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A substantial amount of research on acoustic scattering by underwater bubbles is based on the theory 
of incoherent scattering. More recent work, devoted to much denser bubble assemblies, has instead 
used effective-media formulations that presuppose coherent effects. Here the mutual relationship 
between the two approaches is elucidated. It is shown that, underlying the incoherent results, is a 
WKB approximate solution of the effective equations. As an application, the scattering by tenuous 
subsurface bubble layers and acoustical bubble counting techniques are examined. Significant 
differences with previous results are found. 

PACS numbers: 43.35.Bf, 43.30.Ft, 43.30.Nb 

INTRODUCTION 

Bubble clouds have recently become of great interest to 
the underwater acoustics community due to their possible 
role in the production and scattering of low-frequency (from 
a fraction of a kHz to seyeral kHz) noise (Carey and Bradley, 
1985; Carey and Browning, 1988; Prosperetti et al., 1993; 
Sarkar and Prosperetti, 1993). The mechanism by which 
these effects are produced involves the acoustic excitation of 
the cloud as a whole rather than of the individual constituent 

bubbles. Accordingly, the theoretical tools adapted for the 
analysis have been found in the theory of nonhomogeneous 
media in which the bubbly liquid is treated, in an average 
sense, as a continuum and the individuality of the bubbles 
lost. 

While this theory has been very successfully compared 
with experiment (Commander and Prosperetti, 1989; Yoon 
et al., 1991; Nicholas et al., 1994), it represents a departure 
from the way in which oceanic bubble phenomena have usu- 
ally been analyzed in the past, when the emphasis was on 
higher frequencies (tens of kHz and above) and sparser 
bubble assemblies. In that case the bubbles were treated as 

individual scatterers or emitters of sound and the relationship 
between the two points of view is not apparent. It is the 
purpose of the present paper to clarify this relationship. In so 
doing, the assumptions underlying the previous approaches 
will also be clarified and their limitations explored in the 
light of a more accurate theory. 

In part, the differences between the two approaches must 
be attributed to the differences between coherent and inco- 

herent scattering and emission. However, there are additional 
elements that make the comparison more interesting. 

Although sound emission by individual bubbles is men- 
tioned among the possible oceanic noise sources, little quan- 
titative effort has been devoted to this aspect of bubble ac- 
tivity. Mostly, the previous studies have focused on the 
acoustic scattering properties of bubbles, and it is to these 
that the present analysis will be limited. The problems that 
we study are the high-frequency reverberation and back- 
scattering due to bubbles, and an acoustical technique of 
bubble counting. 

I. COHERENT AND INCOHERENT SCA'I-FERING 

In this paper we shall only be concerned with random 
arrangements of scatterers. In this case, the basic physics 

underlying the coherent and incoherent interaction of waves 
with scattererers is well known (see e.g., Morse and Fesh- 
bach, 1953, p. 1494; Carey and Roy, 1993). Incoherent be- 
havior dominates when the scatterers are separated by dis- 
tances comparable with the wavelength or larger, and leads 
to a scattered intensity proportional to the number of scatter- 
ers N. When the scatterers are closely spaced, on the other 
hand, one observes coherent behavior with a much stronger 
scattering strength proportional to N 2. The transition between 
the two regimes is continuous: any random assembly of scat- 
terers, however compact in its spatial extension, will give 
rise to an incoherent component which becomes (relatively) 
stronger and stronger as the typical acoustic wavelength de- 
creases. Eventually, the incoherent component becomes 
dominant and the coherent field becomes small, although its 
vanishing is asymptotic rather than abrupt. 

An alternative--but equivalentsdescription of the situ- 
ation can be given in terms of ensemble averages. Imagine 
an ensemble of repeated scattering experiments in which the 
average conditions are nominally identical, and the only dif- 
ference lies in the details of the spatial arrangemement of the 
individual scatterers. Upon averaging the results (e.g., the 
spectra of the scattered signal) of all the experiments, one 
would obtain the coherent field, while the difference of the 
measured field in each experiment from the coherent average 
would correspond to the incoherent field for each particular 
experiment. The ensemble average of these incoherent fields 
vanishes by definition, but the ensemble average of the 
squares does not and this quantity is proportional to the in- 
coherent scattering intensity. 

The equivalence of .the two descriptions stems essen- 
tially from the equivalence between volume and ensemble 
averaging for spatially homogeneous systems. 

In the situations of concern in underwater acoustics the 

density of bubbles is generally small, with gas volume frac- 
tions ranging from perhaps 10 -6 to a few percent. However, 
in view of the large compressibility and energy dissipation of 
bubbles, exceedingly strong effects on sound propagation 
take place near the upper end of this range. 

II. FOLDY'S THEORY 

In a pioneering paper published in 1945, Foldy devel- 
oped a consistent theory of coherent and incoherent scatter- 
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ing. He showed that the coherent field (p)•defined in terms 
of the average over an ensemble of realizations of the 
bubbles-water mixture--is the solution of a Helmholtz 

equation 

(V2+ K2)(p) = 0, (1) 

in which the position-dependent effective wave number K is 
given by 

f amax K2=k2q - h(a,to;x)N(a,x)da. (2) 
a a min 

Here the pressure perturbation has been assumed propor- 
tional to exp(itot), k= to/c is the wave number in the pure 
water (speed of sound c), a denotes the bubble radius, and 
ami n and ama x are the minimum and maximum values of this 
quantity. The position-dependent number density of bubbles 
per unit radius increment is denoted by N and h is the scat- 
tering form factor defined by 

4 rrw2a 

h(a,w;x)= ro•- ro 2 + 2ibw ' (3) 
Here w 0 is the natural frequency of a bubble of radius a 
given by 

2 P0 ( 2O' (4) ro o=• 91• apo 
and the effective damping parameter b is 

2 l.• P o rø 2 a 
.... . (5) b Pa 2 +2pwa 23•q 2c 

In these expressions 9l• and 3• denote the real and imagi- 
nary parts of the complex function •(X) defined by 

3'), 

ß =l_3(y_l)ix[(i/x)•/2 coth(i/x)•/2_l ] , (6) 
with 3' the ratio of specific heats of the gas (air), 
x=D/(wa2), and D the gas thermal diffusivity. The equilib- 
rium pressure in the bubble, P0, is related to the undisturbed 
ambient pressure po• by p0=po•+ 2o./a and /a, denotes the 
liquid viscosity, p its density, and o. the interfacial tension. 
For a more detailed explanation and derivation of these for- 
mulae see Prosperetti et al. (1988), Commander and Prosper- 
etti (1989), or Prosperetti (1991). Equation (3) may be recast 
in the more familiar-looking form 

4rra 

h = ( wø / to) 2 _ 1 + i 6' (7) 
where the logarithmic decrement is given by 6=2b/w. This 
form has however the disadvantage of hiding the strong fre- 
quency dependence of w 0 and b. Graphs of 6 as a function of 
the equilibrium radius have been given by Medwin (1977a; 
see also Clay and Medwin, 1991) and are also shown in Fig. 
1 for different values of ro for a water-air system. These and 
all other numerical results in this paper are for air bubbles in 
water at standard temperature and pressure. Note that the 
position dependence of h arises from the fact that w 0 and b 
depend on the local static pressure p•, which is a function of 
depth. 

1'0-'0ø ....... iO' 40' 403 '40' 1 

radius (/•m) 

FIG. 1. The logarithmic decrement 6=2b/to as a function of the bubble 
equilibrium radius a for several sound frequencies f=to/2rr. For each fre- 
quency the resonant radius is near the minimum of the curve. 

In the same 1945 paper Foldy obtained an integral equa- 
tion for the incoherent field, the magnitude of which he de- 
fines as 

IPincl 2= (Ipl 2} -I(p)l 2. (8) 
The equation is 

(Ip(x) 12)- I (p(x)) 12 + •--• Ss(x') 
X(Ip(x')12)ls(x,x')l 2 d3x '. (9) 

Here 

f a max Ss( tO,x)= o.s(a,to;x)N(a,x)da, (10) 
a ami n 

with o-• the scattering cross section of a single bubble 

1 4 rra 2 

O's- •--• Ihl 2-- _ ]2 (11) [(tOo/tO) 2 1 +82 

is the total scattering cross section per unit volume and G is 
the "dressed" Green's function of the Helmholtz equation, 
i.e., the Green's function corresponding to the mixture wave 
number K rather than to the pure liquid wave number k, 

[Vx2q - K2(x)]W = -- 4 rr•(3)(x-- x'). (12) 
This result of Foldy's, originally obtained on a somewhat 
heuristic basis, has been confirmed by the later work of 
Twersky (1964). In the presence of weak scattering effects, 
Eq. (9) can be approximately solved by using a Neumann 
series truncated at the first term (the Born approximation) to 
obtain 

ipincl 2 1 f -Z--• Ss(x')l(p(x'))121G(x'x')12 d3x" (•3) 
Equations (1), (12), and (13) constitute a closed mathemati- 
cal model for the coherent and incoherent scattering from 
bubble distributions. We now show that the formulations 

used by earlier researchers (Clay and Mealwin 1964; 
Crowther, 1980; McDaniel, 1987, and others) can be derived 
from this model with suitable approximations. 
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III. WKB APPROXIMATION 

If we only consider tenuous bubble distributions with K 
slowly varying over a wavelength, we can approximately 
solve Eqs. (1) and (12) by the WKB method. We must how- 
ever prescribe a boundary condition at the ocean's surface. 
Previous investigators have completely neglected the pres- 
ence of waves assuming the surface to be flat. We shall retain 
this model but, in order to account--however crudely--for 
waves, we shall assume that the reflected pressure wave has 
a phase qb with respect to the incident wave. In proposing 
this assumption we envisage a plane coinciding with the 
mean ocean surface position, with the actual surface Position 
randomly above or below this mean level. The phase of the 
reflected "wavelet" from each surface element will therefore 

fluctuate about the value corresponding to the mean position, 
which we account for by ascribing a different value of qb to 
the wavelet. The amplitude of this fluctuation will be of the 
order of the product of the wave number and the s,ignificant 
wave height. If the latter is much greater than the acoustic 
wavelength (high frequencies), qb will have a range of varia- 
tion of 2z' or greater. In the opposite limit of low frequen- 
cies, on the other hand, the presence of surface waves is 
immaterial and qb-•rr to satisfy the condition p--0 at the free 
surface. 

With this specification, with the assumption of rectlinear 
rays, a straightforward application of the lowest-order WKB 
approximation to the Helmholtz equation (1) for the coherent 
field •p) generated by a unit point source located at R gives 

i /if,,: (p(x))=4rrlx_al exp(- 

exp(i)(ii: q- 4•i•_-•r I exp - ,,(y)dly , (14) r 

where the subscript r indicates the point reflected in the sur- 
face. For the range of bubble concentrations of interest here, 
up to 0.1% by volume or so, the lowest-order WKB result 
embodied in this formula is sufficient. The rays are approxi- 
mated by the straight line joining source and receiver and the 
integral in the first exponential is taken along this line, while 
that in the second exponential is taken along the line AB C of 
Fig. 2. 

In a similar way we find the following approximate re- 
sult for the Green's function G' 

G(x,x')=[x-x, I exp K(y)dly 

As before, the integral in the first exponential is along the 
straight line from x' to x, while that in the second one is 
along a line similar to the line AB C of Fig. 2. •e differen- 
tial dly is the element of arc length along these paths, which 
ensures reciprocity of the Green's function. 

In the application of the formula (13) to the case of 
backscattering, the argument x of the Green's function coin- 
cides with the source point R and, due to the symmetry of 

17 

FIG. 2. Ray diagram for the derivation of the approximation (20). 

the Green's function, also G(R,x') equals the field at x' pro- 
duced by a unit source at R, which is the same as (p)(x'). 
Hence we may write for the integrand in (13) 

I (p)(x' )12[ G(R,x ' )l 2= (4 •r)2[ (p)(x ' )l 4. (16) 

In the applications that follow, as in McDaniel and Gor- 
man (1982, 1983) and Vagle and Farmer (1992), we assume 
that the medium is stratified in the vertical direction so that, 

in the integrals appearing in (14) and (15), dly=d•'/sin rl, 
where d•' is the differential in the vertical direction and •7 is 
the grazing angle, i.e., the angle that the ray connecting R 
with x' makes with the horizontal free surface. With this 

specification the first integral in (14) becomes 

,, i (17) g(y)dly = sin •7 
In order to have more compact expressions it is also useful to 
define 

2 t(r)ar. 08) F(z) = sin V 
As for the second integral in (14), with reference to Fig. 

2, we have 

) (r)ar- (r)ar g(y)dly=sin 0 ' 

where the angle 0 is defined in the figure. The bubbles oc- 
cupy a surface layer of thickness d, say, that is usually thin 
compared with the depth IzI of the source/receiver. • el- 
ementary calculation shows that, if the angle • is substituted 
for 0, the leading-order error is of of the order of 
2(a/Izl)cos ifsin V which is small for small a/Izl nd, •c- 
tually, exactly zero for •= •/2. Hence, approximately 

g(y)dly=F(O)-• F(z). (20) 
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Finally, again due to the smallness of d/IZ I , we substitute the 
distance R of R from dS' in place of both denominators in 
(14) to find the following expression for the incoherent in- 
tensity due to the bubbly column of cross-sectional area dS' 

ipincl2_ 1 f• -- (4 rr)3R• •Ss{exp[-F•r(z)] 
+exp[-2F•r(O)+F•r(z)]+ 2 exp[-F•(0)] 

X cos[ c/,+FR(z)-FR(O)]}2dz, (21) 
where we have set 

F(z) = F•(z)- iFt(z), (22) 

and the integral has been extended to -oo although, as noted 
before, the bubble density becomes negligible below a finite 
depth that is actually small with respect to IzI. 

The backscattering strength is defined by (see, e.g., 
Urick, 1967) 

R2Is 
ZB =IiAA ' (23) 

with I i and I s the incident and scattered intensities, AA the 
ensonified surface area, and R the distance between the 
source/receiver and AS. From (21) we therefore find 

•=•--• Ss{exp[-2F•(z)]+4 exp[- 2F•(0)] 

+ exp(- 2[2F•(O)-F•(z)])+ 8 exp[- 2F•(0)] 

x cos[FR(0) -F•(z)- 0b] cosh[F•r(0) - F•r(z) ] 

+ 2 exp[-2F•(0)]cos 2[F•(O)-F•(z)- c/,]}dz. 

(24) 

Before proceeding to discuss the results of other re- 
searchers mentioned in the Introduction in the light of these 
expressions, it is useful to note the following approximation 
to the function F that arises by use of the binomial expansion 
for the calculation of K from (2) 

1 famax h ( a, w; x)N( a ,z )da, (25) K•k+•aamin 
from which 

•_ I [(-'•) 2 1 z ama x O- s 
dz - 1 • F•(z)-•2k(z-Z)+sin rl oo Jami n [ ka 

XN(a,z)da, (26) 

max F•(z)•--sin •7 o•dSamin rreN(a,z)da, (27) 
where the scattering cross section of each bubble % is given 
by (11) and the extinction cross-section rr e is given by 

6 4rcl•a/k 

rre=•a' a rrs=[(tOo/tO)2_ 112 q_ •2 ß (28) 
We have also extended the range of the integrals to -m in 
view of the fact that N vanishes below the bubbly layer. Note 

(a) 

(c) / (d) 

FIG. 3. The four paths by which a bubble can cause backscattering in the 
ray approximation of Sec. IV. 

that, analogously to (10), the extiction cross section per unit 
volume is 

f amax Se = rreN(a,z)da, (29) 
ß • ami n 

so that 

1 •• Se(z')dz'. (30) FI(Z)=sin •7 • 
The combination ka in the definition (28) of cre is the 

acoustic radiation damping. In the literature this is some- 
times evaluated at resonance and considered constant 

(McDaniel and Gorman, 1982, 1983; Vagle and Farmer, 
1992). The results presented below in Sec. VI indicate that 
this approximation is likely to be inaccurate. 

IV. RAY-ACOUSTIC INTERPRETATION 

For a better understanding of the relation of the result 
(24) to that of others and to gain some insight into the origin 
of the differences it is useful to interpret it in terms of ray 
acoustics following the approach of Crowther (1980) and 
McDaniel (1987). 

Consider a single bubble at a position z<0 below the 
free surface of the ocean. There are four paths, or rays, by 
which this bubble can contribute to the backscattered inten- 

sity, which are shown in Fig. 3 (McDaniel, 1987). The first 
one, Fig. 3(a), involves the direct scatter of radiation by the 
bubble. For a source of unit strength, the backscattered pres- 
sure amplitude due to this contribution is 

1 i i 

Pa=4rrR 2 exp -• F(z) h exp -• F(z) . (31) 
The first exponential is the pressure field exciting the bubble, 
h is the scattering form factor defined in (3), and the second 
exponential is the amplitude returning back to the source. 
The forward part of the path carries the spherical spreading 
factor 4 rrR, while the corresponding factor for the backward 
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part is h/R. The last path, Fig. 3(d), involves two surface 
reflections and gives the contribution 

1 

Pd=4 z. R2 exp i ) -• F(0) exp(iqb) 

i Xexp -•-[F(O)-F(z)] 

X exp(i 4•) exp - • F (0) , 

i h exp -• [F(O)-F(z)] 

(32) 

where the factors exp i •b account for the reflections from the 
free surface. Here the spherical spreading factor is not exact, 
but assumes that the depth of the bubble is small compared 
with its distance from the source. 

For the second and third paths, Fig. 3(b) and (c) the 
sound is scattered by the bubble and undergoes one reflection 
at the free surface. The contribution of these rays is therefore 
equal,p b = P c = x/p aP d. 

The total mean-square pressure field incoherently back- 
scattered to the source must be calculated by combining the 
effects of all the bubbles and is therefore proportional to 

f O • a max Ipincl 2- dzJ da N(a,z)lPa+Pb+Pc+Pal 2. (33) 
- • d a min 

Since, for an isotropic scatterer, [h[2=4•rtrs, it is readily 
seen that this result is identical to the previously derived one 
(24). An equivalent form is 

2 ;_• ;I amax 4 Ipincl - dSami n da N(a,z)l p•a+ P•al 

0 7I amax 2 =f_•dZaami n da S(a,z)lPal 
+exp i[r(z)-F(O)+ •]l 4. (34) 

It might be noted that, due to the surface wave motion 
(that they follow to a variable degree depending on their 
depth), the bubbles' distance from the source changes in 
time. However, since this motion is effectively "frozen" on 
the acoustic time scale, its only effect would be to endow 
each bubble with another phase factor similar to the •b intro- 
duced earlier. Since the contribution of all four paths is pro- 
portional to I h 12, the final result is independent of this phase 
as found before in the WKB approach. 

V. BACKSCA'R'ERING 

Crowther (1980), McDaniel and Gorman (1982, 1983), 
and McDaniel (1987) have calculated the backscattering 
strength due to a surface bubble layer per unit area of the 
ocean by the ray-acoustic method outlined in the previous 
section. 

McDaniel and Gorman (1982, 1983) omitted paths c and 
d and combined a and b incoherently. In a later study, 
McDaniel (1987) chose to add all the four paths incoherently 
by calculating, in place of (33), 

•0 f amax dz da N(a,z)(lPal 2 + Ipol 2 4-Ipcl 2 4-Ip,12). 
-- c• d ami n 

(35) 

In this way she finds the following expression for the back- 
scattering strength 

•=•--• Ss(z){exp[-2g(z)]+ 2 exp[-2g(0)] 

+ exp- 2[ 2g(0) - g(z) ]}dz, (36) 

where the function g is defined by 

= Se(z')dz'. (37) g(z) sin r/, _• 
This definition is formally the same as the approximation 
(30) of Ft, but McDaniel and Gorman (1982, 1983) calculate 
$e including only the effect of resonant bubbles, as will be 
described presently, and therefore we prefer to use a different 
symbol. 

With the same treatment of extinction, that replaces F t 
by g, Crowther's result [his Eq. (22)] coincides with our Eq. 
(24) provided one takes •b=z-(i.e., a completely flat 
pressure-release ocean surface), and our «[FR(z)-FR(O)] is 
substituted by kz sin •7- Even assuming Re(K)=k, one would 
have «[FR(z)-F•(O)]=kz/sin •7 rather than kz sin •7. 

One can argue that, for short acoustic wavelengths, the 
contributions of the paths of Fig. 3(a) and (d) should com- 
bine incoherently because one is affected (twice) by the sur- 
face, while the other one is unaffected. For a similar reason, 
the paths of Fig. 3(b) and (c) should combine incoherently 
with the other two. However, it appears that combining the 
two paths of Fig. 3(b) and (c) incoherently is incorrect be- 
cause this is in fact one and the same path, and irrespective 
of the nature of the surface reflection, it will affect both rays 
in exactly the same way. If, on the basis of this argument, •;B 
is computed from 

0 /' ama x dz] da N(a,z)(IPal 2 + IPo +Pcl 2 + Ip,l 2), 
- oo a ami n 

(38) 

the result is 

Y_.,B=•-• az Ss{exp[-2F•(z)]+exp(-2[2F•(O) 

-F•(z)])+ 4 exp[- 2F•(0)]}. (39) 

The proper way in which (36) and (39) should be com- 
pared with our result (24) is after averaging the latter over 
the phase •b. Indeed, if the acoustic wavelength is shorter 
than the linear dimensions of the insonified surface area, due 

to the presence of surface waves, the distance of the source 
from each point on the surface fluctuates about R by an 
amount that is small compared with R, but not compared 
with the acoustic wavelength. In this case, different points of 
the interface would be reached by acoustic wavelets having a 
randomly distributed phase, and the observed backscattering 
signal would effectively be the average over these phases. A 
parallel argument could be developed in a time-averaging 
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FIG. 4. Comparison of different results for the for the backscattering inten- 
sity as functions of the grazing angle in degrees at 20 kHz. The solid line is 
the present expression (39). The short-dash line is (35) (McDaniel, 1987). 
The oscillating dashed line is (24) with •b=z-(Crowther, 1980). The bubble 
distribution used here is that of McDaniel (1987), N(a,z) 
=(no/aa'3)exp(z/L), with L =1 m (appropriate for a wind speed of 30 
knots), n0=3.27x10 -9, with the radius integration effected over 50 
/am•<a•<500/am. For a value of n o 100 times as large, n0=3.27X10 -7, the 
three results coincide (dash-and-dot line) due to the saturation effect de- 
scribed in the Appendix. 

sense. Our result (24) is readily averaged over 4' and the 
result is then identical to (39). 

The two different derivations that we have provided for 
the result (39)--one from Foldy's theory, the other by a di- 
rect application of ray acoustics--lend support to its validity 
as opposed to that of (35) or (36). While the difference be- 
tween the two expressions has some conceptual significance, 
quantitatively the effect is not large once the result is ex- 
pressed in dB. We show in Fig. 4 a comparison of (24) with 
4, = • and (35) with (38) or (39) as a function of the grazing 
angle •7 at 20 kHz. The bubble distribution used here is that 
of McDaniel (1987), N(a,z)= (no/a4'3)exp(z/L), with L = 1 
m (appropriate for a wind speed of 30 knots), 
n0=3.27x10 -9 cm -8'3 (a in cm), with the radius integration 
effected over 50 /xm•<a•<500 /xm. The corresponding vol- 
ume fraction is given by /3=34.14 no exp(z/L). The solid 
line shows (39), the dashed line (35), and the highly oscil- 
lating dashed line (24) with •b=•. For a value of no 100 
times as large, n0=3.27X10 -7, all three results coincide 
(dash-and-dot line) due to the saturation effect described in 
the Appendix. 

Vl. EFFECT OF THE BUBBLE SPECTRUM 

The second point that we wish to address is the manner 
in which the contribution of the extinction and scattering 
cross sections to the various integrals over the bubble radius 
distribution arising in the theory is usually evaluated. The 
basic approximation (Wildt, 1946; see also Medwin, 1970, 
1977a,b,c; Clay and Medwin, 1991) gives 

Ss•-( z'/2) 6aaaN(a n ,z) rrsn , (40) 

Se•( •/2) 6nanN(a n ,g) O'eR , (41) 

FIG. 5. Logarithmic decrement 6 as a function of the ratio of the sound 
frequency to the bubble resonance frequency •o 0 for four different bubble 
radii. 

where the subscript R indicates resonance values, i.e., values 
corresponding to the insonifying frequency to. In particular, 
an(m) is such that ro 0 given by (4) equals to. A derivation of 
these results is given in the Appendix, which also contains 
more accurate estimates for a power-law bubble spectrum of 
the form 

N(a,z) =No(z)a -n. (42) 

A relation of this type has been proposed by several research- 
ers who suggest values for n between 2.6 (Medwin and 
Breitz, 1989) and 6 (Suet al., 1988; Farmer and Vagle, 
1989), with most results in the range 3 to 5 (Blanchard and 
Woodcock, 1957; Farmer and Lemon, 1984; Johnson and 
Cooke, 1979; Kolovayev, 1976; Walsh and Mulhearn, 1987). 
The results (40) and (41) are obtained on the assumption that 
o's is strongly peaked around to= to0, a region where the loga- 
rithmic decrement 6 is also small (see Fig. 5). Although the 
same method is used to obtain (41), it should be noted that, 
in view of the relation (28) between % and o' e , the latter 
quantity is less peaked than % and is, actually, relatively 
large below resonance. Thus one expects that the error in- 
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FIG. 6. Resonance value 6n of the logarithmic decrement 6 as a function of 
the bubble equilibrium radius a. 
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FIG. 7. Ratio of the approximation (40) for the scattering cross section to 
the exact result obtained by numerical evaluation of the integral (10) as a 
function of the sound frequency. The bubble spectrum is the power law (42) 
and the integration over the bubble radii has been carried out from 30/am to 
i mm. 

ß 

curred in keeping 6 constant in this region (Fig. 6) will ad- 
versely affect the accuracy of (41). 

We now compare these approximations with the result of 
a numerical evaluation of the integrals in (10) and (29) with 
the correct expressions for to o and all the other quantities 
appearing in the formulae. Figure 7 shows the ratio between 
the approximation (40) and the exact numerical result for a 
power law of the form (42) with n =3, 4, and 5. Figure 8 is 
the analogous result for the extinction cross section. In both 
cases the radius integration has been carried out over the 
range 30/xm•<a •<1 mm. For the three values of n one has 
/3=0.4063 No(z), 14.69 No(z), and 1354 No(z ) . It is seen 
here that the approximation (40) may not be very good at the 
higher frequencies if n is small. The reason for this behavior 
is given in the Appendix. As anticipated, the approximation 
(41) is poorer for S e (note the different scale in the figures). 
The error at the lower frequencies is of particular concern 
since S e appears as argument of an exponential in (37). 
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FIG. 9. Saturation effect of the ratio between the approximate and exact 
scattering cross sections as a function of the width of the radial integration. 
The parameter K is defined in Eq. (43). 

The previous results depend on the range of the integra- 
tion over radii. Figures 9 and 10 illustrate this effect for 
several frequencies for a power spectrum of the form (42) 
with n-4. Here, for each frequency, the integration is carried 
out for 

(1/K)a•<a•<Ka• , (43) 

and the results are plotted as a function of K. The resonant 
radii at the frequencies 5, 10, 20, 50, 100, 200 kHz are 645, 
321, 159, 62.5, 30.8, 15.2/zm, respectively. While a satura- 
tion effect is clear as the integration range increases, there is 
a rather steep dependence over smaller ranges. Because of 
this range dependence, the correspondence between these re- 
sults and and those of Figs. 7 and 8 is not exact at all fre- 
quencies. 

Another point worth noting is the strong error that is 
encountered for frequencies near the resonant frequency of 
the smallest and largest bubbles in the distribution. This is 
illustrated in Fig. 11 for the two ranges 20/zm•a 41.2 mm, 
and 30 /zm•a•200 /zm. For the wider range the natural 
frequencies corresponding to the endpoints are 152.5 and 
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FIG. 10. Saturation effect of the ratio between the approximate and exact 
extinction cross sections as a function of the width of the radial integration. 
The parameter K is defined in Eq. (43). 
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FIG. 11. Ratio of the approximations (40) and (41) to the exact results as a 
function of the sound frequency for two different ranges of radial integra- 
tion, 20/am•<a•<l.2 mm, and 30/am•<a•<200/am. The bubble spectrum is 
the power law (42) with n=4 up to a= 100/am, and n=3 above. 

2.701 kHz, respectively, for the •horter one 102.6 and 15.9 
kHz. For this example we have used the power-law (42) with 
n=4 up to a=100 /am and n=3 above. The slight slope 
discontinuities in the curves arise from the switching be- 
tween these two expressions. The volume fraction corre- 
sponding to the wider range is given by/3=52.82N0(z ). 

The suggestion has been made (e.g., McDaniel, 1987) 
that the approximation implicit in (40), (41) can be corrected 
by the use of a constant multiplicative factor. The previous 
results illustrate the possible shortcomings of this approach. 

Finally, we consider the effect of the use of the binomial 
expansion (25) to derive the backscattering formula. We ex- 
amine the accuracy of this approximation in Fig. 12 which 
shows the ratio of the imaginary part of g according to (25) 
to the exact numerical value as a function of No defined in 
Eq. (42) as a parameter. These calculations have been carried 
out for the broader one of the two spectra used for Fig. 11. 
The three lines are for ro/2rr= 10, 50, and 100 kHz in de- 
scending order. The gas volume fraction is approximately 
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FIG. 12. Ratio of the imaginary part of the mixture wave number according 
to the binomial expansion (25) to the exact value given by (2) as a function 
of the parameter No appearing in Eq. (42). These results are for the same 
bubble spectrum used in the previous figure. The corresponding volume 
fraction is given by 52.8 No, approximately. 

equal to 52.82N0, so that the right boundary of the figure 
corresponds to a total gas content of about 0.5%. It is seen 
that, even for such a relatively small concentration, the error 
is a factor of 5. It is clear that only extremely small gas 
concentrations can be treated with this approximation. 

VII. BUBBLE COUNTING BY ACOUSTIC SCA'I-FERING 

One of the techniques developed for the in situ acoustic 
measurement of bubble density and size distribution uses 
incoherent scattering and can be analyzed with the previous 
ideas. The method is essentially the following (see Medwin, 
1970, 1977a,b; Thorpe, 1982; Vagle and Farmer, 1992). If an 
upward-pointing sonar sends a short high-frequency pulse 
toward the ocean surface, it is found that the reflection of the 
main pulse by the surface (or by the dense bubble layer in its 
immediate neighborhood) is preceded by a nearly continu- 
ous, much weaker signal that is interpreted as the incoherent 
backscattering due to the bubbles that the pulse encounters 
on its way to the surface. Assuming that the sound speed is 
not significantly affected by the presence of these bubbles, 
the part of the signal received between t and t + At is attrib- 
uted to the bubbles at a distance from the transducer given by 
the travel time of the pulse. From the amplitude of this part 
of the signal one can infer the bubble number at that loca- 
tion. 

The application of the preceding method to the analysis 
of this case is simpler than before, as the presence of the free 
surface is inessential here due to the time "gating" so that 
Eqs. (14) and (15) can be used without the second term and 
Eq. (13) gives, with the same approximations as in Sec. III, 

1 

- (4 'r/') 3R 4 S s exp[ - 2F•(z) ]. (44) 

For a sufficiently small bubble concentration F•=0 and it is 
seen from this relation that the reduction of the backscattered 

data by the technique mentioned before amounts essentially 
to a measurement of S s at different positions in space and 
different frequencies. From this information the bubble size 
spectrum can be determined. The neglect of the exponential 
attenuation can be avoided (Vagle and Farmer, 1992) by not- 
ing that, after the bubble distribution and density at the clos- 
est z has been obtained, the attenuation of the beam reaching 
the next level can be estimated and so on. 

The recovery of the bubble size distribution from these 
data requires the solution of Eq. (10) considered as a Fred- 
holm integral equation of the first kind in N(a,x). The 
method traditionally used for this purpose has been the reso- 
nant bubble approximation of the Appendix and Sec. VI 
(Medwin, 1970, 1977a,b). Commander and Moritz (1989) 
have studied the accuracy of this approach and found appre- 
ciable discrepancies in some cases, particularly for the 
smaller bubbles of the population. Commander and Mc- 
Donald (1991) and, more recently, Duraiswami (1993), de- 
scribed a more precise numerical method that deals effec- 
tively with the ill-posed nature of the problem. Vagle and 
Farmer (1992) use six frequencies and the resonant approxi- 

339 J. Acoust. Soc. Am., Vol. 96, No. 1, July 1994 K. Sarkar and A. Prosperetti: Coherent and incoherent scattering 339 



mation would be too crude in this case. They describe sev- 
eral inversion methods suitable for this relatively small num- 
ber of frequencies. 

Without entering into the issue of the solution of the 
integral equation, which has been dealt with sufficiently in 
the literature, we simply point out that the bubble-counting 
procedure just described relies on the assumption that the 
coherent field is not reflected before it reaches the surface 

and all of the measured backscattered signal is incoherent. 
This is of course implicit in the use of the lowest-order WKB 
approximation. We have tested this assumption by solving 
numerically Eq. (1) for several bubble number distribution 
functions N(a,z). In all cases we have set 
N(a,z)=Nl(a)f(z ). For the a dependence, we have used 
the distribution of Figs. 11 and 12 normalized so as to give 
several values of the total volume fraction/•. For the z de- 
pendence we have tested several forms of which the follow- 
ing ones are typical: 

f(z)=l/2[l+tanh(z/l)][l+ß sin (2rrz/li)], (i) 

f(z) = exp( - z2/122). (ii) 
The length l was varied between 0.05 and 0.5 m, the length 
ll between 0.05 and 0.1 m, the length l 2 between 0.1 and 1 
m, and ß between 0 and 0.5, with gas volume fractions up to 
0.1%. In all cases we found that the reflection of the coherent 

signal was quite negligible thus substantiating the assump- 
tion implicit in the previous procedure. 

Viii. SUMMARY AND CONCLUSIONS 

The point of departure of this study has been to show 
that a WKB approximation applied to the effective-medium 
description of sound propagation in bubbly liquids gives re- 
sults completely equivalent to those of a description in terms 
of incoherent scattering. This idea is then applied to two 
problems, surface backscattering and acoustical bubble 
counting. 

It has been shown that earlier theories of backscattering 
by superficial bubble distributions are contained in the for- 
mulation of this paper as approximations or special cases. A 
numerical illustration of the differences among these results 
has been given. Essentially, they all agree within a few dB. 
Earlier theories also used other approximations in the calcu- 
lation of the bubble contribution, and notably the idea that 
only resonant bubbles are significant. Our analysis of this 
approximation indicates that it should be used with great care 
as large errors may be incurred. The behavior of the error is 
also strongly dependent on the bubble size spectrum so that 
general conclusions cannot be derived. 

For the acoustical bubble counting problem, we have 
shown that the current practice, which is based on the neglect 
of the coherently reflected field, is likely to be accurate. 
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APPENDIX 

For any given angular frequency w, from Eq. (4) one can 
define a resonant radius an(w ) and logarithmic decrement 
8n(w). If the function • appearing in the expressions (4), (5) 
of the resonance frequency and damping were independent 
of a and w and surface tension effects were negligible then, 
from (4), one would have Wo/w=an/a so that the scattering 
cross section per unit volume (10) would be given by 

Ss-•4 Tra4RI aR/amin x-4N(an/x) j aR/ama x (X 2-- 1)2 q_ 82 dx, (A1) 
where x = a n/a. Although, as shown in Fig. 6, 8 is far from 
constant, for smooth N the greatest contribution to the inte- 
gral arises from a region of order of magnitude 8 around 
x= 1. Since, as shown in Fig. 5, 8 is small near resonance, 
this region is narrow and it is therefore reasonable to keep 8 
constant and equal to its resonance value 8 n in the evaluation 
of the integral. This remark motivates the further change of 
variable y=(x 2-1)/8 n , where again 8n=8(w), to find 

a3• fyVM (l q- 8ny) -5/2 Ss'•2rr • m y2+ 1 N(an/x/1 + 8ny) dy, 
(A2) 

--[(aR/amin) 2-- 1]/8 R . For where Yrn--[(aR/amax)2--1]/SR , YM 
8n--•0 y m--• --o:, Y •t -•o:, SO that 

Ss-• 2 rr2N(an ,z)(a3•/8n), (A3) 

from which, with O'sn=4rr(an/8n) 2, the result (40) is ob- 
tained. A similar procedure leads to (41). 

A consideration of the form (A1) of the integral gives an 
explanation of the fact, noted in Sec. VI, that the approxima- 
tion (40) fails at high frequency for small n. Indeed, at high 
frequency, an is small and the range of integration restricted 
therefore to a small interval near x=0. If n is small, the 
decline of N as x-•0 is not sufficient to balance the factor 

x -4 and the integral becomes large, while the approximate 
result is little affected. The ratio of the two quantities there- 
fore becomes small as seen in Fig. 7. 

It may be of some interest to note that the integration in 
(A1) and the analogous one for the extinction cross section 
can be carried out in closed form for a power-law bubble 
spectrum provided amin--0 , amax =o: and 8 is kept constant. 
Standard contour integration (see, e.g., Whittaker and Wat- 
son, 1927) gives 

•0 x• X n - 4 d x (x 2-1)2 + 82 

rr sin «[(n-3)rr-(n-S)a] 
--28 (1 q- 82) (n-5)/4 sin «(n - 3 ) rr 

(A4) 

where sin a = A/x/1 + 82. The integral exists for 3<n<7. 
The similar integral involved in the calculation of S e con- 
verges for 2<n<6 and therefore 3<n<6 for both integrals 
to converge. It is readily seen that, for small 8, the leading 
order contribution is (r r/2)8, which leads to the approxima- 
tions (40) and (41). 
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While not always accurate, the binomial expansion (25) 
for the calculation of the effective wave number allows one 

to quickly obtain some insight into the basic trends of the 
results of the more complex precise formulae. For this reason 
it is of some interest to apply it to the backscattering strength 
(39) with the additional assumption that the bubble distribu- 
tion N(a,z) factors into a product, N(a,z)=N•(a)f(z). Fol- 
lowing the development given by McDaniel and Gorman 
(1982) we find 

EB--•--• 44, exp -• sin r/ 

2/•e 1--exp sin r/ , (A5) 

where we have set ½ = fø_•fdz and •s,e 
=Ss,e(W,z=O)/f(z=O). If the attenuation is large this ex- 
pression reduce• to the saturation limit 

•B•(•s/8 rr•e)sin •7, (A6) 
or, with the resonant radius approximation, 

Ea--•(kaR/8 rrtSR)sin r]. (A7) 

This expression coincides with that of McDaniel and Gor- 
man (1982) except for their correction factor 1.7. In the op- 
posite limit of small attenuation the result is 

E•-• 3 (•s/2 rr)½-• 3 rr(a•/6•)½, (AS) 
which is three times the result of McDaniel and Gorman 

(1982), again except for their correction factor 1.7. These 
considerations show that the difference between (39) and 
(35) vanish as the attenuation caused by bubbles increases. 
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