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Abstract

Sensor networks have risen in importance in last several years. They have been

deployed for several tasks, such as monitoring volcanoes, monitoring buildings and

infrastructures, detecting enemy instrution in military, etc... Sensor location plays

an important role in network quality. It has impact on different aspects, i.e., network

connectivity, network coverage to name a few. However, exact sensor locations are

rarely achieved. On the one hand, sensors may be misplaced during operations. On

the other hand, sensor locations are kept uncertain due to privacy concerns. This

raises the need for investigating sensor networks with the presence of sensor location

uncertainty.

This dissertation provides an analysis on sensor networks with the presence of un-

certainty. First, we investigate network coverage and target localization and tracking

using binary proximity sensors under sensor location uncertainty. A deterministic,

polynomial-time algorithm is devised to compute the minimum sensing range for

guaranteed coverage. Furthermore, algorithms are proposed for target localization

and measurement model for target tracking in sensor networks. The approaches are

based on the high order maximum Voronoi diagram of disks in the plane. Next, we

study privacy in spatial queries. In contrast to sensor location uncertainty, uncer-

tainty is introduced to spatial queries to protect user information. Essentially, the

querying user is grouped with other users to form a cloak for which spatial queries

are made, instead of a single query location. In this disseration, a framework for user

identity privacy in k-nearest queries is proposed, in which we devise a k-anonymous,

locality-preserving cloaking algorithm. Cloaks are also used in spatial skyline queries,
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which leads to different domination relationships. The disseration proposes geomet-

ric algorithms for spatial skyline queries with user location uncertainty. In addition,

the fuzzy domination relationship in spatial skyline queries is investigated. Our work

opens up new directions in spatial skyline queries with uncertainty.
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Chapter 1

Introduction

1.1 Motivation

With the advancements in Micro-Electro-Mechanical Systems (MEMS) and sensing

technologies, there has been increasing interest in wireless sensor networks (WSNs).

A WSN consists of thousands of tiny sensor nodes deployed in a geographical area

for observation of an event of interest. These nodes are able to perform sensing,

processing, communicating with each other via a wireless ad hoc network to trans-

mit data from different regions of the sensing field. Each node has a transmission

range. Node i can receive signal from node j if i is within the transmission range of

j. We assume that each node can provides the location information itself, by local-

ization methods such as low-power Global Position System (GPS), or based on signal

strengths [13, 8]. Wireless sensor networks can be classified into two classes: static

and mobile based on the positions of wireless nodes. In the former, the position of

1



nodes does not change, while the nodes in the latter can move quickly. Advances in

smart hand-held devices such as smartphone, PDA, and tablets with equipped GPS

receivers have promoted the popularity of mobile networks and broaden the concepts

of sensor. The user who carries a smartphone may join as a node in a large mobile

networks, which have shown huge advantages in various applications such as road

monitoring [50, 77] and healthcare [47, 53], to name a few.

Although sensor location is important in mobile and sensor networks, the true

sensor locations are rarely achieved, and thus uncertainty always presents. In wire-

less and mobile sensor networks, even with on-board GPS receivers on all or selected

nodes, or execution of distributed location algorithms, there generally exists uncer-

tainty in sensor locations. Even carefully positioned in the deployment phase, sensors

may be unintendedly displaced due to environmental or human factors during the

course of operation. Furthermore, uncertainty may be introduced on purpose due to

privacy and security concerns, i.e., users do not want to reveal their locations. Thus,

uncertainty plays both as an unexpected factor, and a mean for privacy protection

in mobile and sensor networks. That is to say, uncertainty is a fundamental problem

in mobile and sensor networks.

Presence of sensor location uncertainty has impacts on several operational aspects

of sensor and mobile networks including link quality, network connectivity, routing,

coverage, queries in networks, etc... Much work have been done in literature to model

and process uncertainty. A straightforward approach is to estimate sensor locations

or to avoid using sensor locations when uncertainty presents. Akoush and Samed

use Bayesian learning and neural network to predict mobile node locations in mobile

2



networks to enhance network connectivity, landmark-based routing schemes [21, 20]

employ relative coordinates instead of physical sensor locations. Probabilistic sens-

ing models [84, 30] are widely used to analyze sensor uncertainty where probabilistic

models are used to evaluate the detecting probability of sensors. From another per-

spective, modeling sensor location uncertainty has gained much interest. Much work

assumes a Gaussian distribution for sensor locations [85, 42]. Some work assumes

the regular hexagonal [34] or identical [9] uncertainty regions of sensor location.

At the same time, uncertainty is closely related to privacy [2]. In the scope of

this dissertation, we constraint ourselves to the location privacy in location-based

services. This is defined as the “ability to prevent other parties from learning one’s

current or past location” [10]. Using uncertainty to provide privacy location based

services has been intensively investigated in literature. Essentially, user location

information are cloaked in a region to hide the true location [27, 10]. However,

when users navigate on predefined routes, hiding single locations is not sufficient

to protect a user’s travel information. Therefore, uncertainty has been utilized to

prevent trajectory information leakage [23, 16, 80].

This dissertation concerned with uncertainty using geometric algorithms. We are

interested in analyzing sensor networks when sensor locations are associated with un-

certainty. We seek for algorithms to analyze the worst case performance of network

coverage and target localization and tracking in sensor networks with sensor loca-

tion uncertainty. Specifically, algorithms are devised for evaluation of the minimum

sensing range for guaranteed network k-coverage, target localization, and measure-

ment model in target tracking using sensor networks. The proposed algorithms are

3



based on the high order maximum Voronoi diagram. In addition, we study uncer-

tainty and its relation to privacy in spatial queries including k-nearest neighbor and

spatial skyline queries [63, 66]. While the former is a well-defined and well-studied

topic, the spatial skyline query is relatively new. It is a special case of the skyline

query [11], which returns “good” results based on domination relationship of objects.

Skylie queries, in particular, concern spatial relationships between objects. In this

dissertation, a framework for k-nearest neighbor queries in participatory sensing and

location-based services is proposed, which provides guaranteed privacy. Additionally,

an algorithm is proposed for k nearest neighbor search with cloaks, which is based on

the high order Voronoi diagram. Next, we investigate spatial skyline queries where

querying locations are given as cloaks. Finally, the spatial skyline query with fuzzy

domination relationships is investigated.

1.2 Dissertation organization

We start with the high order maximum Voronoi diagrams of disks in the plane in

Chapter 2, the building block for sensor location uncertainty analysis. Then, net-

work coverage and target localization and tracking in binary proximity disk sensor

networks is discussed in Chapter 3. Uncertainty in spatial queries is studied in Chap-

ters 4 and 5. Specifically, a k-anonymity privacy framework for k-nearest neighbor

queries is proposed in Chapter 4, which presents a k-anonymous, locality-presering

cloaking algorithm, and k nearest neighbor search with cloaks. Chapter 5 investigates

uncertainty in spatial skyline queries, which deals with user location uncertainty and

4



fuzzy domination relationships. We conclude the work with the scope of future work

in Chapter 6.
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Chapter 2

High Order Maximum Voronoi

Diagrams of Disks in 2D

We first briefly introduce the concept of Voronoi diagram, and its generalization

to the high order Voronoi diagram of points and segments in the plane. Then, we

discuss the maximum Voronoi diagram of disks in 2D.

2.1 High order Voronoi diagram of points and seg-

ments in the plane

The order-1 Voronoi diagram (Voronoi diagram for short) of a set of points, referred

to as sites, in the plane is a tessellation, which divides the plane into a set of regions

called Voronoi cells, each corresponding to a site. A Voronoi cell is the locus of points

6



that are closer to the corresponding site than to the others. The Voronoi diagram of

points is formally defined in [7] as follows:

Definition 2.1. For p, q ∈ S let B(p, q) = {x|d(p, x) = d(q, x)} be the bisector of

p and q. B(p, q) is the perpendicular line through the center of the line segment

pq. It separates the halfplane D(p, q) = {x|d(p, x) < d(q, x)} containing p from the

halfplane D(q, p) containing q. We call V R(p, S) =
⋂

q∈S,q 6=p D(p, q) the Voronoi

region of p with respect to S. Finally, the Voronoi diagram of S is defined by V (S) =

⋃

p,q∈S,q 6=p V R(p, S) ∩ V R((q, S).

When we divide the plane into regions, each is the locus of points closer to a set

of k sites (instead of a single site) than to the others, we have an order-k Voronoi

diagram. Figure 2.1 shows examples of order-1 and order-2 Voronoi diagrams of

7 points. As shown in Figure 2.1b, the shaded area is the order-2 Voronoi cell

corresponding to points p6 and p7. The distances from any point p in this cell to p6

and p7 are smaller than those to other sites. In other words, d(p, p6) ≤ d(p, pi) and

d(p, p7) ≤ d(p, pi), where pi 6= p6, p7, d(·, ·) is the Euclidean distance between two

points.

Construction of high order Voronoi diagrams requires identifying groups of sites,

whose high order Voronoi cells are not empty. In the example shown in Figure 2.1,

there exists no point p such that d(p, p2) ≤ d(p, pi) and d(p, p5) ≤ d(p, pi), where

pi 6= p2, p5. Therefore, the order-2 cell corresponding to {p2, p5} does not exist. In

his seminal paper [43], Lee proposed an incremental approach to construct order-

k Voronoi diagrams of n points in O(k2n log n) time complexity. To construct the

order-k Voronoi diagram, we tessellate every cell of order-(k − 1) Voronoi diagram
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(a) Order-1 Voronoi diagram. (b) Order-2 Voronoi diagram. Shaded

is the Voronoi cell corresponding to

sites p6 and p7.

Figure 2.1: An example of high order Voronoi diagrams.

by the order-1 Voronoi diagram of its neighbors. An example is shown in Figure 2.2,

which illustrates the tessellation of the example in Figure 2.1a. In this example, the

cell corresponding to site p7 is tessellated by sites p2, p3, p4, and p6. To tessellate,

the order-1 Voronoi diagram of the four neighbors is constructed and superimposed

on the cell of p7. The part of the order-1 Voronoi diagram in the cell is shown by

green edges. It is easy to recognize that those edges are parts of the order-2 Voronoi

diagram shown in Figure 2.1b.

When sites are line segments, we have Voronoi diagrams of line segments (kSVD

for short). The (order-1) Voronoi diagram of line segments is defined as follows:

Definition 2.2 (Segment Voronoi Diagram [7]). The Segment Voronoi Diagram

(SVD) is defined over a set of non-intersecting sites, which can either be points
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Figure 2.2: Tessellation of the cell corresponding to site p7 in order-1 Voronoi dia-

gram.

or linear segments. The SVD is a subdivision of the plane into connected regions,

called cells, associated with the sites. The cell of a site si is the locus of points on the

plane that are closer to si than any other site sj, j 6= i. The distance δ(x, si) of a

point x in the plane to a site si is defined as the minimum of the Euclidean distances

of x from the points in si.

The concept of high order Voronoi diagram of line segments can be similarly

adopted from the concept of high order Voronoi diagram of points. An example of

Voronoi diagram of line segments is given in Figure 2.3.The distance d(p, l) from a

point p to a line segment l is defined as d(p, l) = minp′∈l d(p, p
′). Lee’s approach

to the construction of kVD can be adapted to the construction of kSVD with some

modifications. First, a line segment is considered as a set of three sites: two endpoints

and the open inner line segment. Second, different from point sites, line segment

sites may intersect. A bisector of two sites in kSVD may contain different bisector

9



Figure 2.3: An example of Voronoi diagram of line segments. Red lines are line

segments. Blue curves are the segment Voronoi diagram.

segments, as shown in Figure 2.4. In this example, the edge of cells of two open

line segment l1 and l2 consists of the bisector of the inner segments, the bisectors

of endpoints and inner line segments, and the bisector of endpoints. As shown in

the example, Voronoi edges intersect at the intersection of l1 and l2, however, the

intersection is not a Voronoi vertex. Roughly speaking, Lee’s method can be adapted

to construct kSVD of n line segments in O(k2n log n) time complexity.

When the distance from a point p to a point site q is augmented by a positive

weight rq of q, we have the maximum Voronoi diagram. Details are given in the

following section.
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Figure 2.4: Cells and bisectors of kSVD. Shaded is the cell of line segment l1. Orange

curves are the bisectors of the two line segments.

2.2 Maximum Voronoi diagrams of disks

2.2.1 Introduction

Recent years have witnessed an increasing interest in Voronoi diagrams of disks from

both theory and application sides. Aurenhammer studied power Voronoi diagrams

in [6]. Karavela et al. proposed a dynamic algorithm for additively weighted Voronoi

diagrams construction in [36], which allows disk insertion and deletion. [61] stud-

ied the guaranteed Voronoi diagram of uncertain sites. In [79], high order Voronoi

diagrams of points in 2D are used for moving kNN query authentication. In this

paper, we study the high order Voronoi diagram of disks, called maximum Voronoi

diagrams. We propose a mechanism for updating the diagram when disks change

size, which leads to a distributed implementation-friendly algorithm for constructing

high order maximum Voronoi diagrams.
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In his seminal work [43], Lee proposed an incremental construction algorithm

for order-k Voronoi diagrams of points in the plane. In his approach, diagrams

of orders from 1 to k − 1 are constructed to obtained the order-k VD leading to an

O(k2N logN) time complexity for N points. Although the approach can be extended

to the construction of order-k max VDs of exclusive disks, it does not apply to general

cases, i.e., disks may contain other disks. In this paper, we characterize the evolution

of high order max VDs as disks expand/shrink. Several advantages stem from this

mechanism. First, it allows quick update for high order max VDs as disks’ sizes

change, resulting in a polynomial complexity algorithm for constructing high order

max VD. Second, it enables site insertion and deletion in high order max VDs, which

naturally leads to the construction of high order point VDs. Our contributions are

as follows:

• A characterization the updates in high order max VDs with disk expansion/shrinking.

We show that the expansion of N disks in an order-k max VD of N disks,

where each expands once to infinite size, to not contain other disks, takes

O(kN logN).

• We propose an algorithm to order-k max VD construction given the order-

k VD of disk centers with O
(⌈

rmax−rmin

dmin

⌉

kN logN
)

expected running time

complexity, where rmax and rmin are respectively the maximum and minimum

radii of N disks, and dmin is the minimum distance between two disk centers.

• We propose a mechanism for site insertion and deletion in order-k max VDs

with O(kN logN) running time complexity where N is the number of disks. It
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naturally leads to site insertion and deletion in high order point VDs.

2.2.2 Overview of the proposed approach

Consider a set of N disks S = {D1(o1, r1),D2(o2, r2), . . . ,Dn(oN , rN)} where oi and ri

are respectively the center and radius of disk Di (1 ≤ i ≤ N). We define the distance

from a point p to disk Di as dmax(p,Di) = d(p, oi) + ri, where d(·, ·) is the Euclidean

distance between two points. The locus of points closer to Di than to Dj, h(Di,Dj),

is one of the half-planes determined by the bisector b(Di,Dj) = {p|dmax(p,Di) =

dmax(p,Dj)}, or b(Di,Dj) = {p|d(p, oi) − d(p, oj) = rj − ri}. In general, b(Di,Dj) is

a hyperbolic curve. Let V(Di) denote the locus of points closer to Di than to any

other disk in S. Thus, V(Di) =
⋂

i 6=j h(Di,Dj). It is shown from [36] that if Di does

not contain any other disk, then V(Di) 6= ∅. In addition, V(Di)’s boundary consists

of edges, which are hyperbolic segments, and vertices, which are intersections of

adjacent edges. V(Di) is referred to as the Voronoi region (or face) associated with

disk Di, and the set of V(Di), 1 ≤ i ≤ n is referred to as the maximum Voronoi

diagram, or max VD for short, of S. In [36], the authors proposed an algorithm to

construct the max VD of n disks in O(T (N) +N logN), where T (N) is the time of

the nearest neighbor query under dmax metric. An example of max VD is shown in

Figure 2.5. As seen in the figure, V(D8) = ∅ since it contains D7.

Similar to the high order Voronoi diagram of points first studied by Lee [43], we

generalize the concept of max VD so as a Voronoi region is associated with a set of

disks, H ⊂ S for |H| > 1. Denote Vk(H,S), where |H| = k,H ⊂ S, the locus of
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D1

D2

D3

D4

D5
D6

D7

D8

Figure 2.5: The max Voronoi diagram of 8 disks.

points closer to all disks of H than to any disk in S\H. We define the order-k max

VD of S, V k(S), as a collection of Voronoi regions corresponding to all subsets H of

S (|H| = k), i.e., V k(S) =
⋃

H⊂S V
k(H,S), |H| = k. We adopt the definition in [7]

to formally define the order-k max VD as follows:

Definition 2.3. For i, j ∈ S, let D(Di,Dj) = {p|dmax(p,Di) < dmax(p,Dj)}. Let

H ⊂ S, |H| = k. We define

Vk(H,S) =
⋂

h∈H,i 6∈H

D(Dh,Di)

the order-k maximum-Voronoi region of a set of disks H with respect to S. The

order-k maximum-Voronoi diagram of S is defined as

V k(S) =
⋃

H,H′⊂S;H 6=H′;|H|=|H′|=k

Vk(H,S)
⋂

Vk(H ′, S)

In [73], Lee’s incremental algorithm is applied to construct order-k max VD under

the assumption that no disk contains any other disk. Accordingly, each Voronoi

region of order-(k − 1), Vk(H,S), is tessellated by the order-1 Voronoi diagrams of
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some disks to create the next order Voronoi regions. It has been shown that only

disks associated with edges of Vk(H,S) are considered for tessellation. In general

placement of disks, the assumption does not always hold. As illustrated in Figure 2.6,

although D3 is associated with no edge in the order-1 max VD of S = {D1,D2,D3},

V2({D2,D3}, S) 6= ∅.

We analyze the properties of order-k max VD of disks as disks expand/shrinks.

The intuition is as follows. Changing a disk’s radius continuously makes some Voronoi

vertices move along an identifiable trajectory while the other vertices do not change.

We define an event as the meeting of two vertices as they are moving. We observe that

disks’ changes do not necessarily cause an event, that is, a disk expand continuously

but events happen discretely. This is illustrated in Figure 2.7. There are two kinds

of vertices, denoted by circles and solid squares. As D7 expands, vertices of both

kinds move along particular edges (arrows in the figures). We observe that solid

squares move away their corresponding opposite vertex, while circles move toward

their corresponding opposite vertex. As shown in Figure 2.7b, vertices may meet

while moving. In this case, they may “destroy” edge of disks D3 and D7, e3,7 and

create another one, e1,4 simultaneously. Additionally, a face may degenerate due to

the meeting of moving vertices, e.g., face V{4, 7} of disks D4 and D7 in Figure 2.7b.

In some cases, another face is born simultaneously, e.g., face V{5, 6} in Figure 2.7b.

In other cases, faces degenerate and no face is born, shown in Figure 2.8. In the

following sections, we provide details of events that happen when a disk expands.

We will see that, the number of events caused by serially expanding n disks in an

order-k max VD is O(kn).
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Properties of expanding disks are applied to construct order-k max Voronoi dia-

grams and high order Voronoi diagrams of points. We propose an incremental disk

expansion approach to the construction of order-k max VD in which the order-k

Voronoi diagram of points is updated to obtain the order-k max VD of disks as

disks’ radii increase from zero to the given sizes.

In the rest of this chapter, we discuss the update mechanism of high order

max VDs as disks expand/shrink is discussed in Section 2.3. The properties of

expanding/shrinking disks results in the algorithms for construction and site inser-

tion/deletion in high order max VD in Section 2.4.

D1

D2

D3

(a)

D1

D2

D3

(b)

Figure 2.6: Incremental construction does not apply as disks are contained inside

other ones.

2.3 Geometrical analysis of order-k max VD with

disk expansion/shrinking

In the following discussion, we assume that no more than 2 disks’ centers are co-

linear, no point in the plane is equal-distant to more than 3 disks under dmax metric.
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D7

D1

D6

D3
D4

D5

V{4, 7}

D2 e3,7

(a)

D1

D2

D3 D4

D5

D6

D7

e1,4 V{5, 6}

(b)

Figure 2.7: Expanding a disk makes edges and/or faces degenerate while creating

new edges and/or faces. Dashed edges are corresponding to the expanding disk.

Arrows show the movements of vertices.

We summarize the notations used throughout the paper as follows:

Dk(ok, rk): The disk centered at ok with radius rk. We use the notion Dk for sim-

plicity when no confusion arises.

S: The set of N disks {D1, D2, . . . , DN}.

S ′
i: The modified S, in which the radius of Di expands by a positive amount ǫ.

S ′
i = (S\{Di})

⋃

{Di′(oi, ri + ǫ)}.

H: A subset of S.

H ′
i: The updated H. H ′

i = (H\{Di})
⋃

{Di′(oi, ri + ǫ)}.

dmax(p,Di): The maximum distance from p to Di. dmax(p,Di) = d(p, oi) + ri, where

d(·, ·) is the Euclidean distance between two 2D points.
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D4

D2

D3

D5

D1

Figure 2.8: The order-2 max VD of 5 disks. As D4 expands, vertices move as

indicated by the arrows. As a result, the darker face shrinks and 2 lighter faces

expands. Eventually, the darker face degenerates.

Vk(S): The max Voronoi region (or face) corresponding to disk Dk in the max VD

of S. Short as Vk for the same purpose where no confusion occurs.

V (S): The max VD of the disk set S.

Vk(H,S): An order-k max Voronoi region associated with H, where |H| = k.

V k(S): The order-k max VD of S. When k = 1, V k(S) ≡ V (S).

vi,j,h: The max VD vertex corresponding to disks Di, Dj, and Dh.

ei,j: The edge of the max VD corresponding to disks Di and Dj. ei,j is a hyperbola

segment or an infinite hyperbola.

bi,j: The locus of points p such that dmax(p,Di) = dmax(p, Cj). bi,j is a hyperbola

with foci being oi and oj, or a straight line when ri = rj. We refer to bi,j as
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the bisector of oi and oj.

Two circles D1(o1, r1) and D2(o2, r2) are internally tangent if d(o1, o2) = |r1− r2|. In

the rest of the paper, by stating that a circle D1 is internally tangent to D2, we mean

D2 lies interior to D1 unless stated otherwise. In addition, a disk D1 is defined to

contain D2 if D2 lies interior to D1 but D1 is NOT internally tangent to D2. Consider

two edges e1 and e2 in a high order max VD. Edge e2 is defined to precede edge e1,

denote e1 ≺ e2, if e1’target is incident to e2’s source.

2.3.1 Old vertex, new vertex

We review two kinds of vertices described in [43]. Assume p is equal-distant to 3 disks

under the dmax metric , i.e., Di,Dj, and Dq. Let C be the circle centered at p and

internally tangent to the three disks. Assume that C contains k− 1 other disks. By

Definition 2.3, p belongs to 3 Voronoi regions of order k, namely, Vk(H
⋃

{Di}, S),

Vk(H
⋃

{Dj}, S), and V
k(H

⋃

{Dq}, S). In this case, p is referred to as a vertex of

V k(S). Furthermore,p is also at the intersection of 3 Voronoi regions of order k + 1,

namely, Vk+1(H
⋃

{Di,Dj}, S), V
k+1(H

⋃

{Dj,Dq}, S), and V
k+1(H

⋃

{Dq,Di}, S).

We say that, p is a new vertex of V k(S) and is an old vertex of V k+1(S). In general,

a new vertex of order-k Voronoi diagram becomes an old vertex in the order-(k + 1)

Voronoi diagram; an old vertex of order-k Voronoi diagram is no longer a vertex in

the order-((k + 1) Voronoi diagram.

We can identify the disks associated with the two edges incident to vertex vi,j,h

of face Vk(H,S) in V k(S). Let 3 edges incident to vi,j,j are ei,j, ei,h, and ej,h. If vi,j,h
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is new, and Di ∈ H, the 2 edges of Vk(H,S) incident to vi,j,h must be ei,j and ei,h.

If vi,j,h is old, and {Di,Dj} ⊂ H, the 2 edges of Vk(H,S) incident to vi,j,h must be

ei,h and ej,h.

Given an old vertex v of V k+1(S), there is a relationship between the edges of

V k(S) and those of V k+1(S), all incident to v. Let edges of V k+1(S) that are incident

to v be e1,2, e2,3, and e3,1. Let C1 be the circle centered at v and internally tangent

to D1, D2, and D3. C1 contains a set H of k− 1 disks. We can always move v along

b1,2, away from the segment that contains e1,2 a sufficiently small distance to v′, such

that circle C2 centered at v′ and internally tangent to D1 and D2 still contains H, as

illustrated in Figure 2.9. v′ must be on an edge of V k(S). Similar observations can

be made for edges e2,3 and e3,1. We conclude that, there exists an edge e′i,j of order-k

max VD incident to the old vertex of edge ei,j of order-(k + 1) max VD, which are

at the different branch of bisector bi,j .

�
�
�
�

��

D1

D2

D3

C1

C2

e′1,2

e1,2

v′
v

Figure 2.9: Edge e′1,2 of order-k max VD (dashed) meets edge e1,2 of order-(k + 1)

max VD (solid) at e1,2’s old vertex.
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To facilitate our discussion on disk expansion and shrinking, we introduce the

notion of pseudo disk. A pseudo disk, denotes D∞, is defined as a disk centered at

the infinity with unit radius. Edges of regular disks and pseudo disks are referred to

as pseudo edges. Consider the infinite endpoint p of an infinite edge ei,j in an order-1

max VD, we have dmax(p,Dj) = dmax(p,Di) =∞. Therefore, we can associate p with

a pseudo disk, that is, p is a vertex corresponding to 3 disks, namely, Dj, Di, and

D∞. By this way, we enclose the open end of each order-1 Voronoi region V({Di}, S)

with two pseudo edges. Therefore, all regions in any order-1 max VD are considered

“closed”. By the similar argument, the open end of the infinite edge ei,j is bounded

by a new vertex corresponding to disks Di, Dj, and D∞.

We summarize the above discussions in the following propositions.

Proposition 2.1. A new vertex in order-k max VD of S is an old vertex of order-

(k + 1) max VD of S.

Proposition 2.2. Consider a vertex vi,j,n of Vk(H,S). If it is new and Di ∈ H, the

2 edges of Vk(H,S) incident to vi,j,n are ei,j and ei,n. If it is old and {Di,Dj} ⊂ H,

the 2 edges of Vk(H,S) incident to vi,j,n are ei,n and ej,n.

Proposition 2.3. Consider an old vertex vi,j,n of an order-k max VD, V k(S). There

exists an edge e′i,j of V
k(S). In addition, the edge ei,j V

k(S) in meets e′i,j at vi,j,n but

they do not overlap.

Proposition 2.4. The open end of an infinite edge ei,j of V
k(S) can be viewed as a

new vertex of V k(S) corresponding to 3 disks, namely, Di,Dj, and D∞.

We now describe the structure of V k(S) by adopting the results in [43], with
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extension to new and old vertices.

Proposition 2.5. Consider a circle C expanding from a point p in the plane contains

(k − 1) disks, D1, . . . ,Dk−1. If C is internally tangent to exactly one disk Dk, then

p ∈ Vk({D1, . . . ,Dk}, S). If C is internally tangent to exactly 2 disks, Dk and Dk+1,

then p ∈ ek,k+1 of Vk({D1, . . . ,Dk}, S) and Vk({D1, . . . ,Dk−1,Dk+1}, S). If C is

internally tangent to 3 disks, p is a new vertex in V k(S), and, simultaneously, an

old vertex in V k+1(S).

The result implies that the order-k max VD is a tessellation of the plane, which

divides it into regions, each of which is a locus of points closer to a set of k disks

than to other disks. There may be several non-contiguous regions corresponding to

an particular set of k disks in an order-k max VD when k > 1. Furthermore, some

disks may not contribute any edge in the diagram, as illustrated in the example

in Figure 2.6. Generally speaking, disk expansion and shrinking are two opposite

processes. Therefore, we only consider one for convenience, the other one is similar.

In this work, we study the evolution of the order-k max VD as a disk expands. More

specifically, we investigate 2 cases, namely, i) the disk that shares edges with at

least one disk, and ii) the disk that does not share edges with any disk. We refer

the disks of the first case as type-I, and the latter as type-II. Expanding a type-II

disk eventually makes it a type-I, while expanding a type-I disk possibly makes some

type-I disks type-II. In the following sections, we establish fundamental properties

as a disk in an order-k max VD expands. We study type-I disks in section 2.3.2 and

discuss in section 2.3.3 the expansion of a type-II disk.
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The main result of the work is as follows: as disks expand, events happen. How-

ever, when each disk expands (possibly to infinite size) once, the number of events

is bounded by O(kN). Formally,

Theorem 2.1. Consider an order-k max VD of N type-I disks, where k < N . The

expected number of events happening as each disk expands once, either to infinite

size, or to not contain other disks, is O(kN).

We first go over the foundation before sketching the proof. We start by defining

the maximum circumference. Consider an edge ei,j of 2 regions V
k(H1, S), V

k(H2, S).

By Proposition 2.5, there exists a circle internally tangent to Di and Dj, and con-

tains H1

⋃

H2. We refer to the circle as the maximum circumference of H1 and

H2 associated with ei,j, or simply maximum circumference when it is clear in the

context. Similarly, a maximum circumference associated with a vertex is defined as

the circle centered at the vertex and internally tangent to the disks constructing the

vertex. When ei,j is an infinite edge, there exists a maximum circumference centered

at infinity.

2.3.2 Expansion of a type-I disk

Expanding a disk Di, where Di ∈ H, makes some regions Vk(H,S) shrink.

Lemma 2.1. Let Vk(H,S) and Vk(H ′
i, S

′
i) be the max Voronoi region of H and H ′

i

in S and S ′
i, respectively. Then, V

k(H ′
i, S

′
i) ⊂ V

k(H,S).

Proof. Let p ∈ Vk(H ′
i, S

′
i). By definition, dmax(p,Dj) ≥ dmax(p,Dq), ∀j ∈ S, ∀q ∈ H ′

i.
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Since H ′
i only differs from H by i in that ri′ > ri, we have dmax(p,Dj) ≥ dmax(p,Dq),

∀j ∈ S, ∀q ∈ H. Therefore, p ∈ Vk(H,S).

Roughly speaking, expanding a disk leads to changes in vertices, edges, and

regions of V k(S). As a high order max VD evolves, different sequences of events

occur as different types of vertices and edges are involved. Vertices move along edges

and meet other ones. The meeting of 2 new vertices or 2 old vertices results in an

edge-death/birth, while the meeting of an old vertex and a new one additionally

leads to face-death/birth.

We first characterize the changes in vertices when a disk expands in the following

lemma.

Lemma 2.2. Consider a vertex vi,j,q of Vk(H,S). As Di expands, vi,j,q moves along

bj,q. If vi,j,q is new, it moves away from the other end of ej,q elongating ej,q. Other-

wise, it moves towards the other end of ej,q to shorten ej,q.

Proof. We first prove the case of new vertices. W.l.o.g, assume Di ∈ H. The circle

centered at vi,j,q and internally tangent to Di, Dj, and Dq contains H\{Di}. Since

no point in the plane is equal-distant to more than 3 disks, there exists a sufficiently

small ǫ such that there exists a circle C internally tangent to Di′(oi, ri + ǫ), Dj, and

Dq, and contains H\{Di}. Let vi′,j,q be the center of C. Clearly, vi′,j,q ∈ bj,q. Since

C is internally tangent to Di′ , it contains Di. Therefore, it must not be in the ray

part of bj,q originated at vi,j,q, which contains ej,q. This implies that ej,q is elongated.

If vi,j,q is old, it is a new vertex of the order k − 1 diagram from earlier discussions.

Moreover, edge e′j,q of order k−1 and edge ej,q of order k diagrams are both incident
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to vi,j,q, but lie on different halves of bj,q. As Di expand, vi,j,q moves to elongate e′j,q,

which equivalently shortens ej,q.

The lemma establishes the motion of different kinds of vertices, i.e., old vertices

and new vertices, as the result of expansion of an associated disk, Essentially, motion

of old vertices in an order-k max-VD is equivalent of their motion in the order-(k−1)

max-VD. This is illustrated in Figure 2.10.
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ej,k

ei,j

ei,k

Figure 2.10: Illustration of a vertex’s movement. Solid curves are edges of the order-

(k − 1) max VD. Dashed curves are edges of the order-k max VD, which are the

extension of the corresponding edges in the order-(k − 1) max VD. The square is a

new vertex vi,j,k of the order-(k − 1) max VD. As Di expands, vi,j,k moves along ei,j

away from the other ends of ei,j in the order-(k − 1) max VD, and toward the other

end of ei,j in the order-k max VD (shown by the arrow).

Vertices of an order-k max-VD meet when disks expand leading to events. When

different types of vertex meet, different consequences entail. We discuss them in

details shortly. It is important to note that, bj,q is static irrespective of the expansion

of Di even if the expansion of Di may lead to the movement of both ends of ej,q.

This is useful in evaluating the expansion amount of Di when meetings of vertices
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happen. Given a disk Di and the corresponding order-k max VD, we can always

evaluate the maximum expansion of Di till the next event happens.

Lemma 2.3. Let ei,j be an edge of Vk(H,S) with 2 new vertices, e.g., vi,j−1,j and

vi,j,j+1 in counter-clockwise order in Vk(H,S). ei,j−1 and ei,j+1 are the edges of

Vk(H,S) incident to vi,j−1,j and vi,j,j+1, respectively. Let p be the intersection of

bj,j−1 and bj,j+1. Assume that the next event as Di expands is the meeting of vi,j−1,j

and vi,j,j+1 at p. If Dj−1 6= Dj+1, then with further expansion of Di, ei,j = ∅ and

ej−1,j+1 6= ∅. In addition, both vertices of ej−1,j+1 are new.

Proof. Let Di′ := Di(oi, ri + dmax(p,Dj)), i.e., Di expands to Di′ such that vi,j−1,j

meets vi,j,j+1 at p. The maximum circumference C centered at p, is internally tangent

to disks Dj+1, Dj, Dj−1, and Di. Since vi,j−1,j and vi,j,j+1 are new vertices, C contains

H\{Di}. Let pj+1, pj, and pi be the tangent point of disks Dj+1, Dj, and Di with

C. Let pipj, pipj+1, and pjpj+1 be the arcs of C such that they do not contain pj−1,

pj, and pi, respectively. Let pj−1 be the tangent point of Dj−1 with C. We claim

that pj−1 6∈ pipj+1

⋃

pjpj+1. We prove by contradiction. Assume pj−1 ∈ pipj+1 as

shown in Figure 2.11a. Since Di′ contains Di, the maximum circumference centered

at p must contain Dj+1 as shown in Figure 2.11b, which is a contradiction. By

similar arguments, we can show that pj−1 6∈ pjpj+1. Therefore, pj−1 ∈ pipj. As Di

expands further from Di′ , all disks that contain Dj and Di must contain Dj+1 or

Dj−1 (Figure 2.11c). Therefore, edge ei,j does not exist in Vk(H,S). Furthermore,

C still contains H\{Di} and is internally tangent to Dj, Dj−1, and Dj+1. Since

|H\{Di}| = k− 1, vj−1,j,j+1 is a new vertex of V k(S), and thus, there exists an edge

ej−1,j+1 of V
k(S). Moreover, with a sufficiently small expansion of Di from Di′ there
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exists a disk that is internally tangent to Di, Dj−1, and Dj+1 and contains H\{Di}.

Thus, vi,j−1,j+1 is a new vertex of ej−1,j+1 = ∅. This completes the proof.
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(a) When vi,j−1,j ≡

vi,j,j+1, Di, Dj , Dj−1,

and Dj+1 are co-circular.
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(b) As Di shrinks, the

maximum circumference

centered at vi,j,j+1

(dashed) does not

contain Dj−1 but that

centered at vi,j,j−1

(dot-dashed) contains

Dj+1.
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Dj−1
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(c) With a sufficiently

small expansion of Di,

the maximum circumfer-

ence internally tangent to

Di, Dj+1, and Dj−1 (dot-

dashed) does not contain

Dj .

Figure 2.11: Illustration of Lemma 2.3’s proof.

Lemma 2.4. Consider an edge ei,j of 2 regions Vk(H1, S) and Vk(H2, S) with 2

old vertices vi,j,n and vi,j,m, where {Di,Dn,Dm} ⊂ H1 and {Dj,Dn,Dm} ⊂ H2,

respectively. Let Vk(H3, S) and V
k(H4, S) be the other regions, incident to vi,j,n and

vi,j,m, respectively. If Dm 6= Dn, and Dn expands such that the next event is the

meeting of vi,j,n and vi,j,m, further expansion of Dn results in i) ei,j = ∅, and ii)

“new” edge en,m 6= ∅ of V
k(H3, S) and V

k(H4, S).
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Di
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pj

Figure 2.12: Circle C1 is internally tangent to Di,Dj , and Dn at i1, j1, and n1,

respectively, and contains Dm. Circle C2 is internally tangent to Di,Dj,Dm and

contains Dn. As Dn expands, it must first touch C1 at arc j1i1

Proof. Let C1 and C2, respectively, be the circles centered at vi,j,m and vi,j,n, and

internally tangent to 2 set of circles {Di,Dj,Dm} and {Di,Dj,Dn}. By the property

of old vertices, C1 contains Dn, and so does C2 for Dm. Let pi, pj , and pm be the

tangent points of C1 with Di,Dj, and Dm, respectively. Let pjpi, pipm, and pmpj,

respectively, be the arcs that does not contains pm, pj, and pi. When Dn expands,

it may first touch C1 at arcs pjpi, pipm, or pmpj. Since when vi,j,n ≡ vi,j,m, C1 and

C2 coincide and both tangent to Di,Dj,Dm, and Dn, Dn must first touch C1 at

pjpi by the similar arguments as in the proof of Lemma 2.3. This is illustrated in

Figure 2.12. Moreover, as Dn expands further, there is no circle internally tangent to

Di and Dj that contains Dm and Dn. Therefore, edge ei,j of V
k(H1, S) and V

k(H2, S)

disappears. Moreover, there exists a circle C internally tangent to Dm and Dn that

contains Di and Dj. In addition, C contains C1, and thus, C contains all disks of

H3 and H4. Therefore, there exists an edge em,n of Vk(H3, S) and V
k(H4, S) due to

Proposition 2.5. Furthermore, both the vertices vi,n,m and vj,n,m of em,n are old.
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Lemmas 2.3 and 2.4 establish the changes in the diagram as vertices of the same

kind meet. In general, meeting of the 2 ends of an edge makes the edge disappear.

We refer to this as an edge-death. If the two vertices differ by one associated disk,

another edge is born simultaneously. We refer to this as an edge-birth. Vertices of the

newly born edge are new or old depending on the type of the meeting vertices. This is

illustrated in Figures 2.14 and 2.15. We next study the changes in the diagram if the

two vertices are associated with the same set of disks. We first consider an example

in Figure 2.13, which shows an order-1 max VD of 3 disks D1,D2, and D3. Both

vertices, v1,2,3 in the example are associated with the same 3 disks. As D2 expands,

the two vertices move closer, and the face of D2 shrinks as shown in Figure 2.13a.

Eventually, two vertices meet, and D2’s face disappears, as shown in Figure 2.13b.

Another example is shown in Figure 2.8, in which expansion of disk D4 leads to a

face-death as it contains D1.

D1

D3

D2

v1,2,3 v1,2,3

(a)

D3

D2

D1

(b)

Figure 2.13: The order-1 max VD of 3 disks. Face of disk D2 (Figure a) disappears

as 2 vertices associated with the same sites meet due to the expansion of disk D2

(Figure b).
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Figure 2.14: The evolution of edges ei,j and en,m as Dn expands. Initially, en,m 6=

∅, and ei,j = ∅ (Figure a). As Dn expands, 2 vertices of en,m moves along the

corresponding edges toward Vk(H1, S) (arrow). If they meet, en,m disappears and

ei,j is born (Figure b). Both ei,j ’s vertices are new.

Lemma 2.5. Let v1n,m,i and v2n,m,i be two distinct new vertices of Vk(H,S) (Dn ∈ H,

{Dm,Di} 6⊂ H). Assume that the next event as Dn expands is the meeting of v1n,m,i

and v2n,m,i (and thus, en,m disappears). Let Dn′(on, rn′) be the expansion of Dn when

the event happens. If Dn expands further from Dn′, Vk(H,S) = ∅. Furthermore,

there exists a sufficient small ǫ such that as Dn shrinks by ǫ from Dn′, Vk(H,S)

consists of 4 edges, namely, en,m, en,ni, eq,i, and en,i for some Dq ∈ H if Dn contains

no more than k − 1 disks; otherwise, Vk(H,S) consists of 2 edges, namely, en,m and

en,i.

Proof. Since v1n,m,i and v2n,m,i are two distinct new vertices, there are 2 distinct max-

imum circumferences centered at v1n,m,i and v2n,m,i and both internally tangent to Dn,

Dm, and Di. As v
1
n,m,i meets v2n,m,i they coincide. This happens when Dn is internally

tangent to either Di or Dm, or both. We first show that if en,m disappears, Dn must
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Figure 2.15: The evolution of edges en,m and ei,j as Di expands. Initially, ei,j = ∅

and en,m 6= ∅ (Figure a). As Di expands, a vertex of en,m moves toward the opposite

end (arrows), which makes en,m shrinks. Eventually, en,m degenerates as 2 vertices

of en,m meet, and ei,j is born (Figure b). Both ei,j’s vertices are old.

be internally tangent to Di as the event happens. We prove by contradiction. Let

C be the maximum circumference centered at v1n,m,i ≡ v2n,m,i. C contains H\{Dn}.

As v1n,m,i meets v2n,m,i, edge en,m degenerates into a point. Assume Dn is internally

tangent to Dm, we can shrink C by a sufficiently small amount (and move the center

of C as well) such that it is still internally tangent to Dm and Dn at their contact

point. C now does not contain Di but still contains H\{Dn}. This means that there

exist more than one point on en,m, which is a contradiction. Now, as Dn expands

further, any disk containing Dn must contain Di. Since Di 6∈ H, Vk(H,S) = ∅. This

proves the first claim. Next, as Dn := Dn′(oi, ri′−ǫ), Vk(H,S) 6= ∅ and en,m 6= ∅. We

show that if Dn contains no more than k− 2 disks, ∃Dq such that eq,i 6= ∅. This can

be accomplished by shrinking C such that it is still internally tangent to Dn and Di.

As C contains H\{Dn} and Dn contains no more than k− 2 disks, C will eventually
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be internally tangent to some Dq ∈ H. Therefore, we can shrink Dn by a sufficiently

small amount such that there are 2 disks which are internally tangent to Di, Dn, and

Dq, and contains H\{Dn}. This shows that eq,i 6= ∅. Additionally, both vertices of

eq,i are corresponding to 3 disks Di, Dn, and Dq. Therefore there exist 2 edges en,i

incident at the 2 vertices of eq,i. Furthermore, Dn can always shrink by a sufficiently

small amount such that any maximum circumference associated with any disk of H

must contain Di. In the case Dn contains k−1 disks, such a Dq does not exist. Thus,

Vk(H,S) only contains en,i and en,m. This proves the latter claim.

The lemma shows that a face degenerates due to the meeting of 2 new vertices

associated with the same 3 disks. We refer to this as a face-death. It also provides

the face’s structure before it degenerates due to the meeting of 2 vertices of the same

three disks. Using the similar arguments, we also observe face-death as 2 old vertices

of the same 3 disks meets as stated in Lemma 2.6.

Lemma 2.6. Let v1n,i,j and v2n,i,j be two distinct old vertices of Vk(H,S), where

{Dn,Di} ⊂ H. Assume that the next event as Dn expands is the meeting of v1n,i,j

and v2n,i,j which make ei,j degenerate. Let Dn′(oi, ri′) be the expansion of Dn when

the event happens. As Dn expands further from Dn′ either region corresponding to

ei,j, e.g., V
k(H,S) = ∅. Furthermore, there exists a sufficient small ǫ such that as

Dn shrinks by ǫ from Dn′, Vk(H,S) consists of 4 edges, namely, ei,j, en,j, en,q, and

en,j (for some Dq 6∈ H).

Next, we turn to the discussion of the meeting of vertices of different kinds.

Roughly speaking, when a new vertex meets an old one due to the expansion of
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some disk, some region degenerates causing a face-death, and a new face comes to

existence simultaneously. We refer to this as a face-birth. We formally present the

results as follows.
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Di

Dj

Dn

Dm

pm

C1

C2pi

pj

Figure 2.16: If C2 (dashed) does not contain Dm, while C1 (dot-dashed) contains Dn

then as Dn expands (dotted), it is first tangent to C1 at arc pmpj or pipm.

Lemma 2.7. Consider an edge ei,j with an old vertex vi,j,n and a new vertex vi,j,m

of 2 regions Vk(H1, S) and V
k(H2, S), where {Di,Dn} ⊂ H1 and {Dj,Dn} ⊂ H2. If

Dn expands such that the next event is the meeting of vi,j,n and vi,j,m, then either

Vk(H1, S) = ∅ or V
k(H2, S) = ∅, but not both.

Proof. Since vi,j,m is new, Dm 6∈ H1

⋃

H2. Therefore, the maximum circumference

C1 centered at vi,j,m contains Dn but that, C2, centered at vi,j,n does not contain

Dm. W.l.o.g, we sketch the relative locations of Di, Dj, Dn, and Dm as shown in

Figure 2.16. Let pi, pj, and pm be the tangent points of Di, Dj, and Dm with C1,

respectively. As the event occurs, C1 ≡ C2. Thus, Dn must first touch C1 at arc pmpj,

or pipm. If it touches C1 at arc pmpj, any disk that contains Di and Dn must touch

either Dm or Dj. Therefore, Vk(H1, S) = ∅. When C1 ≡ C2, C1 (and C2) contains

H2\{Dn,Dj}. Therefore, as Dn expands further a sufficiently small amount, there
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exists a disk internally tangent to Dn, Dj, and Dm, and containsH2\{Di}. Therefore,

Vk(H2, S) 6= ∅. Similar arguments apply as Dn first touches C1 at pipm, which gives

rise to the case Vk(H2, S) = ∅ and V
k(H1, S) 6= ∅. This completes the proof.

Next, we take a closer look to how a face emerges and disappears. We characterize

the structure of a region immediately before it disappears. In addition, we describe

the structure of the region that emerges as the result of another region’s death.

Lemma 2.8. Consider an edge ei,j with an old vertex vi,j,n and a new vertex vi,j,m

of 2 regions Vk(H1, S) and Vk(H2, S), where {Di,Dn} ⊂ H1 and {Dj,Dn} ⊂ H2.

Assume that when Dn expands to Dn′(on, rn′), the two vertices of ei,j meet resulting

in the degeneration of Vk(H1, S), then there exists an positive ǫ such that when Dn

expands to Dn′′(on, rn′ − ǫ), Vk(H1, S) 6= ∅ and Vk(H1, S) contains only 4 vertices,

including 2 old vertices, namely, vi,m,n and vi,j,n, and 2 new vertices, namely, vi,j,m

and vj,n,m.

Proof. Let C be the maximum circumference centered at vi,j,m. Let pi, pj , and pm

be the tangent points of C1 with Di, Dj, and Dm, respectively. When Dn expands

to Dn′(on, rn′), Vk(H1, S) = ∅. Thus, Dn is internally tangent with C at arc pmpj,

which does not contains pi. When Dn expands to Dn′′(on, rn′ − ǫ), obviously, vi,j,m

remains a new vertex, and vi,j,n is an old vertex of Vk(H1, S). In addition, there

exists a circle that is internally tangent to Dn,Dm,Dj, and contains Di and all

disks in H1\{Di,Dn}. Thus, vj,n,m is a new vertex of Vk(H1, S). Meanwhile, there

exists a circle that is internally tangent to Dn′ ,Dm,Di, and all disks in H1\{Di,Dn}.

Therefore, vi,m,n is an old vertex of Vk(H1, S). Now we show that there exists no
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other vertices of Vk(H1, S). In fact, as Dn expand to Dn′ to touch C, any circle C ′

that is tangent to any disk Dh ∈ H1 and contains H1\{Dh} must contains either Dj

or Dm, or both. Obviously, there exists an ǫ > 0 such that when Dn shrinks ǫ from

Dn′ , such property of C ′ still holds. This completes the proof.

Lemma 2.9. Assume that the new vertex vi,j,n meets the old one vi,j,m as Dn ex-

pands to Dn′(on, rn′), which results in the degeneration of face Dk(H1, S), where H1 =

H
⋃

{Dn,Di}. Prior to the degeneration, Dk(H1, S) shares edges ej,n, em,n, em,i, and

ej,i with faces Vk(H2, S), V
k(H3, S), V

k(H4, S), and V
k(H5, S), respectively, where

H2 = H
⋃

{Di,Dj}, H3 = H
⋃

{Di,Dm}, H4 = H
⋃

{Dn,Dm}, H5 = H
⋃

{Dj,Dn}.

There exists ǫ > 0 such as the following holds: i) Vk(H
⋃

{Dj,Dm}, S) 6= ∅, and ii)

edges ej,n, em,n, em,i, and ej,i of regions V
k(H2, S), V

k(H3, S), V
k(H4, S), V

k(H5, S)

are replaced by edges ei,m, ei,j, en,j, en,m with region Vk(H
⋃

{Dj,Dm}, S), respec-

tively. Thus, Vk(H
⋃

{Dj,Dm}, S) consists of 4 edges, namely, ei,m, ei,j, en,j, and

en,m, and 4 vertices, including 2 new vertices, namely, vi,n,m and vi,j,n, and 2 old

vertices, namely, vi,j,m, and vj,n,m.

Proof. As shown in Figure 2.16, when Dn expands to Dn′(on, rn′), C1 is internally

tangent to {Di,Dj,Dn,Dm} and contains H. Clearly, C1 does not contains Dn as

it expands further from Dn′ . Since |H| = k − 2, vi,j,m is an old vertex of region

Vk(H
⋃

{Dj,Dm}, S) due to Proposition 2.5. This proves claim i). To show claim

ii), we only show the case ej,n being replaced by ei,m. The other claims can be

proved similarly. As Dn := Dn′(on, rn′ + ǫ), the circle C that is internally tangent to

Dn and Dj and contains Di must contain Dm. Since Dm 6∈ H2

⋃

H1, ej,n is not an

edge of Vk(H1, S) and Vk(H2, S) according to Proposition 2.5. Also, since vi,j,m is
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a valid vertex, there exists an edge ei,m of Vk(H
⋃

{Di,Dj}) and V
k(H

⋃

{Dj,Dm}).

Let H5 = H
⋃

{Dj,Dm}). There exists a small ǫ such that the circle containing

H5\{Dh} and is internally tangent to Dh ∈ H5 and some Dq 6∈ H5 ∪ {Dj,Dm}

must contains Dn or Di. Thus, there are no other edges of Vk(H
⋃

{Dj,Dm}). This

completes the proof.

Lemma 2.7 claims that as a new vertex meets an old one due to a disk’s expan-

sion, one of the two faces that is incident to the edge connecting the two vertices

degenerates to a point and eventually disappears. Lemma 2.8 describes the struc-

ture of the face before it disappears, as illustrated in Figure 2.17b. Lemma 2.9

characterizes the structure of the newly-born face (Figure 2.17d). The transform

of the diagram in this case, as a face disappears giving birth to another face, is

intuitive when viewed from the structure of the corresponding order-(k − 1) max

VD. In essence, the expansion of Dn leads to the degeneration of the edge ei,n of

faces Vk−1(H
⋃

{Di}, S) and Vk−1(H
⋃

{Dn}, S), and simultaneously, the birth of

edges ej,m of faces Vk−1(H
⋃

{Dj}, S) and V
k−1(H

⋃

{Dm}, S), as illustrated in Fig-

ures 2.17a and 2.17c. To this end, we conclude the discussion in the chain of changes

in the order-k max VD due the expansion of a type-I disk. We now move on to the

analysis of type-II disks’ expansion.

2.3.3 Expansion of a type-II disk

Let Di be a type-II disk, i.e., ei,j = ∅, ∀Dj ∈ S, j 6= i. We first make some claims

regarding to general type-II disks.
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Proposition 2.6. Di is a type-II disk in V k(S) iff Di ∈ H for all H’s such that

Vk(H,S) 6= ∅, or Di contains k disks.

Proof. If Di ∈ H for all H’s such that Vk(H,S) 6= ∅, then clearly ei,j = ∅, ∀Dj ∈ S.

If Di contains k disks D1, . . . ,Dk, then dmax(p,Di) > dmax(p,Dj)∀p, where j ∈

{1, . . . , k}. Therefore, Vk(H,S) = ∅, where H ∋ Di, thus, ei,j = ∅, ∀Dj ∈ S. This

proves the sufficient condition. To show the necessary condition, we consider 2 cases:

∃H ∋ Di such that Vk(H,S) 6= ∅, or 6 ∃H ∋ Di such that Vk(H,S) 6= ∅. We prove

by contradiction. In the former case, we show that Di ∈ H for all H’s such that

Vk(H,S) 6= ∅. Assume there exist 2 regions, e.g., Vk(H1, S) and V
k(H2, S) such that

Di ∈ H1 and Di 6∈ H2. This implies that ei,j 6= ∅ according to [43], a contradiction.

In the latter case, we show that Di contains k disks. Assume Di contains l disks

(0 ≤ l < k). W.l.o.g, let dmax(oi,D1) ≤ . . . ≤ dmax(oi,Dl) < dmax(oi,Di). Since

Di does not contain other disks, let dmax(oi,Dl+1) ≤ . . . ≤ dmax(oi,Dk−1) ≤ . . . ≤

dmax(oi,D|S|). Therefore, oi ∈ V
k({Di,D1, . . . ,Dk−1}, S). Thus, Vk(H,S) 6= ∅,

where H = {Di,D1, . . . ,Dk − 1}, a contradiction. This completes the proof.

Proposition 2.7. Consider a type-II disk Di in V k(S), where Di does not contain

k other disks. Expanding any disks Dj ∈ S (j 6= i) does not make Di type-I.

Proof. Let Di be a type-II disk, and p is an arbitrary point in the plane. Since Di ∈ H

for all H’s such that Vk(H,S) 6= ∅, there exist k−1 disk dmax(p,D1) ≤ dmax(p,D2) ≤

. . . ≤ dmax(p,Dj − 1) < dmax(p,Di) < dmax(p,Dj) ≤ . . . ≤ dmax(p,Dk−1), i.e., the

disk C centered at any point p and containing k disks must contain Di (C is not

internally tangent to Di). This remains to be true with the expansion of any disk
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other than Di. This completes the proof

As a result, a type-II disk Di must be in the interior of all maximum circumfer-

ences of V k(S). Therefore, when Di expands, it must first touch a maximum circum-

ference associated with some edge en,m. However, we claim that it can only touch a

maximum circumference centered at a (possibly infinite) vertex of en,m. Assume Di

first touches the maximum circumference C associated with Dn and Dm centered at

O as shown, w.l.o.g., in Figure 2.18, i.e., C contains k − 1 disks, H. We can move

O along bn,m further away from Di to O′ such that C ′, the maximum circumference

centered at O′, still contains H. Since all maximum circumferences contain type-II

disks, there exists ǫ such that C ′ is internally tangent to Di(oi, ri − ǫ). As O is

moving along bn,m, C will eventually be internally tangent to some disk of S, which

makes C the maximum circumference centered at a vertex of V k(S). This shows that

Di must first touch a maximum circumference centered at a vertex as it expands.

Furthermore, we observe that such an expanding disk must be first internally tan-

gent to a maximum circumference centered at an infinite vertex. Before delving into

the detailed analysis, we sketch an example in Figure 2.19, which shows the order-4

Voronoi diagram of 5 disks of zero radius, S = {D1,D2, . . . ,D5}. The Voronoi re-

gions are V4({D1,D2,D4,D3}, S), V
4({D1,D2,D5,D3}, S), V

4({D1,D5,D4,D3}, S),

and V4({D2,D4,D5,D3}, S), which make D3 a type-II disk. The diagram (dashed)

consists of 2 finite vertices, v1 and v2, whose corresponding maximum circumferences

are C6, and C7 shown by lighter circles. The maximum circumferences centered at

the infinite end of edges ei are shown by straight lines Ci, i ∈ {1, 2, 3, 4}. As shown
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in the figure, as D3 expands (dashed circle), it first touches C5, the maximum cir-

cumference centered at the infinite end of edge e5 at a point in segment D2D5. We

formalize this in the following lemma.

Lemma 2.10. Consider a disk Di, which is not in the interior of any disk, and

shares no edge with other disks. Upon expansion, Di must first touch a maximum

circumference C centered at the infinite vertex of some edge. Let the edge be en,m,

and the tangent points of Dn and Dm with C be pm and pn. Then, Di is tangent to

C on the segment pmpn.

Proof. We prove the claims by contradiction. Let Di′ be the expanded Di. W.l.o.g,

assume Di′ touches the maximum circumference C centered at vn,m,k. Let pn, pm,

and pk be the tangent points of Dn,Dm, and Dk with C, respectively. Assume

Di′ is tangent to C at a point in arc pkpm. We consider 2 cases: vn,m,k is old or

new. When vn,m,k is new, there exists H ⊂ S, |H| = k − 1, Di ∈ H, such as

Vk({Dn}
⋃

H,S) 6= ∅, Vk({Dm}
⋃

H,S) 6= ∅, and Vk({Dk}
⋃

H,S) 6= ∅. As Di′

expands further to Di′′ , any circle that contains Dn and Di′′ must contain either Dk,

or Dm. Therefore, Vk({Dn}
⋃

H,S) = ∅ in the updated diagram. Meanwhile, since

Di′ is first tangent to C, there exists a maximum circumference C ′ centered at another

vertex of Vk({Dn}
⋃

H,S) that contains H, which implies that Vk({Dn}
⋃

H,S) 6= ∅

in the updated diagram, a contradiction. If vn,m,k is old, there exists H ⊂ S, |H| =

k − 2, Di ∈ H, such as Vk({Dn,Dm}
⋃

H,S) 6= ∅, Vk({Dm,Dk}
⋃

H,S) 6= ∅, and

Vk({Dk,Dn}
⋃

H,S) 6= ∅. We first show that as Di′ expands further to Di′′ , either

Vk({Dn,Dm}
⋃

H,S) = ∅ or Vk({Dk,Dn}
⋃

H,S) = ∅ in the updated diagram by

contradiction. Assume both faces exist. Since they differ by Dk and Dm, there
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exists an edge ek,m of 2 faces. Meanwhile, recall that Di′ is tangent to C at a

point in arc pkpm, there is no circle internally tangent to Dk and Dm, that contains

both Dn and Di′′ . Thus ek,m = ∅, a contradiction. Therefore, either face does

not exist. W.l.o.g, assume Vk({Dn,Dm}
⋃

H,S) = ∅. Since Di′ is first tangent to

C, the other vertex, e.g., vj,m,k, of edge ek,m exists. Thus, there is a maximum

circumference centered at vj,m,k which contains {Dn,Di′′}
⋃

H. This implies that

Vk({Dn,Dm}
⋃

H,S) 6= ∅, a contradiction. This completes the first claim. Next,

let C be the maximum circumference centered at the infinite end of edge en,m of

Vk(H,S), where Dn ∈ H. Let pn and pm be the tangent points of C with Dn and

Dm. Since C is infinitely large, arc pnpm is a line segment. Let p be the tangent

point of Di with C. Assume p lies outside pnpm in the ray that does not contain

pn. Clearly, C contains H\{Di,Dn}. Now, we can always shrink Di by a sufficiently

small ǫ such that there exists a line d tangent to Di(oi, ri − ǫ) and Dm such that

a half-plane created by d contains H. This means that en,i 6= ∅, a contradiction.

Similarly, we can show that Di is not exterior to pnpm in the part that does not

contain pm. This completes the proof.

We now study further what happens posterior to the contact. As Di is internally

tangent to C, a new face is born, which is due to two infinite edges and one old

vertex. Formally,

Lemma 2.11. Let en,m be an infinite edge shared by faces Vk(H1, S) and V
k(H2, S),

and vk,n,m be a vertex of en,m in V k(S). Let C be the maximum circumference asso-

ciated with en,m and centered at infinity that is internally tangent with Dn and Dm

at pn and pm, respectively. Let Di be a type-II disk. Assume Di expands and first
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touches C at a point in arc pnpm. Then, there exists further expansion ǫ > 0 of

Di such that : i) Vk((H1

⋃

H2)/Di, S) 6= ∅, ii) V
k(H1, S) and Vk(H2, S) share an

edge with Vk((H1

⋃

H2)/Di, S), i.e., ei,n, ei,m, respectively, and iii) ei,n and ei,m are

infinite edges.

Proof. To prove the first two claims, it is sufficient to show that there is a vertex of

faces Vk((H1

⋃

H2)/Di, S), V
k(H1, S) and V

k(H2, S). In fact, as Di touches C at a

point in arc pnpm, there exists an ǫ > 0 such that there is a circle that is internally

tangent to Dn,Dm, and Di′(oi, ri+ ǫ), and contains the set (H1

⋃

H2)/{Di′ ,Dn,Dm},

whose cardinality is k−2. Thus, vi′,n,m is an old vertex according to Proposition 2.5.

This implies that Vk((H1

⋃

H2)/Di, S) 6= ∅. To see that ei,n is infinite, it suffices to

show that there is a straight line, d, that is tangent to Dn and Di, and divides the

plane into 2 halves, one of which contains H1

⋃

H2. Since C is infinitely large, there

is a half-plane divided by C that contains H1

⋃

H2. Since Di first touch pnpm as it

expands, we can always find a small expansion ǫ of Di such that there exists a line

d that is tangent to Dn and Di, and divides the plane into 2 halves, one of which

contains H1

⋃

H2. (In fact, d is very close to C.) This completes the proof.

Lemma 2.11 describes the max VD structure due to an event caused by a type-II

disk’s expansion. Lemmas 2.10 characterizes the expansion that leads to such an

event by keeping track of infinite edges. However, since the total number of infinite

edges is O(N), the computational complexity of identifying such events remains high.

Fortunately, it can be shown that transformation of any type-I to type-II disk in a

max VD V k(S) that does not contains type-II disks is possible only when k = N .
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Moreover, it takes O(k2N) for all type-II disks of V k(S) to transform to type-I disks.

We formalize the claims in the following lemma.

Lemma 2.12. Assume there is no type-II disk in V k(S). Dn expands but it does not

contain k disks. If any disk Di, i 6= n, becomes type-II due to the expansion of Dn,

then k = N .

Proof. When a disk expands, two vertices meet and the associated edge degenerates.

Depending on the type of vertices, three cases may arise. First, both vertices are

new. Let the associated edge be en,m, and it is at intersection of two faces as shown

in Figure 2.21a. If either vertex, e.g., vn,m,j is finite, an edge ej,m appears as edge

en,m degenerates. Therefore, there exist edges of disks Dn,Dm,Di, and Dj. If both

vertices of en,m are infinite, the maximum circumferences centered at these two infi-

nite vertices are two lines n1m1 and n2m2, that are outer tangent to the two disks, as

illustrated in Figure 2.20b. As point p traverses on en,m from one end to another, the

tangent point of the maximum circumference centered at p with Dm moves along the

arc a1 from m1 to m2 (or vice versa). Since any maximum circumference associated

with en,m contains H. Thus, H must be in the plane limited by two lines n1m1 and

n2m2, and two arcs a1 and a2. If en,m disappears, Dn must contains Dm, and thus,

it must contains H. Since Dn does not contain k disks, en,m remains. Therefore, no

type-I disk becomes type-II as a result of the meeting of two new vertices.

Meeting of a new vertex with an old one shown in Figure 2.21b clearly does not

make any disk type-II. In the case of meeting of 2 old vertices (Figure 2.21c), e.g., v1

and v2, edge ei,j degenerates. If Dj ≡ D∞ and ei,j is the only edge associated with Dj
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prior to the expansion, Dj becomes type-II. Next, we show that this only happens

when k = N . Let H ′′ = H\{Di,Dn,Dm}. Let Dn′(on, rn′) be the expanded Dn

such that 2 vertices in Figure 2.21c meet. As Dj = D∞, there exists a tangent

line l1 of Dn and Di such that one of the half-planes created by l1 contains H

(Figure 2.20a). Similarly, there exists a tangent line l2 such that one of the half-

planes created by l2 contains H. As shown in Section 2.3.1, there exists infinite

edges, i.e., en,i of 2 faces Vk−1(H ′′
⋃

{Di,Dm}) and V
k−1(H ′′

⋃

{Dn,Dm}) and em,i of

2 faces Vk−1(H ′′
⋃

{Dn,Dm}) and Vk−1(H ′′
⋃

{Dn,Di}). As Dn expands to Dn′ , l1

rotates as illustrated in the figure. When v1 meets v2, lines l1 and l2 coincide and

both are outer tangent to Dn′ , Di, and Dm. Thus, we can always shrink Dn′ by a

small amount ǫ such that the line tangent to Dn′(on, rn′ − ǫ) and Dm creates a half-

plane that contains Dn′ , Dm and H ′′\{Di}. This implies that there exists an infinite

edge en,m of 2 faces Vk−1(H ′′
⋃

{Di,Dn}) and V
k−1(H ′′

⋃

{Di,Dm}). Moreover, there

exists a disk internally tangent to Dn′ , Dm, and Di that contains H
′′. Clearly, there

does not exists edge of Dh ∈ H ′′, Dh 6∈ {Dm,Di,Dn′}. This implies that as Dn

expands to Dn′(on, rn′ − ǫ), V k−1(S) consists of 3 faces, i.e., Vk−1(H ′′
⋃

{Di,Dm}),

Vk−1(H ′′
⋃

{Di,Dn}), and V
k−1(H ′′

⋃

{Dn,Dm}). This suffices to show that |H ′′| =

N − 3. Thus k = N .

The lemma indicates that, in a general order-k max VD of N disks with no type-

II disk, where k < N , the expansion of disks does not create any type-II disk. We

next show that it takes O(k2N) to pre-process an order-k VD such that all disks are

type-I. The idea is to expand type-II disks until they are no longer type-II. We further

constrain that the expanding disk must not contain any disks. We first observe that
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an expanding type-II disk Dn does not contain any type-I disk Di. Otherwise, let

ei,j be an edge of V k(S), then any maximum circumference associated with ei,j does

not contain Dn. Since Di is type-II, there exists H ∈ S such that Vk(H,S) 6= ∅.

This implies that Dn 6∈ H, a contradiction by Proposition 2.6. Next, we show the

procedure to transform all type-II disks in V k(S) to type-I in O(k2n) time. Let S ′′ be

the set of type-II disks of V k(S) (|H ′′| = h). Let di be the minimum size of a type-II

disk Di ∈ S ′′, such that it is tangent to some maximum circumference centered at

an infinite vertex. We sort di’s in the ascending order, i.e., d1 ≤ d2 ≤ ... ≤ dh. We

sequentially update V k(S) by expanding Di, i = 1 . . . h, and set the radii of disks

Dm, i < m ≤ h, to be ri, i.e., the radius of disk Di. We claim that dm is still

the minimum size that Dm needs to expand to become type-I after the expansion

of Di, i = 1, . . . ,m − 1, to their respective radii. Assume the expansion of Dm

first touches the maximum circumference centered at the infinite vertex on ei,j prior

to the expansions of D1,D2, . . . ,Dm−1. Let pi and pj be the tangent points of the

maximum circumference with Di and Dj, respectively. If Dm is the only type-II disk

tangent to pipj, then the changes in V k(S) is given in Lemma 2.11. Otherwise, if

there is another type-II disk, say Dn (n < m) tangent to pipj at pn. When such an

event occurs, one end of ei,j becomes finite, and two infinite edges, i.e., ei,n and ej,n

are born. Thus, we need to compute the minimum size of Dm when it touches the

maximum circumferences centered at two infinite ends of ei,n and ej,n. In the other

words, we compute the size of Dm so that it touches pipn or pnpj. Since pn is on pipj,

the amount of expansion for Dn to touch them is equal to that for it to touch pipj.

This proves the above claim. In general, determining the position in the segment pipj
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that Dn touches can be done by a search among the sub-segments of pipj. Thus, the

cost of updating V k(S) due to the expansion of type-II disk Dm is O(h′ log h′), where

h′ is the number of type-II disks touching pipj first. The total cost of expanding h

type-II disks is
∑

h′(h′ log h′) = O(h log h). The minimum expansion for a type-II

disk to become type-I is computed by considering all infinite vertices, which takes

O(kN). Thus, the total cost of transforming h type-II disks into type-I disks is

O(hkN). Since h ≤ k, the worst-case time complexity is O(k2N). We summarize

the procedure in Algorithm 2.1. Line 9 indicates that if a type-II disk’s given size

is smaller than the size that makes it type-I, then it is type-II irrespective to any

changes of other disks due to Proposition 2.7.

We now prove Theorem 2.1.

2.3.3.0.1 Proof of Theorem 2.1 It is known from [43] that the number of edges

and faces in the order-k Voronoi diagram of disk centers, including pseudo edges, is

O(kN). From the above results, when disks expand, the total number of edges and

faces in the order-k max VD does not exceed O(kN). Since there are O(kN) faces

and N disks, the expected number of faces corresponding to a disks is k, each has

6 edges on average [7]. In addition, since disks either expand to infinite size, or do

not contain other disks, there are no events due to the exclusion of Di from other

disks when it expands. Thus, when a disk Di expands, the maximum number of

events is equal to the number of edges in faces corresponding to Di. Therefore, the

expected events due to Di’s expansion is O(k). Therefore, the expected number of

events corresponding to N disks’ expansions is O(kN). This completes the proof.
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Algorithm 2.1: Pre-process order-k Maximum Voronoi diagrams of disks

input : V k(S)

output: V k(S) that does not contains type-II disks

1 S ′′ ← type-II disks in S ;

2 foreach Di ∈ S ′′ do

3 d[i]← minimum expansion of Di to be first tangent to a maximum

circumference ;

4 sort S ′′ in ascending order based on d;

5 foreach Di ∈ S ′′ do

6 if d[i] ≤ targeted size of Di then

7 modify V k(S) according to Lemma 2.11;

8 else

9 assign the targeted radius to Di ;
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We are now in the position to sketch algorithms for constructing order-k maxi-

mum Voronoi diagrams of disks and order-k Voronoi diagrams of points in 2D based

on the principles of expanding/shrinking disks.

2.4 Application of disk expansion/shrinking to order-

k max VDs

We show that properties of disk expansion/shrinking in order-k max VDs can be

applied to order-k max VD construction, insertion and deletion of sites in order-k

max VDs which leads to order-k VD construction.

2.4.1 Construction of order-k max Voronoi diagrams of disks

in 2D

In constructing the order-k max VD of disks S, we start with an order-k Voronoi

diagram (VD) of disk centers and iteratively expand each disk in S by a fixed amount

dmin, where dmin
∆
= mini,j∈S d(oi, oj)− ǫ. We stop when all disks reach their targeted

size. The resulted diagram is the order-k max VD of S. Let rmax = maxi∈S ri and

rmin = mini∈S ri. Clearly, the total number of rounds a disk needs to expand is

bounded by ⌈ rmax−rmin

dmin
⌉. This implies that the algorithm terminates. Since disks

expand by dmin, they are not contained in other disks until they reach their targeted

sizes. Furthermore, when a disk contains k other disks in its expansion, it becomes

type-II since the k disks have reached their targeted sizes. Thus, it further expansion
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does not change the diagram. Therefore, the algorithm proceeds in such a way that all

expanding disks are always type-I. As discussed in the previous sections, expanding

disks does not make any new type-II disk. Thus, it is always possible to evaluate

the expansion such that the next vertex meeting happens. The procedure of order-k

max VD construction is summarized in Algorithm 2.2.

We now analyze the running time of the algorithm. Algorithm 2.2 takes the set

S of N disks as inputs. It starts by constructing the order-k VD of disk centers

(line 2), which in face is the order-k max VD of disks whose radii are all equal to

the minimum radius of N disks, denoted as S ′. The process costs O(k2N logN) in

running time ([43]). Since the order-k VD may contain type-II disks, we first make

them type-I by executing Algorithm 2.1 (lines 4 - 4). This takes O(k2N). Then, we

iteratively scan all disks in S and expand those whose radii are smaller than their

respective sizes an amount dmin (lines 6 - 17). dmin can be computed in O(N) using

the order-1 VD of S ′, which is a byproduct in the incremental construction of V k(S ′).

Line 11 requires a sorted list of expansions. When an event happens, an expansion is

inserted into the sorted list. In Algorithm 2.2, each disk expands at most ⌈ rmax−rmin

dmin
⌉

times. Since the expected number of events when each disk expands once is O(kN),

the expected cost of lines 6 - 17 is O(⌈ rmax−rmin

dmin
⌉kN logN). Therefore,

Theorem 2.2. The order-k max VD of N disks can be constructed in

O

(

k2N logN +

⌈

rmax − rmin

dmin

⌉

kN logN

)

expected time, where rmax and rmin are respectively the maximum and minimum radii

of N disks, and dmin is the minimum distance between 2 disks’ centers.
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Algorithm 2.2: Order-k Maximum Voronoi diagram of disks

input : A set of disks S = {D1(o1, r1),D1(o2, r2), . . . ,DN(oN , rN )}

output: The order-k max VD of S, V k(S)

1 rmin ← mini ri;

2 S ′ ← {D1(o1, r
′
1 = rmin), . . . ,DN(oN , r

′
N = rmin)};

3 Construct V k(S ′);

4 if V k(S ′) contains type-II disks then pre-process V k(S ′) using Algorithm 2.1;

5 dmin ← mini,j∈S d(oi, oj)− ǫ ;

6 repeat

7 foreach Di such that r′i < ri do

8 if (r′i + dmin) > ri then max inc← r′i − ri;

9 else max inc← dmin;

10 while r′i < max inc do

11 find the smallest expansion e such that an event happens ;

12 if r′i + e < max inc then

13 r′i ← r′i + e;

14 update V k(S ′) due to the event’s consequences;

15 else

16 r′i ← max inc;

17 re-calculate edges/vertices corresponding to Di;

18 until until all disks reach their targeted size;
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2.4.2 Insertion and deletion of sites in order-k max VDs

To insert a disk Di(oi, ri) to an existing order-k max VD, we insert a disk Di′ centered

at oi with infinite radius, which does not change the diagram structure. Then, we

shrink Di′ to point Di. It is easy to see that faces corresponding to Di′ only appear

when Di′ contains less than k other disks. Updating the diagrams as Di′ shrinks

can be done based on the fact that disk shrinking is an opposite process of disk

expansion. From Lemmas 2.5 and 2.6, faces disappear as disks include other disks

during their expansion. Therefore, when Di excludes a disk from the last k disks

interior to Di during its shrinking, a face is born. Disk exclusions are asserted by

sorting distances of other disk centers to oi, which takes O(N log k) time. Shrinking

Di to pi takes O(kN logN) time as shown in Algorithm 2.2. Thus, inserting a disk

into an order-k max VD of N disks runs in O(kN logN).

Deletion of a disk Di from an existing order-k max VD is equivalent to expanding

Di such that it contains k other disks, which takes O(kN logN). We summarize the

result in Theorem 2.3.

Theorem 2.3. It takes O(kN logN) to insert a disk into or delete a disk from an

order-k max VD of N disks.

Note that, the result naturally extends to site insertion and deletion in order-k

VD of points, which leads to the incremental construction of high order Voronoi

diagrams of points in 2D. Dynamic data structure such as [15] and [55] can be used

for updating the order-k VD as points are inserted, and querying the set of k points

closest to the inserted point.
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Figure 2.17: The evolution of faces Vk(H
⋃

{Di,Dj}), V
k(H

⋃

{Di,Dm}, S),

Vk(H
⋃

{Dn,Dm}, S), Vk(H
⋃

{Dj,Dn}, S), Vk(H
⋃

{Di,Dn}, S), and

Vk(H
⋃

{Dj,Dm}, S) (|H| = k − 1). Squares denote new vertices. Dots de-

note old vertices. Initially, Vk(H
⋃

{Di,Dn}, S) 6= ∅ and V
k(H

⋃

{Dj,Dm}, S) = ∅.

As Dn expands, Vk(H
⋃

{Di,Dn}, S) shrinks, and eventually terminates, leading to

the born of Vk(H
⋃

{Dj,Dm}, S).
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Figure 2.21: Changes of edges of Vk(H,S) as Dn expands.
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Chapter 3

Sensor Location Uncertainties in

Wireless Sensor Networks

3.1 Motivation

Wireless sensor networks (WSNs) have been employed in monitoring the health of

civil structures, tracking targets, and studying the wild life habitat, among others.

However, most existing work assumes knowledge of the exact location of the sensors.

In practice, this assumption is rarely true. Even with on-board GPS receivers on all

or selected nodes, or execution of distributed location algorithms [51], there generally

exists uncertainty in sensor location. For instance, GPS receivers with WAAS (Wide

Area Augmentation System) have an accuracy of three meters on average, considered

to be a significant improvement over past generations which are accurate to within 15

meters on average. Even carefully positioned in the deployment phase, sensors may
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be displaced due to environmental or human factors during the course of operation.

Uncertainty of sensor locations may also arise from privacy or security concerns.

Consider the scenario where a sensor network (e.g, a group of GPS-enabled mobile

devices) is formed to provide location services. Depending on the trustworthiness of

its customers, the sensor network may only reveal coarse-grained vicinity information

regarding the sensors’ location and binary sensing measurements to its customer.

Modeling uncertainty regions deterministically has its root in the literature of

robust optimization [51], where the uncertainty of the parameters in the objective

function and constraints is modeled explicitly (as polyhedron, ellipsoid etc.). This

is in contrast to stochastic optimization techniques, where the distribution of the

uncertain parameters is assumed. Thus, robust optimization can be thought of as

optimizing for the worst case. We feel the worst case analysis is suitable for sensor

coverage in particular in security context though our approaches are notably different

from robust optimization solutions due to their geometric nature.

One way to model the location uncertainty is by disks centered at the nominal

location of the sensors. Under the boolean disk sensing model, a sensor is able to

observe events located within a certain distance r to its location. In Chapters 2, we

introduced the concept of order-k max Voronoi Diagram (VD) that tessellates the

interested area into regions that are closer to k sensors in the worst case. In this

chapter, we use it as a building block to design of efficient algorithms for various tasks

in sensor networks, including locating and tracking targets, and network coverage.

The tasks are considered under the disk uncertainty model.
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Coverage and target localization and tracking are well-studied topics in wireless

sensor networks. There has been a plural of work addressing the target localization

and tracking in WSNs from both theoretical and system point of view [29, 39, 64,

65, 74, 82]. Coverage is a critical measure of the quality of sensing (QoS) in a

wireless sensor networks. It indicates “how well do the sensors observe the physical

space”. There has been much work addressing the coverage problem in WSNs from

both theoretical and system point of view [48, 44, 81]. In comparison to related

work that deals with specific cases where either the sensor placement is regular

(e.g., hexagonal) [34] or the uncertainty areas are identical [9], we consider generic

settings of arbitrary placements, heterogeneous uncertainty areas, and polygonal area

boundaries.

In this chapter, we provide a systematic analysis of two problems with consider-

ation of sensor location uncertainties.

3.2 Network model

Consider n sensors S = {1, 2, . . . , n} in a bounded 2-D polygonal area region. Sensor

i’s location is arbitrarily distributed in a disk Di(oi, ri) centered at its nominal loca-

tion oi with radius ri. Uncertainty of sensor’s locations is independent. We consider

binary sensing and disk coverage, where each sensor i’s sensing area is modeled as a

disk of radius si centered at its actual location.

Given the actual location of a sensor i, a target at location p can be detected iff

d(i, p) < si, where si is the sensing range. Consequently, given si, a location p is

57



guaranteed to be within the sensing range of sensor i iff dmax(p,Di) ≤ si. Similarly,

p is guaranteed to be in the sensing range of k sensors if ∃H ⊂ S, |H| = k, such that

dmax(p,Di) ≤ si, for all i ∈ H.

3.3 Robust coverage

3.3.1 Introduction

We utilize the order-k max VD in determining the minimum sensing radius needed

to ensure worst-case k-coverage, call k-exposure. In comparison to related work that

deals with specific cases where either the sensor placement is regular (e.g., hexag-

onal) [34] or the uncertainty areas are identical [9], we consider generic settings of

arbitrary placements, heterogeneous uncertainty areas, and polygonal area bound-

aries.

3.3.2 Problem statements

When ri > 0, to study coverage in the worst case, we define the maximum distance

from a point p to a sensor Di(oi, ri), as dmax(p,Di) = maxq∈Di
d(p, q) where d(·, ·) is

the Euclidean distance. Clearly,

dmax(p,Di) = d(p, oi) + ri.

Consequently, a location p is guaranteed to be covered by sensor i iff dmax(p,Di) ≤

si. Similarly, p is guaranteed to be k-covered iff ∃H ⊂ S, |H| = k, such that
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dmax(p,Di) ≤ si, for all i ∈ H.

Guaranteed k-coverage is related to the notion of max VD and order-k max VD

defined in Chapter 2 and repeated here for the sake of convenience.

Definition 3.1. For i, j ∈ S, let D(Di,Dj) = {p|dmax(p,Di) < dmax(p,Dj)}. We

define

Vk(S) =
⋂

i∈S,i 6=k

D(Dk,Di)

the maximum-Voronoi region of Dk with respect to S. The maximum-Voronoi dia-

gram (max VD) of S is defined as

V (S) =
⋃

i,j∈S,i 6=j

Vi(S)
⋂

Vj(S)

Definition 3.2. Let H ⊂ S, |H| = k. We define

Vk(H,S) =
⋂

j∈H,i 6∈H

D(Dj,Di)

the order-k maximum-Voronoi region of a set of disks H with respect to S. The

order-k maximum-Voronoi diagram of S is defined as

V k(S) =
⋃

H,H′⊂S;H 6=H′;|H|=|H′|=k

Vk(H,S)
⋂

Vk(H ′, S)

Given Di(oi, ri), i ∈ S, we are concerned with the max-min sensing radius of

sensors so that a point p, or a polygonal areaB is guaranteed to be covered. Formally,

Problem 3.1 (Guaranteed Point k-coverage). What is the minimum sensing range

of the associated sensors in S so that a point p ∈ B is guaranteed to be k-covered.
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Problem 3.2 (Guaranteed Area k-coverage). What is the minimum sensing range

of a set of sensors S so that any point p in the area B bounded by the boundary B̄

is k-covered by S.

We will show in Section 3.3.3, that the sensing range for guaranteed point and

area k-coverage can be determined from the order-k max VD. The max-min sensing

radius in the area k-coverage is also called k-exposure due to its physical meaning as

the radius of largest holes in the networks (in absence of sensors). In the remaining

paper, we drop the term “guaranteed” when there is no ambiguity from the context.

Note that the max-Voronoi region of a diskDi ∈ S does not always exist. Consider

2 disks Di(oi, ri) and Dj(oj, rj). Suppose ri > rj, then the max-Voronoi region of Di

does not exist if ri − rj > d(oi, oj). In this case, we refer to Di as a trivial disk. In

this work, we assume that no trivial disk exists. Furthermore, for ease of presence,

we consider general configurations where no point in the plane has equal maximum

distance to more than 3 sensors.

3.3.3 Solutions

Now we turn to the application of order-k max VD to address the two problems

raised in Section 3.3.2, namely, guaranteed point k-coverage and area k-coverage.

The objective is to determine the max-min sensing ranges in both problems.
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3.3.3.1 Guaranteed point k-coverage

Given any point p in the interested area and V (S), we first determine the set H of

cardinality k, which are closer to p than any disk in S−H. Therefore, the minimum

sensing range to ensure k-coverage to p is given by,

γk(p) = max
j∈H

{

max
q∈Dj

d(p, q)

}

= max
j∈H
{d(oj, p) + rj} (3.1)

3.3.3.2 Guaranteed area k-coverage

Given a polygonal area B of interest, providing guaranteed k-coverage to B is equiv-

alent to find a sensing range γk ensuring k-coverage to any point p ∈ B. We show

next, it suffices to consider only the vertices of V k(S), the intersections of V k(S) and

B̄, and the vertices of B̄.

Given the set of sensors S, the area B is tessellated into faces Fk(H) for |H| = k

and Vk(H,S) 6= ∅. The boundary of F(H) consists of hyperbolic arcs due to order-k

max VD edges (or a subsegment), and line segments in B̄.

Lemma 3.1. Let T and U be the set of vertices of the boundary B̄, and intersections

of B̄ and V k(S), respectively. The area B̄
⋃

B is k-covered iff all points in T , U ,

and Voronoi vertices of V k(S) are k-covered for sensing range γk.

Proof. The necessary condition is obvious. To prove the sufficient condition, we prove

2 arguments: 1. Every point in F(H) is k-covered if all points in the the boundary of

F(H), F̄ , is k-covered; and 2. All points on the boundary F̄ of F(H) are k-covered if

all vertices of V k(S) in F̄ , and points in T
⋃

U which are in F̄ are k-covered, where
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H ⊂ S and F(H) 6= ∅. To prove argument 1, let n be a point ∈ F(H), and let

Di ∈ H such that dmax(p,Di) ≥ dmax(k,Dj), ∀ Dj ∈ H. Let h = oin
⋂

F̄ . We have

dmax(h,Di) = dmax(n,Di) + d(h, n) ≥ dmax(n,Dj) + d(h, n) ≥ dmax(h,Dj) ∀ Dj ∈ H.

The last inequality is due to the properties of triangle inequalities (as illustrated in

Figure 3.1a). Therefore, if h is k-covered then so is n. Clearly, ∃h ∈ F̄ for ∀p ∈ F(H),

F(H) is k-covered when F̄ is k-covered. To prove the latter argument, we first make

the following observation. Assume h ∈ some edge of pq ⊂ F̄ . It can be shown

that ∃Di ∈ H such that dmax(h,Dk) ≤ dmax(h,Di) < max {dmax(p,Di), dmax(q,Di)},

∀Dk ∈ H, based on the properties of max-VD edges as discussed in Chapter 2, and

on the properties hyperbolas and triangles as illustrated in Figures 3.1b - 3.1c. Now,

assume that pq ⊂ Vk(H,S), and that dmax(p,Di) ≥ dmax(p,Dk) and dmax(q,Dj) ≥

dmax(q,Dk), ∀Dk ∈ H. Obviously, γk = max{dmax(p,Di)dmax(q,Dj), }. W.l.o.g,

assume that dmax(q,Dj) ≥ dmax(p,Di). Based on the observation, dmax(q,Dk) ≤

dmax(q,Dj) ≤ max{dmax(p,Dj), dmax(q,Dj)} < max{dmax(p,Di), dmax(q,Dj)} = γk,

∀Dk ∈ H. Thus, if p, q are k-covered, then h is k-covered. Since the two arguments

is true for all regions of V k(S), the lemma is proved.

From Lemma 3.1, we can easily devise a procedure to compute k-exposure, i.e.,

the max-min sensing range for area k-coverage as outlined in Algorithm 3.1.

By Chapter 2, the cost of line 1 is O(k2 ·T (n)), where T (n) is the time to compute

the order-1 max VD. Let m be the number of vertices on B̄. The cost of finding

γk(p), when p is a vertex on B̄ is NNQ(n, k), the cost of nearest neighbor query

on Vk(S). The cost is constant for Voronoi vertices in Vk(S), and intersection of

V (S) and B̄, and there are O(kn) of them. Thus, we have the following bound on
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(a) Inequality in triangle: d(oj , h) < d(oj , n) +

d(n, h).

(b) h ∈ pq, a hyperbolic arc with focus oi:

d(h, oi) ≤ max{d(oi, q), d(oi, p)}.

(c) h ∈ pq of the triangle oipq: d(oi, h) ≤

max{d(oi, q), d(oi, p)}.

Figure 3.1: Illustration for the proof of Lemma 3.1.

Algorithm 3.1: Minimum sensing range for k-coverage under uncertainty of

sensors’ locations
input : Set of sensors S = {D1(o1, r1), . . . ,Dn(on, rn)}, the area boundary B, and

k ≥ 1.

output: The minimum sensing range R so as to guarantee the k-coverage in B̄

1 Compute V k(S), the order-k max VD of S;

2 V← vertices of V k(S) in B;

3 V← V
⋃

(

V k(S)
⋂

B̄
)
⋃

vertices of B̄;

4 γk ← max
p∈V

γk(p), where γk(p) is computed from (3.1).
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computing k-exposure.

Theorem 3.1. Given S and a m-vertex polygonal area B. The total cost of calcu-

lating k-exposure of B, γk, is O(k2 ·T (n) + mNNQ(n, k) + kn), where T (n) is the

cost of constructing the order-1 max VD of n disks, and NNQ(n, k) is the cost of k

nearest neighbors query on V k(S).

3.3.4 Results

We have implemented our algorithm in CGAL [1], a computation geometry library. In

this section, we demonstrate the correctness of the proposed algorithms and evaluate

k-exposure for randomly deployed sensors.

We compare the k-exposure determined by Algorithm 3.1 with that by a naive ap-

proach that utilizes the regular point VD. In the naive approach, for S ′ = {o1, o2, . . . , on},

we first constructs order-1 VD and then apply Lee’s algorithm [43] to construct order-

k VD for S ′. Next, for each Voronoi vertex v in B, we compute the distance to the

corresponding three sites, say, {oi, oj , ol} and set γ′
k(v) = d(v, oi) + max {ri, rj , rl}.

For each non-vertex v on B̄, we find its k nearest neighbors on order-k VD and com-

pute the γ′
k(v) similarly. Finally, the k-exposure is found by taking the maximum

among all γ′
k(v)’s. We claim without proof that this procedure determines a sensing

range that ensures k-coverage under uncertainty. However, it is necessarily equal or

bigger than the k-exposure determined by Algorithm 3.1.
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Toy examples To understand the difference between the k-exposure determined

by the proposed and the naive approach, we first consider toy scenarios in Figure 3.2a

and Figure 3.2c. In the figures, the nominal locations and uncertainty region of

sensors are represented by dot and disks, respectively. Note that the variability

among uncertainty regions of sensors are higher in Figure 3.2c. Figure 3.2b and

3.2d compare the 1-exposure found by both methods. We can see that while the

exposure determined by our algorithm is strictly not greater, the difference between

the two is more salient when the variability in the uncertainty regions is higher.

A realistic scenario Next, we consider a more realistic scenario, in which 23 sen-

sors are randomly deployed in a 500× 320 field. The uncertainty radii are generated

uniformly between 20 and 60.

Figure 3.3(a)–(f) show the order 1 through 3 max VD and their respective ex-

posures. In Figure 3.3(d)–(f), we include disks that are centered at the nominal

location of each sensor. Clearly, the desired degree of coverage is provided. One

interesting quantity is the ratio of k and (k + 1)-exposure. The bigger the ratio the

higher the redundancy the placement for k-coverage. Some points in the area are in

fact (k + 1)-or-higher covered when the sensing range is set to be the k-exposure.

Our experiments show that as the sensing range is set to be 157.23. Roughly, 90%

of the area are 2-or-higher covered.

Figure 3.4 compares the exposure determined by the two algorithms in 30 random

deployments of 25 sensors in a 500 × 320 field. Uncertainty disks are uniformly

selected in 3 different ranges, namely, [0, 20], [0, 40], and [0, 60]. As seen in the
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(a) Low-variance uncertainties. (b) Performance of the two approaches in

low-variance uncertainties.

(c) High-variance uncertainties. (d) Performance of the two approaches in

high-variance uncertainties.

Figure 3.2: Compare of the proposed method with the naive one in various sensors’

uncertainty in different orders. In Figures 3.2a and 3.2c, disks present uncertainties

of sensors’ locations, solid arcs present the order-1 max VD. In Figures 3.2b and

3.2d, the x-axis presents the order of the max VD, the y-axis shows the k-exposures

of orders 1-4.
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(a) order-1 max VD (b) order-2 max VD (c) order-3 max VD

(d) 1-exposure = 157.23 (e) 2-exposure= 183.57 (f) 3-exposure = 200.19

Figure 3.3: 1-, 2-, and 3-coverage of 23 sensors randomly deployed in the area of

500 × 320. Dots are sensors’ nominal locations. In Figure 3.3a - 3.3c: disks are

uncertainty areas, dark arcs are high order max VDs. Solid disks in Figure 3.3d -

3.3f are exposures.
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Figure 3.4: Performance of the proposed method and the naive approach on 25

sensors randomly deployed in a 500×320 field. The means and variances of exposure

deviations of our proposed method and the naive one under different orders (1− 4)

and uncertainty variances are shown.

figure, the higher the uncertainty variance, the smaller the proposed method’s k-

exposure compared to the naive one’s. Finally, we vary the number of sensors and

measure its impact on the k-exposure. The results are shown in Figure 3.5. As

expected, as the number of sensors increases, the k-exposure decreased for all orders.

3.4 Related work

The objective of k-coverage (k ≥ 1) is to place sensors at locations such that the

union of the sensing disks cover the entire area of interest. For 1-coverage, placing

homogeneous sensors in a hexagon grid pattern is known to be optimal [34]. However,
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Figure 3.5: k-exposure VS. number of sensors. Sensors are randomly deployed in a

500× 320 field.

such a placement is very sensitive to the location of sensors. A small movement of

one sensor from its designated grid position leaves some region uncovered. On the

theoretical front, it has been shown in [81] that to provide k-coverage with high

probability, the sensor density needs to scale on the order of 2k loglogA, where A is

the size of the area if sensors are deployed following a Poisson point process. Again,

it is assumed that sensor locations are exact.

Much work has been done to detect coverage and communication holes in wireless

sensor networks, which can be broadly categorized into two groups, namely 1) those

utilizing location information and 2) those utilizing connectivity information. Fang

et al. [19] proposed a simple algorithm that greedily sweeps along hole boundaries

and discovers boundary cycles. Location information is assumed to be known and

unit disk connectivity is required. Ghrist and Muhammad [25] proposed a centralized
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method to detect coverage holes by means of homology utilizing network communi-

cation graphs. Assuming that the connectivity is determined by the unit-disk graph

model, Funke and Klein [22] proved that using linear-time algorithm, one can iden-

tify nodes on the boundaries of holes of the network. Wang et al. [75] developed a

practical distributed algorithm for boundary detection in sensor networks, using only

the communication graph. The basic idea is to identify irregularity in the communi-

cation graph, more specifically “cut” in shortest path tree, whose common ancestor

is far away. Holes in communication graphs can have different definitions based on

the application context. To form a hole, the diameter of the holes is larger than

communication range.

When there exists uncertainty in sensor location, two classes of problems have

been considered in literature: 1) positioning sensors given bounds on the placement

error and 2) determining the amount of room for error given a chosen set of intended

sensor positions under some restrictive conditions. Bar-Noy et al. [9] established

the connection between inexact sensor location modeled as a disk of radius w and

shrinking the sensor range from R to R − w under deterministic and probabilistic

sensing models. Under such mapping, existing techniques for sensor placement and

the inverse problem of sensing radius determination can be applied. The authors

described an O(n logn) complexity algorithm for radium assignment based on Voronoi

diagrams. The proposed method is a special case of our approach when the uncertainty

area of sensors is identical.

In [34], Johnson et al. considered regular grid deployment and investigate the

benefit of shrinking the grid size to remedy the uncertainty in sensor locations. They
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show that shrinking the grid size to obtain a denser hexagonal lattice allows all sensors

to move about their intended positions independently while nonetheless guaranteeing

full coverage. Furthermore, sufficiently increasing the lattice density will naturally

yield k-coverage for k > 1. Wiggle room was used to characterize the allowance

of uncertainty in sensor position departing from the ideal hexagonal placement to

ensure coverage. Our work differs from [34] in that the uncertainty area (or wiggle

room) is given while the objective is to determine whether the area is fully covered.

Furthermore, our methods target for general configurations and are not limited to

hexagonal placement.

3.5 Target localization and tracking

3.5.1 Introduction

We design of efficient algorithms for locating and tracking targets using binary prox-

imity sensors with location uncertainty. In particular, for target localization without

sensing errors, an average running time of O(k2 log k) is incurred, where k is the

number of sensors detecting the target. Evaluating the likelihood of a candidate lo-

cation in presence of sensing errors has an average time complexity of O(logN + k)

given a total of N sensors. Both are considerably more efficient than naive ap-

proaches. The likelihood estimates play a central part in evaluating the measurement

model to handle both sources of uncertainties, and when combined with filter-based

approaches, give rises to efficient algorithms for target tracking.
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3.5.2 Problem statements

Let C(p, si) be the disk centered at the target location p with radius si, Ui be the

overlapping area of C(p, si) and Di. With the actual sensor locations uniformly

distributed in the uncertainty disks, the binary measurement zi(t) of sensor i at time

t with respect to target p follows a Bernoulli distribution given by:

P(zi(t)|p) =

(

A(Ui)

A(Di)
(1− ǫi) +

A(Di)−A(Ui)

A(Di)
ǫi

)

zi(t)

+

(

A(Ui)

A(Di)
ǫi +
A(Di)−A(Ui)

A(Di)
(1− ǫi)

)

(1− zi(t)) (3.2)

where A(·) denotes the area. When A(Ui) = 0 (i.e., sensor i cannot detect targets at

location p), the above equation can be simplified as,

P(zi(t)|p) = ǫizi(t) + (1− ǫi) (1− zi(t)) (3.3)

In this chapter, we consider the problems of target localization and tracking in a

field of binary proximity sensors with measurement and location uncertainty. For-

mally,

Problem 3.3. (Target localization with no measurement errors) Given

a binary vector of length N , Z(t), of the readings from N sensors, assuming no

measurement errors, what is the region that a target MAY be located?

It is well-known that the binary proximate sensors only provide a coarse-grained

spatial resolution. In fact, it has been proven in [64] that if a network of binary

proximity sensors has an average sensor density ρ and each sensor has sensing radius
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(a) Tessellation due to 3

sensors (no location un-

certainty).

D3

D2

D1

(b) The localized area as sensors

D1,D2, and D3 detect a target.

D2

D1
D3

(c) The localized area as only

sensors D1 and D3 detect a tar-

get.

Figure 3.6: Ambiguity of target locations with ((b)(c)) and without (a) sensor lo-

cation uncertainty. The solid, dashed and dotted circles enclose areas of probable

detection, sensor uncertainty region and guaranteed detection, respectively

s, then the worst-case L∞ error in localizing the target is at least Ω(1/ρs). With the

uncertainty of sensor locations, the ambiguity is even more significant. To see why,

let us consider an illustrative example with three sensors in Figure 3.6. Figure 3.6(a)

shows the likely target locations from different sensor readings when the locations of

sensors are exact. For instance, region 5 corresponds to the reading z1 ∧ z2 ∧ z3 = 1

while region 2 corresponds to z1 ∧ z3 ∧ ¬z2 = 1. Figures 3.6(b) and (c) show the

regions for z1 ∧ z2 ∧ z3 = 1 and z1 ∧ z3 ∧ ¬z2 = 1, respectively. In Figures 3.6(a)(b),

the dashed disks represent the uncertainty regions, the solid disk has radius ri+si for

sensor i (the probable region of targets), and the dotted disk has radius max{si−ri, 0}

(the guaranteed region of target). For instance, any point in the shaded region in

Figure 3.6(b) may be detected by all sensors. As sensors 1 and 3 detect targets but
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sensor 2 does not, targets locate in the shaded region in Figure 3.6(c).

A few observations are in order. First, when there is no uncertainty in sensor

locations, the exclusion-inclusion of sensing disks around sensors form a tessellation

of the entire area. This can be used as the basis for localization by simply labeling each

region a the binary observation vector. However, such a property no longer holds with

location uncertainty in sensors, namely, the areas corresponding to different readings

may overlap with one another. A naive approach would incur O(n log n) complexity

to compute each possible region by a sweep-line algorithm [62]. Second, expanding the

sensing range by the uncertainty radius would not yield proper localization results.

The reason is not only we need to consider inclusion of these expanded disks due to

sensors with positive readings, but also exclusion of reduced disks (with radius equal

to sensing radius minus the uncertainty radius) due to sensors with null readings.

Problem 3.4. (Likelihood of observations given a target location) Let

Z be the binary measurement vector (possibly with errors). What is the likelihood of

having reading Z for a target at location p?

Equation (3.2) can be used to evaluate the above probability. However, to compute

the Ui’s, a naive approach would inspect every single sensor and test whether Ui is

empty or not resulting in a complexity of O(N). We will show that only a small set

of sensors need to be tested with the help of geometric structures defined in Section 2.

More importantly, we will show an interesting result that the average running time

of the localization algorithm only depends on the number of sensors detecting targets.

Problem 3.5. (Single target tracking with measurement errors and
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location uncertainty) Given sensor observations Z(t0), Z(t1), . . . , Z(tn) at times

t0, t1, . . . , tn, what is the trajectory of the target?

Clearly, due to limited spatial resolution for target locations, target trajectories

cannot be uniquely determined as well. Additional constraints need to be imposed.

Shrivastava et al. in [64] applies the Occam’s razor principle to trim the target

trajectory. We choose to apply a particle filter-based approach.

3.5.3 Solutions

In this section, we first discuss the K-nearest neighbor queries, which play as the

foundation for the Problem 3.4. Then, we give the solution to the problems formulated

in the previous section.

3.5.3.1 K-nearest-neighbor (kNN) query

kNN queries concern with finding the k nearest neighbors among N disks of a location

in the plane under dmax distance metric. Order-k max VDs help to improve the

running time of kNN queries. The main results of this section are summarized as

follows:

Theorem 3.2. Given an order-k max VD of a set S of N disks, a single kNN query

takes O(logN) and O(N) running time complexity on average, and in the worst

cases, respectively.
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Theorem 3.3. Given the max VDs of orders 1, 2, . . . , N − 1 of N disks, K se-

quential queries, i.e., finding the 1, 2, . . . , K nearest neighbors takes O(N logN) and

O(logN +K) times in the worst case, and on average, respectively.

kNN query We replace every finite edge (curve) in the order-k max VD V k(S)

by a straight line segment connecting its vertices, and replace half-edges (with a sin-

gle vertex) or open edges (no end points) a ray or an infinite straight line that do

not intersect other rays, lines or line segments. This procedure results in a planar

subdivision D, in which there is an one-to-one mapping from a particular region V

of V k(S) to a region R of D. From the construction, a point in a R must locate

in V or V’s neighbor regions. Determining the region D containing the query point

takes O(log n) [40]. Since two neighboring regions differ by one disk, it takes O(1)

to determine whether the query point is in V or one of its neighboring regions. Since

the average number of neighbors of V in V k(S) is constant ([7]), finding the region of

V k(S) that contains a given point takes O(logN) time on average with the worst-case

time O(N). We have Theorem 3.2.

kNN queries A straightforward approach for finding the 1, 2, . . . , K, (K > 0)

nearest neighbors takes O(K logN) by applying the single kNN query K times (with

k = 1, 2, . . . , K). We show next that by leveraging the max VDs up to the Kth order,

the complexity can be greatly reduced.

Lemma 3.2. Consider a point p in a particular region Vk(H,S) of V k(S), that is,

H is the set of k nearest neighbors of p. Let H ′ = {D1,D2, . . . ,Dl} be the set of disks
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Figure 3.7: Sequential kNN query of a location (dot) in the first 3 high-order max

VDs of 9 disks (circles). In order-1 max VD (a), the location is queried in the whole

plane. Once the region of order-k is identified (dashed), only the regions of the

order-(k + 1) VD that tessellate the order-k region (shaded) are searched (b)(c).

associated with the new vertices of V(H,S). The (k + 1)th nearest disk of p must be

an element of H ′\H.
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Given the k nearest neighbors of a point p, Lemma 3.2 limits the number of can-

didates for the (k+1)st nearest neighbor. Since Vk(H,S) has on average 6 neighbors,

the number of new vertices of V(H,S) is also constant, and so is the total number of

disks associated with the new vertices of Vk(H,S). Therefore, the number of probable

(k + 1)st nearest disks is constant. Figure 3.7 illustrates the incremental algorithm

for the sequential kNN queries.

Algorithm 3.2: Sequential kNN queries

Input : A set of disks S = {D1(o1, r1),D1(o2, r2), . . . ,DN (oN , rN )}, order-k max

VDs V 1(S), V 2(S), . . . , V N−1(S), a query point p.

Output: Sorted K nearest disks of p.

1 V(H1, S)← the order-1 max Voronoi region that contains p ;

2 L← H1 /* List of sorted K nearest disks of p */;

3 for k ← 2 to K do

4 V← new vertices of V(Hk−1, S) ;

5 H← disks associated with V, which are not in Hk−1 ;

6 R ←
{

Vk(Hk−1

⋃

{Di}, S)
}

, ∀Di ∈ H ;

7 V(Hk, S)← V
k(Hk−1

⋃

{Di}, S) ∈ R : p ∈ Vk(Hk−1

⋃

{Di}, S) ;

8 L← L
⋃

Di ;

9 return L;

Algorithm 3.2 gives details of sequential queries. The algorithm first identifies

the nearest neighbor of p (line 1) making use of the single 1NN query primitive in

the previous section with O(logN) complexity on average. To find the kth nearest

disk (k > 1), the algorithm only searches among the neighbors of the region identified
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in the (k − 1)st step (lines 6 and 7). Since there are only a constant number of

neighboring regions, line 7 takes O(1) running time. Thus, we have the average

running time as shown in Theorem 3.3. Additionally, let ni be the number of disks in

H (line 5) at the ith iteration, the total number of comparisons up to the jth iteration

is
∑

i=1...j ni. If the sum exceeds O(N logN), we can switch to the naive method, i.e.,

sorting the distances from p to disks jth, (j + 1)st, . . . , N , which gives a worst case

complexity of O(N logN). This proves the worst case complexity in Theorem 3.3.

Note this procedure can be straightforwardly applied to answer l + 1, l + 2, l +K-NN

queries for any l ≥ 0.

To this end, we have developed the construction algorithm for order-k max VDs

and algorithms for single and sequential kNN query. These primitives will be used

as building blocks to address the three problems raised in Section 3.5.2.

3.5.3.2 Target localization with uncertainty

In this section, we consider the first problem of identifying the region that a target

may be located given error-free binary readings from N sensors. Let H be the set of

sensors detecting the target. In the geometric terms, given sensing range si’s, we are

seeking R, the locus of points p satisfying

dmin(p,Di) ≤ si and dmax(p,Dj) > sj, ∀Di ∈ H,Dj 6∈ H. (3.4)

Without loss of generality, we set si ≡ s. Define B =
⋃

Dj∈S\H
Dj(oj,max(s− rj, 0))
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and A =
⋂

Di∈H
Di(oi, ri + s). We first observe that,

R = A ∩ ¬B (3.5)

Essentially, we try to find a region that is inside the set of disks Ci(oi, s+ ri) for

i ∈ H and outside the disks Cj(oj,max(s− rj, 0)) for j ∈ S\H. Further note that by

the definition of dmin and dmax, a necessary condition for (3.4) is

d(p, oi)− ri ≤ d(p, oj) + rj, ∀Di ∈ H,Dj 6∈ H.

Or, equivalently,

d(p, oi)− ri + rmax ≤ d(p, oj) + rj + rmax, ∀Di ∈ H,Dj 6∈ H,

where rmax = maxi ri. Let r′i = rmax − ri if Di ∈ H, and vice versa. With the

uncertainty radii properly adjusted and together with (3.5), we have

R ⊆ A ∩ Vk(H,S),

where k = |H|.

Let Hi, i = 1, . . . , l be the neighbors of H with common edges in Vk(H,S) and

S ′ =
⋃l

i Hi ∪H. It is easy to show that Vk(H,S) = Vk(H,S ′). Therefore, it suffices

to compute B′ =
⋃

Dj∈S′\H Dj(oj,max(s− rj, 0)) and R = A ∩ B′.

Algorithm 3.3 gives details of target localization. It consists of two main steps,

i.e., the construction of an order-k max VD (line 6), and disk inclusion-exclusion

(line 8). We observe from the order-k max VD construction from Chapter 2 that the

running time of expansion/shrinking of a disk in fact involves in the sorting to edges
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of the Voronoi regions corresponding to the disk. Since the expected number of edges

in a Voronoi region is constant, and the expected number of regions corresponding to a

disk in an order-k max VD is k, expansion/shrinking N disks in an order-k max VD

takes O(Nk log k) expected running time. The order-k max VD in this case can be

constructed by shrinking disks corresponding to sensors detecting targets. Thus, the

average running time of line 8 is O(k2 log k). To see the average running time of the

second step, note that |H ′\H| in fact is the number of neighbor regions of V(H,S),

which is constant on average. Therefore, the inclusion and exclusion (line 8) takes

O(k log k). We conclude:

Theorem 3.4. Given the readings of N sensor in which k sensors detect the target,

Algorithm 3.3 on average takes O(k2 log k).

3.5.3.3 Likelihood of sensor readings under noisy measurements

Given noisy binary observation Z and a candidate target location p, we are interested

in evaluating its likelihood under the measurement model in (3.2). This requires

calculating the overlapping area Ui of C(p, s) and Di for i = 1, 2, . . . , N , some of

which can be empty (Figure 3.8). A naive approach would compute the distance from

p to every Di costing a total computation time of O(N). With the help of the kNN

queries developed in Section 3.5.3.1, we will show that a more efficient algorithm can

be devised.

The basic idea is to identify the set of sensors H that are possible to detect p.

Formally, we are seeking for H such that maxi(d(p, oi)− ri) ≤ s and minj(d(p, oj)−
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Algorithm 3.3: Target localization

input : A set of sensors S = {D1(o1, r1),D1(o2, r2), . . . ,DN (oN , rN )}, a set of

detecting sensors H = {D1(o1, r1),D1(o2, r2), . . . ,Dk(ok, rk)}, order-k

maximum Voronoi diagram of disks’

S′ = {D1(o1, r1 + rmax),D1(o2, r2 + rmax), . . . ,DN (oN , rN + rmax)}

output: The region R of possible target’s location

1 rmax ← maxi∈H ri ;

2 for Ci ∈ H do

3 ri ← rmax − ri ;

4 for Cj ∈ S\H do

5 rj ← rmax + rj ;

6 Construct order-k region Vk(H,S) ;

7 H ′ ← neighboring sets of Vk(H,S);

8 Construct R by inclusion and exclusion of disks in H and H ′\H ;
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rj) > s, ∀i, j : Di ∈ H,Dj ∈ S\H. Let rmax = maxi ri ∀Di ∈ S. The prob-

lem is equivalent to searching the set of nearest neighbors to p amongst disks S ′ =

{D1′(o1, rmax − r1), . . . ,DN ′(oN , rmax − rN)} that can detect p. The main challenge

is that the cardinality of H is an unknown priori (otherwise, we can just perform a

single kNN query for p). Instead, we apply the sequential kNN queries and iteratively

search for the next nearest disk until the new disk found can no longer detect p.

The algorithm for likelihood evaluation (Algorithm 3.4) is analogous to Algo-

rithm 3.2 with a stopping criteria to ensure all sensors identified can detect p. Once

H is found, likelihood of the measurements can be evaluated by (3.2) and (3.3).

LetK be the number of sensors that are able to detect the target. From Lemma 3.3,

Algorithm 3.4 runs in O(log n + K) on average and O(N logN) in the worst case.

The worst case complexity can be improved by “opting” out for the naive approach,

which incurs a O(N) complexity during the execution of the algorithm.

3.5.4 Target tracking with location uncertainty and mea-

surement errors

We demonstrate the application of the measurement model developed in the previous

section in target tracking defined in Section 3.5.2. We employ the particle filter

approach [5] to solve this problem.

The particle filter is a non-parametric implementation of the Bayesian filter,

which uses the Bayesian theorem to estimate the posterior probability of system states.

Particle filters approximate the posterior distribution by a finite number of samples

83



Algorithm 3.4: Likelihood evaluation

Input : A set of disks S = {D1(o1, r1),D1(o2, r2), . . . ,DN (oN , rN )}, order-k max

VDs V 1(S), V 2(S), . . . , V N−1(S); target location p; binary measurement

vector Z = {z1, z2, . . . , zN}

Output: The likelihood w of sample p for reading Z

1 V(H1, S)← the order-1 max Voronoi region containing p ;

2 H ← H1 ;

3 while The last sensor in H is able to detect p do

4 V← new vertices of V(Hk−1, S) ;

5 H← disks associated with V, which are not in Hk−1 ;

6 R ←
{

Vk(Hk−1

⋃

{Di}, S)
}

, ∀Di ∈ H ;

7 V(Hk, S)← V
k(Hk−1

⋃

{Di}, S) ∈ R : p ∈ Vk(Hk−1

⋃

{Di}, S) ;

8 H ← H
⋃

{Di} ;

9 Remove the last element of H;

10 w ← 1;

11 w ← w × wm
n × P(zi|p), ∀zi ∈ H, using (3.2);

12 w ← w × wm
n × P(zj |p), ∀zj ∈ S\H, using (3.3);

13 Return w;
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Figure 3.8: A sensor with sensing range R and uncertainty radius ri is possible to

detect the target that resides within a disk (oi, ri +R) (dashed).

(particles). At time tn, the system’s state is presented by a set of samples ran-

domly drawn from the posterior set of time tn−1. Samples are not chosen with equal

probabilities. Instead, they are drawn based on their fitness with the observation at

tn. The more likely a sample generates the observation, the higher probability it

is chosen. Denote Xn =
{

X1
n, X

2
n, · · · , X

M
n

}

the set of particles at time tn, where

Xm
n = (xm

n , y
m
n ) are the coordinates of the target. Let Zn and wm

n , respectively, de-

note the observation and the importance (defined next) of the mth particle at time

tn. Zn = {z1n, z
2
n, · · · , z

N
n }, where zin is the binary value of the ith sensor (Di) at tn,

i.e., a “1” if the ith sensor detects the target, and “0” otherwise. It has been shown

in [71] that:

wm
n = ηP (Zn |Xn) = η

M
∏

i=1

P
(

zi |Xm
n

)

(3.6)

where η is the normalization factor. The second equality is due to the independence
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Algorithm 3.5: Particle filter

Input : The sample set at time tn−1, Xn−1 = {X
1
n−1, X

2
n−1, · · · , X

M
n−1}; the

observation at time tn, Zn

Output: The sample set Xn = {X1
n, X

2
n, · · · , X

M
n }

1 Xn ← ∅ ;

2 X′
n ← ∅ ;

3 for i← 1 to M do

4 X
′i
n ← MotionModel(Xi

n−1) ;

5 wi
n ← MeasurementModel(X

′i
n , Zn) from (3.6);

6 X′
n ← X′

n

⋃

〈

X
′i
n , w

i
n

〉

7 for i← 1 to M do

8 draw X
′i
n with probability ∝ wi

n;

9 Xn ← Xn

⋃

X
′i
n ;

10 return Xn;

of sensors’ location and observations. The procedure in Algorithm 3.4 can be used to

evaluate wm
n .

The basic particle filter based tracking procedure is given in Algorithm 3.5. To

constrain the target’s movements, we assume that it can only move within a circle

a radius rt in between two consecutive observations. Other motion models can be

adopted straightforwardly. Line 4 randomizes a position given the constraint. The

measurement model (line 5) evaluates the importance of a particle based on Algo-

rithm 3.4.
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3.5.5 Evaluations

We have implemented the proposed algorithms in CGAL [1], a computation geom-

etry library. In this section, we evaluate the performance of target localization and

tracking in terms of running time and accuracy. All experiments are conducted in a

Core-2 duo 1.7 Ghz workstation.

3.5.5.1 Running time

We evaluate the running time of Algorithm 3.4 for likelihood evaluation. As evident

from Section 3.5.4, it is a critical step in target tracking. We randomly select 100000

locations in several deployments with different number of sensors, varying from 5000

to 50000, randomly deployed in areas of 750× 500. The uncertainty radius of sensor

locations is uniformly distributed in [0, 30]. The sensing range is set to be 50. The

naive method that scans all sensors is used as a baseline. As shown in Figure 3.9,

as the number of sensors increases, the running time of the naive method increases

linearly, while that of the proposed method increases much slower. Therefore, the

proposed method is more suitable when there is a large number of sensors. Note that

by no means is our implementation optimal. So it is expected that further reduction

in computation time can be achieved.

Next, we evaluate the running time of Algorithm 3.4 with respect to the number

of sensors detecting the target. In this experiment, we generate 10000 randomized

samples in a field of 50000 sensors. We perform kNN queries for k from 100 to

1000. For each k, we execute 50 queries. Figure 3.10 shows a linear increase in the
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Figure 3.9: Running time of Algorithm 3.4 in comparison with the naive method.

X-axis shows the number of sensors. Y-axis shows the execution time (in second).

running time of the proposed algorithm as the number of sensors detecting the target

increases. The result agrees with the analysis that the running time is linear with

respect to the number of detecting sensors. The speed of increment is relatively slow.

In Figure 3.10, when the number of sensors detecting target increases by 10 folds

(from 100 to 1000), the running time only increases by 0.4 second.

Next, we evaluate the running time of Algorithm 3.3 to generate the set of sensors

for inclusion and exclusion. First, we fix the number of sensors at 1000 and vary k,

the number of sensors detecting targets. The running time is plotted in Figure 3.11a.

As shown in the figure, the running time increases according to O(k2 log k) as proved

earlier. Then, we fix k at 10 and vary the number of sensors from 500 to 2000. Disk

centers are generated with similar density with uncertainties uniformly generated in

[0, 30]. The results are shown in Figure 3.11b. As shown in the figure, the running

88



Figure 3.10: Running time of Algorithm 3.4 with respect to the numbers of sensors

detecting the target. X-axis shows the numbers of sensors detecting the target.

Y-axis shows the running time (in second).

time does not change much as the number of sensors increases. This empirically

verifies the claim in Theorem 3.4, which states that the running time of Algorithm 3.3

only depends on the number of sensors that detect the targets.

3.5.5.2 Localization and tracking results

In the set of experiments, we examine the impact of sensor location uncertainty on

the resolution of localized areas. We randomly deploy 63 sensors in a 200× 150 area

with sensing range 50. We increase the sensor location uncertainties from 10 to 45.

As shown in Figure 3.12, the size of the localized area increases linearly with the

uncertainty radius.

Finally, we evaluate the performance of the target tracking algorithm. 63 sensors
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(a) Fixed number of sensors and various numbers

of detecting sensors.

(b) Fixed number of detecting sensors and various

numbers of sensors.

Figure 3.11: Running time of Algorithm 3.3 for generating the set of sensors necessary

for inclusion and exclusion.

are randomly placed in a 200 × 150 area. Each sensor is associated with a loca-

tion uncertainty uniformly distributed in [0, 20]. Two sensing error probabilities are

simulated, namely, ǫ = 0.1 and ǫ = 0.15. A unique trajectory is calculated from
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Figure 3.12: The size of localized areas with respect to location uncertainties. X-axis

presents the uncertainty radius. Y-axis presents the size of the localized area in the

200× 150 region.

the weighted centroid of all samples produced by the particle filter at each time in-

stance. We observe from Figure 3.13 that the computed trajectories (marked by red

diamonds) in general match well with the ground truth (marked by blue circles). A

higher sensing error probability leads to larger deviation as expected.
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(a) ǫ = 0.15 (b) ǫ = 0.1

Figure 3.13: Target tracking with respect to sensing error probability (ǫ’s). The

diamond chain gives the trajectory estimates. The circle chain represents the true

trajectory. XY-axes present the x-y coordinate of the target’s location.
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Chapter 4

Location Privacy in Participatory

Sensing

4.1 Introduction

With the proliferation of mobile devices loaded with rich sensory peripherals, par-

ticipatory sensing – outsourcing sensing tasks to a large group of mobile users (a

crowd) – has gained much attention in a variety of applications including, real-time

traffic and road monitoring, reporting spots of oil spill, finding the best biking routes,

scoring 3G broadband services, etc. In participatory sensing, a user can both con-

tribute valuable information (data reporting) as well as retrieve (location-dependent)

information (query). Privacy is an important issue in data sharing. In participatory

sensing, privacy concerns arise from two aspects. The first is in the data reporting
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process. It is often desirable to build an understanding/a model of the sensed envi-

ronment without the precise knowledge of individual’s information. Many techniques

have been proposed in literature by transforming the data (e.g., adding noise [3],

fitting [4], etc.) The second is in the query process, where a user sends location sen-

sitive queries regarding his surroundings (e.g., “where is the closest pub?”). Location

privacy mainly concerns with two objectives: hide user locations, and hide user iden-

tities, which avoids association of users with their activities (e.g., “who is requesting

the nearest pub?”). Our work deals with the latter.

K-anonymity is a measure of privacy first introduced by Sweeney et al. [68] to

prevent the disclosure of personal data. A table satisfies K-anonymity if every record

in the table is indistinguishable from at least K − 1 other records with respect to

every set of quasi-identifier attributes. In the context of location privacy, the lo-

cation attribute can be viewed as a quasi-identifier. K-anonymous location privacy

thus implies that the user’s location is indistinguishable from at least K − 1 other

users. To achieve K-anonymous location privacy, one common approach is to in-

corporate a trust server, called the anonymizer who is responsible for removing the

user’s ID and selecting an anonymizing spatial region (ASR) containing the user and

at least K − 1 users in the vicinity (Figure 4.1(b)). Another purpose of ASR is to

reduce the commnication cost between the anonymizer and the service provider, and

the processing time at service provider side. This process is also called “cloaking” as

it constructs a spatial cloak around the user’s actual location. The anonymizer for-

wards the ASR along with the query to the (untrusted) location based service (LBS)

(Figure 4.1(c)), which processes the query and returns to the anonymizer a set of
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Figure 4.1: Framework for K-anonymous location privacy. kNN stands for the k-

nearest neighbor query. NN stands for “nearest neighbor”.

candidate point of interests (POIs) (Figure 4.1(e)). The anonymizer removes the

false hits and forwards the actual result to the user (Figure 4.1(f)(g)).

As shown in Figure 4.1, in achieving K-anonymous location privacy, it is crucial

to devise quality spatial cloaks at the anonymizer and efficient searching algorithms

at the LBS. Intuitively, the cloaks produced should be locality preserving – close to the

user location, and small in size since both the computational complexity of the search

algorithms and the number of POIs returned increases with the size of the cloak. In

this paper, we make the following contributions in K-anonymous location privacy for

participatory sensing applications:

• Locality-preserving cloaking: We utilize locality-sensitive hashing (LSH) [17]

to project the location data to a high-dimension space, which is then partitioned

into cells that contain at least K users. LSH has the property that location

proximity is preserved during the mapping.

• Efficient and flexible search algorithm: We devise a search algorithm for
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finding k-nearest POIs of simple polygonal cloaks that takes O(log n+Kn+m)

worst-case running time where m is the number of vertices in the polygonal

cloak, n is the number of the POIs, and K is the anonymity level. (In fact, the

exact running time is O(log n + e +m), where e << O(Kn), as shown later.)

Contrary to the general belief that complex cloak shapes drastically increase the

running time of the k-nearest neighbor (kNN) search, the complexity of our

proposed algorithm depends only linearly on m.

The rest of the chapter is organized as follows. In Section 4.3, we introduce

the terminology used and the attacker model. The LSH-based cloaking algorithm is

described in Section 4.4, and the search algorithm is presented in Section 4.5. In

Section 4.6, we present evaluation results. We first introduce the related work for

spatial anonymization.

4.2 Related work

Location privacy in participatory sensing campaign is intensively studied in literature

([12, 59, 60, 26]). In the scenario proposed in [37], users have access to a list of

data collection sites to and choose the site closest to them. In the work, Kazemi et

al. proposed PiRi, a privacy framework that utilizes representative participants for

range queries independent of query issuers’ location. PiRi assumes that participants

can trust one another, and thus may subject to insider attacks.

Privacy in location-based services has drawn much attention in the database and
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data mining community in recent years. An excellent survey can be found in [23].

Existing approaches broadly fall into two categories: user-side approaches and ap-

proaches that require a trusted server. In the first category, users anonymize their

location-based queries by adding noise to the location attributes or generating mul-

tiple decoys at different locations. One such approach is called SpaceTwist [78]. In

SpaceTwist, starting with a location different from the user’s actual location, the

nearest neighbors are retrieved incrementally until the query is answered correctly.

The uncertainty of the user location is roughly the distance from the initial location to

the user’s actual location. SpaceTwist requires implementation of incremental k-NN

query on the server sides. Furthermore, it does not guarantee K-anonymity if the

resulting uncertain area contains less than K − 1 other users.

With a trusted anonymizer, more sophisticated spatial cloaking mechanisms can be

devised. In Casper [49], the anonymizer maintains the locations of the clients using

a pyramid data structure, similar to a Quad-tree. Upon reception of a query, the

anonymizer first hashes the user’s location to the leaf node and then move up the tree

if necessary until enough neighbors are included. Hilbert cloaking [35] uses the Hilbert

space filling to map 2-D space into 1-D values. These values are then indexed by an

annotated B+-tree, which supports efficient search by value or by rank (i.e., position

in the 1-D sorted list). The algorithm partitions the 1-D sorted list into groups of

K users. Hilbert cloaks though achieving K-anonymity does not always preserve

locality, which leads to large cloak size and high server-side complexity. Recognizing

that Casper does not provide K-anonymity, Ghinita et al. proposed a framework

for implementing reciprocal algorithms using any existing spatial index on the user
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locations [24]. Once the anonymous set (AS) is determined, the cloak region can be

represented by rectangles, disks, or simply the AS itself.

Specialized (LBS-side) algorithms have been proposed for identifying a candidate

set that includes the k nearest neighbors for any location in a convex m-vertex poly-

gon [31]. The authors proposed a sweep-line-based algorithm with O(mk2n log n)

worst-case time complexity, which incurs a higher complexity than the proposed Voronoi

diagram-based approach. In [35], the authors proposed an algorithm for circular

cloaked region with worst-case exponential time complexity. Different from aforemen-

tioned work, we propose a search algorithm with any simple polygonal shape cloak with

improved running time complexity. The algorithm can be easily extended to handle

circular cloaks. Finally, cryptographic approaches have been applied to location pri-

vacy, where one-way hash functions are used to encode user and POI locations [52].

Both exact and approximate nearest-neighbor search can be supported at the expense

of higher computation complexity.

4.3 Background

In this section, we introduce necessary terminologies and definitions, and the attacker

model.
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4.3.1 Attacker model

Similar to [35], we assume an attacker that i) intercepts the ASR, ii) knows the

cloaking algorithm used by the anonymizer, and iii) can obtain the up-to-date loca-

tions of all users. The first assumption implies that either the LBS is not trusted,

or the communication channel between the anonymizer and the LBS is not secure.

The second assumption is common in the literature since the data security techniques

are typically public. The third assumption is motivated by the fact that users often

issue queries from the same locations (home, office), which could be identified through

physical observation, triangulation, telephone catalogs, etc.

4.3.2 K-anonymity and reciprocity

We consider N users distributed on a 2-D bounded area B. The set of user loca-

tions is denoted by S. The proposed methodologies can be easily extended to higher-

dimensional space. We assume queries are one-time (or snapshot queries) such that

the attackers cannot utilize historical data to make further inference. Privacy in

publishing trajectory data has been considered in [70] and is out of the scope of this

paper.

K-anonymity is satisfied if the attacker can identify the user that issues a query

with probability not exceeding 1/K. Reciprocity is introduced by Kalnis [35] as a

sufficient condition for K-anonymity as follows:

Definition 4.1. Consider a user U issuing a query with anonymity degree K, and

anonymizing spatial region ASR. ASR satisfies reciprocity if (i) it contains U and at
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least K − 1 additional users, and (ii) every user in ASalso generates the same ASR

for the given K.

Reciprocity necessarily implies a fixed partition of B such that every partition

contains at least K users forming the cloak of the associated users. Though reciprocity

is not necessary to ensure K-anonymity, it is easy to verify and has been widely

adopted in literature.

4.4 LSH-based cloaking

As discussed in Section 4.3, given a query from location q, the anonymizer needs to

construct a spatial cloak that contains q and K − 1 other user locations. To achieve

reciprocity, the anonymizer first partitions all user locations into non-overlapping

buckets each containing at least K users. Then, user locations in the bucket contain-

ing q are enclosed in a geometric shape that is locality-preserving. In this section, we

first show by an example that satisfying both locality-preservation and K-anonymity

is not trivial. Then, we propose a LSH-based approach for cloaking.

4.4.1 A naive approach to cloaking

In order-K VDs, each cell corresponds to a set of K sites that are spatially close.

Therefore, order-K VD cells appear to be natural candidates for cloaking. Specifically,

we first construct an order-K VDs of all user locations S. A cloak can then be

formed from a set of sites H of a non-empty cell, which is randomly chosen such that
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H contains the query location. Consider the example shown in Figure 4.2. There

are 11 user locations in the field. Assume user location p3 requires 2-anonymity.

The order-2 VD of S is given in Figure 4.2. A cell is randomly chosen whose sites

contain p3. Without loss of generality, let the resultant cell be H = {p6, p3}
1. H

constitutes a cloak for p3. Unfortunately, this approach does not satisfy K-anonymity

if the attacker knows all user locations and the cloaking algorithm. In this case, the

probability that the attacker can correctly guess p3 can be derived using the Bayes

formula:

P (p3|H) =
P (H|p3)× P (p3)

P (H)

=
P (H|p3)× P (p3)

∑

pi∈S
P (H|pi)× P (pi)

The numbers of cells whose sites contain p3 and p6 are 4 and 5, respectively.

Therefore, P (H|p3) = 1/4 and P (H|p6) = 1/5. Additionally, P (H|pi) = 0 for

pi 6= p3, p6. We further assume that each user has equal probability to issue the

query, and thus P (p3) = 1/11. Hence,

P (p3|H) =
1
4
× 1

11
1
11
× (1

4
+ 1

5
)
> 1/2

Clearly, 2-anonymity is violated. The main reason is that different user locations

may contribute to different numbers of cells in the order-K VD. Thus, although the

approach is locality-preserving, it does not satisfy K-anonymity. This motivates us

to seek for a method that is both locality-preserving and K-anonymous.

1For the ease of presentation, we abuse the notation and use H to refer to both the set of sites

and the Voronoi cell.
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p1

p2 p3
p4

p5 p6
p7 p8

p9 p11

{p6, p3}

{p6, p7}

{p6, p10}

{p6, p2}

{p6, p5}

p10

{p3, p7}

{p3, p2} {p3, p4}

Figure 4.2: The order-2 Voronoi diagram of 11 locations. {·, ·} shows the locations

corresponding to a cell.

4.4.2 Locality-sensitive hashing-based approach to reciprocity

A straightforward approach to reciprocity is to partition the user locations into buckets

of adjacent points. For instance, given S, we randomly choose a point p and group it

with its (K−1) nearest neighbors. The process continues until all points are assigned

to some buckets. This approach has two disadvantages. First, it fragments the dataset

and is not locality preserving. Points in the same bucket may be not neighbors in

the original dataset, especially for large K’s. This is illustrated in Figure 4.3(a). In

the example, K = 4 and point p is chosen initially. Three neighbors of p then form

a cloak, shown in the rectangle. After the four points are removed from the dataset,

the cloak of the remaining points is large. In this example, the partition as shown

in Figure 4.3(b) is clearly more desirable. Second, the time complexity is high. It

is easy to see that the method takes O(n
2

K
log(n

2

K
)) running time. We show shortly
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an approach that achieves desirable partitions with lower time complexity thanks to

locality-sensitive hashing (LSH) [17].
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Figure 4.3: Fragmentation in the naive nearest neighbor partition.

LSH hashes the input data so that similar points are mapped to the same buckets

with high probability. Formally, for a domain S, a function family H = {h : S → U}

is called (r1, r2, p1, p2) sensitive with distance measure D if for any v, q ∈ S: if

d(v, q) < r1 then PH[h(q) = h(v)] ≥ p1; if d(v, q) > r2 then PHh(q) = h(v) ≤ p2,

where p1 > p2, r1 < r2, and d(v, q) is the distance between v and q in D. There are

several LSH families. In this work, we use the LSH family based on p-stable distribu-

tions [83] proposed in [17]. The idea of the LSH scheme is as follows. Consider two

input vectors v1 and v2, and a vector a whose entries are chosen independently from a

p-stable distribution X. The distance between their projections on a, (a ·v1−a ·v2), is

distributed as ||v1− v2||pX. By dividing the projected points into equal-width buckets

of size r, vector a gives rise to a locality-sensitive hash function, where ha(q) = q · a.

However, though similar points are hashed into the same bucket with high probability,

the reverse does not hold, i.e., a bucket may contain faraway points. A solution to

this problem is to use multiple hash functions. That is, q is hashed by L functions

gl(q) = 〈h1(q)〉, l = 1, 2, . . . , L.2 Multiple hash functions lead to a better separation

2In the original LSH scheme, each hash function maps a data point in Rd to the Rk. Here we
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of the data points as illustrated in the example in Figure 4.4. The projections of

points p1, p2, p3, and p4 in the plane onto line a are close, while those corresponding

to line b are more separate. The use of the two vectors a and b maps p1 and p2 into

the same bucket, and p3 and p4 to another bucket. It has been shown in [17] that

given an error rate ε, L can be chosen such that r-near neighbor queries are answered

correctly with the error rate lower than ε.

LSH is useful in devising spatial cloaks due to its locality-preserving property.

Instead of finding r-near neighbors, the canonical applications of LSH, we wish to

partition the data set into groups of at least K elements. Since the partition using

a single hash function may contain many distant points, we use L hash functions

g1, g2, . . . , gL instead. The LSH-based partitioning algorithm is summarized in Algo-

rithm 4.1. We first build sorted lists l1, . . . , lL of hashed values of S from the L hash

functions. Then, each list is partitioned into buckets each containing K elements

(the last one may contain more than K elements). To avoid fragmentation, we al-

ways start from the first available point q on l1. q’s (K − 1) nearest neighbors are

extracted from U(q) the union of the L buckets containing q in the respective lists.

Due to the properties of LSH, q’s nearest neighbors are in U(q) with high probability,

and, moreover, the size of U(q) is not high. In our implementation, the 2-stable

Gaussian distribution proposed in [17] is adopted for 2-D location data.

We now analyze Algorithm 4.1’s running time. Lines 1 to 3 sort the data set

in L lists, which costs O(Ln log n), where n = |S| is the cardinality of the dataset.

Line 12 requires sorting elements from L buckets, which takes at most O(Lk logLk).

choose k = 1.
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Algorithm 4.1: LSH-based location partitioning

Data: A set of points S, K-anonymity

Result: T , a partition of S into groups of size K, except for the last one

1 generate L hash functions, each is a vector whose entries are chosen from a

Gaussian distribution;

2 compute and maintain L sorted lists {l1, . . . , lL} of hash values of S;

3 T ← ∅;

4 while sorted lists are not empty do

5 Partition li into buckets of size K, i = 1, . . . , L;

6 q ← the first element of l1 ;

7 Ω← ∅;

8 for i = 1 to L do

9 b← the bucket containing q in li;

10 Ω← Ω
⋃

b;

11 end

12 NNs← q
⋃

(K − 1) nearest neighbors of q in Ω;

13 T ← T
⋃

NNs;

14 remove elements of NNs from the L sorted lists ;

15 end

16 return T ;
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Figure 4.4: Hashing 4 points in the plane with 2 hash functions, a and b.

(Note that the exact number of distinct elements is generally lower). While loop

(lines 4 to 14) executes ⌊n/k⌋ times. Therefore, the worst-case running time com-

plexity of Algorithm 4.1 is O(Ln log n). Since number of distinct elements sorted in

line 12 is low, Algorithm 4.1’s running time is expected to be inversely proportional

to anonymity level K.

User locations produced by Algorithm 4.1 are then used to form spatial cloaks.

The search algorithm introduced in Section 4.5 allows simple polygon cloaks as in-

put. Convex polygonal cloaks are popular since they are locality-preserving, and more

importantly, the complexity of kNN queries of convex polygonal cloaks is roughly pro-

portional to the number of edges. However, forming the convex cloak of k users takes

O(K logK) time, which only needs to be done one time as long as the user locations

do not changes. Alternatively, the minimum bounding rectangle can be constructed

in O(K) time to form the spatial cloaks [72].
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4.5 k-nearest neighbor search for polygonal cloaks

In this section, we first give the necessary and sufficient condition for determining

the kNN of a polygonal cloak; and then propose an algorithm. The algorithm can be

easily extended to circular cloaks and be omitted due to space limit.

4.5.1 Necessary and sufficient conditions for the kNN set

A spatial region C is said to intersect with a cloak R if there exists a point p that is

interior to both R and C, and a point p′ that is interior to C but exterior to R. In

other words, C intersects with R iff C 6⊂ R and R∩C 6= ∅. C is inside R if C ⊂ R.

We use the term overlap when C intersects with R or lies completely inside R.

Given a cloak R, we search for the set P of POIs that contains the set of k-nearest

POIs of any location in the cloak, i.e., P should be sufficient. Moreover, P should

be necessary, that is, any POI in P must be in the set of k nearest POIs of some

location in the cloak. By the definition of order-k VDs (Section 4.3), the set of sites

associated with the Voronoi cells that intersect with R must be in P. Next, we show

formally it is both necessary and sufficient to consider these order-k VD cells.

Lemma 4.1. Consider a spatial cloak R of a query point q. Let U be the set of POIs

associated with the Voronoi cells of the order-k VD of POIs that intersect with R.

U uniquely characterizes the candidate set for the k nearest POIs of q.

Proof. To show that U is necessary, we prove by contradiction that no POI can be

removed from U . Assume u ∈ U can be removed from U . By the construction of U ,
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there exists a cell C of sites H such that u ∈ H and C ∩ R 6= ∅. Choose any point

p ∈ C. Clearly, u is one of the k-nearest neighbor of p, a contradiction.

To show that U is sufficient, consider a POI u 6∈ U and is one of the k-nearest

neighbor of some point p ∈ R. By the definition of order-k VDs, there exists a

cell C corresponding to sites H such that u ∈ H and p ∈ C. Thus, we have a

contradiction.

4.5.2 Search algorithm

Lemma 4.1 establishes that to determine the kNN of a cloak R, it suffices to identify

the order-k cells that overlap with R, and take the union of their corresponding POIs.

Next, we first give a straw-man approach that has high computation complexity and

then present a more efficient algorithm that utilizes order-1 VDs.

To find the order-k cells overlapping with R, one can start with one such cell, say,

C and iteratively explores its neighboring cells that overlap with R. The procedure

stops when no such neighboring cells can be found. To find C, we choose an arbitrary

point p in R and query the cell that contains p. Given an order-k VD of n sites,

this takes O(log n). Testing the overlap of a cell with the cloak involves checking the

relative position of the cell’s edges with respect to the cloak. Let T (m) be the running

time of testing whether an edge intersects with R, where m is the number of vertices

of R. This procedure takes O(logn+ek ·T (m)+s), where ek is the number of Voronoi

edges of the order-k cells that overlap with the cloak, and s is the number of POIs

returned. Clearly, ek increases as R gets larger. In Section 4.6, we implement this
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method (called naive search) as a baseline for comparison purposes.

In our proposed approach, we reduce the complexity of the above procedure by

considering cells that intersect with R and cells that are inside R separately. Fur-

thermore, we show that in the latter case, it suffices to examine order-1 cells, which

is generally k times less than the number of order-k cells. To see so, let us consider

an example in Figure 4.5, which asks for the 2-nearest POIs of a rectangle cloak

(in green). Figures 4.5(a) and (b) show respectively order-2 and order-1 Voronoi

diagrams of 12 POIs, P = {p1, . . . , p12}, which are also the candidate POIs of the

cloak. In Figure 4.5a, the POIs given by the cells intersecting with the cloak (darker)

is U1 = S\{p8}, while the 11 cells inside R (white) only contribute one additional

POI, namely, p8. On the other hand, the set of POIs associated with the two order-1

cells inside the cloak is U1 = {p5, p8}. Obviously, U1

⋃

U2 gives all candidate 2-

nearest POIs. However, we observe the number of order-1 cells inside the cloak is

much smaller (and thus requires less time to identify). We state the results formally

as follows:

Lemma 4.2. Given a simple polygon cloak R and the order-k VD of a set P of

POIs, V k(P). Let I ⊂ P be the set of sites whose order-1 cells are inside R. The

following holds:

⋃

Ck
j inside R

Hk
j ⊂ I ∪





⋃

Ck
i intersectwith R

Hk
i





where Ck
i and Hk

i denote the order-k Voronoi cell i in V k(S), and the set of associated

sites, respectively.
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Proof. We prove by induction on k. Clearly, the claim is true when k = 1. As-

sume it holds when k = l. We prove that it holds when k = l + 1. From [43],

V l+1(S) can be constructed from V l(S) by tessellating order-l cells C l
i ’s using the

sites associated with C l
i ’s neighbors. Thus, the Voronoi cell C l+1

i inside R must

be created by tessellating cells C l
j’s inside R or intersecting with R with sites corre-

sponding to C l
j’s neighbors, which are either inside R or intersect with R. Therefore,

(

⋃

Cl+1

j inside RH l+1
j

)

⊂
(

⋃

Cm
l

inside RH l
l ∪

⋃

Cl
i intersect R H l

i

)

⊂
(

I ∪
(

⋃

Cm
i intersect R H l

i

))

.

The cells of order-(m+ 1) that intersect with R are created by tessellating order-m

cells that intersect withR or are insideR. Thus,
(

⋃

Cl
i intersect R H l

i

)

⊂
(

⋃

Cl+1

i intersect R H l+1
i

)

.

This implies that
(

⋃

Cl+1

j inside RH l+1
j

)

⊂
(

I ∪
(

⋃

Cl+1

i intersect R H l+1
i

))

.

Therefore, in determining the k-nearest POIs of cloak R, we devise procedures to

find POIs associated with order-k cells intersecting with R and order-1 cells inside

the cloak, respectively.

Evaluating candidate k-nearest POIs from cells intersecting with the cloak

First, we identify the cells intersecting with the cloak R by tracing R’s boundary.

W.l.o.g., we assume that vertices v1, v2, . . . , vm of the cloak, and Voronoi vertices

of each cell are in a counter-clockwise order. We start from a vertex v1 of R and

find the Voronoi cell containing v1. Let it be C1. Note that, since Voronoi cells are

convex, they intersect with a line segment at most twice. A Voronoi cell that has less

than two intersections with a line segment must contain at least one of its endpoints.

As a result, we can test if v2 is in C1. If yes, we conclude that the line segment v1v2 is

in C1 and continue to the next line segment v2v3. Otherwise, v1v2 must intersect with
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p3

p6

p5

p4

p7

p9
p8

p10
p11

p12

{p1, p4}

{p1, p2}

{p2, p3}

{p2, p5}

{p3, p6}

{p9, p12}

{p11, p12}{p10, p11}
{p7, p10}

{p4, p7}

{p6, p9}

{p3, p5}

C1

C2
C3 C4

v3v4

v1 v2

C5

(a) Order-2 Voronoi diagram of 12

POIs. Cells intersecting with the cloak

is shown darker.

p1
p2

p3

p4

p5
p6

p7
p8

p9

p10
p11 p12

(b) The corresponding order-1 Voronoi

diagram of the 12 POIs and the cloak.

Figure 4.5: Illustration of Lemma 4.2: finding 2-nearest POIs. The cloak is presented

by the green rectangle v1v2v3v4. {·, ·} presents the POIs associated with a cell.

C1, . . . , C4 show four of the order-2 cells intersecting with the cloak.

one unique edge of C1, which is a bisector of C1 and one of its neighboring Voronoi

cell, say C2. C2 and C1 only differ in one site as given in the following lemma [43]:

Lemma 4.3. Let H1 and H2 be the sets of sites corresponding to two adjacent cells

C1 and C2 in an order-k Voronoi diagram. Then, H1 = H
⋃

{s1} and H2 = H
⋃

{s2}.

Furthermore, s1 and s2 construct the bisector that contains the edge of C1 and C2.

In other words, as we move among neighboring cells intersecting with the cloak,

only one POI is added at a time. The above procedure is repeated until the first vertex

v1 is encountered again. Let the resulting set of POIs be U . Consider the example in
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Figure 4.5a. Assume we start from cell C1, POIs p1 and p2 are included in U . As

we traverse from v1 to v2, we move to C2, which differs from C1 by p5. Similarly, C3

differs from C2 by p3, and so on.

���� ��
pin

ej
pout

ei C

ei+1 ei−1
R

Figure 4.6: Evaluation of the position of edges of cells in B regarding R. C denotes

a cell in B.

Evaluating candidate k-nearest POIs from cells inside the cloak The next

step is to retrieve the order-1 cells inside R and compute the corresponding candidate

POIs.

We discuss the generalized problem of identifying the order-k cells I that are

inside the cloak. The idea is to find the cells B intersecting with R, which act as

a boundary for the cells inside R. We divide I into those that are adjacent to cells

in B (I1), and the rest, which are not (I2). The cells in I1 must share edges with

cells in B, and these edges must be inside R. Identifying edges of cells in B that

are inside R can be done as follows. Consider a cell C that intersects with R. As

we move along R’s boundary in a counter-clockwise order, we enter C at point pin

and exit at point pout. Although C may intersect with R at more than 2 points, we

can always identify such pairs (albeit multiple of them). Now, we observe that, as

one moves along C’s boundary from pout to pin in the counter-clockwise direction,
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the edges of C encountered that do not include pout or pin must be inside R. This

allows us to identify the cells of I1. An illustrative example is given in Figure 4.6.

Starting from point pout in edge ei where the cloak R exits from C, we trace along C

in the counter-clockwise direction (arrow) until we reach point pin on edge ej where

R enters C. Edges ei+1, . . . , ej−1 are inside R.

To find I2, we simply iterate through the neighbors of cells that are inside R until

no new inner cells are encountered. Consider the example shown in Figure 4.7. The

cloak R is given by the green polygon. We start at vertex v1 of R, which lies in

cell C1. Applying the procedure described in the previous section, we can retrieve the

shaded cells C1, . . . , C4 that intersect with the boundary of R. Next, cells inside R

that are adjacent to cells of B, I1, are identified, shown in white cells. As shown in

the figure, those cells are adjacent to cells in B at the edges that lie completely inside

R. Finally, remaining cells inside R are identified by retrieving neighbors of cells in

I1, shown in red.

We summarize the procedure in Algorithm 4.2.

Complexity analysis We now analyze the running time of Algorithm 4.2. Let m

be the number of R’s vertices. Lines 1 and 3 compute the cells of order-k (B) and

order-1 (B′) intersecting with R. It first locates the cell containing a cloak’s vertex,

which costs O(log n). Then, it iterates through all line segments of the cloak R and all

edges of the order-K and order-1 cells intersecting with R, thus costs O(eK+e1+m),

where ek is the number of edges of order-k cells intersecting with R. Line 4 computes

order-1 cells I2 that are interior to R and adjacent to B′, which iterates all edges
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Algorithm 4.2: Computing the cloak’s candidate K nearest POIs.

Data: A Voronoi diagram V , convex polygon cloak R

Result: The set U of K-nearest POIs associated with cells overlapping R

/* POIs associated with order-k cells intersecting with R */

1 B ← order-K cells intersecting with R;

2 U ← POIs associated with B;

/* POIs associated with order-1 cells inside R */

3 B′ ← order-1 cells intersecting with R;

4 curr cells← order-1 cells next to B′ that are inside R;

5 U ′ ← POIs associated with curr cells ;

6 B′ ← B′ ∪ curr cells;

7 while curr cells 6= ∅ do

8 curr cells← curr cells’s neighbors inside R that are not in B′ ;

9 U ′ ← POIs associated with curr cells ;

10 B′ ← B′ ∪ curr cells;

11 end

12 U ← U ∪ U ′;
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v1

C2

C4

v2

C1

R

C3

Figure 4.7: Illustration of Algorithm 4.2

of cells in B′. Line 8 computes the other order-1 cells that are inside R, which

costs the number of their edges. Let C be the set of order-k cells intersecting with

R and order-1 cells overlapping R Computing U (lines 2, 5, 9) takes O(s + c),

where s is the number of POIs returned by the algorithm, and c = |C|. (Note that

(eK + e1) is smaller than the number of C’s edges). Therefore, Algorithm 4.2 costs

O(log n + s + e + m) running time, where e is the number of C’s edges. Since the

number of edges in an order-K Voronoi diagram is O(Kn) ([43]), e is bounded by

O(Kn). In practice, e << O(Kn) due to the fact that the cloak is small and usually

convex.
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4.6 Evaluation

Results of hashing-based cloaking and POI search algorithms have been implemented

in CGAL [1], a computational geometry library. All simulations run on a Core2 Duo

1.7Ghz Linux workstation.

4.6.1 Cloaking

In the first set of experiments, we compare the performance of the proposed cloaking

method with the Hilbert cloaking method. In the simulations, n user locations are

randomly placed in a 1000× 1000 area.

Figure 4.8 compares the performance of the two methods with respective to the

level of K-anonymity where the number of users where n fixed at 1000 and K fixed

at 10, respectively. The y-axis gives the size of the cloak as the percentage of the

size of the area. Also shown in the figures are the error bars corresponding to the

maximum and minimum cloak sizes. As can be observed in Figures 4.8a and 4.8b, the

LSH-based approach is significantly better than the Hilbert curve-based method. As K

increases, the cloak size increases roughly linearly in both methods. With more users,

it is expected that the cloak size decreases linearly. This trend is more prominent

with the proposed LSH-based method.

The hashing-based method is efficient computationally. Figure 4.9 plots the run-

ning time of the hashing-based cloaking method when the number of users varies

from 1000 to 10000. As shown in the figure, the hashing-based method’s running
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(b) The number of hash functions L is 10. K

is fixed at 10. n varies from 500 to 2000.

Figure 4.8: Performance of Hilbert curve-based method and hashing-based method

on various levels of K-anonymity and number of users (n).

time is low even with a large number of users. Somehow, counter-intuitively, the

running time of the algorithm decreases as the anonymity level K increases since it

is inversely proportional to the anonymity level as indicate in Section 4.4.

To evaluate the impact of the number of hash functions used, we randomly gen-

erate 1000 locations, and issue 10-nearest POI and 20-nearest POI queries. The

number of hash functions, L, varies from 2 to 45. As shown in Figure 4.10, the

higher the number of hash functions, the smaller the cloak areas produced. However,

the cloak areas slightly decrease as the number of hash functions increases from 10

to 45. Similar to the results in Figure 4.8a, higher K implies large cloaks.

We compare the resultant candidate POI set of the proposed search algorithm

corresponding to hashing and Hilbert cloaks. We vary anonymity level K from 5 to

17 and make queries with 500 and 1000 POIs. As shown in Figure 4.11, the number
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functions.

118



of POIs corresponding to LSB-based cloaks is smaller than that of Hilbert cloaks.

Moreover, the difference between the two methods increases as the number of POIs

increases from 500 to 1000.
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Figure 4.11: Number of candidate POIs corresponding to Hilbert and hashing cloaks.

4.6.2 kNN search

Next, we evaluate the performance of the proposed kNN search algorithm. In the

simulations, 1000 POIs are randomly placed in a 1000× 1000 area. We compare the

running time with different K-anonymity (also K nearest POIs) and cloak areas (as

the percentage of the total area). The results are shown in Figure 4.12. As seen in

the figure, the running time is negligible. The running time increases only moderately

as K or the size of the cloak area increases, which is sharp contrast with the results

in [35].

Figure 4.13 shows the number of candidate k-nearest POIs. We evaluate the

number of candidate POIs with different cloak areas and values of k. As shown in
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Figure 4.12: Running time of the proposed search algorithm.

the figure, the number of candidate k-nearest POIs increases approximately linearly

as the cloak area increases since POIs are evenly distributed.
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Figure 4.13: Number of candidate k-nearest POIs.

Lastly, we compare the complexity of the proposed algorithm with the naive search

algorithm that scans order-k Voronoi cells. We vary the cloak area and plot the

number of cells processed. As shown in Figure 4.14, the number of cells processed

in the proposed method is much lower. Furthermore, as the cloak area increases, the

120



number of cells processed by our method increases much slower than that in the naive

search. Figure 4.14 corroborates the low running time of the proposed algorithm in

Figure 4.12.
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Figure 4.14: Number of cells processed by the proposed method VS. the naive (only

considers order-k cells).
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Chapter 5

Spatial Skyline Query With

Uncertainty

In the previous chapter, we discuss the framework for kNN queries that concerns user

privacy. To obtain user privacy, we construct cloak for the user location and make

the kNN query for the cloak. Cloaking is also be helpful in various of scenarios, where

a spatial query may involve in several cloaks. Queries may involve in several cloaks.

For example, find the hotels that are close to a set of users, whose locations are given

as circular cloaks. In this chapter, we discuss spatial skyline queries under user

location uncertainty. Furthermore, we also take measurement errors into account

and discuss the spatial skyline queries with margins.
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Figure 5.1: A spatial skyline query example

5.1 Introduction

In recent years, there has been much interest in processing spatial skyline queries.

Given a set of points of interest (POIs), the spatial skyline query for a set of locations

returns the POIs that are close to all locations. Consider the following example:

Example 5.1. A student is looking for an apartment. She prefers the apartments

that are close to both Galleria mall and the University of Houston. Figure 5.1 illus-

trates 10 apartment locations, p0, . . . , p9, and the locations of Galleria mall and the

University of Houston, i.e, q0 and q1, respectively. The distances from apartments

pi’s to q0 and q1 are shown in Figure 5.1b.

Galleria mall and the University of Houston are referred to as query locations, and

apartments as POIs. Apartment pi is not considered if there is another apartment,

pj, that is closer to both q1 and q2 than pi. In this case, pi is said to be dominated
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by pj, i.e., pj is closer than pi w.r.t. any query location. A skyline query returns

the POIs, call skyline pointss which are not dominated by any other POI. In this

example, p3, p4, p5, p8 are skyline points.

The distance from pi to query location qj is an attribute of pi. Hence, each POI

has n attributes corresponding to n query locations. When distances from query loca-

tions to POIs are provided, the skyline query can be done by traditional methods from

the database community [41, 69, 14]. However, these approaches are not efficient in

the spatial context due to two reasons. First, computing all distances from query

locations to POIs is expensive. Second, the distances between query locations and

POIs cannot be determined exactly in many scenarios, particularly when uncertainty

is introduced to query locations. Third, the domination relationship can be defined

differently in different contexts. Consider the following examples.

Example 5.2. A group of users is looking for a hotel that is close to all members.

Due to privacy concern, user locations are given as circular cloaks. Hotel pi domi-

nates hotel pj w.r.t. a user qu if pi is closer than pj to any location of qu in the cloak.

pi dominates pj if pi dominates pj w.r.t. all user locations.

In Example 5.2, the domination between two POIs w.r.t. a query location still can

be evaluated while the distances from POIs to query locations are not given. Clearly,

pi dominates pj if all query locations lie in the halfplane divided by bisector bi,j of

the two POIs that contains pi. This is illustrated in Figure 5.2. In this example, p1

dominates p2 but does not dominate p3 w.r.t. query locations q1 and q2.

Example 5.3. The scenario is similar to Example 5.1 with different domination
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Figure 5.2: Domination relationship with query location uncertainties.

relationship. Apartment pi dominates apartment pj w.r.t. qu if the distance from pi

to qu is smaller than the distance from pj to qu by a pre-defined threshold.

Example 5.3 provides a domination relationship that take measurement errors

into account. POI pi dominates pj w.r.t. query location qv if the distance from pi

to qu is smaller than the distance from pj to qu by a margin. Figure 5.3 shows an

example of the domination relationship with margins. p3 is not dominated by p1

when the margins for both query locations are set at 0.5. In this chapter, we develop

techniques to solve the skyline query problems in the two examples.

5.2 Related work

Spatial skyline query gains much interest in recent years. Most work is from the

database community. Branch-and-Bound Skyline [56] and the Block Nested Loop

[11] algorithms are among the early efforts. Both approachs are for general skyline

computation but they can also solve the spatial skyline queries. Their work, however,
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Figure 5.3: Domination relationship with margins. Red lines show the margin of

POI p1.

does not incorporate knowledge of the geometry into the problems.

Much work in the area of spatial databases concern spatial skyline queries. Papa-

dias et al. [57] proposed efficient algorithms to nd the point with minimum aggregate

distance to query points. Huang and Jensen [32] studied the problem of finding the

points of interest which are not dominated with respect to two attributes: their net-

work distance to a single query location q and the detour distance from q’s predefined

route through the road network.

Sharifzadeh and Shahabi are among the first to tackle the spatial skyline query

problem using geometric approaches [63]. They proposed a Voronoi diagram based

algorithm for spatial skyline queries. Son et al. discovered a flaw in [63] and proposed

an improved algorithm in [66], which is also based on the Voronoi diagram. Very
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recently, Lin et al. proposed a new type of spatial skyline query [45], where they

defined the distance from a POI to a type of query locations as the smallest distances

to the elements of the same type. For example, the distance from an apartment to

the bus stations is defined as the distance to the nearest bus station.

Spatial skyline queries with different distance metrics have also been investigated.

In [67], Son et al. proposed spatial skyline queries with Manhattan distance. [18]

tackled spatial skyline queries in road networks. [28] considered the direction of POIs

w.r.t. query locations for the domination.

Different from these work, we proposed a new type of spatial skyline queries, which

deals with query location uncertainty and flexible domination relationship.

5.3 Problem definition

In the following two problems, we denote P = {p0, p1, . . . , pn−1} to be the set of POIs

where each POI pi is located at (pi.x, pi.y). Let Q be the set of query locations. We

define the skyline set S = {s0, s1, . . . , sm} of P w.r.t. Q to be the set of POIs such

that si is not dominated by any POI in P . We define the two problems based on

different domination relationships.

Problem 5.1. Spatial skyline queries with location uncertainty. Let Q = {q0, q1, . . . , qk−1}

be the set of query locations where qi is given as a disk Di(oi, ri) centered at oi with

radius ri. We say pi dominates pj w.r.t. qu iff d(pi, pu) < d(pj, pu)∀pu ∈ Du, where

d(pi, pu) is the Euclidean distance between points pi and pu. pi is defined to dominate
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pj iff pi dominates pj w.r.t. every query location in Q. Compute the skyline set of

P .

Problem 5.2. Fuzzy skyline queries. Let Q = {q0, q1, . . . , qk−1} be the set of query

locations where qi is located at point (qi.x, qi.y). Let δi > 0 be a set of margins. pi is

not dominated by pj w.r.t. qu if d(pi, pu) ≤ d(pj, pu) − δi. pi is said to dominate pj

w.r.t. qu iff d(pi, pu) < d(pj, pu) − δi. pi dominates pj if pi is not dominated by pj

w.r.t. any query location, and pi dominates pj in some query location. Compute the

skyline set of P .

5.4 Solution approaches

In this section, we provide the solutions for problems raised in the previous section.

5.4.1 Spatial skyline queries with location uncertainty

Consider two POIs pi and pj. From the problem definition, pi dominates pj iff all

query locations Q belong to the half-plane divided by the bisector bij of pi and pj

that contains pi. Therefore, testing the domination of pi and pj is equivalent to

determining if bij intersects the convex hull of disks in Q, CH(Q). If bij intersects

CH(Q), pi and pj do not dominate each other. Otherwise, pi or pj dominates the

other depending on the position of CH(Q) w.r.t. bij. We first make the following

observation.

Claim 5.1. Let di = d(pi, oi), i.e., the distance from pi to the center of query location
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qi. Let L = {d0, d1, . . . , dn−1} be the sorted list of distances {di’s} in ascending order.

The POI corresponding to d0 is a skyline point. The POI corresponding to di in L

can only be dominated by the skyline points corresponding to dj where j < i.

Proof. W.l.o.g., let pi be the POI corresponding to di. Since d0 = minn−1
j=0 dj, no POI

dominates p0 w.r.t. q0. Thus p0 is a skyline point. Furthermore, di = minn−1
j=i+1 dj,

no POIs corresponding to di+1, . . . , dn−1 dominate pi. It remains to prove that

it is sufficient to test dominations of pi with only skyline points pj, j < i. We

show that if pi is dominated by a non-skyline point pl, where l < i, then pi must

be dominated by a skyline point pj where j < i. In fact, since pi is dominated

by pl, then d(pi, pv) < d(pl, pv)∀pv ∈ qu, ∀qu ∈ Q. Furthermore, since pl is not a

skyline points, it is dominated by some skyline point pj where j < l. Therefore,

d(pi, pv) < d(pl, pv) < d(pj, pv)∀pv ∈ qu, ∀qu ∈ Q. Thus, pi is dominated by pj. The

claim holds.

Based on this observation, we devise an algorithm to compute spatial skyline

queries. It generalizes of the algorithm proposed in [66], which works for point query

locations. The algorithm works by incrementally searching skyline points with in-

creasing distances to the center of some query location. A POI pi is a skyline point

iff it is not dominated by all skyline points that are discovered thus far. Details are

given in Algorithm 5.1. We first analyze the complexity of the domination test and

the expected number of convex disks.
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Domination test Line 7 in Algorithm 5.1 tests if skyline point S[j] dominates

the POI pi corresponding to L[i]. Testing if a skyline point pj dominates POI pi

is determined by checking if the bisector bij of pi and pj intersects the convex hull

CH(Q) of Q. This can be done in O(n log n) time complexity. The idea is as follows.

We first find the extreme points of CH(Q) in the direction
−→
b′ij , where b′ij is the line

perpendicular to bij [54]. Project vertices of CH(Q) onto b′ij. The extreme points of

a convex hull w.r.t.
−→
b′ij are defined as the points corresponding to the rightmost and

leftmost projected points on b′ij. If CH(Q)’s vertices are ordered, e.g., in counter-

clockwise, finding the highest point of a convex hull is done using binary search as

follows. Start with an edge ba of CH(Q) where a is next to b in counter-clockwise

direction. If ba does not contain the highest point, then the highest point must be in

chain ab. Let c be a vertex between a and b. We search for the highest point in chain

ac or cb. We define the direction
−→
i of vertex i of CH(Q) as the counter-clockwise

direction of the tangent line of CH(Q) at i. We define
−→
i is up if the angle between

−→
i and

−→
b′ij is π/2 or less. Otherwise,

−→
i is down. We consider the case where −→a

is up (Figure 5.4). If −→a is down, then we look for the highest point in chain ac.

If −→c is up, we consider the position of c and a w.r.t.
−→
b′ij . If c is above a, chain

cb is searched for the highest point. Otherwise, chain ac is considered. The same

argument applies when −→a is down. The lowest point of CH(Q) can be found by the

similar procedure. Since the chain size is reduced by a half in each process, finding

the extreme points of a convex hull is done in O(n log n) time. bij intersects CH(Q)

iff the extreme points of CH(Q) w.r.t
−→
b′ij lie in different half-planes divided by bij.
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Figure 5.4: Determine intersection of a convex hull and a line.

Expected number of convex disks It is shown in [76] that the expected number

of convex points of a set of n points uniformly distributed in a square is O(log n).

We extend the result to show that the expected number of convex disks of a set of

disks uniformly distributed in a square is also O(log n) in the following lemma.

Lemma 5.1. Given a set of n disks independently distributed in a square, the ex-

pected number of convex disks is O(log n).

Proof. Let D = {D0, . . . ,Dn−1} be the set of n disks. We break the hull into four

parts the upper-left, upper-right, lower-left, and lower-right hulls and show that each

has O(log n) points. It is sufficient to consider the upper-right hull. Let Ri be the

smallest axis-parallel square enclosing disk Di, and vi be the upper-right corner point

of Ri. Consider the convex hull of vi’s, CH ′. Clearly, the necessary condition of Di

being the convex disk is vi is the convex point of CH ′. Since each disk may have
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at most two tangent points on the convex hull of D, the expected number of convex

disks of D is O(log n).

We now analyze the running time of Algorithm 5.1. Constructing the convex hull

of n disks takes O(n log n) time by [58]. Line 2 takes O(n log n) time. Since each POI

is tested against skyline points, the time for evaluating a POI is O(m log |CH(Q)|),

where m is the number of skyline points. Hence, lines 4-10 take O(nm log k) time.

Thus the worst case running time of Algorithm 5.1 is O(nm log |CH(Q)|+ n log n).

Since the expected number of convex disks of a set of k disks is O(log k), the expected

running time of Algorithm is O(nm log log k + n log n)

Algorithm 5.1: Computing the spatial skyline set.

input : A set of POIs P = {p0, p1, . . . , pn−1}, a set of query locations

Q = {q0, . . . , qk−1}

output: The skyline set S of P

1 compute the convex hull of Q;

2 L← sort P according to ascending distances oi;

3 S ← L[0];

4 for i = 0 to n− 1 do

5 is dominated← false;

6 for j = 0 to |S| − 1 do

7 is dominated← dominationTest(S[j], L[i]);

8 end

9 if !is dominated then S ← S
⋃

L[i];

10 end
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5.4.2 Fuzzy skyline queries

In this section, we provide the solutions for Problem 5.2. In particular, we analyze

the case when all margins δi’s are equal, and then, proposed a solution for the general

case.

From the problem definition, pi dominate pj w.r.t. query location qu iff d(pi, qu)+

δu < d(pj, qu). In other words, pi dominates pj w.r.t. query location qu iff the

maximum distance from pi to Du is smaller than the distance from pj to qu, where

Du(qu, δu) is the disk centered at qu with radius δu. This means that qu belongs to the

half-plane divided by the bisector of pj and the disk D(pi, δu) that contains pi. Clearly,

pi lies in the convex half-plane. We derive a similar observation as in Claim 5.1.

Claim 5.2. Let D = {D0(q0, δ0), . . . ,Dk−1(qk−1, δk−1} be the set of disks associated

with query locations Q. Let di be the distance from pi to q0 and d′i be the maximum

distances from pi to D0. Let L = {d0, d
′
0, d1, d

′
1, . . . , dn−1, d

′
n−1}. Sort L in ascending

order. Let L[i] be the first maximum distance. The POIs associated with L[j], where

0 ≤ j < i, are skyline points. POI pi associated with L[i] can only be dominated by

POIs whose maximum distances appear before L[i] in L.

Proof. For the convenience of presentation, we assume that elements in L are distinct.

Since L[i] is the first maximum distance in L, ∀ POI pj, j < i, 6 ∃ POI pj such that

d′l < dj, where pl is the POI associated with the element that appears before L[i] in L.

Therefore, pl is not dominated by any POI, and hence, is a skyline point. Similarly,

those POIs whose maximum distances appear after L[i] in L cannot dominate the POI

pi associated with L[i] w.r.t. to q0, and hence, cannot dominate pi. Furthermore, if pi
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is dominated by non-skyline point pj whose maximum distance d′j appears before pi

in L, then di < d′l where d
′
l is the first maximum distance in L. Thus, pi is dominated

by pl, a skyline point. This completes the proof.

To this point, we develop the algorithms for the two cases, i.e., fuzzy skyline

queries with equal margins and un-equal margins.

Equal margins We consider the case that query locations have the same margin

δ. Let i be the index of the first maximum distance in L. From Claim 5.2, POIs

corresponding to L[j], j < i are skyline points. We iterate through the POIs pj cor-

responding to the minimum distances L[j], j > i. From Claim 5.2, we only perform

domination tests of pj and the skyline points corresponding to the indices appearing

before j in L. Details are given in Algorithm 5.2.
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Algorithm 5.2: Computing the spatial skyline set of margin .

input : Set of POIs P = {p0, p1, . . . , pn−1}, set of query locations

Q = {q0, . . . , qk−1}, the common margin δ

output: The skyline set S of P

1 CH(Q)← the convex hull of Q;

/* min. and max. distances from POIs to query location q0 */

2 L = {d0, d
′
0, d1, d

′
1, . . . , dn−1, d

′
n−1};

3 L← sort L in ascending order;

4 init← the index of the first maximum distance in L;

5 for i = 0 to init do

6 S ← S
⋃

the POI corresponding to L[i];

7 end

8 for i = init+ 1 to n− 1 do

9 is dominated← false;

10 for j = 0 to |S| − 1 do

11 is dominated← dominationTest(S[j], L[i], CH(Q));

12 end

13 if !is dominated then S ← S
⋃

L[i];

14 end

The domination test (Line 11) can be done by checking if the bisector of pj and

disk D(pi, δ) intersects the convex hull of Q. Specifically,

Lemma 5.2. Given a set of query locations Q = {q0, q1, . . . , qk−1}, a margin δ, and

a skyline point pi resulted from steps 6 and 13. Let bij be the bisector of pj and disk
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D(pi, δ). The domination test in line 11 can be done by checking the intersection of

bij and CH(Q). If bij intersects CH(Q), the convex hull of Q, pi does not dominate

pj. Otherwise, pi dominates pj.

Proof. Since skyline point pi is determined beforehand, d′i < dj. Thus, q0 lies in the

half-plane containing pi. Therefore, if bij does not intersect CH(Q), Q must lie in the

half-plane containing pi. Thus, the maximum distances from pi to query locations

in Q are smaller than the corresponding distances from pj. Hence, pi dominates pj.

Furthermore, if bij intersects CH(Q), there must be some qu lying in the half-plane

containing pj, thus, d(pi, qu) + δ < d(pj, qu). Hence pi does not dominate pj. This

completes the proof.

Clearly, the domination test in Algorithm 5.2 takes O(|CH(Q)|) running time.

By the similar argument in the analysis of the previous problem, the Algorithm 5.2

takes O(nm|CH(Q)|+ n log n) running time.

Generalization to different margins Algorithm 5.2 still applies to the case of

different margins. However, when the margins of query locations are different, the

domination test is more complex since each query location requires a different bisec-

tor. This leads to a O(nmk) running time complexity for the domination tests. In

fact, the number of skyline points are much smaller than the number of POIs, it is

reasonable to spend extra time to pre-process the data for each skyline point so that

the domination tests can be done faster.

Details are given in Algorithm 5.3. The idea is as follows. Given a skyline
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point pi, let D = {Di(qi, d(qi, pi) + δi)’s} be the set of disks associated with query

locations. Clearly, pi dominates a POI pj if pj is not inside the unions of disks in

D. The union of k disks can be constructed by the algorithms proposed in [7, 33],

which take O(k log k) running time. The complexity of the union boundary is O(k)

[38] and querying the position of pj w.r.t. a union of disks can be done in O(log k)

[40, 46]. Therefore, constructing the unions of disks for m skyline points in line 9

takes O(mk log k). Evaluating POIs takes O(nm log k). Thus, the running time is

O(mk log k + nm log k + n log n).
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Algorithm 5.3: Computing the spatial skyline set.

input : Set of POIs P = {p0, p1, . . . , pn−1}, set of query locations

Q = {q0, . . . , qk−1}, set of margins ∆ = {δi’s}

output: The skyline set S of P

1 CH(Q)← the convex hull of Q;

2 L = {d0, d
′
0, d1, d

′
1, . . . , dn−1, d

′
n−1};

3 L← sort L in ascending order;

4 S ← ∅;

5 U ← ∅;

6 init← the index of the first maximum distance in L;

7 for i = 0 to init do

8 S ← S
⋃

the POI corresponding to L[i];

9 U ← U
⋃

disksUnion(Q, L[i], ∆);

10 end

11 for i = init+ 1 to n− 1 do

12 is dominated← false;

13 for j = 0 to |S| − 1 do is dominated← isOutside(L[i], U [j]);

14 if !is dominated then

15 S ← S
⋃

L[i];

16 U ← U
⋃

disksUnion(Q, L[i], ∆);

17 end

18 end
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Chapter 6

Conclusion

6.1 Summary of Contributions

Our work concerns both the theoretical foundation for sensor network analysis and

its applications. On the theory side, we developed several algorithms to construct

high order Voronoi-based diagrams, which is of independent interest in the computa-

tional geometry community. We proposed the algorithm to construct the high order

maximum Voronoi diagram of disks. On the application side, we proposed algorithms

for a number of applications in wireless sensor networks based on high order Voronoi

diagrams. Particularly, we focus on analysis of sensor location uncertainties that

concerns worst case operation of the system, and privacy in participatory sensing.
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High order maximum Voronoi diagram of disks

We present the procedures for high order maximum Voronoi diagram update when

disks change their sizes. This leads to various results. First, a distributed implementation-

friendly algorithm is devised for high order max VD of disks in the plane construction.

Second, an O(kn log n) algorithm or site insertion and deletion in order-k max VDs

is proposed. The high order maximum Voronoi diagram is the building block for

analyzing sensor networks with sensor location uncertainties, which are modeled as

disks.

Sensor location uncertainty in network coverage and target

localization and tracking

We investigate the algorithms for dealing with sensor location uncertainty in two

tasks including network coverage and target localization and tracking.

In network coverage, we devised geometrical-based methods to compute the mini-

mum sensing range to ensure robust k point and area coverage in presence of sensor

location uncertainty. We consider generic settings of arbitrary placements, hetero-

geneous uncertainty areas, and polygonal area boundaries. Our proposed solution is

mainly based on the concept of order-k maximum Voronoi diagrams of disks.

In target localization and tracking, we developed efficient algorithms to evaluate

the likelihood of noisy sensor readings and kNN queries, which served as building

blocks for target localization and tracking under sensor location uncertainties. The
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proposed algorithms can be straightforwardly extended in several directions including

i) heterogeneous sensing ranges, ii) uncertainties in sensing ranges, and iii) tar-

get localization with noisy measurements (where a stochastic search approach can be

adopted in conjunction with the likelihood evaluation algorithm).

Privacy in participatory sensing

We proposed computationally efficient algorithms for constructing spatial cloaks and

kNN search of POIs with the dual objectives of locality preservation andK-anonymity.

We showed through simulations that the algorithms achieve superior performance

with moderate time complexity are scale well with large input size. The proposed al-

gorithms are central to protect identity privacy in participatory sensing applications.

Cloaking motivates various spatial queries with consideration of location uncertainty.

Uncertainty in spatial skyline queries

We extend uncertainties into spatial skyline queries and deal with various domina-

tion relationships. We proposed geometric algorithms for two spatial skyline queries

applications, i.e., to cope with user location uncertainties, and to allow flexibilities

in domination relationships. In the former case, we query locations are given as cir-

cular cloaks. The worst case domination is defined, i.e., a POI dominates another

POI w.r.t. a query location if all locations in the corresponding cloak are closer to

the former POI than to the latter. In the latter case, the domination relationship
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is defined to allow a margin. Specifically, a POI dominates another POI if the cor-

responding distances to query locations of the former are smaller than those of the

latter with some threshold. This work opens up many interesting problems in spatial

skyline queries with different domination relationships.

6.2 Future work

Spatial skyline queries with presence of uncertainties exposes several interesting prob-

lems. In Chapter 5, we discussed user location uncertainties and domination uncer-

tainty. In fact, objects are not only points in practical systems, and thus, lead to

different distance metrics. Furthermore, domination relationships vary abundantly.

These are the main factors that make spatial skyline queries much more challenging.

In the scope of our future work, we envision the spatial skyline queries in several

contexts with different distance metrics and/or domination relationships. This also

exposes the necessity of revising the conditions of skyline points.

Spatial skyline queries with heterogeneous distance metrics

and domination relationships

Different POI and/or query location shapes define different distance metrics. We

first extend the problem defined in Chapter 5, which deals with circular query loca-

tions. Both minimum and maximum distances are used to evaluate the domination

relationship.
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Example 6.1. A group of users is looking for a hotel that is close to all members.

Due to privacy reason, user locations are given as circular cloaks. Hotel pi dominates

hotel pj w.r.t. a user qu if the maximum distance from pi to qu is smaller than the

minimum distance from pj to qu. pi dominates pj if pi dominates pj w.r.t. all user

locations.

Example 6.2. Parks with multiple entrances play as query locations. The distance

from an apartment (a POI) to a park is measured as the distance to the closest

entrance. To make it easy for analysis, we assume that a park is modeled as a convex

polygon, and the distance from an apartment to a park is measured as the smallest

distance to the polygon. Given a set of convex polygon query locations and a set of

POIs, find the skyline points.

In the first example, the domination relationship can be evaluated although the

distance from a POI to a query location is not concretely defined. In the second

one, although the distance from a POI to a query location is defined, a solution that

is better than the naive is not trivial. In both examples, the challenge is to find a

solution that does not require calculation of all distances.

Domination test

What are the conditions to make a POI skyline point? By definition, a POI that

is not dominated by any other POI is a skyline point. However, this requires an

O(n) tests. In Chapter 5, we shown the applications where only dominations test

against skyline points are sufficient to determine if a POI is a skyline point. In the
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on-going work, we are looking for the algorithms that can further prune the number

of domination tests.
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editors, Proceedings of the 8th International Conference on Pervasive Comput-
ing, pages 138–155, Berlin, Heidelberg, May 2010. Springer Berlin Heidelberg.

[61] J. Sember and W. Evans. Guaranteed voronoi diagrams of uncertain sites.
In Proceedings of the 20th Annual Canadian Conference on Computational
Geometry, Montreal, Canada, August 13-15, 2008, 2008.

150



[62] M. I. Shamos and D. Hoey. Geometric intersection problems. In Proceedings of
the 17th Annual Symposium on Foundations of Computer Science, SFCS ’76,
pages 208–215, Washington, DC, USA, 1976. IEEE Computer Society.

[63] M. Sharifzadeh and C. Shahabi. The spatial skyline queries. In Proceedings of
the 32nd international conference on Very large data bases, VLDB ’06, pages
751–762. VLDB Endowment, 2006.

[64] N. Shrivastava, R. Mudumbai, U. Madhow, and S. Suri. Target tracking with
binary proximity sensors. ACM Trans. Sen. Netw., 5(4):1–33, 2009.

[65] J. Singh, U. Madhow, R. Kumar, S. Suri, and R. Cagley. Tracking multiple
targets using binary proximity sensors. In Proceedings of the 6th International
Conference on Information Processing in Sensor Networks, IPSN, pages 529–
538, New York, NY, USA, 2007. ACM.

[66] W. Son, M.-W. Lee, H.-K. Ahn, and S.-W. Hwang. Spatial skyline queries: An
efficient geometric algorithm. In Proceedings of the 11th International Sympo-
sium on Advances in Spatial and Temporal Databases, SSTD ’09, pages 247–
264, Berlin, Heidelberg, 2009. Springer-Verlag.

[67] W. Son, S. won Hwang, and H.-K. Ahn. Mssq: manhattan spatial skyline
queries. In Proceedings of the 12th International Conference on Advances in
Spatial and Temporal Databases, SSTD’11, pages 313–329, Berlin, Heidelberg,
2011. Springer-Verlag.

[68] L. Sweeney. k-anonymity: a model for protecting privacy. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., 10:557–570, Oct. 2002.

[69] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline computation.
In Proceedings of the 27th International Conference on Very Large Data Bases,
VLDB ’01, pages 301–310, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

[70] M. Terrovitis and N. Mamoulis. Privacy preservation in the publication of
trajectories. In Proceedings of the the Ninth International Conference on Mobile
Data Management, pages 65–72, Washington, DC, USA, 2008. IEEE Computer
Society.

[71] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press, 2005.

151



[72] G. T. Toussaint. Solving geometric problems with the rotating calipers. In
Proceedings of IEEE MELECON, 1983.

[73] K. Vu and R. Zheng. Robust coverage under uncertainty in wireless sensor net-
works. In 2011 Proceedings IEEE INFOCOM (INFOCOM 2011), pages 2015–
2023, Shanghai, P.R. China, 4 2011.

[74] Q. Wang, R. Zheng, A. Tirumala, X. Liu, and L. Sha. Lightning: A hard real-
time, fast, and lightweight low-end wireless sensor election protocol for acoustic
event localization. IEEE Trans. Mob. Comput., 7(5):570–584, 2008.

[75] Y. Wang, J. Gao, and J. S. Mitchell. Boundary recognition in sensor networks
by topological methods. In MobiCom ’06: Proceedings of the 12th Annual In-
ternational Conference on Mobile Computing and Networking, pages 122–133,
2006.

[76] R. Wenger. Randomized quick hull. Algorithmica, 17, 1995.

[77] J. White, C. Thompson, H. Turner, B. Dougherty, and D. C. Schmidt. Wreck-
watch: Automatic traffic accident detection and notification with smartphones.
Mob. Netw. Appl., 16(3):285–303, June 2011.

[78] M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu. Spacetwist: Managing the trade-
offs among location privacy, query performance, and query accuracy in mobile
services. In Proceedings of the 2008 IEEE 24th International Conference on
Data Engineering, ICDE ’08, pages 366–375, Washington, DC, USA, 2008.
IEEE Computer Society.

[79] M. L. Yiu, E. Lo, and D. Yung. Authentication of moving kNN queries. In
Data Engineering (ICDE), 2011 IEEE 27th International Conference on, pages
565–576, April 2011.

[80] T.-H. You, W.-C. Peng, and W.-C. Lee. Protecting moving trajectories with
dummies. In Proceedings of the 2007 International Conference on Mobile Data
Management, MDM ’07, pages 278–282, Washington, DC, USA, 2007. IEEE
Computer Society.

[81] H. Zhang and J. C. Hou. Maintaining sensing coverage and connectivity in large
sensor networks. Ad Hoc & Sensor Wireless Networks, 1(1-2), 2005.

[82] R. Zheng, K. Vu, A. Pendharkar, and G. Song. Obstacle discovery in distributed
actuator and sensor networks. ACM Trans. Sen. Netw., 7(3):22:1–22:24, Oct.
2010.

152



[83] V. M. Zolotarev. One-dimensional stable distributions. In Translations of Math-
ematical Monographs, volume 65. American Mathematical Society, 1986.

[84] Y. Zou and K. Chakrabarty. Sensor deployment and target localization in dis-
tributed sensor networks. ACM Trans. Embed. Comput. Syst., 3(1):61–91, Feb.
2004.

[85] Y. Zou and K. Chakrabarty. Uncertainty-aware and coverage-oriented deploy-
ment for sensor networks. J. Parallel Distrib. Comput., 64(7):788–798, July
2004.

153


