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ABSTRACT

An analog feedback telemetry system having noise in
both the forward and feedback channels is analyzed. The
complete system is treated as a feedback control system with
disturbances in forward and feedback loops and technique
of calculus of variation is applied to study the optimum
performance.

Cases of both with and without delay in the channels
are considered. The technique evaluates the expressions for
optimum filters which minimizes the mean square error
between the data sent and the data received.

Various cases of correlation between signal and
noise processes are considered and expressions of optimum
filter .transfer functions are derived. Mean square errors
are evaluated for various cases of correlation.

It is shown that for the systems where noise in
the feedback channel is not correlated either with forward
channel noise or the signal, a feedback channel is not
reguired for optimum performance. Channel delays could

also be adjusted to minimize the mean square error.
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CHAPTER 1

INTRODUCTION

Since early times effective communication has been
responsible for mankind's progress. Examining chronologically,
the earliest form of communication was by acoustic signals.
The limited concept of transmission of sound waves was well
utilized through the blowing of horns, the beating of drums,
etc. Next visual means of communication, such as the
semapher system, namely, signalling of light sources in a
certain sequence was utilized to convey information. How-
ever, this system had a very low rate of transmission.
Improvement in the rate of communication was made through the
use of code and the deﬁelopment of signalling devices. The
next major invention was telegraphy and its subsegquent mcdi-
fication to the more complex multiplex system.

With the discovery of electromagnetic radiation by
Maxwell in 1873 and the development of the first wireless
communication in 1894, the progress in this area has been
rather fast leading to inventions of newer and better tech-
niques of transmission. These techniques which are used in
the data transmission from machine to machine or from machine
to a human operator have made reliability of transmission a

critical factor in system design.



Mathematically, reliability is expressed through the
system performance. For example, the performance may be
evaluated on the basis of gquality of message and the fidelity
of the signal. In the present age of space technology, the
concept of system performance has completely changed. We
are now concerned with communication through spaée, where
the signal is perturbed by random noise. This noise can be
described statistically and to separate the required data,
statistical methods are necessary and the new field of sta-
tistical theory of communication has been successfully used
for system design. As we will see in the later chapters,
this approach leads to simpler design equations in terms of
statistical properties of signal and noise.

Digita{ transmission is the most common form even
though all the physical guantities are in analog forﬁ. In a
digital system, the analog data is sampled and then quantized.
Corresponding to the quantized levels coded digits are trans-
mitted. The advantage of digital data transmission lies in
the equipment reliability, ease in data generation and smaller
probakility of error. However it introduces gquantization
error. Analog transmission, on the contrary, does not intro-
duce any quantization error but needs more sophisticated
instrumentation than digital.

Often there is a need for the receiver to confirm the



message sent by the transmitter. A two way communication
system with two channels, one connecting the transmitter to
the receiver and the other from the receiver to the trans-
mitter becomes necessary. This system can also be modified
to be used as a negative feedback system, which will reduce
the non-linear distortion due to noise in the channel and thus’
improve the reliability of the system. It is worthwhile to
note Shannon's [1l] results which show that with the availability
of a feedback link, the complexity of message coding can be
reduced for a given system performance or probability of error.
Previous research in the above field of investigation
had been rather limited. However, there is a good possibility
of improvement in system performance if we use the feedback
link. 1In this\dissertation various aspects of feedback tele-
metry are discussed. It is found that the design of.optimum
filters in the two channels, forward and feedback, play an
important role in the system performance. Control system
approach is followed to design optimum filters of communica-

tion system and the system performance is evaluated.



CHAPTER TII1

FEEDBACK TELEMETRY

In tﬁis chapter a review of the development of feed-
telemetry systems is given. Feedback has already been
applied to digital systems to simplify the complex coding of
the message. However it is worthwhile to consider the effect
of feedback on the system performance employing analog data.
With the selection of analog data, the criterion of performance
of the system is changed from probability of error for digital
data to mean square error; a brief account of the criterion
of performance is included.

The various considerations of this chapter are as

follows:

(a) 2Analog data
(b) Criterion of performance

(c) Survey of Feedback System

Analog Data

In an analog system, all the quantities to be measured
and telemetered are continuocusly variable. For example the
temperature in the spacecraft continuously varies over a de-
sired range. Other examples of continuous data required to

be telemetered may be physical parameters such as gas flow,



pressure, level, speed or physiological data which includes
blood pressure, body temperature, heart beats etc. When the
telemetering transmitter converts this physical quantity into
electrical form, the converted gquantity is an analog of the
data. The purpose of the telemetry system is to send this
electrical analog in any of the modulated forms. This analog
is measured at the receiving end to recover the original data.
An example of a simple telemetry system is given in Fig. 2-1.

It is a characteristic of analog telemetry that the
final measurements of the telemetered quantity is made on the
analog data at the receiving end. This is in contrast to the
digital system where the continuous data is reduced by discrete
steps into gquantized form at the transmitter end.

While there are certain advantages in digitizing the
information, it may be worthwhile to send the data in the
original form if a suitable system is developed so that it
satisfies the necessary performance criterion wihtout much
elaborate circuitry.

Criterion of Performance

The purpose of a communication system is to make the
source output available at the receiver. The channel or the
transmission media introduces extra undesired random noise to
the signal. This random noise is unknown but its statistical

properties can be studied and specified. A system has to be



devised to extract the signal from the noise. It is evident
that perfect reproduction of the original signal is impossible.
However, we should achieve a suitable reproduction which will
be satisfactory for the specific purpose. This leads us to
specify a criterion of acceptability, which will depend upon
the type of problem encountered. For example, in machine to
‘machine communication, we specify the degree of accuracy or
precision of the reproduced information which is required for
acceptable calculations. It is to be noted that the crite-
rion of acceptability is not a function of the source or of
the receiver alone but that of the system as a whole. The
basis of system design is the performance criterion.

The design based on the performance criterion gives
the optimum system performance. For a system where s(t) 1is
the desired signal to be transmitted and si(t) is thé received
data (si(t) = s(t) + n(t) where n(t) is the noise introduced
in thechannel), the instantaneous error between the output
and the desired signal is given by

e(t) = s(t) - s;(t)

Besides material cost and system compatibility, the
major factor involved in the selection of performance criterion
is a function of the error between the desired signal and the
output. This can be written as

J=F [e(t) ]



where F is the specified function of error which has been
determined by the performance criterion. The various differ-

ent performance criteria used in system design are the follow-

ing:

al] Fle(t)] = () Average value of error

bl Fle(t)] = [ Je(t) ]| Summation of absolute value of error
c] F[s(t)].= e(t)2 Mean sgquare error

The first function is not generally appropriate, for
when e¢(t) is averaged, positive and negative errors tend to
cancel each other even though for any particular value of ¢t,
the magnitude of the error may be quite large. The second
and third functions do not suffer from this defect and the
mean square error in particular is commonly used [2, 7, 13,
17, 18, 20, 29] in system design because it lends itself con-
veniently to mathematical analysis.

Survey of Feedback System

A feedback system is defined as one in which the infor-
mation about the data received at the receiver end is made
available to the transmitter. In a "one way" system consist-
ing of a transmitter - receiver link as in Fig. 2-1, the
transmitter has no"information about the data received at the
receiving end. In many cases such as Fig. 2-2, there is a

return link available from the receiver to the transmitter



for some other purpose and this éan be combined with the for-
ward link. The information from the feedback channel of this
composite system could be exploited to give possible significant
increase in the reliability of the forward transmission of in-
formation. One example of a system in which a return link is
available and can be made use of is in a missle or aircraft
control system. A forward link exists from the vehicle to the
ground and a return or command link is available from the ground
to the missile or aircraft.

The possibility of increased reliability in transmis-
sion of data has been investigated in some detail for digital
éystems using a feedback link and indicated in the literature
[5,6,10,11,12,13,14,25,27-32], significant results have been
obtained. Seve;al operating systems have beenibuilt based on
the feedback principle and impyovement in the system performance
has been achieved.

Early investigations [12,32,6,] have shown the possibil-
ity of improvement in the system performance by the use of
feedback. The basic idea is to provide the transmitter with
information about a certain state at the receiver; either
the received signal or the decision made at the receiver.

The so-called pre-decision feedback technique in digital communi-
cation [12] has been developed in which the transmitter is

informed about the continuous data received at the receiver.



The technique exploits the feedback channel in eliminating
the noise and uncertainty accumulated during the time the
signal is passed through the forward channel. 1In Elias's [12]
work a wide band forward channel and a wide band feedback channel
are interconnected to make a composite feedback system. The
receiver sends back the received signal through the feed-
back channel which is added to the input signal. Elias con-
cludes as follows: if noise processes nl(t) and n2(t) in the
two channels are non-zero and uncorrelated, then the presence
of a feedback loop cannot increase the rate of information.
If the feedback is noiseless, the performance is neither im-
proved nor degraded. However if both additive noises are non-
zero and correlated, then there is a possibility of increasing
the rate of information. In other words, the channel capa-
city can be increased by feedback if there is a statistical
dependénce between nl(t) and n2(t) in the two channels.
Similar resulté are reportea by Hayes [34]. Simultaneous
noise jamming of the two channels and noise introduced by
radio stars of small angular size are examples in which noise
processes are correlated.

Another feedback system, known as a post-decision feed-
back system has been reported for digital systems by various
investigator such as Viterbi [11l], Schalwijk [14], etc. 1In

this system, the transmitter is supplied information about
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the decisions made by the receiver. Shannon's results show
that for a noisy forward channel the capacity of the forward
channel is not increased by the addition of a noiseless feed-
back channel provided the forward channel has no memory.
However.it is found that the maximum rate of "no error" infor-
mation can be increased with the use of feedback. Chang's
analysis of the post-decision feedback system deals mainly
with the coding aspect of the signal and his results show that
in systems that require elaborate coding techniques for error
free transmission, the addition of evena noisy feedback link
will provide the same system performance using simpler coding
technique. Viterbi's model [11l] is a form of post-decision
feedback using a white Gaussian noise corrupted channel. The
receiver computes the likelihood ratio as a function of time
and makes a decision when the value of likelihood ratio crosses
a pair of threshold values. The transmitter repeats the data
until the receiver informs the transmitter that it has taken
a decision; at this time the transmitter starts sending the
next data. When hiéher transmission rates are used, this model
claims higher reliability as compared to "one-way" systems.
Improvement over Viterbi's model has been made by
Turin [10] who utilizes predecision feedback instead of the
post-decision feedback of Viterbi's model. 1In this system

the receiver computes the likelihood ratio as a function of
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time and sends it back to the transmitter continuously.

Most of the investigators have focussed their attention
on the coding schemes utilized for digital data system models.
Kailath [13] and Schalkwijk [13,14] worked out coding schemes
for additive noise channels with feedback, both with and with-
out bandwidth constraint on the tranmitted signal. Their
scheme utilizes the Robbin-Monro Stochastic approximation
technique and reduces the complexity in éoding compared to the
"one way" system. Kashyap's [28] coding scheme is also appli-
cable for additive noise channels. His scheme is more general
than Schalkwijk and Kailath and it reduces to the latter's
scheme when noisy feedback is replaced by noiseless feedback.
Similar work on the feedback scheme is done by Smerage [27],
Goblich [30], etc. |

These basic results of using the feedback channel in
the digital system show that good improvement in system per-
formance and reliability can be obtained. Similar results
are possible for analog feedback telemetry systems and will

be investigated in the following chapters.
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CHAPTER III

LINEAR FILTER PERFORMANCE

The process of extracting the signal from the noise
is known as filtering. It is evident that complete separation
of signal from noise cannot be done unless the properties of
signal and noise are completely different. For example, if
they have non-overlapping frequency spectra, complete separation
is possible. In practice the signal and the noise spectra over-
lap and hence the filter performance involves some error in
separating the signal from the noise. In this chapter the
characteristics of various filters are considered and an ex-
pression for optimum filter design is derived.

Consider the input to the filter to be si(t);

si(t) = s(t) + n(t)
where s(t) = signal
n(t) = noise

The function of the filter is to process the received
data and separate the signél from the noise. In mathematical
terms it operates on the received data and gives an output
so(t). This operation may be represented as

where so(t) = output of the filter and

H[si(t)] = the operator representing the filtering

action of the input data.
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The selection of a particular mathematical expression
for operator H depends upon the type of performance of the
filter and the ocutput desired.

The filter may.be required to process an infinite or
finite set of data. On the basis of the quantity of data
processed the linear filters are classified as follows;

(a) Type I

The input si(t) is stored for a certain interval of
time (theoretically for -« < t < =) and then processed subject
to performance criterioh to give so(t) at the output. This
type of filter gives a more effective suppression of noise
than other filters. To compute the output so(t), Type I uses
values of s; (t') for all t' such that

-—» < t' ¢ ®
(b) Type II

Wi£h this filter type, the processing is continuously
done and the output so(t) is influenced only by the input
si(t) available up to that moment. To compute so(t), Type II

uses values of si(t') for all t' such that

-0 < ' < ¢t
(c) Type III
This fiiter is similar to Type II filter and uses the
input data si(t') of duration T such that

t-T < t' < t
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Linear filters perform linear operations on the input
functions. In the time domain, the filter can be written in
terms of the impulse response h(t) which is related to the

transfer function H(w) in the following manner

hit) = 3= [ H(w) e*T°%ay
H(s) = | h(t) e 3%%at (3.1)

Knowledge of h(t) or the impulse resonse in the time domain
is completely equivalent to knowledge of H(w) in the fregquency
domain. h(t) is defined mathematically as the filter response
to a unit impulse at t = 0 as in Fig. 3.2
The output in terms of the impulse response of the
filter is written in the form
so(t)\= ? h(t") si(t-t')dt'

-0

or

so(t) = [ s;(t') h(t-t")at’ (3.2)
which is the convolution of the input with the impulse response.
As seen above, for the filter of Type II, which processes only
the past and the present values of the input, the impulse
response will have the following restriction;

h(t) =0 for £t < O

which gives
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sq (t) =_£ h(t') s, (t-t')dt
t
= [ h (t-t") s; (£")at’ (3.3)

Similarly for a finite.memory filter or Type III filter, we
have
h(t) =0 for t < 0and t > T

and T

so(t) = [ h(t') s;(t-t")dt

== 00

t
= | h(t-t') s, (t')dat' (3.4)
t-T N
As stated in Chapter II, the optimum linear filter
will be described by the minimum mean square errorzy where
€ is the error given as

e(t) = so(t) - s(t)

Solution of this optimization problem for minimizing the mean
sguare error, reduces to an integral equation involving the
impulse response which characterizes the optimum filter.

For the linear time-invariant filter as shown in Figq.
(3.1), the error is given as

®
e(t) = £ h(t') s, (t-t') dt' - sg4(t) (3.5)

The mean square value of the error can be simplified as

52 = [ [ h(z) h(o) Si(t—T) si(t—o) dtr do

-0
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~2f h(1) Sg(0) 8, (E=7) dr + s4°(¢) (3.6)

However, the terms with a bar can be replaced by the correla-

tion functions as follows:

Rii(U‘T) = Si(t-T) siTt—o)

Rdi(T) sd(E§ Si(t—T)

Ryq(0) = s4°(£) (3.7)

By the substitution of correlation functions in (3.6), we get

€2 = f f h(t) h (o) Rii(o—r) dtdo

o

(3.8)

-2 f h(r) R&i(r)dr + Rdd(O)

As we shall see, the condition of minimum 27 is given in the
integral form as

[ h(t) Ry (o-1)dt = Ry, (o) (3.9)

To show that the above integral holds, the method of calculus
of variation is applied to the equation (3.8). Let J be the
mean square error ;7 corresponding to impulse response h(t).
Then J + 8J will correspond to an impulse response h(t) + 8k(t)

where 8k(t) is the wvariation of h(t). Substitution and

simplification leads to
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83 =2 | 6k(r)dr[ [ hio) R;; (1-0)do - Rdi(Ti]
+ [ [ 8k(1) 6&k(o) R;; (1-0)dr
or 87 = 2 Gk('r)dr[ [ h(o) Ry, (1-0)do - Rdi('r)]

+L{ sk (1) si(t—r)dr]z (3.10)

From (3.10), since the last term is positive, and independent
of h(t) the condition of minimality leads to (3.9). To find
the.optimum filter, equation (3.9) is solved for the unknown
h(t) or corresponding H(w). For the filter of Type I, equation

(3.9) leads to a simple solution. Writing (3.9)

] h(1) R;; (o-1)dt = Ry, (o)

- 00

Multiplying both sides of (3.9) by e %% and integrating, we

get
F - -jwo - < —jwo'

f_i h(t) R,; (o-1) e dtdo _iRdi(o) e do
or H(w) Sii(w) = Sdi(w) (3.11)
Where

Sii(w) = Spectral density of input

_ 7 -jut

and Sdi(w) = Cross spectral density of input and desired

=_£ Rdi(r) e-JwTdT
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Hence
Sai (@)

Sii w)

H(w) (3.12)

Also the mean square error is

e? = Rg4(0) = [ [ h(x) hlo) R, (r-0)drdo  (3.13)

- 00

Since

oo

1
Rdd(O) = 7?_£ de(w)dw

and

J _£ h(r) h(o) Ry (r-0)drdo

1

=—2_—Tr_—

H(w) H(-w) Sii(m)dw

8“8

The expression for mean square error can be written as

oo (3.14)

For practical cases, realizable and constructible
filters have to be derived from the optimum filters thus
calculated. Given the input and output spectra, the

optimum filter is given as
841 (8)

H(s) = gIITE) ; where s =0 + ju,
Sii(s) being the spectral density of the input data consisting
of the useful signal s(t) and perturbing noise n(t).
This is an even quantity, the roots being symmetric with re-

spect to the real and imaginary axis. Sii(s) can be written as
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Sii(s) = Wl(s) Wl(—s)

Where Wl(s) has zeros and poles in the upper half plane and
Wl(—s) has poles and zeros in the lower half plane. We can
]

define Hl(s) as

1

H, (s) = W, (s) H(s)

Wl ~-s
such that it contains all the critical frequencies of the
optimum filter transfer function and only the lower half plane

zeros and poles of its denominator. This can be expanded in

partial fractions as

] al a
Hy(s) = 56,7 * S5 t oo
Cq c
+ l + 2 + ——————————————

(s-4;) (s-d.,)

The a's are the residues corresponding to left-half plane
poles and the c's are the residue corresponding to right
half plané polés. Since the terms containing c¢'s are not
realizable, a new transfer function containing only a's are
taken. So

H;(s) = Realizable part of Hi(s)
The optimum realizable filter transfer function (which can

be constructed) is obtained by dividing Hl(s) by Wl(s).



This can be written as

H*.(s) = Optimum realizable filter =

Also the expression for H* (s) can be written simply as

1 N(s) |
H* (S) = Wl (S) [Wl (_S)J

+
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Where N(s) is the numerator of the expression of the optimum

filter, the product Wl(s)-Wl(-s) is equal to the denominator

and the plus sign takes into account only the poles in the

left half plane in the partial fraction expansion of the

term in parenthesis. Appendix C gives the detailed theoreti-

cal evaluation of realizable filters.



si(t)

s(t)+n(t)

so(t)

Fig.
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Impulse

Impulse Response
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CHAPTER IV
OPTIMUM FILTER DESIGN FOR

NOISY FEEDBACK SYSTEM WITHOUT DELAY

The simplest noisy feedback telemetry system is describ-
ed in terms of two one way systems in such a way that the data
received in the feedback channel is subtracted from the ©Criginal
signal and the resultant data is transmitted through the for-
ward channel, Both channels introduce noise and have filters
to help in extracting the signal out of noise. The resultant
system is represented in Fig. 4.1,

In this chapter a system such as shown in Fig. 4.1 is
studied. No delays are introduced in the two channels. The
complete system from signal source to receiving end, including
the feedback linﬁ is treated as dynamic control system perturb-
ed by noises in the two channels. Except for the stationarity
of the processes no assumptions are made regarding either signal
or noise,

Referring to Fig. 4.1, the following terms are defined.
s(t) - Signal being sent
nl(t) - Noise in the forward channel
n2(t) — Noise in the feedback channel

c(t) - Output at the receiving end
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Hl(w) - Filter transfer function in the forward
channel
Hz(w) - Filter transfer function in the feedback
channel
Applying standard control system technique Fig. 4.1 is
reduced to an equivalent open loop system with inputs s(t),
nl(t) and nz(t) and output c(t) as shown in Fig. 4.2. Repre-

senting the equivalent transfer functions as G's, we get

Hl (w)
Gy (w) T+ 1 (o] H,(a)

H, (w) H,(w) (4.1)
G, (w) o

1+ Hle) Hz(m)

The corresponding impulse responses gl(t) and gz(t) are

H, (w)
91 T+ By (@) H,(w)
&) - o1 Hy (w) H,(w)
92 = T+ Hy (0) H,(w) (4.2)
1 2
where F—l is the inverse Fourier transform i.e.
© H, (w)
_ 1 1 ~juwt ..
9;(8) = =55 _i T+ Hy(e) Hy(w)© I dw (4.3)

The equivalent system could be written as in Fig. 4.3
The output and the mean square error can be written in

the form of convolution integrals of the inputs and the effec-



tive impulse responses gl(t) and gz(t).
Hence we can write
e(t) = c(t) - s(t)

= [ s(t-1) gy(1)d + [ ny(t-1) g;(r)dr (4.4)

- 00

-f n, (t-1) g, (1) dr-s(t)

where e(t) is the error between the signal and data received.

Also at (t+p), e(t+p) is given as
(4.5)

e(t+p) = [ s(t+p-1) g (1)dt + [ nj(t+p-1) gy (1)dr
—f nz(t+p—r) gz(r)dr-s(t+p)

The auto-correlation function (3) of error signal can be

calculated as

R (p) Expected value of [e(t+p)e(t)]

€€

i

e(t + p) e(t)

Substitution from [4.4] and [4.5] results in

Ree(p) R p) e(t)

(c)dtdo

= Il s s 9119 91



+ ]/

-1/

s (t+p=-1) nl(tao)

s (E¥p-1) 0, (t=0)

s (t+p-1) s (t]

s (t=-1) nl(t+p-c)

nl(t+p—T) nl(t-o)

nl(t+p—r) n2(t—o)

nl(t+p-r) s (t)

s (t-<) n2(t+p-c)

ny (t-1) n, (t+p-o0)

nz(t—r) n2(t+p-o)

s (t) n2(t+p—r)

s(t-1) s (t+p)

s (t+p) pz(t-r)

,gl(T)A

gl(T)

‘gl(Tl

gl(T)
g4 (1)
g4 (1)
g4 (1)
g4 (1)
g (1)
g, (1)
g, (1)

gl(T)

gy (o)
g, (o)
dt

g4 (o)
g4 (o)
g, (0)
dt

g, (o)
g, (o)

92(0)

ar

&4
drt’

L4
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dt do

dt do

dt do

s (t+p) n; (t-t)gy(r)dr

S (ttp) s (t)
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where the bar represents the expected value.

As

STEFp=7) B (E=e] ~ ~ Ysn, (U*P7T1 and so on, we can repre-
sent these expected values in tems of correlation functions

Hence the auto-correlation of error is

Res(p) = ff Rss(0~1+p) gl(rl gl(c) dt da

+

/! Ron, (a7T+P) 9 (7) g (o) dr do

= JI Rgp (a=t4p) g1 (1) gy(o) dr do
~[ Rgg(p-1) gl(T3 dr

+ ] Ry (0=t=p) 91(v) g (o) dr do

P IR

lnl(0+p-r) gy (1) gy(0) dr do

~ /! Rnln2(°°T+P) g1 (1) g,(0) dr do
—f Rsnl(T"'p) gl(T) dr

= I Rgy (o=1-p) g1 (1) g,(0) o ds

-/ R, , (o=1-p) g;(7) g,(0) do dr

172
+ /] annz(O-T-p) g,(0) g, (1) do dr
+] Rsnz(r—p) g, (1) dt - / Rgg (P+1) gy (1) ar

~f Rsnl(p+r) gy (1) dt + f Rsnz(p+1) g, (1) dt + R (p)

-— (4.6
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Where R R

ss’ snl' Rsn r R R , etc., are the

R '
2' PiR" MRt oMy
correlation functions. The error spectral density is given
by the following expression [3]:

o

Sec (@) = [ R (@) e™IYP gp (4.7)

since

R (o=p=1) = R (pt+1—-a)
sny n,s

R (t-p) = R (p-1)
snq nys
R (o=-p~-1) = R (p+t=-0) (4.8)
nin2 2™
By substituting p = 0 in equation (4.7) we can write the ex-

pression of mean square error as follows

B “%F / Scelw) du

00

Mathematical simplification results in the following:

e? = [ g (mar [ [Rg (=) 4Ry (0=) 4Ry o (0=0) 4R, \ (o-1)]

1 1™1
gy(o) do + [ gy(v) at [ [- Rsnz(o-r) - Rnlnz(o-r)-ans(r-o)
- annl(r-a)].gz(o) do + [ gp(1) dt [~ Ry (~T)- Rnls(-T)
= Rgg (1) = Ry (0] / Ry o (=7) + Ry (1)1 g,(x)

+ g, (1) dt / g, (o) annz(r—c) do + RSS(O)

(4.9)
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where the limits are from -« to = and R's are the correlation

function. Letting

E,. = R (G-T) + R (oc~=~1) + R (c-1) + R (o-1)

1 sS .snl nls nln1
E2 =‘-Rsn2(o—r) - Rnlnz(o—r) - ans(T“O) - annz(r—o)
Ey ==Rg (-7) = Ry S(-1) - R (1) - Ry (1)

1 1
E4 = Rn S(—‘r) + Rsn (1) (4.10)
2 2

E. = R (t-0)

5 n2n2

We get the following expression of mean square error

:7 = gl(r) dr | E19; (o) do + / g, (1) dr / E,g, (0) do

+ [ Eqg; (1)dt + / E,9, (1)dt + R (0) + i g, (1)ar i Egg, (0)do

(4.11)

Our aim iﬁ this analysis is to find the optimum values of
Hl(w) and Hz(w) which minimize the mean square error. These
can be found by applying the variational techniques to the
effective impulse responses gl(t) and gz(t) [4]. Since we
have two variables, we can take variation of_gl(t) and keep
gz(t) constant. This will give one set of expression in
gl(t) and_gz(t). Then we take the variation of gz(t)

keeping'gl(t)
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constant. This will give another set of expression in gl(t)
and gz(t). The optimum filter could be found from the two

expressions.

Let us take variation of the impulse response gl(t),
keeping gz(t) constant. Replacing gl(t) by gl(t) + Sh(t)
where h(t) vanishes at the boundaries as in Appendix A.

Hence equation (4.11) becomes

—

e? [gy () + sh(0)] = ff At do Eylg; (1) g; (o) + 8g, (1) h(o)
+ 6g; (o) h(r) + G?hgr) h(c)] + [ dr do E; g,(0) [gq (1)
+ 8h(1)] + [ E5 &t [g (1) + 8h(x)] + R__(0) + JE, g,(1) ar

+ f Eg gz(r) gz(o) dr dé

Taking the derivative of 52 with respect to § and letting

§ ~ 0, we get

0= Qg se2 | = [ g{(r)ar [ Ejho)do + f g, (o) do

0

$

[ Ejh(n)dr + f g,(0)do [ Ejh(r)dr + Ejh(r)dt  (4.12)

where the limits of integration are from -« to «». Since

[ gy(1) at [ Ejh(o)do = [ g, (0)do [ Ejh(r)dx

and El being even in argument; we get

[ 12 [ E;g,(0)do + [ E,g,(0)do + E;] h(t)dr = 0 (4.;3)
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Since this is wvalid for all value of h{(t), the term in the
parenthesis is identically equal to zero. Hence we get
2 [ E

lgl(c)dc + f Ezgz(c)do + E3 =0

(4.14)
Where El, E,, and E3 are defined in Egn. (4.10)
Taking the variation of gz(t), keeping gl(t) constant
and replacing g, (t) by'gz(t) + 8' f£(t) where f(t) vanishes
at the boundaries. Equation (4.11) leads to the following

expression:

—

e [g,(0) + §'£(0)]
=[] at ao B9, (x) g, (o)

+ [] at do E,gq (1) [g,(0) + &' £(0)]

+

[f Ejgp(m)at + [ B, [gy(x) + &' £(r)1dt +R__[0]

+

/] Eglg,(r) + 8" £(1)] [g,(0) + &' £(o)]dr do

(4:15)
Taking derivative of equation (4.15) with respect to §' and

letting §' » 0, results

0 = g5v 8 [ gy (0)dx [ E, £(0)d0 + [ B, £(o)do
+ f gz(T)de Eg £(o)do + i g, (0)do f Eg f(t)dc

(4.16)



Since E5 is even in argument, i.e. Rn (t1-0) = R {(o-1),

we get

[ 12 ['ESgZ(T)dT + [ Eyg(1)dt + E,4] £(o)do = 0

(4.17)
where limits of integration are from -« to ». Since the above
expression is valid for all values of £(c¢), the term in the
parenthesis is identically equal to zero. Hence we have

2 [ E

(1)dt + [ E,g,(1)dT + E, = 0. (4.18)

592 291 4

Substituting for El’ E2, E3, E4, and E5 in the above expression

and taking the Fourier transform of (4.14) and (4.18) we get

2.6)(0) [Sgq w8, (48, (S, | (1-Gy(w) [Sg, (W) + 8, o (w)
+8 n, (0148, S(@)1-2 S (0) 2 8, () = 0 (4.19)

2 Gz(w).[Snznz(w)] "2.6y(0) (S5 () + 8, 4 ()]
+25_ (o) =0 (4.20)

2
where S's are the spectral densities of various processes.
Equations (4.19) and (4.20) could be written in matrix form
and solved for Gl(w) and Gz(w). Thus we get the following

expression
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2[5, (148, ¢ ()48, ()48, o (@) - [Ssnz 148, lo1es, o (145, (0]
-1s (w) + S (w) S (w)
[sn2 n,n, ] nyn,
L J
. ] \ ]
G, (w) 2 [Sss(w)+Ssnl(w)]
G, (w) ) (4.21)
SR S1 4
Then
2 [Sss(w)+Ssnl(w)] - [Ssnz(w)+Snzs(w)+Sn2 1(w)+Snln2(w)]
Gy (w) = -s., (w) S, 5. ()
2 22
(4.22)
and
2 [sss(w)+snls(w)+ssnl(w)+snlnl(w)] 2 [Sss(w)+Ssnl(w)]
-1 _ .
Gz(w) =3 [Ssnz(w) + Snlnz(w)] Ssnz(w)
(4.23)

Where A is the determinant of the square matrix on the left of

expression (4.21) or

A =28 (w) [Sss(w)+Sn s(m)+Ssn

nyn, . NOLANRGE

171

- [s (w)+Sn n (w)] [Ss

sn, 10, (uu)+Sn s(m)+Sn n (m)+Sn (w)]

2 172 2™

(4.24)

)
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Substituting for Gl(wl and Gz(w) in terms of Hl(m) and Hz(w)

as
..Hl(wl
€1 = Ty E G M
H, () H,(w) .

1+ Hl(w) Hz(w)

the optimum values of Hi(“) and Hz(w) for the general cases
of stationary signals and noises are calculated.

Various cases of correlation between signal for noises
may exist in a practical case. In the following section, the
optimum filters for these specific cases of correlation will
be found. It is to be observed that these filters are optimum
as far as minimum mean square error criterian is concerned,

but they may not be physically realizable,

General Case

s(t), nl(t), nz(t) all comelated, all the processes real.

From (4.22), (4.23), and (4.24), we get

. Ssnz(w) [Snznl (w)+sn25 (m)] .— Snznz(m) I:SSS (U)) +Ssnl(w)]
Hl(w)':fssnz () I8, o @1¥S, (W) = 25,  (w)+Sg, (o) - Spyn, (011

S0, () (S, (0148, (0145, ()45, ()]

“Spn, (8 [Sgg (0145, 1 (01425, (o)) ]

(4.25)
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and
[ssn2 () 1855 (0145, (0148, J()¥5., (0)]1=[ (o)
+ssnl(w)] [Ssnz (w)+snlnz (w)]]
Hy(u) = [Bon, (7 pn, (175, STl =5, ") T8, To)+5 (o]
(4.26)
case T

s(t), nl(t), nz(t) all uncorrelated, all processes real and

noise means zero.

i.e. S _ (w) =5_ (w) =0
snl nls
S (w) = S (w) = 0
Sn2 nzs
S {w) = S (w) =0
R ) nyny

Substitution of above values in (4.25) and (4.26) results

SSS(w)

S (w)+S (w)
SS nlnl

Hl(w)

i
o

Hz(w)
(4.27)

This is a very interesting result. It shows that for
a system where signal and noise are uncorrelated it does not
pay to use the feedback link. Similar result is derived for

one way system in reference [3}.
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Case IT
hl(t) and nz(t) correlated, all processes real and noise means

zero. i.e,

Ssnl(w) = Snls (w) = Q

Ssnz(w) =8 (w] = Q

SSS (m)
H, (w) = :
1 Snlnz(w) Snlnz(q)snznl(m)
e [ s S ) - s
272 272
(4.28)
and
Snlnz(w)
Hplw) = s—qy
n.n
272 (4.29)
Case 11X

s(t) and nl(t) correlated, all processes real and noise means
zero i.e.

Ssnz(m) = Snzs(w) =0

S (w) = 8 (w) = Q
172 oy
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This leads to

Sss(w) + Ssnl(w)
(w) + ZSnlS(w)

H, (w) =
1 SSS(w) + Sn n

171

(4.30)

il
o

Hz(w)

Case 1V
s(t), and nz(t) correlated, all processes real and noise
means zero:;

i.e. S (w) = S (w) =0
sny n,s

[ (w) = 8 (w) =0
niny Nyt

This leads to S (w)Sn (w)

sn S
s (u) - 2 2
ss Sn n (w)
H (w) = 2 2
1 SSn (w) SSn (w)Sn S(w)
2 2 2
Sss(w)+snlnl[l§n n (w)] - S (o)
212 nohsy
(4.31)
Sn n (UJ)
B, (0) = 11
2 snznz(w) Sog (@)
Snzs(w) = 5 (@)
)
(4.32)

The above results are tabulated in Table 4.1



TABLE 4 - 1
OPTIMUM FILTERS FOR FEEDBACK SYSTEM

WITHOUT DELAY

Correlation Hy (w) H, (w)
Sy Njr Ny s ()
Q
Uncorrelated Sss w) + Sn n (w)
171
n n
1r %2 Sss(.w)
lat
Correlated Sn . () Sn . (w)Sn . () Sn . (w)
s ( [ S 12 172 271 12
w1 ]+ s (w)
ss Sn n (w) n;ng Sn n (w) Sn n w)
272 272 272
S
, np Sgs(8) * Sgp () .
Correlated Sss(w) + Sn I (w) +28rl s(w)
171 1
S
] Snz(wl Snzs(w) Snlnl(w)
S, n, Sgsl0) = =5 S _ (@)S__(w)
) n,n ss
Correlated S (w) - 22
: n S (w)
Sgp (w) 7 s__ s (w) 2 sn
S (w)+S ( )[1+ 2 ] - SNy N,ys 2
ss nlni w Sn n (w;.— S )
272 nznz

6%
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+ )

S S i o S Ll NI NS
TransmitterP- Channel E ' Receiver
End cq (t) ' End

: ! Feedback
Hz(w) : )
l + \ Channel
1 |
', ny(e)]
' |
Fig. 4.1
Feedback Telemetry System
s(t) Hl
l+HlH2
: c(t)
n] (t) Hl + }c§+
+H1H2 -
1+H1H2

Fig. 4.2

Equivalent Open-loop System of.Fig 4.1



+

c(t)

s (t) gl(t)
_____>nl (£) g4 (t)
n2(t) gz(t)

Equivalent Open-loop system of Fig. 4.1

41
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CHAPTER V
OPTIMUM FILTER DESIGN FOR NOISY FEEDBACK

SYSTEM-DELAYS IN CHANNELS

In practical cases of feedback telemetry, inherent de~-
lays exist in the system. The delays may include transmission
delays in the channel or delays at the two terminals or some
forced delay to help in optimizing the system. Assuming the
delays in the two channels as t and t, respectively and the
rest of the parameters as defined in Chapter IV, the system
may be represented as in Fig. 5.1 . The delays tl and t2
may be represented by transfer functions e t1% ana e_t2s.

The resultant block diagram is given in Fig. 5.2. Writing

the function in S-domain, we may write

C(s) = ny(s) Hy(s) + Cy(s) Hy(s) e °1°
and Cy(s) = S(s) = ny(s) Hy(s) - C(s) Hy(s) e "2%
On simplification, this reduces to
H, (s)
Cls) = n,(s) (€, * t,)s

1 + Hy(s) H,(s) e

S(s) Hy(s) e~ 18

+

1+ Hl(s) H2 (s) e_(tl + tZ)S
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Hl(s) H2(s)
—(tl + t2)s

—nz(s)
1+ Hl(s) H2(s) e

The block diagram may be written in term of equivalent open-
loop transfer function with the resulting block diagram as
shown in Fig. 5.3, where Gl(s), G2(s) and G3(s) are effective

system functions for nl(t), n2(t) and s(t) respectively.

(s) iy ()
G. (s) =
1 1+ H (s) H,(s) e~ (t + ty)s
H, (s) H,(s) et (

G, (s) = ~ 5.1)

2 1+ H (s) Hy(s) e (t) + t,)s

H. (s) e_tlS
G3(s) = . (. + t)s
1t 5

1+ Hl(s) H2(s) e

In terms of impulse response, the svstem could be re-

presented as in Fig. 5.4, where

) -1 H, ()
g,(t) = F — :
1 1+ Hy (o) Hy(w) e (F1 * )30
-t.- jw
_ H, (w) e "1 H, (w)
g, (t) = F* 1 2 (5.2)

1 + H. (0) H. () e (B3 T ty)Ju
1 2
Hl(w) e-tl'Jw

—l v
—(t1 + tz)Jw

g, (t-ty;) = F
1 1 1+ Hl(w) Hz(w) e
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Where F—l is the inverse Fourier transform.

The output signal and error could be written as con-
volution integrals of inputs and the impulse responses gl(t)
and gz(t). The error is given as

e(t) = c(t) - s(t)

= [ s(t - 1) gl(r - tl)dr + nl(t - T)gl(T)dT
- n, (t - T)gZ(T)dT - s(t) (5.3)

and the mean square error is given as

e? = [ g (t-t)dr [ g (o-t;) R__(o-1)do

+ 2 f gl(r-tl)dr f gl(c) RS

(c-1)do
n

- 2gl(r—tl) dr [ g, (o) Rsnz(c—r)dc

+

/ gl(T)dT f 91(0) Rnlnl(o—r)do

+ I gz(r)dr f 92(0) annz(c-r)do

2 [ gl(r)dT / gz(o) Rnlnz(o—r)dc

2 | g, {t=t;) R__(r)dr - 2 / g, (1) Rsnl(r)dt

+

2 gl(T) Rsnz(T)dT

+ RSS(O)

(5.4)
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The limits are from -~ to ® and R's are the correlation
functions of various signal and noise processes.

We are interested in the expressions of gl(t) and g2(t)
which minimize the mean square error. The procedure is
the same as in Chapter IV and variations of gl(t) and gz(t)
are taken one at a time and keeping the other constant.

Taking the variation of gz(t), keeping gl(t) constant

and applying the condition of minimality as in Appendix B,

we get
a 2
—de Geelz -2 gl(T'tl)dT [ h(o) Rsnz(o—T)dc
+ f gz(T)dT f h (o) annz(c—r)da

+§ g,(c)do [ hir) Ry n, (0-7)dr

-2 g, (1)dr ] h(o) Rnlnz(c—T)do
0

+ 2 Ran(T) h(r)dr = (5.5)

where eh(t) is the variation of gz(t) and h(t) satisfies the
boundary conditions as given in Appendix A. Since

] g, (t)dr I R, 2(0—1) h(c)do = [ g, (a)do / annz(o—r)h(T) dr

21'1

(5.6)

i.e. R (t) being even, we can write
n,n,
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[ hio) [f - gy (-t Rgp, (o-r)ér + [ Ry n, (07795 (1)
- I Rnlnz(o—T)_gl(T)d{ * Rgy ()] do =0

(5.7)

For this expression to be valid for all values of h{c), the

term in parenthesis is identically equal to zero; i.e.

- f Rsnz(o-r) gy (r-t)ar + | Ry n, (97095 (1)

- f Rh n

L (o-1) gl('r)d'r + Rsnz(o) =0 (5.8)

2

The limits of integration are from -« to =,

Before taking the variation of gl(t), we have to
change the variable suitably since the expression for mean
square error contains terms in gl(r—tl).

Changing the variables such that

T—tl = Tq
and

o=ty = oy (5.9)
and substituting (5.9) in (5.4), we get the expression of

mean sguare error as

e® = [ gy(rary [ g(0)) Ry (o1-1))do;

+ 2 g4 (1) drfgl(c) Ry l(c—rl—tl) do

n
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-2 fgl({l) drl fgz(o) Rsnz(owrl—tl) do

+ f gl('r)dT fgl(c) Rnlnl(o'—r)dc

~+

f gz(T)dT fgz(c) Rn2n2(0~1)do

2fgl(T)dT fgz(c) Rnlnz(o-T)dc

- ZIgZ(Tl)dTl R (T +tl) -2 gl(T) Rsnl(T)dT

+

[2 g, (1) Rsnz(r)dr + R (0)

(5.10)
Taking the variation of gl(t), keeping gz(t) constant
and applying the condition of minimality as in Appendix B;
we get

a
|

d [] = fh(‘[l) [f gl(ol) RSS (Gl—Tl)dcl

+-[ gy(0) R, (o-1;-ty)do + [ g, (o) Rsnl(rl—o—tl)do

snl

- gz(o) ,Rsnz(o—rl—tl)do - Rss(rl+tl)] dt,

+ f [f 91(0') Rnlnl(C"T)dO - f g2 (O’) Rnlnz(g—'[)do’

- Rsnl (t)] h(t)dr = 0

(5.11)
where e'h(t) is the variation of gl(t) satisfying the bound-
ary conditions. In the first part of (5.11) Ty is a dummy

variable
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and we can replace it by 1. With this change, (5.11) becomes
[ nf [ gy(6)) R (o,-1)do; + [ g, (0) Rsnl(o-r-tl)do
+ f gl(o) Rsnl(r—o—tl)dc-fgz(c) Rsnz(o—T_tl)do—R;s(T+tl)

+ gl(c) R.n (6-1)do - | gz(c) R 1 (o-t1)do

11 172
- Rsnl(r)] dr =0
(5.12)
For (5.12) to be valid for all h(t), we have
f gl(%? Rss(cl-r)dcl + gl(o) Rsnl(o—r—tl)do
+ f gl(o) Rsnl(r—o—tl)do - f.gz(o) Rsnz(o-r—tl)do
+ f g, (c) R (o=-t)do - f g, (c) R (o-1)do
1 nin, . 2 n,n,
- Rss(r+tl) - Rsnl(r) =0
(5.13)

Taking the Fourier transform of (5.8) and (5.13), we

get two simultaneous equations in Gl(w) and Gz(w) as follows;

_ juwt .
Gl(w)[Snlnz(w)+Ssn2(w)e 1146, (u) snznz(w) Ssnz(w)
-jut Jut (5.14)
Gl(m)[Sss(w)+Sn1nlxw)+Ssnl(w)e 1 +Snls(w)e 1]
~G, () IS _ () +8_ _(w) eJuty =5 (w)+Sss(w)e_jmtl

2™ 2 sny

(5.15)
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(5.14) and (5.15) can be solved for Gl(w) and Gz(w) which in
turn will give the optimum values of Hl(wl and Hz(wl. Writing

(5.14) and (5.15) in matrix form

_ jut )
[snlnz(w) * Sg, () e 1] S, (©) {
~jot Jutyy _ jut
[Sss(m)+8nlnl(w)+Ssnl(w)e l+SnlS(w)e q [§n2n1 ZS(w)e ;i
Gl(w) - Ssnz(w)
X =
G, (o) Sen, (4) + S, (we 3t

This leads to values of Gl(m) and Gz(w) as fellows

1 jut
Gl(w) —K—(gsnz(m)[Snznl(f)+Snzs(w)e l]—Snznz(w)[ésnl(w)

4

-jot
+S s(w)e lJ >

—%—(gsn (o) [s (w)+snlnl(w)+s on (w)e‘j‘*"°1+snl (m)ejwtl]

[ . (W)¥s__(wle et ls NOAH (w)ej“t1]>
1 )

S
Where A = [ (w)+s sn (w)ejwt:] [ (w)+S (w)ejwtl }

Gz(w)

nzs

~jut jot
- s (w) 15S__ (w)+S (w)+S (W)e™ %148 (w)e’®"1
n2n2 [ ss nlnl Snl nls

From equation (5.1)

= gJuty T2
Hz(w) e 1 Gl(w)
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G (w) .
Hy (0} = I-a, GaTe Pv%2

or

tiut : ~jut jot

e ¢ (Ssn (w) [SS (wI+S " (ml+Ssn (w)e j l+Sn Se 1]
2 n)ny 1 _ ]

= [Ssgp. (@) + S (ule’ ~Jjuty ]l} (w) + S (w)el®t) )

o _ [ snl ,w . nlnz n2 Lo J

2 ' jot
(Ssnz('w) [snznl(w) + 5, g (ule 1] -5 (w)

202

[ssnl(w) + Sss(w)e-jwtl] )

and (5.16)

jut -jut
S (w)[ (w)+S (w)ejw l] -S (w) [ S (w)+S_ _(w)e ]
Sn2 nznl nzs A n2n2 Snl SS

Jut +jot
( [énlnz(w)fssnz(w)e ZL][Snznl(w)+Snzs(m)e 1]

~Jjut j
- snznz(w)[sss(w)+snlnl(w)+ssnl(w)e w s . (w)e w 1}
n

J
L Snz(w)(Sss(w)+snlnl(w)+ss l(w)e 1+S (w)e w %2]

-jut jut
—[%snl(w)+sss(w)e w l][snlnz(w)+ssn2(w)e w lJt)

-

- t ]
[Snznz (w){ss«nl w484 (wle v 1}J _Ssnz (w) ’:Snznl (0)+S
] —julty+t,)
(Sss ('w)l:snznz (w) “Snlnz (w)e 29172 J +[Sn2n2 (w)+S g,

X Snlnl (w)

Hl (u))_

- e-jwt2

2S(m)ejwt4

(w)e_jwt2]

2
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(w)e 39t —g (e It T g yedultymty)

+ S (w) [S
sn, n,n, sn, sn,
- S (w)]
R
jut Jwt
- S (w)[S (w)+S: (w)ejw l]+S (w)S e 1
nln2 nznl nzs n2n2 nls

- Juty _ Ju(t,-t,) 23wt
Ssnz(w) [Snznl(w)e 1 Snls(w)e 1 "2 +Sn25(m)e 1

(5.17)
Case I
s(t), nl(t), nz(t) uncorrelated, noise means zero. All pro-
cesses real i.e.

S (w) = 8 (w) =0

sny n,s
S (w) = S (w) =0
\snz n,s
S (w) = S (w) =0
nyny nyny
This gives
S (w)e_Jwtl
H, () = S (5.18)
1 Sss(w) + Sn n (w) :
171
and
Hz(w) =0

Hence for uncorrelated case the optimum system is obtained
without feedback. (5.18) has also been derived in reference

[33].
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Case II
nl(t) and nz(tl correlated, all processegs real, noise means

Zero.

.€, Ssnl(w[ =_Snls(wl

=
]
=)

Ssnz(wl = Snzs(w) =0

The optimum filters for this case are,

S (w)
n-n .
_ 172 _Jjuwt
Hylw) = —5 @y ¢t
n2n2
(5.19)
S (w)e™3vEL
Hl(w) =
Snlnz(m) (
_ -jw (t,+t,)
(Sss(w)[l Sn - e 1 2.]+ Snlnl(w)
2772
) Snlnz(w) Snznl(w) >
S (w)
nony (5,20Q)

Case III

s(t) and nl(t) correlated, all processes real, noise means

zero, i.e,
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The optimum filters for this case are

Hzﬁml = Q

and

'PJ wt
San, L+ SggGieT L

Hy ()l =

' ~juwt jot
S S(m)+snlnl(w)+ssnl(wle l+Snls(m)e 1

Case IV
s(t) and nz(t) correlated, all processes real, noise means
zero, 1i.e.

Ssnl(w) = Snls(w) = 0

S (w) = 8 (w) =0
nny nonq

The optimum filters for this case are

Snlnl(w)ssng”)
fa o) = (0) S. _(w)=S. _ (u) S__(w)e"23%%1
sn2 w nzs w nznz w SS wie
S (@) 5 (w)e2jwt1 (5.22)
sn,” “n,s
and Sss(@la S z(w).- o
Hy (w) = e—J9% '
1 (wle Juty
( (w)."l's I'l (w)[ (0.)) J
S (m) S (w)
sh n )
- 2 2% eZJwtl>
Snznz(w)
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The results of this chapter are summarized in Table 5,1



TABLE 5.1

OPTiMUM FILTERS FOR FEEDBACK SYSTEM WITH DELAY
Hl(w)

-jot
Sss(w) e 1

s(t)l nl (t) ? nz(t) Sss(w)_{_sn n (w)
171

Uncorrelated
S, () e"I0ty
np (€, ny(8) s, - ()
_ M1 -jo(t,+t )J
Correlated SSS (w)[l §;—n——m e 1 2 +Snlnl(w)
2

172 2

S, n (w)

sn n (w) Sn nl(w)]

272

~jut
Ssnl(w)+sss(w) e 1

s(t), ng(t) — .
1 (w) e™3%F1 +s_ J(wed®t1

S__(w)+s (w)+S
Ss n.n sn 1

1"1 n

Correlated

Hz(w)

jwtl

SS



TABLE 5.1 Continued

S(t), n,(t)

2jut
Correlated { ' Ssnz(w) Snzs(w) € 1 Snlnl(w) Snsz(m)
S . _(w) - -
ss Snznz(w) [Ssnz(w) Snzs(w)
-jot
e 1 sy
s (w) e Juty
[ SNy () S (w) —ijtl
S__(w)+s (w) [ 14g—2—— J -s " w)e J
sSs nyng Snznz(w) n,n, sSs

sn2 )

S, n (w)

.. (W) S_ () ezjwtl]

272

9§
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t 1
: :
s (t) ISR c(t)
£\ X e
R A i Hl((ﬂ) T’
c. (t) ! ty ! Receiver
1 Transmitter ! ' End
End
1 []
\ !
[] ]
; ta }
] f\/
: n (t)l
]
Fig. 5.1
Feedback Telemetry Svstem with Delay
| '
: ]
\ {
: lr\ |
s(t) b4 dng (B) c(t)
- t Val ¢ . 0
_—"—_;F}—\)_—‘* e tls : A ; e Hl((.u) Y/
r i
1
cl(t) 1 : Receiver
Transmitter ! ' End
End .
\ 1
(w) ’ i | &
H_ (w < ! e ) -t,s
2 : 80 (£) . e 2
2
1 |
! H
Fig. 5.2

Feedback Telemetry System
Delays represented by blocks



-t.s
s (t) Hl e 1 :
Al+H,H Sttty
2
|
n, (t) Hy ‘f>§$+ c(t)
1+H1H2é5(t1"' ty) -1
-t.s
n2(t) HiH,e 1
1+ H,H el bt E))
Fig. 5.3
Open loop equivalent of Fig. 5.2
t c(t
ny (t) e e®
g4 (%) i 4
nz(t)
gz(t)
Fig. 5.4

Open loop equivalent of Fig. 5.2

Blocks show effective impulse response

58
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CHAPTER VI
OPTIMUM REALIZABLE FILTERS FOR THE SYSTEM

WITH NO DELAYS

Optimum filters have been derived in Chapter IV for
the feedback telemetry system with no delays in channels.
In this chapter optimum realizable filters are calculated
for practical cases. The signal and noise processes are

taken stationary and noise mean zero.

The following two signal spectra are considered:

4
a) S_ _(w) = ——5
Ss w2+4A2
b) Sy glw) = —ZL_
w +1

The noises are taken White Gaussian with following spectral

densities:

S (w) = N
)

2
The expression of optimum filters from Table 4.1 are the start-
ing point of this calculation. For the case where two process-

es are correlated, a general expression for the cross-correla-

tion and cross-spectral density is assumed to cover all the possible



60

cases. For example, for the case of correlation between

noise nl(t) and noise n2(t),

~a, | 1]
R (1) = r, e 1
nyn, 1l
so that .
_ 2alrl
Sn n (w) = T2 2
172 w+a1
where

0 < r1 < 1 and al > 0

Similarly for s(t) and nl(t) correlated

_ . a2yl
Rsn (t) = r, e 2
1
2a2r2

2 2
W +a2

S (w) =
sny

and for s(t) and nz(t) correlated

- . o223l T]
Rsn (T) = r3 e 3
2
2a.r
Ssn (w) = 23 32
2 w +a

3

where 0 < r2‘< 1, a, > 0, 0 < ry < 1 and as > 0

By taking various values of r's and a's, we can achieve
various degrees of correlation between the two processes.
Representative plots of cross spectral density with various

values of a's and r's are given in Appendix D,
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Case I

In this case, the two optimum filters are

, .S _(w) ...
Hy (el = —5 (w)sf- 3 )
ss nyn,
and
Hz(u)) = 0
Example 1
4x
S._ (w) = -
ss w2 + 4A2
S (w) = N
nlnl 1

This gives
4)\/((02 + 4>\2)
2 2
Ny + /e + 0°)

Hl(w) =
Following the procedure as described in Chapter III and Appendix C,

2
W@ ¥ = 55 () + 8y (@)

so that o o 2
v Ny, jo + Yax + 4N;2°)

(2A 4 Jo)

wiw) =



Then

H; (w)

n
Hy (wl

= w(w] . Hl(wl

..... N 4')\

1

(22 + Jol[/4n + 43N] ~ Ju/NgT

1
Realizable part of Hy (w)

(Y4 + 4A2N + zfo'I) (Gw + 21)

1

Hence the optimum realizable filter is

*
Hy (w)

This can be realized by the following RC network

= H3(w)/w(w)
ar/[Vax + 4A2Nl + 2x/ﬁz]
[/4) + 4X2N1 + Ju/N7)

62

S—AAAAAA o
Hy ='2 /v, Ry
v .
where T 1 Ry o C Tvz
[« 2~
I by
[Vax + 42°N) + 2)/E7]
R2 _ /4)\ + 4A2N1 “. . . '; 4A ...... : )
J4h + AATN; 4+ 20Ny
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and C = 2o [2A/NT + V4 + . ]
2 : 1 1
8X
Example 2
The signal spectral density for this case is taken as
1
S ((L)) = e
SS 1+ w4
This gives
4
Hl(w) = l/(l *w) 2
Nl +1/(1 + w’)
H2 (w) =0
2 1
+ w
(1 + N )1/2 + V2N l/4(1 + N )1/4jw - VN, w?
_ 1 1 1 1
or w(uw) = 5 =
1 - 0w + Y2 ju
Then H:'L (0} = wlw) - Hl(w)
o wapttasn awptia-y)
(1-w +2]w)[jm "W ][Jw—ij/_‘l ]
1 1 .
o (N M guva 4y 174
H =
1 [Nll/4+(1+Nl)l/4] [1—w2+/§' Jw]
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Hence the optimum realizable filter is

....... (14N, )77 7N, 7 P jwv2 Ny
Hy (0) = - L X 1
[(1+N1)1/2+f5ijll/4(1+N1)V“—/ﬁlwz] I3, 1 (1429,) /4]
where
_ 1/4 1/4
a; = @+ Nt N
S5 1/4
a, = (Y2 + 1) (1 + N;)
V2
g, =Z=D -+ n,) /4
V2
VR V7!
b, = /2 N;
_ o 1/4
c = Nl

This can be realized by a Lattice network using passive ele-

ments. For example , for the value of = -

1 =1

(2.45)[1 +Y/2 ju - w

Hy(w) = 2]

So that the optimum realizable filter is

..... 145 = .41 Su
(2.45) [1.31543.6 50 = ]

* .
Hl(w) =
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_ _.0926 . .6828 -
T Jo + 414 " ju + 3,184

If we treat the filter transfer function as transfer imped-

ance of network

HI (U) ) = le (U.))

where le(m) is given as

E, (w) A
B 1
Z1p(w) = LG 2 [2y,

Hence for our network

1.13656 _ .1852

iy = TJw+3,186 and 2y = ju+.414

This reduces to the R-C lattice network as shown below




Case 1II

In this case

66

_____ S Q) . ..
Hl(w) = S
. ?n:n.@”l? n.n, 18, (0]
S (0) | 1=~ 12 + S (0] - 172 2°°1
S8 Sn n () 1% Sn n (w)
272 272
and S (w)
nn.,- ...
H. (0] = 12
2 Snn(w)
2°°2
Also
2a.r
Snin (w) = 2l %7
1°°2 w+al
Examgle 1l
S (¢) = N
nlnl 1

[92]
~
€
~—
]
2

In this case

. rl
N2 (jw+al)

%*
Hz(w) =
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which is realized by a simple R-C network.Similarly

SRR Caaswen?)

_ 2
Ioe j:__2_1:.]_.3.;‘_. N N..(2rlal).
2) 1
1

(w2+4;7) Nz(w2+a -Nz(w2+ai)

2

This gives

2
IW(w)lz = __ 4 [; ! ]4—&1 -(Eflill—
(w2441 2) N2(m2+ai) 1 Nz(w2+a1)

N, + 4AN2)

172 171

<§1N2w6+m4(4x2 N.N, + 2a2 N 2

2 4 2.2 2.2 2
+w [NlNzal - 4rlal + 8 aj + 8)\N2al - BArlall

3
+4>\al(N2al

2
Nz(w +a

2 4 2_2
—2rl) + 42 (NlNzal - 4rlal)>
2)2
1

(02441 2)

For the r.h.s. of the ahove equation to equal amplitude

square} all the coeffecients of polynomial have to be positive.
This means that there are restrictions on the parameters which
~give the optimum realizable filter. 1In this case the restric-

tions are

N.N,a, - 4r r2a2 ai

2
1¥223 1 + BAN

- 8Arx >Q

2 121

and

. 2_,.2
a; (Nja,=2r,) +A (N1N2a154r1)>0



For the case, satisfying the above regtrictions, we could

write |[W(wl| 2

2

2
o1

(i +dl (c.A.,

W) |2 =

(w2+4>\s (w2+al)

where c's and d's are functions of a;r ry, Nyp N, and A,
The expression for optimum filter is reduced to

2 . 2
4x(aq+2x) . (Juta,)

*
Hl(m) =

(dl+2kcl)

which can be realized by a ladder network.

1 P
For N; = N, = = =1, r; < —3— satisfies the above

25

restrictions. Let r, = .1l. This gives

o) |2 4 [1— .z_]+ [:_ .04 |
2 o2 (w+1)2 |

A(024.8) (02+1) + (02+4) [0i+20%+.96]

2 ,. . 2
(d2+2Ac2) (jwcl+dl) (jwc2+d2)

(02+4) (02+1)2

084100416, 160%+7. 04

(02+4) (02+1)°

By factorizing we get

(Su+l.04) (§u+.894) (fut2.85)

W(w) >
(Jw+2) (Guwtl)

68



So LU A 2
Hi(w) = ' 1 Jutl)
(jut2) (=~ju+l.04) (~ju+.896) (-juw+2.85)
and
B (u) = 2844
(jwt+2)

Hence the optimum realizable filter is

.844 (§u+l) 2
(u+l.04) (jut.894) (jwt2.85)

*
Hl(w) =

1.01 ju+.98 . .005
(ju+.894) (ju+2.85) (Gu+l.0%)

This can be realized by a lattice network

a
1 where
.01
Z —
Zp a 4 +.04
2.02 § w+l.96
e — and Z, =

(jw+.894) (jw+2.85)

or

69



Examgle 2
1 « . .
sss(w) -
w +1l
In this case
2
'2alrl/(q falx
Hz(w) = .’
2
Hence
* r
H, (o) = =
N, (]w+al)

which is the same as in example 1,

Also
4
H]_(‘”) - 1/1 + o
2a.r [ (2r,a )2 ]
1 171 171 1
a2 |t N1 T
(l+w )= Nz(w +al) (w +al) N2
2
2ar (2r,a,)
vl = =2 [ 2 e
(1+w ) N2 (w +al) - Nz(w +al)
8 26 4 ' 4 2 2
<N1N2w + 2N1N2alu) + w (_N2 + N‘]_N2 + NlNZal - 4rlal)
2 2 2 e 4 4 2 2
_ +u (2N2al.+ ,2.N,1N2al - 2alrll_+_N2al.+ N1N2a1A<.4rlali)
N, + w?) (02 + as)?

For the realizable filter, the restrictions are

70
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4 -
N2 + NlN2 + N1N2 a; - 4rl ay = 0

2 2
2N2 aj; + 2N1N2 aj - Zalr1 > 0
4 4 2 2 2
and N2al + NlNZ a; - 2a rl - 4r1 ay > 0

Satisfying the above restrictions, we obtain

(b.2 w24c.?)2 (b2w? + c.%)?
2 1 1 2 2
v (@) {” = 5 2, .22
(1 + 0®) (w +al)
where

4. 4 _
by" by =N

4 4 _ 1 2 2 .22
c; ¢ = ﬁ; [al(Nzal 2ra1) + N1N2 al4 4rl all

2.2,2 .2 2 2, .2
2b] b5 (c] b5 + b7e]) = 2a] Ny

2.2 2 2 4 4 4 4, 1 4
(4p2 b2 2 o2 + b] ¢ + by c]) = ﬁE-[Nz + N)N,a]
2
-4 rl a; +N1N2]

2 2 .2 .2 2 2. 1 2

c1 c5 [cl b2 + bl c2] = ﬁ; [al N2 - rja, + alN1N2]
So
X 2 . 2
.(cl + jmbl). (cz + jmbz)

wlw) =

(a; + 30 [1-0® + 3u¥Z]
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Then 2.
! .............. (al“‘jwl, ...........
H, () = . ———— L
1 2 2 2, . /3
(clajwbll (czﬁjwbzl [1~0"+jw/2]
n
H; (w) = Realizable part of H,(ul
K, . . . K
= 1 + 2 .
. 1 . . 1 .
Jut—=+3/V2 Juwt S AZ
V2 V2

where Kl and K2 are the residues in partial fraction expansion
of Hz(w), K, = complex conjugate of K,

if Kl =p+ Jjgqg

_ Juwp+Y2 (p+q)

H;(w)
2
1-0w" + juwv/2

and the realizable filter is

. (al+jw)2[jjwp+/§(p+q]
Hy(w) = 7 3
(cy+juby) ™ (cy+juwb,)

which can be realized by a ladder network.
For example
for N, = N, = a, =1, r; < 1/2 satisfies the
restriction, For ry =l
2 wd o+ 20% + 2,960 + 3.84% + 1,76
|w(w)|® = ) 5 >
(w® + 1) (™ + 1)
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So
wiw) = (Jw+,895) (Ju+1.067) (Fut+.8 43+3.824) _(j‘@f'.'8'43'-’j‘. 824)
(Ju+ll? (A=w?+jw/2)
Hence
o e 2
H;Cwl - ( -jw +Al )
&1q92+jm/§) (=jwt.895) (-jw+t1.067) (+j,~.843+3j.824)-
(j W= . 843—:] - 824i]
Then

1 - w?+ ju/2
where p and g are defined as above

K, = p + jg = Residue of (jw+ 7%f + 3/V2)
. o 2

(.707 + §.707 + 1)2

[(jl.4l4) (.707+3.707+.895) (.707+3.707+1.067)"
(-.707-8.707-.843+3.824)

(—.707-j.7o7—.843-j.824ﬂ
(1.707+5.707) 2
[(jl.4l4)(l.602+j.707)(l.774+j.707)(-l.55+j.117r

(-1.55-31.531)]

-.139-3.161

so ~.1399u-.212

lvm2+jw/7

Hy () =
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and optimum realizable filter is

(ju+.895) (ju+l.0671 (1.59+1.686Fw=w")
This can be realized by Lattice network.

" Case III
When s (t) and forward channel noise nl(tl are correlated

In this case
Sss(w) + SSn (w)

Hy (w) = L
S (w) + 8 (w) + 28 (w)
ss n;n, nys
and
Hz(w) = (
Example 1
4
S_ _(w) =
ss m2+4A2 oo x
4 + 2-2
H (w) - u)2+4A2 u)z'razz
1 da.,r
N+ 4 + 22
1 w2+4A2 w2+a§
(2 62+d?) (c2uita?)
1 1 172772

(W' +12?) (w%+ad)

where



2,.2 2, _ 2 2

¢y (dl + dzl = qu2'+ NlAA + 4% + 4a2;:2
2 2 _ ,.22 L2 2

dl d2 = 43 a5 Nl + 16a2r2A + 4a2A

So
: (d{+Jjwc ) (@, +jweq). .
wleo) = 1 1 2 1
(2A+Jjw) (a2+3wl
'
Hy (0) = Hy(q)H(w)
2 2 2
) w” (4r+2a,r,) + 4a, +8a,r i
(Jw+22) (jw+a2) (dl—jwcl) (dz-jwcl)
Hl(w) = Realizable part of Hz(w)
K K
_ 1 + 2
Juw+2A jm+a2
Where
4A(a2+2k)
Ky = : ‘
(d;+2x¢;) (dy+2hrcy)
and
4x (ay+21)
K, = :

(dl+a2cl) (d2+2Acll
Hence the realizable filter is

jw(kl+k2) + aZKI + 2*K2'

*
Hl(w) =

(d;+Jwcy) (d2+jwclz

75



which is a ladder network,

For example for N, = A = a, = 1,7, =.l

lwiw) |? =

So that

1]

H) (u)
(Gu+l] (Ju+2] (-ju+3.282) (-ju+l,493)

This gives

.887 § + 1,449
(Gut+l) (jwt2)

*
Hy (w)

The optimum realizable filter for this case is

* : . .
Hl(w) | (.887 jw + 1.449)
(Jw+3.282) (juwt+l.493)
. * . Z12
Assuming Hl(m) as voltage transfer ratio = 7 '
11
this can be realized as R-C ladder network in more than
one way.
For example for N, = a, =1 and r, = .1 we have
5 'm6+1.4w4 +‘2m2+2;4'
lww) | = ) 2
(v +1) (w™+1)
or
wiw) = (jw+l.136) (juw+.842+9.809) (juw+.862-7.809)

(Fw+l) (l-w2+jw/7)
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Hence

and
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.2w4 + w2+l.2

)
Hl(w) = 2
[(jw+l)-(l-w +jw/§)-(—j w+l.136)
(jw+.842+j.809)-(jw+.842-j.8o9ﬂ
" 1680 + 2.444 ju+7.9
B () = 2 : :

(Jw+l) (l—w2+jw/7)

Hence the optimum realizable filter is given as

~. 1680 + 2.44450+7.9

(§u+l.136) (-w2+1.363+1.68450)

*
Hl(w) =

which can be realized by lattice network.

Example 2
1
S (w)=__.
SS 1+ w4
Then
2r2a2 X 1
w2+a2 l+w4
H(w)= 2 —
1 1 21242
N1+ + 5 3
1+w w +a
2
This gives
6 4 2 2 _ 2 2
lw(w)lz _ le +w (Nla2+4r2a2)+w (Nl+1)+Nla2+a2+4r2a2
(1+u?) (w2+a§)



2 2 2 2 2 2,2
_ (cju® + d7) (cju” + 43)
(1 +0%) %+ ad)
where
2 4
2,.2 2 2 .2 2
cz(d1 Cy + 2cl d2) = Nl a, + 4r2 a,
2,2 .2 2 .2, _
2 4 _ 2
dl d2 = Nla2 + a, + 4r2a2
So 2
(dl + jwcl) (d2 + jwcz)
w(w) = >
(a2 + jw) (1 - o™ + jw/'f)
Then
. 2r, a w4 + w4 a2 + 2a,r
, 2 32 2 22
Hl (w) = : . . 3 5 .
(ay + Juw) (dl = Juwcy) (4, - Juwc,) T (1-w® + Jwv2 )
" K, K K
Hy (0) = .wia + _ i - 13
J 2 ju+—= + -2 Ju + — - §/V/2
93 V2 '¥3

where K's are the residues in the partial fraction expansion

of H2 (w).

4
2ry a, (1 + a, )

(dl + a, cl) (dg + a, 02)2(1 + ag - az/f)
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If Ky =p+3q Ky=-7]q +p
Then
K2 Lo 'fKﬁf ..... _Jp+ 2 (p+ql
Jw + S J Jo + -1 - J RN w2 + juv2
V2 ¥) V2 Y2
(1 + jag)
K. =
2 1 . 1 .
VZ(ay =~ —=— ~ —L)[d; + ¢, +—L71.
V2 V2 V2 V2
[d, + cpl—im + —312
V2 V2
(1 - jad)
K. =
3 1 . 1
/§(a2+ + 3)[dl+c1( - —39
V2 V2 V2 V2
1 | 2
[d, + c,¢( - )1
2 2 /5 /3
So 2
"( ) Kl+/7 a, (ptq) + jw[/ikl+/5(p+q) + payl - 0 (K +P)
H. (w) =
1l

(Jw + a2) (1 - w2 + jwv2)

where all the constants are real.

Hence 2
K +V2 a, (ptql + jul/2Ky+/2(ptq) + pa,] = w” (Ky#pl

*
Hl (w) = 5
' (dl + juweq) (d, + juc,)



This is also a ladder network,

’ Caée IV
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.......... Sn'ﬁ”‘w)......... S
H, (0] = L 1
2\ Sy . (W) S (w)
22 0
272
Sen. (0) S, g (w)
S, (0) - ——2 2
ss Sy p. (w)
272
and Hl(w) = »
Ssnz(w) Ssnz(w) Snzs
Sgg () + Snl l(w) 1+ S, o (@ - 5 . (@)
2772 272
Example 1
4
S (w) =
ss w2 + 4A2
Then
N
H, (u) = 1
2 2.
2a3 ry N2 4r/ (w™ + 4a7)

2 2 2.
w® + aj 2a; ra/(w” + a3l



2. 2 .2 2
n2a3 %3 Nl(p..f.a3l (W + 427) .
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=

=
: 4 2,,, 2 2 2
L4)\N20.) + w (8%N2 a3 - 4a3 r3) + 4)\?‘\123‘3 -16 ag rg. )\2]
This suggests positive feedback, The restrictions on

the parameters are as follows ;

2 2 2
8AN, a3 ~ 4a3 r; > O
2 2 .2
and 4\N, a3 = l6az r3 A" > Q
For a; = Ny = = 1 and ry = .1, we have
202 + 1) (o2 + 4)
+ 7.96 w” + 3.84
_ 2(0® + 1) (0% + 4
(Ju + .718) (Jw - .718) (jw + 2.728) (jw - 2.728)

Hence the realizable filter is

1.17
jw + 2,728

.34
jw + .718

*
Hy(w) =

This can be realized by a R-C lattice network

ZEL
—p
where
%h 3 wt2.728
& S and Z p= — .68
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4a2 r2
Also 4 _ 373
wz + 4%2 Nz(w2 + ag)2
H, (w) = : 252
1 2 . N [1 .\ 2a3r3 J 1 4a3 r3
2 2 1 2 2 N, 2 2,2
w” + 4 N. (0™ + al) 2 (0 + al)
2 3 3
2 2 2 .2
2 4 Nl(N2 + Nyay + 2a3 r3) 4a3 r3
()| = — 3 * 2 ) - 3 2.2
w. + 4 Nz(w + a3) N2(w +a3)
N,N w6 + cu4 [4XN, + 2N.N a2 + 4XN.N, + 2N, a, r.]
172 2 172 73 172 1 73 ™3
2 2 2 2 2 2 2
+ w [8a3 ANZ + 4> NlN2 a3 + Nl(a3 + 4)7) (N2 a3 + 2a3 r3)
2 2 4 2 .2 2
_ - 4a3 r3 ] +4 N2a3 - 16 a3 A r3 )
N(w2+4)\2)(w2+a32)2

2
For the above to represent the amplitude square

-1l6 a 2 A2 r 2 > 0

4
4 AN a, 3 3

2

Satisfying the above restriction we can write

(w2c2 + d2) (CZwZ + d2)2
2 1 1 2 2
lw(w) |© = — ) 2 2,2
(0™ + 427) (0 + 33)
2.4 _
where Cl C2 = N1
2,.2 2 2.2, _ 1 2 2
cy(djc, + 2¢7d5) = 5= [N;(2a; rj + 2a3N, + 4A°N,)+42N,]



2,.2.2 2.2
d2(cld2 + 2c2dl) ~ﬁ; [(a + 4A ) (a + 2a3 3)N
2 2 2
+ 4a3A N1N2+8AN a ~4a
2.4 1 4 2 2.2
dldz = —ﬁ; [N 4a A (a N, + 2a;r;) + 4 Nyag l6azraa
Hence e 2
. (jmcl.+”dll (jwc2.+.d2L
w(w) = 5
(az + jul™ X + Jul
and i =
[AN (m2+a2)2—a2r2(w2+4kz)
! _ 4 2 3 373 J
Hy(w) = . 7 . ,
2 (dy-jucq) (d,=juwc,)® (Jut2r) (juta,)
Then " K K K
Bl = —L o, 2, s
2% + jo ' jw + ag (Jw + a3)

where K's are the residues in the partial fraction expansion

of Hz(m).
Hence * Kl(a3 + jw)2 + (Jw + A) JuK, + bK, + Kg
Hl(w) =

) ) )
(@ + jucy) (d, + Juc,)

which can be realized by a ladder network.

For Ny = N, = a5 = A= 1, ry = 0.1, we have
Iw(w)l2 = m6 + 10.2 w4 + 17.96'm2 + 3.86
(w? +4) (w2 + 12

83
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or .
wlo) = (0w * . 4978) (Ju + 2.832) (ju + 1,3898)
Gu + 1% @2+ 2) |
G gy oAy
El(w) = - " L
C Go¥2] (Gutll? (~ju+.4978) (=jw+2,832) (mju+l.3898)
Hence " o .
Kl(wl - A ¢ + ] B+ ¢

Jw + 2 (Jw + 1)2

(jw)2 A+ jw(2A + B) + A + C

GGo + 2) (ju + 1)2

The optimum realizable filter is

(jw)2 A +(2A + B) jw + A+ C

H) () =
(o + .498) (Ju + 2.832) (ju + 1.39)

which can be realized by a lattice or a ladder network



CHAPTER VIII
OPTIMUM REALIZABLE FILTERS FOR THE

SYSTEMS WITH DELAYS

The expressions for filters which give optimum
system performance were derived in Chapter V. Optimum
realizable part of such filters will be calculated in this
chapter. Some special cases which help in simplifying the
calculations are considered.

The system delay introduces terms involving ex-
ponential in jwt, where t is the time delay. The synthesis
of the filters having such exponential terms involves
great difficulty in evaluating realizable components and
hence an approximation of this term is necessary. Pade's
Jjut

approximation of exponential terms e in terms of ratio

of polynomials of various degrees is given by Takahashi
[26] and Truxal [36]. Some df the approximations of ej“’t
are given in Table 7.1 and only simple cases of lower
order will be used in the analysis of this chapter. De-
pending on the value of delay t and the number of terms
included in the approximation, it introduces some error.

For large values of t, a good many terms are to be taken

to obtain a satisfactory approximation.



The assumption of Chapter VI for the stationarity
of signal and noise are also valid for this chapter., The

following two signal spectra are considered

a) Sss(w) = '2'41 -
w + 4
b) Sss(w) = 1 "
l + w

Case T
When signal and noise are uncorrelated
In this case, the optimum filters are
5. (w)e %%
Hy (w). =
S..(w) + S (w)
ss niny
and
Hz(w) =0
" Example 1
Sss(w) _ . ... .2. . .4.). -2. e e
wo + 42
S

86
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so Tt

N Ju + 74X ¥ AN 32 )
. 1 - 1
ww) =
(Gu + 23]
. e geety
2% + ju (V4x + 42Ny = ju/N;)
. 1~ jot
writing e"Juty - 1/2
1+ jwtl/z
so
' 4r (1 - jut, ,.)
. . 2 .
(2A+3jw) (l+jwtl/2)[—/4 +4x Nl-—jw/Nl ]
So
H () = —=— + 2
20+ Jo 1+ Juty )
jw[gltl/2+K2 +Kl+2AK2]
(2x+jw) (l+jmtl/2)
43 (1 + atg)
Ky =

_ 2
(L =Axtll[/4x + 427N, 4 ZA/Nl]



R ERREEER jjff8k"f%: ......
Kz - — 2 /N,l
(2a - ———)[ Yax + 4a Ny + T ]
' 1
Hence
jw[ ]+K + 2AK
H;(w) = 1 2

(1 + jw——z—) [l/— Jw + 1/4>\ +- 4N112 ]

which is realized by a lattice network,

88

Example 2
1
S _(w)
SS 1 + uo'4
S (w) = N
nin, 1l
As in Chapter VI
(L + N )1/2 + V2 N 1/4 (1 + N )1/4 jw - VN wz
1 1 1 1
wlw) = —
1l - w2 + /2 Juw
and
Hy (0) = 1/2

Jut =
<(1 b - WRze [ @ w2 crap?

- vZ3an, 7t @+ Nl)1/4]>
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Hence

, K K, K
H, (u) = 1 S 2 S 3
Jou + 1/V2 + j/V/2 Juw + —— = §/V/2 1+ jw.tl
V2 —_—
2
, N K
_ Jjwp + Y2(p+q) 3

+
l-w2+/7ju) l+jwtl/2

* [l
where Ky p + jg and K2 = hl = conjugate of Kl

1 .
and 1l + 7_;—(1 + j)
K =
1 t
. ! . 1/4 1/4 1/4. .. 1/4
( 23)[1_ ;7%(l-+:ﬂ][Nl + (N, +1) ][(1+Nl) +3n, /4]
and
K. = 2
3 V3 4 1/2.2 1/4 1/4
([1 - 22, tlz] [(1+ N,) +——I(Nl) (14N,
+4/1\—II‘ J )
t12 '
pt
tYo) ) K3 + /§(p+q) - wz(K3+—§i) +jw[P+/§K3+ ;%l(p+qq
Hl(w) =

juty 2
(1 + ) (1 -0+ V25w)

Hence the realizable filtér is

pt t
Ry+/2 (p+q) - wz(K3+—2£) o [:P““/§K3+ 2 (p+q)]
*
H. (w)
1 jwt
(I+——) [(1+N1) /2 /ﬁIwZ + /§N11/4‘1+N1)1/4j9]

which is realized by a lattice network.
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Case 1;

When the noise processes nl(t) and no(t) are

correlated

In this case the expressions of optimum filters are as

follows;
5. () e vt
Hl((.\)) =
S (w) _—Jjuw(t i+t
Sg glw) [l- LLh EL B 120 n(w)—snlnéw)sn n{w)
S (w) nl 1 21
n.n
2772 S (w)
nahy
and
jnt
s (w) e3%"1
nyn,
Hz(w) =
S (w)
nony

The expressions having e Jo t ag a multiplier can be

synthesized for relizable case as in previous section.
However the exponential term in the denominator which ends up
as quotient of the terms in various powers of w creates

trouble in the synthesis. This is encountered in all the three

cases of correlation between signal and noise.
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4x
For S (u) = —X___
SS w2442
2r.a
Sn . (0) = 171
171 w2+al2

This results in optimum realizable filter as

t
r - 2
* _ 1
HZ(“’) - NQZJ(D'*'alj altl
(1+ —=)
Which is a low pass filter.
Also -4
4 eIt
Hl(w)'= witeA - 7 o
a L. nA e'J“’(t1+t2)]+Nq4r1 a;
2 1 2
(w2+422) Nz(m2+a1.) N2(w2+a1)2
. -jw(t,+t . . -
Expanding e Jul 1 2) by Padés approximation, factoring the

denominator in terms of +jw and taking the ju terms leads to

optimum realizable filters.



92

Another method of constructing a realizable filter
by employing the distributed parameter.approach is discussed
by Ghausi [37]. The method is generally known as equivalent
dominant pole and excess phase approximation technigue. The
exponentiai term is expanded in truncated series and only
dominant realizable poles are taken. The resulting filter
thus obtained can be realized by distributed parameters or a
combination of distributed and lumped parameters. In many
cases the circuit may include active elements too.

Filters for both case III and case IV can be realized

as for case II.



TABLE 7-1

PADE' APPROXIMATION FUNCTIONS OF ejwt
Denominator Degree 0 Degree 1 Degree 2 Degree 3
Numerator 2,2 . 2,2 . 3,3
1 | 1+jut~2 t\ I+joe-ot - Jut
—-I- 1+ jut 2\ 2t 3!
Degree 0 1 1 1
. 2,2 2,2 3.3
jwt 2 . _w t 3;: . 2 wt”  Ju't
L L+ I3 Jut —337 WHiet-7 =57~ = 731
Degree 1 r\——— — e , .
-Juwt . _ Juwt _ Jwt
L jut 1- 3ot 1- Lot
1+ A3t Ledut _ 1 wit? 143403 vt 1 b3
Dearee 2 1 2 "6 27 5JUtTT5 2T 10 37
9 2,2 2.2 ) 2,2 2. 2
1erptm Y t 1_2 g t 1 wt 1 o't 1_3 o 1l o™t
JOE= T T3 ety s 2T 5 J9% T10 T2
Jut l+%3wt- %sztz 1+jmt 1 w2t2 _1 jw3t3
L 1+ 5= ‘ . T2T p 5 27 20 37
Degree 3
2,2 77 3 N 5.2 3,3
ap WO E 3. L 207t 1wt 125 3 wt .yt . 2.2 . 3,3
[1-50¢ 2T ATgletty rtpieyy TRIWRTI ar IosT pudet Lutt o Jute
1 . 3 3-] L] L)
*3p 3 et

£6



TABLE 7-1 (continued)

_ Denominator Degree 0 Degree 1 Degree 2 Degree 3
Numerator
jut Jut w2t2 2,2 3.3
I+ 5 (14285 -4 1) 143 lot _w t . 18 t3,]
Degree 4 1 © Tt © T
- . 2 . 3.3
. 2,2 . 3,3 . 2,2_. 3,3 2 . 3.3 4 j t 2wt w t” 4
[l—jwt-w t w t [ _4jet 3wt w t [ 2 jut_ 2w ju t [l- w -~T—+J_T'
S T -5 5ttty U - 5 30 TTIT S
4.4 4,4 4 4 4. 4
+¥ t ] 4 t ] . +u) ] L t ]
47 5. 4! 15, 4! 35. 4!

¥6



CHARTER VILL
MEAN SQUARE ERROR IN VARIOUS CASES OF

FEEDBACK TELEMETRY

In this chapter, various expressions of optimum
‘filters derived in Chapter V for the optimum feedback tele-
metry system are utilized to calculate the mean square error
of the system as a whole. Mean square errors for various de-
~grees of correlation between various signal and noise process-
es are calculated. The realizability of filters are not taken
into account. It will be noted that the mean square errors of
the actual system using the realizable filters are different
from the ones calculated in this chapter.

a) No Delay Case

The expression for the mean square error is written in

terms of error spectral density as follows;

©

mse = R__(0) = —= [ S__(u)du (8.1)

-]

where See(m) is the error spectral density. For the system
without delay, referring to Eqgn. (4.5)in Chapter IV and taking
the Fourier transform,-we ohtain

See(w) = IGl(w) lz[ss\s (w) +S. 4

g @1 ¥ S, ) +ssnl(w)J

*
- 2G, (0)G, (w] S (w) +S *
1ty e lsnz vl nlnz(wl}+[§2(w)5n25(w)+G2(w)Ssn(wA

2)]

*
‘[Snls(“’)Gl(“’)+Ssnl(“’)Gl (w)} -sss(w)[cl(w) + Gl*(‘”)J
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+5__(w)+]e, wll2s (W (8,2)
. SSs T2 n.n '
272
Also since we are considering real processes with even cross

spectral densities such that

S (w] = 8 (w)
sn n,s

We can write from Equations 4.16 and 4.17

] ]
SnznZ(MW?ss(w) fssnl(q)_ssnz(w)

U)

n

(w) +S (w)
nyny }

: 5
Gl (w)= - g =3
snznz(w)[sss(w)+snlnl(w)+2s sn, o)l E (@45, (wﬂ
[%ss(w) +S j%sn (w) +S .n (wq -S sn (w){ (w) +Snlnl+ZSsn4wﬁ
G () = i
7
Fnznz(w)sss(w) #5y n (8 425 w{]1%sn2(w) g, (0]

(8.3)

Under the various conditions of correlation as considered in
Chapter IV, the results are summarized as follows;
Case I
s(t), nl(t) and nz(t) uncorrelated
.. SSS(QI
Gy (w) = -

S s(w? + Snlnl(w)

1




Case II1

ny (£) and n, (%) correlated

.......... SS néﬁz .
Gy (wl = - 3
Snznz(wﬂ?sstl +Snlnl(m)]—5nln2(w)
S__(w) S
REEREEE ss nyn,
Gz(w). - 2
Sn2n2 (_w)[Sss (w) +Snlnl (w)] —Snlnz (w)
Case III
s(t) and nl(t) correlated
Sss(w) +ssn (w)
_ 1
Gl(w) -
sss(w) +Snlnl(m) +zssnl(w)
Gz(w) =0
Case IV
s(t) and nz(t) correlated
2
: Snznz(wl-sss(m) - SanQQI ......
Gy (w) = 2
Snznztw)[Sss(w)+Snlnl(w)] - Ssnz(ul!
REReeS SnlanQ}.$sn2Q91 ................
GZ (w) - 2
-Snznz(w) [SSS (w)+Snl (w)] + Ssnz(m)

97
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Substituting the abave valuesg of Gl(wl and gz(wL in the exprese
sion(8,2) for error spectral density we get the following re~
lations;

s (t], nl(tl and n2(t[ uncorrelated
S..(w) S (w)

Sss(w) + Snlnl(w)

See(w) =

Case II

nl(t) and nz(t) correlated

2
S..(w) IS (w) S (w) - S (w)]
s () = ss ning n,n, nin,
ee 2
Snznz(w)[Sss(w) + Snlnl(w)] - Snlnz(w)
Case'III
s(t) and nl(t) correlated
2
Sss(w) Snlnl(w) - Ssnl(w)
See (W) =
Sss (w) + snlnl(w) + 2ssnl(w)
Case 1V
s (t) and nz(t) correlated
2
_ .Snlnl(QLLSss(Q).Snznzgql.f.SSnzl
See (0l = 2
Sn (w)[Sss(w) + Sn (w)1-8 (w)

272 1™ Shy
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The resultant mean square error is given in terms of integral

equation of Equation 8,1 ag

..11“ ® :
mse = —— [ S_(wldw

kil
-

Where See(wl has the above'mentioned form for the given corre-
lation case, The above expression of effective optimum transfer
functions Gl(w) and G2(§) and error spectral density for the
various cases of correlation between signal and noise are
given in Table 8.1 and 8.2,

In the lelowing-section mean square error for the two

representative signals as considered in previous chapters are

evaluated,
Example 1
s (e) = i Y
ss 2 5
w” 4+ 4A
S (w) = N,, S (w) = N
nin, 1’ n,n, 2
2 2
S () = 2alrl/(w + al)

S_. (@) = 2a,7,/Ww? + al)

S__ (0) = 2a;r,/(w® + al)

Case I

s(t),_nl(t) and nz(t) uncorrelated
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o w " n,. .o
mse = %ﬂ f 1l o duw
] S (w)] + S w
S8 s |
T T Now® + 44 + 42°N. o
' 1° A |
For a specific case when A = 1, Ny =1
mse = -6940Y3
Case II
nl(t) and nz(t) correlated
o SIS, _ () s (w-s, _ %()]
! . 1M1 272 172
mse = —5— [ dw
- 2
S (w)[S. (w) + S (w)] -8 (w)
( n,n, ss ning nin,
4 2 2 . 4 2.2
1 7 [NlNzw + 2N1N2alw + Ilezal - 4alrl] o
e N 'N 6 4 o (4X + 4N, o+ 2a2N‘) |
S R A w N\ ! 1 171
2 4 2 2. 2 2.2
+ 0" (NyNya; + 8AN,a] + 8AN;N,A"a] = 4ajrj)

4 , 2 2.2.2.
+ aN, (4 + 4N;2°7) lex"ajry. )
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For the specific case when
A =1, N H‘l,,N2 F_l,'al =1, r =.1

mse = .691852

Case III
s (t), nl(t) correlated

2

w Sgglw) S, o () - Ssn (w)
1 11 1
mse = -~ / o ) = .dow
-~ S w) + S (w) + 28 w
ss n;ny sny
4 2 2 2.2
[ Njw'+w™ (2aN;a5-a5rs)
4 2.2.2
1 ? 4 o . +XNla2 - 4§2r2A | du
T 27 2, 2 4 2 2 2
- (g +a2) [le + w (Nla2 + 4x + 4 N1
+4a.r.) + a2 (4r+4r2N,)+16a.r.-12]
272 2 1 272

For the specific case when‘A =1, Nl =1, a, = 1, and r = .1

mse = .652188

Case 1V

s(t) and nz(t) correlated
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S. _.(w) IS._(w) S. _ (0)=§__2(ul]
NP PPes TR P

S nyng 0% P $n
mse = . 2w~f . . — : < dw
- . N . 2
S (wlIs__(w] + 8 - (wll=s (w)
n,n, ss nymy sn,
4 2 2 4 2.2

R 0 .4A[N1N2@.+2N1N2alm.+N1N2alﬁ4alr1]. u
= 2 -

-
- [N1N2w6+w6(4AN 2

n 2
+4)"N,N +2a3N2)

2 172

4 2 2
N,a3+8AN,a5+81“N

2 2 2.2
+uw (Nl lN2a3-4a3r3)

4 2 2.2.2
+N2a3(4x+4x Nl) ~l6azr3A ]

For the specific case when Nl =1, N2 = 1, ay = 1, A= 1. and
rq'= .1
mse = ..091169
Example 2
S (w) =
SS w4 + 1

The rest of the spectral densities are the same as in example 1,

Case I

s(tl, ny(t) and n,(t) uncorrelated

N..H.l:_
. 3 7.
1 1+ 0
mse = —— - ~dw
-Tl"_\oo ..... 1 .
. Nl+ )
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=

@ 1
= =— dw
27 f 4

- le + Nl+1

For the specific case when

N, = 1

mse = .1709

Case II

nl(t) and nz(t) correlated

l o
mse=71—r- ‘{ 2  dw

4 2 4 2 2
o NlNzw +2N1N2aim +alN N,-4a’r

1 172710
27 8 26

4 4 2 2
- [NlNzw +2N1N2alw +w (N2+N1N2+N1N2al-4alrl)

2 2, 2 4
+[2N2al+2NlN2al]m +N2a1(l+Nl)—4a

2r2]
171

For the case when

N1 =1, N2 =1, a; = 1 and ry = .1

mse = ,1693
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Case III

s(t) and nl(t) correlated

2 2
Nl ) 4a2r2
L o= lrt (Prad)?
mse = >— [ dw
27 4a.r
-0 L1 272
Nyt—7 + 5
1+w w +a
2
2 2,4 2 2 4 2.2
1 o [(Nl 4a2r2)w +2Nla2@.+Nla2—4a2r2] au
- 27 2, 2 6, 2 2 2
-~ [(w +a2)[le +uw (Nla2+4a2r2)+m (N1+l)
+N a2+a2+4a r

172" 72 2 2]

For the case when

Nl =1, ag = 1 and r, = .1

mse = ,1452

Case IV

s(t) and n2(t) correlated

[Nl — §a§r§2 2]
1 o 1+ w (w® + a3)
mse = 5— _£ 4a2r 5 dw
Nz[Nf 3 ] LT
+1 (w +a3)
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4 2 2
[Nl w (N2—4a3r3)+2N a.w +N,a.-4r_a

. 2 2 4 2 2]
_1 273 273 373
A _i‘ [N N w8+2N N a2m6+w4(N N,+N,+N.N a4 %
12 17273 12 72 717273
2.2 2 2 2
-4a3r3) + w [2N2a3+2N1N2a3]
2 2.2
+a3N2(Nl+l) —4a3r3

For the specific case when

Nl =1, N2 =1, ag = 1 and r3 f fl

mse = .1673

b) Delay Case

From equation 5.4 of Chapter 5 for the case of
delays in the channels, we derive the expression of mean

sguare error spectral density as follows:

See (w)

6y ) ? Is__(w)+s_ _ (w)+s__ (e %1 45 _(w)eI¥t1
171 1 1

2
le(m)l S,

+

*
2n2(w)+Sss(w)-Gl(w)G2(w) [Snlnz(w)

" ssnz(m)e'j“tll -G, ()G (0) [snznl(w)+snzs(w)e3”t1]

+ 16, (w)S_ () +Gy (w)S,

(w)]
2 ) ?
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- Is S(w)cl(m1+ssnl(mxc;(wxjt

ny

- Sgg(w) 16 (w1e™I*t1 +6) (u1e? 1]

Also from equations (5,14) and (5.15), we obtain

jut

S (w) IS
sn, ~ n,ny .

Gy (w)=-

[Snlnz(w)+Ssn

(0148, g(wle” L8, o (0)[Sg, (w)+8_ (w) e 391

2 1

(w)ejwtl][sn NEOTEN S(w)ej“tll

2 271 2

(w)+S (w)e Juty +S_ S(w)ej“txo

_Sn (w)[Sss(m)fSn a L

202 1%1 n

. -jut yaJut
anz(w)[SSS(w)+snln1(w)+ssnl(w)e 1 +Snls(m,e 1]

~Is_ (w)+s__ we 1] [s_

snl (w)ejwtll ]

(w)+S
1%2 shy

G2 (UJ) =

1wt (s jut
(S n, (01485, (le 1][Sn2nl(“)+sn2s(“)e 1)

()48, (w)e I¥E1 45 S(w)ej“tlﬂ

-S (w) [S_, (w)+S
ss n,n ny 1

2M2 1M1
For various casesjof correlation between signal and
noise, the effective transfer functions will have the following
values;
Casé I
s(t), nl(ﬁl and nz(t) uncorrelated

5. (we vty
Gl (U)) = 59

Sgglul + Snlnl(w)
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Gz(w) = Q

Case 1I
nl(t) and nz(tl correlated
o 8gglul S RO

Glel
[Sss(w)*sn l(w)]Sn n

o, @1=Sp (018, ()

- 122 2™

~jot
» Sss(w) Snlnz(wle 1

Gz(w)

@) 8, ()-8, o (WS, | (a)

[s () +8
sSSs n.n 2n2 nln2 2 1

171

Case 11X

s(t) and nl(t) correlated

-jut
Ssnl(w) + Sss(w)e 1

Gl(w)

1

(w)e Joty +S_ S(w)ejwtl

Sss(w)+8n L .

lnl(w)+Ssn

i
(=]

G2 ((D)

Case 1V

s(t) and n,(t) correlated _ |

(
sn, 2 oM, T ES T

s_ (w)S, 2juwty

sn, glule

=S (w) [sss(w)+sn n (w)]

2 y ) 1M
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The spectral densities for the respective cases are
found by substituting the corresponding values of G's in the
~general expression of error spectral density. The following

results are obtained

Case I

s(t),‘nl(t), nz(t) correlated

() s 1) [25 ()

S w) = S w)+S

ee SSs n.n
Sgg(w) + Snlnl(w) 171

Case II

ni(t) and nz(t) correlated

See(m)

(m)+SS

lGl(w)|2(Sss(m)+Snlnl(w))+lG2(m)]2 s, .

212

3

* *
Gl (w)GZ (w) Snlnz (w} - G2 (w)Gl (wlsnznl (w)

- % =
~ 8 g (01 16 (02eTTPF1 467 (wred ¥t

2
-”Sss (Q).Sn n

(w} [2Cos 2mt1 - 1]

S (wl- —

(w)—ZSss(m)COSZwtl]

(w)

B

S8
S -(w)’SSSCw)+Sn

(w)l-S
) 171 ] nn, 21

@S, o (w)
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Case III

s(t] and nlCtl correlated

]

535(915nini(9?5s ....... C@LTS ss | (“112 n2Co8 2uty
See(wl = -
Lsss(“I+Snln1(“1+zssn1(“1 Cos 2ut,]
case Iy

ae(t) and nz(t) correlated

_ 4
S e(w)~<%nlnl(w)ssn2(w)[2COS 2wtl—l]+Sss(w)Ssgﬁ[Z—ZCOS 2wtl]

2
- S_ _(w)s (w}S (w) s [2Cos 2uwt,]"
ss nlnl n2n2 sn2 1
+ 5 3(ws. %(w) [2-2Cos 2wt,]
ss n,n, 1
2 2
+ s _(w)S (w)S (w)
ss nyny n,n,
+s__2ws_ _ (w)s_ _%(w)[3-2cos 2ut,]
ss 1™ 22
2 2 _ .
+ Snznz(w)Sss (m)Ssnz(w)[Z 4Cos 2wtl +2Cos 4wtl]
2 2
- S (w)S (w)S (w)]j>
n,n, nyng sn,
2 250t 2
- S + 1118
[Ssnz (wh=8; o (W) (S (1+s, | (wle™ IS, " ()

. -2jwt
(wl(S (wI+S (w)l)e 1
S ) N0y ]

The above expressions of optimum effective transfer

functions and error spectral densities for the system with



delay are given in Table 8-3 and Table 8-4.
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In the following section mean square error in calculated

for two examples considered in the previous section.

Example 1

Case I

s (t], nl(tl and nz(tI uncorrelated

Substitution from Table 8-4 results in

mse = —5— i See(w)dw

L @ S_. (w)
1 ss .2
- 2n_£ [Snlnl(m)+sss(w) 4sin
S _(w)+S (w)
ss n,ny
= [ 2 v+ sin? ut,ld
"N, ZHaaN+4n wi+an?
1 : 1" :
For the specific case, when A = 1, N =1
mse = '%“ ) A 118 gin? wt,1duw
w2+ 8 w? + 4

wtl] dw

For various values of tl’ the mse is tabulated in Table 9-5
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Case 1I
n, (t] and né(tl_correlated

From Table 8-4

mse =V;%? | Seewldw
2
el Sge Wiy p, (ul[2Cos 20ty =0 9
i f SSScwlﬁ ' 5
- S, . (IS  (wl+S, _ (w)1-S_ _“(w)
) n2n2 S8 nlnl n1n2
,ﬂl'.? [ g 16°N,(2cos 2wty -1) w+ad)? ]
= = dw
27
- (0? + 4>\2) (w2+4>\2) sz (w2N1+4 7?N1+4>\) (w2+ai)2
2.2, 2 2y 2
—4alrl(w +4) )]

For the case when A = 1, N1 =1, N2 =1, a; = 1 and ry = .1

o 16 (2Cos 2ut.-1) (w2+1)2
1 4 1
- dw
2

2,
4 (0%44) [ (02+8) (w2+1)%-. 04 (2+4) )

The values of mse for various values of tl are tabulated

in Table 9.5 ,

- Case TII

s(t) and nl(t) correlated

From Table 8~4
2 2 2
q = Sss(QISnlnl(w)— SSHIQQI+4SSS‘F9?SIHNFI
mse = -7?‘f : Aw
(w)+ZSsnl(w)COSwtl

- S  (w)+S
ss nyng
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2 2 2

z(w +4) ) +64A Sin wtl
1 @y L . - x(m +a21 ]

= xS

pA
r [;lNl(w2+4A21(w2+a§)f4a

e (w2+a§1(w2+4x2)[ﬁlcw2+4x21(m +as)l+4x (w+ald)

2 2
+4a2r2 Coswtl(m +4) )]

For the case when A =1, N; and r, = .1

o= (02+4) (0241)2-. 01 (02+4) 2416 (02+1) 2 SinZut

27 _

mse = l.dw

= [w*+1) wP+a) (wP+a) (uP+1)+4 (w241)
+.4(0°+4) Cos uty |
‘ 1
The results are tabulated in Table 9.5 .

Case 1V
s(t) and n,(t) correlated

From Table 8-4

@©

= 1 4 4 . 2
mse = 2n_£[}nlnl(w)ssn2(w)[2C052wt1-ﬂ+4sss(w)Ssnz(w)Sln wty

2
=25 s(w)snlnl(w)snznz(w)Ssnz(w)COS Zwtl
3 2 .2
+4SSS (w)sn n (w)Sin wty
272
2 2 ,
+SSS(w)snlnl(wlsn2n2(w)'JLi e
+5o () S (08 T (w) [3
w w w -2Cos 2ut,]
Ss n,n, n,n, Wty
-8 S (w)S 2( )S 2( )Sin2 t, Cos 2t O
' n,n, Wivgg W sn, wty 1
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n,n

2 2
n2(w)[Sss(w)+Sn l(w)] —28_2 s

2
X (w)Ssnz(w)[SS (w)

2

4
S (w)+S
[ sn, n,

+8 (w)]Cos 2wt
nlnl l]

For various values of parameters the values of mean

square are tabulated in Table 9-5.

Example 2
1
S (w) = ————r
ss w4 + 1
Case I

s(t), nl(t) and nz(t) correlated

From Table‘8-4

L - 1 45in? oty
mse = =— f N, + dw
2 4 1 4
- (N.w™ + N, + 1) 1+ w
1 1
For N1 =1
1 o w4 + 1 + 4Sin2 wtl
mse = >— { 1 1 dw
- (w”™ + 2)(w + 1)

Case II

nl(t) and n2(t) correlated

From Table 8-4
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N

. —2—4—7 (ZCOS 2mtl—l)

mse = l__ f [ 1l - (l+(1) ) ] dw
2LM* 7 )
w +1 w +al

2...2
e = El ? 41 ) i (w4+l) (§C0522wt1 1) i e
T o lw +1 (0 +1) [ (0 42) (0°+1)° - .04 (w +1)]

Case IIT

s(t) and nl(t) correlated

From TableN8—4 2a.r 4sin2 ot
1 _ 272 + 1
1 ? l+w4 m2+a22 (w4+1)2 ]
mse = s— : dw
2 _ 7] 1 4a,r, Cosuwt,
l+w4 w2 + ag

For the case when Nl =1, a, = l, and r, = .1

. 2
| 1 04 45in” wty
mse = == ? et W 1? W+’ d

2r _ 2 .4Cos wt w

of w + 2 1
2 t 3
w + 1 wo + 1
Case IV

s(t) and nz(t) correlated

From Table 8-~4

mse

1l
Nll-—'
=
88
to|
Ele
Qs
€
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4

A(w) = (2Cos 2ut.-1) N [ 3°3 33 ]
1 i 2 2 )
w +a W + a3

2a.r ] 4 4Sin2 wtl [ 2a.r
(1 + w4)

2N1N2Cos Zwtl [ 2a3r3 ] N 5
2 2

(w4 + 1) w” + a

2 ’ 2

2 N,N, (3-2Cos 2wt,)
* )
w (1 + 0’)

- . 2 2
oN281n wthos 2wtl [ 2a3r3 ]
2 2
()

(1 + w4)2 + a3
2a3r3 2
- NN, [ 7, .2 ]
© 3
4
2a.r . 2
w +a3 w +l

2
2a3r3 1
- 2N, [ y) —2] [ Ny + ——— ]Cos 2ut,
w +a3 w + 1



TABLE 8-1
OPTIMUM EFFECTIVE TRANSFER FUNCTIONS

NO DELAY
Gl(w)

S8y m )y mp ()15, (w) ()]
S w s w) + S w
Uncorrelated S8 5S nny

Sss(w)snznz(w)

nl(t), n2(t) Correlated

n

5 2(w)[Sss(w)+Snlnl(m)]-Snl R

n2n

sgt) nl(t) sss(w)+ssnl(w)
Correlated éss(m)+sn L (@25 (w)

1M1 ny

2(w)

Gz(w)

SSS(w)Sn

172

(w)

[snznz(m)[sss(w)+sn o

=S

nln

z(w)]

171

(w)]

911



s(t), nl(t)

Correlated

TABLE 8-~1 continued
S, o (ws_ (w)-5_ % (w)
L2772 = 2

S

ny

nz(w) [_Sss(w)+sn

1M1

2
(wﬂ —Ssnz(w)

S (w)S (w)

nny

snz

2
Ssnz(m)-sn

+ Snlnl._ () ]

2

nz‘“)[?ss‘“)

LTT



TABLE 8-2

ERROR SPECTRAL DENSITIES FOR OPTIMUM SYSTEM

See(w)
s(t) nl(t), nz(t) Sss(w)Snlnl(w)
Uncorrelated Sss(w)+Sn n (w)
171
‘ 2
ng (t), ny(t) sss(w)[snlnl(w)snznz(w)-snlnz(w)]
Correlated 2
| Snn, (w)[Sss (W4, o (w)] “Snn, (w)
2
s(t), ny(£) S (0)8g . (8)=8g," ()
Correlated
Sss(w)+Snlnl(w)+2ssnl(w)
s(t), n,(t) Snyn, ()[Sss (W18, 4 (0)-5.,7 ()]
171 212 2
Correlated 2
| 5n,n, () [Sss ()48, o (m)J “San ()

811



TABLE 8-3

OPTIMUM EFFECTIVE TRANSFER FUNCTIONS

‘'FOR SYSTEMS WI T DELAY

Gl(w)

S(t), ny(t), n,(t) 5. (u) o-Juty

Uﬁcorrelated

n; (t), n,(t)

Correlated

S(t), nl(t)

Correlated

S(t), n,(t)

Correlated

Sss(m) + Snlnl(w)

_'t
S (w)S (w) e J¥%1
5S n2n2

Gz(w).

SSS(w

_'t
)S (w) e J%%1
nyny

Snznz(”)[sss(“)+Sn1n1(wﬂ_sn

nl(w)snlnz(w) (Snznz(w)[sss(“’)+Snlnl(w)]"snln2

2
S (w)
Ny )
-jwt
S (w) + S__(w)e J¥*1
snl SS 0
jwt -jut
Sss(m)+Snlnl(w)+Snls(w)e l+Ssnl(w)e 1
. o -jut - +jut
Snznz(w)oss(w)e 1 Ssnz(w)Snzs(w)e 1 Snlnl(m) Ssnz(w)
+2jwt J
s (w)[S (0) +§ (qu-s ()S. (0) [S.. (0)S. (e 1-5 ()
( n2n2 SS nlnl sn2 nzs > sn2 n2s n2n2 )
+2jut .
e 1 ) [-Sss(“’)-"snlnl(“’)‘])

611



s(t), nl(t)
and nz(tf

Uncorrelated

nl(t), nz(t)

Correlated

s(t), nl(t)

Correlated

TABLE 8-4

ERROR SPECTRAL DENSITY FOR OPTIMUM

FEEDBACK SYSTEM WITH DELAY

SSS(w)

Sss(w) + sn (w)

S

Ss

n

171

. 2
[Snlnl(w) + 4 Sss(w) Sin wtl:l

Sssz(w) s_ . (w) (2 Cos 2u

(w)

n

272

t

1

- 1)

- Snznz(w)[sss(w) + Snlnl(w) ]- Sn

1

n

2

(w) Sn

2 2 .2
Sss(w) Snlnl(w) Ssnl(w) + 4 Sss (w) Sin wtl
Sss(w) + Snlnl(w) + Ssnl(w) 2 Cos wtl

2™

(w)

0ct



TABLE 8-4 continued

S (w) S (w)[ 2 Cos 2 wt —lJ + S w) S u»[%-z Cos 2 wt.]
Correlated nyny sn, 1 885 I, 1

—Sss(w) Snl (w) Sn

n n

1 2

2 ' 3 z
2(m) Ssnz(w).Z.Cos 2 wtl + SsS (w) Sn nz(w) [2-

2

2 Cos]ytl]+ S q(w) S

) Snznz(m)-\-sssz(w) s, o (W) s - *lu)x

171 1M1 272
2 2
[3 -~ 2 Cos thl] + Snznz(w) Sss (w) Ssnz(w) [2 - 4 Cos Zwtl + 2 Cos 4wt1]
2 2
-S {(w) S (w) S (w)]
n,n, nin sn,

n,n

1
4 2 A 2
<ssn2(w) * Sy n () [Sggl0) + 5, o W] -8,

S (w)]2 Cos 2wt>
n,ng 1

2 .
,(@) Sen (@) [(8gg(0) +

121



- Frequency
~9.5000.

-9.0000
-8.5000
-8.0000
-7.5000
-7.0000
-6.5000
-6.0000
-5.5000
-5.0000
-4.5000
-4.0000
=3.5000
~3.0000
-2.5000
=2.0000
=1.5000
=1.0000
-0.5000
0.0000
0.5000
1.0000
1.5000
2.0000
2.5000
3.0000
3.5600
4.0000
4,5000
5.0000
5.5000
6.0000
6.5000
7.0000
7.5000
8.0000
8.5000
9.0000
9.5000

S(w) =

TABLE

8-5

2ar
2 2

"

+ a

CROSS SPECTRAL DENSITY

r =.25

0.0055
0.0061
0.0068
0.0077
0.0087
0.0.00
0.0116
0.0135
0.0160
0.0192
0.0235
0.0294
0.0377
0.0500
0.0690
0.1000
0.1539
0.2500
0.4000
0.5000
0.4000
0.2500
0.1538
0.1000
0.0690

0.0500 -

0.0377
0.0294
0.0235
0.0192
0.0160
0.0135
0.0116
0.0100
0.0087
0.0077
0.0068

1 0.0061

0.0055

a=1

r = .50

0.0110
0.0122
0.0137
0.0154
0.0175
0.0200
0.0231
0.0270
0.0320
0.0385
0.0471
0.0588
0.0755
0.1000
0.1379
0.2000
0.3077

- 0.5000

0.8000
1.0000
0.8000
0.5000
0.3077
0.2000
0.1379
0.1000
0.0755
0.0588
0.0471
0.0385
0.0320
0.0270
0.0231
0.0200
0.0175
0.0154
0.0137
0.0122
0.0110

r =.75

0.0164
0.0183
0.0205
0.0231
0.0262
0.0300
0.0347
0.0405
0.0480
0.0577
0.0706
0.0882
0.1132
0.1500
0.2069
0.3000
0.4616
0.7500
1.2000
1.5000
1.2000
0.7500
0.4615
0.3000
0.2069
0.1500
0.1132
0.0882
0.0706
0.0577
0.0480
0.0405
0.0347
0.0300
0.0262
0.0231
0.0205
0.0183
0.0164

r =1,0

0.0219
0.0244
0.0273
0.0308
0.0349
0.0400
0.0462
0.0541
0.0640
0.0769
0.0941
0.1176
0.1509
0.2000
0.2759
0.4000
0.6154
1.0000
1.6000
2.0000
1.6000
1.0000
0.6154
0.4000
0.2759
0.2000
0.1509
0.1176
0.0941
0.0769
0.0640
0.0541
0.0462
0.0400
0.0349
0.0308
0.0273
0.0244
0.0219
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CHAPTER IX
System Performance

An idea of the rélative system performance is
needed before selecting any particular system design. 1In
the previous chapters; the expressions of mean square
error which is used as the criterion of systems performance
have been derived. The expressions thus derived are
functions of_signal and noise spectra and the correlation
betweeen them. For a general idea of the expected per-
formance of the system, signal and noise spectra could be
approximated and performance evaluated. It is shown in
Popoulis [3] that any correlation function can be approxi-
mated by exponentials and hence an approximation of signal
and noise spectral densities and cross-spectral densities
can be found. For our calculations the following approxi-
mations are made for the spectral densities.

SSS (w)

Signal spectral density

2ar/(w2 + a2)

If the power is normalized by setting r equal to one then
_ 2a

Ssgl0) = ———3

w + a
The noise spectral densities could either be considered to
be constant for the white Gaussian ncise case or could be

approximated as for the signal. Similarly the cross spectral
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densities could be approximated as

2a'r!

m2 +'c';2

S(w) =

and, by varying the values of a' and r', the correlation
could be varied.

Mean sguare error for various values of parameters
of the signal and noise spectral densities has been
calculated by Romberg's method of numerical integration
by the Sigma 7 Computer and are tabulated in Table 9-1 for
the case where the delay in the channel is zero.

"

It may be noted that a small value of "a" results

in sharper spectral density and large "a" results in
broader spectral density.

For the case with no delay and with white Gaussian noise
the followinngbservations are made from Table 9-1.

a). Uncorrelated case

Mean square error increases for broader
signal spectra (large a).

b). ny,n, Correlated case

For a fixed correlation between noise n, and ny,
the error is smaller for sharper signal spectra.
Also for any signal spectral shape, mse increases for
broader cross spectral densities.

c). s, ny Correlated

For a fixed correlation between signal s(t) and
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noise nqy (t), mse decreases as the signal spectral
density becomes sharper. For cross-correlation factor
r, of .1, mse increases for broader cross spectral
densities for any given signal spectra. However, for
broader signal spectral densities and cross correlation
factor of .4, mse has minimum at a; = 1.

d). s, n., Correlated Case

The mse is low for the case of sharper signal
spectra. The mse follows the same trend as in s, ny
correlated case.

It should be noted that for some combinations of
a,r(,a{, mse has not been evaluated as these combinations
are not physically realizable. The conditions of physical
realizability has been already treated in chapter VII.

For the following approximation of this chapter,

Syq () = 2a/(w? + a?)

S (w) = N
nlnl 1
Snznz(w) i NZ
s (0) = 2a;r,/(® + a,%)
n-n 171 1l
172
S__ (o) = 2a,r,/(w2 + a,%)
sn1 2-2 2
_ 2 2
S (w) = 2a3r3/(w + ag )

Sn2
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for the various realizability conditions and the expressions
of realizable filters are as follows,

1. Uncorrelated Case

No restriction on parameters,

Realizable filter =
2a

(jwjﬁl + J2a + Nlaz)(a Ny +f2a + Nlaz)

2. ny,n, Correlated

Realizability restriction are

Nl(a2 + 2a12) + 2a ¥ o
N.N,a (2a2 + a 2) + 4aa.N, - 4r, (a + a,r,) > O
1721 1 172 1 1-17 °

N2a12(2 + aNl) - 4rl(ar1 + al) > 0

and dl, d, and d3 are positive, where

c

_ A+B , A-B 1
dy = - = + = 357

c

_ A+B A-B I“ 1l
d3 == 77 -~ 7 Ny

“e Je A
™22 2 1

and A"[Z + 7 + 57 ]

1/3

3

' 2
-e .je e
| e 2 1
B ‘[ 2472t 27
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_ 1 _ 2
and e, = 3 [3C2 C1 J

2 1 3
* = 37 L_zcl - 9C,C, + 27c3J

where C’s are

_ .2 2
Cl = a” + 2a1 + 2a/Nl

4 2

2 2
C + 2a a, + 4aal /Nl

2° 4
- 4alrl(alrl+a)/NlN2
C3 = azal4 + 2aal4-/Nl
—4a12rla(arl + al)/NlN2
The realizable filters are

Hl =

2a(a+al) (jw+a1)2

(a+fd@])  (a+d)  (ardy)  Goxld)  Gurld)) (Ge+ldy)
and
1
Hy = W, (Jo+ ap)

3. s,nq Correlated

The realizability condition is
2
[N1(a2+a22) + 2a+4a2 rz] - 4N1(Nla2a22 + 2a a22 + 4a2a2r2)>0
and the realizable filter is

jew (A + B) +ha, + aB

= Jﬁi (jm+j61) (jm+jE;;

Hy

where
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(Nla2+gl§22 + 2a + 4a2r2) )
. o - * ~BNl(a2+a22) + 2a+4a2r2}2 —4Nl{Nla2a22+2aazz+4a2azr2}
1772 ~ 2N
1

and are positive 1if above inequality holds and where
2a(a+a2)

A:
N, (a+ fcp (a2 +]cy)
2a.r,(a + a,)

B = 272 2

M) (ay+ [E)  (a,+]Cy)

4, S,0, Correlated

For the feedback loop, the restrictions are

2

aN2 —r3

4 2 2 2
aN2a3 - 2a3 ry- a’ > 0

and the realizable-filter is

Cjeldy + a4 alc, + a,lcy

f2 T T FIC) Ge A5,

where dl, d2 are functions of Cl’ C2,>al, az, Iy N1

and N, and C C, are positive if the above inequalities

2 1’

hold.

For the forward loop, the restrictions are
2 2
Nyag3™ - 2r3 a>0

2, 2 2, 2 I 2
NlN2a3(a3 +2a )+2r3Nl(a +a3 ) + 4aa3N2 4a3r3 > 0

2

N2a3 (2+aNl) + 2aa3r3N1 -4 ary > 0

d. and d2 are given by the same formulas as in case (b)

1
except that C's are as follows
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2

C, = a + 2a 2

3+ 2a/Nl + 2a31"3/N2

> a34 + 2a2a32 + 2a3r3(a32 + 2a2)/N2

0
I

+ 4a32a/Nl - 4a32r32/NlN2
C3 = a2a34 + 2aa34./N1 + 2a2a33r3/N2
- 4a2a32r32/NlN2
The realizable filter for this case is
(jm)2 (pl + pz) + Jw (2a3pl + ap, + pyaj + p3)
H. = +pla32 + ap; + ap,aj

Iy (Gu + [d) G + J&) (Go +]&y)

where Pyr Py and p, are functions of a, as, rgy Nl’

N2, dl’ d2' d3, and ry.

For the combination of signal and cross spectral
density parameters satisfying the realizability conditions,
mean square error has been calculated and tabulated in
Table 9-2,

For the realizable case with no delay in the channel
the following observations are made

a). Uncorrelated case

Mean square error is minimum for sharp signal
spectra and increases as the spectrum becomes broad.

b). n;, n, Correlated

For a fixed cross-correlation, mse increases
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as the signal spectra becomes broad. For cross-correlation
factor of .1, mse increases as the signal becomes broader
and broader.. However, for cross-correlation factor of

.4, mse is minimum for a; = 1.

c). s, n, Correlated

The mse increases as the signal spectra becomes
broader for a given cross-spectral density. Except for
the broad signal spectra case for ry = .1, and not a very
broad signal spectra case for ry = .4, mse increases as the
cross-spectral density becomes broader. For the above two
cases minimum occurs at ag = 1.

d). s, n, Correlated

Here the condition of realizability is satisified
for very few combinations of the parameters. For the data
obtained for broad signal case and for ry = .1, mse has a
maximum at ag = 1 whereas for r§ = .4, it decreases as the
noise becomes broad.

While comparing the trend of the variation of
mse in the case of optimum filters and in the case of
optimum realizable filter, both behave almost in the same
manner. However, mse is higher in the case of realizable
filter than the optimum filters which is to be expected.

When a correlated signal aé given in case (b)

through (d) is applied to an optimum open loop filter, the
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manner in which this system compares with the feedback
system is shown in Table 9-3., This table lists the mse
as percentage of the mse obtained with open loop. Table 9-3
gives the comparisons for optimum case while Table 9-4
gives the corresponding percentages for realizable case
with the realizable open loop filter used for theA
comparison.

For the realizable case as shown in Tables 9-2 and
9-4, there is improvement in the performance for only a few
combinations of signal and cross spectral densities. For
the correlation factor of r = .1, the case for which ny and
n, are correlated does hot show any improvement while the
case for which s and n, are correlated gives some improve-
ment for sharp cross spectra and broad signal. Similarly
for r = .4, the case for which n, and n, are correlatéd
shows improvement for combinations of a = 1., a' = 1. and
a=2, a' = 1., whereas the case for which s and n, are
correlated shows improvement for combinations of a = 1.,
a' = 1. and a = 2, a' = 2. It could be observed that
realizable case figures show no improvement in many cases
and very little improvemenﬁ‘for remaining caseswhen
compared to optimuﬁ case,

For four combinations of signal and noise paremeters,
the variation of mse has been calculated for optimum systems

with delay and tabulated in Table 9-5,
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It could be noted that for all the cases considered,
the mse for the uncorrelated case is larger than the rest
of the cases. Also, there is more than one minimum wvalue
of mse for all the four cases. For example, the three
combinations of ajs rl and a1 as in Table 9-5 (b), (c), and
(d), all the four cases have minimum at t = o, .5'and 1 sec.
For a = 1, r1 =1 andva1 = .5, mse is minimum at t = o and
1. and maximum at t = .5. From the above tables, we could
also observe the following trend of the performance for
various cases of correlation. For all the cases, minimum
mean square error is lowest for sharp cross-spectral
density and a sharp signal spectrum, while for broader
signal, minimum mse is lowest for sharp cross-spectrum
and hence whereyer a choice of signal is possible, it
could be made accordingly. The results of this chapﬁe: are
plotted in Fig. 9-a through Fig. 9-qg.

For the expected performance of any particular
system for a given signal and noise characteristics, the
following procedures are recommended.

a). .Approximate the given correlation by

exponentials. [3]
b). Evaluate the expressions of optimum filter or

realizable filter from Table [4~1] and

[5~1]. Substitute them in expressions of
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mean square error as in Table [8-2] and
[8-4] and integrate. The System with minimum

square error is obviously the best system,



Table 9-1

1 lMean Square Error for Zero Delay in Channels
r ,a  refers to r and a of Cross Spectral Densities

a r a Uncorrelated nl,n2 S ,nl s ,n,
Case Correlated Correlated Correlated
.1 .5 .420676 .404584 .388250 XX
5 .1 .1 .420676 .416588 .392091 XX
.1 2. .420676 .419498 .394847 XX
.1 .5 .570768 . .508131 .471547 .568012
1l .1 1. .570768 .567248 .531931 .568831
o1 2, .570768 .569479 .538674 XX
.1 .5 .694093 .689344 .523402 .688864
2 .1 1. .694093 .691852 .652188 .691169
.1 2. .694093 .693180 .658487 .692322
.4 .5 .420676 XX .225223 .379671
.4 .5 .570768 XX .128948 XX
1. .4 1. .570768 ,421176 .385420 .535876
.4 2. .570768 .549019 .629048 XX
.4 .5 .699093 XX .523066 XX
2 .4 1. .699093 .503218 .393418 .502218
.4 2. .699093 .678552 .548894 .664463

AN

XX - Non-realizable cases



Zero Delay in Channel and White Gaussian Noise

Table 9 - 2

Mean Square Error for Realizable Filters

a rl a1 Uncorrelated nl, nz s, nl s, n,
Case Correlated Correlated Correlated
.1 .5 .581360 .598293 .552057 XX
.5 .1 1. .581360 .633506 .555908 XX
S .1 2. .581360 .710839 .578416 XX
.1 .5 .723705 .737821 .691920 .725108
1. .1 1. .723705 .750633 .692236 .724325
.1 2. .723705 .799266 .649304 XX
.1 .5 .813153 .821612 .788254 .807588
2. .1 .1 .813153 .840661 .783434 .814632
.1 2. .813153 .860064 .788210 .813389
.5 .4 .5 .581360 XX .394249 .645485
.4 .5 .723705 XX .623327 XX
1. : .4 1. .723705 .586421 .557392 .718610
O - .4 2. .723705 .780084 .630720 - XX
4 .5 .813853 XX .603621 XX
2. .4 .1 © .813153 .796961 .615559 .869747
.4 2. .813153 .852194 769237 .789501

XX Non-realizable case

GET
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Table 9 - 3

Relative Performance of Closed Loop and Open Loop Optimum

Systems, zero delay and white guassian noise. Mean Square

Errer Calculated as Percentage of Open Loop Case.

a I‘l al n n
1772 s ,n
Correlated Corrélated
.1 .5 96.17 XX
.5 .10 1. 99.03 XX
10 2. 99.72 XX
.1 .5 89.03 99.52
1. .1 . 99.38 99.66
10 2. 98.77 XX
.1 .5 99.32 99.25
2 ol ln 99.68 99-58
10 2. 99.87 99.74
5 .4 'Y XX 90.25
1. 41, 73.79 93.89
4 2. ' 96.19 XX
2. 40 1. 72.50 72.36
.4 2. 97.76 195,73

XX Non-realizable case



Table 9 - 4
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Relative Performance of filters as in Table 9-3, but for

Realizable Case

1 1 ,
a r a n, .0 s,n,
Correlated Correlated
5 .1 .5 102,91 XX
.1 1. 108,97 XX
.1 2, 115.45 XX
.1 .5 101,95 100.09
1. 1 1. 103.72 100.25
.12, 110.44 XX
.1 .5 101.09 99.32
2. .1 1. 103.38 100.18
1002, 105.77 100.03
5 .4 .5 XX 111.03,
.4 1. 81.03 99,30
1. 4 2. 107.79 XX
2. .4 1, 97.95 106.96
.4 2, 103.01 938,08
XX Non-realizable case



138

Table 9-5(a)

Mean Square Error Variation with Delay in Channel and White Gaussian

Noise
Parameters a=l. , rl=.l, a1=.5
t Uncorrelated Ny S Iy S «0y
Correlated Correlated Correlated
0 .570768 .508131 .471547 .568012
.1 .595198 .528834 .491743 .592442
.2 .595468 .572719 .536259 .589673
.3 .645192 .622447 .586608 .639397
.4 .685375 .662634 .628139 .679581
.5 .702401 .696981 .674745 .700662
.6 .686979 . .664238 .633558 .681184
.7 .647696 .624946 .595612 .641856
.8 .598113 .575364 .546578 .592318
.9 .553029 .530277 .501532 .547235

1. .530954 .508200 .479401 . «525159




139

Table 9-5(b)

Mean Square Error Variation with Delay in Channels and White Gaussian

Noise
Parameters a=2., , rl=.l, al=l.
t Uncorrelated Nyl S o0 S 03
Case Correlated Correlated Correlated
0 .694093 .691852 .652188 .691169
.1 . 742447 .740246 .617891 .739523
.2 .729470 .723289 .667946 .723226
.3 .730340 .724159 .670607 .724094
.4 .682017 .675834 .623379 .675771 \
.5 .645023 .639640 .587407 .639578
.6 .679153 .672970 .620562 .672907
.7 .728565 .722384 .668918 .722320
.8 .731173 724992 .669738 .724928
.9 .728455 .725350 .620806 .725046

1. .672773 .669657 .651605 .669369
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Table 9-5(c)

Delay in Channel and White Gaussian

Mean Square Error Variation with .
‘ Noise

Parameters a=2., r1=.l, al= .5
t Uncorrelated Ryrfp A 5 %2
Correlated Correlated Correlated
0 .694093 .689344 .523402 ..688864
.1 . 742447 .737731 .558346 .737218
.2 .729470 .703127 .607833 .703112
.3 .730340 .703997 .609616 .703981
.4 .682017 .655674 .561848 .655658
.5 .645823 .619481 .525765 .619464
.6 .679153 .652810 .558998 .652794
.7 .728565 .702223 .607884 .702206
.8 .731173 .704830 .609581 .704815
.9 . 728455 .715283 .561244 .715195
1. .672773 .659598 .523546 .659514
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Table 9-5(d4)

Mean Square Error Variation with Pelay in Channel and White Gaussian
Noise

. Parameters a=2., r1=.l, al=2.

t Uncorrelated Nyl S S0y
Case Correlated Correlated Correlated
0 .694093 .693180 .658487 .692322
.1 .742447 .741573 .706311 .740676
.2 729470 .727953 .697336 .727729
.3 .730340 .728820 .701531 .708599
.4 " .682017 .680194 .655259 .680275
.5 .645823 ‘ .644300 .619489 .544082
.6 .679153 .677630 .652447 .677411
.7 . 728565 .727047 .699917 .722824
.8 .731173 .729656 .699205 .729433
.9 .728455 .727658 .728135 .726891

1. .672772 .671950 671737 .671210
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CHAPTER X

CONCLUSION

A detailed analysis of feedback telemetry system
models has been made. From the study it is found that any
communication system can be reduced to an open-loop model
by using control system technigues and based on that model
an optimum performance of the system can be obtained.

For the case of transmission through the channels
without any delay it is observed that when signal and noise
processes are uncorrelated and when signal and noise in
forward channel are correlated, the expression for the
optimum filter transfer function in the feedback 1link is
zero. It is a very significant result. It shows that it
does not pay to use the feedback link for the above two cases.

For no delay case, optimum realizable filters cculd
be synthesized by passive network without much difficulty.
However, for the case of delay, exponential terms in jut
suggest synthesis either by distributed parameter passive
network or by a combination of distributed parameter network
and active network [37].

The mean sguare error has been calculated by Sigma 7
Computer for varicus delays and various degrees of correla-

tion between signal and noise. The outcome of the calcula-
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tion is discussed in the previous chapter'and it is found that
for a sharp cross spectral density, mean square error is at
its lowest for 'a sharp signal spectrum.

Future Study

Although the mean square error has been computed
for optimum system, further study of the variation of mean
square error for optimum systems employing optimum realizable
filters and various shapes of noise spectra would give more
insight into the use of feedback systems. Also in general
mos£ of the systems are limited by either peak or average
transmitter power and this factor could also be taken into
account. Lagrangian multiplier method of optimization is

recommended for the analysis of this case.
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APPENDIX A

OPTIMIZATION BY CALCULUS OF VARIATION

calculus of variation is a mathematical tool to opti-
mize a function involving a certain parameter by taking its
variation along a certain path. The simplest problem is the
maximization or minimization of the functional

b
I=[f(t, x, x") dt
a

whefe f is the given function, x'=dx/dt, and the integral is
taken along the curve x(t) with x(a)=A and x(b)=B.
Under the given terminal conditions,; we have to find the
curve x(t) which optimizes I.

To proceed with optimization, we take the variation

of curve x(t) denoted by §x(t). Hence the new curve becomes

x(t) + sx(t)
or xX+46x
‘This variation can also be written as en(t) or simply
en where n is any differentiable function of t, vanishing at

the terminals as

n(a) = ¢
n(b) =0
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and e is any real parameter. For a particular form of n,
satisfying the above terminal conditions, the new curve

x + en will take different paths depending on the value of
n as shown in curve A-~-1l. With the above variation of x(t),

the functional I takes a new value I + 6I given as follows

b
I+6I=/T¢f(t, x+ en, x'! + en') dt
a
The functional I will be maximum or minimum if ils derivative

with respect to e is zero, i.e.

d(I + 8§I)de=0
Also for the optimum path x(t) giving maximum or minimum
I, the variation en will be zero no matter what the value
of n is and hence e is taken as zero. Hence the condition

of optimality is given as

da (I + 61I)

de _
e=0 0

The application of this method leads to the famous Euler-

la grange equation
3f _d_fﬁ]_
3x stLaxd= 0
and is given in detail by LEE (16). The above eguation

leads to value of x(t) maximizing or minimizing the func-

tional I.
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APPENDIX B

EVALUATION OF OPTIMUM LINEAR FILTER BY CALCULUS OF VARIATION

The linear system which satisfies the minimum mean
square error criterion is called optimum linear system. The
calculation of optimum linear filters is the core of the
problem in the design of feedback telemetry system as described
in the text and hence the following procedure is described for
a simple linear system. For a given simple linear system the
mean square error is given as

T
2 ® = tin 1 [ (sg(e) - s4()17 at

The linear filter is required to extract the message
from the cerrupted message Sy according to the minimum mean
sguare criterion between the data received and the data desired Sqe
The filter is to be designed with the above criterion of
performance. It is either specified by system function H(w)
or by the unitimpulse response h(t), their realizability and
synthesis could be studied after they are evaluated. so(t) could

be written as convolution of h(t) with s; (t) and hence the
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mean square error could be written as

T ©
_ , 2
57— (t) = Ly 1T _é [ i h (t)s; (t=1)dt-s4(t) 174t

This is simplified as
2 () =‘£h (T)dzih(cunaii(Tfo)-zih(r)dTRid(T)

+Rdd(0)
where R's are the correlation functions as follows

T
. 2
Rdd(O) = Lim 1 f S3 (t) dt

2T -T
T+oo
]
R..(t) = Lim 1 s.(t) - s.(t-1)dt
di 5F - d i
T-H:o
e
R,:(7=0) = Lim 1 [ s, (t-1) s, (t-o)dt
ii 5F -p L i
i Moo
and si(t)=s(t) + n(t)

where s(t) is the-original message and n(+) is the noise
contaminating t*= message, sd(t) may be any desired form

of cutput as s(t), s(t + tl), ds(t)/dt etc. The filter

system function will have the shape corfesponding to the
desired output.

In the practical case, the impulse response has the
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following restriction

h(t) = b; t<o
as the response of the system cannot precede the excitation
and hence for realizable filters; the above restriction
should hold.

Either we can constraint the expression for mean
square error and apply calculus of variation to get optimum
realizable filters or we can apply calculus of variation
without the above constraint and calculate the realizable
part from the optimum filter thus obtained. We will follow
the second procedure. Writing the mean square error again
as. .

e2(t) = ? h(t)dr [ h(o)ds Ry, (1-0)

-0 - O

-2 [ h(1)dr Ryg(x) + Rgq(0)

- 0O
Taking the variation of h({(t), the above expression becomes
-]

e2(t)+6e2(t) = f [h(r)+en(1)]dr / [h(o)+en(oﬂ doR, ; (1=0)

-

-2 f£.h(1) + en(r)] Rid(r)dr + Rdd(O)

By comparing this expression of e % (1) we get

se2(8) = 2¢ [ n(xiar fn ()  do Ry, (1mq)

©

23
+e f n(t) d&r [ =a(o) do R;; (10}

~2e [ (1) ar R;4(T)

- 00



The condition for minimum mean square error,

in Appendix A is,

QJIQ-
®

for all possible n's

This gives
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as discussed

_f ﬂ(T)[ _£ h (o) Rii(T-o)dc- Rid(r)] dt = 0

for all possible n's

For a physically realizable function
n(t) = 0 for t < 0

and hence

f h{c) Rii(t—c)d = Rid(T)

- 00

for

T >0

Since at this stage we are not considering the

realizability, for optimum filter we can write

@

Rid(r) = { h(o) Rii (1-0) do

- CO
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The solution of this expression will give the desired
filter minimizing the mean square error. This may not be

a realizable function and the later could be extracted

using standard techniques.’
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APPENDIX C

REALIZABLE FILTER CALCULATION

Equation (3.9) is satisfied for the optimum system
leading to minimum mean square errxor. When the realizabi-
lity of the filter is not taken into account, we can re-
write it as

R, (0) = [ h(1) Ry, (o-1) at (c-1)

for -=<g< °
However for realizable filters, since
h.(t) =0 ; t <0,
(C-1) is modified as

Rdi (o) = f h(1) Rii(c—r) dr (Cc-2)

for ¢ > 0

Here h(t) = 0 for © < 0 but Rii(T) may not be zero for

1 < 0 and we have to find a new impulse response which
satisfies the above condition.

Assuning two functions cl(t) and Cz(t) such that

cl(t) 0 for t < 0

and Cz(t) 0 for £t > 0 (C-3)
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and their fourier transforms as

c,w = [ ejtt) e at = [ ete) e ar (c-4)
and
) . (@) o
Cylw) = [ eymear = [ o) e ar (c-5)

- 00

Further assume that cl(t) when convolved with cz(t)'gives

Rii(r) as

Rii(T) = f cl(T—o) cz(o)dc (C-6)

Substituting in (C~2) we get

-]

Rdi(r) = g h(c) do _i cl(T—c-n) Cz(n) dn

o o
= | ¢, (n)an J cl(r-o—n) h(c) do (C-7)
- To)

(C-7) is cbtained by interchanging c2(t) and h(t), the
limits of cz(t) being -« to o

Assuming a function B(t) such that

o .
Rg; (1) = _£ c, (n) B(t-n) dn - < T < ® (C-8)

This gives
(@) ©
J cytn) anfs(e-n) - [ ¢ (x=n=0) h(o) @] = 0

- OO

for 1 > 0 (C-9)

This holds true if

v
o

8{t) = f cl(r—c) h{c) do T (C~10)
o)
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In expression (C-10) both the functions cl(t) and h(t)

vanish for t<O0.

Multiplying (C-10) by e 7“" and integrating between 0 and «
we get
[ (1) e~IWT 4. o [ hi(o) e~ JWo 4. f cl(T_G)e-jw(T—c)dT
6 0 0
This gives
- ',»f B(T)e—JwTdT
H(w) = [ h(o)e ?%%d0 = 2
° / Cl(T-o)e—Jw(T—c)dT
0
or © .
[ B(r)e YT ar
0
() = _
H{w) e @ (c-11)

Also multiplying (C-8) by e”I¥T anga integrating between -«

and =, we get

o o 0 . ©o . ’
f Rdi(r)e—JwTdr = f cy,(n)e Jung [ 8()e™ ¥ ar

- 00

cr

-]

Sg; () = Cyw) [ B(r)e I%Tar (C-12)

- 00

The expression for B (1) could be written as

Sdi(w) duw

_1 7 i}
B(w) = T -£ _E;TET_——- (C-13)
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Hence from (C~11), the expression for optimum realizable

transfer function is

© . o S_.(w)dw
* _ H -juTt 1 di
H (w) - Cl(w) é e dT'Z‘" _;[ —‘(—‘Cz (D)
o . o S, (w)dw
— 1 -jut di
T 27 Cl(m) é e dT_£ C2(w5
(C-14)

From {C-6) by taking the fourier transform we can write

Sii(w) = Cl(w) Cz(w) (C-15)

Where Cl(m) is fourier transform of cl(t) which vanishes for
+<0 and Cz(w) is fourier transform of cz(t) which vanishes
for t>0. This shows that Cl(w) and Cz(m) have singularities
in left half aﬂd right halfs planes respectively. Since

S..(w) is even
ii

*
O : = = O-
pl(w) C2 (w) C(w) (C-16)
and

5;; (@) = |c(w)]?

ii
This gives the final expression of optimum realizable filter
as

on [+~ <
Hw) = X e_ijdr f[.iéiiflfleijdm
Zrc(@y AP DI
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In other words the expression for optimum realizable filter

can be written as

(w)
Hlw) = C(w) [ c*(i) ]

-7 S 1 (w)
[ J+ means the part of —é%TGT on the upper half plane

Where
and C(w) 1is as defined above.
The step by step procedure of calculating the optimum

realizable filter is given in chapter III.



167

APPENDIX D

CRCSS SPECTRAL DENSITY

It is found [3] that correlation function for any
signal could be approximated by any exponential term. For
example if we approximate the correlation function between
signal and noise as

R(t) = r e-alTl

this will give various shapes to the plot of R(t) for various
values of ‘r' and 'a'. The corresponding spectral density

S{w), where

N

S(w) = -_.—_r_

a
w + a2

N

could approximate any signal spectra by the adjustment of
its two parameters 'a' and 'r'. We may have tc approximate
the given signal or noise spectra by such exponentials. The
use of this form of cross spectral density is based on the
abcve approximation.

The plots of Cross Spectral density for various
values of a's and r's as evaluated by Sigma 7 computer are
given in Fig. D-1 and Fig. D—-2. It is observed that for
smaller values of a's, the spectrum is centered around zero
fregquency. For larger a's, it spreads to higher freguencies.

The variation of 'a' changes the slope of the spectral
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density plot whereas any variation of r changes the corres-

ponding value at zero frequency.
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