------------------------------|
| 41   | 73  | 0000101001         | 868688881116811                  |
| 42   | 74  | 0000101010         | 00000000001110100                |
| 43   | 75  | 0000101011         | 0000000001110101                 |
| 44   | 76  | 0000101100         | 00000000001110110                |
| 45   | 77  | 0000101101         | 8888888881118111                 |
| 46   | 78  | 0000101110         | 0000000001111000                 |
| 47   | 79  | 0000101111         | 0000000001111001                 |
| 48   | 80  | 0000110000         | 00000000100000000                |
| 49   | 81  | 0000110001         | 6666666616666666                 |
| 50   | 82  | 0000110010         | 6666666616686618                 |
| 51   | 83  | 0000110011         | 0000000010000011                 |
| 52   | 84  | 0000110100         | 000000010000100                  |
| 53   | 85  | 0000110101         | 6666666616666181                 |
| 54   | 86  | 0000110110         | 6666666616668116                 |
| 55   | 87  | 0000110111         | 6666666616666111                 |
| 56   | 88  | 0000111000         | 0000000010001000                 |
| 57   | 89  | 0000111001         | 0000000010001001                 |
| 58   | 98  | 0006111010         | 0000000010010000                 |
| 59   | 91  | 0000111011         | 8666666616616861                 |
| 60   | 92  | 0000111100         | 0000000010010010                 |
| 61   | 93  | 0000111101         | 0666666616916911                 |
| 62   | 94  | 0000111110         | 0000000010010100                 |
| 63   | 95  | 0000111111         | 0000000010010101                 |
| 64   | 96  | 0001000000         | 0000000010010110                 |
| 65   | 97  | 0001000001         | 66666666166161 <b>11</b>         |
| 66   | 98  | 8861888618         | 0000000010011000                 |
| 67   | 99  | 0001000011         | 0000000010011001                 |
| 68   | 100 | 8661666166         | 86666661666666666                |
| 69   | 101 | 0001000101         | 6666666166666666                 |
| 70   | 102 | 0001000110         | 86686661866666618                |
| 71   | 103 | 8881688111         | <b>0</b> 00000010000001 <b>1</b> |
| 72   | 104 | 0001001000         | 0000000100000100                 |
| 73   | 105 | <u>8681681681</u>  | 0000000100000101                 |
| 74   | 106 | <i>0</i> 001001010 | 0000000100000110                 |
| 75   | 107 | 0001001011         | <b>000000100000111</b>           |
| 76   | 108 | 0001001100         | 6666666166661666                 |
| 77   | 109 | 0001001101         | 666666616661661                  |
| 78   | 110 | 0001001110         | 0000000100010000                 |
| 79   | 111 | 0001001111         | 00000010001000 <b>1</b>          |
| 80   | 112 | 0001010000         | 0000000100010010                 |
| 81   | 113 | 0001010001         | 0000000100010011                 |
| 82   | 114 | 0001010010         | 0000000100010100                 |
| 83   | 115 | 0001010011         | 8686666168616181                 |
| 84   | 116 | 0001010100         | 000000100010110                  |
| 85   | 117 | 0001010101         | 8888888188518111                 |
|      |     |                    | •                                |

| 86  | 118   | 0001010110         | 000000100011000          |
|-----|-------|--------------------|--------------------------|
| 87  | 118   | 00010101 <b>11</b> | 0000000100011000         |
| 88  | 119   | 0001011000         | 0000000100011001         |
| 89  | 120   | 8881811881         | 0000000100100000         |
| 90  | 121   | 0001011010         | 0000000100100001         |
| 91  | 122   | 0001011011         | 0000000100100010         |
| 92  | 123   | 0001011100         | 0000000100100011         |
| 93  | 124   | 8881811181         | 0000000100100100         |
| 94  | 125   | 0001011110         | 0000000100100101         |
| 95  | 126   | 0001011111         | 0000000100100110         |
| 96  | 127   | 0001100000         | 0000000100100111         |
| 97  | 128   | 0001100001         | 0000000100101000         |
| 98  | 129   | 8661166618         | 0000000100101001         |
| 99  | 130   | 0001100011         | 0000000100110000         |
| 100 | 131   | 0001100100         | 0000000100110001         |
| 101 | 132   | 8661186161         | 0000000100110010         |
| 102 | 133   | 0001100110         | 0000000100110011         |
| 103 | 134   | 0001100111         | 0000000100110100         |
| 104 | 135   | 0001101000         | 0000000100110101         |
| 105 | 136   | <u>8881181881</u>  | 6666666166116116         |
| 106 | 137   | 0001101010         | 0000000100110111         |
| 107 | 138   | 0001101011         | 0000000100111000         |
| 108 | 139   | 0001101100         | 0000000100111001         |
| 109 | 140   | 0001101101         | 00000001010000000        |
| 110 | 141   | 0001101110         | <b>0</b> 000000101000001 |
| 111 | 142   | 0001101111         | 000000101000010          |
| 112 | 143   | 0001110000         | 0000000101000011         |
| 113 | 143   | 0001110001         | 0000000101000011         |
| 114 | 144   | 0001110010         | 0000000101000109         |
| 115 | 145   | 0001110011         | 0000000101000101         |
| 116 | 146   | 0001110100         | 0000000101000110         |
| 117 | 147   | 0001110101         | 0000000101000111         |
| 118 | 148   | 0001110110         | 888888899181881898       |
| 119 | 149   | 0001110111         | 6666666161661661         |
| 120 | 150   | 0001111000         | 0000000101010000         |
| 121 | 151   | 0001111001         | 8888888181818881         |
| 122 | . 152 | 0001111010         | 0000000101010010         |
| 123 | 153   | 0001111011         | 0000000101010011         |
| 124 | 154   | 0001111100         | 0000000101010100         |
| 125 | 155   | 0001111101         | 6666666161616161         |
| 126 | 156   | 0001111110         | 8666666161616116         |
| 127 | 157   | 0001111111         | 8888888191818111         |
| 128 | 158   | 0010000000         | 000000101011000          |
| 129 | 159   | 0010000001         | 0000000101011001         |
| 130 | 160   | 0010000010         | 0000000101100000         |
|     |       |                    |                          |

| 4 4  |            | الور الور ومعروضين ومعروضين والمراجع والمراجع     | و المار بعار بعار بعار الو الو اليار بعار الو العار بعار بعار بعار بعار بعار بعار بعار ب |
|------|------------|---------------------------------------------------|------------------------------------------------------------------------------------------|
| 131  | 161        | 0010000011                                        | 6666666161166661                                                                         |
| 132  | 162        | 0010000100                                        | 6666666161166616                                                                         |
| 133  | 163        | 0010000101                                        | 0000000101100011                                                                         |
| 134  | 164        | 0010000110                                        | 0000000101100100                                                                         |
| 135  | 165        | 0010000111                                        | 0000000101100101                                                                         |
| 136  | 165        | 0010001000                                        | 0000000101100101                                                                         |
| 137  | 166        | 8818881881                                        | 0000000101100110                                                                         |
| 138  | 167        | 0010001010                                        | 88888888181188111                                                                        |
| 139  | 168        | 0010001011                                        | 00000000101101000                                                                        |
| 140  | 169        | 0010001100                                        | 0000000101101001                                                                         |
| 141  | 170        | 8818881181                                        | 88888888181118888                                                                        |
| 142  | 171        | 0010001110                                        | 0000000101110001                                                                         |
| 143  | 172        | 9010001111                                        | 0000000101110010                                                                         |
| 144  | 173        | 0010010000                                        | 0000000101110011                                                                         |
| 145  | 174        | 0010010001                                        | 0000000101110100                                                                         |
| 146  | 175        | 0010010010                                        | 0000000101110101                                                                         |
| 147  | 176        | 0010010011                                        | 0000000101110110                                                                         |
| 148  | 177        | 0010010100                                        | 0000000101110111                                                                         |
| 149  | 178        | 0010010101                                        | 0000000101111000                                                                         |
| 150  | 179        | 0010010110                                        | 88888888181111881                                                                        |
| 151  | 180        | 0010010111                                        | 0000000110000000                                                                         |
| 152  | 181        | 0010011000                                        | 0000000110000001                                                                         |
| 153  | 182        | 6618611861                                        | 6666666116666616                                                                         |
| 154  | 183        | 6616611616                                        | 8888888118888811                                                                         |
| 155  | 184        | 0010011011                                        | 8868666118866188                                                                         |
| 156  | 185        | 0010011100                                        | 0000000110000101                                                                         |
| 157  | 186        | 0010011101                                        | 8668868116886118                                                                         |
| 158  | 187        | 6616611116                                        | 0000000110000111                                                                         |
| 159  | 188        | 0010011111                                        | 0000000110001000                                                                         |
| 160  | 189        | 0010100000                                        | 00000000110001001                                                                        |
| 161  | 190        | 0010100001                                        | 0000000110010000                                                                         |
| 162  | 190        | 0010100010                                        | 0000000110010000                                                                         |
| 163  | 191        | 0010100011                                        | 66666666116616661                                                                        |
| 164  | 192        | 0010100100                                        | 86666666116616616                                                                        |
| 165  | 193        | 0010100101                                        | 66666669116616611                                                                        |
| 166  | 194        | 0010100110                                        | 0000000110010100                                                                         |
| 167  | 195        | 6616166111                                        | 8868888116818181                                                                         |
| 168  | 196        | 881818188                                         | 0000000110010110                                                                         |
| 169  | 197        | 0010101001                                        | 0000000110010111                                                                         |
| 170  | 198        | 9919191919                                        | 8888888118811888                                                                         |
| 171  | 199        | 0010101011                                        | 0000000110011001                                                                         |
| 172  | 200        | 8616161166                                        | 6666666166666666666                                                                      |
| 173  | 200        | 0010101100                                        | 8086661866666666                                                                         |
| 174  | 201        | 8616161116                                        | 00000010000000010                                                                        |
| 175  | 202<br>203 | 9919191118<br>9919191111                          | 00000010000000010                                                                        |
| IT U | 202        | مله علم من الله الله الله الله الله الله الله الل |                                                                                          |

| 176 | 204 | 0010110000       | 0000001000000100  |
|-----|-----|------------------|-------------------|
| 177 | 205 | 0010110001       | 0000001000000101  |
| 178 | 206 | 0010110010       | 0000001000000110  |
| 179 | 207 | 8818118811       | 0000001000000111  |
| 180 | 208 | 0010110100       | 000000100001000   |
| 181 | 209 | 0010110101       | 66666616666661661 |
| 182 | 210 | 0010110119       | 8886661666616668  |
| 183 | 211 | 0010110111       | 0000001000010001  |
| 184 | 212 | 0010111000       | 0060001000010010  |
| 185 | 213 | 0010111001       | 0000001000010011  |
| 186 | 214 | 0010111010       | 0000001000010100  |
| 187 | 215 | 0010111011       | 0000001000010101  |
| 188 | 216 | 0010111100       | 0000001000010110  |
| 189 | 217 | 0010111101       | 0000001000010111  |
| 190 | 217 | 0010111110       | 6666661666616111  |
| 191 | 218 | <i>001011111</i> | 0000001000011000  |
| 192 | 219 | 0011000000       | 0000001000011001  |
| 193 | 220 | 8011888881       | 0000001000100000  |
| 194 | 221 | 0011000010       | 888888188818881   |
| 195 | 222 | 6611666611       | 0000001000100010  |
| 196 | 223 | 0011000100       | 8888881888188811  |
| 197 | 224 | 0011000101       | 0000001000100100  |
| 198 | 225 | 6611666116       | 0000001000100101  |
| 199 | 226 | 0011000111       | 0000001000100110  |
| 200 | 227 | 0011001000       | 6699661999166111  |
| 201 | 228 | 0011001001       | 6000001000101000  |
| 202 | 229 | 0011001010       | 0000001000101001  |
| 203 | 230 | 0011001011       | 0000001000110000  |
| 204 | 231 | 0011001100       | 6896691688118661  |
| 205 | 232 | 0011001101       | 0000001000110010  |
| 206 | 233 | 0011001110       | 0000001000110011  |
| 207 | 234 | 0011001111       | 6666661666116166  |
| 208 | 235 | 881181888        | 0000091000110101  |
| 209 | 236 | 0811818881       | 8888881898118118  |
| 210 | 237 | 0011010010       | 8000001000110111  |
| 211 | 238 | 0011010011       | 8888881888111888  |
| 212 | 239 | 6611616166       | 88686691666111661 |
| 213 | 240 | 0011010101       | 00000010010000000 |
| 214 | 241 | 6611616118       | 0000001001000001  |
| 215 | 242 | 0011010111       | 6000001661666916  |
| 216 | 243 | . 0011011000     | 8666881981888811  |
| 217 | 244 | 0011011001       | 6666661661666166  |
| 218 | 245 | 0011011010       | 0000001001000101  |
| 219 | 246 | 0011011011       | 8666691861869118  |
| 220 | 247 | 0011011100       | 6666661661666111  |
|     |     |                  |                   |

|     |     | •                 |                   |
|-----|-----|-------------------|-------------------|
| 221 | 248 | 8811811181        | 0000001001001000  |
| 222 | 249 | 0011011110        | 000001001001001   |
| 223 | 250 | 0011011111        | 6666661661616668  |
| 224 | 250 | 0011100000        | 0000001001010000  |
| 225 | 251 | 0011100001        | 0000001001010001  |
| 226 | 252 | 0011100010        | 0000001001010010  |
| 227 | 253 | 0011100011        | 0000001001010011  |
| 228 | 254 | 0011100100        | 0000001001010100  |
| 229 | 255 | 0011100101        | 0000001001010101  |
| 230 | 256 | 0011100110        | 0000001001010110  |
| 231 | 257 | 0011100111        | 0000001001010111  |
| 232 | 258 | 0011101000        | 0000001001011000  |
| 233 | 259 | 0011101001        | 6666661661611661  |
| 234 | 260 | 0011101010        | 0000001001100000  |
| 235 | 261 | 0011101011        | 0000001001100001  |
| 236 | 262 | 0011101100        | 0000001001100010  |
| 237 | 263 | 0011101101        | 0000001001100011  |
| 238 | 264 | 0011101110        | 0000001001100100  |
| 239 | 265 | 0011101111        | 6666661661166161  |
| 240 | 266 | 0011110000        | 6666691661166116  |
| 241 | 267 | 0011110001        | 0000001001100111  |
| 242 | 268 | 0011110010        | 0000001001101000  |
| 243 | 269 | 0011110011        | 0000001001101001  |
| 244 | 270 | 0011110100        | 0000001001110000  |
| 245 | 271 | 6011110101        | 6666661661116661  |
| 246 | 272 | 0011110110        | 0000881081110810  |
| 247 | 273 | 0011110111        | 0000001001110011  |
| 248 | 274 | 0011111000        | 0000001001110100  |
| 249 | 275 | 6611111661        | 0000001001110101  |
| 250 | 276 | 0011111010        | 0000001001110110  |
| 251 | 277 | 0011111011        | 0000001001110111  |
| 252 | 278 | 0011111100        | 0000001001111000  |
| 253 | 279 | 001111101         | 0000001001111001  |
| 254 | 280 | 001111110         | 888888181888888   |
| 255 | 281 | 0011111111        | 00000010100000001 |
| 256 | 282 | 0100000000        | 0000001010000010  |
| 257 | 283 | 0100000001        | 0000001010000011  |
| 258 | 284 | 0100000010        | 0000001010000100  |
| 259 | 285 | <b>8188889911</b> | 0000001010000101  |
| 260 | 286 | 0100000100        | 0000001010000110  |
| 261 | 287 | 0100000101        | 0000001010000111  |
| 262 | 288 | 0100000110        | 8888881016861688  |
| 263 | 289 | 0100000111        | 000001010001001   |
| 264 | 290 | 0100001000        | 0000001010010000  |
| 265 | 291 | 0100001001        | 0000001010010001  |
|     |     |                   |                   |

•

.

.

80

| 266 | 292 | 0100001010 | 0000001010010010  |
|-----|-----|------------|-------------------|
| 267 | 293 | 0100001011 | 0000001010010011  |
| 268 | 294 | 0100001100 | 0000001010010100  |
| 269 | 295 | 0100001101 | 0000001010010101  |
| 270 | 296 | 0100001110 | 0000001010010110  |
| 271 | 297 | 0100001111 | 0000001010010111  |
| 272 | 298 | 0100010000 | 0000001010011000  |
| 273 | 299 | 0100010001 | 0000001010011001  |
| 274 | 300 | 0100010010 | 00000011000000000 |
| 275 | 301 | 0100010011 | 00000011000000001 |
| 276 | 302 | 0100010100 | 0000001100000010  |
| 277 | 303 | 0100010101 | 0000001100000011  |
| 278 | 304 | 8188818118 | 0000001100000100  |
| 279 | 305 | 0100010111 | 8888881188888181  |
| 280 | 306 | 0100011000 | 0000001100000110  |
| 281 | 307 | 0100011001 | 0000001100000111  |
| 282 | 308 | 0100011010 | 0000001100001000  |
| 283 | 309 | 0100011011 | 8888881188881881  |
| 284 | 310 | 0100011100 | 0000001100010000  |
| 285 | 311 | 6166611161 | 8888881188818881  |
| 286 | 312 | 0100011110 | 0000001100010010  |
| 287 | 313 | 0100011111 | 8886681186818811  |
| 288 | 314 | 0100100000 | 0000001100010100  |
| 289 | 315 | 0100100001 | 0000001100010101  |
| 290 | 316 | 0100100010 | 0886891168818110  |
| 291 | 317 | 0100100011 | 0000001100010111  |
| 292 | 318 | 0100100100 | 8868661188811888  |
| 293 | 319 | 0100100101 | 8988891188811881  |
| 294 | 320 | 0100100110 | 0000001100100000  |
| 295 | 321 | 0100100111 | 0000001100100001  |
| 296 | 322 | 0100101000 | 0000001100100010  |
| 297 | 323 | 0100101001 | 8888881188168811  |
| 298 | 324 | 0100101010 | 0000001100100100  |
| 299 | 325 | 0100101011 | 0000001100100101  |
| 300 | 326 | 0100101100 | 8888661166166116  |
| 301 | 327 | 0100101101 | 8666661166166111  |
| 302 | 328 | 0100101110 | 0000001100101000  |
| 303 | 329 | 0100101111 | 8886881188161881  |
| 304 | 330 | 0100110000 | 0000001100110000  |
| 305 | 331 | 0100110001 | 0000001100110001  |
| 306 | 332 | 0100110010 | 8888881188118818  |
| 307 | 333 | 0100110011 | 0000001100110011  |
| 308 | 334 | 0100110100 | 0000001100110100  |
| 309 | 335 | 0100110101 | 0000001100110101  |
| 310 | 336 | 0100110110 | 0000001100110110  |
|     |     |            |                   |
|     |     |            |                   |

.

| 311 | 337 | 0100110111 | 0000001100110111  |
|-----|-----|------------|-------------------|
| 312 | 338 | 0100111000 | 0000001100111000  |
| 313 | 339 | 0100111001 | 0000001100111001  |
| 314 | 340 | 0100111010 | 0000001101000000  |
| 315 | 341 | 0100111011 | 0000001101000001  |
| 316 | 342 | 0100111100 | 0000001101000010  |
| 317 | 343 | 0100111101 | 0000001101000011  |
| 318 | 344 | 0100111110 | 0000001101000100  |
| 319 | 345 | 0100111111 | 0000001101000101  |
| 320 | 346 | 0101000000 | 0000001101000110  |
| 321 | 347 | 0101000001 | 0000001101000111  |
| 322 | 348 | 0101000010 | 0000001101001000  |
| 323 | 349 | 6161666611 | 0000001101001001  |
| 324 | 350 | 0101000100 | 0000001101010000  |
| 325 | 351 | 0101000101 | 868886118181888   |
| 326 | 352 | 0101000110 | 00000011010100010 |
| 327 | 353 | 0101000111 | 0000001101010011  |
| 328 | 354 | 0101001000 | 888888118181818   |
| 329 | 355 | 0101001001 | 8888881181818181  |
| 330 | 356 | 0101001010 | 0000001101010110  |
| 331 | 357 | 0101001011 | 0000001101010111  |
| 332 | 358 | 0101001100 | 8888881181811888  |
| 333 | 359 | 0101001101 | 0000001101011001  |
| 334 | 360 | 0101001110 | 6868381191166666  |
| 335 | 361 | 0101001111 | 0000001101190091  |
| 336 | 362 | 0101010000 | 0000001101100010  |
| 337 | 363 | 0101010001 | 6666661161166611  |
| 338 | 364 | 0101010010 | 0900001101100100  |
| 339 | 365 | 0101010011 | 0000001101100101  |
| 340 | 366 | 0101010100 | 0000001101100110  |
| 341 | 367 | 0101010101 | 0000001101100111  |
| 342 | 368 | 0101010110 | 0000001101101000  |
| 343 | 369 | 0101010111 | 0000001101101001  |
| 344 | 370 | 6161611666 | 0000001101110000  |
| 345 | 371 | 0101011001 | 000001101110001   |
| 346 | 372 | 0101011010 | 0000001101110010  |
| 347 | 373 | 0101011011 | 6666661161116611  |
| 348 | 374 | 0101011100 | 0000001101110100  |
| 349 | 375 | 0101011101 | 0000001101110101  |
| 350 | 376 | 0101011110 | 0000001101110110  |
| 351 | 377 | 0101011111 | 0000001101110111  |
| 352 | 378 | 0101100000 | 0000001101111000  |
| 353 | 379 | 0101100001 | 0000001101111001  |
| 354 | 380 | 0101100010 | 0000001110000000  |
| 355 | 381 | 0101100011 | 0000061110000001  |
|     |     |            |                   |

:

82

|     |     |            | 83                       |
|-----|-----|------------|--------------------------|
| 356 | 382 | 6161166166 | 0000001110000010         |
| 357 | 383 | 6161166161 | 8866661116666611         |
| 358 | 384 | 8181188118 | 0000001110000100         |
| 359 | 385 | 0101100111 | 8888881118888181         |
| 360 | 386 | 0101101000 | 0000001110000110         |
| 361 | 387 | 0101101001 | 8888881118888111         |
| 362 | 388 | 0101101010 | 0000001110001000         |
| 363 | 389 | 0101101011 | 0000001110001001         |
| 364 | 390 | 0101101100 | 0000001110010000         |
| 365 | 391 | 0101101101 | 0000001110010001         |
| 366 | 392 | 0101101110 | 0000001110010010         |
| 367 | 393 | 0101101111 | 0000001110010011         |
| 368 | 394 | 0101110000 | 0000001110010100         |
| 369 | 395 | 0101110001 | 0000001110010101         |
| 370 | 396 | 0101110010 | 8686881118818110         |
| 371 | 397 | 0101110011 | 0000001110010111         |
| 372 | 398 | 0101110100 | 0000001110011000         |
| 373 | 399 | 0101110101 | 0000001110011001         |
| 374 | 400 | 0101110110 | 888881868888888888       |
| 375 | 401 | 8181118111 | 6666616666666666         |
| 376 | 402 | 0101111000 | 8888818888888888         |
| 377 | 403 | 8181111881 | 8668618888668611         |
| 378 | 404 | 0101111010 | 0000010000000100         |
| 379 | 405 | 0101111011 | 00000100000000101        |
| 380 | 406 | 0101111100 | 0000010000000110         |
| 381 | 407 | 0101111101 | 0000010000000111         |
| 382 | 488 | 0101111110 | 0000010000001000         |
| 383 | 409 | 0101111111 | 0000010000001001         |
| 384 | 410 | 0110090000 | 0600010000010000         |
| 385 | 411 | 0110000001 | 0000010000010001         |
| 386 | 412 | 0110000010 | 88888198881988           |
| 387 | 413 | 0110000011 | 0000010000010011         |
| 388 | 414 | 0110000100 | 88888188881818188        |
| 389 | 415 | 0110000101 | 6666616666616161         |
| 390 | 416 | 0110000110 | 8888818888818118         |
| 391 | 417 | 0110000111 | 8868818888818111         |
| 392 | 418 | 0110001000 | 6666616666611666         |
| 393 | 419 | 0110001001 | 888881888811881          |
| 394 | 420 | 0110001010 | 888881888818888          |
| 395 | 421 | 0110001011 | 000001000010000 <b>1</b> |
| 396 | 422 | 0110001100 | 000001000010001 <b>0</b> |
| 397 | 423 | 0119991191 | 0000010000100011         |
| 398 | 424 | 0110001110 | 6666616666166166         |
| 399 | 425 | 0110001111 | 0000010000100101         |
| 400 | 426 | 0110010000 | 0000010000100110         |
|     |     |            |                          |

•

|     |     |                    | 84                      |
|-----|-----|--------------------|-------------------------|
| 401 | 427 | 8118818881         | 6666616666166111        |
| 492 | 428 | 0110010010         | 0000010000101000        |
| 403 | 429 | 0110010011         | 8888818888181881        |
| 404 | 430 | 0110010100         | 0000010000110000        |
| 405 | 431 | 0110010101         | 8888818688118881        |
| 406 | 432 | 0110010110         | 8666916669116616        |
| 407 | 433 | 0110010111         | 6666616666116611        |
| 408 | 434 | 0110011000         | 8888818688118188        |
| 409 | 435 | 0110011001         | 8868818889118181        |
| 410 | 436 | 0110011010         | 0000010000110110        |
| 411 | 437 | 0110011011         | 8966916666116111        |
| 412 | 438 | 0110011100         | 0000010000111000        |
| 413 | 439 | 0110011101         | 0000010000111001        |
| 414 | 440 | 8116611116         | 0000010001000000        |
| 415 | 441 | 8118811111         | 0000010001000001        |
| 416 | 442 | 0110100000         | 0000010001000010        |
| 417 | 443 | 0110100001         | 8666616661666611        |
| 418 | 443 | 0110100010         | 0000010001000011        |
| 419 | 444 | 0110100011         | 0000010001000100        |
| 420 | 445 | 0110100100         | 0000010001000101        |
| 421 | 446 | 0110100101         | 000010001000110         |
| 422 | 447 | 0110100110         | 0000010001080111        |
| 423 | 448 | 0110100111         | 0000018881881888        |
| 424 | 449 | 8118181888         | <i>000001001001001</i>  |
| 425 | 450 | <b>B11</b> 0101001 | 0000010001010000        |
| 426 | 451 | 0110101010         | ØØØØØ10001010001        |
| 427 | 452 | 0110101011         | 0000010001010010        |
| 428 | 453 | 0110101100         | 0000010001010011        |
| 429 | 454 | 0110101101         | 88988189818181818       |
| 430 | 455 | 0110101110         | 0966616661616161        |
| 431 | 456 | 0110101111         | 8686818681818118        |
| 432 | 457 | 0110110000         | 0000310031010111        |
| 433 | 458 | 0110110001         | 8888818881811888        |
| 434 | 459 | 0110110010         | 0000010001011001        |
| 435 | 460 | 8118118811         | 0000010001100000        |
| 436 | 461 | 0110110100         | 0000010001100001        |
| 437 | 462 | 0110110101         | 0000010001100010        |
| 438 | 463 | 0110110110         | <u>6666616661166611</u> |
| 439 | 464 | 0110110111         | 0000010001100100        |
| 440 | 465 | 0110111000         | 8888818881188181        |
| 441 | 466 | 0110111001         | 0000010001100110        |
| 442 | 467 | 0110111010         | 0000010001100111        |
| 443 | 468 | 6116111611         | 0000319091191993        |
| 444 | 469 | 0110111100         | 0000010001101001        |
| 445 | 470 | 0110111101         | 0000010001110000        |
| 446 | 471 | 0110111110         | 0000010001110001        |
| 447 | 472 | 0110111111         | 0000010001110010        |
| 448 | 473 | 0111000000         | 0000010001110011        |
| 449 | 474 | 0111000001         | 8888818881118188        |
| 450 | 475 | 0111000010         | 0000010001110101        |

•

•

•

|            |             |                                 | 85                                        |
|------------|-------------|---------------------------------|-------------------------------------------|
| 451        | 476         | 0111000011                      | 0000010001110110                          |
| 452        | 477         | 0111000100                      | 0000010001110111                          |
| 453        | 478         | 0111808181                      | 0000010001111000                          |
| 454        | 479         | 0111000110                      | 0000010001111001                          |
| 455        | 480         | 0111000111                      | 66666166166666666                         |
| 456        | 481         | <b>0111</b> 001000              | 888881881886888                           |
| 457        | 482         | 8111881881                      | 000001001000000 <b>10</b>                 |
| 458        | 483         | 8111881818                      | <b>0</b> 0808198188888 <b>11</b>          |
| 459        | 484         | 0111001011                      | 6666616616666166                          |
| 460        | 485         | 0111001100                      | <b>00</b> 000100190001 <b>01</b>          |
| 461        | 486         | 0111001101                      | 0000010010000110                          |
| 462        | 487         | 0111001110                      | <b>0</b> 00082160166861 <b>11</b>         |
| 463        | 488         | 0111001111                      | 0000010010001000                          |
| 464        | 489         | 0111010000                      | 0000010010001001                          |
| 465        | 490         | 0111010001                      | 0000010010010000                          |
| 466        | 491         | 0111010010                      | 0000010010010001                          |
| 467        | 492         | 0111010011                      | 0000010010010010                          |
| 468        | 493         | 6111616168                      | 0000010010010011                          |
| 469        | 494         | 0111010101                      | 0000010010010100                          |
| 470        | 495         | 0111010110                      | 0000010010010101                          |
| 471        | 496         | 6111616111                      | 8666618616616118                          |
| 472        | 497         | 8111811888                      | 0000010010010111                          |
| 473        | 498         | 0111011001                      | 0000010010011000                          |
| 474        | 499         | 0111011010                      | 0000010010011001                          |
| 475        | 499         | 0111011011                      | 0000010010011001                          |
| 476        | 500         | 0111011100                      | 0000010100000000                          |
| 477        | 501         |                                 | 8888918188988891<br>888894 84 8888894 8   |
| 478        | 502         |                                 | 88888181888888818<br>888884 84 88838844   |
| 479<br>499 | 503<br>504  | <b>0111011111</b><br>0111100000 | 66666161666666611<br>6666664 646666664 66 |
| 480<br>481 | 504<br>505  | 0111100000<br>0111100001        | 8888818188888198<br>88888181888888181     |
| 482        |             | 0111100001<br>0111100010        | 88666161666666116                         |
| 483        | -000<br>507 | 8111188818                      | 8888818188888119<br>8888818188888111      |
| 484        | 508         | 8111166166                      | 0000010100001111<br>00000010100001111     |
| 485        | 509         | 8111166161                      | 89868181888861881                         |
| 486        | 510         | 6111166116                      | 0000010100001000                          |
| 487        | 511         | 8111168111                      | 8898818188818881                          |
| 488        | 512         | 0111101000                      | 0000010100010010                          |
| 489        | 513         | 0111101001                      | 8888918188818911                          |
| 490        | 514         | 8111181818                      | 8866616188616168                          |
| 491        | 515         | 8111181811                      | 00000101000010101                         |
| 492        | 516         | 0111101100                      | 8896916188619118                          |
| 493        | 517         | 0111101101                      | 0000010100010111                          |
| 494        | 518         | 0111101110                      | 0000010100011000                          |
| 495        | 519         | 0111101111                      | 0000010100011001                          |
| 496        | 520         | 0111110000                      | 8886618188188888                          |
| 497        | 521         | 0111110001                      | 0000010100100001                          |
| 498        | 522         | 8111118818                      | 0000010100100010                          |
| 499        | 523         | 0111110011                      | 0000016106100011                          |
| 500        | 524         | 0111110100                      | 0000010100100100                          |
| 501        | 525         | 0111110101                      | 8888818188188188181                       |
| 502        | 526         | 0111110110                      | 0000010100100110                          |
| 503        | 527         | 0111110111                      | <i>0</i> 000010100100111                  |
| 504        | 528         | 0111111000                      | 0000010100101000                          |
| 505        | 529         | 0111111001                      | 0000010100101001                          |
| 506        | 530         | 011111010                       | 8866616166116668                          |
| 507        | 531         | 0111111011                      | 0000010100110001                          |
| 508        | 532         | 0111111100                      | 88888918189118918                         |
| 509        | 533         | 0111111101                      | 8888818168118811                          |
| 510        | 534         | 0111111110                      | 0000010100110100                          |
| 511        | 535         | 011111111                       | 0000010100110101                          |
|            |             |                                 |                                           |