
Towards Intelligent Mobile Edging: High Efficiency, Low Cost, and

Good Decision

by

Dian Shi

A dissertation submitted to the Department of Electrical and Computer Engineering,

Cullen College of Engineering

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Electrical Engineering

Chair of Committee: Miao Pan

Committee Member: Zhu Han

Committee Member: Tomoaki Ohtsuki

Committee Member: Xin Fu

Committee Member: David Mayerich

University of Houston

May 2022

Copyright 2022, Dian Shi

ACKNOWLEDGMENTS

From the bottom of my heart, I would like to express my deepest gratitude to my advisor Dr.

Miao Pan for his patient guidance, passionate support, and constructive criticisms during

my Ph.D. study. His enthusiasm, knowledge, and exacting attention to detail kindled in

me a fascination with the research and my determination to take scientific research as a

career. I am very honored to be guided by him, which made me spend five unforgettable

and meaningful years in my life.

Furthermore, I would like to extend my sincere appreciation to my committee, Dr. Zhu

Han, Dr. Tomoaki Ohtsuki, Dr. Xin Fu, and Dr. David Mayerich, who provided thoughtful

comments and recommendations on my research. This dissertation would not have been

possible without their support. I am grateful to have the pleasure of working with Dr.

H. Vincent Poor, Dr. Yuguang Fang, Dr. Jixiang Lu, Dr. Lixin Li, Dr. Jie Wang, Dr.

Xuanheng Li, Dr. Xiangwei Zhou, Dr. Hao Wang, Dr. Li Wang, Dr. Hao Yue, Dr. Ming

Li, Dr. Pan Li, and Dr. Minglei Shu. I really appreciate their invaluable feedback on my

analysis and framing and every discussion that has benefited me a lot.

Special thanks to all my dear colleagues and friends, Dr. Jingyi Wang, Dr. Sai Mounika

Errapotu, Dr. Debing Wei, Dr. Xinyue Zhang, Jiahao Ding, Pavana Prakash, Rui Chen,

Chenpei Huang, Huai-an Su, Dr. Feng Hu, Dr. Maoqiang Wu, Dr. Shihao Ran, Pengyu

Yuan, Lening Wang, and many others. Their company in Houston encouraged me to make

continuous progress in my studies and filled my life with sunshine and hope.

Last but not least, I am profoundly grateful to my parents and families for their un-

wavering support and belief in me, and my most enormous thanks to Dr. Liang Li for

constantly accompanying me throughout my life. Without you, the most stunning view

turns only to regret.

iii

ABSTRACT

In recent years, with the continuous prosperity of the mobile Internet industry and the

Internet of Things, the advance of widely used mobile terminals promotes the integration

of mobile networks and Artificial Intelligence (AI), two of the most disruptive technologies

world has seen nowadays. While each technology has spawned a large number of applications

to facilitate our lives, the combination of mobile networks and AI, i.e., intelligent mobile

edging, is going to be genuinely transformative. One perspective of combining these two is

to exploit mobile networks to better support AI (Wireless for AI), where federated learning

(FL) over mobile devices can greatly extend the scale of AI functions and preserve data

privacy. Another perspective of the combination of AI and mobile networks is to tackle the

challenges of wireless communication with AI strengths (AI for Wireless). Specifically, AI

techniques can represent hard-to-model wireless problems and find feasible solutions with

low computational complexity. The last point is that the combination can enable various

smart mobile applications and services (AI & Wireless for applications). Though intelligent

mobile edging has infiltrated many areas due to its advantages, several critical challenges

still limit the efficient implementation of intelligent mobile edging, among which efficiency,

cost, and performance are major considerations of this dissertation.

Huge energy/time consumption is one of the most significant obstacles restricting the

development of AI functions on resource-constrained mobile devices. Besides, the delay-

sensitive property of intelligent mobile applications also puts forward higher requirements

for the efficiency of AI methodologies and communication service decision-making. There-

fore, given these challenges, the objectives of this dissertation are to develop high efficiency,

low cost, and good decision intelligent mobile edging methodologies from the three perspec-

tives mentioned above through a combination of theoretical, simulation, and experimental

studies. Specifically, this dissertation firstly endeavors to develop a series of efficient FL

over mobile devices approaches, where computing and communication resources are well

balanced to reduce the total cost during training; and then focuses on making good deci-

sions and improving the performance of implementing AI functions on wireless networks

and intelligent wireless services.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS iii

ABSTRACT iv

LIST OF TABLES viii

LIST OF FIGURES ix

1 INTRODUCTION 1

2 DEEP REINFORCEMENT LEARNING AND FEDERATED LEARN-
ING 6
2.1 Reinforcement Learning . 6
2.2 Federated Learning . 7

3 TO TALK OR TO WORK: DYNAMIC BATCH SIZES ASSISTED
TIME EFFICIENT FEDERATED LEARNING OVER FUTURE MO-
BILE EDGE DEVICES 9
3.1 Introduction . 9
3.2 Preliminaries of Dynamic Batch Sizes . 12
3.3 Federated Learning with Dynamic Batch Sizes 14

3.3.1 Dynamic Batch Sizes Assisted FL Algorithm Design 14
3.3.2 Convergence Analysis for the DBFL Algorithm 17

3.4 DBFL over Future Mobile Edge Devices . 19
3.4.1 Problem Formulation . 19
3.4.2 Optimal Control Solutions for DBFL 23

3.5 Performance Evaluation . 28
3.5.1 Impacts of Communication Conditions, Local Steps, and the Number

of Participants on the DBFL Algorithm 29
3.5.2 Convergence Analysis and Comparisons 31

3.6 Conclusion . 33

4 ENERGY AND SPECTRUM EFFICIENT FEDERATED LEARNING
VIA HIGH-PRECISION OVER-THE-AIR COMPUTATION 34
4.1 Introduction . 34
4.2 Preliminaries of AirComp FL . 36
4.3 M-AirComp Design and M-AirComp based FL 37

4.3.1 The Design of Multi-Bit Over-the-Air Computation 37
4.3.2 M-AirComp Based FL . 41

4.4 Spectrum and Energy Efficient FL: Formulation and Solutions 42
4.4.1 Energy Minimization Problem Formulation 42
4.4.2 Communication and Computation Energy Models 43
4.4.3 Impacts of Control Variables on ESOAFL Convergence 45
4.4.4 Overall Energy Minimization Reformulation and Solution 48

4.5 Performance Evaluation . 50
4.5.1 Implementation of M-AirComp . 50

v

4.5.2 Some Observations of the ESOAFL 51
4.5.3 Spectrum and Energy Efficiency of the ESOAFL 52

4.6 Related Works . 56
4.7 Conclusion . 57

5 MAKE SMART DECISIONS FASTER: DECIDING D2D RESOURCE
ALLOCATION VIA STACKELBERG GAME GUIDED MULTI-AGENT
DEEP REINFORCEMENT LEARNING 58
5.1 Introduction . 58
5.2 Related Works . 61

5.2.1 Resource Allocation in D2D Networks 61
5.2.2 Multi-Agent Reinforcement Learning with Game Theory 62

5.3 System Model . 63
5.3.1 Problem Description . 63
5.3.2 Design Objective . 65

5.4 Stackelberg Game Approach for D2D Resource Allocation 66
5.4.1 Utility Functions . 66
5.4.2 Follower Analysis . 69
5.4.3 Leader Analysis . 70
5.4.4 Joint Channel Allocation and Power Control 71

5.5 Stackelberg Game Guided Multi-Agent Reinforcement Learning Approach . 72
5.5.1 Reinforcement Learning Based Formulation 72
5.5.2 Reinforcement Learning with Stackelberg Equilibrium 74
5.5.3 Fast D2D Resource Allocation Decision via STDRL 77

5.6 Performance Evaluation . 81
5.7 Conclusion . 86

6 DEEP Q-NETWORK BASED ROUTE SCHEDULING FOR TRANS-
PORTATION NETWORK COMPANY VEHICLES 87
6.1 Introduction . 87
6.2 TNC Cruising Vehicle Scheduling Model with Reinforcement Learning . . . 89

6.2.1 Model Configuration . 89
6.2.2 Model Description . 90

6.3 Problem Formulation and TNC Cruising Vehicle Scheduling 93
6.3.1 Deep Q-Networks . 94
6.3.2 Overall Architecture . 94

6.4 Performance Evaluation . 96
6.5 Conclusion . 99

7 NO ONE LEFT BEHIND: AVOID HOT CAR DEATHS VIA WIFI
DETECTION 100
7.1 Introduction . 100
7.2 Preliminaries and System Design . 102

7.2.1 WiFi Channel State Information . 102
7.2.2 CSI Phase Information Analysis . 103
7.2.3 System Overview . 105

7.3 Child Detection via Deep Learning . 106
7.3.1 Roughly Child Detection . 106

vi

7.3.2 Child Detection with CSI Radio Image 109
7.4 Experiment Results . 110
7.5 Conclusion . 112

8 FUTURE WORK 114

BIBLIOGRAPHY 116

vii

LIST OF TABLES

1 GPU Performance. 13
2 STDRL Simulation Parameters. 81
3 STDRL Performance Comparison. 86
4 Example of DiDi Database. 96

viii

LIST OF FIGURES

1 The illustration of the FL over mobile devices. 8
2 FL with dynamic batch sizes (ResNet20 on CIFAR-10). 12
3 The illustration of the dynamic batch sizes assisted federated learning. . . . 15
4 The relationship between batch sizes and time consumption. 20
5 The iterative convergence process of the proposed solution. 27
6 Numerical illustration of DBFL algorithm. 29
7 DBFL simulation results on various architectures and datasets. ((a-b): ResNet20

on CIFAR-10; (c-d): VGG19-BN on CIFAR-100.) 31
8 Multi-bit Over-the-Air computation design. 38
9 Federated learning via M-AirComp testbed in the lab. 50
10 Constellation diagram of M-AirComp demo (left: transmitter; right: receiver). 52
11 Observations of the ESOAFL. 54
12 ESOAFL simulation results on various architectures and datasets. ((a-b):

LeNet on MNIST; (c-d): ResNet-18 on CIFAR-10.) 55
13 Accumulated time consumption between SG and MADRL (4 D2D pairs, and

each time period has a new channel condition). 60
14 Deciding D2D resource allocation via SG guided MADRL. 64
15 Performance comparison under different βl. 82
16 Performance comparison in relatively static environments. 83
17 Performance comparison with dynamic communication environments. . . . 84
18 TNC cruising vehicle scheduling model . 90
19 TNC vehicle scheduling parameters tunning 97
20 TNC vehicle scheduling final results . 99
21 WiFi detection experiments: child and dog in rear seat, respectively. 102
22 Measured CSI & Adjusted CSI. 104
23 Responding CSI for different objects. 106
24 System architecture for baby detection system. 107
25 Detection Accuracy with different percentages of training data used. 112

ix

1 Introduction

With the rapid development of digital and information technologies, data produced

by users and digital systems showed an explosive growth trend. In this big data era,

Artificial intelligence (AI), particularly deep learning technique (DL), fully exploits the

potential of the enormous data and has become one of the most disruptive technologies the

world has witnessed in the last few years. With the maturity of the DL technique and its

wide application in all fields, AI continues to seep into our daily lives. The convolutional

neural network (CNN) can efficiently extract the features of pictures to intelligently classify

or recognize the content of images, such as object detection or face recognition. Deep

reinforcement learning (DRL) enables automatically control strategies selection, reaching

or even exceeding the limits of human beings in many fields, like the game AI or solving

scientific challenges. The wide application of the DL technique pushes AI to a new stage.

However, some issues such as data privacy, scalability, and efficiency of the technology itself

still need to be explored.

Another recent booming technology, mobile networks, is greeted with an avalanche of

publicity. From the widely used 4G network to the maturing 5G network, and then to the

6G and beyond the network soon, the accelerating data transmission speed and increasingly

flexible connection modes make the society move towards the era of the interconnection of all

things. With the advanced mobile communications technology, data and information can

be shared more efficiently among users and devices, which has spawned many industries

with mobile technology as the carrier, such as mobile Internet. At the same time, due

to the advance of hardware design, a growing number of mobile devices are armed with

ever-increasingly high-performance computation units, such as the central processing units

(CPUs) and graphics processing units (GPUs) which enable them to host computation-

intensive tasks. The rapid development of mobile devices provides the basis for mobile

communication to support more complex application scenarios and puts forward higher

requirements for transmission reliability and low latency.

Artificial intelligence and mobile networks are two of the most innovative technologies

1

in recent years. While each technology has made breakthrough progress and brought a

new experience to users, the combination of AI and mobile networks is going to push for a

sea-change in the world. The interaction between these two emerging technologies derives

a new nexus, i.e., intelligent mobile edging, which coordinates these technologies to further

develop both sides and create new application scenarios. With mobile communications, the

AI functions can be brought from remote cloud servers to edge devices, enabling on-device

processing or providing intelligent mobile services. Meanwhile, the AI functions on the edge

devices can also support the wireless transmission process with intelligent management.

Specifically, intelligent mobile edging can be illustrated in the following perspectives.

First of all, exploiting mobile networks can better support AI. The recent surge of

ML technologies is primarily due to the power of cloud computing and the availability of

big data. Unfortunately, cloud-centric ML generates tremendous traffic and causes serious

privacy concerns, which is not suitable for many resource-constrained applications. In

order to scale and move beyond the cloud-centric ML, Google has introduced federated

learning (FL), the currently popular distributed machine learning paradigm, which aims to

enable mobile devices to collaboratively learn a joint global ML model without sharing their

privacy-sensitive raw data [1]. With the help of advanced mobile networks, distributed data

stakeholders (e.g., mobile devices) in FL only need to periodically transmit their updated

local models to the aggregation server for global updates wirelessly, instead of uploading

their potentially private raw data, thus significantly lowering the risk of privacy leakage.

Recent successes in mobile networks, such as 5G and beyond (5G+) technology [2, 3],

can significantly facilitate the implementation of FL over mobile devices. For example,

5G+ mobile devices are usually armed with high-performance computation units, which

enable them to host computation-intensive learning tasks. Besides, the unique properties

of advanced mobile networks, like the multi-access edge computing (MEC) [4] structure in

5G standard and the high data rate and ultra-low latency of the 5G transmission, paving

the way for performing computing and communication for edge intelligence.

2

Such a combination of mobile networks and FL prompts tremendous successful appli-

cations over mobile devices, including keyboard prediction [5], cardiac event prediction,

financial risk management, etc. While deploying FL over mobile devices is promising to

have so many exciting applications, severe challenges are foreseeable, of which energy and

time consumption is the dominant concern. On the one hand, executing on-device comput-

ing and performing local model updates are both resource-hungry, inducing a significant

surge of energy and time consumption on mobile devices, which seriously drains battery

power and affects the user experience. On the other hand, there will be a trade-off between

computing and communication over resource-constrained mobile devices for both energy

and time. Coordinating the relationship between computing and communication is also

crucial for total resource consumption. Thus, investigating the energy/time efficient FL

with low cost over mobile devices from both the computing and communication perspec-

tives is urgently needed.

Moreover, applying AI can overcome challenges in mobile networks. With the continuous

prosperity of the mobile Internet industry and the Internet of Things, more promising com-

munication paradigms are proposed for the next generation of mobile networks to support

flexible and efficient transmissions. For example, the MEC architecture pushes compu-

tational capabilities closer to end-users, efficiently solving the long latency and backhaul

bandwidth limitation problem in cellular networks. Device-to-Device (D2D) communica-

tion enabling direct data transmission between two mobile users has emerged as a vital

component for 5G cellular networks to improve spectrum utilization and enhance system

capacity. However, there are still some critical technical challenges to implementing these

new communication modes. The first point is that such wireless problems are hard to model,

particularly considering the natural characteristics of dynamic communication conditions.

The second point is that the wireless model is always in a non-convex and non-linear for-

mula, which brings great difficulties to solve and find feasible solutions, even if it consumes

many computing resources.

For the above-mentioned challenges, AI is a power tool to solve them efficiently due to

3

its strengths. With neural networks, almost any form of problem can be well represented

by DL models. Especially, the deep reinforcement learning (DRL) methods show excellent

performance in coping with dynamic communication environments and making sequential

decisions under uncertainty. Furthermore, the optimization methods, such as stochastic

gradient descent (SGD) or Adam, utilized in DL, enable DL to effectively find convincing

results for such difficult problems. Nevertheless, the convergence rates and the stability of

the training process, which have a great impact on user experience and final performance,

are non-negligible and still needed to be further improved.

Finally, AI and mobile networks can enable a variety of intelligent applications. In

addition to promoting each other’s development, the combination of their advantages will

have broader application prospects. AI applications have developed significantly in the past

few years, and have been applied in almost every business sector. Its high efficiency and

automation enable AI to provide flexible system solutions for a variety of new and enhanced

experiences. With the help of the high-speed and low latency characteristics of advanced

mobile networks, AI-processing can be brought to a variety of end devices. Through the

continuous and rapid interaction of data and smart decisions, end devices has become

an indispensable part of intelligent society. For example, the construction of intelligent

transportation system, including transportation network company cars, intelligent public

transportation, etc., has brought great convenience to urban daily traveling. With the

popularity of internet of everything, a growing portion of internet of things (IoT) devices

are created for consumer use, such as smart home, elder care, and security monitoring, etc.,

and commercial use, like in medical or industry. In addition, the combination of AI and

mobile networks also lays the foundation for new applications such as augmented reality

(AR), virtual reality (VR) and metaverse, making it possible for the continuous emergence

of various new things.

This dissertation focuses on intelligent mobile edging, where we marry AI and mobile

networks for fruitful use without frictions to achieve high efficiency, low cost, and good

decision. This dissertation will first illustrate works on how mobile networks can better

4

support AI (Wireless for AI), where the high efficiency and low cost in FL training are

our key concerns. Next, we will show how AI can overcome challenges in mobile networks

(AI for Wireless). In this section, the DRL techniques are used to model the wireless

problems and make good decision strategies with high convergence speed. Finally, we will

share our thoughts on how AI and mobile networks can efficiently enable various intelligent

applications with good performance (AI & Wireless for applications).

Specifically, we first provide the preliminaries of FL and DRL, the main ML techniques

used in this dissertation, in Section 2. From the wireless for AI perspective, we implement

the dynamic batch sizes technique during the training process and propose a time-efficient

FL algorithm in Section 3. Then, in Section 4, we present an energy-efficient FL algorithm

considering over-the-air computing. Basically, we derive the corresponding convergence

analysis for both algorithms and make a good trade-off between computing and communi-

cation in FL training, thus significantly reducing the overall resources consumption. From

the AI for wireless perspective, in Section 5, we investigate resource allocation problems in

D2D networks, where we develop a Stackelberg game guided multi-agent DRL approach to

make the smart power control and channel allocation decisions. From the perspective of AI

and wireless for applications, we show two case studies on intelligent services. In Section 6,

we present a DRL-based route scheduling scheme for TNC cars to improve the revenue and

reduce the cruising time. In Section 7, we introduce a deep learning-based child detection

system to prevent hot car deaths by using the WiFi signal. At last, we present some possible

future works related to intelligent mobile edging in Section 8.

5

2 Deep Reinforcement Learning and Federated Learning

Machine learning (ML), particularly deep learning (DL), is one of the most disruptive

technologies the world has witnessed in the last few years. Typically, ML technology can be

classified into three categories: supervised learning, unsupervised learning, and reinforce-

ment learning (RL). Besides, according to different training modes, ML technology can also

be divided into centralized learning and distributed learning, in which federated learning is

a typical representative of distributed learning (FL). In this section, two main technologies

used in this paper, RL and FL, will be introduced in the following.

2.1 Reinforcement Learning

RL [6] has been widely used in finding optimal policies and achieving optimal control.

In RL, the agent observes the environment and discovers which action a ∈ A yields the

most numerical reward r ∈ R by trying it, and then generates the policy of mapping state

s ∈ S to action a. Following the policy, it moves to the next state with probability p ∈ P ,

and then repeats this process step by step. Therefore, a four-tuple (S,A,R, P) can be used

to denote the RL model. The agent’s goal is to maximize the expected cumulative reward.

The expected cumulative reward starts from state sk and following action ak, which is

called state action value Q(sk, ak) or Q value. The state action value Q(sk, ak) is given by

Q(sk, ak) = E[rk + γrk+1 + γ2rk+2 + ...|sk, ak] = E[
∞∑
t=0

γtrk+t|sk, ak]. (1)

Let Q∗(sk, ak) be the optimal state action value function, which can be represented by the

optimal Bellman equation as Q∗(sk, ak) = E[rk + γmax
a′k

Q∗(s′k, a
′
k)|sk, ak], where s′k and a′k

represent the next state and the next action, respectively. This establishes a correlation

between one state and the next state, and the optimal state action value can be computed

iteratively step by step. In RL, we want to find a learned policy to maximize the expected

6

cumulative reward, which can be written as

π∗ = arg max
π∈A

Rπk , (2)

where Rπk =
∑K

t=k γ
t−krk and γ is the discount factor which can balance the instant reward

and the future rewards.

Typically, RL methods can be divided into two classed, the value-based methods and

the policy-based methods. For the value-based RL methods, the optimal can be obtained

indirectly through the Q-value. In value-based RL methods, the iterative value function is

defined as

Q(sk, ak) = Q(sk, ak) + α[rk + γmax
a′k

Q(s′k, a
′
k)−Q(sk, ak)], (3)

where α is the learning rate, γ is the discount rate. Finally, the state action value will

converge to the optimal value, i.e. Qt → Q∗ when k → ∞, and then the optimal policy

π∗ can be obtained from the value function, i.e. π∗ = arg maxak Q∗(sk, ak) by checking

the Q-table in the memory. For the policy-based RL methods, the optimal policy can be

directly formulated and optimized through the optimization approaches.

2.2 Federated Learning

As an emerging decentralized learning paradigm, FL has taken advantage of the com-

puting resources across massive participants. Specifically, all participants collaboratively

contribute to one global learning task in a distributed manner with continuous interactions

for model parameter updates. We consider a FL system consisting of K participating users,

where each user k ∈ {1, 2, . . . ,K} has its own data set, denoted by Dk. The goal of FL is

to collaborate the users to perform a unified optimization task, written as

min
w∈Rd

f(w) ,
1

K

K∑
k=1

fk(w), (4)

7

Mobile Edge Devices

. . .

Local Model Updates Global Model Broadcasting

5G and Beyond

5G

5G Communications Local Computing

Figure 1: The illustration of the FL over mobile devices.

where fk is the local loss function corresponding to user k, and d is the dimension of the

model parameters.

Let r ∈ {1, 2, . . . , R} denote the FL global round index between the server and local

devices, and H be the number of local computing iterations executed between two consec-

utive global communication rounds. Moreover, We define wr as the global model at the

r-th communication round and wr,h
k as the local model of user k at the h-th local iteration

under the r-th communication round. Therefore, the local updating process of user k under

the r-th communication round is denoted as

wr,h+1
k = wr,h

k − η∇Fk(w
r,h
k) for h = 0, 1, ...,H − 1, (5)

where ∇Fk(wr,h
k) is a stochastic gradient of f with a random batch-size data, and η is

the local learning rate. Here, ∇Fk(wr,h
k) is the unbiased estimation of ∇fk(wr,h

k), i.e.,

Eξ∼Dk [∇Fk(w) | ξ] = ∇fk(w), where ξ represents the randomness like the batch-size index.

After finishing the local training, every participate upload its local model updates to the

server for global aggregation, i.e., η
∑H−1

h=0 ∇Fk(w
r,h
k), and the server then broadcasts the

most recent global model to initiate a new round of local training. The above process

is repeated until the global model converges. A typical paradigm of the FL over mobile

devices, including local computation and wireless communications parts, is shown in Fig. 1.

8

3 To Talk or to Work: Dynamic Batch Sizes Assisted Time

Efficient Federated Learning over Future Mobile Edge De-

vices

3.1 Introduction

Embracing recent advances in ultra-high speed wireless transmissions (e.g., WiFi-6, 5G,

6G, etc.) and mobile hardware technologies, multi-access edge computing (MEC) has been

recently emerged as a promising paradigm enabling local data analysis and real-time service

provisioning. With this trend, federated learning (FL) further pushes artificial intelligence

(AI) functions to mobile edge devices, thereby being instrumental in spearheading the vision

of intelligent mobile edge networks. As we know, through local training updates, FL enables

data stakeholders (e.g., mobile edge devices) to collaboratively learn a joint global machine

learning (ML) model without sharing their private raw data. Various features of MEC

make it perfectly fit to support FL. First, although current mobile edge devices (e.g., 4G or

5G smartphones, tablets, etc.) can only do learning inferences, future mobile edge devices

in MEC will be widely equipped with high-performance integrated processors (e.g., high-

performance GPUs) and are expected to have on-device local training capability [7], given

the promising research advances in mobile computer architecture designs and computing

hardware development. Besides, the distributed architecture of MEC is consistent with that

of FL, where future mobile edge devices can serve as local FL clients and the edge server

can serve as the FL aggregator. Moreover, the widespread popularity of social networking

applications will breed a wealth amount of data continually generated on future mobile edge

devices, which provides data basic for on-device training. Therefore, such the coupling of

MEC and FL can prompt a broad range of applications, including keyboard prediction [5],

cardiac event prediction [8], and financial risk management [9], etc.

However, deploying FL over future mobile edge devices in practice is non-trivial and

poses great challenges, of which the time consumption is a critical concern. In particular,

the proliferation of real-time and lifelong applications with stringent requirements on low

9

latency, such as augmented reality and voice assistant, has spurred a growing need for

continuous training on mobile edge devices. The mismatch between the delay-sensitive

property of these applications and the limited resources of mobile edge networks raises two

fundamental issues of FL over future mobile edge devices. One is how to fundamentally

accelerate the training process from the algorithmic perspective while guaranteeing the

learning convergence and model accuracy. It is also challenging for future mobile edge

devices to efficiently execute the time consuming neural network training, which may cause

intolerable latency for certain delay-sensitive FL applications. The other is how to determine

the key training parameters adapting to the mobile edge environment in practice, so that

the system resources, such as GPU resources and wireless bandwidth, can be fully utilized

to improve the time efficiency.

Most existing works in the machine learning community focus on improving the com-

munication efficiency of FL since communication is usually regarded as a bottleneck in the

training procedure. In [1], the local SGD (a.k.a. FedAvg) algorithm is proposed to allow

every participating device to perform multiple stochastic gradient descent (SGD) iterations

locally before synchronizing with others, thereby avoiding communication after every local

iteration. Another notable method to reduce the necessary communication rounds is grad-

ually enlarging the batch sizes during training, which properly increases local computations

in a single round to reduce the variance [10, 11]. Although these methods exhibit great

potential in communication burden alleviation, it is questionable whether the communica-

tion is a bottleneck in itself. In fact, the rapidly expanding 5G networks can provide a high

transmission rate up to 1 Gbps, and WiFi-6 claims to have the peak throughput of 9.6 Gbps.

Furthermore, the forthcoming 6G networks are envisioned to open up a “Tbps” era. These

advanced technologies make transmission delay no longer a dominant issue hindering FL’s

implementation in wireless networks [12, 13]. In this situation, wireless transmissions and

local computing are comparable in time consumption. For example, performing a single-step

local iteration (including data accessing and computing) of a ResNet-50 model with 100MB

parameters on one GPU typically takes hundreds of milliseconds [14], which is similar to

10

the transmission delay introduced by uploading the model via 1 Gbps wireless links (i.e.,

800 ms).

Recognizing the comparability between the communication cost and computing cost,

some recent works in [15, 16, 17, 18, 19] study to reduce the FL system cost over mobile

edge devices via joint communication and computing resource management. Their methods

just allocate system resources under a given budget and strive to acquire a proper resource

allocation strategy matching with the network environment. However, essentially saving

the total time consumption from the learning’s perspective is widely overlooked in these

works, such as how to adjust the appropriate batch size. Thus, it is worthwhile to inves-

tigate the trade-off between “working” (i.e., local computing) and “talking” (i.e., wireless

communication) from both the learning algorithm and resource allocation perspectives for

efficient FL over future mobile edge devices.

To bridge this gap, this work [20] targets at accelerating the FL training process by

jointly considering the computing and communication conditions over future mobile edge

devices. To this end, we first propose a time-efficient FL algorithm, named dynamic batch

sizes assisted federated learning (DBFL), with the convergence guarantee. Unlike ordi-

nary local SGD using fixed batch sizes throughout the training, the DBFL allows users to

exponentially increase the batch sizes with an incremental factor, leading to a reduction

of communication rounds required to complete the training. We will explain the reduc-

tion in detail in the following section. We then employ the proposed DBFL algorithm in

wireless networks and develop a batch size control scheme adapting to the specific network

conditions. In particular, we determine the optimal incremental factor via an elaborate op-

timization problem, where “working” and “talking” at future mobile edge devices are well

balanced to minimize the total training time consumption. In addition, the goal of improv-

ing time efficiency is in general consistent with that of improving energy efficiency, as the

shortening of overall time consumption leads to the reduction of overall energy consumption.

Our salient contributions are summarized as follows:

• Capturing the learning dynamics, we propose the DBFL, a time efficient FL algorithm

11

0 50 100 150 200 250 300

Epochs

40

50

60

70

80

90

T
e
s
t

A
c
c
u

ra
c
y
 (

%
)

Dynamic Batch Sizes

Fixed Batch Size

(a) Test accuracy vs. epochs

0 500 1000 1500

Communication Rounds

40

50

60

70

80

90

T
e
s
t

A
c
c
u

ra
c
y
 (

%
)

Dynamic Batch Sizes

Fixed Batch Size

(b) Test accuracy vs. communica-
tions

Figure 2: FL with dynamic batch sizes (ResNet20 on CIFAR-10).

allowing the batch size to increase exponentially in the training process. We also

provide a theoretical analysis of the DBFL algorithm in terms of convergence rate

and communication complexity.

• Guided by the theoretical results of DBFL, we further study to minimize the total

time consumed for training an FL model to converge over future mobile edge devices.

In particular, we develop a batch size control scheme to derive the optimal batch

size incremental factor, catering to the GPU computing performances and wireless

communication conditions of mobile edge devices.

• We conduct extensive simulations to evaluate the performance of the proposed scheme

on various learning models and system settings. Our scheme exhibits great superi-

ority in terms of time consumption reduction for FL over future mobile edge devices

compared with the state-of-the-art FL solutions.

3.2 Preliminaries of Dynamic Batch Sizes

In order to better explain the motivation of this paper, the learning schemes with the

fixed batch size and dynamic batch sizes are compared through experiments in this part.

Taking the ResNet20 [21] model on the CIFAR-10 dataset as an example, we consider an

FL scenario with 10 participating users, and each user sequentially takes 10 local SGD

steps. Based on this, we deploy this scenario with the fixed scheme (FedAvg [1] with batch

12

Table 1: GPU Performance.

Size 50 100 200 250 500 1000 2500

Time(s) 0.021 0.022 0.023 0.024 0.040 0.072 0.171

Ratio 6.140 3.216 1.681 1.404 1.170 1.052 1

size 200) and the dynamic scheme (gradually increasing the batch sizes from 50 to 2, 500),

respectively, and the experiment results are shown in Fig. 2. Note that the fixed scheme

needs the relatively small batch sizes (e.g., smaller than 200) in the FL to guarantee the

convergence [1]. Fig. 2a shows that two schemes need almost the same data epochs to

achieve the target accuracy, and one epoch refers to one cycle through the full training

dataset. This means that the gradient calculation operations of two schemes, i.e., the

computation loads during the training, are similar. The training curves with data epochs

as x-axis are similar in 2a. But for the global updates, i.e., communication cost, shown in

Fig. 2b, the dynamic scheme needs far fewer communication rounds than the fixed scheme.

The reason is that the large batch size implemented in the latter training stage leads to the

reduction of update frequency.

In this paper, we focus on the time consumption for the overall FL procedure, including

the communication time and the computing time. From Fig. 2b, it can be easily found

that the communication cost of the dynamic scheme is much less than that of the fixed

scheme due to the fewer required communication rounds. In terms of the computing cost,

when using a similar number of data epochs to achieve FL convergence in the two schemes

(as shown in Fig. 2a), the total computing time of the dynamic scheme is lower than that

of the fixed scheme due to the efficient large-batch training in the later stage of training.

Specifically, the local gradient calculation delay does not increase linearly with the batch

size increase. For example, when the batch is doubled, the increase in time consumption will

be less than twice. Such a relationship between batch size and time consumption indicates

the efficiency of the large batch training. This is because the GPU pipeline is a kind of

parallel processing, where it can directly process far more data simultaneously [22]. As

13

shown in Table 1, we conduct the experiments on a single “RTX 8000” GPU and record the

time consumption for different batch sizes. The “Ratio” indicates the ratio of “Time for

computing 2,500 samples with specified batch size” and “Time for computing 2,500 samples

with batch size 2,500”. This “Ratio” implies that a larger batch size can save more time

when accessing the same number of stochastic gradients, and similar results can be found

in [23]. Thus, compared with the fixed scheme that always uses relatively small batch sizes,

the dynamic batch size scheme consumes less computing time for convergence, which is

consistent with the trend of communication consumption. Moreover, to further reduce the

system time consumption and balance the communication and computing in the dynamic

scheme, we are going to adjust the batch size increasing rate to achieve the minimum time

consumption for the training.

3.3 Federated Learning with Dynamic Batch Sizes

In this section, we propose a general time efficient FL framework with dynamic batch

sizes in Sec. 3.3.1, named DBFL, and derive the convergence analysis for it in Sec. 3.3.2.

3.3.1 Dynamic Batch Sizes Assisted FL Algorithm Design

We consider a multi-access edge computing system for the distributed machine learning

task with one edge server and a set K := {1, ...,K} of K participating future mobile edge

devices, as shown in Fig. 3. Specifically, each device i has its own dataset Di and cannot

access other devices’ datasets. Moreover, all devices maintain their local machine learning

models with the same model structure and attempt to achieve a global goal, i.e., obtain

a common model to minimize the training loss, under the coordination of the edge server.

Such a scenario can be considered as a FL task, where the future mobile edge server can

serve as the FL aggregator and future mobile edge devices can serve as local FL clients. In

addition, FL can be also formulated as the following distributed non-convex optimization

14

Figure 3: The illustration of the dynamic batch sizes assisted federated learning.

problem

min
w∈Rd

f(w) ,
1

K

K∑
i=1

fi(w), (6)

where fi(w) is the training loss for device i over the datasetDi, i.e., fi(w) , Eξi∼Di [Fi (w; ξi)].

Here, we assume all users have the same size of dataset Di for concise expression, and the

size of Di can be possibly different for different i. ξ denotes the randomness in the training

process, e.g., different data points and different batch sizes selection. In every training iter-

ation t, each device will take one SGD step, which means each device observes the unbiased

stochastic gradients with one batch data based on the model wt−1
i obtained at the last

iteration step as gti = ∇Fi
(
wt−1
i ; ξi

)
. Here, gti is the unbiased estimation of ∇fi(wt−1

i), i.e.,

Eξti∼Di
[
gti | ξ

]
= ∇fi(wt−1

i).

One classical method to coordinate all devices’ local model is to collect and take the

average of the observed gradients among all devices in each iteration, then adopting the

averaged gradients to update the global model. Furthermore, each device downloads the

updated global model and continues to take the SGD step mentioned above for training.

Such an optimization method is called mini-batch SGD. However, updating the global model

in each iteration with only one SGD step is extremely communication inefficient, which

consumes a tremendous amount of the limited communication resource, especially for the

15

FL over mobile edge devices. Hence, we employ a communication efficient optimization

method, called local SGD, where each device performs H sequential SGD steps and then

updates the global model. Note that each data sample can be repetitively used during local

updates. But it will have different effects on the model since the local model accumulates

the previous gradient calculation results. Therefore, we will update the global model every

H iterations. For explanation convenience, we define a virtual global model at each iteration

step t as

wt ,
1

K

K∑
i=1

wt
i, (7)

and the virtual global model can be iteratively calculated as

wt = wt−1 − γ 1

K

K∑
i=1

gti, (8)

where γ is the learning rate. Note that when t mod H = 0,wt = wt.

Moreover, to further reduce the communication cost and improve computing efficiency,

we consider a dynamic batch size in the training process. We gradually increase the batch

size in the training stage and propose a time-efficient federated learning approach, called

dynamic batch sizes assisted federated learning (DBFL) algorithm, which is described

in Alg. 1. Particularly, in each communication round τ , the batch size is different and

exponentially increased with an incremental factor β, i.e., Bτ = bβτ−1B0c. In Alg. 1, E is

the total number of stochastic gradient accesses. The proposed DBFL procedure over future

mobile edge devices is briefly described in Fig. 3. The edge server first broadcasts a current

global model to the participating mobile edge devices in FL. After receiving the global

model, each mobile edge device selects the batch size for local on-device training based on

the local data and its computing capability. When a mobile edge device finishes its local

training, it will upload its local model via ultra fast wireless transmissions (e.g., WiFi-6,

5G, 6G, etc.) for global model updates. The above steps will repeat until the training

converge. The proposed DBFL algorithm can effectively reduce the communication rounds

16

Algorithm 1 Dynamic Batch Sizes Assisted Federated Learning Algorithm (DBFL)

Initialization: Initialize the global model w0 and set w0
i = w0, ∀i ∈ K; Set the learning

rate γ, batch size incremental factor β, local step H, and initial batch size B0; Initialize the
communication index τ = 0 and the iteration index t = 1; Initialize the local step count lo

1: while H ·
∑τ

η=0Bη ≤ E do
2: Each device i identifies the batch size Bτ = bβτB0c
3: for lo = 1, ...,H do
4: Each device i observes the unbiased stochastic gradients gti of fi(w

t−1
i) with one

batch data with the size Bτ from the dataset Di
5: Each device i in parallel updates its local model

wt
i = wt−1

i − γgti, ∀i

6: Update t← t+ 1

7: end for
8: Update the global model wt−1 = 1

K

∑K
i=1 wt−1

i

9: Each device i in parallel updates its local model wt−1
i = wt−1

10: Update τ ← τ + 1

11: end while

of global updates and benefit from the time efficient large batch training, which had been

discussed detailed in Sec. 3.2. Furthermore, the convergence analysis of the proposed DBFL

algorithm will be provided in the next section.

From the theoretical points of view, gradually increasing batch sizes is also beneficial

for the training. We can interpret the SGD method as integrating a stochastic differential

equation (SDE) whose “noise scale” n ≈ γ|D|/B [24, 14], where |D| is the dataset size and B

denotes the batch size. For the above non-convex optimization problem, large-scale random

fluctuations help to explore the parameter space to avoid trapping in local minima on the

initial stage. After that, when we locate a promising region of parameter space, small-

scale fluctuations are required to fine-tune the parameters on the later stage. Therefore,

exponentially gradually increasing batch sizes is helpful in the training.

3.3.2 Convergence Analysis for the DBFL Algorithm

We consider the loss function fi, ∀i in (6) satisfies the following two assumptions:

17

Assumption 1 (Smoothness) The objective function fi is differentiable and L-smooth, as

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖,∀i. (9)

Assumption 2 (Bounded variances and second moments) The variance and the second

moments of stochastic gradients evaluated with a mini-batch of size B can be bounded as:

Eξi∼Di ‖∇Fi (w; ξi)−∇fi(w)‖2 ≤ σ2

B
,∀w,∀i (10)

and Eξi∼Di ‖∇Fi (w; ξi)‖2 ≤ δ2, ∀w, ∀i, (11)

where σ and δ are the positive constants.

We set the total number of iterations as T . Under the above assumptions, the following

theorem holds, which is a key property to analyze the convergence of the DBFL algorithm.

Theorem 1 If we consider the initial batch size B0, batch size incremental factor β > 1,

local step H, the number of participating device K, and choose the learning rate γ < 1
L ,

then the convergence rate for all T > 1 in Alg. 5 satisfies

1

T

T∑
t=1

E
[∥∥∇f (wt−1

)∥∥2
]
≤

2
(
f
(
w0
)
− f∗

)
γ logβ

E(β−1)
B0

+ 4γ2H2δ2L2 +
2Lγσ2

logβ
E(β−1)
B0

KB0H
· β

β − 1
,

(12)

where f∗ is the minimum value of the loss, and E is the total number of stochastic gradient

accesses. (Please refer to Appendix A for the proof.)

For Theorem 1, we can derive the following corollary.

Corollary 1 Under Assumptions 1 and 2, if we choose learning rate γ =
√
K

L
√

logβ
E(β−1)
B0

,

local steps H ≤
(

logβ
E(β−1)
B0

) 1
4
K−

3
4 , the number of participating devices K < (logE)

5
3 ,

then the Alg. 5 has the O
(

1√
K logE

)
convergence rate with O

(
(logEK)

3
4

)
communication

rounds. (Please refer to Appendix B for the proof.)

18

Furthermore, the communication complexityO(T/H) can be considered asO
(

(K logE)
3
4

)
,

which is lower than that of the local SGD method (FedAvg) with a fixed batch size as

O((KE)
3
4) [25].

3.4 DBFL over Future Mobile Edge Devices

Both the experimental results obtained in Sec. 3.2 and the convergence analysis derived

in Sec. 3.3.2 validate that the proposed dynamic batch sizes scheme can reduce the com-

munication rounds of global updates, and the experimental results also show the efficiency

of the large batch computing. Therefore, the total time consumption will be reduced when

using the proposed DBFL algorithm. In this section, we employ the DBFL algorithm over

future mobile edge devices in Sec. 3.4.1 and develop a control scheme in Sec. 3.4.2 to adjust

the batch size incremental factor β for further minimizing the total time consumption of

FL, including both the communication time and computing time.

3.4.1 Problem Formulation

We consider the multi-access edge computing environment in practice and develop the

corresponding wireless communication and GPU computing model for future mobile edge

devices.

Communication: For each future mobile edge device, the average transmission rate

over the whole training process can be evaluated as

R = WEh
[
log2

(
1 +

P |h|2

N0

)]
, (13)

where the expectation is taken over the channel fading h, and N0 implies the power of

additive white Gaussian noise (AWGN). Here, we consider the ideal transmission condition,

where we assume the interference can be well-managed and channel conditions are stable.

W and P denote the bandwidth and the transmission power, respectively. Afterwards,

the transmission delay for transmitting the learning model with the model size N in one

19

200(B
1
) 400(B

2
) 800(B

3
)

Batch Size

24(T
1
)

31(T
2
)

56(T
3
)

T
im

e
 C

o
n

s
u

m
p

ti
o

n
 (

m
s
)

Relationship between B & T

Figure 4: The relationship between batch sizes and time consumption.

communication round can be evaluated as

ttran =
N

R
. (14)

Computing: Future smart mobile edge devices will be widely armed with high-performance

GPUs, which will be powerful in handling sophisticated computations of FL tasks. Conse-

quently, we consider the GPU computing model and formulate the execution time for GPU

computing the gradient of one data sample as

tcomp0 = tinit +
u

fmem
+

v

fcore
, (15)

where fcore and fmem denote the GPU core frequency and GPU memory frequency, and tinit

represents the static time consumption [26, 27]. u and v are constant factors that reflect

the sensitivity of the task execution to GPU memory and core frequency scaling. Therefore,

the time consumption for accessing a batch size of B data can be calculated as

tcomp(B) = tcomp0 · d(B), (16)

where d(B) is a function describing the relationship between the batch size and time con-

sumption.

Due to the parallelism property of the GPU, the time consumption for calculating the

20

gradients with different data sizes does not linearly increase with the batch sizes increasing,

as shown in Table 1. The first is that the per data sample time consumption gradually

decreases with the batch size increasing. The second one is that the efficiency improvement

of the large batch training gradually also decreases with the increasing batch size. Moreover,

we find that when the batch size is not extremely, a part of the quadratic function can fit

such a nonlinear relationship, as shown in Fig. 4, and have the assumption below. Similar

observations can also be found in [23]. Therefore, we choose the quadratic function d(B) =

aB2+c in (16), where a > 0 and c > 0, to describe the nonlinear relationship, which can well

reflect the efficiency of GPU computing for large batch sizes. Note that we use a segment

of the quadratic function to represent the time consumption; we can select different values

of a and c for different types of GPUs.

Assumption 3 (Quadratic Relationship) For the general CNN model, when the batch size

is not extremely large, the relationship between the GPU time consumption and batch sizes

of gradient calculation follows the quadratic form.

After establishing the communication and computing model, the next step is to iden-

tify the required communication rounds. According to Theorem 1, we have the following

corollary on required communication rounds of the DBFL algorithm.

Corollary 2 The maximum number of communication rounds M = T
H for achieving ε

global convergence accuracy, i.e., satisfying

1

T

T∑
t=1

E
[∥∥∇f (wt−1

)∥∥2
]
≤ ε, (17)

is given by

Mε =
T

H
=

Aβ

β − 1
+ χ, (18)

where both A and χ are positive constants. (Please refer to Appendix C for the proof.)

When we employ the DBFL algorithm, the total time consumption Φ can be calculated

as shown in (19), which is the summation of the total communication time and the total

21

Φ = M · ttran +H

M∑
τ=1

tcomp0 (a(B0β
τ−1)2 + c),

=
(A+ χ)β − χ

β − 1
· (ttran + cHtcomp0) + aB2

0Ht
comp
0

1− β
2(A+χ)β−2χ

β−1

1− β2

=
((A+ χ)β − χ)(ttran + cHtcomp0)(β + 1) + aB2

0Ht
comp
0 (e

lnβ· 2(A+χ)β−2χ
β−1 − 1)

β2 − 1
.

(19)

computing time. Hence, aiming at minimizing the overall time consumption, we determine

the best incremental factor β by solving the following optimization problem:

min
β

Φ, (20a)

s.t. : β ≥ βmin, (20b)

B0β
M ≤ min

i
|Di|, (20c)

where βmin > 1, |Di| is the size of the dataset owned by device i. The constraint in (20c)

limits the maximum value of the selected batch size to be smaller than the local dataset

size, which can also be simplified as

lnβ((A+ χ)β − χ) ≤ Z(β − 1), (21)

where Z = ln mini |Di|
B0

.

We look into some critical parameters of the objective function Φ with further analy-

sis. The total time consumption includes two parts, that is, communication consumption

(“talking”) and computing consumption (“working”). The results in (18) indicates that

the incremental factor β takes impact on communication rounds M . Given a target global

accuracy, a larger β results in a smaller number of communication rounds (less “talking”).

However, enlarging the incremental factor leads to the increasing of the calculations each

round (more “working”). Therefore, there exists a trade-off between communication cost

and computing cost that requires us to find an optimal β to determine “work more” or “talk

22

more” for minimizing the total time consumption. Furthermore, the overall time consump-

tion decreases as the number of devices K increasing, but the relationship between the total

time consumption and the local step H is unknown because of the non-monotonicity.

3.4.2 Optimal Control Solutions for DBFL

For notational convenience, we define following functions:

P1(β) =((A+ χ)β − χ)(ttran + cHtcomp0)(β + 1), (22)

P2(β) =aB2
0Ht

comp
0 (e

lnβ· 2(A+χ)β−2χ
β−1 − 1), (23)

P3(β) =β2 − 1, (24)

and G(β) = lnβ((A+ χ)β − χ)− Z(β − 1). (25)

The objective function Φ of the optimization problem is in a fractional form. To solve

it efficiently, we employ the Dinkelbach [28] method to iteratively find the optimal results,

which is widely considered in dealing with fractional programming problem. Introduce an

auxiliary variable q and set q as the value of the objective function Φ, that is, q = P1(β)+P2(β)
P3(β) .

Accordingly, we have P1(β) + P2(β) − qP3(β) = 0, and we further define the function

P1(β) + P2(β)− qP3(β) as Θ(β, q). Here, Θ(β, q) is strictly monotonic decreasing with the

parameter q. Notice that solving the problem in (20) is essentially equivalent to finding the

root of Θ(β, q). Therefore, we use the parametric approach to represent the objective in

(20) and consider the following problem:

min
β

P1(β) + P2(β)− qP3(β), (26a)

s.t. : β ≥ βmin, (26b)

G(β) ≤ 0. (26c)

We iteratively solve the problem (26) and update the non-negative variable q in each iter-

ation. Finally, q will be the unique root of the function (26a), which is also the optimal

23

value of original problem (20). The updating process of variable q is described in Alg. 2.

In general, the solution of the original problem (20) can be summarized as follows. We first

solve problem (26) and denote the optimal solution as β∗, which is referred to as the inner

loop in Alg. 2. Then, we update the corresponding q value, referred to as the outer loop in

Alg. 2. Finally, repeat the above two loops until some specific convergence conditions are

reached. We further investigate problem (26) and have the following lemma.

Lemma 1 The function P1(β), P3(β), G(β) are convex functions in problem (26).

Proof. P1(β) and P3(β) can be easily verified to be convex. For the function G(β), we have

d2G(β)

d2β
=

d((A+ χ)(lnβ + 1))

dβ
− d(χβ−1 + Z)

dβ
=
A+ χ

β
+

χ

β2
> 0, (27)

which implies that the function G(β) is convex.

We now first focus on the function P2(β) = aB2
0Ht

comp
0 (e

lnβ· 2(A+χ)β−2χ
β−1 −1). Let U1(β) =

h(g(β)) = eg(β) where

h(x) = ex,∀x ∈ R (28)

and

g(β) = lnβ · 2(A+ χ)β − 2χ

β − 1
. (29)

Then P2(β) can be rewritten as P2(β) = aB2
0Ht

comp
0 (U1(β)−1). Notice that g(β) is concave

since

d2g(β)

d2β
≤ 2 · χ(β − 1)3 +Aβ(β − 1)2

(1− β)3β2
< 0, (30)

Thus, it is difficult to judge the convexity of the composition function U1(β), as well as

P2(β). Besides, the parameter q introduced in the Dinkelbach framework is non-negative,

the function P1(β)− qP3(β) has the Difference of Convex (DC) structure since both P1(β)

24

and P3(β) are obviously convex. Hence, we further set this DC structure as U2, i.e., U2(β) =

P1(β)− qP3(β).

Therefore, we can re-represent the problem in (26) as:

min
β

aB2
0Ht

comp
0 (U1(β)− 1) + U2(β) (31a)

s.t. β ≥ βmin, (31b)

G(β) ≤ 0. (31c)

For solving the non-convex objective (31a), we apply the iNner cOnVex Approximation

(NOVA) [29] algorithms to linearize the non-convex terms in (31) and find the stationary

points iteratively. The main idea is to continuously optimize the approximation of the

non-convex objective in (31) and maintain feasibility at each iteration. Hence, we derive

a strongly convex approximant of (31a) around each feasible iteration. In order to achieve

that, we build an approximation for functions U1(β) and U2(β) as follows:

Ũ1(β;βν) , h(g(βν) +∇g(βν)(β − βν)) +
κ

2
‖β − βν‖2, (32)

Ũ2(β, βν) , P1(β)− qP3(βν)− q∇P3(βν)(β − βν), (33)

where βν denote the current intermediate β obtained in the ν-th iteration. ∇g(βν) and

∇P3(βν) are the gradients of g and P3 at βν , respectively, and κ > 0. To acquire the

optimal solution β∗ in (31), we iteratively compute the solution β(βν) by taking a step

from βν with a initial feasible point β0. In this way, we build the approximation for Θ(β)

in (31) as Θ̃(β) = Ũ2(β, βν)+aB2
0Ht

comp
0 (Ũ1(β)−1) and the approximated problem of (31)

can be formulated as:

min
β

Θ̃(β) (34a)

s.t. β ≥ βmin, (34b)

G(β) ≤ 0. (34c)

25

Algorithm 2 Batch Sizes Control of DBFL

Initialization: Initialize q = q(0) > 0, outer-loop iteration index k = 0, the stop criteria
ε, and the maximum number of iterations Kmax

1: repeat
2: Initialize the step size ζ0 ∈ (0, 1]
3: Set inner-loop iteration index ν = 0 and start with β0

4: repeat
5: Calculate β∗(βν) via (38)
6: Set βν+1 = βν + ζν(β∗(βν)− βν)
7: Set ν = ν + 1
8: until βν is a stationary solution of problem (34)
9: Set β∗ = βν as the current solution of the primal problem (26).

10: Update q(k+1) = P1(β∗)+P2(β∗)
P3(β∗)

11: if |Θ(q(k) −Θ(q(k+1))| ≤ ε then
12: return The current solution β∗.
13: else
14: Set k = k + 1

15: until k = Kmax

16: return Optimal solution β∗.

We can easily observe that the problem in (34) is convex, continuously differentiable, and

the Slater’s condition is satisfied, implying that strong duality holds. Hence, the problem

can be derived using the KKT conditions, and the stationary point β∗ can be determined

accordingly.

The first order derivative of the objective Θ̃(β) can be calculated as

dΘ̃(β)

dβ
= Iβ +AR− 2qβν + J(Y e∇g(β

ν)β + κβ − κβν) = (I + Jκ)β + JY e∇g(β
ν)β + S,

(35)

where R = ttran + cHtcomp0 , I = 2(A + χ)R, J = aB2
0Ht

comp
0 , Y = eg(β

ν)−∇g(βν)βν∇g(βν),

S = (AR− Jκβν − 2qβν).

We further calculate the first order derivative of g(β) and obtain∇g(βν) = 2βν(A+χ)−2χ
βν(βν−1) −

2A ln(βν)
(βν−1)2

. As the first order derivative of the function G(β) has already shown in (27), we

26

2 4 6 8 10

Iterations

1.09

1.1

1.11

1.12

1.13

1.14

1.15

1.16

In
c
re

m
e
n

ta
l
fa

c
to

r
*

Our result

Optimal result

Figure 5: The iterative convergence process of the proposed solution.

have the following equations according to the KKT conditions

∂Θ̃(β)
∂β + µ∂G(β)

∂β = 0,

µG(β) = 0,

µ ≥ 0,

G(β) ≤ 0,

(36)

where µ is the Lagrange multiplier. Then, we have

β1 = −
(I + Jκ)W

(
JY∇g(βν)e

−∇g(β
ν)S

I+Jκ

I+Jκ

)
+∇g(βν)S

∇g(βν)(I + Jκ)

and β2 = eλ
∗
, (37)

where W(·) represents the Lambert function, and λ∗ satisfies Aeλ
∗
λ∗ + eλ

∗
λ∗χ − Zeλ∗ −

λ∗χ+ Z = 0. It should note that λ∗ can be easily acquired through the bisection method.

We further define β̃ = arg min{Θ(β1),Θ(β2)}, and the optimal solution β∗ can be given as

βmin, β̃ ≤ βmin,

β̃, otherwise.

(38)

We summarize the procedure of the inner convex approximation as the inner-loop in Alg.

2. Alg. 2 describes how we obtain the optimal incremental factor β∗ that can control the

27

batch size in each training round to minimize the total time consumption in MEC networks

by well balancing the communication and computing. Note that the main computational

workload of the inner convex approximation lies in the calculation of β∗(βν), i.e., the solution

of the problem in (34). We mitigate the workload by computing β∗(βν) in closed form,

which allows us to obtain the unique solutions of the inner-loop problems directly without

resorting to any iterative solver that provides approximate solutions only. Thanks to the

desirable convergence properties from the Dinkelbach and NOVA algorithms, our batch

size control algorithm in Alg. 2 can finish to find β∗ after a finite number of steps with

relatively low computational complexity. Fig. 5 shows one approximation error example

of the proposed solution, where we employ the brute force approach to find the optimal

results, which verifies the accuracy and efficiency of the proposed solution.

3.5 Performance Evaluation

In this section, we conduct extensive simulations to validate the effectiveness of our

proposed DBFL algorithm and the corresponding control scheme over future mobile edge

devices. To evaluate the performance of our proposed scheme over future mobile edge devices

in practice, we need to find the proper model parameters to represent the computing and

communication of MEC. First of all, we take some experiments on the edge device to identify

the GPU computing model. We use the edge devices occupied with one NVIDIA RTX

8000 GPU to model the edge computing environment of future mobile device in practice,

where the GPU core frequency fcore and memory frequency fmem equal to 1, 400 MHz

and 1, 750 MHz. Through running the ResNet20 model with CIFAR-10 dataset on devices

multiple times, we identify that tcomp0 nearly equals to 0.024, and a and c can be selected as

9.49 × 10−7 and 1 in function d(B), respectively. Next, for the communication model, we

consider the ultra fast wireless transmissions (e.g., 5G) to simulate the edge communication

environments, where the achievable upload transmission rates R is between 5 Mbps and 125

Mbps depending on the wireless communication conditions.

28

11 12 13 14 15 16 17 18

Local step H

1

1.05

1.1

1.15

1.2

1.25

1.3

T
o

ta
l
ti

m
e
 C

o
n

s
.
(R

E
L

 t
o

 t
h

e
 o

p
ti

m
a
l)

comm level 1

comm level 2

comm level 3

comm level 4

comm level 5

time = 255.83

time = 153.77

time =88.82

time = 65.15

time = 49.33

(a) Impact of comm. level
on time

11 12 13 14 15 16 17 18

Local step H

1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17

O
p

ti
m

a
l
in

c
re

m
e
n

ta
l
fa

c
to

r
*

comm level 1

comm level 2

comm level 3

comm level 4

comm level 5

(b) Impact of comm. level
on β∗

15 20 25 30 35 40 45 50

Number of users K

1

1.5

2

2.5

3

3.5

4

S
p

e
e
d

u
p

 w
.r

.t
.
to

ta
l
ti

m
e
 C

o
n

s
.

H = 12

H = 14

H = 16

H = 18

H = 20

(c) Speedup over H and K

15 20 25 30 35 40 45 50

Number of users K

1.08

1.1

1.12

1.14

1.16

1.18

O
p

ti
m

a
l
in

c
re

m
e
n

ta
l
fa

c
to

r
*

H = 12

H = 14

H = 16

H = 18

H = 20

(d) Impacts of H and K on
β∗

Figure 6: Numerical illustration of DBFL algorithm.

3.5.1 Impacts of Communication Conditions, Local Steps, and the Number of

Participants on the DBFL Algorithm

After identifying the parameters of the GPU computing model and wireless communi-

cation model, the expressions of communication round M and objective Φ still have some

parameters to be estimated. We estimate these parameters with different learning settings

by experiments and take 2b
γ = 250, C = 0.0005, and % = 400 as an example to identify the

values of A and χ. We further take ε = 0.5 to guarantee ε > CH2 for different potential

H. The transmission model size N can be estimated as 1.25 MB, and the dataset size for

each user equals to 5, 000. The simulation results for different parameter settings of our

proposed DBFL algorithm with optimal control are shown in Fig. 6.

We first consider different communication conditions and different local steps H with

a fixed number of participating devices K = 25, and the simulation results are shown in

Fig. 6a and Fig. 6b. Different communication levels represent different communication con-

ditions, where level 1 to 5 correspond to upload transmission rates R = 5, 10, 25, 50, and

125 Mbps, respectively. In particular, the level 1 indicates that the communication cost

is dominant in total time consumption, while level 5 indicates that the computing cost is

dominant. Fig. 6a demonstrates the total time consumption with varying local steps H

under different communication conditions, where y-axis represents the value relative to the

optimal time consumption for each H. In Fig. 6a, under the same communication condition,

the local step H has an optimal value in the middle of the candidate ranges. This is because

29

too small H will lead to inefficient communication. In contrast, if H is too large, the over-

fitting problem of local computation also affects the convergence rate. Moreover, it is easy

to observe that with the deterioration of communication conditions, the time consumption

will increase. It’s also notable that the optimal H is gradually decreasing with the rising of

the communication level, as the remarked points in Fig. 6a. The reason can be explained as

the optimal solutions prefer to reduce the total time consumption by putting more commu-

nication rounds (more “talking”) when the communication conditions are good, and vice

versa. This reflects the trade-off between communication and computing of our proposed

scheme. Fig. 6b further shows the relationship between the obtained optimal incremental

factor β∗ and different communication conditions. Here, as the communication conditions

degrade, the optimal incremental factor β∗ increases accordingly. This is another reflection

of our algorithm regulating communication and computing. The degraded communication

environment indicates that the time consumption of each transmission will increase. In this

situation, the incremental factor should be increased for taking more local computing tasks

(more “working”) in each round to reduce the global updates, so as to minimize total time.

Next, we investigate the impact of different numbers of participating devices K on the

total time consumption, and the results are shown in Fig. 6c and Fig. 6d. We simulate

the upload transmission rates R = 25 Mbps, which indicates the communication cost and

computing cost are comparable. Fig. 6c shows that the speedup of the total time consump-

tion grows with the increasing of the participating users under all H situations, but the

growth rate gradually slows down. This results from the fact that increasing the number

of participating users can help speed up the convergence, and thereby reduce the time con-

sumption. However, when there are enough devices to capture the characteristics of the

database
⋃
iDi among all users, adding extra users will only have a slightly positive impact

on the training convergence. Fig. 6d depicts the increase of the optimal incremental factor

β∗ when increasing the number of participating FL users. More devices participating in

the training will accelerate the convergence, so the optimal incremental factor should be

increased to match the change of the convergence rate, thus further minimizing the total

30

0 50 100 150 200 250

Epochs

0

0.5

1

1.5

2

2.5

3

T
ra

in
in

g
 L

o
s
s

DBFL

GIBS

FedAvg

(a) Training accuracy vs.
epochs

0 200 400 600 800 1000

Time Consumption (s)

0

20

40

60

80

T
e
s
t

A
c
c
u

ra
c
y
 (

%
)

DBFL

GIBS

FedAvg

(b) Test accuracy vs. time
cons.

0 50 100 150 200 250 300

Epochs

0

1

2

3

4

5

T
ra

in
in

g
 L

o
s
s

DBFL

GIBS

FedAvg

(c) Training accuracy vs.
epochs

0 1000 2000 3000 4000

Time Consumption (s)

0

10

20

30

40

50

60

70

T
e
s
t

A
c
c
u

ra
c
y
 (

%
)

DBFL

GIBS

FedAvg

(d) Test accuracy vs. time
cons.

Figure 7: DBFL simulation results on various architectures and datasets. ((a-b): ResNet20
on CIFAR-10; (c-d): VGG19-BN on CIFAR-100.)

time consumption.

3.5.2 Convergence Analysis and Comparisons

To demonstrate the effectiveness of our proposed DBFL scheme with optimal incremen-

tal factor β∗ under different learning architectures and varied datasets, we compare it with a

typical fixed batch size FL scheme “FedAvg [1],” and a FL scheme with gradually increased

batch size “GIBS”. In GIBS, all devices communicate with the edge server after every local

iteration, and the batch size exponentially increases in each iteration. We consider the

scenarios with K = 10 participating devices and take local steps H = 10 for FedAvg and

our DBFL scheme. The experiment results are shown in Fig. 12. All schemes have the

same initial batch size B0 = 100 and learning rate 0.2 to ensure comparability. Moreover,

We guarantee that our proposed DBFL scheme and GIBS scheme have the same batch size

increasing rate in terms of the training epochs, which is also consistent with the decay of

the learning rate for the FedAvg scheme.

Figs. 7a and 7b show the learning results of the ResNet20 model on CIFAR-10 dataset

with 1 MB parameters, where we consider the training with NVIDIA RTX 8000 GPU

and simulate the current 5G network with 50 Mbps upload transmission rate. Fig. 7a

demonstrates that the training loss curves of all schemes are nearly identical in terms of the

number of gradient calculation operations, i.e., data epochs. Fig. 7b demonstrates the total

time consumption to the same target accuracy (e.g., 88%) for the corresponding schemes,

and we find that the overall time consumption of our proposed DBFL scheme with optimal

31

β∗ can be reduced to one third of that of the FedAvg. In particular, our proposed scheme

requires fewer communication rounds than FedAvg, thus reducing the communication time.

At the same time, our scheme consumes less computing time due to the large batch training

efficiency. Moreover, the optimal β∗ can trade-off the relationship between communication

and computing adapting to the current mobile edge environments to further reduce the

overall time consumption. For the GIBS scheme, although the GIBS scheme saves some

computing time than the FedAvg, its huge communication overhead makes its convergence

speed very slow. We also conduct the experiments of a relatively large model, i.e., the

VGG19 model with batch normalization, on CIFAR-100 dataset, where it contains 549

MB parameters. Here, we simulate the 5G network with 1 Gbps upload transmission rate.

The results are shown in Figs. 7c and 7d, which reach similar conclusions as those of the

“ResNet” one. It is noteworthy that the performance of the FedAvg scheme is slightly

better than the others. The reason is that the relatively small batch size of the FedAvg on

the initial learning stage speeds up the convergence in this model setting.

From Fig. 7a and Fig. 7c, we also find that the proposed DBFL approach has a similar

convergence performance as the typical FL approach, e.g., FedAvg. In other words, both the

DBFL and the FedAvg can approach the same target accuracy with similar training epochs.

For this reason, there are some potential benefits of our DBFL algorithm when comparing

with other time-efficient FL algorithms integrating model compression techniques (e.g., the

quantization, sparsification, etc.). On the one hand, unlike the model compression based

approaches that usually result in a considerable sacrifice of training accuracy, the DBFL

algorithm ensures all the gradient information is aggregated in every global round without

distortion, and thereby hardly impairs the learning outcome. On the other hand, our DBFL

method can be considered an add-on module integrated with any model compression method

for further FL time reduction.

32

3.6 Conclusion

In this paper, we have focused on minimizing the overall time consumption of FL over

future mobile edge devices in terms of both communication and computing time. We first de-

veloped a time efficient FL algorithm, named DBFL, with the convergence guarantee, where

the batch size exponentially increases during FL training. In particular, gradually increasing

the batch sizes in DBFL can fully adapt to the GPUs’ parallelism property and reduce the

required communication rounds for global updates. To minimize the total time consump-

tion of deploying DBFL in MEC networks, we have further designed a batch size control

scheme, which helps balance the time consumption of wireless communication and that of

local computing in practice. Extensive simulations have shown the impacts of different com-

munication conditions, local steps, and the number of participants on the proposed DBFL

algorithm. Furthermore, the results have validated the effectiveness of our proposed control

scheme, which saves nearly 3× time than the state-of-the-art approaches. Appendix proof is

available for this work at https://github.com/shidian117/DBFL/blob/main/Appendix.pdf.

33

4 Energy and Spectrum Efficient Federated Learning via High-

Precision Over-the-Air Computation

4.1 Introduction

With the development of mobile communications and Internet-of-Things (IoT) tech-

nologies, mobile devices with built-in sensors and Internet connectivity have proliferated

and generated huge volumes of data at the network edge. These data can be collected and

analyzed to build increasingly complex machine learning models. To avoid raw-data sharing

among the untrustworthy parties and leverage the ever-increasing computation capability

of mobile devices, the emerging federated learning (FL) framework allows participating mo-

bile devices to collaboratively train a machine learning model under the orchestration of

a centralized server by just exchanging the local model updates with others via wireless

communications. With such good properties, FL over mobile devices has inspired a wide

utilization in a large variety of intelligent services, such as the keyword prediction [1], voice

classifier [30], and e-health [8], etc.

Although only model updates instead of raw data are transmitted between mobile de-

vices and the FL server, such updates could contain hundreds of millions of parameters

with complex neural networks. That makes the uplink transmissions from mobile devices

to the FL server for model updates particularly challenging, resulting in a huge burden on

both wireless networks and mobile devices. On the one hand, the spectrum resource that

can be allocated to each device decreases proportionally as the number of devices increases,

hampering the scalability of FL, i.e., FL over a large number of mobile devices, if there

are limited spectrum resources. On the other hand, transmitting a large volume of model

updates periodically and executing heavy local on-device computing tasks can quickly drain

out the energy of batter-powered mobile devices. Such a mismatch restricts mobile devices

or makes them reluctant to participate in FL.

Over-the-air computation (AirComp) provides a promising solution to address the afore-

mentioned spectrum challenge by achieving scalable and efficient model update aggregation

34

in FL. Unlike the conventional orthogonal multiple access techniques, where each user is

restricted to its allocated spectrum band, AirComp allows all the users to utilize the whole

spectrum for transmissions simultaneously. By applying AirComp to FL, all the participat-

ing devices can transmit their model updates on the same channel. Due to the fact that

MAC inherently yields an additive superposed signal, the signals of all the participating

devices are aligned to obtain desired arithmetic computation results directly over the air,

thus significantly improving the spectrum efficiency. However, most works in the litera-

ture employ the analogy modulation to design their over-the-air FL schemes, which is not

compatible with commercial off-the-shelf digital mobile devices and thus hinders their de-

ployment in current/future communication systems, such as LTE, 5G, Wi-Fi 6, and 6G, etc.

Besides, most existing efforts focus on one iteration transmission performance of the Air-

comp FL [31, 32], and the effects of AirComp on overall FL training performance, especially

the FL convergence, are rarely discussed.

Therefore, in this work [33], we design a novel multi-bit Aircomp (M-AirComp) FL

scheme, named ESOAFL, which is compatible with the most common Quadrature Ampli-

tude Modulation (QAM) to transmit the model updates, so that we do not need to mod-

ify the modulation protocols manufactured within commercial off-the-shelf mobile devices.

Specifically, gradient quantization is incorporated into the ESOAFL scheme to facilitate

the digital modulation, and only part of the gradients are selected to transmit to cope with

the channel fading. In addition to handling the spectrum issue in FL over wireless net-

works, our scheme is battery-friendly to the participating mobile devices. Here, the energy

consumption is considered from the long-term learning perspective where local computing

(i.e., “working”) and wireless communication (i.e., “talking”) are two main focuses. Our

M-AirComp FL scheme only requires updated gradients with good channel conditions to

transmit, which further saves the communication energy compared with other AirComp

schemes. Moreover, we theoretically analyze the convergence property of our ESOAFL

approach, based on which we quantify the number of communication rounds needed for

35

achieving the convergence, and the overall long-term energy consumption is further mod-

eled. Finally, we develop a joint transmission probability and local computing control

approach to balance “working” and “talking,” thus minimizing overall energy consumption.

Our salient contributions are summarized as follows.

• We propose an energy and spectrum efficient AirComp FL approach (ESOAFL) with

high precision M-AirComp design, where updated gradients are quantized into multi-

bit adapting to the digital modulation settings. Additionally, we adopt an energy

efficient power control policy to facilitate the M-AirComp, where only updated gra-

dients with good channel conditions are selected to participate in the FL training.

• To help minimize the overall energy consumption of the proposed ESOAFL approach,

the corresponding convergence analysis is derived, which quantitatively indicates the

impacts of the M-AirComp on FL. Besides, the gradients transmission probability

and local computing iterations are further optimized to achieve the overall energy

efficiency.

• We conduct extensive simulations and verify the effectiveness of our proposed ESOAFL

scheme and the corresponding control approach under various learning models, datasets,

and multiple wireless environmental settings. Compared with other schemes, our pro-

posed method shows significant spectrum utilization and energy efficiency superiority.

The ESOAFL approach has the potential to improve spectral efficiency dozens of

times and save at least half of the energy consumption.

4.2 Preliminaries of AirComp FL

During the FL training process, all users need to transmit their local updates to the

server for aggregation, which causes severe transmission congestion and requires a lot of

communication resources, especially with massive participating users. As one of the ad-

vanced wireless techniques, over-the-air computation (AirComp) enables all users to simul-

taneously transmit the local gradients over the same wireless medium without interference

36

and aggregates gradients together in the transmission process, significantly improving the

spectrum utilization and saving communication resources.

Let X := {x1, x2, ..., xK} be the input set and ỹ be the output objective of the system.

In other words, xk denotes gradients to be transmitted for user k in FL, and ỹ denotes

the aggregation result received at the server with AirComp. Specifically, with AirComp, a

wireless communication system usually adopts precoding and amplification at transmitters,

while receivers often have equalization blocks for signal detection. Therefore, AirComp

computes the aggregated objective at each time slot as

ỹ := Air (X) =
a

K

[
K∑
k=0

hkpkxk + n

]
, (39)

where hk ∈ C is the channel coefficient between user k and the aggregator, hk satisfies the

Rayleigh distribution, i.e., hk ∼ CN(0,
√
λ). n ∼ N(0, σ2

z) is the additive white Gaussian

noise (AWGN) at the receiver. The Tx-scaling factor pk ∈ C, a.k.a. power control policy,

compensates the phase shift posed by the channel and jointly amplifies the transmitted data.

The goal of the Tx-scaling is to ensure that each distributed user contributes equally at the

receiver antenna and the superposed signal is proportional to the ideal summation. Note

that the ideal summation is defined as the average operation over the input set without

the AirComp, i.e., y := 1
K

∑K
k=1 xk. Accordingly, the Rx-scaling factor a ∈ R acts as a

equalizer, and rescales the sampled analog result to its expected value.

4.3 M-AirComp Design and M-AirComp based FL

4.3.1 The Design of Multi-Bit Over-the-Air Computation

Different from the most existing AirComp approaches with an analogy modulation

scheme, we implement the digital modulation scheme for the AirComp to pair with the

commercial transmit devices and design a Multi-bit AirComp scheme (M-AirComp). In

this situation, the Rx-scaling factor a acts as a digital domain equalizer, and the division

operation in Eq. 39 to calculate the arithmetic average is also in the digital domain. In

37

Figure 8: Multi-bit Over-the-Air computation design.

order to eliminate the burden of redesigning the modulation scheme, we tend to integrate

the gradient quantization to the most common Quadrature Amplitude Modulation (QAM)

in LTE, 5G, and Wi-Fi 6 standard. Instead of transmitting arbitrary values, each gradient

is clipped and quantized as the Multiple Amplitude Shift Keying (MASK) symbol, which is

compatible with modern digital devices. In the following, two MASK modulated gradients

can be transmitted orthogonally using in-phase (I) and quadrature (Q) channel simultane-

ously. We notice that it is equivalent to map two separate gradients onto a symbol from the

square M2 QAM constellation. We limit M between 2 to 2b. For example, when b is set as

3, the user will use 64QAM to transmit two gradients shown in Fig. 8. In this way, altering

the value M at the transmitter allows full digital data transmission while preserving b-bit

resolution, according to the estimated channel gain.

We assume the edge server will equip with a high-resolution analog-to-digital converter

(ADC) (e.g., 16-bit). While receiving, multiple QAM symbols superpose at the sampling

instance, which can be viewed from (a part of) a higher-order rectangular QAM constella-

tion diagram (when the number of mobile devices is odd) or a zero-centered constellation

diagram (when the number of users is even). However, since the biggest possible value after

aggregation can be obtained from user feedback, we can utilize this value as the ADC ref-

erence voltage. In order to alleviate the detection complexity, we directly use the quantized

samples followed by Rx-scaling defined in Eq. 39 in the digital domain. In this way, the

transmission module is implemented in a digital manner, which enables the M-AirComp to

38

have better compatibility compared with traditional AirComp. The process is also illus-

trated in Fig. 8. This result can be viewed as the desired computational result added by

quantization error and channel noise, whose impacts on federated learning performance are

analyzed in the following section.

During the transmission process, each device is constrained by an average transmitting

power budget P 0. Thus, assume all devices have the same power budget, and the average

transmission power constraint is

E[|pk|2] ≤ P 0,∀k. (40)

Due to the transmit power constrain, some users facing the poor fading channels cannot

completely align their amplitude, which means the Tx-scaling factor pk ∈ C cannot be

infinitely enlarged to meet the amplitude alignment requirement. Therefore, we adopt an

energy efficient power control policy that the gradients of users with poor channel conditions

are not transmitted. In other words, we set the transmit power of these users as 0, thus

saving the transmission energy. Let gth denote as a channel threshold, and the power control

policy pk can be represented as

pk =

√
%h†k
|hk|2

, |hk|2 ≥ gth

0, |hk|2 < gth .
(41)

For the above equation, % is a scaling factor to guarantee the desired SNR. Under the

above power control policy, only gradient elements facing channel gain larger than the

threshold gth can be allowed to transmit. Note that the threshold gth can be adjusted to

control the gradient transmission. Due to the power constraint in Eq. 40, the threshold

gth can be set as an arbitrary value larger than a minimum value gmin
th := h2 = %

p2
=

%
P 0 . Specifically, under a certain communication environment, the greater the threshold

gth we set, the larger the number of allowable transmitting gradients. By changing the

threshold gth, our M-AirComp design has the potential to only involve gradients with good

39

Algorithm 3 Energy and Spectrum Efficient Over the Air Federated Learning Algorithm
(ESOAFL)

Initialization: Initialize the global model w0 and set w0,0
k = w0,∀k ∈ K; Set the learning

rate γ and η, local computing iterations H, and the channel gain threshold gth

Initialize the communication index r = 0 and the local computing iteration count h = 0

1: while r < R do
2: for h = 0, ...,H − 1 do
3: Each device k computes the unbiased stochastic gradients ∇Fk(wr,h

k) of fk(w
r
k)

with one batch size of data from the dataset Dk
4: Each device k in parallel updates its local model: wr,h+1

k = wr,h
k +

η∇Fk(wr,h
k), ∀k

5: end for
6: Each device k calculates the accumulated gradients with gradient quantization as

Q
(
η
∑H−1

h=0 ∇Fk(w
r,h
k)
)

7: Each device k transmits the quantized accumulated gradients if the observed chan-
nel gain larger than the pre-selected threshold gth , i.e., |hk|2 ≥ gth ; otherwise, no
transmission

8: All transmitted gradients are aggregated over the air and the global model is updated
as in Eq. (43)

9: Update r ← r + 1
10: Each device k updates its local model wr,0

k = wr

11: end while

channel conditions, which just require low transmit power in an energy efficient manner.

Thus, we define a long-term average transmission probability pb to indicate the degree of

gradient participation. To be specific, each specific threshold corresponds to a transmission

probability. Since the channel coefficient is Rayleigh distributed hk ∼ CN(0,
√
λ), the

channel gain is an exponential distribution. Therefore, the transmission probability pb

corresponding to the threshold gth can be calculated as

pb =

∫ ∞
gth

λe−λxdx = e−λgth . (42)

If the probability of keeping these gradient elements to transmit is pb, the Rx-scaling

factor a will be set as 1√
%pb

to rescale the received signal. Due to the property of the

Rayleigh fading channel and the power constrain of the local user devices, the achievable

highest transmission probability pmax
b is calculated as pmax

b = e−λg
min
th = e

−λ %
P0 .

40

4.3.2 M-AirComp Based FL

To improve spectrum efficiency and reduce energy consumption, we design an Energy

and Spectrum Efficient Over the Air Federated Learning (ESOAFL) approach with gra-

dient quantization technique, which is shown in Fig. 8 and described in detail in Alg. 3. All

mobile devices start the training procedure with the initialized model parameters. Specifi-

cally, each user executes H local computing SGD steps with mini-batch size data of its own

dataset. After the local training, we adopt the uniform gradient quantization operator Q(·)

to quantize the updated gradients with low bits, i.e., 4-bit or 8-bit. Taking b-bit quantiza-

tion as an example, the gradients of all participants are quantized to 2b levels with a specific

maximum/minimum value, catering to the digital wireless transmission scheme. Next, for

the transmission process, every 2 gradient element is modulated into one digital symbol

over the sub-channel according to our M-AirComp design. We assume the symbol-level

synchronization among all the mobile devices that ensures coherent and concurrent trans-

mission. This assumption can be realized by dedicating the bandwidth for mobile device

synchronization, e.g., 1.08 MHz primary synchronization channel (PSCH) and secondary

synchronization channel (SSCH) in LTE system [34], or the AirShare[35] for distributed

MIMO synchronization. Then we employ the M-AirComp operator Air(·) and apply the

proposed energy efficient power control scheme. The threshold gth is determined firstly,

and then gradient element whose corresponding channel gain larger than this threshold can

be allowed to transmit. In this way, the long-term transmission probability pb can be cal-

culated as e−λgth . Because M-AirComp integrates wireless transmissions and aggregation

over the air, the server receives only the aggregated updated gradients. Finally, the server

updates the global model with the aggregated updated gradients, which can be represented

as

wr+1 = wr −Air

({
Q

(
η
H−1∑
h=0

∇Fk(wr,h
k)

)}
K

)
. (43)

41

After updating the global model, the server will broadcast the global model to all devices for

continuing training. We repeat the above procedure for R rounds until the model converges

to a stationary point. Particularly, the convergence requirement can be represented as

1
R

∑R−1
r=0 ‖∇f r‖22 ≤ ε, where ε denotes the target training loss and ∇f r is the global function

gradient at round r.

4.4 Spectrum and Energy Efficient FL: Formulation and Solutions

In this section, we first formulate an overall energy minimization problem and establish

the communication and computation energy models of the proposed ESOAFL approach.

Based on the derived convergence analysis, we then find the optimal control policy in terms

of the transmission probability pb and local computing iterations H to minimize the overall

energy consumption.

4.4.1 Energy Minimization Problem Formulation

Deploying energy-hungry FL training on mobile devices is challenging due to the limited

battery capacity of mobile devices. Hence, in this work, we aim to minimize the total energy

consumption of FL training via local computing iterations H and transmission probability pb

control. The average energy consumption per communication round of mobile device casts

as E = Ecomm(pb) + EcompH. Here, Ecomm(pb) is the communication energy to transmit

the updated gradients, which is related to the transmission probability pb, and Ecomp is the

computing energy of performing one local iteration. The goal is to minimize the overall

energy consumption in FL training while guaranteeing the model convergence, denoted as

min E [Etot] , E [REcomm(pb)] + E [REcompH] ,

s.t.:
1

R

R−1∑
r=0

E
[
‖∇f r‖22

]
≤ ε.

(44)

42

4.4.2 Communication and Computation Energy Models

Communication model If we consider the M-AirComp power control policy with

transmission probability pb which should be smaller than pmax
b , the threshold channel gain

is mapped as gth := − 1
λ ln pb. In this way, the average power consumption among all users

and time slots will be

P comm = pb%

∫ ∞
gth

λ
1

x
e−λxdx = −pb%λEi (−λgth) = −pb%λEi (ln pb) , (45)

where Ei(x) is the exponential integral function denoted as Ei(x) =
∫ x
−∞

et

t dx. Due to the

fact that − ln pb is positive, we have Ei (ln pb) = −E1 (− ln pb), where E1(x) =
∫∞
x

e−t

t dx.

Therefore, we get P comm = −pb%λEi (ln pb) = pb%λE1 (− ln pb). For positive real values of

the x, E1(x) can be bracketed by elementary functions as follows

E1(x) < e−x ln

(
1 +

1

x

)
. (46)

Due to − ln pb > 0, we have

P comm ≈ pb%λeln pb ln

(
1 +

1

− ln pb

)
= %λpb

2 ln(1− 1

ln pb
). (47)

After receiving the full precision gradients, each device is required to quantize the gra-

dient into low-bit precision for digital transmission. Then, we adapt MASK to modulate

the gradients, which means the magnitude of each symbol is sufficient to decode the trans-

mission gradient. Let Ts denote the symbol duration, which is in inverse proportion to

sub-channel bandwidth B. Therefore, for transmitting the model with the number of d gra-

dients, d/2 symbol is required according to the M-AirComp design. Thus, the transmission

time can be represented as T comm = d
2Ms

Ts, where Ms symbols are transmitted in parallel.

Accordingly, the communication energy consumption for each device in each communi-

cation round is the product of the average transmission power and the transmission time,

43

as

Ecomm = P comm × T comm. (48)

Computational model

With massive data are generated or collected on mobile devices, local on-device com-

puting can naturally be treated as computation-hungry tasks. Luckily, most modern smart

devices are equipped with high-performance GPUs and can handle such heavy training tasks

efficiently. Therefore, we consider the GPU computational energy model here. We model

the energy consumption for processing a mini-batch of data in one iteration as a product

of the runtime power and the execution time, i.e.,

Ecomp = P comp × T comp, (49)

where P comp and T comp are runtime power and execution time of the edge devices, re-

spectively. Both of them are related to the GPU core frequency/voltage and the memory

frequency [26], denoted as

P comp = P 0 + afmem + b(vcore)2f core, T comp = T 0 +
u

fmem
+

v

f core
. (50)

P0 and T0 are the static power and static time consumption; f core/vcore and fmem

represent the core frequency/voltage and memory frequency, respectively. a, b, u, and v are

constant coefficients that reflect the sensitivity of the task execution to GPU memory and

core frequency/voltage scaling [26, 27]. Given a specific FL task, i.e., a neural network model

and the corresponding dataset, such coefficients can be accurately estimated according to the

hardware experiments. Since there are H local computing iterations between two sequential

communication rounds, the energy consumption of local computing in one communication

round can be calculated as the product of the energy consumption of one iteration and the

local iteration number, i.e., Ecomp ×H.

44

4.4.3 Impacts of Control Variables on ESOAFL Convergence

In this subsection, we derive the convergence analysis of the ESOAFL approach, where

we theoretically analyze the impacts of control variables pb and H on training convergence.

Firstly, we have the following model assumptions.

Assumption 4 (Smoothness) The objective function fi is differentiable and L-smooth, as

‖∇fk(x)−∇fk(y)‖ ≤ L‖x− y‖, ∀k. (51)

Assumption 5 (Bounded variances and second moments) The variance and the second

moments of stochastic gradients evaluated with a mini-batch can be bounded as:

Eξi∼Di ‖∇Fi (w; ξi)−∇f(w)‖2 ≤ σ2,∀w,∀i (52)

and Eξi∼Di ‖∇Fi (w; ξi)‖2 ≤ δ2, ∀w, ∀i, (53)

where σ and δ are positive constants.

Assumption 6 (Quantization bounded variances) The output of the quantization operator

Q(x) is an unbiased estimator of its input x, and its variance grows with the squared of

L2-norm of its argument, i.e., E[Q(x)] = x and E[||Q(x)− x||2] = q||x||2.

In our work, we consider the Rayleigh channel and employ the power control policy with

a transmission probability pb. Thus, the following assumption is obtained.

Lemma 2 (M-AirComp bounded variances) The output of the M-AirComp operator Air(X)

with the proposed power control scheme is an unbiased estimator of its input set X , and

its variance decreases with the increasing of the transmission probability and grows with the

squared of its argument, i.e., E[Air(X)] = y and E[||Air(X)−y||2] = 1
K2 (1

pb
−1)

∑
xk∈X x

2
k+

σ2
z

K2pb2
.

Proof. Let X be the input set of the M-AirComp operator, and we further define X̄ as the

successful transmit set to help the proof. Accordingly, the mean and the mean of the square

45

values can be expressed as:

E[Air(X)] (54)

=E

 1

pbK

[∑
xk∈X̄

xk +
∑
xk /∈X̄

xk + n

]
=

1

pbK

∑
xk∈X̄

xk · pb +
∑
xk /∈X̄

0 · (1− pb) + E [n]

 = y

and E[(Air(X))2] (55)

=E

 1

pb2K2

∑
xk∈X

xk + n

2
=E

 1

pb2K2

∑
xi∈X

∑
xj∈X

xixj + 2
∑
xk∈X

xkn+ n2

=

1

pb2K2

∑
xi∈X

∑
xj∈X ,i 6=j

xipbxjpb +
∑
xk∈X

x2
kpb

+
σ2
z

K2pb2

=
1

pb2K2

pb2
(
∑
xk∈X

xk)
2 −

∑
xk∈X

x2
k

+ pb
∑
xk∈X

x2
k + σ2

z

=

1

K2

(
∑
xk∈X

xk)
2 + (

1

pb
− 1)

∑
xk∈X

x2
k

+
σ2
z

K2pb2
.

Thus, the variance is equal to the mean of the square value minus the square of the mean

value, which is represented as

Var(Air(X))

=E[(Air(X))2]− E[Air2(X)]

=y2 +
1

K2
(

1

pb
− 1)

∑
xk∈X

x2
k +

σ2
z

K2pb2
− y2

=
1

K2
(

1

pb
− 1)

∑
xk∈X

x2
k +

σ2
z

K2pb2
.

(56)

Theorem 2 For the proposed ESOAFL approach, under the above assumptions, if learning

46

rates θ and η satisfy

1 ≥ L2η2H2 +HLθη
q(2− pb) +Kpb

Kpb
, (57)

and with considering the gradient quantization q, the M-AirComp transmission probability

pb, and the local computing iterations H, the convergence rate after R communication rounds

can be bounded as

1

R

R−1∑
r=0

‖∇f r‖22 ≤
2(f(w0)− f(w∗)

ηθHR
+
ηθL

K

(pb + q)

pb
σ2 + η2L2Hσ2 +

θηL

HK2pb2
σ2
z , (58)

where f(w∗) is the minimum value of the loss. (Please refer to the Appendix for the proof.)

The proof of Theorem 2 can be derived based on the L-smoothness gradient assumption

on global objective [36]. After expanding the inequality of the global objective, we first

bound the inner product between the stochastic gradient and full batch gradient, while

we can also bound the distance between the global model and the local model. Next, we

can bound the updated gradients with M-AirComp and quantization operators. Finally,

by integrating the derived results above, we can obtain the convergence analysis of the

ESOAFL approach.

Corollary 3 To achieve the linear speedup, we need to have θη = O
(√

K√
RH

)
. If we further

choose θη = O
(

1
L

√
Kpb

RH(pb+q)

)
, the convergence rate can be represented as

1

R

R−1∑
r=0

‖∇f r‖22 ≤
2L(f(w0)− f(w∗)

√
(pb + q)√

KRHpb
+

√
pb + q√
KRHpb

σ2 +
K

Rθ2
σ2 +

√
1

K3RH3(pb + q)pb3
σ2
z

(a)
= O

(√
pb + q√
KRHpb

(2L(f(w0)− f(w∗) + σ2)) +
K

Rθ2
σ2

)
(59)

(b)
= O

(
χ√
KRH

)
+O

(
K

R

)
,

where (a) is due to the fact that O(
√

1
K3R

) decays faster than O(
√

1
KR), and we set χ =√

pb+q
pb

in (b).

47

Algorithm 4 JCP Control Algorithm

Initialization: ε, ξ, ι = 10−5; γ0 ∈ (0, 1]; κ = 0

1: repeat
2: Solve (65) and set the optimal value as φ∗(φκ)
3: Set φκ+1 = φκ + γ0(φ∗(φκ)− φκ)
4: Set κ = κ+ 1
5: Set γκ = γκ−1(1− ξγκ−1)
6: until ||φκ − φκ−1||22 ≤ ι
7: Round the current H to the nearest integer in H
8: return The current solutions of pb and H.

After establishing the communication and computing energy models, another key com-

ponent to formulate the overall energy consumption problem is to obtain the required com-

munication rounds. Accordingly, we can obtain it from the derived convergence analysis.

Corollary 4 From the Corollary 3, the required maximum number of communications for

achieving the ε target training loss, i.e., satisfying ε = 1
R

∑R−1
r=0 ‖∇f r‖22, is given by

R = O

(
2εσ2HK2 + χ2(δ + σ2)2θ2

2ε2θ2HK

)
+O

(
+χ(δ + σ2)θ

√
4εσ2HK2 + χ2(δ + σ2)2θ2

2ε2θ2HK

)

= O (K) +O

(
χ2

HK

)
+O

(
χ√
H

)
, (60)

where χ =
√

pb+q
pb

and δ = 2L(f(w0)− f(w∗)).

4.4.4 Overall Energy Minimization Reformulation and Solution

Aiming at minimizing the energy consumption during the entire training process, we

reformulate the Joint local Computing and transmission Probability (JCP) control problem

as

min
pb,H

R× (Ecomm +HEcomp) (61a)

=

(
A0(pb + q)

pbH
+
B0
√
pb + q√
pbH

+ C0

)
×
(
%λpb

2 ln(1− 1

ln pb
)T comm +HEcomp

)
,

s.t. : 0 < pb ≤ pmaxb , (61b)

H ∈ H, (61c)

48

where A0, B0, and C0 are constants used to approximate the big-O notion in Eq. 60. From

the above formula, we observe that increasing the local computing iterations H reduces the

needed communication rounds R (“talking”), but increases the computing energy consump-

tion per round (“working”). Similarly, adjusting pb also affects the required communication

rounds and the energy consumption of each round. Thus, it is necessary to optimize H and

pb to balance the “working” and “talking”, thus minimizing the overall energy consumption.

For notational simplicity, we define φ = {pb, H} and represent the objective function as

Θ(φ) = Θ1(φ)×Θ2(φ), where

Θ1(φ) =
A0(pb + q)

pbH
+
B0
√
pb + q√
pbH

+ C0 (62)

and Θ2(φ) = %λpb
2 ln(1− 1

ln pb
)T comm +HEcomp. (63)

Noticing the simple and decoupled constraints in (61b-61c), we relax the constraint in

(61c) as Hmin ≤ H ≤ Hmax where Hmin and Hmax are the minimum and the maximum

integer in H, respectively. Moreover, we can easily observe that both function Θ1(φ) and

Θ2(φ) are positive and convex after calculating the first and second-order partial derivative

of these two functions.

Capturing such the “product-of-convexity” property of the objective function Θ(φ),

we can use the inner convex approximation method [29] to solve the relaxed JCP control

problem by optimizing a sequence of strongly convex inner approximations of Θ(φ) in the

form: given φκ ∈ Φ

Θ(φ,φκ) = Θ1(φ)Θ2(φκ) + Θ1(φκ)Θ2(φ), (64)

where φκ = {Hκ, pb
κ} refers to the intermediate φ obtained in the κ-th iteration. Obviously,

the approximated objective function in (64) is strongly convex with the fixed φκ. With

the surrogate function above, we are actually required to efficiently compute the optimal

solutions of the following convex optimization problem in each iteration, while preserving

49

Figure 9: Federated learning via M-AirComp testbed in the lab.

the feasibility of the iterates to the original problem (61).

min
pb,H

Θ(φ,φκ), (65a)

s.t. : 0 < pb ≤ pmaxb , (65b)

Hmin ≤ H ≤ Hmax. (65c)

Notice that the problem (65) can be solved by various commercial solvers, e.g., IBM

CPLEX optimizer [37]. The formal description of the Joint Power and Aggregation Control

Algorithm is presented in Alg. 4. Starting from a feasible point φ0, the method consists in

iteratively computing the solution φ∗(φκ) to the surrogate problem (65), and then taking

a step from φκ towards φ∗(φκ). The process is repeated until it meets the termination

criterion, and the value of H is rounded afterward to ensure its feasibility.

4.5 Performance Evaluation

4.5.1 Implementation of M-AirComp

As shown in Fig. 9, we first set up experiments to elaborate the usage of M-AirComp for

FL testbed in the lab. The system comprises one edge server as well as two edge devices.

We let one RTX-8000 server with one USRP X310 play the role of the over-the-air FL

aggregator. Besides, each FL client consists of the NVIDIA Jetson TX2 as the computation

unit and USRP N210 as the wireless transmitter. We also employ WBX 50-2200 MHz

50

Rx/Tx USRP daughterboards, with up to 200 mW output power. The synchronization

is provided by USRP X310 REF and PPS output ports through cable connection. In the

end, all USRPs are connected to an internet switch. We run MATLAB codes from the

Communication Toolbox Support Package for USRP Radio to control the transmitting and

receiving in different sessions on the RTX-8000 server.

We first show the feasibility of M-AirComp by the in-lab experiments. In our M-

AirComp demo, incorporated with quantization, two clients are transmitting QAM symbols,

for example, 16 QAM for 4-bit quantization given in Fig. 10. From the constellation, the

receiving symbol set is expanded into a constellation for higher-order modulations, which

explains the addition carried in the over-the-air computation from the communication point

of view. The aggregated symbol will be further decoded as a quantized model update, with

a certain probability of bit error with regards to the signal-to-noise ratio (SNR).

4.5.2 Some Observations of the ESOAFL

AirComp can dramatically improve the spectrum efficiency in the FL training process.

In addition, if the communication environment (i.e., channel condition) is extremely poor,

our proposed ESOAFL approach can still retain the performance in the case of many partic-

ipating devices. We consider a severe communication environment with a SNR = 5dB over

different numbers of participants(e.g., K = 10, 20, and 30). Here, we train the ResNet-18

model with the CIFAR-10 dataset. As shown in Fig. 11a, with the increasing number of

participating devices, the convergence gap between the ESOAFL approach and its ideal case

(i.e., FedAvg without channel noise) gradually decreases. This verifies that the AirComp

variance is decreasing with the number of participating devices K. Moreover, especially

with a large number of participants (e.g., K=30), the training curve of the ESOAFL ap-

proach is similar to its ideal case (i.e., FedAvg) in terms of training epochs, which also

exhibits the strong anti-interference ability of the proposed ESOAFL approach.

One difficulty in the problem-solving process is to estimate the values of A0, B0, and

C0, which are related to the specific learning model and dataset. Here, we conduct the

51

Figure 10: Constellation diagram of M-AirComp demo (left: transmitter; right: receiver).

sampling-based methods to estimate these parameters, where we empirically sample dif-

ferent combinations (H, pb) and employ the derived bound in (60) to approximate these

values. Note that the estimation overhead is marginal. Take the ResNet-18 model with

the CIFAR-10 dataset as an example. We first implement various local computing itera-

tions H and different transmission probabilities pb for the training task. Then we set the

target training loss and record the corresponding number of communication rounds. After

receiving these records, we utilize the Non-linear least squares curve fitting algorithm to

estimate values of A0, B0, and C0, and the estimation results are shown in Fig. 11b. From

Fig. 11b, obviously, with the increase of local computing iterations H and transmission

probability pb, the number of required communication rounds required is decreasing, but

this effect is gradually weakened. At the same time, the computing energy consumption of

each round increases linearly with the incremental of local computing iterations H. Thus,

the energy trade-off between local computing and wireless communications has to be con-

sidered to minimize the overall energy consumption, where H and transmission probability

pb are required to be carefully selected.

4.5.3 Spectrum and Energy Efficiency of the ESOAFL

After finishing the estimation process and perceiving the above observations, we imple-

ment the proposed JCP control scheme to find the optimal local computing iterations H

52

and transmission probability pb. Here, we consider two different image classification models

and datasets to verify the effectiveness of our proposed approach, where the LeNet model

on the MNIST dataset is relatively light, and ResNet-18 on CIFAR-10 is relatively complex.

Both datasets consist of 50000 training images and 10000 test images in 10 classes, and we

set batch size as 128 and 32 for ResNet and LeNet, respectively. In each round of FL, we

set K = 10 participating mobile devices executing H steps of SGD in parallel, and the

maximum transmission probability pmax
b is set to 0.77 according to the simulated commu-

nication environment and the power constraint. The initial learning rate is η = 0.2 with a

fixed decay rate. We consider several popular FL schemes as baseline approaches compared

with our proposed ESOAFL-OPT approach (i.e., ESOAFL with optimal JCP control).

• FedAvg [1]: the FL approach without AirComp, where the ideal transmission is taken

without channel noise.

• FedPAQ [38]: all participants transmit the quantized version of model updates to the

edge server.

• OBDA-ADV [39]: a modified version of the OBDA (one-bit digital AirComp), where

we improve the original scheme without considering the quantization at the receiver

to preserve the learning precision.

• ESOAFL-MAX: the proposed ESOAFL scheme without the transmission control,

where we adopt the maximum transmission probability pmax
b to transmit gradients.

We assume all schemes can utilize the same amount of communication bandwidth. Fur-

thermore, We utilize the Nvidia TX2 as the mobile device and deploy Jtop [40] tool to

measure the computing energy, where the LeNet model consumes 0.03J, and the ResNet

model consumes 0.5J for one training iteration. For example, training the ResNet model for

one iteration consumes 130ms, and the GPU power is nearly 4W. We assume the AirComp

can be deployed in the commercial LTE system for wireless transmissions. The resource

block is 180 kHz, and we can obtain the transmission time of local updates with the spe-

cific model size accordingly. Moreover, we assume the average maximum transmit power

53

0 50 100 150 200 250 300

Epochs

40

50

60

70

80

90

100

T
ra

in
in

g
 A

c
c

u
ra

c
y

K=10: ESOAFL

K=20: ESOAFL

K=30: ESOAFL

K=10: FedAvg

K=20: FedAvg

K=30: FedAvg

(a) Training performance under poor
channel conditions.

(b) Comm. rounds vs. pb and H.

Figure 11: Observations of the ESOAFL.

is 0.2W. Thus, the transmission energy consumption can be calculated as the product of

transmit power and transmission time. In all schemes, We set the average SNR=15dB for

participants, whose channel quality can be reflected by the CQI (Channel Quality Indicator)

category 11. In this case, the modulation scheme, code rate, bits per resource element are

64QAM, 0.8525, 5.115, respectively, in FedAvg and FedPAQ for a fair comparison.

Fig. 12a and 12b show the simulation results for LeNet on MNIST. Here, we set the

target training loss ε as 0.07 and assume the data samples are independent and identi-

cally distributed (IID). For the OBDA-ADV scheme, we bring the local SGD method (i.e.,

taking several training steps among the sequential communication rounds) into the original

scheme. Let the spectrum resource consumed in each communication round of the ESOAFL

approach as the unit communication resource. We set the gradient quantization level as

4-bit in ESOAFL and FedPAQ. Fig. 12a illustrates the communication resources consump-

tion during the training procedure, and we can obviously find that the proposed ESOAFL

significantly improves the spectrum efficiency compared with FedAvg, FedPAQ. One reason

is that FedAvg and FedPAQ consume more communication resources in each round because

all devices cannot take the concurrent transmission with the same bandwidth. Another rea-

son is that each pair of gradients can be transmitted orthogonally using in-phase (I) and

quadrature (Q) channels simultaneously in the proposed ESOAFL scheme. However, ac-

cording to the LTE protocol, each resource element can only carry several bits of a gradient

in FedAvg and FedPAQ. In the meantime, Fig. 12b presents the energy consumption during

54

10
1

10
2

10
3

10
4

Comm. Resources

0

0.5

1

1.5

2

T
ra

in
in

g
 L

o
s
s

FedAvg

FedPAQ

OBDA-ADV

ESOAFL-OPT

ESOAFL-MAX

(a) Training loss vs. comm.
resources

10
0

10
1

10
2

10
3

Energy Consumption (J)

40

50

60

70

80

90

100

T
ra

in
in

g
 A

c
c
.

FedAvg

FedPAQ

OBDA-ADV

ESOAFL-OPT

ESOAFL-MAX

(b) Training acc. vs. energy
cons.

10
1

10
2

10
3

10
4

Comm. Resources

0

0.5

1

1.5

2

T
ra

in
in

g
 L

o
s
s

FedAvg

FedPAQ

OBDA-ADV

ESOAFL-OPT

ESOAFL-MAX

(c) Training loss vs. comm.
resources

10
2

10
3

10
4

Energy Consumption (J)

40

50

60

70

80

90

100

T
ra

in
in

g
 A

c
c
.

FedAvg

FedPAQ

OBDA-ADV

ESOAFL-OPT

ESOAFL-MAX

(d) Training acc. vs. energy
cons.

Figure 12: ESOAFL simulation results on various architectures and datasets. ((a-b): LeNet
on MNIST; (c-d): ResNet-18 on CIFAR-10.)

FL training, where H = 3 and pb = 0.29 is obtained for optimal controlling of ESOAFL.

The results show that our ESOAFL scheme consumes the least energy among all schemes.

Specifically, when achieving the same target training loss, the energy efficiency of ESOAFL-

OPT is twice and three times higher than that of FedPAQ and OBDA-ADV, respectively.

This is because the energy efficient power control policy and the digital modulation scheme

in the M-AirComp design save both the transmit power and time. Moreover, since the opti-

mized transmission probability is much lower than the maximum value, our ESOAFL-OPT

approach only consumes nearly half of the ESOAFL-MAX approach’s energy, which demon-

strates the necessity of the JCP control scheme. Noted that the low-precision OBDA-ADV

approach cannot reach the target training loss we set, and thus we consider the training

loss ε = 0.12 for the OBDA-ADV approach.

Fig. 12c and 12d demonstrate the performance comparison of all schemes with ResNet-

18 model on CIFAR-10 dataset. We set the target training loss ε as 0.12, and obtain the

optimal control strategies H = 11 and pb = 0.51. Like the conclusions described above,

the proposed ESOAFL approach dramatically improves the spectrum efficiency and reduces

the required energy. In this situation, our proposed ESOAFL-OPT saves hundreds of times

of communication resources compared with FedAvg and FedPAQ. It also saves more than

8× of communication resources compared with the OBDA method. Accordingly, our pro-

posed ESOAFL-OPT scheme saves nearly one-third and two-thirds of energy consumption

than FedPAQ and FedAvg schemes. Furthermore, the OBDA-ADV approach has relatively

55

poor convergence performance compared with other approaches due to the high precision

requirement of the complex ResNet-18 model.

4.6 Related Works

Recently, much attention has been paid to the energy-efficient FL over mobile devices,

where several advanced techniques are utilized to save energy during the FL training [41].

On the one hand, gradient sparsification [42] and gradient quantization [43] techniques can

compress model updates in the transmission process, significantly reducing the commu-

nication burdens [15]. On the other hand, some researchers consider applying a weight

quantization scheme to reduce the required computing energy [44]. Although these meth-

ods can effectively reduce the energy cost, they are mainly considered from the perspective

of learning algorithms and widely ignore the communication components, especially with

the physical layer aspects of communication. Realizing the above problem, some pioneering

works exploit the waveform superposition property of the wireless medium and propose

the AirComp FL [45]. Cao et al. in [46], and Amiri and Gündüz in [47] apply AirComp

to solve the communication bottleneck when a large number of participants aggregate the

data together, where power allocation schemes are derived to satisfy the mean square er-

ror (MSE) requirements. Additionally, the works in [31] propose joint device selection and

communication scheme design methods to improve the learning performance for AirComp

FL. All these works take analogy modulation schemes for wireless transmission, which are

difficult to be implemented on commercial devices. In addition, the convergence analysis

for the whole FL training procedure is not discussed in these works. Noticing the lim-

its above, Zhu et al. [39] applies the 1-bit digital modulation and derives the convergence

analysis accordingly. However, 1-bit based scheme tremendously scarifies precision without

considering the energy consumption during the training process. Different from the ex-

isting approaches, our design targets the general digital modulation scheme with multiple

bits, where the convergence-guaranteed FL approach integrates both the AirComp and the

gradient quantization techniques. Moreover, the energy consumption issue, including both

56

computing and communication, is well studied accordingly.

4.7 Conclusion

In this paper, we proposed the ESOAFL scheme for energy and spectrum efficient FL

over mobile devices, where M-AirComp was applied for model updates transmission in

a joint compute-and-communicate manner. A high-precision digital modulation scheme

with multi-bit gradient quantization was designed for the participating devices to upload

their model updates during FL. With the theoretical convergence analysis of the modi-

fied FL algorithm, we further developed a joint local computing and transmission prob-

ability control approach aiming to minimize the overall energy consumed by all devices.

Extensive simulations were conducted to verify our theoretical analysis, and the results

showed that the ESOAFL scheme effectively improves the spectrum efficiency with the

learning precision guaranteed. Besides, it also saved at least half of energy consump-

tion compared with other FL methods. Appendix proof is available for this work at

https://github.com/shidian117/ESOAFL/blob/main/proof.pdf.

57

5 Make Smart Decisions Faster: Deciding D2D Resource Al-

location via Stackelberg Game Guided Multi-Agent Deep

Reinforcement Learning

5.1 Introduction

With the ever-increasing population of cellular users and their traffic requirements, en-

abling device-to-device (D2D) communication in cellular networks has recently been identi-

fied as an effective solution to improve the spatial frequency reuse and boost the throughput

of cellular networks. D2D-enabled networks allow direct communication between two mobile

users in close proximity without traversing the base station (BS). With the shared underlay

spectrum assignment, D2D users are allowed to reuse the licensed spectrum of the cellular

network, which improves resource utilization, enhances user experience, and expands the

application of cellular communications.

However, using the shared spectrum for D2D communications makes the resource al-

location more complicated due to the intertwined interference environment. Specifically,

frequency reuse among cellular and D2D users may degrade the signal-to-interference-plus-

noise ratio (SINR) for the ongoing transmissions over the shared channel, and thus limit the

network performance. In this regard, it is indispensable to design an efficient resource allo-

cation scheme in terms of channel allocation and power control in D2D-enabled networks, so

that the users under two communication modes can coordinate with each other to improve

the overall performance. Moreover, to collect accurate full channel state information (CSI)

is inefficient and even impractical for a controller due to the mobility of D2D users and

the time-varying communication environments. Hence, it is necessary to achieve the D2D

resource allocation in distributed manner, while how to coordinate the strategies among

users is very challenging.

Most existing D2D resource allocation schemes in the literature are based on optimiza-

tion or game-theoretical methods, where the channel allocation coupled with power control

problem is usually formulated as a mixed integer non-linear programming that is highly

58

non-trivial to solve [48, 49, 50]. Besides, they mainly focus on one time slot and have

limited consideration about the time-varying channel conditions of mobile networks. As a

result, every time the channel conditions change, they have to solve the resource allocation

problem again, which incurs significant computing overheads to the negotiation phase for

obtaining the optimal interference management strategy. In particular for some D2D sce-

narios with highly dynamic environments, e.g., vehicle-to-vehicle (V2V) communications,

the existing methods are extremely time-consuming and no longer applicable. Although

resource allocation with dynamics can be modeled as a Markov game, it is very difficult to

formulate and solve the problem due to the unknown transition probability and the curse

of dimensionality [51, 52]. As one of the most popular machine learning techniques, multi-

agent deep reinforcement learning (MADRL) has recently attracted a lot of attention. In

addition, modern smart mobile devices and future intelligent devices are widely armed with

high-performance integrated processors (e.g., GPUs) to undertake intensive computations

of heavy learning tasks. Some pioneering research efforts employ the MADRL technique

to tackle the D2D resource allocation problem because of its excellent performance in cop-

ing with dynamic environments and making sequential decisions under the uncertainty for

multiple agents [53, 54]. For illustrative purposes, as shown in Fig. 13, we compare the

accumulated time consumed by the Stackelberg game (SG) [55] approach and the MADRL

approach [56] to provide the resource allocation (power control and channel allocation)

strategy in a simplified scenario. Both approaches contain 4 D2D pairs, and other settings

are the same as those of the proposed method in our paper. We set the channel condition to

vary every time period. Under this situation, the SG approach needs to solve the problem

every period repeatedly. In contrast, the MADRL approach can train the model to con-

verge in the initial periods and implement the trained model to make resource allocation

decisions accordingly. Therefore, there exists a turning point in the curve of the MADRL

approach. It is observed that the time consumption of the MADRL approach can be sig-

nificantly reduced after the initial training process, while that of the SG approach for each

time period stays the same and the accumulated time consumption grows much faster than

59

10
0

10
1

10
2

10
3

10
4

10
5

Time Period

0

500

1000

1500

2000

2500

3000

3500

A
c

c
u

m
u

la
te

d
 T

im
e

 C
o

n
s

u
m

p
ti

o
n

 (
s

)

SG

MADRL Training

MADRL Execution

Figure 13: Accumulated time consumption between SG and MADRL (4 D2D pairs, and
each time period has a new channel condition).

that of MADRL. However, MADRL solutions cannot always guarantee the performance

since the learning process is usually not stable enough and difficult to converge. This makes

the MADRL-based approaches still challenging to be applied in practice due to the long

training time computation and limited performance improvement.

To address the issues above, this work [57] develops a faster distributed D2D resource

allocation decision making approach, named STackelberg game guided multi-agent Deep

Reinforcement Learning (STDRL), by effectively integrating Stackelberg game (SG) to

MADRL. Here, the BS and D2D pairs are considered as the leader and followers in the SG

module, while all D2D pairs are individual agents in the MADRL module as well. Specif-

ically, we employ the Stackelberg equilibrium in each stage game to derive a Stackelberg

Q-value (ST-Q), which can provide explicit learning directions for agents in MADRL. We

can also guarantee that there exists a unique equilibrium for each stage game, and the

Q-value of the MADRL approach will eventually converge to the equilibrium. Benefiting

from the guidance of SG, our STDRL approach, compared with the general MADRL, yields

a reduced number of iterations, and thus makes the learning process much faster. Further-

more, if the time consumption can be reduced, the energy consumption that is significant for

mobile devices will also be reduced. Accordingly, satisfactory and fast resource allocation

strategies can be adaptively developed based on the STDRL in a distributed implementa-

tion to handle the dynamic environment well. Our salient contributions are summarized as

follows:

60

• We develop an STDRL approach to enable interference-mitigated D2D resource al-

location, which integrates SG and MADRL to achieve quick decision making in a

distributed manner. Based on this approach, D2D pairs can learn to cooperate with

others and make smart power control and channel allocation decisions by themselves

in time-varying communication environments.

• We define the Stackelberg Q-value (ST-Q) in our STDRL to guide the learning process

of agents and employ the Stackelberg equilibrium obtained from the game model to

calculate ST-Q. With the guidance of the ST-Q, the learning process of our proposed

STDRL approach can converge much faster than the general MADRL one. As a

result, the total time consumption for learning can be significantly reduced, which

helps D2D pairs take actions timely.

• We conduct a series of numerical simulations to validate the efficacy and efficiency of

our STDRL approach. The results demonstrate that the proposed STDRL approach

can provide proper D2D resource allocation strategies to improve network performance

in a time-efficient way.

5.2 Related Works

5.2.1 Resource Allocation in D2D Networks

Recently, much attention has been paid to resource allocation and interference manage-

ment problems [58], which are the critical and fundamental parts of D2D communications.

For instance, Abdallah et al. [59] proposed a resource allocation framework with three power

control schemes to mitigate interference in a D2D underlaid cellular system using stochastic

geometry technique. Ibrahim et al. [50] applied the Bender’s decomposition algorithm [60] to

find the optimal power control and routing strategy in D2D cellular systems. Moreover, an

enormous amount of research effort goes into a game-theoretical model for the D2D resource

allocation issue [49], particularly applying the Stackelberg game [55]. Specifically, Sawyer

et al. [61] defined different utility functions for different types of followers in a Stackelberg

61

game and proposed a distributed algorithm to find the equilibrium in D2D communica-

tions. Zhang et al. [62] proposed a hierarchical game framework to analyze the individual’s

distributive strategies on the visible light communication (VLC) network. All these works

targeted at deriving the optimal strategy for one time slice under an optimization or game

framework while not considering the dynamic channel conditions and time-varying environ-

ments of the mobile networks. Furthermore, some DRL based approaches are developed to

solve the resource allocation problems in dynamic communication environments, especially

for V2V communications [53, 63, 54]. However, these RL-based approaches only consider

the discrete action space. Further, unstable training process and difficulty to converge are

some other challenges of these models.

5.2.2 Multi-Agent Reinforcement Learning with Game Theory

Multi-agent reinforcement learning is a natural modeling method for distributed control

problems like the resource allocation issue in D2D communications. How to coordinate the

relationship among agents has always been a difficulty of MARL. Accordingly, some research

employs the Nash equilibrium obtained from the game theory into the MARL framework,

which can provide a clear target for the learning process to converge. The study proposed

by Hu & Wellman[64][65] implemented the general Nash equilibrium to formulate the Q-

value in stochastic games. Moreover, some works target on employing the Stackelberg game

to find the optimal policies in asymmetric MARL [66, 67] and improving the convergence

rate with the help of game theory [68, 69]. However, these Q-learning based approaches

have high computational complexity and are hard to implement in practice. Besides, these

frameworks cannot handle problems with extremely large state-action spaces, such as the

considered D2D resource allocation problem. Nowadays, the rapid development of deep

learning techniques increases by jointly considering multi-agent deep reinforcement learning

and game theory. Li et al. [70] proposed a robust MADRL framework with a zero-sum game

by reviewing the worst behaviors of the agents. Zhang et al. [71] treated agents unequally

and defined the bi-level reinforcement learning problem. Moreover, some other works [72, 73]

62

introduced the mean field game in RL to tackle the issue with a large number of agents

and achieved the excellent performance in some applications [74, 75]. Unlike the existing

frameworks that cannot handle large state-action spaces or do not include game theoretic

solutions, we consider a specific Stackelberg game solution and adopt neural networks as the

functional approximator in the MARL. Specifically, we employ the Stackelberg equilibrium

obtained from the game to guide the learning process of MARL, which makes the learning

process more stable and converge faster. Moreover, we implement the proposed framework

to the D2D communication system with the continuous state and action space of the RL

model, where we can reduce the time cost in the negotiation process and achieve the time-

efficient resource allocation.

5.3 System Model

5.3.1 Problem Description

We consider a single-cell D2D underlaid cellular network where the BS is located at the

center of the cell, as illustrated in Fig. 14. There are two types of users in the system, i.e.,

D2D users and cellular users, where D2D users are in pairs to form the D2D communication

links. Assume that there are M cellular users and N D2D pairs in the system. We denote

the sets of all the cellular users and D2D pairs by M and N , respectively. Further, we

consider the scenario that all D2D pairs will reuse the uplink channels occupied by cellular

users. In the real communication environments, the uplink resources are less utilized than

downlink resources, and the BS has more power to handle the interference than mobile

devices. Another reason is that the transmit power of the BS is dominant, which may cause

serious interference to the D2D links and make the reuse of downlink spectrum resources

very difficult, if not impossible. Therefore, we consider D2D pairs to reuse the uplink

resources in our problem.

Suppose that there are M orthogonal channels preassigned to the cellular users where the

i-th channel is assigned to the i-th cellular user. Orthogonal frequency division multiplex-

ing (OFDM) is exploited to convert the frequency-selective wireless channels into multiple

63

Solution: SG Guided MADRL
D2D link

Cellular link

Interference link

D2D link !

D2D link !′

Cellular lin
k #

Base
Station

Leader

Followers

Computation timeCommunication time

W/O game guide:

W/ game guide:

Time consumption comparison:

Follower
Actor

Followers
Critics

Follower
Actor

$! …

&

SG

SE

TD error
'!

(
)"#)̅!,%[#]

)!&[#])̅",! [#]

)̅! ,!'& [#]

-

Figure 14: Deciding D2D resource allocation via SG guided MADRL.

parallel flat channels over different subcarriers. In this way, each D2D pair can reuse these

available channels occupied by cellular users for better channel utilization. However, the

channel reusing leads to a non-negligible problem; namely, the severe interference exists be-

tween the cellular link and the D2D link or even among D2D links. Therefore, the resource

allocation strategy, including how the D2D pair can select the channel and transmit power

for the communication, needs to be carefully developed to guarantee the communication

quality in the system.

A set of binary variables {xij}∀i∈M,j∈N are defined to indicate the status of channel

reusing in the network. Here, if D2D pair j reuses channel i, xij = 1; Otherwise, xij = 0.

Note that each D2D pair is allowed to reuse only one channel, i.e.,
∑

i xij = 1. In our prob-

lem setting, pci and pdj [i] denote the transmit power for cellular user i and D2D transmitter

j under the i-th channel, respectively. Moreover, we consider different channel models, e.g.,

different path loss models, for D2D links and cellular links. gci is the channel gain from

cellular user i to the BS, and ḡj,B[i] is the interference channel from D2D transmitter j to

the BS under the i-th channel. Similarly, gdj [i] denotes the channel gain between the j-th

D2D transmitter and the j-th D2D receiver under the i-th channel. ḡi,j [i] and ḡdj′,j [i] denote

the interference channel from cellular user i and D2D transmitter j′ to D2D receiver j over

channel i, respectively. All of these channel gains are affected by the frequency dependent

small-scale and large-scale fading, which will be changed among different coherence time

64

periods.

Therefore, the received signal-to-interference-plus-noise ratio (SINR) of the i-th cellular

link and the j-th D2D link under the i-th channel can be computed as

γci =
pcig

c
i

Ici +N0
and γdj [i] =

pdj [i]g
d
j [i]

Idij +N0
, (66)

where Ici =
∑

j xijp
d
j [i]ḡj,B[i] represents the interference to the i-th cellular link from other

D2D links reusing the same channel. Idij = pci ḡi,j [i] +
∑

j′,j′ 6=,j xij′p
d
j′ [i]ḡ

d
j′,j [i] represents

the interference to D2D link j. N0 is the additive white Gaussian noise (AWGN) power.

Further, the channel capacity of the i-th cellular link and the j-th D2D link under channel

i are given by

Cci = W log2(1 + γci) and Cdj [i] = W log2(1 + γdj [i]), (67)

where W is the channel bandwidth.

5.3.2 Design Objective

To improve the network performance, a fast decision-making approach for D2D resource

allocation based on SG and MADRL will be presented. As described above, the interference

is incurred by the channel sharing among the D2D links and cellular links, which will in-

evitably degrade the network performance. Therefore, in the following sections, we first will

introduce a distributed power control and channel allocation framework for the D2D-enabled

network based on the Stackelberg game, which can provide the proper resource allocation

strategies for one fixed period. However, every time the channel conditions change, we

need to solve the Stackelberg game problem from scratch, which is time-consuming and

inefficient. To tackle this issue, we then introduce a multi-agent reinforcement learning ap-

proach, where the training process can be accelerated with the guidance of the Stackelberg

equilibrium, to make the sequential decisions in a distributed manner. Specifically, a game

theory module helps to calculate a Stackelberg Q-value (ST-Q) in each training step, which

65

will be fed in the machine learning module then to contribute to the update of the learning

model. In other words, this ST-Q calculated based on the equilibrium can be seen as the

direction of the RL model updates, and the Q-value in the RL module gradually approaches

the ST-Q with our design. Therefore, the policy (or Q-value) obtained from the RL module

will converge to the equilibrium. By jointly considering the SG and the MADRL, D2D pairs

can make fast resource allocation decisions to improve the network performance in dynamic

communication environments.

5.4 Stackelberg Game Approach for D2D Resource Allocation

In this section, we employ the Stackelberg game approach to coordinate the interference

among D2D links and cellular links for high resource utilization in a fixed network setting.

There is a single leader (BS) and multiple followers (D2D pairs) in our game scenario, and

we assume that the BS owns all of the communication resources. The D2D pairs need to pay

the reuse fee for reusing the uplink channels occupied by cellular users, which are managed

by the BS. Consequently, the BS charges these reuse fees as the revenue for sharing the

channel resources. Therefore, under this Stackelberg game framework, the BS is willing to

share its communication resources, which makes the better resource utilization. The BS sets

the unit reuse price according to the current communication environment firstly. Next, each

D2D pair will choose to reuse the specific uplink channel and manage the communication

power based on the unit reuse price announced by the BS. In this way, every D2D pair is

enabled to make both the channel allocation and power control strategies in a distributed

way, while the equilibrium can be reached in the end.

5.4.1 Utility Functions

In this section, we introduce utility functions of the leader and the follower, namely

U l and Uf . It should be noted that in 5G networks, end users may have various types

of service requests, which leads to a slightly different formulation of utility functions for

different services (e.g., short messaging service, video calling or gaming). Here, we consider

a general utility function formulation to capture the ordinary service requests, and other

66

types of utility functions for the specific service requests are also suitable for the proposed

framework. In the Stackelberg game, the BS is the leader and needs to set the prices to

maximize its utility firstly. The utility of the BS can be defined as the throughput of all the

cellular links and the profits obtained by sharing the uplink channels with D2D pairs. We

set the profits proportional to the interference the BS observed. Thus, the utility function

for the leader (BS) can be described as

U l(αij , p
d
j [i]) =

∑
i∈M

Cci + βl
∑
i∈M

∑
j∈N

αijxijp
d
j [i]ḡj,B[i] (68)

=
∑
i∈M

W log2(1 +
pcig

c
i∑

j xijp
d
j [i]ḡj,B[i] +N0

) + βl
∑
i∈M

∑
j∈N

αijxijp
d
j [i]ḡj,B[i],

where the first term represents the throughput performance of the cellular systems, and

the second term represents the reuse fee gained by the BS from sharing the uplink channel

resources. Specifically, αij is the unit reuse price of channel i sharing with D2D pair j, and

βl is a scalar coefficient to balance the system’s throughput gain and the reuse fee obtained

from all D2D pairs. Therefore, we need to set the proper unit reuse price αij to maximize

the leader’s (BS) utility function in (68), and the optimization problem can be defined as

max
αij

U l(αij , p
d
j [i]),

s.t. : αij > 0, ∀i ∈M, j ∈ N .
(69)

In the above question, pdj [i] can be selected by the D2D pair j. In our Stackelberg game,

we consider the multi-follower scenario, where the followers are all D2D pairs. In order

to mitigate the interference in the system, each D2D pair needs to choose the satisfactory

reused channel and the corresponding transmit power, pdj [i]. Moreover, the transmit power

for each D2D pair is bounded by maximum and minimum values. Each D2D pair has the

partial observations of the whole system, which means all the D2D pairs will make the

decisions at the same time in a distributed manner.

67

We consider the scenario that D2D users can share the content to the other users di-

rectly. The utility function of each D2D pair is determined by other D2D pairs sharing the

same channel resource. For D2D users, they are sensitive to the quality of the contents,

e.g., definition of video or the latency of the games. So these D2D pairs require higher

achievable data rates, which have a direct impact on the quality of the transmitted con-

tents. Meanwhile, the interference also has a impact on the reuse fee consumption. Hence,

reducing the interference is another goal for D2D pairs. As a result, with the unit reused

price announced by the BS, the utility function of each follower (D2D pair) j under reused

channel i can be given as

Ufj (pdj [i], αij) =Cdj [i](pdj [i])− βfαijpdj [i]ḡj,B[i], (70)

where βf is a positive scalar coefficient to ensure both parts have the same magnitude.

For each follower (D2D pair), the strategy is to find the proper reused channel and

the proper transmit power, pdj [i], to maximize its own utility function as defined in (70).

Therefore, by considering the leader’s unit reuse price, the optimization problem for D2D

pair j can be defined as

max
pdj [i]

Ufj (αij , p
d
j [i]) ∀j ∈ N ,

s.t. : pmin 6 pdj [i] 6 pmax.

(71)

In the next parts, we will analyze the utility functions for the leader and followers

proposed in this Stackelberg game. We will find the best response, i.e., transmit power

and unit reuse price, of followers and the leader when considering each other’s strategies.

Moreover, we will prove that there exists a unique Stackelberg equilibrium in each stage of

the game.

68

Algorithm 5 Resource Allocation in D2D communications by Stackelberg Game

Input: Given CSI of communication environments at time t
Output: Stackelberg equilibrium strategies. BS: the optimal unit reuse price α∗ij . D2D

pair j: the reused channel i∗ and the corresponding transmit power p∗dj [i
∗]

Initialization: The unit reuse price αij and the transmit power strategy pdj [i] for last
time step (t− 1), ∀i ∈M and ∀j ∈ N .
If time step is 0, we initially select the unit reuse price and the transmit power.

1: for Each time slot t do
2: The BS calculates the optimal unit reuse price α∗ij , ∀i ∈ M, j ∈ N using (75) and

announce them.
3: for Each D2D pair (follower) j do
4: Calculate the utility function as described in (70).
5: Calculate the optimal transmit power, using (73), given the unit reuse price

announced by the leader.
6: Select the reused channel i according to the policy described in (76).

7: return The optimal unit reuse price α∗ij , ∀i ∈M, j ∈ N . For each follower j, ∀j ∈ N ,

the reused channel i∗ and its corresponding optimal transmit power p∗dj [i
∗].

5.4.2 Follower Analysis

Given the unit reuse price αij announced by the leader, each D2D pair determines the

transmit power to maximize its utility function. The utility Uf will be higher with the

increasing of pdj [i]. However, if the transmit power is too large, the utility will decrease

since the improvement of power consumption and reuse fee cost more significant than the

increase of the channel capacity. Therefore, each follower aims to choose the proper transmit

power.

Proposition 1 Given the unit reuse price αij, the utility of each D2D pair j under i-th

cellular channel is continuous and strictly concave with respect to the D2D transmit power

pdj [i]. (Please refer to Appendix A for the proof.)

The best response can be obtained by setting the first derivative of the utility equal

to 0, since the second-order derivative is smaller than 0, i.e.,
∂2Ufj (·)
∂pdj

2
[i]

< 0. Thus, the best

transmit power can be solved as

∂Ufj (·)
∂pdj [i]

= W ·
gdj [i]

ln 2(1 + γdj [i](pdj [i]))(I
d
ij +N0)

− βfαij ḡj,B[i] = 0, (72)

69

with the solution of

p∗dj [i] =
W

ln 2βfαij ḡj,B[i]
−
Idij +N0

gdj [i]
. (73)

According to the above equation, the transmit power will be too large or too small when

the unit reuse price is extremely high or low. Therefore, to guarantee the quality of the

communication service, we set the upper and lower bound of the transmit power pdj [i], which

means the best transmit power will be selected in {pmin, p∗dj [i], pmax}.

5.4.3 Leader Analysis

The Stackelberg game has a hierarchical framework. The leader needs to consider the

reaction of followers when setting strategies, which means the BS should take the corre-

sponding best response of followers into account when setting unit reuse price.

When considering the followers’ corresponding strategies, the leader’s utility function

will represent the impact of the leader’s unit reuse price and follower’s best response on the

cellular system. If the unit reuse price is higher, the followers will decrease their transmit

powers or select other channels. In this case, the obtained reuse fee may decrease, but the

cellular system’s throughput will increase due to the decrease of the interference. If the

unit reuse price is lower, it will go to the opposite. Thus, we try to find the proper unit

reuse price and set the upper and lower bounds of the unit reuse price as αmax and αmin,

respectively.

By Substituting the followers’ best transmit power described in (73) into the leader’s

utility function, we have

U l(αij , p
d
j [i]) = βl

∑
i∈M

∑
j∈N

xijW

ln 2βf
− βl

∑
i∈M

∑
j∈N

xij(
αij(I

d
ij +N0)ḡj,B[i]

gdj [i]
)+

∑
i∈M

W log2(1 +
pcig

c
i∑

j xij(
W

ln 2βfαij
− ḡj,B [i](Idij+N0)

gdj [i]
) +N0

). (74)

Proposition 2 Given the followers’ best response transmit power pdj [i], the optimal unit

70

reuse price αij , ∀i ∈ M, j ∈ N , can be uniquely obtained. (Please refer to Appendix B for

the proof.)

We set Ai = pcig
c
i , B = W

ln 2βf
, and Cij =

−(Idij+N0)ḡj,B [i]

gdj [i]
. Further, we set Dij =∑

k xikCik +
∑

k/j xik
B
αik

+N0. From the solutions shown in Appendix B, the best response

unit reuse price α∗ij can be uniquely selected in

{αminij ,− B
Ai
− βfB

βlCij
, αmaxij } Dij = 0

{αminij , αmaxij } Ai +Dij = 0

{αminij ,
−B(2Dij+Ai)+

√
∆

2Dij(Dij+Ai)
, αmaxij } Dij > 0

{−B(2Dij+Ai)−
√

∆
2Dij(Dij+Ai)

, αmax
ij } Dij < 0, Ai +Dij > 0

{αmin
ij , αmax

ij } Dij +Ai < 0,

(75)

where ∆ = A2
iB

2(1− 4βf

βlCij
(
D2
ij

Ai
+Dij)).

5.4.4 Joint Channel Allocation and Power Control

In the D2D underlay communication system, the D2D pair can reuse the channel occu-

pied by cellular users to improve resource utilization. Each D2D pair needs to control its

transmit power and select the proper channel to reuse so that the intra-cell interference can

be significantly reduced. Based on the analysis of the BS and D2D pairs, we can set the

appropriate unit reuse price for the leader and the optimal transmit power for each D2D

pair. Further, each D2D pair should find a suitable channel to reuse.

After the leader announces the unit reuse price, D2D pairs will select the channel to reuse

with the optimal transmit power computed in (73). Furthermore, the channel allocation

policy for each D2D pair j can be defined as

i∗ = arg max
i

(Ufj (p∗dj [i], α
∗
ij)). (76)

Channel i∗ is the selected channel for D2D pair j which can maximize its utility function,

meaning xi∗j = 1. Accordingly, the distributed allocation procedure in a fixed network

71

setting including power control and channel allocation is described in Algorithm 5. For

instance, if multiple D2D pairs first select the same channel, the interference of that channel

will increase. In this case, the BS may announce a new unit reused price for that channel,

after which D2D pairs may avoid selecting that channel or reduce transmit power according

to our proposed mechanism. Through the interaction among D2D pairs in a few iterations,

even if each D2D pair is selfish, the system will finally reach an equilibrium to improve the

system performance.

5.5 Stackelberg Game Guided Multi-Agent Reinforcement Learning Ap-

proach

The proper resource allocation strategies for one communication stage can be obtained

according to the SG approach above. However, the communication tasks need to be exe-

cuted over several coherence time slots nowadays, where the communication environment

changes dynamically. If we still only adopt the game approach, we need to repeat the above

process to obtain the strategy, which is time consuming. To address this difficulty, we

further formulate the resource allocation issue as an MARL problem with the help of equi-

librium obtained in game model to adapt to the time-varying communication environment,

where each D2D pair acts as the individual agent to make smart D2D resource allocation

decisions. To this end, the agents will make sequential decisions at each coherence time

to handle the dynamic communication environments. According to interact with the un-

known communication environments, D2D pairs obtain the local observations and take their

actions to maximize their revenues in a distributed manner.

5.5.1 Reinforcement Learning Based Formulation

The resource allocation problem can be modeled as a Markov game (stochastic game),

where each D2D pair is an individual agent. At the current state st, each agent j can obtain

its own local observations ojt . The local observations ojt are the part of the global state st.

Next, each agent j will take the action ajt and receive the reward rjt . All of the individual

72

actions can form a joint action at. Then the environment moves to the next state st+1 with

a probability. The key components of the RL problem are described below.

State Space and Local Observation:

The state, st ∈ S, can be defined as the set of all the environment components, e.g.,

channel conditions and the agent’s behavior. However, each agent can only observe a part

of the state, which can be defined as the local observation of the agent and is aligned with

the realistic communication environments. For the D2D agent, the local observation of D2D

agent j contains the channel information such as channel gain for the j-th D2D link under

channel i, gdj [i], for all i ∈M; the interference channel from other D2D links, ḡdj′,j [i], for all

j′ 6= j and i ∈M; the interference channel from the cellular users, ḡi,j [i], for all i ∈M. Here,

we assume that the receiver of the D2D pair can accurately estimate the channel information

and feed it back to the transmitter. In practice, exploiting vector quantization or codebook-

based techniques in the feedback process makes it possible to reduce the feedback overhead

and improve the reconstruction quality simultaneously. As a result, the feedback delay can

be much smaller than the time slot duration, and the transmitter can be assumed to obtain

the channel information instantaneously and accurately. Further, the local observation of

the D2D agents also contains the interference power, Idij , for all i ∈ M, defined in (66).

Moreover, because the BS (leader) will broadcast the unit reuse price firstly, we take αij

for all i ∈ M also into the local observation of the D2D agent j. Therefore, the local

observation of D2D agent j at coherence time step t can be described as

oj(t) = {gdj [i](t), ḡdj′,j [i](t), ḡi,j [i](t), I
d
ij(t− 1), αij(t)}, ∀ i ∈M. (77)

The global state describes the current communication environment, which contains all

the local observations from the D2D agents and some environment information perceived

by the BS. The perceived information of the BS contains the channel gain between the

cellular user i and the BS, gci , for all i ∈M; the interference channel from other D2D links,

ḡj,B[i], for all i ∈ M and j ∈ N ; the interference power, Ici , for all i ∈ M and j ∈ N .

These elements represent the dynamics of the cellular users. Therefore, the global state at

73

coherence time step t can be described as

s(t) = {gdj [i](t), ḡdj′,j [i](t), ḡi,j [i], g
c
i (t), ḡj,B[i](t), Ici (t− 1),Idij(t− 1), αij(t)}, ∀ i ∈M, j ∈ N .

(78)

Such the local observations and states can capture the real-time communication envi-

ronments. At different coherence time periods, the actions will be determined to adapt to

dynamic communication environments.

Action Space:

The resource allocation problem for D2D agents can be divided into power control and

channel allocation issues. Therefore, the action for D2D agent j at time step t can be

defined as aj(t) = {pdj [i](t)}, which consists of two parts: how much transmission power in

{pmin, pmax} to choose and which channel i to reuse. Specifically, we represent the selected

channel in a binary-encoded manner. So the dimension of the D2D agent’s action space is

1 + dlog2(M)e. We consider the joint action of all agents as a(t) = {a1(t), ..., aN (t)} ∈ A.

Reward Function:

For the proposed resource allocation problem, we aim to maximize the utility functions

defined in (70). Therefore, the instant reward function for D2D agent j can be defined as

rj(t) = Cdj [i](aj(t))− βfαij(t)aj(t)gj,B[i](t). (79)

5.5.2 Reinforcement Learning with Stackelberg Equilibrium

In the MARL problem, the agents select their actions according to their policies. The

policy for agent j can be defined as how to choose the action at each state, i.e., πj : Υ(Aj)←

S, where Υ is a probability distribution under the action space Aj . Moreover, the joint

policy π can be described as π = {π1, ..., πN} in our resource allocation problem. The goal

for each agent j is to maximize the expected long term accumulated reward, which is called

74

the value function. The value function for agent j can be formulated as

V j
π(s) = V j(s,π) =

∞∑
t=0

γtE[rj(t)|π, s0 = s], (80)

where s0 is the initial state. γ is the discount factor, which can balance the instant reward

and the future rewards.

For the value based RL problem, the Q-value (action-value function) can be defined

following the Bellman equation. The Q-value represents the value from state s and action

a over policy π, which can be described for agent j as

Qjπ(s,a) = rj(s,a) + γEs′ [V j
π(s′)], (81)

where s′ is the state of the next time step. The objective is to find the optimal policy π∗

to maximize the value function.

Considering the game theory is a natural way when figuring out the MARL problem. In

this situation, the Nash equilibrium in game theory can be seen as the optimal policy in the

MARL problem. The Nash equilibrium can represent each agent’s best response to others.

We use the π∗ = {π1
∗, ..., π

N
∗ } to describe the Nash equilibrium in our resource allocation

problem over all agents. For each agent j and for s ∈ S, it satisfies

V j(s, πj∗,π
−j
∗) > V j(s, πj ,π−j∗), (82)

where π−j∗ donates the optimal policy for all the agents except agent j.

To adapt the Nash equilibrium to the MARL, Hu et al.[64] proposed a Multi-agent

Nash Q-learning algorithm. They define a two-step iterative training procedure where they

first obtain the Nash equilibrium from the current stage game for all the agents, and then

update the Q-value according to that Nash equilibrium. Moreover, by implementing the

75

Nash equilibrium, the Nash Q-value function for each agent j can be defined as

Nash Qj∗(s,a) = rj(s,a) + γEs′ [Nash V j
π∗(s

′)]. (83)

In the above equation, the optimal policy π∗ can be obtained from the solution of the

game theory, and the Nash V is the value function calculated based on the optimal policy.

Through many iterations, the Q-value will eventually converge to the optimal Q-value,

which means the value obtained according to the Nash equilibrium in the game.

In our resource allocation problem, we formulate the problem by the Stackelberg game

and obtain the Stackelberg equilibrium. Similar to the Nash Q-learning, we design a two-

step learning procedure for our problem. We first obtain the Stackelberg equilibrium from

the SG solution of each stage game. Then, we apply that equilibrium to update the compo-

nents defined in the RL problem, i.e., the value function and policy. Moreover, the order of

the Stackelberg itself is considered in the learning procedure design, where the leader takes

action first, followed by followers. Similar to (83), we define the Stackelberg value function

for agent j as ST V j
∗ (s,a), which is the value obtained under the Stackelberg equilibrium.

Therefore, the Stackelberg Q-value (ST-Q) can be represented as

ST Qj∗(s,a) = rj(s,a) + γEs′ [ST V j
∗ (s′)]. (84)

During the learning phase, when considering the Stackelberg value function defined

above, the Q-value of each agent j can be updated in the following manner

Qj(s,a)t+1 =(1− ε)Qj(s,a)t + ε[rjt + γ ST V j
∗ (s′)], (85)

where ε is the learning rate and

ST V j
∗ (s′) =

∑
aj

πj∗(a
j |s′,a−j)E

a−j∼π−j∗
[Qj∗(s

′,a)]. (86)

The optimal policy π∗ can be derived from the Stackelberg equilibrium in each stage

76

game. Different from the general MARL, we replace the target Q-value in general MARL

with the ST-Q obtained from the Stackelberg game. The ST-Q can guide the updating

procedure of the Q-value and the learning process of the agent. Moreover, the Q-value will

converge to the Stackelberg equilibrium ST-Q with some assumptions[76], and the detailed

proof can be found in Appendix C.

Our goal is to design a distributed framework and let each D2D agent learn the policy

by itself. In this manner, agents cannot access the global state when taking actions in

the execution stage. Therefore, the policy functions are determined based on the local

observations of the agents. Hence, the policy function of the follower j can be defined as

πj(oj). The leader (BS) determines the unit reuse price according to (75) firstly, then each

D2D agent will take the action with the policy function πj by itself.

In the learning process, we need to solve the Stackelberg game and the RL problem

alternately. With the guidance of the proposed ST-Q, the learning process is more stable

and converge faster than the general one. In our case, the additional information is provided

due to the Stackelberg equilibrium. Thus, the target Q-value can be calculated based on

the Stackelberg game solution, not based on the existing action patterns in general MARL.

Based on this analysis, our proposed framework will converge better and faster than the

general MARL framework, which means the number of required iterations will be reduced.

5.5.3 Fast D2D Resource Allocation Decision via STDRL

In our proposed D2D resource allocation model, the state space is high dimensional

and the action space is continuous. Accordingly, we introduce the function approximators

for the Q-function and the policy function, where both the Q-value defined in (84) and

the policy π can be modeled as the neural networks. We implement our proposed system

based on a state-of-art multi-agent deep reinforcement learning framework, multi-agent

deep deterministic policy gradient (MADDPG) [56]. Note that MADDPG needs the global

information in the training stage and can be distributed executed by each agent, where each

D2D agent has one actor and one critic network. The framework is shown in Fig. 14, and

77

the detailed descriptions are shown as follows.

Each agent maintains a Q-value to evaluate the policy performance, which can be mod-

eled as the critic network with parameter ω. For each agent, the critic network is es-

tablished based on the global state and all agents’ actions. Therefore, all agents’ critic

networks are trained on the BS. We introduce the critic network with the parameters ω

into the updating function as described in (85). Similar to the DQN algorithm proposed by

DeepMind [77], each agent j updates the Q-value by minimizing the following loss function

L(ωj) = (yj −Qωj (s,a))2, (87)

where yj = rj(s,a) + γ ST V∗ω̄j (s
′) is the target Stackelberg value modeled with the pa-

rameter ω̄j . The target value can be calculated according to the (86), which can be derived

from the Stackelberg game, and then the stochastic gradient descent method is applied to

minimize the loss function of the critic network.

For the policy part, we establish the policy network Ω with the parameter θ for each

agent. Each agent can generate a policy based on its policy network. In this case, for

D2D agents, they will locally train the policy network on its own and develop the policy

based on its own observation. Additionally, we transform the continuous outputs related to

the selected channel into discrete binary outputs. Therefore, the policy network for D2D

agent j can be defined as Ωθj (o
j). It should be noticed that the leader will take action

first in our Stackelberg game, followed by followers. Consequently, the followers’ (D2D

pairs) observations contain the action of the leader (unit reuse price). The goal of the

policy network for each agent is to maximize the objective function J . Similar to the deep

deterministic policy gradient (DDPG) algorithm [78], we apply the deterministic policy and

train the network by the sampled policy gradient method. The gradient can be calculated

as

∇θjJ(θj) = ∇ajQωj (s,a)|aj=Ω
θj
∇θjΩθj (o

j). (88)

78

Algorithm 6 Stackelberg Game Guided MADRL (STDRL) for D2D Resource Allocation

Input: For all D2D agents j, j ∈ {1, ..., N}, randomly initialize the critic network Qω and
actor network Ωθ with parameter ω and θ, respectively. Initialize the replay memory
M and set the target network by copying the parameters from Qω as Qω̄.

Output: the selected action for all of the agents.
1: for episode = 1, ...,K do
2: Initialize the noise process N for action exploration.
3: Initial state s0 for the communication environments.
4: for t = 1, ..., T do
5: The leader BS broadcasts the unit reuse price calculated with (75).
6: Each D2D agent j takes action aj(t) = Ωθj (o

j(t)) + Nt based on the policy
network and the exploration noise locally.

7: Each D2D agent gets the immediate reward rj(s,a), and the next state s(t+ 1)
can be observed.

8: Each D2D agent uploads its own information to the BS, e.g., rj(s,a) and aj(t).
BS stores transition (s(t),a(t), r(t), s(t+ 1)) in memory.

9: for Each agent j, j ∈ {1, ..., N} do
10: Randomly sample mini-batch size M of transitions (s(t),a(t), r(t), s(t + 1))

in memory.
11: Set target Q value as yj = rj(s,a)+γ ST V∗ω̄j (s

′) by (86), where the optimal
policy can be calculated as the Stackelberg Equilibrium from the Algorithm 5.

12: The Critic Network can be trained by minimizing the Loss function L(ωj) =
(yj −Qωj (s,a))2 according to the Adam Algorithm in BS.

13: D2D agents download Q functions. The Actor Network can be trained by
sampled policy gradient, as ∇θjJ(θj) = 1

M

∑
∇ajQωj (s,a)|aj=Ω

θj
∇θjΩθj (o

j).

14: Update the parameter ω̄ in target networks with “soft” way: ω̄ ← τω+ (1− τ)ω̄

Our proposed Stackelberg game guided multi-agent deep reinforcement learning (STDRL)

approach for D2D resource allocation is summarized in Algorithm 6. We have two stages in

STDRL, i.e., the training and execution stages. For the training part, at the initial state,

the BS and D2D pairs take the actions in a sequential according to the policy networks and

the noise process N to balance the exploration and exploitation [78] in step 5 and 6. After

executing the actions, each agent can observe the reward, and all D2D pairs upload the

local information, e.g., reward and action, to the BS. Next, all critic networks are trained

on the BS based on the observed global state and joint actions in steps 11 and 12. The

target value is defined based on the Stackelberg equilibrium, which can be obtained from

Algorithm. 5. Then all critic networks can be trained on each agent locally. Moreover, D2D

pairs need to download the critic networks from the BS for updating the policy networks in

79

step 13. Finally, we update the parameters of the target network in a “soft” way [78]. τ is

the soft parameter, which can make the target value change slowly. Since the game theory

module we added has the closed-form solutions, our proposed STDRL does not introduce

additional computational complexity compared with the general MADRL algorithm [56].

When the training converges, we will get a general model which can be deployed in dy-

namic communication environments. For the execution stage, we only need to employ actor

networks to make the resource allocation decisions in a distributed manner as described in

steps 5 and 6. In this situation, the execution stage has a linear time complexity of O(n),

where n is the length of the decision steps.

Moreover, since we introduce the game module to compute the equilibrium, we push

more computing workload into each training iteration and reduce the workload incurred

by wireless transmission/information exchange among the agents. In this way, we dramat-

ically reduce the required number of iterations to converge and thereby improve the time

efficiency of the training process. We compare the training time consumption of our pro-

posed STDRL with the ordinary MADRL approach, including the computation time and

communication delay. In each iteration, interactions among the agents are needed in both

approaches for sharing some RL components, i.e., actions. Accordingly, the communica-

tion time linearly increases with number of training iterations. For the computing time,

the additional computing loads are introduced in our proposed STDRL approach due to

computing the Stackelberg equilibrium. Therefore, the computation time of our proposed

approach is slightly larger than that of the general MADRL one in each iteration, which

can be seen as a sacrifice. On the plus side, our approach requires many fewer iterations to

converge than the ordinary MADRL, which results in a remarkable reduction of total train-

ing time consisting of communication time and computing time. Accordingly, the energy

consumption will also be reduced when the mobile devices have a fixed running power.

80

Table 2: STDRL Simulation Parameters.

Parameter Value

Carrier frequency 2 GHz

Bandwidth 1.4 MHz

Edge device antenna gain 3 dBi

Cellular UE Tx power 23 dBm

D2D UE Tx power 5-23 dBm

Cell radius 500 m

Max D2D communication distance 50 m

Path loss model of cellular links 128.1 + 37.6 log10 d

Path loss model of D2D links 148 + 40 log10 d

5.6 Performance Evaluation

In this section, abundant numerical simulations are executed to evaluate the performance

of the proposed STDRL approach for the D2D resource allocation issue. We consider a

cellular-based communication scenario with 4 cellular users and 4 D2D communication

pairs. The main simulation parameters of the communication system are summarized in

Table 2. Specifically, we consider different path loss models for D2D links and cellular

links. Moreover, to describe the dynamic communication environments, we set that the

small-scale fading (fast fading) is updating every coherence time, and the large-scale fading

(pass loss and shadowing) is changing every 100 coherence times. The step size of our

proposed approach is set as the same as the fast-fading updating unit. For the learning

part, the actor and critic neural networks for each agent consist of 3 fully connected hidden

layers, with 512, 256, and 128 nodes, respectively. The batch size is selected as 32, and the

learning rate is 0.0001. We set the experience replay memory size as 400 or 200 for different

simulations. Moreover, the discount factor γ is 0.99 and “soft” parameter τ is 0.01 in the

RL part. Particularly, all of the parameters of the learning approach are derived from the

parameter tuning.

We first evaluate the effectiveness of our proposed game theoretical model and identify

the scalar coefficients β. According to the scale of simulation parameters of communication

environments, the scalar coefficients βf is chosen as 40. Note that if βf is smaller, the

optimal D2D pair transmit power will be larger with the fixed βl. In Fig. 15, we plot

81

10 12 14 16 18 20 22

D2D transmit power (dbm)

0

0.2

0.4

0.6

0.8

1

C
D

F

l
 = 2
l
 = 5
l
 = 10

(a) D2D pairs’ power distribution

0 1 2 3 4 5 6

D2D channel capacity (Mbps)

0

0.2

0.4

0.6

0.8

1

C
D

F

l
 = 2
l
 = 5
l
 = 10

(b) D2D pairs’ channel capacity dis-
tribution

Figure 15: Performance comparison under different βl.

cumulative distribution function (CDF) of average D2D pairs’ transmit power and channel

capacities under different scalar coefficient βl with βf = 40, respectively. The performance

is displayed over 10000 times Monte Carlo simulation experiments. For a larger βl, the unit

reused price for the follower is relatively lower. Therefore, the follower will select relatively

larger transmit power, as shown in Fig. 15a. In this way, the channel capacity of the D2D

pair will be increased as well, which is described in Fig. 15b. Note that when the D2D

user’s location is very close to the cellular user’s location, the D2D pair will be significantly

interfered with, causing low channel capacity. In these situations, the D2D pair’s channel

capacity is mainly affected by the nonadjustable environmental settings (e.g., location)

rather than the adjustable optimization variable (e.g., transmit power, unit reuse price).

Therefore, the value of the β will have a slight impact on the D2D user’s channel capacity

in these situations, which is why the two lines (βl = 5 and βl = 10) are basically coincident

before the point “4Mbps” In additional, the larger transmit power of the D2D pair causes

the increased interference of cellular users, causing a decrease in the channel capacity of

cellular users.

To show the performance of our proposed STDRL approach, we consider three baselines

of our proposed approach, termed the classic Stackelberg game (SG) approach [79], the

single-agent deep reinforcement learning (SADRL) approach [80], and the general multi-

agent deep reinforcement learning (MADRL) approach [81]. The SG approach can be re-

garded as a near-optimal solution. The SADRL approach allows each agent (D2D) pair to

82

500 1000 1500 2000

Step

1

1.5

2

2.5

3

D
2
D

 U
ti

li
ty

10
6

STDRL

MADRL

SADRL

SG

(a) The average D2D pairs’ utility

0 500 1000 1500 2000

Step

3

3.5

4

4.5

5

D
2
D

 U
ti

li
ty

10
6

STDRL

MADRL

SADRL

SG

(b) The base station’s utility

Figure 16: Performance comparison in relatively static environments.

make the resource allocation decisions dependently. For the MADRL approach, we adopt

the state-of-art MADRL framework, the multi-agent deep deterministic policy gradient

(MADDPG) approach. For convenience, we take βl = 5 and βf = 40 in our experiments.

First of all, we consider relatively static communication environments, where we fix the

large-scale fading and only take the fast fading updating into account. We train our pro-

posed STDRL approach and MADRL approach until they converge, and the results are

shown in Fig. 16. Because the SG approach needs to solve the problem for every step, we

take the average of the SG results as the SG baseline. Fig. 16a. depicts the average D2D

agents’ utility (reward) during training. On the one hand, the SADRL approach underper-

forms the multi-agent DRL based approaches since there is no obvious coordination among

the agents. Moreover, our proposed STDRL achieves a little higher utility than the MAD-

DPG approach, which is similar to the SG approach. On the other hand, with the help of

the equilibrium, our STDRL approach converges faster than the general MADRL approach.

Specifically, the STDRL approach needs about 900 steps (iterations) instead of 1200 steps

in the MADRL approach, thanks to the equilibrium providing additional information in the

training process. The corresponding BS’s utility is shown in Fig. 16b, which has a similar

behavior to that of the D2D’s utility. In particular, the fluctuation of the training curve at

the initial stage is due to the exploration of the RL approach. Since the SADRL approach

does not need communication among agents and performs worse than other approaches,

we ignore it in the following parts. Furthermore, we record the time consumption of the

proposed framework. For each step, the communication delay and the computation time of

83

0 10 20 30 40 50 60

Episode

1

1.5

2

2.5

3

D
2
D

 U
ti

li
ty

10
6

STDRL

MADRL

(a) The average D2D pairs’ utility

0 10 20 30 40 50 60

Episode

4.5

5

5.5

6

D
2
D

 C
h

a
n

n
e
l
C

a
p

a
c
it

y
 (

M
b

p
s
)

10
6

STDRL

MADRL

(b) The average D2D pairs’ channel
capacity

0 100 200 300 400 500 600 700

Episode

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
2
D

 U
ti

li
ty

 D
is

ta
n

c
e

10
6

STDRL

MADRL

(c) The average D2D utility distance
between SG scheme and learning
scheme

Figure 17: Performance comparison with dynamic communication environments.

the learning part are both close to 10 ms, and the computation time of an additional SG

part is about 1− 2 ms. Therefore, our proposed STDRL approach can save approximately

17% time than the general MADRL one.

Next, we deploy our proposed approach in the dynamic communication environments,

which means we consider both the large-scale fading and small-scale fading updating. We

run each simulation (train the model until it converges) 10 times and display the mean value

and the standard deviation results (error bars) in the corresponding figures. Each training

episode contains 20 training steps. Note that we fix the large-scale fading for each training

episode and let the small-scale fading change over each step. We firstly consider that the

location of users is relatively fixed. The average D2D pairs’ utility is shown in Fig. 17a.

According to Fig. 17a, we can find that our proposed STDRL can still achieve a little higher

utility for D2D agents than the general MADRL approach with fewer episodes in dynamic

communication environments. In additional, in the initial training stages, the agent may

take bad actions due to the exploration noise and limited learned information. To better

understand the performance differences between our proposed approach and the MADRL

approach, we present the average D2D pairs’ channel capacity in Fig. 17b. The average

D2D pairs’ channel capacity of the STDRL approach is slightly or neglectable higher than

that of the MADRL approach, but the average D2D pairs’ utility of the STDRL approach

is higher than that of the MADRL approach. This indicates that our proposed STDRL

approach can achieve better interference management than the MADRL approach, which

84

can also be validated with the BS’s utility.

Our goal is to make fast resource allocation decisions in dynamic communication en-

vironments. We further consider the users’ mobility in our proposed STDRL approach

training. We still change the large-scale fading every episode and the small-scale fading

every step. Similar to the setting in the above simulations, we take 40 iterations in each

episode. Due to the dynamic nature of the communication environments, it is not suitable

to consider the average instant reward in each episode as an indicator of training perfor-

mance. So we calculate the utility difference between the learning approach and the SG

approach and use it as a measure of the learning performance. As shown in Fig. 17c, we

calculate the average D2D pairs’ utility distance between the SG scheme and the learning

scheme for each episode in the training process. Fig. 17c shows that our proposed STDRL

approach needs nearly 370 episodes to converge, which is less than the 500 episodes for the

MADRL approach. Moreover, compared to the general MADRL approach, STDRL can

converge to the point closer to the near-optimal SG solution. In particular of the dynamic

environment, the performance improvement of STDRL is obvious, since the equilibrium

introduced provides explicit learning directions.

We employ actor networks to make resource allocation decisions in a distributed im-

plementation and summarize the performance comparison results in Table 3, where the

“random” approach means we randomly select the resource allocation strategies. We com-

pare the average D2D pairs’ utility, channel capacity, BS’s utility, and the time consump-

tion for the training, including time consumption of communication and computation, for

these four approaches. According to Table 3, we can say that our proposed STDRL can

achieve higher utility and larger channel capacity with less time consuming than the general

MADRL approach. Furthermore, we can save about 20% training time compared with the

general MADRL approach. This means the time-efficient resource allocation strategies can

be made based on our STDRL approach. Further, the result of our STDRL approach is

close to that of the SG approach, while our approach can tackle the resource allocation issue

85

Table 3: STDRL Performance Comparison.

Random MADRL STDRL SG

Avg. D2D Utility (×106) 1.24 2.49 2.78 3.12

Avg. D2D Ch. Cap. (Mbps) 2.01 3.58 4.11 4.94

BS Utility (×106) 2.72 2.92 2.96 3.26

Comm. Time Cons. (s) – 200 148 –

Comp. Time Cons. (s) – 200 170 –

Total Time Cons. (s) – 400 318 –

in dynamic communication environments. Specifically, when the communication environ-

ment changes, we can provide convincing resource allocation strategies in a few inference

iterations, where the SG approach needs to solve this problem again.

5.7 Conclusion

To improve the throughput of D2D-enabled networks, we have developed a Stack-

elberg game guided multi-agent deep reinforcement learning (STDRL) scheme in a dis-

tributed way to make the smart D2D resource allocation decisions in dynamic communi-

cation environments. With the guidance of our proposed ST-Q calculated by the Stack-

elberg equilibrium derived from the game approach, the learning process of STDRL is

more stable and converges faster than that of the general MADRL approach. Further-

more, we can guarantee that there exists a unique equilibrium in each stage game, and

the Q-value in the learning process will converge to the equilibrium in the end. Multi-

ple simulations have shown that our STDRL approach can provide satisfactory resource

allocation strategies to enhance system utility. Moreover, our proposed STDRL approach

can be achieved in a time-efficient way, where we can save about 20% learning time com-

pared with the general MADRL approach. Appendix proof is available for this work at

https://github.com/shidian117/STDRL/blob/master/Appendix.pdf

86

6 Deep Q-Network Based Route Scheduling for Transporta-

tion Network Company Vehicles

6.1 Introduction

The emergence of Transportation Network Company (TNC) (e.g., Uber, Lyft, etc.) ser-

vices that offer transport-as-a-service has solved the dilemma of the “first-mile/last-mile”

problem of public transit users and traffic congestion problem in urban areas. The “first-

mile/last-mile” problem is severe especially for public transit users since their starting loca-

tions/final destinations are relatively far away from existing public transportation options.

The TNC mobility service providers have evolved as the best choice for addressing such

concerns since TNCs use software to effectively pair passengers with vehicles (drivers) by

collecting data from passengers and vehicles for route scheduling and optimization.

Indeed, TNCs have been playing a vital role in providing mobility services to users. The

major goal for TNC is to effectively schedule cruising (vacant) vehicle routing to quickly

match passengers with vehicles. In urban areas, vacant TNC vehicles usually roam around

here and there so as to pick up passengers timely called “TNC cruising vehicles”. In practice,

there exists a certain delay while collecting passengers’ data, since TNCs can only obtain

the data when a passenger requests the service. Therefore, the cruising vehicles always

only seek passengers based on drivers’ own experience and may take longer time to meet

the passengers especially if they are far away from the passengers. Besides data collection,

rush hours or extreme weather conditions also account for long waiting times. Since TNC

vehicles cruising significantly affects the TNC drivers’ long-term revenue, it is critical to

develop efficient vehicle scheduling strategies to improve services to users and benefits of

drivers. To solve the TNC cruising vehicle scheduling problem, we propose a scheduling

method based on deep Q-network, a deep reinforcement learning algorithm.

Deep Q-Network (DQN) was proposed by Deepmind in 2013 [82], which is a Deep Re-

inforcement Learning (DRL) method combining Reinforcement Learning with Deep Neural

87

Networks [83]. It has recently found several applications as it outperforms the reinforce-

ment learning methods, and some of the existing works in the literature solve the vehicle

route scheduling problems. Qu et al. [84] developed a cost-effective recommender system

for taxi drivers to maximize their profits when finding the passengers. Powell et al. [85]

proposed a grid-based method to reduce the number of cruising miles while simultaneously

increasing the number of live miles. These methods rely on historical data for scheduling,

which cannot be adapted to dynamic urban environments. Du et al. [86] adopted lstm to

predict the traffic flows based on the dataset of traffic history, and the predicted traffic

benefits the drivers to determine the optimal route with efficient travel time. Beyond that,

some researchers also study reinforcement learning based vehicle route scheduling. Verma

in [87] used Monte Carlo method to study optimal route planning of cruising taxis, and

Han in [88] demonstrate that reinforcement learning algorithm of the Q-learning family can

learn optimal actions for routing autonomous taxis in a real city scenario. Even though

these reinforcement learning methods consider dynamic urban environments, they use only

a limited number of states such as only the location of vehicles and do not consider the

competition between vehicles.

To address the above issues, in this work [89, 90], we propose “big” TNC service data

based scheduling to intelligently schedule the routes of TNC cruising vehicles, and develop

an effective DRL-based online dynamic framework for “last-mile/first-mile” services. The

proposed approach has the potential to reduce the waiting time of passengers, searching

time of drivers, and maximize every individual TNC drivers’ long-term revenue. Our salient

contributions are summarized as follows:

• We firstly employ the deep Q-network to learn the urban environment, and guide

TNC cruising vehicles to pick up passengers while maximizing the long-term revenue

of an individual TNC driver.

• Different from the existing scheduling works, we consider high-dimensional compo-

nents of the urban environment during scheduling that include different spaces, times

88

and especially the competition between TNC cruising vehicles which significantly af-

fects TNC drivers’ searching time and revenue.

• We illustrate our proposed dynamic model based on both big real-time data and

historical data that can schedule TNC cruising vehicles’ routes during the model

training, and that can be applicable to an actual dynamic urban environment.

6.2 TNC Cruising Vehicle Scheduling Model with Reinforcement Learn-

ing

In this section, we first introduce the TNC cruising vehicle scheduling model and the

reinforcement learning. We then elucidate the reinforcement learning based TNC cruising

vehicles scheduling model.

6.2.1 Model Configuration

The goals of the TNC cruising vehicle route scheduling problem are to minimize waiting

and searching time of passengers and drivers, and maximize the long-term revenue of the

drivers. We consider an urban area divided into multiple regions. We assume the shape of

the city to be a rectangular grid that can be divided into M×N cells uniformly, where each

cell represents an area in the city, as shown in Fig. 18. The TNC cruising vehicle scheduling

problem is described as follows.

A TNC vehicle in a cell is cruising and searching for passengers, without any prior

passenger data since a passenger’s data is available only after the passenger requests the

service. Therefore, the TNC cruising vehicle interacts with TNC service center and informs

its status. The TNC service center guides this TNC vehicle to a neighboring cell. Then

the TNC vehicle searches the new cell for passengers and constantly reports its status to

the TNC service center as either vacant or occupied. If its status is occupied, the guiding

process of TNC service center ends and the next request to a new guiding process resumes

after the TNC vehicle drops the passengers at the destination cell and reports the revenue.

If the status is vacant, the requests and responses between the TNC cruising vehicle and

89

Service Center

Figure 18: TNC cruising vehicle scheduling model

the service center continue until the vehicle finds passengers. Note that the competition

among TNC vehicles also needs to be considered while processing these requests.

6.2.2 Model Description

The TNC cruising vehicle scheduling model configuration can be formulated as the

Markov decision process, but the concern is that transition probability is unknown in such

case. The idea of model-free reinforcement learning is more suitable for such situation.

For the model-free reinforcement learning method, the objective of the agent (TNC service

center) is to minimize the searching time of the TNC cruising vehicle (driver) and maximize

the long-term revenue of the individual driver. With the Markov decision process, the major

components of the model-free reinforcement learning method for the TNC cruising vehicle

scheduling model are described as follows:

State S: TNC cruising vehicle’s situation at a certain moment

Our dynamic model can be applied to timely environments, rather than purely being

dependent on historical data. It considers the scheduling of TNC cruising vehicles under

different times and spaces. On one hand, different situations during weekdays and weekends

and different time periods of the day that have significant impact need to be considered in

the model. The above is the urban environment that we need to consider before scheduling.

At the beginning of each step, the agent observes the urban environment and collects some

related parameters as the input state. On the other hand, each TNC cruising vehicle is not

90

a separate entity and the distribution of other TNC vehicles in the surroundings can also

significantly impact the guiding policy, since they compete with each other. Taking all the

above factors into consideration, the parameters of input states are defined as follows:

• Xm: The horizontal position of the TNC vehicle, m ∈ (1, 2, ...M).

• Yn: The vertical coordinate of the TNC vehicle, n ∈ (1, 2, ...N).

• Tk: Day of the week, classified as weekday and weekend, k ∈ (1, 2).

• Pl: Different time periods of one day, such as morning peak, evening peak, etc.,

l ∈ (1, 2, ..., L)

• C = {Cs, Cn, Ce, Cw}: The number of other TNC vehicles that compete with the

vehicle being guided from all the four directions. Component C can be divided into

eight parts, and it contains the number of competitors close to the TNC cruising

vehicle around two layers in four directions.

Therefore the input state S(k) = {Xm, Yn, Tk, Pl, C} at each time step k is represented

the set of all the above parameters.

Action A: For each state, the agent will guide the TNC cruising vehicle to take one of

the actions below to reach to the next state

TNC service center has four alternative actions A = {as, an, ae, aw} at each state to

guide the TNC cruising vehicle, which means that the service center can guide the TNC

cruising vehicle to one of the four adjacent cells in the south, north, east and west.

Reward R: The instant reward for TNC cruising vehicle at each time step after taking

an action

Only if the TNC vehicle picks up a passenger, the instant reward is profit for that order.

Otherwise the reward is zero. Because the competition from other nearby TNC vehicles is

considered, there is a certain probability of failure to pick up passengers by guiding. When

the vehicle being guided successfully picks up the passenger, we define the instant reward

r to be the profit rp for that order times the success rate ρ. So the instant reward r(k) at

91

time step k can be expressed as

r(k) =

 ρ · rp when guided one picks passenger,

0 otherwise.
(89)

After picking up the passenger i, the TNC driver makes a profit. The profit rp obtained by

an individual TNC cruising vehicle driver for an order can be expressed as

rp(i) = e(i)− c(i), (90)

where e(i) and c(i) are earnings obtained and costs spent for picking up the i-th passenger.

For effective scheduling, we define the earnings, success rate and the cruising vehicles in a

cell based on the strategies considered in real-world TNCs similar to the one considered in

this work.

Based on different ride distances, we define the earnings as

e(i) =

B L(i) ≤ D1,

B + (L(i)−D1) ∗ u1 D1 < L(i) ≤ D2,

B + (L(i)−D1) ∗ u1 + (L(i)−D2) ∗ u2 D2 < L(i),

(91)

where B is the base price, D1 and D2 are the distance standards for dividing the earnings,

L(i) is the distance traveled by the TNC vehicle to drop the passenger i at its final desti-

nation, and u1 and u2 are dynamic pricing factors that depend on driver’s supply and the

ride distance. We define the costs c(i) for the ride based on the cost for the fuel and the

cost to the company. Thus, c(i) can be computed as

c(i) = L(i) · f + p · e(i), (92)

where f is the price of fuel required per unit distance and p is the percentage of TNC

company’s interest for each order.

92

Another factor that needs to be considered while picking up the passengers is the com-

petition among TNC vehicles. There is a possibility that other TNC vehicles might pick up

the passengers first and the TNC cruising vehicle being guided by the TNC service center

might fail. Specifically, to quantify this situation, the success rate ρ in each state at each

time step is introduced to measure the success rate of TNC cruising vehicle being guided

by the service center in picking up the passenger successfully. The success rate ρ in picking

up a passenger is defined as

ρ =
Ps

C0 · pk +
∑N

n=1Cn
, (93)

where Ps is the number of passengers in that position at that time step, pk is the probability

that the TNC vehicle searches for the passenger in the cell it is present, and (1 − pk)

represents the probability that the TNC vehicle searches for the passenger in other cells.

C0 is the number of TNC cruising vehicles in that position at that time step, and Cn

represents the equivalent number of TNC cruising vehicles which have n step distances

from the passengers’ location. For example, Cn for 1 and 2 steps can be computed as

C1 =H1 · (1− pk) ·
1

4
and C2 = (H21 + 2H22) · (1− pk)2 · (1

4
)2, (94)

where H1 is the total number of TNC cruising vehicles at an unit distance from passengers.

H21 and H22 are the number of TNC cruising vehicles that are two distance units away from

passengers under two different situations. Based on this assumption, equivalent number of

competing TNC cruising vehicles for one specific passenger can be obtained.

6.3 Problem Formulation and TNC Cruising Vehicle Scheduling

In this section, we formulate TNC cruising vehicle scheduling problem and introduce

the algorithm of deep reinforcement learning to achieve the best policy for TNC cruising

vehicle scheduling.

93

6.3.1 Deep Q-Networks

The main idea of deep Q-network is using function approximation techniques to approx-

imate the state action value function. For this non-linear function, neural network is a great

approximator.

Different from general Q learning, DQN uses a deep neural network to replace the

traditional Q-table, so that the state action value can be represented as a function by using

neural network, which means that the process of updating Q-table is the process of training

deep neural network. In the process of updating the neural network, we need to consider

the Q value at this moment and the next moment. Hence, we use two separate networks to

represent two Q values respectively, and we define two types of neural networks of Q value

as

Q(sk, ak) = Q(sk, ak;w) and Q(s′k, a
′
k) = Q̂(s′k, a

′
k;w

−), (95)

where w is the parameter of evaluation Q network, and w− is the parameter of the target

Q network. Due to the non-uniformity between high-dimensional state space and low-

dimensional action space, both neural networks only use the state as input and the output

is the Q value of each possible action.

In order to get the optimal policy according to Q network, this Q network can be

trained by using supervised learning. We treat the term including target Q value [rj +

γmaxa′ Q̂(sj+1, a
′;w−)] as the label. The loss function of neural network is given as

L(w) = E[rk + γmax
a′

Q̂(sk+1, a
′;w−)−Q(sk, ak;w)]2. (96)

6.3.2 Overall Architecture

In the training process, we minimize the loss function by using gradient descent with

respect to the parameter w at iteration i. For using neural network as an approximator

94

Algorithm 7 DRL for TNC Cruising Vehicle Scheduling Algorithm

Input: replay memory size M , discount factor γ, greedy ε, exploration increment δ, neural
network learning rate α the observations of the urban environment.

Output: the selected action for TNC cruising vehicle.
1: Initialize replay memory M , evaluation Q-network with parameter w and target Q-

network with parameter w−.
2: for episode =1, ..., N do
3: The TNC cruising vehicle start at the state s1.
4: for k = 1, ...,K do
5: TNC cruising vehicle with adaptive probability ε+ δ takes a random action ak;

otherwise selects action with greedy policy.
6: The TNC cruising vehicle takes the action ak, gets the instant reward rk and

moves to the next state sk+1.
7: Store transition (sk, ak, rk, sk+1) in memory M of the center.
8: Randomly sample mini-batch size of transitions (sj , aj , rj , sj+1) in M .
9: Set target Q value as rj , when sj+1 is the final state; Otherwise, target Q value

is rj + γmaxa′ Q̂
(
si+1, a

′
;w−

)
.

10: The TNC center uses GD to minimize the loss function and update w.
11: Every L steps use w replace w− in Q̂.

in reinforcement learning to replace the Q-table, this method always tends to diverge. In

order to avoid divergence, two tricks are introduced, which are 1) Experience replay and 2)

Fixed Target Network. Thus the derivative of the loss function can be expressed as

∇wL(w) = Esj ,aj ,rj ,sj+1∈M[(rj + γmax
a′

Q̂(sj+1, a
′;w−)−Q(sj , aj ;w))∇wQ(sj , aj ;w)],

(97)

where M is the experience replay memory, which can store the transitions and let the agent

randomly pick up the j − th transition for the training process later. Experience replay

memory can break the relationship between training data. At every fixed step, using the

parameter of evaluation network w to replace the parameter of target network w− is called

the fixed target network.

The total process of scheduling TNC cruising vehicle to pick up passengers is shown

in Algorithm 7. After collecting real time data, we use deep Q-network with experience

replay and fixed Q-targets to learn and interact with the urban environment at a certain

moment, and then schedule the individual TNC cruising vehicle to reduce searching time of

95

Table 4: Example of DiDi Database.

Lable Example

pick up time 1477964797
drop off time 1477966507
pick up longitude 104.09464
drop off longitude 104.08927
pick up latitude 30.703971
drop off latitude 30.65085

TNC drivers. Specifically, as shown in Algorithm 7, in state sk, according to the guidance

from the TNC service center, the TNC cruising vehicle can take action ak into a new cell

with ε-greedy policy which selects a random action ak with adaptive probability ε = ε+ δ,

where δ is the increment at each time step, or selects ak = arg maxaQ(sk, a;wi). The TNC

cruising vehicle executes an action ak, receives a reward rk, and enters into the next state

sk+1. After executing action ak, the TNC vehicle will report the transition (sk, ak, rk, sk+1)

to the service center, and the TNC server center will store this transition in its memory. If

the passenger is picked up by this guided TNC vehicle in this cell, after reporting the instant

earnings, the episode will end and start a new one; otherwise, the center will continue to

guide this TNC cruising vehicle for picking up passengers. Further, when the collected

transition samples are abundant enough, the TNC center will randomly choose mini-batch

size of transitions (si, ai, ri, si+1) to train the neural network. For the training process, the

service center uses gradient descent to minimize the mean square errors (MSE) between

Q-target and Q-evaluation, and resets Q̂ = Q every L steps. The training evolves with

dynamic reports from the TNC cruising vehicles. When a TNC cruising vehicle sends a

query with its current location information to the center for the next step, the center will

put forward its guidance based on the DQN learning results.

6.4 Performance Evaluation

We use real-world public taxi data [91] from Didi Chuxing, a Chinese TNC. The database

is a collection of all orders for a given month (11/2016) in Chengdu, a Chinese city, including

the time and locations of boarding and leaving the passengers. An example of the data can

96

100 101 102

episode(x2000)

3

4

5

6

7

8

9

10

11

12

13

s
te

p
 c

o
s
t

\
re

v
e

n
u

e

=0.9

=0.7

=0.5

(a) Varying ε, fixed δ = 0.01, α = 0.001, γ =
0.8

100 101 102

episode(x2000)

4

6

8

10

12

14

16

18

s
te

p
 c

o
s
t

\
re

v
e

n
u

e

=0.001

=0.01

=0.005

(b) Varying δ, fixed ε = 0.9, γ = 0.8, α =
0.001

100 101 102

episode(x2000)

2

4

6

8

10

12

14

s
te

p
 c

o
s
t

\
re

v
e

n
u

e

=0.01

=0.005

=0.001

(c) Varying α, fixed ε = 0.9, δ = 0.01, γ = 0.8

100 101 102

episode(x2000)

2

4

6

8

10

12

14

16

s
te

p
 c

o
s
t

\
re

v
e

n
u

e

=0.9

=0.8

=0.7

(d) Varying γ, fixed ε = 0.9, δ = 0.01, α =
0.001

Figure 19: TNC vehicle scheduling parameters tunning

be found in Table 4.

According to the geographical features of Chengdu, we consider a 30×30 grid represent-

ing main downtown area of Chengdu city, where each cell represents 0.25 square kilometers

(500 m×500 m). For considering the competition between TNC cruising vehicles, we sim-

ulate passengers’ distribution and vacant rate ξ of TNC cruising vehicles by using pickup

positions. Assume that a TNC cruising vehicle spends the same amount time (e.g., 1min)

for each step. Although this assumption doesn’t include all of the traffic factors, it is enough

to evaluate the performance of our algorithm. The dynamic model we proposed is appli-

cable to different time and space conditions in city. The distance standard is defined as

D1 = 5 km, D2 = 12 km and base price equals to B = 9 CNY and dynamic price factors

u1 = 1.6 CNY/km, u2 = 2.4 CNY/km. The percentage of TNC company’s interest for each

order p is 10% and unit fuel cost f is 0.5 CNY/km. In our implementation, we choose a

97

5-layer full connected feed-forward neural network as our DNN construction [92] where each

hidden layer has 20 neurons. We set the experience replay memory size as M = 2000, and

mini-batch size is 32. In order to choose the best parameters of DRL algorithm, we evaluate

four parameters: the probability of exploration ε, the discount factor γ, the learning rate α

and the exploration increment parameter δ under a fixed-time urban environment.

As shown in Fig. 19, the average moving step, i.e. the time cost for TNC cruising vehicle

to find the passenger and the average revenue per order, which are computed every 2000

episodes from the beginning to the end of training process at one moment, changes quickly

at first and then stabilizes on a certain value. The above three lines represent the changes in

revenue, the following three lines are the changes in the step cost. The smaller the step cost

and the higher the revenue, the better the performance. Fig. 19a shows the dependence of

step cost and revenue on ε. It can be seen that an optimal ε exists so that we choose ε = 0.9

in all subsequent simulations. To balance the exploration and exploiting, and let agent

have more exploration in the early episode, we adjust the exploration increment parameter

δ slightly. Fig. 19b shows that δ = 0.01 is the optimal choice so that the model has both

the smallest step cost and largest revenue. In Fig. 19c, when α = 0.001, the performance

of the neural network is the best. Fig. 19d plots step cost under different discount factor γ.

We find that γ = 0.8 is the best choice. All of the figures in Fig. 19 show that the revenues

of TNC drivers gradually increases and the searching time decreases with training process

going by.

To evaluate the learning performance, we select one specific day to test the dynamic

scheduling model. We compare average step cost per TNC cruising vehicle to pick up the

passenger and average revenue per order between with scheduling and without scheduling

in the same time period. Specifically, without scheduling means the TNC drivers will search

the passenger and earn the revenue randomly and based on their own experience. We divide

the whole day into seven periods. We randomly choose some guiding results compared with

the unguided one. The model performance improvement ratio is shown in Fig. 20. Fig. 20a

plots the increase of drivers’ revenue after guidance, and each dot is the average of 100

98

0 3 6 9 12 15 18 21

time

-40%

-20%

0

20%

40%

60%

80%

re
v
e
n
u
e
 i
m

p
ro

v
e
m

e
n
t

positive

negative

(a) revenue improvement

0 3 6 9 12 15 18 21

time

-40%

-20%

0

20%

40%

60%

80%

w
a
it
in

g
 t
im

e
 r

e
d
u
c
ti
o
n

positive

negative

(b) waiting time reduction

Figure 20: TNC vehicle scheduling final results

data. In the most of time, the revenue increases and the average improvement ratio is

19.2%. Fig. 20b illustrates that the driver’s searching time significantly reduces in most

cases, and the average shortening rate is 21.7%.

To sum up, the experiments show that the dynamic TNC cruising vehicle route schedul-

ing model could help TNC vehicle find better routes when they are cruising so as to reduce

searching time and improve TNC drivers’ revenue significantly.

6.5 Conclusion

This paper develops an optimization routes scheduling model for TNC cruising vehicles

based on deep reinforcement learning. The model can guide TNC cruising vehicles by the

continuous interaction between TNC service center and urban environments. Especially,

different times and spaces and the competition between TNC cruising vehicles are all fac-

tors that we consider. According to the practical big data of Chengdu TNC vehicles, the

evaluation results provide empirical support of the effectiveness of deep Q-Network for the

TNC cruising vehicle scheduling problem. When TNC cruising vehicles are guided, the

searching time is significantly shorter than without guiding, and the long-term revenues of

TNC drivers also dramatically increase.

99

7 No One Left Behind: Avoid Hot Car Deaths via WiFi

Detection

7.1 Introduction

Every summer, there are some children who have been forgotten in the car and died

due to heatstroke [93]. Some careless parents have forgotten to take the children out, and

finally the irreparable tragedy happened. Just in the United States, 52 children died in

2018 and 43 children died in 2017 because of heatstroke in vehicle [93], and the majority

of these in-car heatstroke deaths are accidents that are preventable. In recent years, the

number of heatstroke deaths of children in vehicles is still increasing. How to remind these

careless parents is an urgent problem to solve. An effective solution to these preventable

tragedies is to effectively detect rear seat children, and send a prompt and accurate alert to

their parents.

There exist some techniques in the market or in the literature to remind parents of the

children left in the rear seat. The most common way is to install a pressure sensor under

the car seat [94], but it cannot distinguish between heavy stuff (e.g., grocery items) and

the child in the rear seat. Thus, it may send annoying false alarms. Another option is to

install a 2-D surveillance camera in the vehicle [95]. According to the image captured by

the camera, it can easily analyze whether the children are left unattended in a parked car

or not. Even though with high accuracy for alerts, all of the activities in the car will be

exposed to the camera, which may lead to the privacy leakage of the driver and passengers.

Some other works try to detect the baby by using the infrared cameras. However, it cannot

detect the baby when the interior environment is already heated in hot summer. Recently,

Diewald et al. in [96] propose an RF-based baby detection system, but additional expensive

devices such as CW-radar are needed.

To address the above issues, we rely on the WiFi signal to detect if there is a child

in the rear seat of the car. On the one hand, by using the WiFi signal, it can avoid the

privacy problems caused by the surveillance camera, and it will not trigger the alarm device

100

incorrectly because of placing heavy stuff. On the other hand, parents don’t need to layout

additional devices for the detection system. The proposed design only needs the commercial

off-the-shelf WiFi devices as the transmitter and receiver. Additionally, with the prosperity

of mobile communications, some luxury cars has already provided WiFi interface, and most

vehicles will have that in the near future. These car embedded WiFi devices can easily be

set as the transmitter for WiFi signals, and the parent’s mobile phones can be set as the

receiver. Thus, the child detection system using WiFi signal can be easily implemented in

cars being used in daily life.

Therefore, in this paper [97], we propose the rear seat children detection via the WiFi

signals using machine learning techniques [90, 98]. The vehicle is not required to equip any

other devices, but just the WiFi cards to implement our detection system. There are two

steps in our detection system. The first one is to identify if there is a pet, a child or some

other sundries in the rear seat of the car by using the static Channel State Information

(CSI) of WiFi signals. Next, we try to distinguish between the pets and children according

to the CSI signals over time. Additionally, CSI is captured by Network Interface Card

(NIC), e.g., Intel 5300 [99]. Our salient contributions are summarized as follows:

• We firstly employ WiFi signal to detect children in the rear seat. Different from

existing child detection works, our method is device-free system, and cannot leakage

the privacy information for the users.

• We apply both the phase and amplitude measurement of CSI for WiFi Signal. More-

over, we calibrate the phase information and reconstruct the CSI with the adjusted

phase.

• A two-step deep learning based child detection method is proposed with CSI. The

child and pet can be roughly distinguished with other sundries placed in the rear seat.

Furthermore, movements for the child and pet can be captured in CSI radio images,

and convolutional neural network is applied to detect children according to these CSI

radio images.

101

Figure 21: WiFi detection experiments: child and dog in rear seat, respectively.

• Our experiment results show the advantages of the proposed deep learning based

system compared to the KNN based method in terms of performance. Meanwhile,

experiment results show that our child detection system is capable of high precision,

and the accuracy is higher than 95%.

7.2 Preliminaries and System Design

In this section, we introduce the background of the WiFi channel state information

(CSI), and establish the detection system based on CSI.

7.2.1 WiFi Channel State Information

Orthogonal Frequency Division Multiplexing (OFDM) technology has attracted great

attention because it can effectively resist intersymbol interference (ISI) and improve system

capacity [100]. It has been widely implemented in WiFi standards. CSI can be obtained

according to a channel estimation process in the 802.11n/g WiFi system. It can repre-

sent the signal transmission proprieties such as a combined effect of absorption, scattering,

reflection and refraction for these OFDM subcarriers. Compared to traditional received

signal strength (RSS) information which only represents received signal strength, CSI could

provide us more detailed fine-grained physical information, which is sensitive to the sur-

rounding environments. When the WiFi environment surrounding the transmitter and

receiver changes, CSI can represent the changes very well.

As WiFi technology continues to mature, CSI has a wide range of applications in various

102

fields. Wang et al. [101] achieve the suspicious object detection according to the CSI complex

value and machine learning technique. Wang et al. [102] present a novel deep-learning-based

indoor localization system using channel state information. Zhang et al. [103] track human

breath status by using commodity WiFi device. CSI has also achieved good performance in

detecting dynamic changes of human body, such as person recognition and activity recog-

nition [104].

According to installing the driver to the off-the-shelf NICs, e.g., the Intel 5300 NIC, we

can extract the channel state information from the commercial WiFi devices. CSI can be

represented as Y = CSI ·X+N , where X and Y are the transmitted and the received signal,

respectively. N is the noise in the surrounding areas. The channel state information CSI

can be estimated according to the communication link between transmitter and receiver, as

shown in Fig. 21. CSI is a Ntx × Nrx × Nsub matrix, where Ntx, Nrx and Nsub represent

the number of transmitter antennas, receiver antennas and the subcarriers, respectively.

Considering the case of one transmitted antenna and one received antenna, the CSI value

for the i-th subcarrier can be obtained from the matrix CSI, which is defined as

CSIi = |CSIi| exp{jφi}. (98)

CSIi is the complex value, which contains both the amplitude |CSIi| and the phase φi

measurement for the channel proprieties of the i-th subcarrier. The WiFi OFDM system

contains 56 subcarriers according to a 40MHz channel, and the driver of Intel 5300 NIC

used in our work can extract the information of 30 subcarriers.

7.2.2 CSI Phase Information Analysis

Due to hardware defects of the Network Interface Card itself, the measured phase usu-

ally contains lots of errors. As the black and blue points shown in Fig. 22, the measurement

phase is randomly distributed between [0, 2π]. According to [105], there are two kinds of

distortions for the measurement phase: one is the Carrier Frequency Offset (CFO). The cen-

ter frequencies of the transmitter and receiver are not perfectly synchronized. Even though

103

-60 -40 -20 0 20 40 60

real

-60

-40

-20

0

20

40

60

im
a

g
e

S6-measured

S6-adjusted

S28-measured

S28-adjusted

Figure 22: Measured CSI & Adjusted CSI.

the CFO is compensated by the receiver’s CFO corrector, signal still carries the residual

CFO, which causes the CSI phase offset constantly change according to the subcarriers.

The other one is Sampling Frequency Offset (SFO) generated by ADC. The transmitter

and receiver sampling frequencies are generally slightly mismatched, which leads to the CSI

phase offset, too. According to the distortions mentioned above, the measurement phase

can be defined as

φ̃i = φi + 2π
mi

K
δ + β + N, (99)

where φ̃i and φi represent the measured phase and true phase for the i-th subcarrier,

respectively. δ is the timing offset due to SFO, β is an unknown offset due to CFO, and

N represents the measurement noise. In equation 99, mi is the subcarrier index of the i-th

subcarrier, and K is the fast Fourier transform (FFT) size, which equals to 64. It’s difficult

to get the true phase information due to the unknown δ and β. In this work, we unwrap

the raw phase information, and then adjust the unwrapping phase information by linear

transformation similar used in [106] to get the estimated phase information.

We find that the measured phase is folded in the range of [−π, π] with the increasing of

the subcarrier index i. Thus, we compute the true measured phase by subtracting multiple

2π. According to the unwrapped phase, the linear transformation method is applied to

104

remove the phased errors. The slope of phase k and the offset b can be estimated as

k =
φ̃30 − φ̃1

m30 −m1
and b =

1

30

30∑
i=1

φ̃i. (100)

Then, the adjusted phase φ̂i can be got by subtracting kmi+b, which can be represented

by

φ̂i = φ̃i − kmi − b. (101)

After we get the adjusted phase, we reconstruct the Channel State Information according

to the adjusted phase as ˆCSIi = |CSIi| exp{jφ̂i}. ˆCSIi is the reconstructed Channel State

Information, and both the amplitude and the phase information are the constant at this

time. For instance, in Fig. 22, the green and red points represent the adjusted phase

information for 6 and 28 subcarriers, respectively. Our detection system can capture the

properties of different objects based on the stable reconstruction CSI of different objects.

7.2.3 System Overview

To detect if there is a child sitting in the rear seat of the car, we set a pair of WiFi

transmitter and receiver near the rear door of the car, as shown in Fig. 21. By using

channel state information from these communication links, our system is able to identify

the classification of objects placed in the middle of these WiFi devices. In most of cases,

people always put children, pets, i.e., dogs and other stuff in the rear seat. The basic idea is

to capture the changes in the wireless channel when different objects are placed. Different

materials and different sizes for the different objects lead to the differences between the

responded CSI.

Based on that, we establish our two-step detection system. In the first step, we roughly

classify different objects by using the static CSI. Due to the different effects of different

objects on the wireless channel, we separate children and pets from other sundries placed in

the rear seat via learning algorithms. We cannot distinguish children and pets at this step,

105

0 5 10 15 20 25 30

Subcarrier index

20

21

22

23

24

25

26

27

28

29

A
m

p
lid

u
te

empty

metal

baby

bag with book

(a) Static CSI

1

1
0

2
0

3
0

4
0

5
0

time slot

1

15

30

S
u

b
c
a

rr
ie

rs

(b) CSI Radio Image

Figure 23: Responding CSI for different objects.

due to the similar effects of children and pets on the wireless channel. In the second step,

according to the different movements of the pets and children, children can be detected via

CSI signals over time. We apply the convolutional neural network (CNN) to classify these

series time signals. After recognizing the left child in the rear seat, the alarm will be sent to

parents. This two-step child detection system can remind parents remember their children

left in the back seat.

7.3 Child Detection via Deep Learning

In this section, we introduce a two-step child detection system by deep learning tech-

niques. The children, pets and other objects can be distinguished in the first step. More-

over, according to the different movements for the child and pet, the child can be detected

according to the convolutional neural network in the second step.

7.3.1 Roughly Child Detection

WiFi signal is very sensitive to the environments surrounding the transmitter and re-

ceiver, especially for the area in the middle of these two devices. Due to different materials

and different size objects have the different effects of the WiFi signal, the classification of

the objects placed in the middle of the devices can be obtained. As shown in Fig. 23a, based

our experiments, the fiber and plastic such as bags, books or clothes have the less effects

on the wireless channel. Theoretically, most of the wireless signal will penetrate directly

through the objects without reflection and scattering. The metal products like laptops or

106

Figure 24: System architecture for baby detection system.

vacuum cup have the strong effects for the wireless channel. In this case, a large portion

of WiFi signal bypass the metal objects, and reflection and scattering are happening. For

the babies, small children and dogs, the blocking properties to wireless signals by the body

made up of blood and skin is between metal and fiber.

Our first step can be achieved based on these differences. We layout three antennas

for transmitter and receiver, respectively. Then a nine-pair channel state information can

be obtained at one time, and each pair of CSI contains 30 subcarriers. According to the

unwrapping and linear transformation introduced in Section 7.2.2, 270 CSI complex values

can be gotten each time. Different from others only using part of the subcarriers’ informa-

tion, we adopt the rich information of all subcarriers. Each CSI sample contains 2 × 270

elements. Such a high-dimensional data brings the computational burden of the neural net-

works. To reduce the dimension of the original data, principle component analysis (PCA)

is adopted. We apply PCA on the normalized training data set XO
Train. Firstly, compute

the covariance matrix C of XO
Train. Then, calculate the eigenvalues and eigenvectors of co-

variance matrix C. By sorting the eigenvalues V = (λ1, λ2, ..., λ540) in descending order as

λ1 > λ2 >, ..., > λ540, the corresponding eigenvectors can be gained as E = [e1e2, ..., e540].

When the sum of first k eigenvalues is greater than 95% of the sum of all eigenvalues, we

select the corresponding eigenvectors Ec = [e1e2, ..., ek] for calculating the principle compo-

nents. At this time, the first k eigenvectors that capture 95% of the total variance, which

107

means the principle components XPCA
Train = XO

T Ec contain more than 95% original informa-

tion. To guarantee the same size between the training data and test data, the principle

components of the test data can also be gained by the eigenvectors Ec as XPCA
Test = XO

TestEc.

Based on the principle component analysis, the dimension of the data can be reduced

to k. Another reason we adopt PCA is that it can eliminate correlations between different

features, which means it can remove the environment noise. In our work, CSI streams

of different subcarriers are highly correlated, because the fixed surrounding environment

has the same impact on different transceiver pairs and different subcarriers. Thus, the

reconstructed data can break the relationship between the original features, and eliminate

interference from environmental noise. Moreover, PCA-based data can represent the differ-

ent characteristics of different objects more clearly.

XPCA
Train and XPCA

Test are the reconstructed data sets. We apply these reconstructed data

sets as the input of the neural network. According to the multi-layer fully connected neural

networks, the output layer represents the classification of the objects. Based on different

objects have different effects on the wireless channel, we define three type of classifications

of the objects. One is children and pets, one is metal products, and the other is other

plastic or fiber stuff. Thus, the number of nodes for the output layer is 3. According to the

SoftMax function, the output values ŷ are between (0, 1). We use cross entropy as the loss

function in this problem, and the cost function L can be shown as

L =
1

B

B∑
i=1

[ylnŷ + (1− y)ln(1− ŷ)], (102)

where B is the batch size in training. y stands for the label of the object. ŷ stands for the

output value of the neural network, which is a probability between 0 and 1. We use Adaptive

Moment Estimation to minimize the loss function. Additionally, the dropout technique is

applied in the framework to reduce overfitting in neural networks.

108

7.3.2 Child Detection with CSI Radio Image

The children and pets can be recognized as one classification in the first step, and

they cannot be distinguished separately due to the similar effects on the wireless channel

according to the static channel state information. Thus, we detect the children according to

the different movements between children and pets. For the children placed in the car seat,

since their bodies are tied by a seat belt, they can only do some movements like shaking

their arms and legs. For the pets, such as dogs, they can move freely in the rear seat.

Based on these differences, we apply deep learning framework to extract the features of the

movements. We collect CSI over the time to do the analysis, which contains features of the

movement. Inspired by features extraction ability of CNN in image processing tasks such

as image classification or object detection, we apply CNN framework to extract the features

of the CSI radio image and do the classification.

CSI radio image is a CSI matrix, and we use the image to represent that matrix, as

shown in Fig. 23b, different colors represent the different values. It is composed of the

amplitude information of CSI from multiple antennas and multiple channels in a period

of time. According to Intel 5300 NIC, channel state information for 30 channels in one

transceiver pair can be gained, hence the CSI amplitude measurement vector At at the t-th

instant can be defined as

Ct = [C1
t , ..., C

n
t , ..., C

N
t]T , (103)

where N equals to 30, Cnt is the CSI amplitude measurement for n-th channel at t-th instant.

We collect the amplitude measurement vectors while a child or a pet is taking some actions.

If we record the movement for a while, the number of T vectors can be got. The CSI radio

image can be defined as

C = [C1, ..., Ct, ..., CT]. (104)

For one image C, the abscissa is the time axis, and Y axis is the index number of 30

109

channels. If we set one antenna for transmitter and three antennas for receiver, then we

have 3 TX-RX pairs and get three CSI radio images at one instance. These radio images

are seen as the input data for the convolutional neural network. Moreover, CNN extracts

the features from these images and identify the classification of these images. The proposed

framework of CNN is shown in Fig. 24. It contains convolutional layers, max pooling

layers and fully connected layers. The first few layers of the neural network are alternating

combinations of convolutional layers and max pooling layers. The subsequent layers are the

fully connected layers and the results of the classification.

First of all, by vertical and horizontal sliding, the kernel portion is convolved over the

entire three CSI radio images in the convolutional layer and the dot product of the image

and kernel weights is computed. Each radio image is a feature map, and the calculation

result of the l-th convolutional layer is shown as

X l
j = σ

∑
i∈Mj

X l−1
i ∗K l

ij + blj

 , (105)

where i and j are the feature map index of the convolutional layers, blj is the bias, and K l
ij

is the responding kernel. ∗ represents the convolutional operation and σ is the activation

function. According to the convolutional layer, we can extract the movement features from

CSI radio images. Next, before delivering the results to the next convolutional layer, we

apply the data batch normalization layer and max pooling layer to speed up the training

process and reduce the sensitivity to the initial network configuration. Finally, two fully

connected layers are connected to the convolutional layers, dropout is applied to prevent

overfitting problem. SoftMax function converts the output value from fully connected layers

into the probability value between (0, 1) for the classification.

7.4 Experiment Results

We apply our detection system on a pair of desk computers as transmitter and receiver,

both of which are equipped an Intel 5300 NIC and three 9dBi omni-directional WiFi dual

110

band antennas. The Linux 802.11n CSI Tool [99] is installed on both desk computers. We

choose channel 64, which the center frequency is 5.32GHz with 40 MHz bandwidth, as our

wireless communication parameter. For both of the two steps, the transmission rate for

transmitter is 100pkt/sec. We place the entire experimental platform in the rear seat of the

car.

First of all, for the first step, we conduct lots of experiments to verify that the proposed

system can effectively separate children and pets from other stuff. We experiment with

twenty different objects, which can be classified into three categories. One is metal, such

as laptop in the bag or metal bottle. One is other stuff, like the fiber backpack and plastic

bag with cookies. The other is children and dogs. For each experiment, we slightly change

the target object to collect static channel state information. For the PCA part, we take

the first k = 90 eigenvectors which can capture more than 95% of the total variance.

This 90 eigenvectors are principle components, which can contain more than 95% original

information. We adopt three hidden layers fully connected neural network to solve the

classification problem, with 256,128 and 64 nodes for each hidden layer, respectively. To

evaluate the performance of the proposed system, we choose different percentages of objects’

experimental data as training data, and set the rest part as the test data. For instance, if we

choose 60% data as the training data, which means we select the number of 12 objects as the

training objects and set the remaining 8 new objects as the test objects. K-nearest neighbors

algorithm (KNN) is used as our baseline model. The results are shown in Fig. 25a. As the

percentage of training objects used increases, the performance of KNN based method and

our deep learning based method increase accordingly. Moreover, our performance is always

better than KNN based method. More specifically, if we use enough training samples, i.e.

apply more than 60% objects as training objects, accuracy will be above 95%.

After the children and pets are distinguished from other objects in the first step, CSI

radio images which contain the movements of children and pets are captured in the second

step. We take the experiment with different children and dogs at different times. The

size of each CSI radio image is 52 × 30. Our CNN framework contains two convolutional

111

(a) Accuracy for recognizing babies and pets.

0 5 10 15 20 25 30 35 40 45 50

Episodes 5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
c
c
u

ra
c
y

DL-40% for training

DL-60% for training

DL-80% for training

KNN-80% in memory

(b) Accuracy for baby identification from pets.

Figure 25: Detection Accuracy with different percentages of training data used.

layers which have 32 and 64 kernels, respectively. Two max pooling layers and two fully

connected layers are implemented in the network. Similar to step 1, we collect lots of the

CSI radio images, randomly select part of the experimental data as the training data set,

and set the rest part as the test data set. Fig. 25b shows the test accuracy of different

percentages data using in training. Test Accuracy increases as the percentage of training

data increases. When we have enough training data, such as 80% of the experimental data,

the accuracy will reach 98% or more. Additionally, comparing to the KNN based method,

the performance improves significantly.

Based on our two-step child detection system, parents can effectively remember the

children who have forgotten in the back seat of the car, and the tragedy of children dying

from heat stroke can be avoided.

7.5 Conclusion

To avoid hot car deaths, we have developed a two-step rear seat child detection system

based on commercial WiFi devices using deep learning method. Based on the different

responses of channel state information with different objects, we can distinguish children

and pets from other objects by applying deep learning framework in the first step. Mean-

while, the phase information for the CSI is adjusted according to linear transformation

method. Furthermore, children can be detected more accurately by the difference between

112

the movements of child and pet, which are included in CSI radio images. Accordingly,

convolutional neural network is adopted to analyze these CSI radio images in the second

step. The multiple experiments show that our deep learning approach has a significant per-

formance improvement over KNN based detection method, and the recognition accuracy is

above 95%. In the future, we will directly apply the NIC in the mobile phones or vehicles

and use CSI signal to detect the vital signs to cope with babies sleeping.

113

8 Future Work

In my future research, I will continue my investigation on intelligent mobile edging,

where high efficiency, low cost, and good decision are still the main concepts. The works

in this dissertation have shown the feasibility and efficiency of how mobile networks make

AI better, how AI makes mobile networks better, and how AI and mobile networks can

efficiently enable various intelligent applications. But there are still some problems that

need to be solved or further explored. For example, we assume the communication and

computing environments are static in current energy/time efficient FL works. However,

such ideal cases limit the implementation of the proposed algorithms. In addition, with the

ever-increasing computing and communication capabilities of mobile devices, tremendous

new applications will continue to be generated and implemented on edge devices. With my

extensive experience in deep learning and wireless communications, I plan to conduct future

research in the following directions:

• DRL for Task Placement in Multi-Access Edge Computing: Cooperative

Multi-Access Edge Computing (MEC) is a promising paradigm for next-generation

mobile networks. However, when the number of users explodes, the computational

complexity of existing optimization or learning based task placement approaches in the

cooperative MEC can increase significantly, which leads to intolerable MEC decision-

making delay. Therefore, we plan to propose a mean field game (MFG) guided deep

reinforcement learning (DRL) approach for the task placement in the cooperative

MEC, which can help servers make timely task placement decisions, and significantly

reduce average service delay. Instead of applying MFG or DRL separately, we jointly

leverage MFG and DRL for task placement and let the equilibrium of MFG guide

the learning directions of DRL. We also want to ensure that the MFG and DRL ap-

proaches are consistent with the same goal. Thus two approaches can be optimized

iteratively to improve the MEC networks’ performance.

114

• Efficient FL Training with DRL: The energy and time consumption of mobile

devices in FL training can be significantly reduced with the proposed algorithms.

However, some practical issues still need to be carefully considered in the implemen-

tation of FL, such as data and device heterogeneity, communication and computing

run-time variance, etc. Due to the high-dimensional optimization space and time-

varying characteristics, such challenges cannot be easily optimized by the traditional

methods. Thus, we plan to apply the RL techniques to solve the aforementioned

challenges. In DRL, both the communication and computing environments, system

architectures, and model parameters can be considered the state. The optimal control

actions, such as the selected participating users and the model compression strategies,

will be determined accordingly in each FL round. With the help of DRL, the control

strategies of the FL training can be made automatically in each round, thus reducing

the total time and energy consumption with dynamic communication and computing

environments.

• Extensive Applications of Efficient FL: With the massive growth of personal

data with end users and the rapid popularization of the power-efficient mobile edge

devices, FL over mobile devices can be applied to a large number of applications and

can be involved in every area of daily life. With energy-efficient training strategies,

FL over mobile devices is perfectly compatible with lifelong on-device learning that

requires a constant training process and is battery-driven. For example, it can be

applied to some real-time assisting services like the voice UI, keyboard prediction,

and some low-latency control scenarios such as gaming and automated guided vehicles.

Moreover, along with the exponential improvement in on-device AI capabilities, more

sensing data from smart sensors like the cameras, microphones, and compass, can be

effectively utilized in Industrial IoT, e-health, finance, and social networks, etc.

115

Bibliography

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized data,” in Proc.

International Conference on Artificial Intelligence and Statistics (AISTATS), Fort

Lauderdale, FL, April 2017.

[2] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications,

trends, technologies, and open research problems,” IEEE network, vol. 34, no. 3, pp.

134–142, February 2019.

[3] N. Kato, B. Mao, F. Tang, Y. Kawamoto, and J. Liu, “Ten challenges in advancing

machine learning technologies toward 6G,” IEEE Wireless Communications, vol. 27,

no. 3, pp. 96–103, April 2020.

[4] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and

computation offloading,” IEEE Communications Surveys Tutorials, vol. 19, no. 3, pp.

1628–1656, March 2017.

[5] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H. Eich-

ner, C. Kiddon, and D. Ramage, “Federated learning for mobile keyboard prediction,”

arXiv:1811.03604, June 2018.

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press

Cambridge, 1998, vol. 1.

[7] Qualcomm, “5G+AI: The ingredients fueling tomorrow’s tech

innovations,” https://www.qualcomm.com/news/onq/2020/02/04/

5gai-ingredients-fueling-tomorrows-tech-innovations, accessed January, 2021.

116

[8] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, and W. Shi, “Fed-

erated learning of predictive models from federated electronic health records,” Inter-

national journal of medical informatics, vol. 112, pp. 59–67, April 2018.

[9] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept

and applications,” ACM Transactions on Intelligent Systems and Technology (TIST),

vol. 10, no. 2, pp. 1–19, Januray 2019.

[10] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le, “Don’t decay the learning rate,

increase the batch size,” in Proc. International Conference on Learning Representa-

tions, Vancouver, CANADA, April 2018.

[11] H. Yu and R. Jin, “On the computation and communication complexity of parallel

sgd with dynamic batch sizes for stochastic non-convex optimization,” in Proc. Inter-

national Conference on Artificial Intelligence and Statistics (AISTATS), Long Beach,

VA, June 2019.

[12] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufvesson,

A. Benjebbour, and G. Wunder, “5G: A tutorial overview of standards, trials, chal-

lenges, deployment, and practice,” IEEE journal on selected areas in communications,

vol. 35, no. 6, pp. 1201–1221, April 2017.

[13] W. Saad, M. Bennis, and M. Chen, “A vision of 6g wireless systems: Applications,

trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp.

134–142, October 2020.

[14] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch,

Y. Jia, and K. He, “Accurate, large minibatch sgd: Training imagenet in 1 hour,”

117

arXiv:1706.02677, April 2018.

[15] L. Li, D. Shi, R. Hou, H. Li, M. Pan, and Z. Han, “To talk or to work: Flexible

communication compression for energy efficient federated learning over heterogeneous

mobile edge devices,” in Proc. IEEE International Conference on Computer Commu-

nications (INFOCOM), Virtual Conference, May 2021.

[16] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong, “Federated

learning over wireless networks: Optimization model design and analysis,” in Proc.

IEEE Conference on Computer Communications, Paris, France, April 2019.

[17] C. Dinh, N. H. Tran, M. N. Nguyen, C. S. Hong, W. Bao, A. Zomaya, and V. Gramoli,

“Federated learning over wireless networks: Convergence analysis and resource allo-

cation,” arXiv:1910.13067, October 2019.

[18] Y. Zhan, P. Li, and S. Guo, “Experience-driven computational resource allocation of

federated learning by deep reinforcement learning,” in Proc. IEEE International Par-

allel and Distributed Processing Symposium (IPDPS), New Orleans, LA, May 2020.

[19] R. Chen, L. Li, K. Xue, C. Zhang, M. Pan, and Y. Fang, “Energy efficient federated

learning over heterogeneous mobile devices via joint design of weight quantization and

wireless transmission,” arXiv:1406.2661, December 2021.

[20] D. Shi, L. Li, M. Wu, M. Shu, R. Yu, M. Pan, and Z. Han, “To talk or to work:

Dynamic batch sizes assisted time efficient federated learning over future mobile edge

devices,” Submit to IEEE Transactions on Wireless Communications, 2022.

118

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proc. the IEEE conference on computer vision and pattern recognition, Las Vegas,

NV, June 2016.

[22] N. Zhang, Y. Chen, and J. Wang, “Proc. image parallel processing based on gpu,”

in 2010 2nd International Conference on Advanced Computer Control, vol. 3, March

2010, pp. 367–370.

[23] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi, “Don’t use large mini-batches, use local

sgd,” in Proc. International Conference on Learning Representations, Addis Ababa,

Ethiopia, April 2020.

[24] S. L. Smith and Q. V. Le, “A bayesian perspective on generalization and stochastic

gradient descent,” in Proc. International Conference on Learning Representations,

Vancouver, CANADA, April 2018.

[25] H. Yu, S. Yang, and S. Zhu, “Parallel restarted sgd with faster convergence and less

communication: Demystifying why model averaging works for deep learning,” in Proc.

the AAAI Conference on Artificial Intelligence, Honolulu, HI, January 2019.

[26] X. Mei, X. Chu, H. Liu, Y.-W. Leung, and Z. Li, “Energy efficient real-time task

scheduling on CPU-GPU hybrid clusters,” in Proc. IEEE Conference on Computer

Communications (INFOCOM), Atlanta, GA, May 2017.

[27] Y. Abe, H. Sasaki, S. Kato, K. Inoue, M. Edahiro, and M. Peres, “Power and perfor-

mance characterization and modeling of GPU-accelerated systems,” in Proc. IEEE in-

ternational parallel and distributed processing symposium, Phoenix, AZ, August 2014.

119

[28] S. Schaible, “Fractional programming. ii, on dinkelbach’s algorithm,” Management

science, vol. 22, no. 8, pp. 868–873, April 1976.

[29] G. Scutari, F. Facchinei, and L. Lampariello, “Parallel and distributed methods for

constrained nonconvex optimization—part i: Theory,” IEEE Transactions on Signal

Processing, vol. 65, no. 8, pp. 1929–1944, December 2016.

[30] Apple’s Siri Team, “Hey siri: An on-device dnn-powered voice trigger for apple’s per-

sonal assistant,” https://machinelearning.apple.com/research/hey-siri, accessed June,

2020.

[31] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air computa-

tion,” IEEE Transactions on Wireless Communications, vol. 19, no. 3, pp. 2022–2035,

2020.

[32] X. Fan, Y. Wang, Y. Huo, and Z. Tian, “Joint optimization of communications and

federated learning over the air,” arXiv:2104.03490, April 2021.

[33] D. Shi, C. Huang, L. Li, H. Wang, X. Zhou, M. Shu, and M. Pan, “Energy and

spectrum efficient federated learning via high-precision over-the-air computation,”

Submit to IEEE Transactions on Mobile Computing, 2022.

[34] M. Sriharsha, S. Dama, and K. Kuchi, “A complete cell search and synchronization

in lte,” EURASIP Journal on Wireless Communications and Networking, vol. 111,

no. 1, pp. 1–14, March 2017.

[35] O. Abari, H. Rahul, D. Katabi, and M. Pant, “Airshare: Distributed coherent trans-

mission made seamless,” in IEEE Conference on Computer Communications (INFO-

COM), Hong Kong, April 2015.

120

[36] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi, “Federated learning

with compression: Unified analysis and sharp guarantees,” in Proc. International

Conference on Artificial Intelligence and Statistics. Virtual Conference: PMLR,

April 2021, pp. 2350–2358.

[37] IBM, “Ibm cplex optimizer,” https://www.ibm.com/analytics/cplex-optimizer, ac-

cessed April 4, 2021.

[38] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani, “Fedpaq: A

communication-efficient federated learning method with periodic averaging and quan-

tization,” in Proc. International Conference on Artificial Intelligence and Statistics,

virtual, August 2020.

[39] G. Zhu, Y. Du, D. Gündüz, and K. Huang, “One-bit over-the-air aggrega-

tion for communication-efficient federated edge learning: Design and conver-

gence analysis,” IEEE Transactions on Wireless Communications, November 2020,

doi:10.1109/TWC.2020.3039309.

[40] R. Bonghi, “Jetson stats,” https://github.com/rbonghi/jetson stats, accessed March,

2021.

[41] D. Shi, L. Li, R. Chen, P. Prakash, M. Pan, and Y. Fang, “Towards energy efficient

federated learning over 5g+ mobile devices,” accepted by IEEE Wireless Communi-

cations, 2021.

[42] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with memory,” in Proc.

of Advances in Neural Information Processing Systems, Montréal, Canada, December

2018.

121

[43] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd: Communication-

efficient SGD via gradient quantization and encoding,” in Proc. of Advances in Neural

Information Processing Systems (NIPS), Long Beach, CA, December 2017.

[44] F. Fu, Y. Hu, Y. He, J. Jiang, Y. Shao, C. Zhang, and B. Cui, “Don’t waste your

bits! squeeze activations and gradients for deep neural networks via tinyscript,” in

Proc. International Conference on Machine Learning. virtual: PMLR, July 2020,

pp. 3304–3314.

[45] G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for low-latency

federated edge learning,” IEEE Transactions on Wireless Communications, vol. 19,

no. 1, pp. 491–506, October 2020.

[46] X. Cao, G. Zhu, J. Xu, and K. Huang, “Optimized power control for over-the-air

computation in fading channels,” IEEE Transactions on Wireless Communications,

vol. 19, no. 11, pp. 7498–7513, August 2020.

[47] M. M. Amiri and D. Gündüz, “Federated learning over wireless fading channels,”

IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3546–3557, Febru-

ary 2020.

[48] C. Yi, S. Huang, and J. Cai, “Joint resource allocation for device-to-device commu-

nication assisted fog computing,” IEEE Transactions on Mobile Computing, pp. 1–1,

November 2019.

[49] Z. Han, D. Niyato, W. Saad, and T. Başar, Game Theory for Next Generation Wire-

less and Communication Networks: Modeling, Analysis, and Design. Cambridge

University Press, 2019.

122

[50] A. Ibrahim, T. M. N. Ngatched, and O. A. Dobre, “Using bender’s decomposition for

optimal power control and routing in multihop D2D cellular systems,” IEEE Trans-

actions on Wireless Communications, vol. 18, no. 11, pp. 5050–5064, August 2019.

[51] M. I. Ashraf, C. Liu, M. Bennis, W. Saad, and C. S. Hong, “Dynamic resource

allocation for optimized latency and reliability in vehicular networks,” IEEE Access,

vol. 6, pp. 63 843–63 858, October 2018.

[52] Y. Wei, F. R. Yu, M. Song, and Z. Han, “User scheduling and resource allocation in

hetnets with hybrid energy supply: An actor-critic reinforcement learning approach,”

IEEE Transactions on Wireless Communications, vol. 17, no. 1, pp. 680–692, January

2018.

[53] L. Liang, H. Ye, and G. Y. Li, “Spectrum sharing in vehicular networks based on multi-

agent reinforcement learning,” IEEE Journal on Selected Areas in Communications,

vol. 37, no. 10, pp. 2282–2292, October 2019.

[54] H. Ye, G. Y. Li, and B. F. Juang, “Deep reinforcement learning based resource alloca-

tion for v2v communications,” IEEE Transactions on Vehicular Technology, vol. 68,

no. 4, pp. 3163–3173, April 2019.

[55] F. Wang, L. Song, Z. Han, Q. Zhao, and X. Wang, “Joint scheduling and resource

allocation for device-to-device underlay communication,” in Proc. IEEE wireless com-

munications and networking conference (WCNC), Shanghai, China, April 2013.

[56] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, “Multi-agent

actor-critic for mixed cooperative-competitive environments,” in Proc. Advances in

neural information processing systems, Long Beach, CA, December 2017.

123

[57] D. Shi, L. Li, T. Ohtsuki, M. Pan, Z. Han, and V. Poor, “Make smart decisions

faster: Deciding d2d resource allocation via stackelberg game guided multi-agent

deep reinforcement learning,” IEEE Transactions on Mobile Computing, June 2021,

DOI:10.1109/TMC.2021.3085206, © 2021 IEEE. Reprinted, with permission.

[58] G. Yu, L. Xu, D. Feng, R. Yin, G. Y. Li, and Y. Jiang, “Joint mode selection and re-

source allocation for device-to-device communications,” IEEE Transactions on Com-

munications, vol. 62, no. 11, pp. 3814–3824, October 2014.

[59] A. Abdallah, M. M. Mansour, and A. Chehab, “Power control and channel allocation

for D2D underlaid cellular networks,” IEEE Transactions on Communications, vol. 66,

no. 7, pp. 3217–3234, March 2018.

[60] L. Li, D. Shi, R. Hou, X. Li, J. Wang, H. Li, and M. Pan, “Data-driven optimization

for cooperative edge service provisioning with demand uncertainty,” IEEE Internet

of Things Journal, vol. 8, no. 6, pp. 4317–4328, March 2021.

[61] N. Sawyer and D. B. Smith, “Flexible resource allocation in device-to-device commu-

nications using stackelberg game theory,” IEEE Transactions on Communications,

vol. 67, no. 1, pp. 653–667, October 2019.

[62] H. Zhang, W. Ding, F. Yang, J. Song, and Z. Han, “Resource allocation in het-

erogeneous network with visible light communication and D2D: A hierarchical game

approach,” IEEE Transactions on Communications, vol. 67, no. 11, pp. 7616–7628,

August 2019.

[63] X. Zhang, M. Peng, S. Yan, and Y. Sun, “Deep reinforcement learning based mode

selection and resource allocation for cellular v2x communications,” IEEE Internet of

124

Things Journal, December 2019, DOI:10.1109/JIOT.2019.2962715.

[64] J. Hu and M. P. Wellman, “Multiagent reinforcement learning: Theoretical framework

and an algorithm,” in Proc. International Conference on Machine Learning (ICML),

Madison, WI, July 1998.

[65] J. Hu and M. Wellman, “Nash Q-learning for general-sum stochastic games,” Journal

of machine learning research, vol. 4, pp. 1039–1069, November 2003.

[66] V. Könönen, “Asymmetric multiagent reinforcement learning,” Web Intelligence and

Agent Systems: An international journal, vol. 2, no. 2, pp. 105–121, October 2004.

[67] C. Cheng, Z. Zhu, B. Xin, and C. Chen, “A multi-agent reinforcement learning al-

gorithm based on stackelberg game,” in Proc. Data Driven Control and Learning

Systems (DDCLS), Chongqing, China, May 2017.

[68] M. L. Littman, “Friend-or-foe Q-learning in general-sum games,” in Proc. Interna-

tional Conference on Machine Learning (ICML), Williamstown, MA, July 2001.

[69] M. Bowling and M. Veloso, “Rational and convergent learning in stochastic games,”

in Proc. International Joint Conference on Artificial Intelligence (IJCAI), Seattle,

WA, August 2001.

[70] S. Li, Y. Wu, X. Cui, H. Dong, F. Fang, and S. Russell, “Robust multi-agent rein-

forcement learning via minimax deep deterministic policy gradient,” in Proc. AAAI

Conference on Artificial Intelligence, Honolulu, HI, January 2019.

[71] H. Zhang, W. Chen, Z. Huang, M. Li, Y. Yang, W. Zhang, and J. Wang, “Bi-level

actor-critic for multi-agent coordination,” in Proc. AAAI Conference on Artificial

Intelligence, New York, NY, February 2020.

125

[72] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, “Mean field multi-

agent reinforcement learning,” in Proc. International Conference on Machine Learning

(ICML), Stockholm, Sweden, July 2018.

[73] D. Mguni, J. Jennings, and E. M. de Cote, “Decentralised learning in systems with

many, many strategic agents,” in Proc. Thirty-Second AAAI Conference on Artificial

Intelligence, New Orleans, LA, February 2018.

[74] M. Li, Z. Qin, Y. Jiao, Y. Yang, J. Wang, C. Wang, G. Wu, and J. Ye, “Efficient

ridesharing order dispatching with mean field multi-agent reinforcement learning,” in

Proc. ACM The World Wide Web Conference, San Francisco, CA, May 2019, pp.

983–994.

[75] D. Shi, H. Gao, L. Wang, M. Pan, Z. Han, and H. V. Poor, “Mean field

game guided deep reinforcement learning for task placement in cooperative

multi-access edge computing,” IEEE Internet of Things Journal, March 2020,

DOI:10.1109/JIOT.2020.2983741.

[76] C. Szepesvári and M. L. Littman, “A unified analysis of value-function-based

reinforcement-learning algorithms,” Neural computation, vol. 11, no. 8, pp. 2017–

2060, October 1999.

[77] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,

A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Has-

sabis, “Human-level control through deep reinforcement learning,” Nature, vol. 518,

no. 7540, pp. 529–533, February 2015.

126

[78] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint

arXiv:1509.02971, 2015.

[79] Y. Han, X. Tao, and X. Zhang, “Power allocation for device-to-device underlay com-

munication with femtocell using stackelberg game,” in Proc. IEEE Wireless Commu-

nications and Networking Conference (WCNC), Barcelona, Spain, April 2018.

[80] T. Zhang, K. Zhu, and J. Wang, “Energy-efficient mode selection and resource al-

location for d2d-enabled heterogeneous networks: A deep reinforcement learning ap-

proach,” IEEE Transactions on Wireless Communications, vol. 20, no. 2, pp. 1175–

1187, February 2021.

[81] Z. Li and C. Guo, “Multi-agent deep reinforcement learning based spectrum alloca-

tion for d2d underlay communications,” IEEE Transactions on Vehicular Technology,

vol. 69, no. 2, pp. 1828–1840, February 2020.

[82] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv:1312.5602,

December 2013.

[83] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks,

vol. 61, pp. 85–117, 2015.

[84] M. Qu, H. Zhu, J. Liu, G. Liu, and H. Xiong, “A cost-effective recommender system for

taxi drivers,” in Proceedings of the 20th ACM International Conference on Knowledge

Discovery and Data Mining (SIGKDD), New York, NY, August 2014.

127

[85] J. W. Powell, Y. Huang, F. Bastani, and M. Ji, “Towards reducing taxicab cruising

time using spatio-temporal profitability maps,” in International Symposium on Spatial

and Temporal Databases (SSTD), Minneapolis, MN, August 2011.

[86] X. Du, H. Zhang, H. Van Nguyen, and Z. Han, “Stacked LSTM deep learning model

for traffic prediction in vehicle-to-vehicle communication,” in Vehicular Technology

Conference (VTC-Fall), Canada, September 2017.

[87] T. Verma, P. Varakantham, S. Kraus, and H. C. Lau, “Augmenting decisions of taxi

drivers through reinforcement learning for improving revenues,” in Proc. of Inter-

national Conference on Automated Planning and Scheduling, Pittsburgh, PA, June

2017.

[88] M. Han, P. Senellart, S. Bressan, and H. Wu, “Routing an autonomous taxi with

reinforcement learning,” in Proc. International on Conference on Information and

Knowledge Management (CIKM), Indianapolis, IN, October 2016.

[89] D. Shi, J. Ding, S. M. Errapotu, H. Yue, W. Xu, X. Zhou, and M. Pan, “Deep q-

network based route scheduling for tnc vehicles with passengers’ location differential

privacy,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 7681–7692, March 2019.

[90] D. Shi, J. Ding, S. M. Errapotu, H. Yue, X. Zhou, and M. Pan, “Deep q-network

based route scheduling for transportation network company vehicles,” in Proc. IEEE

Global Communications Conference (GLOBECOM), Abu, Dhabi, December 2018, ©

2018 IEEE. Reprinted, with permission.

[91] D. COMPANY, “Gaia initiative,” https://outreach.didichuxing.com/research/

opendata/en/, accessed April 4, 2019.

128

[92] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press

Cambridge, 2016, vol. 1.

[93] O. Kids and Cars, “Heatstroke deaths of children in vehicles,” https://www.

kidsandcars.org/how-kids-get-hurt/heat-stroke/, accessed April 1, 2019.

[94] E. Gold, “Sensorsafe securemax smart infant car seat,” https://www.evenflo.com/

gold/, accessed April 1, 2019.

[95] B. Security, “Dual view car camera,” https://www.brickhousesecurity.com/

car-cameras/, accessed April 1, 2019.

[96] A. R. Diewald, J. Landwehr, D. Tatarinov, P. Di Mario Cola, C. Watgen, C. Mica,

M. Lu-Dac, P. Larsen, O. Gomez, and T. Goniva, “Rf-based child occupation detection

in the vehicle interior,” in 2016 17th International Radar Symposium (IRS), May 2016.

[97] D. Shi, J. Lu, J. Wang, L. Li, K. Liu, and M. Pan, “No one left behind: Avoid hot car

deaths via wifi detection,” in Proc. IEEE International Conference on Communica-

tions (ICC), Dublin, Ireland, June 2020, © 2020 IEEE. Reprinted, with permission.

[98] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of machine learning in

wireless networks: Key techniques and open issues,” IEEE Communications Surveys

Tutorials, vol. 21, no. 4, pp. 3072–3108, Fourthquarter 2019.

[99] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering 802.11 n

traces with channel state information,” ACM SIGCOMM Computer Communication

Review, vol. 41, no. 1, pp. 53–53, Jan 2011.

129

[100] W. Xu, X. Li, C. Lee, M. Pan, and Z. Feng, “Joint sensing duration adaptation, user

matching, and power allocation for cognitive ofdm-noma systems,” IEEE Transactions

on Wireless Communications, vol. 17, no. 2, pp. 1269–1282, Feb 2018.

[101] C. Wang, J. Liu, Y. Chen, H. Liu, and Y. Wang, “Towards in-baggage suspicious ob-

ject detection using commodity wifi,” in 2018 IEEE Conference on Communications

and Network Security (CNS), May 2018.

[102] X. Wang, L. Gao, S. Mao, and S. Pandey, “Csi-based fingerprinting for indoor lo-

calization: A deep learning approach,” IEEE Transactions on Vehicular Technology,

vol. 66, no. 1, pp. 763–776, Jan 2017.

[103] D. Zhang, Y. Hu, Y. Chen, and B. Zeng, “Breathtrack: Tracking indoor human

breath status via commodity wifi,” IEEE Internet of Things Journal, vol. 6, no. 2,

pp. 3899–3911, April 2019.

[104] X. Ma, Y. Zhao, L. Zhang, Q. Gao, M. Pan, and J. Wang, “Practical device-free

gesture recognition using wifi signals based on metalearning,” IEEE Transactions on

Industrial Informatics, vol. 16, no. 1, pp. 228–237, Jan 2020.

[105] C. Wu, Z. Yang, Z. Zhou, K. Qian, Y. Liu, and M. Liu, “Phaseu: Real-time los

identification with wifi,” in 2015 IEEE Conference on Computer Communications

(INFOCOM), April 2015.

[106] X. Wang, L. Gao, and S. Mao, “Csi phase fingerprinting for indoor localization with

a deep learning approach,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1113–

1123, Dec 2016.

130

