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ABSTRACT 

The development of seismic-imaging technology has substantially improved the 

exploration of subsurface deposits of crude oil, natural gas and minerals. Recent advances 

in data capture, processing power and storage capabilities have enabled us to analyze 

large volumes of seismic data. In this study we report on the implementation of machine 

learning and data mining techniques for analysis of seismic data to reveal salt deposits 

underneath the soil. Several seismic attributes have been extracted from these datasets. 

Using information gain, the best six attributes (homogeneity, contrast, energy, median, 

peaks and average energy) have been selected for further classification. Finally we 

compared the results obtained using four different clustering techniques: k-means 

algorithm, expectation maximization algorithm, min-cut algorithm and Euclidean 

clustering. 
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Chapter 1 

Introduction 

Machine learning is the study of how to develop algorithms that can make the learner (the 

machine) recognize patterns from complex data and make accurate predictions. When 

applied to raw data, most learning algorithms are unable to make precise predictions. 

Instead, the algorithms are applied to features extracted from the raw data. These features 

are developed by experts in the field and contain important prior knowledge that machine 

learning would be unable to discover of its own. Here in this thesis, we have applied 

machine learning algorithms to seismic features, extracted from the data provided by our 

collaborator Repsol Energy. This chapter focuses on the basics of machine learning as 

well as seismic data―which is important for a better understanding of the features used, 

and ultimately to attain more accurate predictions.  

1.1 Machine Learning and Data Mining 

With the advancement of computers and digital storage, an increasingly large amount of 

data is collected and stored every day. These large amounts of raw data often have hidden 

information lying beneath it. Analyzing and extracting information from these large 

datasets is challenging. Exploring large data in tabular form is nearly impossible. 

Although some of these data can be plotted graphically, due to the size of the datasets, 

local patterns hidden in the data are often overlooked. The goal of data mining is to 

discover patterns in large datasets involving methods at the intersection of machine 

learning, statistics and database systems. 
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Machine learning evolved from the broad field of artificial intelligence with the objective 

of growing intelligent abilities in machines. To quote Arthur Samuel, it is the “field of 

study that gives computers the ability to learn without being explicitly programmed” [1]. 

In machine learning, we write a programmable algorithm such that it optimizes some 

performing criteria with the help of example data or past experience. That is, we try to 

create a model which has parameters, and we try to optimize these parameters with the 

help of training data or past experience. Supervised learning requires labeled examples 

[2]–[5] to predict correct labels for novel inputs;  labelling large datasets requires 

significant amount of resources. In the unsupervised feature learning approach, the goal is 

to learn a useful feature representation and forming data groups  only from unlabeled 

examples [6]. 

To analyze the seismic data, provided by our collaborator Repsol Energy, we extracted 

relevant features. We studied a class of algorithms to analyze the datasets; in order to find 

the most efficient algorithm it’s important to understand the higher level concepts 

encoded in the seismic data. 

1.2 Seismic Data 

Seismology [7] is one of the most powerful methods of investigating subterranean 

formation of crude oil and mineral deposits. In this technique [8]–[10], shock waves or 

sound waves are generated by a source (e.g., air guns or vibrators). These waves pass 

through the Earth and some of their energy is reflected back to surface and captured by 

detectors or receptors known as geophones ( when in ground) or hydrophones ( when on 

water) [Figure 1.1]. From these collected data, a model of the subsurface structure is 
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generated.  Once the seismic data are collected, seismic processing is done, where the 

data is manipulated into an image. 

 

Figure 1.1 Seismic data collection by the generation of sound waves and the detection of 

reflected waves by sensors [adapted fromhttp://blog.cloudera.com/b;og/2012/01/seismic- 

data-science-hadoop-use-case] 

A set of seismic data can be classified as two-dimensional (2D), three-dimensional (3D) 

or four-dimensional (4D). A set of 2D seismic data represents a two-dimensional section 

of a part of the subsurface. 3D seismic data is the volumetric display of the underground 

structure and 4D datasets are the same collected at at least two different times. 

There are some terms commonly used in seismology [11]. Each individual reflection 

mentioned above is called a trace or seismic line. To reduce the probability of errors, the 

traces are not formed from one single reflection. Multiple shots are produced from the 
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same position, and an average of their reflections is taken. This average value is then 

represented as a single trace. There are two more terms related to seismic data― inlines 

and crosslines. Inlines represent the traces that were collected parallel to the direction of 

data acquisition, whereas crosslines represents traces which were collected perpendicular 

to the direction of data acquisition [Figure 1.2].  

 

Figure 1.2 Schematic diagram of a three dimensional seismic data with seismic traces 

and cross lines. [adapted from http://www.glossary.oilfeild.slb.com/en/Terms.aspx?Look 

In= term%20name&filter=crossline] 

Seismic data is one of the most important forms of data for oil and gas industry for 

detecting the position of the oil.  
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1.3 Seismic Data and Machine Learning 

Seismic exploration yields large volumes of data and a manual analysis of such large 

amount of data would require a significant amount of resources. Alternatively, machine 

learning can be used to analyze a given seismic data to locate and extract the structure 

and position of a certain seismic feature (e.g., salt structure) in it. Knowing the structure 

and position of the salt is important to locate the presence of oil and natural gas below it 

[12]–[14]. Best seismic attributes for categorizing a salt structure were selected. We 

applied a class of machine learning algorithms to the seismic images with an aim of 

distinctly classifying the salt from the rest of the image. 

1.4 Our Approach 

The data were first preprocessed before applying any machine learning techniques to it. 

Preprocessing of data is necessary to extract the important information from the data and 

to eliminate the unwanted information that might not help in classification or may hinder 

the results. Moreover, preprocessing of data is necessary to eliminate various noises in 

the data. 

Data preprocessing is done by first extracting various attributes from the data [15]. 

Again, selection of the best few attributes was necessary as some of these attributes might 

not give us important information and hamper the results [16]. In addition, elimination of 

some of these attributes was necessary to escape the curse of dimensionality. The 

attributes were selected according to their strength of class separability [17]. 
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After pre-processing, we explored the data with different clustering techniques. 

Clustering is partitioning a group of entities (data points) into different groups (clusters) 

such that the entities belonging to the same group are more similar compared to the 

entities in the other groups. The data points or entities can be a wide range of things 

depending on the field of study. Data points can be two-dimensional or three-

dimensional. By plotting on a graph, the data points are often represented in an image. 

The first and most challenging thing in clustering is to find the similarity measures 

between entities, or simply to know when object1 is more similar to object2 than object3. 

Finding the similarity measure is relatively easier for data points or entities that can be 

represented by numerical values and plotted in an n dimensional space. In that case, the 

simple concept of Euclidian distance can be used to define the degree of similarity. It 

becomes complex when entities cannot be represented by a numerical value and hence 

cannot be plotted in an n dimensional space. Now, we need to find a way to represent it in 

some form of numerical value or find some other way to measure the similarity between 

two objects. 

In this project we experimented with four different clustering algorithms: the k-means 

algorithm [18], the expectation-maximization algorithm [19], the min-cut algorithm [20] 

and the Euclidian clustering technique [21]. We observed that the efficiency and the 

output results are different for different clustering techniques. Some form of similarity 

was noted between the k-means algorithm and the expectation maximization algorithm.  

The k-means algorithm tries to find k different clusters. It initially takes k points as their 

means or centroids of the k clusters. Then it tries to assign all the points in the dataset to 
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each of these k clusters. Then it updates the centroids of these clusters by finding the 

average of the data points assigned to that particular cluster. These two steps are followed 

iteratively until convergence.  

The Expectation Maximization (EM) algorithm is similar to k-means algorithm, but 

instead of doing a crisp assignment of data points to a cluster, it assigns the data points to 

clusters with a probability. This algorithm considers that the dataset is the result of 

probability distributions which can be defined with some parameters. It iteratively tries to 

find the probability that each of the objects belong to these distributions and then tries to 

find the new parameter estimates of these distributions. Iteration continues until 

convergence.   

The min-cut algorithm finds the cut in a graph representative of data points, so that the 

cut (sum of the weights of the points the cut goes through) is minimum. This completely 

divides the entire dataset into two distinct classes.  

The fourth algorithm used is the Euclidian clustering algorithm. This algorithm uses a 

simple approach. It considers a point and then finds its neighbors (two points are 

neighbors if their distance is below a mentioned threshold) and assigns all of them to a 

particular cluster. It then considers the neighbors of the neighbors and assigns them to the 

previous cluster. This is done until a threshold (number of points that can be in a cluster) 

is reached. After which a new point which is not assigned to any cluster is considered and 

the same steps are repeated.  
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1.5 Outline 

This thesis is segmented into 5 chapters. After introduction, Chapter 2 discusses the 

preprocessing techniques used for calculating various attributes. Chapter 3 reviews the 

details of the four clustering techniques and the algorithms along with the proximity 

measures used. Chapter 4 shows the results obtained in our experiments and discusses the 

results in more details. In the conclusions, Chapter 5 briefs the progress that is made by 

this thesis and the impact it is going to make in the relevant field of study. 
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Chapter 2 

Data Preprocessing: Feature Extraction and Selection from 

Seismic Data 

In this chapter we discuss the methods for feature extraction of seismic data, and the 

selection of a subset of these features based on their strength to achieve class separability. 

2.1 Feature Extraction 

In seismology, advanced techniques are used to send a shockwave beneath into the 

subsurface, and receive the reflection back to produce seismic data which carries the 

signatures of underlying seismic features. Once the original data is collected and mapped 

to the image, we are ready to process this data for classification. However, raw data may 

not be useful for accurate results. Therefore, there is a need to enhance it further. This can 

be done by feature analysis [22]–[24]. 

It is possible to create a new set of attributes from the original attributes which will have 

the capability of capturing important information from the raw data. This is known as 

feature analysis. Feature analysis is done in three methods: feature extraction, mapping 

the data to a new space, and feature construction [25]. Mapping the data into new space 

to get rid of the noise involves methods such as Fourier Transformation. Feature 

construction is used when the original data possesses important information, but 

traditional data mining algorithms are incapable of isolating them. Here, a new set of 

features are constructed from the original set of attributes [26], [27].  
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For our experiments we have adopted the method of feature extraction. Feature extraction 

is done by creating a new set of features from the original raw data. An important issue 

with feature extraction is that it is highly domain specific.  Over time various features and 

feature extraction techniques developed for a specific field might not be suitable for 

applications in other domains [26], [27].  

The seismic data was provided by our collaborator Repsol Energy. We used these data to 

implement the machine-learning algorithms in our project. We initially extracted 19 

features from the original data set. Most of these were traditional features used for 

seismic data analysis. We tested three more features extracted from Gray Level Co-

occurrence Matrices: homogeneity, entropy and contrast. These features are often used in 

traditional image processing. The three new features were proved to be superior to the 

rest in terms of class separability. As we continue, the different extracted features will be 

discussed in more details.  

We investigated 19 attributes: some traditionally useful in seismic data analysis as 

suggested by our collaborators and the rest were evaluated from Gray Level Co-

occurrence Matrices. 

2.1.1 Mean 

The first feature calculated was the mean of the raw values. Mean is evaluated to smooth 

out the raw data by eliminating noise. We considered our seismic image as a two-

dimensional matrix. Next, we decided on the window size.  Suppose we consider a 

window size of n, then our window will be a (n x n) matrix (which are (n x n) 
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neighboring elements from the seismic data). We then found the mean of these 

neighboring vales representing the value of the middle most elements. 

While choosing the value of n, one must keep in mind that n must be an odd number so 

that there is no conflict for the center element of the window.  

In our example below, we consider n as 3 and give an example how we move the window 

and how calculations are done. 

 

Figure 2.1 Example of how the window moves. 

Our first window consists of the element numbers 1, 2, 3, 11, 12, 13, 21, 22 and 23. We 

calculate the mean of the values of these elements and assign it to the most centered 

element (in our case it is the element 12). Once the value of the 12th element value for the 

specific attribute is assigned, we then move our window to one step right. Here we 

calculate the mean of the values of the elements that fall within this window (element no. 

2, 3, 4, 12, 13, 14, 22, 23 and 24 in our example) and assign it to the most centered 
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element of the window  (i.e., the 13th element). In this way we create a moving window 

which moves 1 element each time. Once a row is completed, we then start from left hand 

side of the next row and hence cover the entire two-dimensional image. With this moving 

window, we lose (n-1)/2 rows or columns of elements from each edge of the original 

data.  

We calculate the mean as follows: 

1

1
       

N

ii
x

N



   

Where xi are the values of the elements inside the window. 

2.1.2 Median 

The next attribute is the median. It is also calculated with a moving window as follows: 

All the n2 samples in the window are ordered in ascending order, such that  

x1 ≤ x2 ≤ x3 ≤ .....≤≤ .....≤ xN 

where N = n2 

Then the median is defined by  

xmedian = xk 

where k = (N+1)/2 
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2.1.3 Variance 

Variance is evaluated with the moving window using the formula: 

 
2

2 1          

N

i

i

Xx

N
 






 

where 𝑋̅ is the mean of all the values in the window. 

2.1.4 Standard Deviation 

Standard Deviation is calculated by finding the square root of the variance calculated in 

the above case.  

Later either the variance or the standard deviation (only one of them) will be considered 

to avoid redundancy among the features. This is also true in the case of mean and median. 

2.1.5 Reflection Intensity 

Reflection intensity (RI) is calculated by the following formula with the moving window. 

1

1
      

N

ii
RI x

N 
   

2.1.6 Average Energy 

With the moving window, average energy (AE) is calculated as follows: 

2

1

1 N

ii
AE x

N 
 
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2.1.7 Curve Length 

Curve length (L) is calculated as follows: 

The two-dimensional array is converted into a one-dimensional array and then calculation 

is done as follows: 

1

1

1

   
N

i i

i

L x x






   

The value obtained is assigned to the middle most value of the two-dimensional 

windows. 

2.1.8 Threshold 

The threshold (γ) is derived using: 

     
 

2

1

3
          

1

N

i

i

x X
N








 

2.1.9 Peak 

Here the two dimensional window matrices are again converted to a one-dimensional 

matrix and the following is calculated: 

     
2

1 2 1

1

1
0,      

2

N

i i i i

i

max sgn x x sgn x x


  



     

 where 
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 

                     

,                               

                  

a if a b

max a b b if a b

a o b if a b




 
 

 

    

 

1,                  0

0,                  0     

1,               0

if x

sgn x if x

if x




 
    

2.1.10 Root Mean Square 

Root Mean Square (δ) is calculated from the moving window as follows: 

    

2

1        

N

ii
x

N
 


 

2.1.11 Average Non-linear Energy 

The window was once again converted to a one-dimensional array and the following was 

calculated: 

    

1
2

1 1 

2

1
Ψ

2

N

i i i

i

x x x
N



 



 



 

2.2 Derivation of Attributes from Gray Level Co-occurrence 

Matrices 

The next remaining attributes are derived from Gray Level Co-occurrence Matrices. 

Texture Analysis is also widely used in the field of image processing. Features obtained 

from the Gray-Level Co-occurrence Matrix extensively used for the texture analysis. A 

two-dimensional seismic data can be considered as an image. The Gray Level Co-

occurrence Matrix is a two dimensional dependence matrix, which captures the spatial 
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dependence of gray-level values of the image that contribute to the understanding and 

analysis of texture. 

2.2.1 Formation of Gray Level Co-occurrence Matrices 

To calculate the Gray Level Co-occurrence Matrices (or GLCM) we used the moving 

window again. However, this time we generally selected a comparatively larger window 

size for accuracy. For our experiments we used a window size of 11 or greater. Once this 

window was selected, our first task was to discretize this window into the desired number 

of gray levels (say k). Now the co-occurrence matrix P[i,j] (of size k x k) can be defined 

with the help of the displacement vector d, where d = (dx,dy), tracking the number of 

pixels separated by d having gray levels i and j. The three displacement matrix can be of 

3 types (0,1), (1,1), (1,0). This process of formation of co-occurrence matrix is shown 

below with an example. 

The three displacement vectors are represented below: 

 

Figure 2.2 Three different types of displacement vectors 

The three co-occurrence matrices are formed in accordance to each of the displacement 

vector d.  
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Say we have k gray levels, then the size of the co-occurrence matrix will be (k x k). We 

start with displacement matrix d = (1,1). Now we fill the position P(i,j) of the co-

occurrence matrix with  the number of pairs who has the  value i and the value j in the 

discretized window exactly in the positions of d = (1,1) as shown in the above figure. The 

values of these matrices are then divided by the total number of comparisons done to fill 

each cell of the co-occurrence matrix. For example, if d = (1,1), then number of 

comparisons done = (k-1)*(k-1). Where as if d = (0,1), number of comparisons = k*(k-1), 

and if d = (1,0), the number of comparisons = (k-1)*k.  An example is given below.  

 

Figure 2.3 Example of creation of Co-occurrance Matrix from a 8x8 window (Reference 

Machine Vision by Ramesh Jain, Rangachar Kasturi, Brian G. Schunck). 

Once the co-occurrence matrices are calculated, the three variables energy, contrast and 

homogeneity are calculated. These values are calculated as the following and the best 

among the three values calculated for each of the attribute is selected [3].  
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2.2.2 Energy from GLCM 

Energy is calculated from each of the Gray Level Co-occurrence Matrices as follows:  

∑ ∑ 𝑃[𝑖, 𝑗]2

𝑘

𝑗=1

𝑘

𝑖=1

 

2.2.3 Contrast from GLCM 

Contrast is calculated using the formula:  

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ ∑(𝑖 − 𝑗)2𝑃[𝑖, 𝑗]

𝑘

𝑗=1

𝑘

𝑖=1

 

2.2.4 Homogeneity from GLCM 

Homogeneity is calculated as follows:  

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑ ∑
𝑃[𝑖, 𝑗]

1 + |𝑖 − 𝑗|

𝑘

𝑗=1

𝑘

𝑖=1

 

2.2.5 Other Attributes 

Five other attributes, Chaos Texture, Contrast Texture, Weighted second momentum, 

Zero Crossing, and Instantaneous phase were provided by our collaborators. 

2.3 Selection of Features 

Though creating new attributes help us to retrieve more information that might be hidden 

in the original data, it also has some limitations. Some of these attributes might not 

contribute at all in the role of classification. Using classification techniques along with 
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these attributes might hinder the results instead of enhancing them. Moreover, too many 

attributes may lead to the curse of dimensionality. Hence choosing the right set of 

attributes is very important to attain high accuracy in the classification step.  

To solve the above problem, each of the attributes was analyzed in terms of their strength 

of classification on the training data. There is more than one method to attain this. For our 

experiments, we used Information Gain to assess these attributes.  

We first divided all the numeric attributes into a number of intervals (values where there 

seemed to be a change of class in the training data). The Information Gain obtained from 

these values was noted and the best information gain obtained was chosen. Also the value 

of the attribute where this information gain was obtained was marked.  

The Information Gain of an attribute A, at any point was calculated as follows:  

   IG( A) = H(S) - ∑ Wi H(Si) 

where, 

H(S) = the entropy of the class distribution for the entire training set, 

H(Si) =  the entropy of each of the subsets of examples included by each value of A. 

Wi = The weight which is estimated by the fraction of examples with that value of Ai .  

Entropy is defined as follows: 

   H(X) =  -∑ P(xi)  log2 P(xi) 

where, x is a random variable.  
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Lower values of entropies are preferred as they correspond to less random and more 

structured distributions. On the other hand, Information Gain measures how much 

entropy reduction is achieved in class distribution when an attribute is used to separate 

the classes. Hence, higher values of Information Gain are preferred as it corresponds to 

high entropy reduction. When each attribute interval or in our case attribute partition 

comprises of more examples of the same class, Information Gain takes higher value.  

According to the Information Gain obtained from the attributes, we ranked them in order. 

This is represented in Table 2.1: 
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Table 2.1 List of the attributes ranked according to the Information Gain obtained. 

Rank Attribute 

Information gain 
Standard 

Deviation 
Run 1 Run2 Run3 Run 4 Run 5 Mean 

1 
Homogeneity 

 

0.2135 

 

0.2708 

 
0.2708 0.2708 0.2708 0.25934 

 

0.02292 

 

2 
Contrast 0.1901 0.1773 0.24 0.1127 0.2492 0.19386 0.049126 

3 
Energy 0.1621 0.3352 0.1087 0.1523 0.144 0.18046 0.07944 

4 
Mean 

 
0.1336 0.1665 0.1501 0.1878 0.1215 0.1519 

0.023513 

 

5 Median 0.132 0.1372 0.1402 0.1697 0.1663 0.1498 
0.015706 

6 Peaks 0.2741 0.1288 0.0876 0 0.1375 0.1256 
0.088796 

7 Average Energy 0.094 0.0691 0.1171 0.0439 0.0482 0.07446 
0.027757 

8 
Reflection 

Intensity 
0.1121 0.033 0.053 0.096 0.049 0.06862 

0.030126 

9 
Instantaneous 

Phase 
0.0589 0.0755 0.0579 0.0865 0.0516 0.06608 

0.012914 

10 
Root mean 

square 
0.0554 0.065 0.0764 0.0488 0.13 0.05172 

0.028974 

11 Threshold 0.0673 0.0297 0.049 0.0679 0.0256 0.0479 
0.017923 

12 Contrast texture 0.0579 0.0361 0.0552 0.0401 0.042 0.04626 
0.008657 

13 
Standard 

deviation 
0.0082 0.0294 0.041 0.0348 0.0906 0.0408 

0.027235 

14 Curve Length 0.0511 0.0467 0.0158 0.0212 0.0496 0.03688 
0.01517 

15 

Weighted 

Second 

Momentum 

0.0245 0.0192 0.058 0.0251 0.0358 0.0325 
0.013833 

16 Variance 0.0435 0.0262 0.0065 0.0614 0.0205 0.03162 
0.019037 

17 
Average non-

linear Energy 
0.0206 0.0185 0.0346 0.0179 0.0186 0.02204 

0.006346 

18 Chaos  Texture 0 0.0072 0.0176 0.0343 0 
0.01185

2 
0.012958 

19 Zero Crossings 0 0 0 0 0 0 
0 

 

From the above table we can observe a marked difference between the 6th and 7th ranked 

attributes. The top six attributes stand out in terms of discriminative power. Hence from 
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this result we first decided to use these top six attributes for further classification. 

However, if we notice the attributes carefully, we observe a redundant attribute among 

the top six attributes. Mean and median may act as redundant attributes. For this reason, 

we chose mean median, and discarded median. Instead we select the 7th attribute (i.e. 

average energy) for further classification instead of the median.  

Homogeneity has the highest rank among the rest of the attributes. Homogeneity captures 

the degree of smoothness in an image. This can help in isolation of certain geological 

structures from the background elements. High homogeneity partnered with high energy 

and low contrast generally indicates massive deposits of salt. As a result, the top three 

attributes seems to be really important for automated classification processes. 

The other top attributes like mean, peak, and average energy capture direct signal 

information and consequently contain high amount of information to help the classifier to 

distinguish between different geological structures. 

The class separation power of the top three attributes can be explained with the following 

results. Taking into account the value for which we found the best information gain, we 

plotted our images into two classes positive and negative in the following figures. In the 

original image, the distinctive triangular area is the salt structure. This is an image, where 

we already know the structure of the salt body in it. The values corresponding to the red 

class shown in our results corresponds to the structure of the salt, if a crude estimation 

was made taking the value of the attribute corresponding to the best information gain as a 

threshold and separating the original space of data into two classes.  
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Figure 2.4 208⨯381 2D-seismic image with raw data. The distinctive triangular area in 

the center is salt. 

 

Figure 2.5 208⨯381 2D-seismic image after seismic interpretation using the class 

separation power of homogeneity as the threshold. Two different colors represent two 

different classes.  
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Fig 2.6. 208⨯381 2D-seismic image after seismic interpretation using the class 

separation power of contrast as the threshold. Two different colors represent two 

different classes. 

 

Fig 2.7 208⨯381 2D-seismic image after seismic interpretation using the class 

separation power of energy as the threshold. Two different colors represent two different 

classes. 
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Thus for our further experiments we use the attributes of Homogeneity, Contrast, Energy, 

Mean, Peaks and Average Energy as our subset of attributes. 

 

  



26 

 

Chapter 3 

Experiments with Various Clustering Techniques 

3.1. Introduction 

In the first part of the project, we extracted attributes from our original raw data and then 

selected a subset of these attributes. These attributes are expected to have more power in 

terms of class separability compared to the attributes that were discarded.  

Once this process of selection of attributes was over, the next challenge was to select a 

technique that would efficiently segregate the data into two distinct classes (salt and no-

salt).This could have been done with classification techniques, clustering techniques or a 

combination of both.  In our project, after the selection of the attributes or features, we 

started exploiting the data with different clustering techniques so as to divide the data into 

different clusters.  

Clustering is a method of grouping data into subsets, such that the similar instances of the 

data are grouped together, while different instances belong to different groups [28].  

Clustering is an unsupervised learning technique that can be utilized to extract patterns 

hidden in the data. Clustering algorithms can be categorized based on their cluster 

models.  A detailed discussion of different clustering techniques is outside the scope of 

this thesis. Here we focus on the various clustering algorithms that we have used in this 

study. 
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In order to allocate data points to different clusters a measure of similarity/ proximity is 

required. This can be achieved by using a measure of distance between a pair of data 

points. Similarity can be computed by measuring the distance between two elements, i.e. 

how close they are from each other. The lesser the distance the more similar the objects 

are. 

3.1.1 Distance or Proximity Measure 

There are various methods of measuring distances between two different objects. 

Distance measurement depends on the type of data available (e.g., numeric, Boolean or 

string). Cosine Similarity and Jaccard Measure are often used for measuring proximity 

among documents.   In this thesis, we are only concerned with numerical types of data.  

For numeric data, different distance measures are available. Some of the commonly used 

distance measures are Euclidean Distance and Manhattan Distance. Other distances 

comprises of Squared Euclidean Distance, Normalized Squared Euclidean Distance, 

Chess Board Distance, Bray Curtis Distance, Canberra Distance, Cosine Distance and 

Correlation Distance.  

For our experiments, we have used the most common measure of distance ― the 

Euclidean Distance.  The Euclidean Distance (𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛) between two points 

(𝑥1, 𝑥2, … . . 𝑥𝑛) and (𝑦1, 𝑦2, … . . 𝑦𝑛) in an n dimensional space is measured as follows.  

 

 𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 =  √(𝑦1 − 𝑥1)2 +  (𝑦2 −  𝑥2)2 +  … … + (𝑦𝑛 −  𝑥𝑛)2 ................ [3.1.1] 
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3.2. K-Means Clustering 

The k-means algorithm is one of the most primitive and fundamental clustering 

techniques of data mining. This technique is also widely used in image processing. In this 

section we will initially introduce the k-means algorithm and then discuss the techniques 

of evaluating the clusters formed from this technique. Subsequently we will proceed with 

the discussion of space and time complexity of this algorithm. We will conclude with the 

advantages and disadvantages together with the results obtained. 

3.2.1 The Algorithm 

To execute the k-means algorithm, the user first needs to decide on the number of clusters 

they want from the data. Once the number of clusters are decided (say k), we start by 

choosing k 'means' or 'centroids', by randomly selecting k points from the data and 

initialize them as the centroids of the k clusters. After the initialization of the k means the 

algorithm first assigns each point in the data set to a cluster and then it tries to update the 

clusters and their centroids at every step of the iteration. The assignment of the points to a 

cluster is done as follows. We measure the distance of each point from the k centroids of 

the clusters (which were assigned in the previous step). Then we assign the point to the 

cluster, whose centroid is closest to the point. Once the assignment is done we update the 

centroids of the clusters by calculating the average value of all the data points assigned to 

that cluster. These two steps of assigning points to a cluster and updating the centroids of 

the clusters each time is done iteratively until some stopping criteria are met. The 

stopping criteria are like the distance among the new and previous centroids are below a 
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threshold or the maximum number of iterations was met. The pseudo code for the 

algorithm is given bellow: 

 

 

 

 

 

3.2.2 Measuring the Quality of the Clusters Formed  

Measuring the quality of the clusters obtained from a method is also vital to determine 

the efficiency of the clustering technique for particular type of data. These measuring 

techniques sometimes depend on the proximity measure used in the calculation. Sum of 

standard squared error (also known as the 'scatter') is one of the well-known methods 

used to measure the quality of the clusters. This is computed by calculating the error of 

each point from the centroid, i.e., the distance of a point in the cluster from its centroid 

and finally adding the square of these distances to find the sum of the squared error. 

Given below is the equation for calculation of the sum of squared error (SSE) for a 

particular cluster j.  

   𝑆𝑆𝐸𝑗 =  ∑ 𝑑𝑖𝑠𝑡(𝑥𝑖  , 𝑐𝑗)2𝑚
𝑖=1      ................................................ [3.2.1] 

where,  𝑋𝑗 =

{𝑥1, 𝑥2, … . . 𝑥𝑛} , 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗  

K-meansAlgorithm_____________________________________________________ 

 

 Select k points from the data set randomly as initial centroids. 

 Repeat until any one of the stopping criteria are met: 

o For each point in the dataset: 

 Assign it to the cluster whose centroid is the closest to the point 

o For each cluster: 

 Calculate the new centroid and update it.  
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𝑎𝑛𝑑 𝑐𝑗  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

Once the sum of the squared error for each cluster is found, the next step is to find the 

quality of the result obtained from the clustering technique. This can be done by finding 

the average sum of the squared errors found from all the clusters obtained. 

   𝑆𝑆𝐸(𝐶1, 𝐶2, … . . 𝐶𝑘) =  
1

𝑘
 ∑ ∑ 𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑐𝑗  )2𝑚

𝑖=1
𝐾
𝑗=1   .............. [3.2.2] 

 In step 2, k-means algorithm tries to optimize the sum of squared errors in the iteration 

loop. Moreover, as it tries to minimize the sum of squared error for specific collection of 

centroids and clusters, it assures a local minimum. On the other hand, this quality of k-

means algorithm might lead it to suboptimal clusters. This can be fixed by using larger 

value of k, i.e. a greater number of clusters. Quality of a cluster can also be determined 

from the standard deviation. 

3.2.3 Space and Time Complexity of k-means Algorithm 

Time Complexity:   

Time complexity is linearly proportional to the number of data points, number of 

iterations and the number of clusters. Time required for a k means algorithm to run is 

O(i*K*m*n), where m is the number of data points, n is the number of attributes, K is the 

number of desired clusters and i is the number of iterations.  As most of the changes 

usually occur in the first few iterations, hence i is usually not a big number. Thus we can 

conclude k means algorithm has a linear time complexity given the number of cluster is 

significantly lower than the number of data points [28]. 
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Space Complexity:  

K-means algorithm does not take up plenty of space as the only things needed to be 

stored are the data points and the centroids. The space required for k means algorithm is 

O( (m+K) n ).  

Hence the time complexity and the space complexity of the k-means algorithm seems to 

be clearly moderate which puts it to be much ahead of the other algorithms available.  

3.2.4 Advantages and Disadvantages of k-means Algorithm 

The k-means algorithm has the advantage over other commonly used clustering 

algorithms due to its linear time and space complexity. It also showed promising results 

for our experiments on seismic data. But on the other hand, k-means algorithm also 

possesses some drawbacks. One of its biggest weaknesses is its sensitivity to outliers and 

noise in the data. In addition, k-means does a crisp assignment of data points to the 

clusters. This hard assignment of points is not reasonable for points near the decision 

boundaries.  

 

3.3. Expectation Maximization Algorithm 

3.3.1 The Algorithm 

It is often assumed that data is generated due to a result of statistical process and the data 

is described with the help of these statistical models that best fits the data. The statistical 

models are defined in terms of a distribution and a set of parameters of the distribution. 

Expecation Maximization (EM) Algorithm deals with a particular kind of statistical 
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model called the mixture model. This algorithm was explained and its name was given in 

1997 by Arthur Dempster, Nan Laird and Donald Rubin. [4]. It is widely used in 

genetics, clinical and social studies. 

In mixture model, it is assumed that there are a number of probability distributions with 

definite parameters, and the data is a set of observations from a mixture of these different 

distributions. These probability distributions can be anything but most of the time is 

assumed to be a multivariate normal distribution. The reason behind assuming it to be 

multivariate normal is it is well inferred and also produces good results for most data. 

Here, each probability distribution corresponds to a cluster, whereas the parameters of the 

distribution actually describe the corresponding cluster, especially the area and centers of 

the clusters. Maximum Likelihood Estimation (MLE) is a procedure used to estimate 

parameters of these statistical models. Expectation Maximization (EM) algorithm uses 

the concept of maximum likelihood estimation for estimating the parameters of the 

mixture models. Here each distribution corresponds to different groups or better called 

clusters.  

At the beginning of computation, we do not know the estimates of the probability 

distributions. However, the underlying knowledge of the probably distributions 

(prob(x|Θ)) enabled us to find out the parameters of the distributions.  The EM algorithm 

runs iteratively by first estimating the probability distribution (called the Expectation 

Step) and then use the above estimation to update the parameters of the probability 

distributions (called the Maximization Step). Iteration stops on convergence. Here, a crisp 

assignment of clusters is not implemented on the objects. Instead, the objects are assigned 
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to clusters with a definite probability density of it belonging to the cluster, and the sum of 

all such probability distribution for an objects sum up to 1.  

The EM Algorithm is discussed in more details after a brief explanation of the mixture 

model and the maximum likelihood estimation.  Several distributions are given assigned 

with similar but different parameters. Then, one of these distributions was randomly 

selected to produce an object from them. In mixture model, each distribution represents a 

different group (a different cluster). 

Now we state the problem statement: 

Let there be K distributions, and N number of objects that need to be assigned to clusters. 

Let X be the set of all the objects: X = {x1 , x2 , .... , xN}. θ j be parameters of jth 

distribution and Θ be a set of all parameters, such that Θ = {θ 1 ..... θ K}. Let wj be the 

mixture weight, i.e. the probability density that for any object the distribution j is chosen. 

These weights have a constraint of their sum being adding up to 1, i.e. ∑K
j=1wj=1. Then 

the probability distribution of an object xi, parameterized on θj i.e. the probability density 

that an object xi is from the jth distribution is: 

      𝑃(𝑥𝑖  | 𝜃𝑗)     ............................................................. [3.3.1] 

Thus, the probability density of an object is: 

    𝑃(𝑥𝑖|Θ) =   ∑ 𝑤𝑗  𝑝𝑗
𝐾
𝑗=1 (𝑥𝑖|𝜃𝑗)  ................................. [3.3.2]  

If we consider the objects to be generated in an independent manner, then we can 

consider the probability density of the entire set of objects as: 
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   𝑃(𝑋|Θ) =  ∏ 𝑃(𝑥𝑖|Θ)𝑁
𝑖=1 =  ∏ ∑ 𝑤𝑗  𝑝𝑗 (𝑥𝑖  |𝜃𝑗)𝐾

𝑗=1
𝑁
𝑖=1   ........ [3.3.3] 

For Gaussian univariate mixture model, the probability density function of a one 

dimensional Gaussian distribution for any point xi (Gaussian Density Function) is given 

by: 

    𝑃(𝑥𝑖|𝜃𝑗) =  
1

√2𝜋  𝜎
 𝑒

− 
(𝑥−𝜇)2

2 𝜇2     .................................... [3.3.4] 

Once it is assumed that the data is a mixture of Gaussian distributions, the next task is to 

estimate the parameters of these distributions using maximum likelihood estimation. We 

consider that m points from the data set is generated from a one dimensional Gaussian 

Distribution, and assuming that they are generated independently, the probability density 

of all the m points are the product of their individual probability densities. Hence from 

equation 3.3.4, we get: 

   𝑃(𝑋|𝜃𝑗) =  ∏
1

√2𝜋  𝜎
 𝑒

−
(𝑥𝑖− 𝜇)2

2 𝜎2𝑚
𝑖=        ...................................... [3.3.5] 

Since probability densities are very small numbers, the equation is accounted in 

logarithmic scale:  

  log 𝑃(𝑋|𝜃𝑗)  =  − ∑
( 𝑥𝑖− 𝜇 )2

2 𝜎2
𝑚
𝑖=  −

1

2
𝑚 log 2𝜋  − 𝑚 log 𝜎  ............... [3.3.6] 

Now the values of the parameters are to be assigned carefully so that, the set of points 

suites it the best or the selected data is most likely, i.e. it maximizes equation 3.3.5. This 

is the maximum likelihood approach and the method of estimating the parameters are 

known as maximum likelihood estimation. For a specific set of data, the probability 
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density is a function of the parameters of the distribution. The probability density 

equation in 3.3.5 is called the likelihood function. The log-likelihood function is also 

used very often due to small values of the probability density and the parameter values 

maximizing the likelihood function will also maximize the log likelihood function. The 

likelihood function is plotted by the probable values of the parameters to find out the 

values of the parameters that produces maximum value for likelihood. However, this 

approach is not feasible for big datasets. So statistically the problem can be solved by 

taking derivative of the equation of the likelihood function with respect to that parameter 

and setting the function to 0 and then solving for the parameters.  

An issue with this alternative approach is that it is not possible to accurately predict 

which point comes from which distribution and calculating the probability density of 

each point is not viable. That is when the Expectation Maximization algorithm comes 

into play. Estimation maximization algorithm iteratively tries to estimate the parameters 

of the model.   

The EM Algorithm basically consists of two major steps called the Expectation Step and 

the Maximization Step. These two steps are computed iteratively until convergence. In 

the expectation step, the EM algorithm tries to calculate the probability that each point 

belongs to each distribution. On the other hand, in the maximization step, these 

probabilities are used to find the parameters of the distributions.  

The Expectation Maximization Algorithm is defined as follows and the two steps of 

Expectation and maximization as explained: 
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Expectation Step: 

In the expectation step, we try to compute the probability that each object belongs to each 

distribution or more specifically a point came from a particular distribution, i.e., P( j | xi , 

Θ). Hence, we can further rewrite the formulae as: 

    𝑃(𝑗 |𝑥𝑖 , Θ) =  
𝑤𝑗 𝑃( 𝑥𝑖 |𝜃𝑗 )

∑ 𝑤𝑗 𝑃(𝑥𝑖 |𝜃𝑗)𝐾
𝑗=1

   .................................. [3.3.7]  

Maximization Step: 

The maximization step is already discussed in the section of maximum likelihood 

estimation. In some special cases of the expectation maximization algorithm, this 

maximization step is much more simplified. This will be explained in the next section, 

when the similarity of the expectation maximization algorithm with k-means algorithm is 

discussed. 

Expectation Maximization Algorithm:___________________________________ 

 

 Initialize the parameters of the distributions randomly 

 Repeat till change in parameters are above a threshold 

o Expectation Step: For each object xi, calculate P( j | xi , Θ). i.e. the 

probability that each object belongs to each distribution.  

o Maximization Step: Find new estimates of the parameters of the 

distributions that maximize the expected likelihood.  
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3.3.2 Similarities with the k-means Algorithm 

The k-means algorithm is a special case of estimation maximization algorithm. For 

Euclidian data, k-means algorithm is a special case with spherical Gaussian distribution 

having equal covariance matrices but different mean.  

In k-means algorithm, the first step assigns each object to a cluster. In the expectation 

step of the EM algorithm, the each object is assigned to each distribution (in this case we 

can call it a cluster) only with certain probability density. In the second step of k-means 

algorithm, we compute the centroids of the clusters. On the other hand, in the 

maximization step of the expectation maximization algorithm, we try to compute the 

parameters of the distributions (or clusters) that maximized the likelihood function.   

3.3.3 Advantages and Disadvantages of EM Algorithm 

Like every other algorithm, the estimation maximization algorithm has advantages as 

well as some disadvantages. The EM algorithm is applicable to a wide range of data and 

is also helpful for clustering data sets which consists of missing data. It’s fast and 

guaranteed to converge. The complexity at each iteration is always linear. Moreover, 

unlike some other algorithms, EM algorithm does not have the hassle of choosing a step 

size. Even with the above mentioned advantages, EM algorithm has its limitations, which 

constrains good results to all data types with any properties. EM algorithm is locally 

optimal, which means it may converge to local optima along with its limitation of the 

convergence speed. EM algorithm has slow convergence. It is also sensitive to 

initialization of parameters. These disadvantages create limitation to the application of 

EM algorithm to any kind of datasets. 
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3.4 Min-Cut Algorithm 

3.4.1 Introduction 

The min-cut algorithm is a graph-based algorithm [29]–[31].  The effort is given in 

bisecting the graph into two disjoint segments with an intention of disconnecting the most 

loosely connected nodes, at the same time keeping the nodes that are tightly connected to 

each other in the same partition.  

A cut in a graph is a set of edges such that the removal of these edges disconnects the 

graph. All graphs considered here are weighted graphs. A min cut or minimum cut is a 

cut on the graph which has minimum cost. In other words, a min cut is also a set of edges 

such that these set have minimum weight and removal of these edges will disconnect the 

graph, i.e., a cut with minimum cost.  

3.4.2 Problem Formulation for the Min-cut Algorithm 

Suppose we have a graph with n vertices (which represents the data points in the data set) 

and m weighted undirected vertices. In our problem of seismic data, the weights edges 

can represent the distance measure between the two connecting vertices. The closer two 

points the lesser the distance between them. But according to our graph, edges that 

connect points closer to each other must have more weights than edges connecting points 

farther to each other. Therefore, the weights are assigned by inverting the distances 

between the points and normalizing these weights. It must also be noticed that in our 

problem with the seismic data, we can measure the distance between any points in the 

dataset with any other data point. As a consequence, the graph formed from this dataset 
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will have all the vertices connected to each other. This would make the graph really big 

and computationally challenging. 

Once we consider the graph with n vertices and m edges, our purpose is to separate the 

set of vertices into two non-empty sets such that it minimizes the total weight of the 

edges connecting them, i.e., to find the minimum cut. 

There are certain assumptions we make before proceeding. First, the graph is always 

assumed to be connected, else the problem will be irrelevant.  Secondly, we assume that 

the edges are non-negative, else the problem will be NP-complete by a nominal 

transformation from maximum cut problem.   

This problem has two variants: the normal min-cut graph algorithm and the s-t min cut 

algorithm. The problem statement of the normal min-cut algorithm is mentioned above. 

In the s-t min-cut algorithm, we select two vertices s and t which are required to be on the 

two opposite sides of the cuts. The normal min-cut problem has no such restriction. If we 

consider all pair of vertices as s and t and implement the s-t min cut algorithm for each of 

these pairs, then the min-cut algorithm is the minimum taken over all the s-t min-cut 

among all the pairs. Besides, the min-cut problem for unweighted graph is similar to 

finding the connectivity of the graph. This means that to find the minimum number of 

edges that need to be removed to disconnect the graph. 

The min-cut algorithm has applications in various fields. One of the most common 

applications of min cut algorithm is in the field of network design. Other areas of 
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application include study of project networks, partitioning database, traveling salesman 

problem.  

3.4.3 The Algorithm 

Before we begin with the explanation of the algorithm, let us describe a few important 

terms used. 

 Most-Tightly-Connected Vertex 

Let V be a set of all the vertices in the original graph and A be a subset of these vertices. 

The most-tightly-connected vertex to A is the vertex which does not belong to A and 

whose sum of edge weight to A is the maximum. In other words, if we consider each of 

the vertices that are not in A and evaluate the sum of the weights of the edges connecting 

them to the vertices in A, the vertex having the maximum sum is the most tightly 

connected vertex. 

Merging of Two Nodes 

When two nodes are merged, the weight of the new edges connecting the new nodes 

would be the sum of the edges between the nodes before the merge. 

An example can be given as follows. Suppose we have a graph with 5 nodes or vertices: 

{A, B, C, D, E} and all the nodes are connected to each other. If we merge D and E, then 

the new set of nodes will be {A, B, C, DE}. The new weight of the edges will be as 

follows edge A-DE will have the weight of the sum of the edges A-D and A-E. Similarly 

edges B-DE will have the weight of (B-D + B-E) and C-DE as (C-D + C-E).  
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The pseudo code of the min-cut algorithm is given below. 

Let V be the set of all the vertices, w be the weight of the min cut (calculated at each 

iteration). 

 

 

 

 

 

 

 

 

 

 

3.5. Euclidean Clustering 

3.5.1 Introduction 

Euclidean Clustering is one of the newer concepts in clustering techniques. This 

algorithm was not only conceptually transparent, it was simpler to implement relative to 

Min-Cut Algorithm:__________________________________________________ 

 𝑆𝑒𝑡 𝑤 =  ∞ . 

 𝑊ℎ𝑖𝑙𝑒 |𝑉| >  1 

o  𝑠 − 𝑡_𝑃ℎ𝑎𝑠𝑒_𝐶𝑢𝑡 =  𝑀𝑖𝑛_𝐶𝑢𝑡_𝑃ℎ𝑎𝑠𝑒 (𝐺, 𝑤) 

o if 𝑤𝑒𝑖𝑔ℎ𝑡_𝑜𝑓_𝑠 − 𝑡_𝐶𝑢𝑡 < 𝑤 

 𝑀𝑖𝑛_𝐶𝑢𝑡 = 𝑠 − 𝑡_𝑃ℎ𝑎𝑠𝑒_𝐶𝑢𝑡 

o 𝑀𝑒𝑟𝑔𝑒(𝐺, 𝑠, 𝑡) 

 𝑅𝑒𝑡𝑢𝑟𝑛 𝑀𝑖𝑛_𝐶𝑢𝑡 

 

Min-Cut Phase Function_____________________________________________ 

 𝑎 = 𝐴𝑛𝑦 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝐺 

 𝐴 = {𝑎} 

 𝑊ℎ𝑖𝑙𝑒 𝐴 ≠ 𝑉 

 𝑣1 = 𝑀𝑜𝑠𝑡 𝑡𝑖𝑔ℎ𝑡𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑣𝑒𝑟𝑡𝑒𝑥 𝑡𝑜 𝐴 

 𝐴 = 𝐴 ∪ (𝑣1) 

 (𝑠, 𝑡)𝑎𝑟𝑒 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑎𝑛𝑑 𝑠𝑒𝑐𝑜𝑛𝑑 −

𝑙𝑎𝑠𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝐴 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦  

 Return (A-t,t) 
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the previous algorithms and also gave us very interesting results. This algorithm needed a 

few user input parameters. Finding the right technique to find a good value for these 

parameters was the challenging part. We start with explaining the algorithm and then go 

to the techniques of finding the right value for the parameters.  

3.5.2 The Algorithm 

Let X be a set of all the data points where 𝑋 = {𝑥1, 𝑥2, … … 𝑥𝑛} and dth be the 

neighboring distance. The neighboring distance is the distance such that any two points 

whose distance is less than or equal to neighboring distance is considered as neighbors.  

 

 

 

 

 

 

In this algorithm, the challenging part was selecting the two user defined variables 

neighboring distance (dth) and also the maximum number of points a cluster can hold (m).  

First let us consider the neighboring distance dth. Keeping a moderate value for m we can 

test of suitable values for dth. Say we limit the value of m to be 5 or 10. Then we start 

with experimenting for the value of dth. For a small value of dth, the algorithm will start 

Euclidean Clustering Algorithm:__________________________________________ 

 Create an empty queue Q 

 For every point xi ϵ X and xi is already not assigned to any cluster: 

o Add xi to Q if xi is already not assigned to a cluster. 

o For every point xi ϵ Q 

o Search a set of points (Xi
m), such that if xi

m ϵ Xi
m then,xi

m is a 

neighbor of xi, i.e. xi
m lies in the sphere with xi as center and r 

as radius, where r<dth. 

o For every neighbor xi
m ϵ Xi

m if Q has not reached the threshold 

( i.e. the maximum number of points a cluster can hold),  check 

if the point has already been processed or assigned to a cluster. 

If not, add it to Q. 

 Once all the points in Q have been processed, or Q has reached the threshold 

( i.e. the maximum number of points a cluster can hold) assign all the points in 

Q to a new cluster. 

 Empty Q. 
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considering all the points testing as neighbors and the clusters will be filled up very fast. 

This can be perceived by keeping a track of the time taken for the clusters to fill up. This 

time will definitely depend on the processing power of the computer. Now if we 

gradually keep on changing the neighboring distance at a particular point of time, we will 

notice that that the time taken to fill up each of these clusters will increase significantly. 

This is the point when the algorithm stops considering all the points it checks as its 

neighbor. We can securely choose this value of the neighboring distance to run the 

algorithm for the final results.  

 The next challenge was deciding on the maximum number of points the clusters can 

hold. This method can be best explained with the help of the results obtained as shown in 

the figures in the results section. We experimented with starting with a smaller value of 

m. As we kept on increasing the value of m, we noticed a very interesting phenomenon. 

Initially, with a smaller value of m, the algorithm would group the data which would 

produce different clusters towards the edge of the structure of the salt. As we kept on 

increasing the value of m, the algorithm started to place all the points near the boundary 

of the salt structure into one single cluster and rest into the other clusters. But if we keep 

on increasing the value of m, the algorithm would distinctly produce two clusters: One 

with the points at the boundary of the salt structure and the other with the rest of the 

points.  Slowly as we kept on increasing m, we could see the more precise boundary of 

this salt structure. Gradually with further increase of the value of m, the structure 

vanishes as the algorithm starts considering all the points as not its neighbor. This 

concept will be more transparent with the results shown in the next chapter. The reason 
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behind this phenomenon is also explained more precisely in the section in our results 

section.  
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Chapter 4 

Results 

4.1 Introduction: 

This project can be grossly categorized into two parts. The first part was the 

preprocessing of the seismic data and extraction of relevant attributes. The second part 

was the experimentation with a class of clustering techniques. The algorithms were coded 

in Matlab. Here in this chapter, we will discuss the results obtained and compare all the 

algorithms in the context of seismic data analysis. 

4.2. Pre-processing: Feature Extraction and Selection 

We plotted the original data in figure 4.1 

 

Figure 4.1 208⨯381 2D-seismic image with raw data 
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Data preprocessing was performed by creating 19 attributes and then finding out the 

information gains produced by the attributes. There were various thresholds or decision 

points (the value at the decision nodes when we considered it as a tree) which were used 

to divide the entire dataset into two parts. Among those we selected the best threshold, 

i.e., the threshold that gave the best Information Gain. Figure 4.2 displays the outcome if 

we consider these results.  

 

(a) Homogeneity    (b) Contrast 

 

  (c) Energy     (d) Mean 

Index i 

In
d

ex
 j

 

Index i 

In
d

ex
 j

 

Index i 

In
d

ex
 j

 

Index i 

In
d

ex
 j

 



47 

 

 

  (e) Median     (f) Peaks 

 

       (g) Average Energy                      (h) Reflection Intensity 

 

   (i) Instantaneous Phase      (j) Root Mean Square 
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          (k) Threshold          (l) Contrast Texture

 

     (m) Standard Deviation          (n) Curve length

 

 (o) Weighted Second Momentum   (p) Variance    
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 (q) Average Non-linear Energy         (r) Chaos Texture 

      

 (s) Zero crossing 

Figure 4.2 208⨯381 2D-seismic image after seismic interpretation using the class 

separation power of the attributes arranged in accordance to the information gain 

obtained. Two different colors represent two different classes. 

For each of these attributes, we run them for 5 times to find the information gain and we 

consider the mean of the information gains observed. In the table below, we provide the 

information gains obtained from these attributes and also the standard deviation of the 

above. These attributed are ranked accordingly.  
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Table 4.1 List of attributes ranked according to the Information Gain obtained. 

Rank Attribute 

Information gain 
Standard 

Deviation 
Run 1 Run2 Run3 Run 4 Run 5 Mean 

1 
Homogeneity 

 

0.2135 

 

0.2708 

 
0.2708 0.2708 0.2708 0.25934 

 

0.02292 

 

2 
Contrast 0.1901 0.1773 0.24 0.1127 0.2492 0.19386 0.049126 

3 
Energy 0.1621 0.3352 0.1087 0.1523 0.144 0.18046 0.07944 

4 
Mean 

 
0.1336 0.1665 0.1501 0.1878 0.1215 0.1519 

0.023513 

 

5 Median 0.132 0.1372 0.1402 0.1697 0.1663 0.1498 
0.015706 

6 Peaks 0.2741 0.1288 0.0876 0 0.1375 0.1256 
0.088796 

7 Average Energy 0.094 0.0691 0.1171 0.0439 0.0482 0.07446 
0.027757 

8 
Reflection 

Intensity 
0.1121 0.033 0.053 0.096 0.049 0.06862 

0.030126 

9 
Instantaneous 

Phase 
0.0589 0.0755 0.0579 0.0865 0.0516 0.06608 

0.012914 

10 
Root mean 

square 
0.0554 0.065 0.0764 0.0488 0.13 0.05172 

0.028974 

11 Threshold 0.0673 0.0297 0.049 0.0679 0.0256 0.0479 
0.017923 

12 Contrast texture 0.0579 0.0361 0.0552 0.0401 0.042 0.04626 
0.008657 

13 
Standard 

deviation 
0.0082 0.0294 0.041 0.0348 0.0906 0.0408 

0.027235 

14 Curve Length 0.0511 0.0467 0.0158 0.0212 0.0496 0.03688 
0.01517 

15 

Weighted 

Second 

Momentum 

0.0245 0.0192 0.058 0.0251 0.0358 0.0325 
0.013833 

16 Variance 0.0435 0.0262 0.0065 0.0614 0.0205 0.03162 
0.019037 

17 
Average non-

linear Energy 
0.0206 0.0185 0.0346 0.0179 0.0186 0.02204 

0.006346 

18 Chaos  Texture 0 0.0072 0.0176 0.0343 0 
0.01185

2 
0.012958 

19 Zero Crossings 0 0 0 0 0 0 
0 
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The next step was to select the appropriate attributes from a pool of these 19 attributes. 

We selected the top six attributes called the Homogeneity, Contrast, Energy, Mean, 

Median and Peaks for further experimentation. We took a notice that there is a drastic 

change in the information gain obtained between the sixth and the seventh variable. 

Therefore, only these six variables were considered for further experimentations. 

Nevertheless, two of the selected variables, mean and median, were considered together 

as redundant attributes. We neglected mean and used the next attribute peaks for the rest 

of the experimentation.  

The spatial co-ordinates played an important role in the clustering techniques as we 

assigned the data points adjacent to each other in the same clusters instead of having 

clusters that have data points scattered all over. Taking that into account, we used the x 

and the y co-ordinates as the seventh and the eighth attribute.  

4.3. Clustering the Data 

We implemented four different clustering algorithms, the results are discussed below. 

4.3.1. K-means algorithm 

Matlab provides us with an inbuilt function for k-means. We have used both the inbuilt 

function and written our own code for the implementation of this algorithm. We have 

experimented with different values of 'k' i.e. the number of clusters. Selected results of 

both versions are shown below. 
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(a) Number of clusters = 100   (b) Number of clusters = 200 

  

             (c) Number of clusters = 500                         (d) Number of clusters = 1000 
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                 (e) Number of clusters = 5000 

Figure 4.3 208⨯381 2D-seismic image after segmentation. Results obtained by code 

provided by Matlab for k-means figures representing (a) 100, (b) 200, (c) 500, (d) 1000 

and (e) 5000 clusters. The segments represent variations on a metric computed by the 

algorithm and colors are used to visualize such variations. 

 

(a) Number of clusters = 100   (b) Number of clusters=200 
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(c) Number of clusters = 500   (d) Number of clusters = 1000 

Figure 4.4 208⨯381 2D-seismic image after segmentation. Results obtained by our code 

for k-means figures representing (a) 100, (b) 200, (c) 500 and (d) 1000 clusters 

respectively. The segments represent variations on a metric computed by the algorithm 

and colors are used to visualize such variations. 

4.3.2. Expectation Maximization algorithm: 

Both the techniques produced the clusters which clearly indicate the boundary of the salt 

structure. 

For the seismic data in our experiments, k- means algorithm produced better results than 

the EM algorithms. So, we did not do any further experiment with EM algorithm. The 

results of the EM Algorithm are shown below.  
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Figure 4.5 208⨯381 2D-seismic image after segmentation. Results of EM algorithm with 

different number of clusters. The segments represent variations on a metric computed by 

the algorithm and colors are used to visualize such variations. 

4.3.3. Min-Cut algorithm 

While implementing the min-cut algorithm, we tried to represent the entire data set in the 

form of a graph. This was done by considering each data point as a node and connecting 

each of these data points to each other with vertices. These vertices were to be given 

some weight. Since the closer the points are to each other, the more the weight their 

vertices must have. As a consequence, the weights were an inverse of the distance from 

one point to another and normalized. Due to the huge amount of data (which is 208 X 

381) of 79,248 data points, it seemed unrealistic to connect all the data points to each 

other. Therefore, to make the algorithm more feasible and efficient, we connected each of 

the nodes with its closest five neighbors.  

Even though the algorithm seemed overwhelming due to the capability to separate the 

data into two different classes and extracting a set of points which might be the salt 
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structure, it did not seem to be feasible for large amount of data like seismic data. We 

tried implementing this algorithm, but the time taken to run these algorithms were not 

feasible. Moreover we were more concerned of the future implementation of the 

algorithm in three dimensional data. Hence we did not proceed with this algorithm any 

further. 

4.3.4. Euclidian Clustering algorithm: 

As we mentioned in the previous chapter, we played with the value of 'k' i.e., the number 

of points that can be in a cluster. Below are the results obtained as we gradually increased 

the value of k from 5000 to 70,000. 

(1)  m = 5,000 ( 3)  m = 10,000 
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(5)  m = 40,000 

(2) m = 7,500 

(4)  m = 30,000 

 (6)  m = 50,000 

(7)  m = 60,000 

(9)  m = 70,000 
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(11)  m = 71, 500 

(8)  m = 65,000 

(10)  m = 71,000 

(12)  m = 75,000 

Figure 4.6 208⨯381 2D-seismic image after segmentation. Results obtained with the 

gradual increase of the value of m, i.e., the threshold of the number of points a cluster 

can hold. The segments represent variations on a metric computed by the algorithm and 

colors are used to visualize such variations. 

We can clearly see from the results above that as we started with a lower value of m, 

where m is the number of points the cluster can hold, the algorithm produced many more 

clusters. Even at that stage we could recognize a cluster that encompassed the 

surroundings of the salt structure as in the original image. As we gradually increased the 
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value of m, the algorithm started dividing the entire dataset into two distinct clusters. 

With an increase of the value of m, we observed the boundary of a mountain like 

structure. This is the boundary of the salt structure as observed in the original data. With 

further increase of the value of m, this structure gradually disappeared. This is due to the 

fact that the algorithm selected a point and puts the closest points into the cluster. Then 

its puts the points which are closer to these new points added to the cluster but away from 

the original data point into the cluster. Gradually it puts points further away into the 

cluster. Hence with a wise decision for the selection of the value of m, we can get a clear 

boundary of the salt structure. Increasing the value of m further led the structure to 

gradually disappear. 

4.4. Conclusion: 

From the above results, we can clearly see that the Euclidian clustering algorithm is in the 

winning position with the k-means algorithm next in rank. Comparing these two, we can 

conclude that the clusters obtained from the k-means algorithm further need to be 

classified with the help of a base classifier, whereas the Euclidian clustering technique 

has the capability to cluster the entire data set into two distinct clusters, one of which is a 

definite boundary of the salt structure in the data.  
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Chapter 5 

Conclusions 

In this dissertation our focus was on extracting the structure of the salt from the rest of 

the surrounding and to locate any deposit of the salt from seismic images.  

Before we started exploring the data, extracting attributes of the raw image was essential 

to increase the accuracy of our results. The method of feature extraction played an 

important role in extracting the important information from the data.  Not all of the 

features extracted were very useful as they failed to provide useful information. 

Eliminating these incompatible and redundant attributes was proved to be critical for 

achieving a better segregation of the two classes salt and no-salt. Moreover, not only 

eliminating the weaker attributes, but also ranking and selecting  the best attributes  was 

key to a more feasible solution to reduce the curse of dimensionality. 

Once the construction of these attributes was established, the next task was selecting the 

best among these attributes in terms of class separability. This was done with the help of 

Information Gain. Information Gain makes use of  entropy. We select an attribute and 

choose a suitable point for dividing the data and note the entropy reduced by dividing the 

data into the two parts than the original entropy of the data. The attributes were ranked 

according to its power of class separability, i.e. its strength to separate the data into two 

distinct classes: salt and no-salt.  
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Most of these attributes are widely used by various seismologists. We tried a few new 

attributes, including Homogeneity, Contrast and Energy (extracted from Grey-Level Co-

occurrence Matrices) which proved to be much better that the conventional attributes 

used in seismology. The 19 attributes used are as follows mentioned according to their 

rank performance wise respectively: Homogeneity, Contrast, Energy, Mean, Median, 

Peaks, Average Energy, Reflection Intensity, Instantaneous Phase, Root Mean Square, 

Threshold, Chaos Texture, Standard Deviation, Curve Length, Weighted Second 

Momentum, Variance, Average Non-Linear Energy, Contrast Texture and Zero 

Crossings.  

Once the pre-processing of data was done, the focus was on selection of an efficient 

technique to segregate the data into two distinct classes: salt and no-salt. We explored the 

data with four different clustering techniques.  

The first among them was the popular k-means algorithm. The k-means algorithm, as the 

name suggests, tries to find k different clusters with means or centroids of these clusters 

as the foundation. It takes k, the number of clusters that is to be formed from the user and 

then randomly selects k points from the dataset. The algorithm then iteratively performs 

the two steps of assigning all the points in the dataset to the closest centroid and 

modifying the new centroids by finding the average of the data points assigned to that 

particular cluster until convergence. This algorithm is both time efficient and space 

efficient.  

The results obtained from this clustering technique were quite impressive as we could 

observe distinct clusters formed around the structure of the salt body in our test data 
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image. These clusters needs to be further classified into two classes with the help of any 

base classifier.  

The next clustering technique was the Expectation-Maximization Algorithm. The most 

important difference of expectation-maximization algorithm with the k-means algorithm 

is that instead of a crisp assignment of the points to any cluster, the expectation 

maximization algorithm assigns each data point to a cluster with certain probability. The 

expectation-maximization algorithm assumes that data is a result of probability 

distributions, which have some parameters and the data can be defined with the help of 

these probability distributions, and each of these data in the entire dataset comes from 

these distributions with a certain probability. Each of these distributions actually 

represents clusters and hence the problem stands out to be like each of the data points in 

the entire dataset belongs to a cluster with a certain probability. The expectation 

maximization tries to find out the parameters of these distributions i.e. the clusters and 

then tries to find the probability with which each of these points belongs to these clusters. 

Hence a crisp assignment of objects to clusters does not happen in the algorithm. 

The expectation maximization algorithm has two major steps. It iteratively first tries to 

estimate the probability distributions (known as the expectation step) and then uses the 

above estimates to update the parameters of the probability distributions (known as the 

maximization step). Iteration stops at convergence. 

The results obtained from the k-means algorithm showed better performance than the 

expectation maximization algorithm. That being the case, k-means algorithm was to be 
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preferred over expectation maximization algorithm for analyzing seismic data using 

clustering techniques. 

The next clustering algorithm we implemented was the min-cut algorithm, which is a 

graph based algorithm. We considered the entire dataset into a graph, where the data 

points act as the nodes and the vertices are the similarity measure between these nodes. 

Once the representation was realized, we cut the graph into two different parts, where the 

cut will have the minimum cost, which is the most tightly connected vertices will remain 

in the same cluster. 

Initially this algorithm seemed to be really promising as it had the capability of dividing 

the entire data set into two distinct clusters, but in our project the mincut algorithm did 

not seem to be a feasible solution to the problem. As the data set was big, it did not seem 

to be a suitable algorithm for huge data like seismic images. Moreover, the application of 

the same method in three dimensions would be even more challenging. 

The last algorithm applied was the Euclidean clustering algorithm. In this algorithm, the 

challenge was to set the maximum number of points that can exist in one single cluster. 

The underlying concept of this algorithm is relatively simple. We selected a point 

randomly. Then we selected the neighbors of this point and put them in an empty queue 

and the point itself is put into a specific cluster. Then we processed each of these points 

in the queue one by one and once the points from the queue were processed, they were 

assigned to the cluster the initial point was assigned to. The points from the queue were 

processed by finding the neighbors of these points and putting them into the queue. This 

was done until the sum of the number of points in the queue and the number of points in 
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the cluster crossed the threshold, after which all the remaining points in the queue were 

assigned to the cluster.  

The Euclidean Clustering produced the best results when compared to all other clustering 

algorithms used. In our analysis, we gradually increased the threshold of the number of 

points that can belong to a cluster. By doing this, we observed an interesting 

phenomenon, where after a certain point the algorithm started dividing the entire dataset 

into two distinct clusters and then as we increased the threshold the algorithm started 

extracting a distinct boundary of the entire salt structure.  

Future Work: 

After the experimentation with the different clustering techniques, the next step of the 

project is to implement the best pre-processing techniques and the best or most suitable 

algorithms found for the two dimensional data, in a three dimensional space. Since it is 

easier to work with two dimensional data which requires less computational power, we 

first implemented the algorithms in two dimensions with the goal in mind to implement 

them in three dimensions. 

Moreover, we would still want to experiment with more classification techniques like 

clustering them with k-means and then the clusters obtained could be classified into two 

distinct classes with the help of a base classifier. The goal is to try out different 

techniques which would classify the entire structure of the salt into a distinct class instead 

of just the boundary.  
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Our future aim is to build a classification technique which would have the best 

applicability to seismic data and automatically analyze the entire salt structure from a 

three dimensional data. With this advancement, we would be able to more accurately 

extract the sub-surface salt structure and thereby precisely locate the oil and natural gas 

reservoir underneath the surface of the earth. 
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