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Abstract

A liquid that is slowly cooled below the melting temperature usually undergoes

a first-order transition to a crystal with long-range periodic order. Rapid cooling, by

contrast, may suppress nucleation and result in a glass transition, in which the liq-

uid viscosity and relaxation time appear to diverge despite the structure remaining

liquid-like. With decreasing temperature, liquid dynamics become spatially and tem-

porally heterogeneous as the system segments into ephemeral regions of relatively

mobile and immobile particles. In this work, we use molecular dynamics simula-

tions of model, colloidal glass-formers to probe anomalous dynamics of glassy liquids.

In one investigation, we probe anomalous dynamics of dilute, hard sphere tracers

within supercooled liquid and glass matrices with varying interparticle attraction

strength. We find that tracers with diameters that are 35% of the matrix diameter

exhibit anomalous dynamics indicative of competing relaxation mechanisms. This

competition is associated with particular time and length scales that increase as the

dominant interactions within the matrix are modulated from repulsive to attractive.

As a result, tracer trajectories in attractive systems are more compact than trajecto-

ries in repulsive systems, reflecting the underlying rearrangements of the matrices.

Further, we simulate tracers of this characteristic size in glasses with no long-time

matrix rearrangement and find that vitrification does not prohibit tracer rearrange-

ment. In fact, tracers are delocalized in repulsive glasses but localized in attractive

glasses. This localization in attractive systems is heterogeneous in space and time

because of the smaller matrix fluctuations in attractive systems, allowing the matrix

structure to more strongly determine tracer dynamics. In another investigation, we

examine the dynamics of polydisperse hard spheres confined between parallel hard

walls separated by varying length H. We find a minimum in relaxation time at an
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intermediate H that is incommensurate with average particle size, coinciding with

a change from square to hexatic crystalline ordering in confined monodisperse hard

spheres. Glassy slowdown in systems with commensurate H is correlated with grow-

ing hexatically ordered domains, whereas no strong correlation between dynamics

and crystalline ordering is observed for incommensurate H. Thus, dynamics can be

driven by local ordering, but this relation is sensitive to confinement.
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Chapter 1: Introduction

1.1 Introduction to the glass transition

Glasses are metastable materials that lack long-range crystalline order but ex-

hibit solid-like elastic properties. When cooled slowly, liquids exhibit a first-order

thermodynamic phase transition to a crystal at the melting temperature Tm, and

the disordered liquid structure gives way to periodic order (Fig. 1.1). However, crys-

tallization can be avoided by cooling the liquid over a time scale shorter than the

nucleation time but longer than the relaxation time τ, resulting in a metastable

supercooled liquid1,2. Upon further cooling, the liquid eventually falls out of equi-

librium as the relaxation time becomes larger than the experimental time scale3,4.

Beyond this point, molecules no longer rearrange significantly, and the heat capacity

cp appears to discontinuously decrease. The experimental glass transition tempera-

ture Tg is often defined as the intersection of the entropy S curves when extrapolated

from the liquid and glass regimes4,5.

Liquid dynamics can be measured experimentally through the shear viscosity η,

which can be related to relaxation time through the Maxwell model η=G∞τ, where

G∞ is the shear modulus1. The dramatic slowdown when approaching the glass

transition is strongly material-dependent. Liquids are commonly classified according

to the sensitivity of η to changes in T through fragility, which can be seen in a plot of

log(η) versus 1/T 6. The growth of η with 1/T in "strong" liquids is nearly Arrhenius

and thus follows the equation:

η= A exp(
E

kBT
), (1.1)

where E is the activation energy, kB is Boltzmann’s constant, and A is a T-
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T

S

Tg TmTK

CrystalGlass

Supercooled Liquid

Figure 1.1: Dependence of liquid entropy S at constant pressure, where Tm is the melting
temperature, Tg is the experimental glass transition temperature, and TK is the
Kauzmann temperature.

independent constant3. The activation energy is given by d log(η)
d(1/T) and is nearly in-

dependent of T. Strong glass-forming liquids like silica SiO2 often have three-

dimensional networks arising from directional bonding7,8.

In "fragile" liquids, by contrast, the increase in η is super-Arrhenius (faster than

exponential). Many polymers, organic molecules such as toluene, or Lennard-Jones

liquids are fragile glass-formers with non-directional interactions that do not form

networks3. Empirically, the Vogel-Fulcher-Tamman (VFT) has been shown to de-

scribe η(T) in fragile liquids:

η= A exp(
B

T −T0
), (1.2)

where B and T0 are constants4,9. Note that this equation reduces to the Arrhenius

case when T0 = 0. This particular super-Arrhenius dependence implies that η and τ

diverge at a finite temperature T0, which is often identified with the so-called Kauz-

mann temperature TK. At this temperature, the S curves of the supercooled liquid

and crystal would intersect if equilibrium could be maintained for infinitely slow su-

2



percooling (Fig. 1.1)10. Maintaining the respective cp of the liquid and crystal for

T → 0 would violate the third law of thermodynamics, forming the based of the so-

called Kauzmann paradox. To ensure positive S, Kauzmann suggested a lower limit

to Tg, which has been identified as T0 in some theories which posit an ideal glass

transition at T0
11,12.

1.2 Dynamics leading up to the glass transition

A variety of materials can form glasses, including silica, polymers13, and met-

als14. Yet despite the ubiquity of these materials, a microscopic theory describing

glass formation remains the subject of debate1,6,15. Thus, it is illustrative to examine

the dynamics of a prototypical glass-former. Thermalized hard spheres, in which par-

ticles interact through discontinuous, excluded-volume interactions, provide a simple

model in that the free energy of the system does not have an enthalpic component

and is determined entirely by entropy16. The thermodynamic control parameter is

the particle volume fraction φ:

φ=
∑

i Vs,i

Vsys
, (1.3)

where Vs,i is the volume of the ith particle and Vsys is the system volume16,17. For

φ→ 0, the system behaves as an ergodic fluid. On increasing to φ= 0.494, fluid and

liquid coexist until φ= 0.545, after which the crystal exists as a single phase18. Intro-

ducing polydispersity (a distribution of particle diameters) can bypass nucleation to

produce a ‘supercooled’ liquid that exhibits an experimental glass transition around

φg ≈ 0.5816,17,19.

Like other glass-formers, the hard sphere glass transition exhibits a lack of

marked structural changes upon supercooling. More specifically, there is no develop-

ment of long-range structural order in the glass that is detectable in commonly used

two-point structural correlation functions such as the radial distribution function

3



and static structure factor20,21. To gain insight, we turn to dynamical correlation

functions such as the single-particle mean-square displacement (MSD):

∆r2 = 1
N

∑
i
〈||ri(t)−ri(0)||2〉, (1.4)

where N is the total number of particles, and ri is the position vector of the ith parti-

cle. For normal liquids φ. 0.5, liquid dynamics scale ballistically ∆r2 ∼ t2 for t with a

few interparticle collisions, and then scale diffusively ∆r2 ∼ t for t at which collisions

dominate dynamics (Fig. 1.2). For large φ, a plateau region develops between the

ballistic and diffusive regimes that lengthens with increasing φ, indicative of a two-

step particle relaxation that is a characteristic of all glass-formers22. This plateau

arises from the localization of particles within transient ‘cages’ formed by nearest

neighbors, and particle rearrangement in strongly supercooled systems only occurs

when the neighbors of a particle rearrange23–25.

100 101 102
t

10 2

10 1

100

r2

t

Figure 1.2: MSDs ∆r2(t) of supercooled, polydisperse hard spheres for φ = 0.55, 0.56, 0.57,
0.58, 0.59, 0.60 (increasing φ from blue to yellow). The black line indicates a
diffusive scaling.

On long time scales, all particles rearrange in the ergodic supercooled liquid, and

particle displacements follow diffusive Gaussian statistics. However, dynamics are

non-Gaussian on time scales near the end of the caging regime, with the strongest

non-Gaussian behavior arising near the α-relaxation (the upturn in the MSD)17,26,27.

Displacements with the smallest magnitudes approximately follow a Gaussian dis-
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tribution, corresponding to particles ‘rattling’ within neighbor cages. The tails of

these distributions, by contrast, are ‘fatter’ than Gaussian, and have been identified

with particles that have undergone cage-rearrangement17,27. Thus, particles are seg-

mented into relatively mobile and immobile populations, and further examination of

particle trajectories reveals particles interchange between these populations, with

extended periods of immobility interrupted by rearrangements beyond the caging

length scale27–29.

Particle dynamics are therefore spatially and temporally heterogeneous as dy-

namics vary from particle to particle. Extensive experimental and simulation evi-

dence reveals that heterogeneous dynamics are correlated in space and time, with

groups of particles rearranging collectively30–33. Closer to the glass transition, the

length scale of these correlations grows, and theories of the glass transition have

postulated that the separation between mobile regions29 or size of the correlated re-

gions11,34,35 control the dynamic slowdown. Whether a static or dynamic length scale

controls the dynamic slowdown on approach to the glass transition remains a topic

of investigation.

1.3 Simulation methodology

Molecular dynamics (MD) is a computational technique to simulate the trajectory

of a particle system that obeys the rules of classical mechanics, allowing us to calcu-

late equilibrium or non-equilibrium properties of the system36. Following the laws

of statistical mechanics, we can estimate thermodynamic, structural, and dynamical

averages from the trajectory37.

We initialize a system by inputting particles within a cubic simulation cell and

assigning each particle with initial momenta sampled from the Maxwell-Boltzmann

distribution. We use classical force fields to model interparticle attractions and re-

pulsions, which are single-body or pair-wise interactions in our simulations. The

5



system potential energy is then

U(rN)=∑
j

∑
j>i

u(r i j)+
∑

i
v(ri), (1.5)

where N is the number of particles, r i j is the pairwise interparticle separation dis-

tance, u is the pairwise potential, v is the single-body potential, and rN is a 3N-

dimensional vector containing the positions of each particle. For the glass-forming

systems we use, the pairwise interactions are discrete, which must be contrasted

with continuous potentials.

For systems consisting of particles that interact through continuous potentials,

we can follow the time evolution of the system by numerically solving Newton’s equa-

tions of motion. To solve Newton’s equations of motion, we require the net force

acting on a particle

Fi = mi
d2ri(t)

dt2 =− ∂

∂ri
U , (1.6)

where ri(t) = (xi(t), yi(t), zi(t)) is the position vector for particle i at time t, U is the

system potential energy, mi is the particle mass, and Fi is the net force acting on

the particle. Future particle positions and coordinates are then calculated by finite

difference integration using a discrete timestep dt. The velocity-Verlet integration is

commonly used to update positions and velocities for each timestep36

ri(t+dt)= ri(t)+vi(t)dt+ Fi(t)
2m

dt2 (1.7)

and

vi(t+dt)= vi(t)+ Fi(t)+Fi(t+dt)
2m

(1.8)

For systems with discrete potentials, however, the timestep-based MD algorithm

is not suitable. Consider the hard sphere interaction, in which a particle of diameter

6



σi cannot overlap its volume with the volume of another particle with diameter σ j

u(r i j)=


∞ r i j ≤ σi+σ j

2

0 r i j > σi+σ j
2

(1.9)

where the interaction distance for the hard sphere repulsion is given by the sum of

the particle radii at contact. Evolving the system via conventional MD is possible,

but requires a small timestep and the determination of events during the timestep,

which is computationally demanding38.

By recasting the dynamics to consist of a series of events (e.g., collisions) between

pairs of particles, event-driven molecular dynamics (EDMD) provides an analytical

method to integrate the equations of motion for systems interacting by discrete po-

tentials39. These events change particle properties, specifically the velocities of the

particle pairs. The event-driven algorithm consists of the following cyclical steps39:

1. Event testing - all particles and particle pairs are tested to determine when the

next collisions will occur, and the events are added to a list

2. Event sorting - the next event is determined

3. Ballistic motion - particles are free-streamed until the next event time

4. Event execution - the exit properties for interacting particles are calculated

5. Events update - determine the next events for the particles that underwent an

event and add those events to the list

6. Return to step two until end of simulation

This algorithm requires the definition of event rules. For our studies, we consider

two types of interparticle events: hard sphere collision and square-well attractions.
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For collisions between smooth hard spheres, the exit velocities for a pair of particles

undergoing a perfectly elastic collision are given by the following40

v′
i = vi −m−1

i µi j(r̂i j ·vi j)r̂i j

v′
j = v j +m−1

i µi j(r̂i j ·vi j)r̂i j

(1.10)

where vi is the velocity vector, r̂i j is the unit of the interparticle separation vector

ri j = ri−r j, and µi j = (mi
−1 +m j

−1)−1 is the reduced mass. We also consider particles

that interact by square-well attractions

u(r i j)=



∞ r i j ≤ σi+σ j
2

ε
σi+σ j

2 < r i j ≤λσi+σ j
2

0 r i j >λσi+σ j
2

(1.11)

where ε is the depth of the square-well attraction and λ is the range of the attraction.

For two particles approaching each other that reach r i j = λ
σi+σ j

2 , the momentum

impulse increases the kinetic energy of each particle by ε40. Similarly, the energies

of separating particles decrease by ε.

The natural units for the colloidal models we study here are given by the typical

mass m and diameter σ of the particles and the energy of interparticle interactions.

Dimensional analysis then yields the units of time as
√

mσ2

E , where E is the typical

energy scale. For hard spheres, the thermal energy kBT sets the energy scale. For

square-well interactions, it is the well depth ε. In colloidal of latex nanospheres with

diameters ranging from one to ten microns, the typical time scale is 10−5 – 10−3

seconds41.

Boundary conditions in our simulations are either hard walls or periodic. The

potential governing hard wall-particle events is similar to the hard sphere potential

in that the particle volume cannot overlap with the infinitely thin wall. For an elastic

8



hard wall-particle interaction, the exit particle velocities are v′
i = (vi,∥,−vi,⊥), where

vi,∥ and vi,⊥ are the incoming particle velocity components in the directions parallel

and perpendicular to the plane of the wall, respectively.

Periodic boundary conditions are used to mimic infinitely sized systems along a

particular dimension. This boundary condition is identical to replicating the entire

system along each face of the simulation cell. A particle that exits through one face

of the simulation cell is immediately replaced by an identical particle at the opposite

face with identical momentum. However, the explicit simulation of the replicas is

unnecessary; periodicity is maintained by transforming the coordinates of the exiting

particle to the coordinates of the hypothetical incoming particle.

The following chapters investigate anomalous dynamics within supercooled liq-

uids: Chap. 2 focuses on the role of interparticle attractions on the transport of di-

lute penetrants in supercooled liquids and Chap. 3 addresses the effect of long-time

rearrangement and matrix structure on the transport of dilute, non-absorbing pene-

trants. Finally, Chap. 4 examines the role of locally ordered regions on the dynamics

of confined hard sphere liquids.
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Chapter 2: Tracer Transport Probes Relaxation

and Structure of Attractive and Repulsive Glassy

Liquids

This chapter was previously published by ACS Publishing: Roberts, R. C.; Poling-

Skutvik, R.; Palmer, J. C.; Conrad, J. C.;, The Journal of Physical Chemistry Letters

2018, 9, 3008-3013.

2.1 Introduction

Confined transport within slowly relaxing and structurally disordered matrices

governs important processes in physical and biological systems. Controlling the dis-

persion of particles within polymer matrices, which underpins the functional prop-

erties of polymer nanocomposites,42 requires understanding how the dynamics of

nanoparticles in solutions and melts43,44 relate to those of the polymer matrix.45 At

smaller size scales, transport of penetrating gas molecules into supercooled or glassy

polymer matrices46,47 governs the efficacy of membrane separation processes.48,49

Finally, migration and transport in crowded biological systems50–56 depends on the

relaxations of the surrounding crowders. In each process, competition between the

relaxations of a disordered matrix and the dynamics of the confined particles can

lead to anomalous transport. Although this competition must depend on the struc-

ture and nature of the surrounding matrix relaxations, the coupling between tracer

transport properties and matrix relaxations remains poorly understood despite its

relevance for many physical transport processes.

One of the most intensely studied models of a slowly relaxing system is a dense

suspension of colloidal spheres with repulsive interactions. Increasing the sphere
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volume fraction induces a transition from an ergodic liquid to an arrested glass,

driven by entropic crowding.57,58 Approaching this transition, dynamics become het-

erogeneous in space and time59,60 and relaxations occur when particles escape the

cages formed by their neighbors, leading to collective stringlike rearrangements.17,61

Weak attractions between particles melt the repulsive glass62, whereas stronger in-

teractions lead to the formation of an attractive glass in which dynamics are con-

trolled by caging and interparticle bonds63–67 and in which collective relaxations are

more compact.68,69 Recent studies on a repulsive colloidal model system reveal that

tracers of a critical, relative size can exhibit anomalous logarithmic dynamics, aris-

ing from the competition between tracer localization within voids and escape through

collective matrix relaxations.70 Nevertheless, fundamental understanding of how at-

tractive interactions between matrix particles,71 which are present in all molecular

systems, influence tracer transport is critical for advancing most practical applica-

tions.

We use event-driven molecular dynamics simulations to show that tracer dynam-

ics within attractive and repulsive glassy matrices with equal packing fractions and

long-time diffusivities are remarkably sensitive to differences in matrix structure

and dynamics. The tracer dynamics, characterized through the mean-square dis-

placement and the non-Gaussian parameter, depend on tracer size and interactions

between matrix particles. Further, they reveal signatures of cage rearrangements

in repulsive liquids and, additionally, the competition between bond formation and

breaking in attractive liquids. Anomalous, logarithmic tracer dynamics signal a

crossover from diffusion within the matrix void space to diffusion coupled to the

glassy matrix dynamics, and occurs on different length scales in repulsive and attrac-

tive matrices. As a result of this coupling, the shape of tracer trajectories is different

between the two matrices: fractal-like in the repulsive matrix but more compact in

the attractive. The sensitivity of tracer dynamics to the confining environment can be
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exploited to probe subtle differences in the structure of glassy matrices with varying

interactions and provides insight into their distinct relaxation processes.

2.2 Results and Discussion

We first examine the dynamics of the two isodiffusive matrices in the absence

of tracers. The matrices have identical packing fractions (φ = 0.61) and consist of a

50:50 binary AB mixture of species (N = 1372 particles total) with a hard-core diame-

ter ratio σAA:σBB =1.2:1 chosen to prevent crystallization.72 The matrix components

have unit mass (m = 1) and interact through a short-range square-well potential

with depth u0 and width ∆ij satisfying ∆ij/(σij+∆ij)= 0.03 for each pair type i, j ∈A,B,

where σij = 1
2 (σii +σjj). Following convention, we adopt units in which Boltzmann’s

constant kB is equal to unity and report length, temperature, and time in terms of

σBB, u0/kB, and σBB(m/u0)1/2, respectively. To account for thermal contributions to

tracer dynamics, we introduce a normalized time τ = tD0/Dref, where t is the nomi-

nal simulation time, D0 = σBB
p

T/m is the thermal diffusivity at T, and Dref is the

reference value of D0 at T = 1.

The high-temperature (T = 1.05) repulsive glassy matrix (RGM) and low-

temperature (T = 0.35) attractive glassy matrix (AGM) are ergodic and exhibit nearly

equal long-time diffusivities Drep/D0 ≈ Datt/D0 ≈ 6.5±0.8×10−7 for species A (Fig.

2.1(a)), similar to the isodiffusive behavior observed in liquids with density anoma-

lies.73,74 Both matrices recover these diffusive dynamics on a time scale τ≈ 104, in-

dicating that cage escape controls the final relaxation. On intermediate time scales,

however, the matrices exhibit different relaxation processes. Particles in the RGM

are caged by their neighbors beginning at τ ≈ 100, with a near-constant normal-

ized mean-squared displacement (MSD, 〈∆r̃2〉 = 〈∆r2〉 /σ2
BB) indicating a localization

length of
√
〈∆r̃2〉 = 0.14. Conversely, the AGM’s MSD exhibits only a weak plateau

corresponding to a localization length of
√
〈∆r̃2〉 = 0.04 before increasing as a power-

law with an exponent less than 1, i.e., MSD ∼ τβ, β < 1. Particle motions in the

12



AGM are more localized due to interparticle bonds,75 so that the extended subdiffu-

sive regime reflects a competition between repulsive caging and attractive bonding.76

Thus, matrix dynamics on intermediate time scales are controlled by caging in the

RGM but by both caging and bonding in the AGM.
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Figure 2.1: Mean-square displacement 〈∆r̃2〉 for (a) matrix species A and (b-f) tracers (δ
indicated in panels) in the RGM (red) and the AGM (blue). Arrows show the
timescale at which the tracer 〈∆r̃2〉 in mobile (solid) and immobile (dashed) ma-
trices diverge.

The different intermediate-time relaxation processes in the AGM and RGM sig-

nificantly influence the dynamics of confined tracers. We add a small number

(Nt = 10) of tracer particles with diameter σt to the matrices and characterize their

equilibrium dynamics through their MSD (Fig. 2.1(b)-(f)). The tracers are assigned

unit mass and interact with the matrix and other tracer particles through purely re-

pulsive hard-sphere interactions. For small tracers of relative size δ=σt/σAB = 0.20,

the MSDs in both the RGM and AGM exhibit a crossover from ballistic motion on
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short time scales (τ. 100) to diffusive motion on time scales τ> 102 (Fig. 2.1(b)). The

crossover time is nearly identical in the two matrices, indicating that this transition

is controlled by hard-sphere steric interactions between tracer and matrix particles.

By contrast, the dynamics of larger tracers depend on matrix interactions. In the

RGM, the MSD for tracers of size δ≥ 0.30 exhibits an incipient subdiffusive plateau

(Fig. 2.1(c)) whose height decreases and duration increases with increasing tracer

size (Fig. 2.1(d)-(f)). In the AGM, this subdiffusive plateau is slightly flatter (i.e., the

MSD increases less steeply with lag time), and of greater height and longer dura-

tion than that in the RGM for tracers of comparable size. Notably, these differences

between tracer dynamics are opposite those of the matrix particle (Fig. 2.1(a)).

The higher intermediate-time plateau in tracer MSDs through the AGM suggests

that the tracers explore larger void spaces in the AGM relative to the RGM. To more

directly probe the effects of instantaneous matrix structure on tracer dynamics, we

simulate tracer dynamics in ‘frozen’ matrix configurations extracted from equilib-

rium trajectories. Tracer size controls how the structure of the frozen matrix affects

their dynamics. The MSDs of small tracers (δ = 0.20) in the frozen and mobile ma-

trices, whether repulsive or attractive, are nearly indistinguishable, indicating that

they move easily through the interstitial voids and do not strongly couple to matrix

relaxations. Larger tracers, by contrast, exhibit pronounced differences in their dy-

namics in mobile and immobile matrices that depend on matrix interactions. In the

RGM, the tracer MSD in the mobile matrix diverges from that in the immobile ma-

trix before the onset of the plateau (at τ ca. 10−1), indicating that matrix relaxations

affect tracer dynamics even on relatively short times. Tracers in the mobile RGM

are not fully caged, and their dynamics are subdiffusive over roughly a decade in τ.

In the AGM, however, the divergence between tracer MSDs in the mobile and im-

mobile matrices occurs approximately two orders of magnitude later in time (τ ca.

101). This result suggests that attractive bonds between matrix particles generate a
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cage that relaxes very slowly compared to tracer diffusion, so that tracer particle dy-

namics are dominated by sampling of arrested cages on short- to intermediate time

scales. Because the local environment is more heterogeneous in the AGM (Fig. 2.1),

the trajectories of individual tracers therein likewise exhibit a broader distribution

of relaxation behaviors. Thus while exploration of cages appears to be the dominant

mechanism controlling the average tracer dynamics within the AGM, other processes

may also play a role. Together, these comparisons indicate that tracer dynamics are

affected both by the (instantaneous) structure of glassy matrices and the dynamics of

their relaxation processes, leading to tracer dynamics that qualitatively differ from

those of the surrounding matrix.

The pronounced difference between the subdiffusive exponents for tracers in the

RGM and AGM suggests that local relaxation processes affect tracer diffusion. We

characterize the time scales associated with these processes by computing the non-

Gaussian parameter α2 = 3〈∆r̃4〉 /5〈∆r̃2〉2 −1 as a function of lag time. The shape

and relaxation times identified by α2 differ between the RGM and AGM (Fig. 2.2(a)).

The α2 for the RGM exhibits the classic behavior expected for a supercooled colloidal

liquid59, attaining a local maximum at τ ca. 104, the timescale at which the matrix

particle dynamics become diffusive and cages are disrupted (Fig. 2.1(a)). The α2 for

the AGM, however, first exhibits a shoulder at τ ca. 10 and then reaches a maximum

near τ . 104. The broad maximum in α2 for the AGM is consistent with the idea

that rearrangements in glassy attractive liquids occur over a broader range of time

scales68 and hence, likely, length scales than those of a glassy repulsive liquid.

The α2 values for the tracers are smaller than those obtained for their correspond-

ing matrices (Fig. 2.2(b)), and exhibit a maximum at a particular time scale τ shorter

than the time scale in the matrix. The time scale corresponding to maximum non-

Gaussianity increases with increasing tracer size. For small tracers of size δ= 0.20,

α2 attains a maximum near τ ca. 1 in both the RGM and AGM. The greater height
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Figure 2.2: (a) Non-Gaussian parameter α2 as a function of time τ for matrix species A in
RGM (red) and AGM (blue). (b) Non-Gaussian parameter α2 as a function of τ for
tracers of size δ= 0.2,0.35, and 0.5 in RGM (red shades) and AGM (blue shades).

and width of the maximum of the tracer α2 in the AGM indicate that the tracer dy-

namics in the AGM are slightly more heterogeneous than in the RGM. When δ= 0.35,

the shapes of the tracer α2 in the RGM and AGM become dissimilar. In the RGM,

the maximum in α2 increases in height and width with increasing tracer size; it re-

mains approximately Gaussian in shape but shifts to larger τ (∼ 102 at δ= 0.50). By

contrast, α2 in the AGM becomes increasingly broad as δ increases. For all tracer

sizes, α2 increases rapidly up to τ ∼ 100, and then increases more slowly to reach a

maximum that shifts to greater τ as δ is increased; this evolution reflects broad cou-

pling to cage relaxations occurring on these time scales. Thus the α2 measurements

reveal heterogeneous tracer dynamics on distinct time scales that depend both on

tracer size and matrix interactions, with increasing coupling to matrix dynamics as

the tracer size is increased.

To gain insight into the length scales over which tracer dynamics are coupled to

matrix relaxations, we examine the collective intermediate scattering functions (ISF,

F(q̃,τ)). From the ISF, it is clear that tracer dynamics depend on tracer size, matrix

interactions, and length scale 2π/q̃, where q̃ = qσBB is the normalized scattering
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wave vector (Fig. 2.3). We first scrutinize the dynamics of tracers of size δ= 0.35 as a

function of q̃ in the different matrices. At low q̃, the ISF of a tracer in the RGM decays

nearly exponentially (Fig. 2.3(a)). At q̃ ≈ 3.5, however, F(q̃,τ) exhibits a logarithmic

decay over two orders of magnitude in time for nearly its entire relaxation process.

The onset of the logarithmic dynamics occurs at approximately the time scale at

which the matrix relaxes and is close to the time scale (τ ≈ 1) at which the tracer

α2 attains a maximum; these comparisons suggest that these logarithmic dynamics

arise when the tracers become transiently localized. Similar logarithmic decay is

observed for tracers of size δ≤ 0.40 in the RGM and in the AGM (Fig. 2.3(b)), but not

for tracers with size ratio δ= 0.50.

Logarithmic relaxations in glassy systems are usually interpreted as a conse-

quence of competing arrest mechanisms.75,77–81 Because the matrix relaxations are

not logarithmic, the logarithmic dynamics of the tracers do not reflect competing

arrest mechanisms in the matrix but instead indicate a crossover between local pro-

cesses controlling their dynamics. Similar crossovers have been proposed for other

confined transport systems. Partially-pinned particles exhibit logarithmic behav-

ior, for example, as they undergo a crossover from localized to glassy dynamics.82,83

Closer to our work, the extended logarithmic dynamics observed in Ref. 70 were

attributed to two competing processes, transient localization and matrix crowding.

Hence we posit that the length scale of the logarithmic dynamics reflects the length

scale on which tracer dynamics become coupled to the slow relaxations of the ma-

trix.2

The value of q̃ where logarithmic decay appears, q̃∗, depends on tracer size and

matrix interactions.70 In both matrices, q̃∗ increases with tracer size (Fig. 2.3(b), (c)),

indicating that relaxation processes compete on smaller length scales. Furthermore,

2In contrast to the study of Ref. 70, which examined tracer diffusion in liquids and in glasses and
also observed extended logarithmic relaxations, we examine only liquids, as the use of isodiffusive
matrices allows us to remove effects arising from the long-time dynamics. Thus in our study the self-
and collective ISFs do not decouple, because both matrices are ergodic on long time scales.
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Figure 2.3: Tracer F(q̃,τ) (a)–(b) for δ= 0.35 and varying wavevector q̃ and (c)–(d) for varying
δ and q̃ at which logarithmic decay appears q̃∗ ((a)–(b) black dashed lines). Tracer
F(q̃,τ) in the AGM and the RGM are blue and red, respectively. Matrix F(6.7,τ)
are shown in black.

for a fixed tracer size the wavevector of the logarithmic dynamics is smaller in the

AGM than in the RGM. Two mechanisms may explain the decrease in relaxation

length scales with increasing tracer size: larger tracers more frequently contact sur-

rounding matrix particles and less frequently encounter fluctuations in the matrix

large enough for the tracer to enter. Both mechanisms reduce the mobility of trac-

ers and, because the matrix relaxations do not change with tracer size, lead to a

decrease in the length scale corresponding to logarithmic decay. Indeed, tracers of

18



size δ= 0.5 exhibit the multistep relaxations characteristic of deeply supercooled col-

loids,76 but no logarithmic decay is observed at any q̃. Our data also indicate that

tracers in the AGM couple to relaxations on larger length scales than those in the

RGM, attributable to the slower dynamics of the AGM on intermediate time scales

(100 . τ. 104, Fig. 2.1(a)). The fact that the tracer dynamics are logarithmic over

different length scales in the RGM and AGM suggests that the tracers couple to the

different mesoscale relaxation processes of the two matrices.
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Figure 2.4: Trajectories for tracers with δ = 0.35 in the (a) RGM and (b) AGM. (c)–(e) Tra-
jectory M versus Rg in the RGM (red) and AGM (blue). Dashed and dotted lines
are power laws of two and three, respectively. (insets) Probability distribution
functions for Rg at 5000τcg,δ.
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In glassy colloidal liquids, the morphology of mesoscale relaxations depends on

matrix interactions — relaxing regions in attractive glasses are reported to be more

compact than those in repulsive glasses.68,69 To assess whether the shape of relax-

ing regions affects the ability of tracers to explore space, we directly visualize the

tracer trajectories, coarse-graining over a time scale, τcg,δ, that for a given δ re-

moves cage exploration processes and the effects of thermal diffusion. For tracers

of size δ = 0.2, we choose τcg,0.2 = 0.05 for both matrices. For larger tracers, we use

τcg,δ = τcg,0.2
(
τcage,δ/τcage,0.2

)
to remove the effects of cage exploration, where τcage,δ

is chosen to satisfy 〈∆r̃2(τcage,δ)〉 /σ2
t = 1.0. Representative trajectories for tracers of

size δ= 0.35 have distinct morphologies in the two matrices (Fig. 2.4(a), (b)). Tracer

trajectories are tenuous and fractal-like in the RGM but more compact in the AGM.

We characterize this difference in shape by examining the tracer trajectory mass M,

calculated as the number of boxes of size 〈∆r̃2(τcg,δ)〉 (the square-root of the tracer

MSD at the coarse-grained time scale, τcg,δ) needed to cover the trajectory, as a func-

tion of the trajectory radius of gyration Rg
84,85. The mass of tracer trajectories in the

RGM scales as a power-law with Rg, i.e., M ∼ Rdf
g , and the resultant long-time frac-

tal dimension df ≈ 2.0 is approximately independent of the tracer size. This fractal

scaling of the tracer trajectories corresponds to free diffusion and is expected for both

matrices, which are ergodic on long time scales. For tracer trajectories in the AGM,

however, M is larger than that in the RGM at a given Rg; likewise, the instantaneous

slope is larger and does not approach the expected terminal scaling with Rg of 2.0 on

accessible time scales. Thus, tracer trajectories in the AGM are more compact than

those in the RGM on similar length and time scales.

2.3 Conclusions

Our simulations reveal that the spatiotemporally heterogeneous dynamics in

glassy liquids of varying matrix particle interactions alter the dynamics of hard-

sphere tracers. The tracers couple to relaxation processes in repulsive and attractive
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matrices on distinct time and length scales. As a result, tracers exhibit trajecto-

ries of different shape in the two matrices, indicating that matrix interactions alter

the ability of tracers to explore space within a slowly relaxing matrix. Because dis-

persing particles within slowly-relaxing matrices with varying interactions appear in

settings ranging from the crowded cytoplasm inside cells to natural soils in the en-

vironment to artificial fiber nanocomposites and membranes, these results provide

insight into the coupling between particle transport and matrix dynamics across a

wide range of scientifically and technologically relevant processes.
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Chapter 3: Tracer Transport in Attractive and Re-

pulsive Supercooled Liquids and Glasses

This chapter was previously published by AIP Publishing LLC: Roberts, R. C.;

Poling-Skutvik, R.; Conrad, J. C.; Palmer, J. C.;, The Journal of Chemical Physics

2019, 151, 194501.

3.1 Introduction

The transport of dilute small molecules or particles within disordered media af-

fects the delivery of drug molecules encapsulated in hydrogels,86,87 the efficacy of

polymeric gas separation membranes in capturing carbon dioxide or purifying natu-

ral gas,88,89 and the movement of DNA through the crowded cytoplasm during trans-

formation and transcription.90–92 In these processes, penetrant dynamics may couple

to the structure and/or to the slow relaxations of the surrounding matrix. As an ex-

ample, increasing the density of an arrested, disordered matrix leads to anomalous

diffusion at a critical density or localization at higher densities.93,94 Likewise, ma-

trix mobility affects gas diffusion in polymeric membranes95–97 and the transport of

cytoskeletal and cytoplasmic constituents within the cell.90,98 Understanding the ef-

fects of matrix structure and dynamics on penetrant transport, however, remains a

persistent challenge.

Recent progress has been made in understanding tracer transport in complex

matrices using well-controlled colloidal models. Anomalous tracer dynamics and lo-

calization have been observed in model disordered media consisting of colloidal par-

ticles fixed in gel-like99 and liquid configurations.100,101 Similarly, tracer dynamics

have also been shown to be coupled to matrix motion, crossing over from localized

to diffusive behavior as the matrix relaxes.102,103 This coupling, however, depends
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on the relative time scales between tracer and matrix dynamics and also the nature

of the matrix relaxations. It is unclear, for example, how the onset of non-ergodic,

glassy dynamics33,104 may influence this coupling. Moreover, it is also unclear how

tracer coupling is affected by the nature of the matrix relaxations, which can be qual-

itatively altered by modulating the interactions between matrix particles.105,106

In this study, we use event-driven molecular dynamics (MD) to investigate the

transport of tracer particles in a model colloidal glass-former consisting of a square-

well fluid with short-ranged attractions.105,107 In the supercooled liquid regime, this

system exhibits reentrant dynamics characterized by a marked increase in the liq-

uid’s relaxation time upon heating or cooling. Whereas heating produces a “repul-

sive” glassy liquid in which relaxations are hindered by steric interactions between

particles, cooling results in an “attractive” glassy liquid where relaxations are frus-

trated by long-lived interparticle bonds.105,107 Distinct glasses can be prepared by

further heating or cooling of the repulsive and attractive liquids, respectively, and

by compression. Here, we examine the dynamics of tracer particles of a critical size,

known to exhibit anomalous transport,102,103 embedded in these liquid and glass ma-

trices. We find that tracer transport is affected both by intermediate- and long-time

matrix dynamics as well as by the matrix structure. Intriguingly, sufficiently large

local fluctuations in arrested matrices that do not relax on long time scales can allow

tracers to escape cages and recover diffusive behavior. In strongly quenched matri-

ces, however, tracer dynamics are primarily determined by the structure of matrix

cages. Our results identify the relative contributions of matrix structure and dynam-

ics on tracer motions in attractive and repulsive glassy matrices and thus provide a

framework to understand transport processes in slowly-relaxing materials.
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Figure 3.1: (a) Rendering of a configuration with tracers (red) in a matrix of A (green) and
B (blue) particles. (b) Tracer trajectories 360τ in duration within G0.20. (c) Two-
dimensional projection of a tracer trajectory 800τ in duration illustrating tracer
cage rearrangement.

3.2 Methods

3.2.1 Model systems

Event-driven MD simulations were performed to investigate the transport behav-

ior of tracer particles in glassy matrices. The matrices were modeled using a well-24



studied equimolar binary (AB) glass-forming mixture that exhibits reentrant dy-

namics.105,108,109 Following Refs. 105,109,110, the matrix species were assigned unit

masses (m = 1) and a hard-core diameter ratio of σAA:σBB =1.2:1 to frustrate crystal-

lization (Fig. 3.1). The matrix particles interacted through a short-range square-well

potential with depth u0 = 1 and width ∆i j = 0.03(σi j+∆i j) for each pair type i, j ∈A,B,

where σi j = 1
2 (σii +σ j j). In the discussion to follow, we adopt conventional simula-

tion units in which Boltzmann’s constant kB = 1 and σBB, u0/kB, and σBB(m/u0)1/2

are the fundamental measures of length, temperature, and time, respectively. To ac-

count for the influence of temperature on particle dynamics, we also define a thermal

time scale τ = tD0/Dref, where t is the nominal simulation time, D0 = σBB
√

kBT/m

is the thermal diffusivity at temperature T, and Dref is the reference value of D0 at

T = 1.107

We examined tracer dynamics in matrices with N = 1372 particles at six different

state points specified by {φ,T}, where φ is the volume fraction of matrix particles

(Fig. 3.2, Tbl. 3.2). For notational convenience, we refer to these samples as LT or

GT (liquid or glass, respectively), where T is the sample temperature. We consid-

ered two ergodic liquid states at φ= 0.610 with approximately equal long-time diffu-

sion coefficients D i/D0: a high-temperature repulsive glassy liquid (L1.05) and a low-

temperature attractive glassy liquid (L0.35), where D i is the nominal diffusion coeffi-

cient.103 Two glasses were also prepared at the same temperatures (G1.05, G0.35) and

increased matrix volume fraction φ= 0.635. Similarly, a glass (G0.20) with φ= 0.610

was prepared at T = 0.20, a lower temperature than the attractive glassy liquid. Fi-

nally, we also studied a hard-sphere glass at φ= 0.610 and T = 1.00 (HSG1.00), which

is equivalent to a square-well glass in the high-temperature limit (Fig. 3.2).

We embedded Nt = 10 tracers into each supercooled liquid or glass matrix. In-

teractions between the matrix and tracer particles were modeled using purely re-

pulsive, hard-sphere collisions. The diameter of the tracer σtt was chosen such
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Table 3.1: Liquid and glass matrices examined in this study.

Matrix State T φ tw
1 ns

2 nc,iso
3 nt,iso

4

L0.35 Liquid 0.35 0.610 – 5 50 80
L1.05 Liquid 1.05 0.610 – 5 50 80
G0.35 Glass 0.35 0.635 8.1×105 20 100 80
G1.05 Glass 1.05 0.635 8.7×105 20 100 80
G0.20 Glass 0.20 0.610 8.0×105 10 100 80
HSG1.00 Glass 1.00 0.610 1.7×106 5 50 80

.

that δt = σtt/σAB = 0.35, which is approximately the size ratio where tracers ex-

hibit anomalous dynamics and couple to matrix fluctuations and relaxations.102,103

Larger tracers exhibit dynamics similar to matrix particles, whereas smaller trac-

ers can traverse through interstitial voids and thus are largely unaffected by matrix

fluctuations.102,103

Figure 3.2: State diagram from Ref. 107 for the model square-well glass former. Symbols
denote the locations of the liquid (L) and glass (G) matrices investigated in this
study. Arrows denote hypothetical protocols for preparing glasses from the er-
godic liquids.

The supercooled liquid matrices were equilibrated at their respective T and φ.

The glass matrices, by contrast, were prepared by first incrementally compressing

the system to a volume fraction of φ = 0.610 by increasing the particle radii. The

systems were then equilibrated in the NVT ensemble at T = 0.55. Following equili-

bration, the samples were either instantaneously thermally quenched to their final

temperature by rescaling the particle velocities (G0.20 and HSG1.00) or compressed

to φ = 0.630 in increments of ∆φ = 0.010, followed by additional compression to
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φ = 0.635 in a single step of ∆φ = 0.005, and then thermally quenched (G0.35 and

G1.05). After each compression increment, the glasses were simulated for 10τ at con-

stant φ and T to relax compression-induced stresses. This protocol was employed

in earlier studies,107,110 where it was shown to not qualitatively affect dynamics be-

yond the microscopic regime.110 For the HSG1.00 sample, the attractive square-well

interactions were removed after the thermal quench. All glasses were subsequently

aged for a waiting time tw À τmax (Tbl. 3.1), producing tw-invariant trajectory data

up to the maximum observation time (τmax ≈ 105).107 Statistical properties were cal-

culated by averaging over trajectories computed for ns = 5–20 independent samples

prepared for each type of matrix using the protocols described above.

3.2.2 Cage analysis

To characterize the restriction of tracer particle motions by the matrices, we per-

formed cage analysis using the method of Doliwa and Heuer.31,111 Their method is

based on the assumption that the sequential displacements of caged particles will

be directionally anticorrelated. Consider an initial displacement of a caged particle

∆~r01 =~r(∆t)−~r(0) over a time interval ∆t on which ∆~r01 is comparable to the charac-

teristic cage size, where~r is the particle’s position vector. Because the neighbor cage

restricts further motion along ∆~r01, the displacement over the next time interval

∆~r12 =~r(2∆t)−~r(∆t) should, on average, be anticorrelated. The displacement ∆~r12

can be projected onto the unit vector of the preceding displacement ∆~r01, yielding

the caging displacement projection (CDP) x12 ≡∆~r12 · ∆~r01
|∆~r01| , which is parallel to ∆~r01.

For a caged particle, the ensemble-averaged CDP 〈x12〉 is negative and its magnitude

grows with |∆~r01|. In hard-sphere supercooled liquids, 〈x12〉 = −c|∆~r01| for small

displacements where the cage has not been broken. Larger magnitudes of the pro-

portionality constant c indicate greater displacement memory during caging.31 For

larger, cage-breaking displacements, by contrast, 〈x12〉 is independent of |∆~r01|.112

In analyzing tracer dynamics, we first compute the non-Gaussian parameter for
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particle displacements α2(∆t) (Fig. 3.3). The maximum in α2(∆t) signifies the time

scale τ∗ on which the per-particle variance in tracer dynamics due to caging and ma-

trix rearrangement is greatest.26,113 We use ∆t = τ∗ as the time interval for comput-

ing tracer displacements ∆~r01 and ∆~r12.112 The magnitudes of tracer displacements

at τ∗ vary across different matrices. To account for this variation, we report normal-

ized quantities x̃12 ≡C −1〈x12〉 and r̃01 ≡C −1|∆~r01|, where C is the square-root of the

tracer mean-square displacement ∆r2 at lag time τ∗.
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Figure 3.3: Non-Gaussian parameter α2 for tracer particles in each matrix as a function of
normalized time scale τ. Arrows indicate the maximum in α2 and the corre-
sponding lag time of the maximum τ∗. Arrows are color-coded according to their
respective matrices.

3.2.3 Isoconfigurational ensemble

We performed simulations in the isoconfigurational ensemble (IE) to isolate the

effects of matrix structure on particle dynamics. In this approach, an ensemble of

separate simulations are run over a fixed time interval. Each simulation starts from

the same initial particle configuration, but with a different set of randomly-assigned

28



momenta.114 For each matrix system, we analyzed nc,iso = 50− 100 configurations

(Tbl. 3.1) extracted from independently-prepared samples prepared using the proce-

dures described in Section 3.2.1. Each of the nc,iso configurations was used to initial-

ize nt,iso = 80 short MD trajectories. Initial particle momenta for the MD trajectories

were randomly drawn from the Maxwell-Boltzmann distribution at set temperature

T.114,115 Isoconfigurational averages 〈...〉iso were computed from statistics collected

from the MD trajectories. Specifically, to characterize the mobility of individual par-

ticles, we calculated the dynamic propensity DPi(t) = 〈 (~r i(t)−~r i(0))2

∆r2
i

〉
iso

, where ∆r2
i is

the ensemble-averaged mean-square displacement (MSD) of the ith particle. This

quantity is the second moment of the particle displacement distribution, computed

by averaging over the trajectories of particle i. When each particle’s mobility is equal

to the average mobility 〈∆r2
i 〉iso, DPi will be unity.116,117 Thus, examination of this

quantity for all particles provides insight into the spatial distribution of dynamic

heterogeneity.

3.2.4 Trajectory shape analysis

To characterize the shapes of tracer rearrangements, we calculated the mass M

of a trajectory as a function of its radius of gyration Rg. This analysis is performed

by overlaying the trajectory on a cubic lattice composed of unit cells with edge length

σtt. The trajectory mass M is evaluated by assigning each cell unit mass and sum-

ming over the unique cells visited by the trajectory.85,118 To remove the effects of

the initial ballistic motion, we coarse-grain the trajectories over a time scale τcg

such that 〈∆r2(τcg)〉 = σ2
tt for tracers within a given matrix. The trajectories are

then re-sampled to ensure that successive frames are separated by a time inter-

val τcg. From the coarse-grained trajectories, we compute the radius of gyration

Rg =
√

1
nng

∑ncg
i=1(~xi −~xavg)2, where ncg is the number of coarse-grained points in the

trajectory, ~xi is the position of the ith coarse-grained point, and ~xavg = 1
ncg

∑ncg
i=1~xi is

the mean position.
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3.3 Results and Discussion

3.3.1 Matrix dynamics

We first characterize the dynamics of the different glassy matrices through the

ensemble-averaged mean-square displacement (MSD) ∆r2 (Fig. 3.5), focusing on

the intermediate-time and long-time dynamics of the large matrix particles. The

intermediate-time dynamics are influenced by cage rattling and interactions be-

tween matrix particles, whereas long-time dynamics are controlled by the abil-

ity of the matrix to relax when particles escape their local cages. Generally, the

MSDs exhibit the expected behavior for glassy matrices:105,107,119 intermediate re-

laxations are suppressed in attractive matrices relative to those in comparable repul-

sive matrices and long-time relaxations are suppressed in vitrified samples. Similar

behaviors can be observed in the matrices’ self-intermediate scattering functions,

Fs(q,τ)= 〈 1
Ni

∑Ni
k=1 exp[− j~q · (~rk(τ)−~rk(0))]〉, where q = |~q| is the wavevector magni-

tude, j = p−1, Ni is the number of particle species i, and the brackets indicate an

ensemble average (Fig. 3.4). Detailed comparisons between different matrices reveal

further insights into relaxation processes of glassy matrices.

The MSD of the large matrix particles in L1.05 is approximately constant on lag

times τ ≈ 100 to 103, indicating interparticle caging (Fig. 3.5(a)). By contrast, ∆r2

for L0.35 exhibits a small plateau at τ≈ 10−1 followed by an increasing, subdiffusive

power-law ∆r2 ≈ τβ that extends to τ ≈ 103, where β ≈ 0.32. The small plateau cor-

responds to the length scale of interparticle bond formation, whereas the power-law

region signifies a transition from dynamics dominated by bonding at small τ to dy-

namics dominated by caging at larger τ.105 The smaller values of ∆r2 indicate that

particles in L0.35 are more localized than those in L1.05, likely due to the formation of

interparticle bonds.120 Thus, on intermediate time scales the liquids have different

relaxation mechanisms. On long time scales, however, the liquids exhibit nearly-
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Figure 3.4: Self-intermediate scattering function Fs(q,τ) for qσBB = 6.7 for matrix particle
species A in each system.

identical dynamics. The MSD for both L0.35 and L1.05 scales linearly with τ at long

times, indicating normal diffusive dynamics. The crossover to diffusive dynamics

occurs on similar time and length scales in both liquid matrices and indicates the

terminal relaxation of the matrix as particles escape from their local cages.

Next, we examine the dynamics of the glassy matrices (G0.20 and HSG1.00) with

the same φ as the two supercooled liquids. The G0.20 and HSG1.00 glasses exhibit

dynamics on intermediate time scales similar to the corresponding liquids (L0.35 and

L1.05), but do not relax on long time scales (Fig. 3.5(a)). The ∆r2 of the hard-sphere

glass HSG1.00 exhibits a plateau on intermediate time scales, similar to the one ob-

served for the repulsive liquid L1.05. The smaller plateau height in HSG1.00 relative

to that in L1.05 indicates that thermal fluctuations in the repulsive liquid slightly in-

crease the local cage size. Likewise, ∆r2 of the attractive glass G0.20 resembles that

of the liquid L0.35, exhibiting a small plateau followed by a power-law increase with
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Figure 3.5: Mean-square displacement ∆r2 for matrix species A (a) for all matrices with φ=
0.610 and (b) for glasses with φ = 0.635 compared to the corresponding liquids
with φ= 0.610. The black solid line indicates a power-law slope of one.

time. The power-law exponent in this increasing region is β≈ 0.11, smaller than the

exponent β≈ 0.32 for the corresponding L0.35 liquid matrix. This behavior indicates

that matrix rearrangements are restricted on intermediate length and time scales

due to the stronger attractions between particles in G0.20.

Two glassy matrices G0.35 and G1.05 can also be produced by compressing from

φ = 0.610 to 0.635. This increase in φ leads to suppressed plateaus in ∆r2 on inter-

mediate time scales and prevents the matrix from fully relaxing on long time scales.

The ∆r2 of G1.05 displays an intermediate-time plateau that is suppressed relative to

the plateau for the liquid L1.05 (Fig. 3.5(b)) because of the higher matrix density of

G1.05. The MSD of G0.35 exhibits a small shoulder at τ ≈ 10−1, qualitatively similar

to but quantitatively lower than the one observed for L0.35, which arises from attrac-

tive bond formation. On time scales τ& 102, the MSD of G0.35 exhibits a long-time
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plateau that contrasts with the extended power law observed on long time scales for

the ∆r2 of L0.35. The plateau indicates that particles in G0.35 remain caged on long

time scales, whereas the extended power-law in L0.35 indicates that bond rearrange-

ment and cage escape occur on similar time scales. Thus, comparison of the MSDs for

G0.35 and G1.05 with those of L0.35 and L1.05 reveals that increasing matrix φ results

in caging-driven arrest.

3.3.2 Tracer dynamics

Differences in packing fraction and interparticle interactions influence fluctua-

tions and relaxations in the six matrices, leading to distinct dynamics. The dynam-

ics of tracers of a critical relative size, δt = 0.35,102,103,121 within a slowly-relaxing

matrix are affected both by caging within matrix voids and matrix relaxations and

fluctuations.102,103,121 We thus anticipate that differences in matrix structure and

dynamics will alter the motions of confined tracer particles, providing insight into

the nature of the transport processes in these matrices.102,103

After initial ballistic motion, tracers of relative size δt = 0.35 relax differently

on intermediate and long time scales in different matrices (Fig. 3.6). The tracers

embedded in the L0.35 and L1.05 matrices exhibit subdiffusion on intermediate time

scales 10−1. τ. 103. Diffusive dynamics are recovered on long time scales τ& 103,

with tracers in L1.05 exhibiting a higher diffusivity. The transition from ballistic

motion to subdiffusive dynamics reflects the onset of caging by the matrix particles.

The value of the MSD at the crossover to subdiffusive behavior is greater for L0.35

than in L1.05, indicating that tracers explore larger voids in L0.35.103 The logarithmic

slope β of the tracer MSD in the subdiffusive regime (∆r2 ∼ tβ), however, is smaller

for L0.35 than for L1.05, reflecting smaller matrix fluctuations on these time scales

(Fig. 3.5). The larger voids and slower tracer relaxations in L0.35 are due to subtle

changes in matrix structure arising from the strong attractive bonds between the

matrix particles.103,122,123
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To obtain insight into the effects of temperature-induced matrix arrest on tracer

dynamics, we compare tracer MSDs in L0.35 and L1.05 to those in G0.20 and HSG1.00.

Tracer dynamics in HSG1.00 are subdiffusive for time scales 10−1 . τ. 103 and dif-

fusive for long time scales τ& 103 (Fig. 3.6(a)). In the subdiffusive regime, the tracer

MSD of HSG1.00 has a slightly smaller slope and magnitude for a given τ relative to

L1.05. Furthermore, diffusive dynamics are recovered later in time in HSG1.00 and

the terminal diffusivity is smaller. These behaviors suggest that tracer dynamics in

L1.05 are faster and less localized than in HSG1.00 and that tracer cage escape occurs

on shorter time scales in L1.05 due to its liquid-like relaxations.

10 2

10 1

100

101

102

103

Tr
ac

er
r2

(a)

L0.35
L1.05
G0.20
HSG1.00

10 2 10 1 100 101 102 103 104 10510 2

10 1

100

101

102

103

Tr
ac

er
r2

(b)

L0.35
L1.05
G0.35
G1.05

Figure 3.6: Mean-square displacement ∆r2 for (a) tracers in matrices with φ = 0.610 and
tracers in glasses with φ= 0.635 and the corresponding liquids. Arrows indicate
the time scales at which (a) ∆r2

G0.20 ≈∆r2
L0.35 and (b) ∆r2

G0.35 and ∆r2
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tatively diverge.

Tracer dynamics within the attractive matrices L0.35 and G0.20 exhibit distinct

features not present in L1.05 and HSG1.00, reflecting the effects of attractive bonds

between the matrix particles. The tracer MSDs ∆r2 in L0.35 and G0.20 are subdiffu-
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sive and nearly identical for time scales 10−1 ≤ τ ≤ 101, but diverge for τ > 101. In

the subdiffusive regime (10−1 ≤ τ ≤ 101), the slopes of the MSDs of L0.35 and G0.20

are smaller than those of L1.05 and HSG1.00. The MSD of tracers in L0.35 transi-

tions from subdiffusive to diffusive scaling, becoming fully diffusive for τ > 103. By

contrast, the ∆r2 of tracers in G0.20 scale subdiffusively, appearing to tend towards

recovering diffusive behavior on time scales longer than those readily accessible in

simulation. This extended subdiffusion arises from the increased role of matrix in-

terparticle bonding, which reduces matrix fluctuations and increases the residence

time of tracers in matrix cages.

Comparison of matrix and tracer MSDs reveals dynamic coupling on interme-

diate time scales and suggests that these processes can facilitate tracer transport.

Tracer dynamics in HSG1.00 are diffusive on time scales exceeding τ & 103, even

though the matrix itself does not relax. This behavior sharply contrasts with the

lack of tracer diffusion in G0.20 even on much longer time scales of τ∼ 105. The ma-

trix ∆r2 of HSG1.00 is an order of magnitude larger than that of G0.20 (Fig. 3.5(a)),

indicating that intermediate-time-scale fluctuations are larger in the repulsive glass.

Hence, thermal ‘cage rattling’ in HSG1.00 allows tracers to escape and diffuse but is

suppressed in G0.20 due to the presence of attractive bonds. Tracer dynamics begin

to recover diffusive behavior in G0.20 on long time scales, when rare fluctuations in

the matrix occur that allow tracers to escape. The long-time tracer dynamics in the

arrested glasses G0.20 and HSG1.00 qualitatively differ from those in the completely

frozen attractive and repulsive matrices examined in Ref. 103. Whereas tracers are

localized in cages at long times in frozen matrices, the intermediate-time fluctuations

of arrested glasses allow for long-time tracer relaxation and cage escape. This relax-

ation occurs on longer time scales within G0.20 than in HSG1.00 because G0.20 exhibits

smaller matrix fluctuations and hence more closely approximates the environment

encountered in completely frozen matrices.
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Comparison of transport within attractive G0.20 and repulsive HSG1.00 glasses

with the corresponding liquids (L0.35 and L1.05, respectively) reveals how changes

in matrix relaxation processes due to temperature-induced vitrification affect tracer

dynamics. Insights into how compression-induced vitrification influences tracer dy-

namics can be obtained by examining the glasses G0.35 and G1.05. Densification re-

duces the magnitude of the tracer MSDs in glasses at the onset of subdiffusion, rela-

tive to all other matrices, reflecting the smaller cages formed at higher φ. In addition,

the logarithmic slopes of the tracer ∆r2 in G0.35 and G1.05 for a given τ are smaller

than those of the other matrices and diffusive dynamics are not recovered on long

time scales. This reduction in tracer mobility on intermediate and long time scales

appears to be primarily a trivial consequence of increased matrix density.

The nature of the interactions between matrix particles in G0.35 and G1.05 also

affects tracer dynamics. The tracer ∆r2 in G0.35 and G1.05 are nearly identical up to

τ. 102. This result is in sharp contrast with the marked differences in short- and

intermediate time tracer dynamics in the lower-density glasses (G0.20 and HSG1.00).

One possible explanation is that increasing matrix density may lead to more uniform

cages in attractive and repulsive glasses that are accessible to tracers of this size on

short time scales. For τ & 102, however, the tracer MSDs remain subdiffusive but

begin to diverge, with tracers in G0.35 exhibiting slower dynamics than in G1.05. This

result suggests that tracer dynamics are still sensitive to differences in cage rattling

in G1.05 and G0.35 (Fig. 3.5(b)), but only on longer time scales.

3.3.3 Effects of matrix caging

Tracers in all matrices exhibit subdiffusive behavior on intermediate time scales

10−1. τ. 103, suggesting that they are transiently caged by the matrix (Fig 3.6). To

further investigate the effect of matrix caging on tracer dynamics, we calculate the

tracer CDP x̃12 as a function of the initial displacement magnitude r̃01 for lag times

τ∗. For a particle trapped in a harmonic well, x̃12 varies linearly with r̃01 with a slope
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of c = 0.5, indicating that the second displacement ∆~r12 is anti-correlated with the

initial displacement ∆~r01.124 The slope c is the extent to which a particle is “dragged

back” (this phenomenon henceforth referred to as backdragging) as a fraction of its

initial displacement r̃01.31 For matrix particles in glassy liquids, by contrast, x̃12

varies linearly with r̃01 for small displacements, but deviates from this initial lin-

ear behavior for r̃01 beyond a length scale r̃cage identified as the characteristic cage

size.31,111,125,126

Table 3.2: Cage size rcage for tracers in each matrix.

Matrix rcage
5

L0.35 0.69±0.04
L1.05 0.31±0.02
G0.35 0.75±0.05
G1.05 0.75±0.05
G0.20 0.72±0.03
HSG1.00 0.38±0.02

For all tracers, the CDP linearly decreases for small displacements, indicating

that they are caged by the matrices up to a length scale r̃cage (Fig. 3.7). The cage

length scale depends upon the matrix and varies between 0.3 and 0.8 (in units of

σBB) (Tbl. 3.2). The slopes c, which reflect the extent of backdragging for tracers

in each matrix, are & 0.4, near the harmonic limit of c = 0.5 and are similar for all

tracers for r̃01 < r̃cage. The similar values of c indicates that tracers vibrate nearly

harmonically within their cages, suggesting that collisions of the tracers with the

matrix dominate dynamics up to r̃cage.

Tracers with displacements larger than r̃cage escape their cages and rearrange

into new positions. Steeper slopes for the tracer CDP x̃12 in the rearrangement

regime indicate enhanced backdragging. For tracers within the repulsive liquid L1.05

and glass HSG1.00, x̃12 is approximately constant for r̃01 > r̃cage, indicating that the

extent of backdragging does not increase beyond r̃cage (Fig. 3.7(a)). For the other

matrices, by contrast, x̃12 continues to decrease with increasing r̃01 for r̃01 > r̃cage,
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Figure 3.7: (a) Normalized CDP x̃12 versus previous displacement magnitude r̃01 for tracers
in matrices with φ = 0.610 and (b) for tracers in glasses with φ = 0.635 and in
the liquids. Shaded regions indicate statistical uncertainty. The black solid lines
have a slope of −0.5.

but not as sharply as in the small-displacement regime. This behavior indicates that

tracers are dragged back, but not as far as predicted from linear extrapolation from

the harmonic region.112 Similar behavior has also been observed in the rearrange-

ment regime for probe particles in Laponite clay gels.127,128 Analyses of simple model

systems show that such deviations from linearity are observed if the matrix is hetero-

geneous on the scale of the tracers or the relaxation rate of the probe particle is spa-

tially dependent.128 Accordingly, the behavior of x̃12 for L0.35, G0.20, G0.35, and G1.05

indicates heterogeneity in tracer dynamics for length scales beyond r̃cage and within

these matrices.103,122,123 Comparison of the slopes for different matrices suggest that

backdragging outside of the local cage is enhanced by stronger matrix bonding (e.g.,

G0.20 vs. L0.35). Further, the fact that the x̃12 slopes are similar for G0.35 and G1.05

but different for the other matrices (L0.35, L1.05, and HSG1.00) indicates that matrix
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Figure 3.8: Tracer dynamic susceptibility χ4 (a) in matrices with φ= 0.610 and (b) in glasses
with φ = 0.635 and the liquids. Wavevectors maximize the peak in χ4 and are
qσBB = 2.0, 2.5, 1.6, 2.8, 3.0, and 3.0 for L0.35, L1.05, G0.20, HSG1.00, G0.35, and
G1.05, respectively.

density, not matrix interparticle interactions, is the dominant factor controlling the

extent of backdragging in the rearrangement regime.

To directly quantify tracer dynamical heterogeneity arising from differing ma-

trix interparticle interactions, we calculated the dynamic susceptibility χ4(q,τ) at

the wavevector magnitude q for which the peak in χ4 is maximized (Fig. 3.8(a) and

(b)). The dynamic susceptibility is the variance of tracer self-dynamics, defined as

χ4(q,τ)≡ Nt(F2
s (q,τ)− [Fs(q,τ)]2). For all matrices, χ4 exhibits a peak whose location

and width corresponds to the maximum and persistence of tracer dynamic hetero-

geneity, respectively. Comparison of the χ4 widths reveals that the persistence of the

tracer dynamic heterogeneity varies across the different matrices, increasing such

that L1.05 < HSG1.00 < G0.20. Based on the tracer CDPs for these matrices, we posit

that the increase in tracer dynamic heterogeneity persistence may be associated with
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larger cages r̃cage (e.g., larger in HSG1.00 than in L1.05; Tbl. 3.2) and enhanced back-

dragging (e.g., in G0.20 vs. HSG1.00) in the rearrangement regime.

3.3.4 Structural determinism of tracer dynamics

The susceptibility χ4 reveals that the dynamics of the embedded tracer parti-

cles are temporally heterogeneous. To quantify the structural and dynamical con-

tributions to this heterogeneous behavior, we performed simulations in the isocon-

figurational ensemble. Because this analysis allows a particle’s capacity for mo-

tion to be characterized for a given initial configuration, it enables the spatial dis-

tribution of dynamics in a given system to be linked to the system’s structure114

without requiring correlations to specific structural metrics (e.g., free volume, po-

tential energy, etc.) to be established, which has proven to be extremely challeng-

ing.129,130 In this ensemble, total tracer dynamical fluctuations can be expressed as

∆c,norm =σ2
DP +∆iso

c,norm.131–133 The first term σ2
DP = 〈(DPi)2〉−1 is the structural vari-

ance, where 〈...〉 is the ensemble average over all nc,iso configurations, nt,iso trajecto-

ries, and Nt tracer particles. This variance is a measure of fluctuations in the tracer

dynamic propensity DPi. The second term ∆iso
c,norm = 〈DP2,i − (DPi)2〉 is the dynamical

variance, where DP2,i = 〈(~r i(t)−~r i(0))4〉iso

〈∆r2
i 〉

2
iso

. This variance quantifies the spread in DPi

between different isoconfigurational trajectories.

In L0.35 and L1.05, the tracer structural variance σ2
DP increases up to and peaks

at τ ≈ 101, corresponding to the time at which tracers experience maximum struc-

tural determinism (Fig. 3.9(a)). On longer time scales, σ2
DP decreases and reaches

a value near zero at τ ≈ 103, approximately the lag time at which tracer dynamics

become diffusive in the MSD ∆r2 (Fig. 3.6). The structural variance σ2
DP is larger

and attains a maximum at a larger lag time τ for tracers within L0.35 compared to

L1.05. Strictly positive values of σ2
DP arise from particle-to-particle variations in dy-

namic propensity. Hence, the larger values of σ2
DP indicate that tracer relaxation

times are more broadly distributed in L0.35, which is a consequence of the structural
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Figure 3.9: Tracer structural variance σ2
DP of the dynamic propensity DPi distribution. (a)

σ2
DP for tracers in matrices with φ = 0.610. (b) σ2

DP for tracers in glasses with
φ = 0.635 and in the corresponding liquids. Shaded regions indicate statistical
uncertainty.

heterogeneity arising from strong interparticle bonds in this matrix. The existence

of greater structural heterogeneity in L0.35 than in L1.05 is evidenced by the shorter

first peak in matrix static structure factor S(q), which indicates reduced transla-

tional ordering (Fig. 3.11). Similar evidence can be found by inspecting the matrix

radial distribution function g(r) (Fig. 3.12).

To understand the effects of matrix arrest on structural determinism in tracer

dynamics, we compare the structural variances in L0.35 and L1.05 to those in G0.20

and HSG1.00 (Fig. 3.9(a)). The tracer σ2
DP in HSG1.00 exhibits a larger peak at a

larger τ than in L1.05. The structure of the nearly arrested HSG1.00 matrix obstructs

tracer rearrangement, leading to a broader DPi distribution. Surprisingly, σ2
DP is

greater in attractive than repulsive arrested matrices σ2
DP,HSG1.00

<σ2
DP,G0.20

, and the

disparity in σ2
DP between L0.35 and G0.20 is much larger than the disparity between
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Figure 3.10: Fraction of tracer fluctuations due to initial structure Rc. (a) Rc for tracers in
matrices with φ = 0.610. (b) Rc for tracers in glasses with φ = 0.635 and in the
corresponding liquids. Shaded regions indicate statistical uncertainty.

L1.05 and HSG1.00. These observations suggest that arrest by bonding in attractive

matrices results in local environments that are highly structurally heterogeneous

compared to those in the repulsive matrices.

In the higher-density matrices (G0.35 and G1.05), σ2
DP increases steeply for trac-

ers for τ. 103, appearing to plateau or even slightly decrease on longer time scales

(Fig. 3.9(b)). On time scales exceeding 103, σ2
DP increases very gradually or decreases

slightly for tracers within G0.35 and G1.05, respectively. The strong initial increase in

σ2
DP indicates heterogeneous local environments and a broad distribution of tracer re-

laxation times. This increase is similar to that observed in the lower-density, strongly

arrested glass G0.20. The common feature of G0.20, G0.35, and G1.05 is that matrix rat-

tling is suppressed on intermediate to long time scales, indicated by the low values

of the matrix MSD (Fig. 3.5). Thus, reduced matrix fluctuations appear to lead to an
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Figure 3.11: Static structure factor S(q) for all matrix particles in each system.

increase in structural determinism in the tracer dynamics.

Finally, to characterize the relative importance of structure for tracer dynam-

ics, we examine the relative contribution of σ2
DP to total tracer fluctuations within

each matrix via the structural ratio Rc =σ2
DP/∆c,norm, where Rc is the fractional con-

tribution of isoconfigurational fluctuations due to structure.131,132 For tracers in all

matrices, Rc is approximately constant on short time scales τ . 101 but varies de-

pending on matrix (Fig. 3.10(a) and (b)). This behavior suggests that the relative

contributions from matrix structure are fixed on these time scales but depend on ma-

trix density and interactions between matrix particles. The values of Rc for matrix

particles are larger than those of the corresponding tracers (Fig. 3.13) for all matrices,

indicating that structural contributions are more important for the matrix dynamics

than for tracer dynamics. For τ & 102, Rc for tracers in L1.05, L0.35, and HSG1.00

decay towards zero as tracer dynamics become diffusive (Fig. 3.6) and χ4 peaks (Fig.

3.8(a)). Collectively, these observations suggest that relatively large dynamical ma-
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Figure 3.12: Radial distribution function g(r) for all matrix particles in each system. The
first, second, and third sharp peaks at small r arise from B−B, A−B, and A−A
nearest neighbors, respectively. The black line indicates g(r)= 1.

trix fluctuations in these matrices allow tracers to escape their local cage so that

matrix structure no longer affects tracer dynamics. By contrast, the values of Rc for

G0.20, G0.35, and G1.05 continue to increase for τ& 102. The absence of tracer diffusion

within these matrices on these time scales suggests that tracers are partially or fully

localized and thus their dynamics are strongly influenced by matrix structure. This

interpretation is consistent with the nearly constant dynamical variances ∆iso
c,norm for

G0.20, G0.35, and G1.05 on intermediate to long time scales (Fig. 3.14). Sufficiently

strong vitrification, whether through attractive bonding (G0.20) or increased matrix

density (G0.35 and G1.05), reduces dynamical matrix fluctuations and thereby hinders

the ability of tracers to escape their cages. As a result, tracer dynamics in highly

vitrified matrices are more strongly influenced by matrix structure.
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The reported Rc values were computed by averaging ns independent configura-
tions (Table 3.1)

.

3.3.5 Consequences for tracer exploration

To characterize tracer exploration within each matrix, we analyze the scaling of

the tracer trajectory radius of gyration Rg as a function of its mass M. Comparison

of the trajectory shapes for tracers within attractive and repulsive matrices reveal

that the nature of interactions between matrix particles influences tracer exploration

(Fig. 3.15). For tracers within L1.05 and HSG1.00, M scales approximately as a power

law for large Rg (Rg > 0.5, long times). The logarithmic slope df in this region de-

fines the fractal dimension, which is approximately 2.0 in both matrices. This value

corresponds to the limit of free diffusion that is expected for tracers at long times

(large Rg) in all matrices in which tracer dynamics are ergodic. For tracers within

L0.35 and G0.20, by contrast, the instantaneous value of df is larger than 2.0. This
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for each system. Shaded regions indicate statistical uncertainty.

result indicates that the trajectories in attractive matrices are more compact than

those within repulsive matrices, with a fractal dimension that approaches that of a

geometric solid (i.e., df = 3). The nearly indistinguishable mass scaling of the ar-

rested and liquid matrices suggests that it is matrix interparticle interactions and

not dynamical arrest that leads to the difference between attractive and repulsive

matrices.

Lastly, we examine the role of matrix density on tracer trajectory shape by com-

paring the fractal scaling of tracer trajectories in G0.35 and G1.05 to L0.35 and L1.05

(Fig. 3.15(b)). The slopes in the glasses are larger than those in the corresponding

liquid, illustrating that tracer trajectories within the glasses have larger fractal di-

mensions than those within the liquids. Thus, tracer trajectories in G0.35 and G1.05

are less extended in space, indicating that tracers explore cages for longer periods of

time and rearrange over smaller distances as matrix density is increased.
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3.4 Conclusions

We used event-driven MD to investigate the dynamics of dilute, hard-sphere trac-

ers in attractive and repulsive liquid matrices with similar long-time relaxations and

in analogous attractive and repulsive glass matrices prepared via thermal quenching

or compression. Comparison of the matrix and tracer MSDs revealed the effects of

matrix dynamics on tracer dynamics. Although tracers within glasses were less mo-

bile than tracers within the corresponding liquids, matrix arrest was insufficient to

guarantee tracer localization. Through cage analysis, we determined whether trac-

ers are caged for small displacements and characterized the heterogeneity of tracer

cage rearrangements for large displacements. This analysis revealed that increasing

matrix density φ from 0.610 to 0.635 (G0.35, G1.05) or enhancing attractions (G0.20,
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L0.35) increased the tracer dynamic heterogeneity within these matrices relative to

the repulsive matrices with φ = 0.610 (L1.05, HSG1.00). The tracer dynamic suscep-

tibility revealed that tracer dynamics were spatiotemporally heterogeneous, as also

shown through cage analysis. By performing simulations in the isoconfigurational

ensemble and calculating the dynamic propensity, we quantified the structurally-

induced heterogeneity of tracer dynamics and the extent to which tracer dynamics

were determined by matrix structure. This analysis revealed that strong arrest of

the matrix, driven by attractive bonding or high density, enhanced structural de-

terminism. Finally, the mass scaling of tracer trajectories revealed that increasing

matrix attractions or matrix density leads to more compact tracer trajectories. These

results collectively reveal how the spatial and temporal heterogeneity in matrices is

reflected in the dynamics of embedded tracers.

Our simulations also demonstrate that tracers are able to diffuse on long time

scales through glass matrices if the matrix fluctuations are sufficiently large. This

result has interesting implications for understanding the ability of tracers to pen-

etrate dense, slowly-relaxing matrices, suggesting that fluctuations above a critical

size can facilitate transport even in matrices that do not fully relax on long time

scales. The findings from our study also motivate future work in a number of differ-

ent directions. Whereas our investigation focused on understating equilibrium tracer

dynamics, penetrant transport in most practical settings is driven by a chemical po-

tential gradient and hence occurs under nonequilibrium conditions. Although much

work has been done towards understanding nonequilibrium transport through rigid

matrices,134–136 it remains unclear how these processes are influenced by structural

fluctuations and slow matrix relaxations. Additionally, fluctuations within the matri-

ces studied here are isotropic due to the bulk nature of the samples imposed through

the use of periodic boundary conditions. Experimental studies of supercooled liquids

and glasses show, however, that fluctuations in these system can become anisotropic
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by imposing different boundary conditions.137,138 This scenario has been encoun-

tered, for example, when examining the dynamics of confined supercooled liquids in

porous media139,140 and glasses prepared through vapor deposition onto surfaces.141

An intriguing future line of inquiry would be to investigate how anisotropic fluctu-

ations in these systems affects the dynamic coupling of tracer and matrix particles.

Lastly, we investigated small particles in the isolated tracer limit. For asymmetric

hard-sphere binary mixtures, both reentrant melting of the large-particle glass and

vitrification of the small particles were observed upon increasing small-particle den-

sity.142,143 How matrix interactions affect and, in turn, are affected by tracers at high

concentrations has not yet been studied. We anticipate that these outstanding ques-

tions can be addressed using computational approaches similar to those employed in

this study.
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Chapter 4: Dynamics of Polydisperse Hard-Spheres

Under Confinement

This chapter was previously published by Taylor & Francis Group: Roberts, R. C.;

Marioni, N.; Palmer, J. C.; Conrad, J. C., Molecular Physics 2020, 1-9.

4.1 Introduction

The underlying mechanisms responsible for the dramatic slowing of dynamics by

many orders of magnitude upon compression or cooling of dense liquids are incom-

pletely understood and intensely debated4,34. Near the glass transition, particles

are trapped in long-lived cages formed by their neighbors, and are able to relax only

when the cages rearrange. Phenomenologically, this relaxation is viewed as a two-

step process involving movement within and escape from the cage formed by the

neighbors6,144,145. This coupling to neighbor configuration suggests that the sur-

rounding structure is a strong determinant of glassy dynamics. How the nature of

the cages and their relaxations depend on the structure of the liquid remain open

questions. The length scale and structural motifs associated with these relaxations

are thought to be non-local130,131. Indeed, upon cooling or compressing the dynam-

ics of liquids become increasingly heterogeneous in space and time. These spatial

heterogeneities are thought to be connected to a growing length scale over which

dynamics are correlated146–148.

Confining a liquids inside a thin geometry modifies the dynamics and introduces

a competing length scale H, characterizing the extent of confinement.149–152. For

hard-sphere fluids under weak confinement (H& 5 particle diameters) the dynamics

slow monotonically as the confinement length scale is decreased137,152. In strongly-

confined hard-sphere systems (H. 5 particle diameters), by contrast, the relaxation
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times can depend non-monotonically on the separation between the walls137,153–157.

At high particle densities, this non-monotonic behavior can lead to multiple glass

transitions154, as predicted by mode-coupling theory153. Notably, the glass transi-

tion line for polydisperse hard spheres exhibits oscillations whose period is of the

order of the particle diameter154, strongly intimating that the competition between

layering and local packing drives the unusual dynamical re-entrance observed in

these systems.

For certain glass-forming systems, bond-orientational order has been shown to

be connected to dynamics. Numerical simulations of 2-D polydisperse hard disks,

for example, reveal that transient clusters of highly-ordered particles are correlated

with dynamical heterogeneity158. In several systems, the clusters associated with

such medium-range crystalline order (MRCO) are hexatically-ordered in 2-D159,160 or

hexagonally-ordered in 3-D133,161,162. Whereas the static and dynamic length scales

have been shown to grow similarly for 2-D glasses with MRCO, this behavior is not

observed in other 2-D glass formers163,164. In strongly confined systems, MRCO is

enhanced within the layers of particles that form near the confining walls165. When

the confinement length scale is commensurate with particle size, particles within the

layers typically adopt hexatic order parallel to the walls. By contrast, incommensu-

rate geometries tend to promote square ordering166–168. While these earlier studies

show that MRCO is amplified by strong confinement, they have not explored its link

to dynamics.

In this study, we use molecular dynamics (MD) simulations to investigate the

connection between local structural ordering and the unusual re-entrant dynamics

observed for polydisperse hard-sphere liquids confined in small slit pores. Despite

the polydisperse nature of these systems, the particles in the contact layers adjacent

to the confining walls exhibit pronounced local ordering, whose symmetry changes as

the wall separation becomes incommensurate with the average particle size. Parti-
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cles in commensurate geometries largely exhibit hexatic local order, whereas square

local order is also observed in systems where the confinement length scale is incom-

mensurate with particle size. The static correlation length associated with hexatic

local order is found to increase logarithmically with the relaxation time, in agree-

ment with predictions from 2-D random first-order theory12 and models based on

locally-favored structures35. Square ordering, by contrast, is short-ranged and not

associated with a growing length scale even for incommensurately-packed systems

in which square ordering is most prevalent. This observation suggests that square

order is strongly geometrically frustrated for all levels of confinement studied here.

For incommensurate geometries, neither hexatic nor square ordering are associated

with a growing length scale. This striking result indicates that the connection be-

tween bond-orientational order and dynamical slowing can be altered by varying

confinement.

4.2 Methods

Event-driven MD simulations were performed to investigate the behavior of poly-

disperse hard-spheres confined in slit-shaped pores consisting of two parallel walls

separated by distance H along the z-axis of the cell. Periodic boundary conditions

were imposed along the x- and y-axes parallel to the walls to model an infinite slab

geometry. Each of the N = 10976 particles in the system was assigned unit mass

and a hard-core diameter σi randomly sampled from a Gaussian distribution. The

average of the distribution was set to σ̄= 1 and the standard deviation s was chosen

to modulate particle polydispersity (PDI). Following convention, we adopt units in

which Boltzmann’s constant kB = 1, and σ̄ and t = σ̄(m/kBT)1/2 are the fundamental

measures of length and time, respectively19,154. All simulations were performed in

the microcanonical (NVE) ensemble, with initial particle momenta randomly drawn

from the Maxwell-Boltzmann distribution with specified temperature T = 1.

We investigated the static and dynamic properties of the confined hard-spheres
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at various state points specified by {s,φ,H}, where φ is the particle volume fraction.

For PDI s = 0.15, we examined ranges 0.47 ≤ φ ≤ 0.51 and 2.00 ≤ H ≤ 3.00. For

s = 0.05, we considered 2.00 ≤ H ≤ 3.00 at a single volume fraction φ = 0.51. The

systems were prepared by incrementally compressing an initial confined liquid-like

configuration at φ = 0.45 to achieve the final H and φ. The compression steps were

performed in increments of ∆φ= 0.01, following each step by a short MD simulation

(10t) at constant φ to relax compression-induced stresses. After compression, the

systems were equilibrated until their properties became invariant with sample age.

The sample age was measured as the waiting time tw, defined as the time elapsed

since the end of the final compression step.

For all systems, we computed the mean 2-D Mermin order parameters averaged

over particles in the wall contact layers169

ψl =
1

Nwall

Nwall∑
j=1

ψ
j
l (4.1)

where

ψ
j
l =

1
n j

n j∑
k=1

eilθ jk , (4.2)

Nwall is the number of particles in the wall contact layers, n j is the number of nearest

neighbors of particle j, i = p−1, l is a positive integer indicating the orientational

symmetry, θ jk = cos−1 [ı̂ ·r jk|r jk|−1] is the angle between the x-axis and the in-plane

interparticle separation vector r jk = r j −rk, ı̂ is the unit vector along the x-axis, and

r j = {x j, yj} is the in-plane particle position vector for particle j. The contact layers

were identified by computing the density profile along the z-axis perpendicular to the

walls

ρ(z)= 1
N∆z

N∑
j=1

δ(z− z j), (4.3)

where z j is the out-of-plane particle coordinate and ∆z is the bin width. Particles

with z-coordinates lying between the first two minima in ρ(z) nearest to each wall
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were defined as belonging to the contact layers. Equation 4.2 was evaluated by taking

the sum over the nearest neighbors of the central particle j that lie within the same

layer and a cutoff separation distance of r = 1.34, which approximately encompasses

the first coordination shell.

We monitored ψ4 and ψ6, which are sensitive to square and hexatic ordering,

respectively. The order parameter ψ4 = 1 for perfect long-range square ordering,

whereas ψ6 = 1 for systems with perfect long-range hexatic ordering. For disordered

systems, ψ4 → 0 and ψ6 → 0 as N →∞, but they take on small positive values near

zero in finite systems due to fluctuations. Systems with appreciable square and/or

hexatic ordering (i.e., ψ4 ≥ 0.05 and/or ψ6 ≥ 0.05) were considered equilibrated when

the Mermin order parameters became invariant with sample age (within statistical

uncertainty). This invariance was observed for tw ranging from 20000 – 100000. For

the remaining (disordered) systems, equilibration was monitored by computing the

the pore-averaged mean-square displacement (MSD)

∆r2(t)= 1
N

N∑
k=1

(r2
k(t)−r2

k(0))
2

(4.4)

as a function of sample age. The systems were considered equilibrated when the

MSDs computed over different time periods became statistically invariant with re-

spect to sample age. This criterion was met for tw ranging from 200 – 30000 simula-

tion time units, depending on the state conditions.

Following equilibration, the simulations were extended to generate a production

phase, during which trajectories were saved for subsequent analysis. The duration of

the production phase was typically a factor of 10 longer than the equilibration period.

Statistical properties at each state point were computed by averaging over Ns = 5,10,

or 20 independent simulations, depending on the PDI, each initiated from a different

particle configuration prepared using the procedures described above.
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The correlation lengths ξl associated with l-fold symmetry were estimated by

computing the in-plane spatial correlation functions for the 2-D Mermin parameters

gl(r)= L2

2πr∆rNwall(Nwall −1)

∑
j 6=k

δ(r−|r jk|)ψ j
lψ

k∗
l (4.5)

where L is the length of the simulation cell in the direction parallel to the walls, ∆r

is the histogram bin width, and ψ
j
lψ

k∗
l = Re(ψ j

l )Re(ψk
l )+ Im(ψ j

l )Im(ψk
l ). Equation

4.5 was evaluated for l = 4,6 to analyze the extent of square and hexatic ordering

in the contact layers, respectively. The correlation lengths for both symmetries were

extracted by fitting an exponential

f (r)= Aexp[−2r/ξl] (4.6)

to the envelope of gl(r)/g(r), where g(r) is the in-plane radial distribution function

computed by evaluating Eq. 4.5 with the product ψ j
lψ

k∗
l omitted170,171. An exponen-

tial fitting function was used because the usual Ornstein-Zernike (OZ) expression,

which predicts power-law decay r−n, is derived for isotropic systems, whereas the

confined systems studied here are anisotropic172.

To characterize the relaxation dynamics, we calculated S(s)
00(q, t), which is the self-

part of the first component of the matrix

Sµν(q, t)= 1
N

〈ρµ(q, t)∗ρν(q,0)〉 (4.7)

indexed by non-negative integers µ,ν. Equation 4.7 is a generalization of the inter-

mediate scattering function to systems confined in one dimension, with associated

density fluctuations

ρµ(q, t)=
N∑

j=1
exp[iQµz j(t)]eiq·r j(t). (4.8)

Here, q = {qx, qy} is the wavevector with norm q, Qµ = 2πµH−1 is a discrete

55



wavenumber, and r j = {x j, yj} and z j are the in- and out-of-plane particle coordinates,

respectively.

4.3 Results and Discussion

Figure 4.1: (a) Pore-averaged S(s)
00(qxyσ̄ = 3.3, t) in the direction parallel to the walls for

{s,φ}= {0.15,0.50} and varying H. (b) Inverse relaxation time τ−1
xy as a function of

H for systems with s = 0.15 and different φ. The relaxation times are defined via
S(s)

00(qxyσ̄= 3.3,τxy)= 1/e.

We first examine the dynamics of strongly confined liquids parallel to the direc-

tion of confinement through the intermediate scattering function S(s)
00(qxyσ̄= 3.3, t) at

the wave-vector corresponding to a length scale of approximately two particle diame-

ters (Fig. 4.1(a)). For wall separations 2≤ H ≤ 3, S(s)
00(qxyσ̄= 3.3, t) fully decays to zero

on time scales accessible with simulation. We define the in-plane, pore-averaged re-

laxation time scale τxy via S(s)
00(qxyσ̄= 3.3,τxy) = 1/e. The out-of-plane dynamics also

fully relax, but the terminal relaxations are not diffusive due to the confinement
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imposed along the this direction and thus are not discussed further.

The in-plane relaxation dynamics depend non-monotonically on the wall separa-

tion H (Fig. 4.1(b)). At a volume fraction of φ = 0.47, the inverse relaxation time

τ−1
xy depends only weakly on H. Near H ≈ 2.1, τ−1

xy exhibits a weak local maximum,

and near H ≈ 2.3 it exhibits a modest local minimum. Thus, highly confined, dis-

perse suspensions exhibit re-entrant dynamics. These local extrema become more

pronounced as φ is increased to 0.51. Our results are qualitatively similar to those

of Ref.154, which reported re-entrant diffusivities, extracted from the long-time limit

of the ensemble-averaged mean-square displacements, for strongly confined suspen-

sions of polydisperse hard spheres.

To gain insight into the changes in the underlying microstructure that are re-

sponsible for these unusual re-entrant dynamics, we first examine the number den-

sity profiles along the direction perpendicular to the walls, ρ(z). The evolution of ρ(z)

with increasing φ varies markedly with the wall separation H. For H = 2.20, ρ(z)

does not strongly depend upon φ (Fig. 4.2(a)). Two layers form near the walls in all

systems, and ρ(z) is slightly enhanced near the pore center at z = 0 as φ is increased.

Increasing the wall separation slightly to H = 2.34 leads to a stronger enhancement

in density near the pore center with increasing φ (Fig. 4.2(b)). Systems confined at

H = 2.50, however, show pronounced variation in ρ(z) with φ (Fig. 4.2(c)). Three lay-

ers form in these systems. Further, as φ is increased the local maxima and minima

respectively increase and decrease in height, indicating that layering becomes more

pronounced. An additional increase in the wall separation, to H = 3.00, reveals three

layers whose density profiles do not strongly vary with φ (Fig. 4.2(d)), as for H = 2.00.

The evolution in ρ(z) with H indicates a change in the ordering of particle layers

within the pore. For commensurate wall separations H, the ratio H/σ̄ takes inte-

ger values and particles organize into close-packed layers167,173. Incommensurate

wall separations are those for which H/σ̄ takes on non-integer values, disrupting
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Figure 4.2: Number density profiles ρ(z) in the direction perpendicular to the confining walls
for (a) H = 2.20, (b) H = 2.34, (c) H = 2.50, and (d) H = 3.00 and volume fractions
φ denoted in the legend. Each system has a polydispersity of s = 0.15.

the close-packed layers. For our systems, the development of incommensurate pack-

ing (between H = 2.20 and H = 2.34, Fig. 4.2(a,b)) coincides with the minimum in

τ−1
xy (Fig. 4.1). The development of incommensurate packing was observed to corre-

late with slow dynamics and larger nonergodicity parameters in Ref. 174, suggesting

that motion in the confining plane is obstructed by such packings. For H = 2.20, how-
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ever, relaxation times increase markedly without the formation of incommensurate

layers, suggesting additional mechanisms for dynamical slowing.

To explore other mechanisms leading to dynamical slowing, we examine the local

structure of particles in layers. Previous studies of monodispersed particles166–168,175

have shown that fully developed incommensurate packings for nearly half-integer

values of H/σ̄ are accompanied by a change in the in-plane local crystal structure. In

monodisperse systems, increasing the wall separation from 2 to 3 particle diameters

at φ ≈ 0.50 drives a transition in the in-plane order from 24→ 3�→ 34, where 4
and � indicate hexatic and square order, and the integers indicate the number of

distinct particle layers168. Although our systems are polydisperse, we hypothesize

that the change in commensurability in our system is also accompanied by a change

in the the local structure of the particles.

To scrutinize the evolution of local structure in our systems, we calculate ψ j
4 and

ψ
j
6 (Eq. 4.2) for particles within the layers nearest to the wall (Fig. 4.3(a)). Par-

ticles within the contact layers adjacent to the walls are colored according to the

magnitudes of the local Mermin order parameters (Eq. 4.2) with dark blue and dark

red indicating ψ6 = 1 and ψ4 = 1, respectively. Particles with ψ6 ≈ ψ4 ≈ 0, or not

within the wall contact layers, are colored white. The parameters ψ
j
4 and ψ

j
6 are

local variants of the spatially averaged 2-D Mermin parameters (Eq. 4.1) that char-

acterize the extent of square and hexatic order in the coordination environments of

individual particles, respectively. We first examine a low-dispersity system (PDI 5%,

s = 0.05) with φ= 0.51, whose structure is expected to closely mimic that of confined

monodisperse spheres. The phase behavior of unconfined bulk systems was found to

be qualitatively similar to the monodisperse limit below a threshold particle polydis-

persity176,177. This threshold is larger for confined than unconfined particles19,154.

In our confined systems, increasing the wall separation from H = 2.20 to 3.00 leads to

changes in the predominant local order in the wall contact layers (Fig. 4.3(b-e)). For
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Figure 4.3: Renderings of systems with φ = 0.51 in the directions (a) parallel and (b-i) per-
pendicular to the confining walls. Systems with (b-e) s = 0.05 and (f-i) s = 0.15.
Wall separations are (b,f) H = 2.20, (c,g) H = 2.34, (a,d,h) H = 2.50, and (e,i)
H = 3.00.

H = 2.20 particles primarily exhibit hexatic local order. For H = 2.34 local hexatic and

square order coexist, whereas for H = 2.50 local square order is dominant. Finally,

at H = 3.00 the particles near the wall again exhibit primarily hexatic local order.

These observations indicate that the extent of hexatic local ordering is re-entrant.

Hexatic local order is more prevalent in strongly confined systems for which pack-

ing is commensurate. Square ordering becomes more prevalent in incommensurate

packings as a mechanism by which particles resolve frustration in ordering, forming

BCC-like local arrangements in the direction perpendicular to the pore walls.

The transition from hexatic to square local order observed in our simulations with

s = 0.05 is consistent with the 24→ 3� transition observed for monodisperse hard

spheres over this range of wall separations168. Further, the coexistence of square

and hexatic motifs in H = 2.34 is analogous to two-phase coexistence between 24
and 3� observed from the free energy calculations of Ref.168. Indeed, despite the
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modest dispersity, all systems with s = 0.05 fully crystallize on the simulated time

scales.

Re-entrance in the extent of hexatic order is also observed with increasing wall

separation when the dispersity is increased to 15% (Fig. 4.3(f-i)). The fraction of par-

ticles with locally square order increases as H is increased from 2.00 to 2.50, and then

decreases for larger wall separations. The size of ordered regions is smaller, however,

in higher-dispersity than in lower-dispersity systems. In contrast to the 5% disper-

sity system at H = 2.50, large regions of locally square order are not found in the

15% dispersity sample. This result is consistent with earlier observations that dis-

persity reduces the length scale associated with MRCO165. Collectively, our results

indicate that these length scales are strongly sensitive to the extent of confinement

in polydisperse systems.

Figure 4.4: (a) Hexatic correlation function g6(r)/g(r) for H = 2.05, s = 0.15 and φ denoted in
the legend. (b) Square correlation function g4(r)/g(r) for H = 2.50. Dashed lines
are error-weighted fits to the function envelopes to decaying exponentials (Eq.
4.6).
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To extract the characteristic length scales associated with hexatic and square

local order, we calculate the correlation functions g6(r)/g(r) and g4(r)/g(r), respec-

tively (Fig. 4.4). The envelope of each correlation function can be fit using a decaying

exponential (Eq. 4.6) to extract static correlation lengths associated with square and

hexatic order (ξ4 and ξ6, respectively). The hexatic length scale ξ6 grows steeply with

φ for 2.00 ≤ H ≤ 2.34 and 2.70 ≤ H ≤ 3.00, the systems with commensurate packing

(Fig. 4.5(a)). For systems with strongly incommensurate packing (H = 2.50 and 2.55),

however, ξ6 is nearly independent of φ. For these systems, particles of average size

cannot organize into hexagonal layers parallel to the confining walls at these high

volume fractions167,168. Thus, hexatic ordering is frustrated by the competition be-

tween in-plane and out-of-plane packing within incommensurately-packed systems.

In addition, ξ6 exhibits re-entrance as the wall separation H is increased for all φ.

This structural re-entrance follows the dynamic re-entrance observed in our simula-

tions (Fig. 4.1) and in earlier studies154,157.

By contrast, the square correlation length ξ4 does not grow strongly with φ for any

H (Fig. 4.5(b)). The prevalence of square ordering increases with φ for H = 2.50 and

H = 2.55, but this behavior is not associated with an increase in the static correlation

length ξ4. Instead, it manifests as an increase in the exponential prefactor A (Eq.

4.6). In the conventional OZ formalism, A is a local analytic function unrelated to the

static correlation length172. This behavior indicates that square ordering is primarily

local. The local nature of square ordering likely arises from its greater susceptibility

to frustration158,162, which has been attributed to mechanical instabilities associated

with this type of order in confined hard-spheres178.

The relatively small magnitudes of ξ6 and ξ4 for H = 2.50 compared to the val-

ues at other H indicate that square and hexatic ordering compete in these systems.

Examination of the local order parameters for H = 2.50 provides additional support

for this idea. The absence of well-defined hexatic and square regions indicates that
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Figure 4.5: Correlation length scales associated with (a) ξ6 and (b) ξ4 for particles within
the contact layers adjacent to the walls as a function of H. Error bars reflect
uncertainties in ξl from fits of the envelopes of gl(r)/g(r) to decaying exponentials
(Eq. 4.6).

no one type of order is dominant and that the development of local crystalline motifs

is frustrated (Fig. 4.3(h)). The relative dominance of square ordering for H = 2.50

at s = 0.05 (Fig. 4.3(d)) suggests that increasing polydispersity facilitates competi-

tion between domains with different local order, which has been observed for bulk

systems176,179.

To directly assess the role of hexatic ordering on the slowing of dynamics, we ex-

amine the dependence of the in-plane relaxation time τxy on ξ6. For wall separations

that lead to approximately commensurate packing (H = 2.00, 2.34, and 3.00), ξ6 in-

creases logarithmically with τxy (Fig. 4.6). A similar dependence of the relaxation

time on the hexatic length scale was also observed in simulations of 2-D polydis-

perse particle, binary metal, driven granular, and binary spin systems exhibiting

MRCO158,160,162. This behavior is consistent with scaling arguments for the relax-
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Figure 4.6: Correlation length scales associated with (a) ξ6 and (b) ξ4 for particles within
the contact layers adjacent to the walls as a function of relaxation time τxy. Solid
lines are fits to the relation τxy = Bexp(Cξl), where B and C are positive con-
stants and ξl is either ξ4 or ξ6.

ation time derived from 2-D random first-order theory (RFOT)12. The RFOT frame-

work predicts that, below a threshold temperature (or above a threshold density,

for hard spheres), a glassy liquid can be described as a mosaic of distinct domains

that rearrange cooperatively and are separated by well-defined interfaces12,34. In

this low-temperature (or high-density) regime, the relaxation time increases expo-

nentially with the domain size. For the hexatic ordering in our confined systems,

the predicted scaling would imply that τxy = Bexp(Cξl), where B and C are positive

constants, which is consistent with our simulation data. Similar scaling is also pre-

dicted by the locally-favored structure model for vitrification of Ref. 35. In addition

to ξ4 and ξ6, several other structural metrics were also analyzed, but were found

to exhibit only weak correlations with τxy for the systems examined here (Fig. 4.7).

These comparisons collectively suggest dynamical slowing in quasi-2-D systems with
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commensurate layering is driven by hexatic ordering.
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Figure 4.7: (a) Data from Fig. 4.6(a). Correlation of τxy with the (b) local particle volume
fraction and the (c) averages and (d) standard deviations of the particle diameter
distributions. Solid and dashed lines correspond to contact and incommensurate
layers, respectively.

By contrast, ξ6 is nearly independent of τxy for H = 2.50, which exhibits incom-

mensurate packing (Fig. 4.6(a)). For this system, hexatic ordering does not appear

to drive dynamical slowing, suggesting a different crystalline symmetry or mech-
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anism is responsible. Because local square order is enhanced in this system (Fig.

4.3(h)), we also examine the scaling of ξ4 with τxy. Interestingly, ξ4 is smaller for

H = 2.50 compared to H = 2.00, 2.34, and 3.00, which likely occurs due to greater dis-

order in the incommensurate packing for this wall separation. Nonetheless, we find

that ξ4 does not significantly increase with τxy for any wall separation (Fig. 4.6(b)),

suggesting square ordering is not strongly associated with dynamical slowing. Our

results show that the relaxation time increases logarithmitically with the static cor-

relation length associated with hexatic MRCO in commensurately-packed systems

with H . 2.34. Similar behavior is not observed for the incommensurate system

with H ≈ 2.50. Whether dynamical slowing in this system is associated with a grow-

ing static correlation length or a different underlying physical mechanism remains

an open question.

4.4 Conclusions

In this study, we investigated the connection between local structural ordering

and the unusual re-entrant dynamics observed for polydisperse hard-sphere liq-

uids confined in small slit pores. At low polydispersity, hexatic and square local

order dominate in systems with commensurate and incommensurate packings, re-

spectively. At higher polydispersities, the competition between hexatic, square, and

liquid-like order is more pronounced, consistent with the reduction in MRCO ob-

served in unconfined liquids as dispersity is increased.

For commensurate packings with H . 2.34, we found that the static correlation

length associated with local hexatic order increased logarithmically with the relax-

ation time scale, in agreement with the prediction from 2-D random first-order the-

ory. By contrast, square ordering was short-ranged and was not associated with a

growing length scale. The short-ranged square ordering and lack of well-defined or-

dered domains indicated that incommensurately-packed systems were more geomet-

rically frustrated than commensurately-packed systems. For H = 2.50, the growth
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of MRCO was frustrated, yet dynamical slowing with increasing φ persisted. To-

gether, these results suggest that a growing static length scale associated with bond

orientational order can contribute to dynamical slowing in strongly-confined hard-

spheres. Moreover, they show that the influence of bond-orientational order on dy-

namical slowing may be altered by slight changes in the extent of confinement.

Our analysis revealed a growing length scale associated with hexatic local or-

der for systems with commensurate packing. For the incommensurately-packed,

strongly frustrated systems, a growing length scale has yet to be identified. It is

of interest to ask whether other dynamic and static length scales164, such as the

dynamical correlation length146 or point-to-set length scale180,181, and/or the struc-

tural entropy165,182 also exhibit re-entrance that correlates with the dynamics. Fur-

ther, the connection between local structure and dynamics in polydisperse liquids

may be affected by the nature of the particle size distribution (e.g. Gaussian ver-

sus Pareto-distributed particle sizes183,184)171. Future investigations in these areas

are expected to provide additional insight into how the mechanisms for dynamical

slowing differ in 2-D, quasi-2-D, and 3-D systems.
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Chapter 5: Conclusions and future work

5.1 Conclusions

In this work, we presented investigations into the often-encountered scenario

of anomalous, slow dynamics within supercooled liquids and glasses. To probe the

physics of these systems, we performed MD simulations to study (1) the dynamics

of dilute, hard sphere tracers within model liquid and glass matrices and (2) the

evolution of ordered domains with dynamic slowdown in confined hard spheres. To

understand the role of interparticle interactions on non-absorbing tracer dynamics,

the matrix dynamics were tuned from attractive to repulsive by varying T. This

system is similar to the dense phase of liquid-liquid phase-separated solutions of op-

positely charged macromolecular species185, in which the attractions between the

macromolecules may be tuned from strong to weak186. With increasing tracer size,

we found that tracer dynamics became slower and more like the glassy dynamics

of the underlying liquid matrices, exhibiting anomalous logarithmic decay in the in-

termediate scattering function at a critical size of δ ≈ 0.35. Despite the long-time

attractive and repulsive liquid diffusivities being approximately equal, the anoma-

lous dynamics of the tracers extended for larger length and time scales within the

attractive matrices. This coupling to distinct time and length scales suggested that

the liquid dynamics in the caging regime alter tracer dynamics, manifesting in more

compact tracer trajectories in the attractive systems.

We extended this work by simulating hard sphere tracers of the critical size

δ≈ 0.35 in attractive and repulsive glasses, finding that dynamic arrest in the glass

matrices further slowed tracer dynamics and that tracers were localized in attrac-

tive glasses. However, arrest did not guarantee tracer localization in the case of
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hard sphere glasses, for which tracers became diffusive on simulation time scales.

Further investigation revealed that tracers in attractive systems were more strongly

caged and that caging length scales were more heterogeneous compared to repulsive

counterparts, suggesting that heterogeneity in attractive systems strongly influenced

tracer dynamics. Using the isoconfigurational ensemble, we found that structural

heterogeneity in attractive systems played a stronger role in determining tracer dy-

namics in the caging regime, indicating that the larger fluctuations during the caging

regime in repulsive systems resulted in greater coupling between matrix dynamics

and tracer dynamics. Conversely, the smaller caging fluctuations of attractive sys-

tems resulted in more static cages, allowing matrix void structure to control tracer

fluctuations.

Finally, we investigated the role of local bond-orientational order on the dynamic

slowdown of supercooled hard spheres confined between two parallel hard plates with

varying plate separation H. On decreasing H, the system exhibited a minimum dif-

fusivity at an intermediate H ≈ 2.34, corresponding to a switch from incommensurate

to commensurate packing in the direction perpendicular to the confining walls. For

commensurate packings (H < 2.34 and H = 3.00), relaxation times in the direction

parallel to the walls increase exponentially with the correlation length of hexatically

ordered domains, which increases in size with increasing φ. For incommensurate

packings H = 2.50, square and hexatically ordered domains coexist, but neither in-

crease exponentially with correlation lengths of these domains. Thus, we found that

a static length scale associated with bond-orientational order can contribute to dy-

namic slowdown in confined hard sphere liquids, but also that the dependence on

bond-orientational order varies with slight changes in confining length scale.
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5.2 Future work

5.2.1 Effect of Gaussian polydispersity on phase behavior of confined hard

spheres

Recently, Monte Carlo algorithms with ‘swap’ moves involving the exchange of

particle diameters was shown to circumvent the kinetic barriers limiting particle

rearrangement187,188. For some size-polydisperse supercooled liquids, Swap Monte

Carlo (SMC) allows for the preparation of supercooled configurations that would re-

quire in excess of millions of years of CPU time to prepare otherwise183. For other

liquids that are more prone to local crystalline ordering, SMC allows for the equili-

bration of complex crystal structures in strongly polydisperse systems189,190. Particle

size distributions in many of these crystallizing systems are unimodal and are sim-

ilar to the experimental size distributions in colloidal glass-formers133,191,192. Thus,

simulation and experimental investigations using these model supercooled liquids

require knowledge of the thermodynamic equilibrium phase behavior in order to

avoid crystallization.

Avoiding crystallization is particularly important for confined liquids in which

confining walls may decrease the freezing volume fraction166,168. Utilizing SMC to

uncover the equilibrium phase behavior of polydisperse hard spheres under confine-

ment would be a step towards the planning of future investigations. Specifically,

comparing the phase behavior of hard spheres with Gaussian-distributed diameters

to systems with power law or multimodal-distributed diameters would be useful.

5.2.2 Long-wavelength fluctuations in confined hard spheres

The investigation in Chap. 4 is concerned with the crossover from three to two

dimensional liquids in the limit of strong confinement154,174,193. Relatedly, inves-

tigations into supercooled liquids have examined the existence of long-wavelength

density fluctuations in supercooled liquids and glasses, a phenomena first predicted
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for two dimensional crystals194–199. Fluctuations in low dimensions (d ≤ 2) add up

independently, allowing the amplitude of fluctuations between particles on a lattice

to increase without bound as the distance between the particles increases; the am-

plitude is bounded for higher dimensions (d ≥ 3) because displacements must be

correlated and cannot add up independently169,200,201. Confined polydisperse hard

spheres provide a model to investigate systems with dimensions 2< d < 3.

Utilizing the SMC method introduced in section 5.2.1, we have conducted prelim-

inary investigations of long-wavelength fluctuations in confined polydisperse hard

spheres. By distributing particle diameters according to P(σ) = A
σ3 (A is constant) to

avoid crystallization, we have confirmed long-wavelength fluctuations in these sys-

tems (Fig. 5.1). The signature of these fluctuations in two dimensions is a logarithmic

increase in the cage-irrelevant portion of the MSD MCI with the periodic side length

of the simulation cell L195,196. Further investigation along these lines would illumi-

nate the influence of these long-wavelength fluctuations on the glass transition.
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5.2.3 Connection between dynamic heterogeneity and precursors to nucle-

ation in thin water films

In Chap. 4, we demonstrated an exponential dependence between relaxation time

in commensurately confined hard spheres and hexatic ordering, which is the close-

packed structure for two dimensional isotropic interactions. Being close-packed, this

packing differs qualitatively from the tetrahedral ordering characteristic of network-

forming liquids such as silica or water202–204. However, ice-like ordering was recently

shown in bulk supercooled TIP4P/Ice water205 to slow the dynamics of surrounding

water molecules116. Moreover, local drops in molecular mobility, a direct result of

dynamic heterogeneity, preceded the formation of ice-like clusters.

We ask whether similar mobility reduction could precede ice-like ordering in con-

fined water and how confinement may alter ordering within supercooled water. Fol-

lowing Fitzner et al., we may quantify the magnitude and time scale of maximum

dynamic heterogeneity in water confined along one direction using the dynamic sus-

ceptibility χ4 (Chap. 3)116. However, this calculation is complicated by the dynamic

gradient in the direction perpendicular to the confining surfaces206,207. To resolve

this complication, we introduce a layer-resolved calculation of χ4 and identify the
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time scale the maximum for each layer. We have performed this calculation for free-

standing thin films of supercooled TIP4P/Ice at 230 K, revealing that the time scale

and extent of dynamic heterogeneity increases towards the center of the film (Fig.

5.2). Once these time scales are identified, we can identify regions of mobile and im-

mobile particles and investigate connections with local ordering204 in free-standing

films208 and films deposited on substrates209.
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