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ABSTRACT

Friction effects of two-dimensional, periodic, artifi-
cial‘roughness for fully roughened pipes in turbulent flow
were investigated. Friction factor data over many different
shapes, sizes, and spacings of roughness were compiled and ex-
amined for similarities which could be correlated. Such shapes
included fins, round rods, rectangular rods, square bars, v-
grooves, and sinusoids.

It was found that friction factors for two differently-
shaped roughness waveforms of the same spacing, amplitude, and
pipe diameter are related by the normalized crosscorrelation
coefficient of their waveforms. Such roughness falls into two
groups: projections, where the bulk flow interacts with the flow
near the wall; and grooves, where captive vortices exist in the
roughness cavities and do not interact with the bulk flow.
Friction factors were related to sine waves of similar size, mod-
ified by linear combinations of roughness dimensions and plot-
ted versus a representing parameter R, which was found to be a
dimensionless group containing a measure of spacing, amplitude,
and pipe diameter. Two correlation plots were developed, for pro-
jections and grooves. These show distinct regions which are
shown to delineate geometries where various>wall flow processes

occur. Predictions can thus be made of friction factor and flow



type given only the roughness system geometry and shape.
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CHAPTER T
INTRODUCTION

In pipe flows, very few surfaces approach the ideal
friction characteristics as expressed by the Blasius "smooth

pipe" formula:

0.3164

.25
NRe

Consequently, much effort has been expended to gain knowledge
of such flow processes for engineering design purposes. In
spite of this effort, not very much is actually understood a-
bout the dynamics of flow over rough surfaces, although many
empiricél relations have been developed. 2An example is the
Moody friction factor chart for randomly distributed, irreg-
ularly shaped roughness. This type is also known as sand
grain roughness, as pipes roughened with sand grains have been
used to approximate its effects. Sand grain roughness seems
to be adequately characterized by the mean roughness height,
e, usually referenced to the pipe diameter D. Friction fac-

tors can thus be estimated given the parameter e/D and the

ﬂéDU
74

Reynolds number,
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Another class of roughness commonly encountered is com-
prised of regularly spaced geometric shapes, such as rods, bars,
or sine waves. This roughness is integral with the wall in
conduits for purposes of rigidity, or is placed in the con-
duit for augmentation of heat or mass transfer, which on the
large scale is governed by the fluid transport processes.

There are numerous instances where hydraulic roughness
is desirable in order to enhance turbulence for transport of
mass oxr heat, as in nuclear reactors or water desalination
plants. One might also require the optimum spacing of mine
shaft timbers for ventilation and even the proper dimensions
for corrugated-wall prosthetic blood vessels. In the latter
case it is found that certain geometries are conducive to
highly disrupted flow patterns near the walls which may result
in hemolysis of red blood cells. An optimum wall configura-
tion is thus desirable on the grounds of adequate strength
and physiologically inert flow conditions.

Owing to its complexity of flow, studies of regularly
spaced, geometric pipe roughness have mostly been empirical
in charactér, following from the similarity principles of

Reynolds and the universal velocity distributions of Prandtl



and von Karman for smooth pipes. Clauser (8 ) was able to
show that the velocity shift equations of Prandtl and von

Karman applied to rough surface flow in the form

where B is a function of the roughness type.

Sine wave geometries are amenable to analytical ap-
proaches, as was shown by Miles (29), Benjamin (2 ), and
Konobeev and Zhavoronkov (23), among others.

Extensions of the phenomenological theory to rough
surfaces were also made by Rotta (40), and Worley (60).

In reviewing the literature on the roughness problem,
it becomes apparent that there is no general way by which
roughness patterns may be uniquely described, so that a cor-
relation corresponding to the Moody friction factor charts
can be made which relates friction effects, Reynolds number,
and geometric parameters. Also lacking is an understanding
of which geometicic variables are important to the several
flow processes which are known to occur over large-size pipe
roughness, as reported by Morris (32), May (28), Knudsen and

Katz (20) and others. Accordingly, the problem of this paper
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may be stated: "Can the friction factor be predicted, given
only the geometry of the system and the Reynolds number?"

The roughness type considered in this work is composed
of two-dimensional periodic waveforms which are tranverse to
the flow direction in fully rough pipes. In analyzing or
even attempting to represent such roughnesses, a basic
problem lies in the number of dimensions which are required
to describe them. By contrast, all microscopic or sand-
grain roughnesses can.be said to be similarly distributed with
respect to a normal distribution of amplitudes, so that their
overall dissipative processes near the wall are similarly
normal and need only a mean amplitude for description. Two-
dimensional periodic waveform roughnesses have additional
parameters of wavelength and shape which must be-considered,
as well as dimensionless combinations of geometric lengths,
since several combinations of shape, size and spacing may
give the same overall friction effect. Any systematic method
for representing this type of roughness has heretofore been
lacking, so the only options left to the engineer dealing with
such flows have been to use the particular sizes for which
extensive friction data are available, as in the case for

corrugated metal pipes (34), or to take the data himself.



This study presumes to offer a rationale by which two-
dimensional periodic pipe roughness is categorized such that
each roughness system consisting of a pipe diameter, ampli-
tude, and wavelength can be assigned a solely geometric pa-
rameter which gives it a unique identity. Using this para-
meter as a base variable, a modified Darcy friction factor
is crossplotted to give a universal correlation whereby the
friction factor for virtually any shape of two-dimensional
roughness can be predicted. This correlation shows how such
roughness must be divided into two major groups called pro-
jections and grooves, according to the flow processes which
occur near the roughness. Five distinct flow processes are

shown to be outlined by the resulting correlation graphs.



CHAPTER I1I
REVIEW OF PREVIOUS WORK

A review of previous work is necessary for an intro-
duction and background in flow over rough surfaces. An an-
notated summary and review of those works pertinent to this
study will be given, with emphasis on works that have recently
appeared. Previous work has progressed along lines of ex-
tensions of the similarity laws of Prandtl and von Karman,
adaptations of the mixing length theories, and recently,

analytical investigations which have arisen from wave theory.

Semi—-empirical

Several good reviews of roughness literature and associ-
ated equations are available, such as those of Worley (60),
Robertson, Burkhart, and Martin (38), Liu, Kline, and Johnson
(26), and Chapters 19 and 20 of Schlicting (45).

By the 1950s, it had been well established that rough-
ness effects were localized near the wall region, and that

velocity correlations of the form

=A+BlOgy_U*-U—U

2/

U
U, Uy



would apply, both for smooth and rough pipes, where A and B
were nearly universal constants and.ﬁgag_ was a function of
*
the particular surface. The problem lay in determining this
quantity for any given roughness.
Several researchers, Morris (32) for example, found

that the friction factor curves could be compressed over the

range of Reynolds numbers by functions of the form

g =1 - 1 '
JE;ough V£smooth
which, when plotted versus a "roughness" Reynolds number IR
TR = Ux A =NRe°1,F. 1
o D/a 18

would yield graphs which showed that similarity existed among

roughnesses of the same shape, as shown in Figure 1.

FIGURE 1

Here, the roughness spacing is the predominant length in
correlation.
Velocity shift functions were also developed by Clauser

(8 ) and Hama (15) which were universal for several roughness



types, and were correlated on the basis of equivalent sand-
grain height for each roughness type.

The most widely-used relation of engineering application
that has been available is the friction factor chart of Moody
(31) which is a summary of friction factors for all pipe flows
over random roughness or sand-grain type which can be des-

cribed by the single length parameter e/D.

Mechanistic

Recent works have attacked the roughness problem with
a more intensive look as to the roughness mechanism.
Perry and Joubert (36) took Clauser's form of the
logarithmic velocity distribution for roughness
U =1 log (YU*)+ A - AE&EEL& ‘
e~
Ux k » Ul »

and expressed it as

v=241, e(YU*)+ A,
Uy k 9945z

2= oo )

where the brackets denote a functional dependency. This a-

where

mounts to shifting the smooth wall friction factor curve to
the right by log 7%/; . If one then has friction factor data,

one can read off values of AU/lL\for all values of Reynolds



number. There are those roughness forms, however, whose
friction effects (e.g., stable vortices) are independent of
Reynolds number and render the above method invalid.

Perry, Schofield, and Joubert (37), recognizing that
different flow regimes existed, used square bars to produce
two categories of roughness, "k" type and "d" type. Flow
in the "k" type consisted of vortices shedding from the ca-
vity, and the "d" type contained captive vortices in the
roughness cavities. It was found that a shift downwards,

¢ , from the roughness crest height would correlate the
velocity profile data over a wavelength according to the
expression

U =1 log, €Ux +C

Ux 4
where for the "k" roughness, ¢ « k, and for the "d" rough-
ness, & ?i k. C is a constant for a given roughness shape.
However, as in all such velocity shift expressions, Ux must
be obtained in each case by experiment.

Betterman (3 ) found that the intercept C of the vel-

ocity shift function

Ux
where k is the sand-grain roughness height,could be correlated

AU = A logj, kUx + C ,
2/

for boundary layer flows as summarized in the following diagram
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(from Dvorak (12)),

m‘——'—»

|
4 L soTeRmAn ! brogik
l

C =
_g_;s. 6loglo(%_%

o
!

2
3
4 b
S

L 5 1o 160

_ total surface area
where 2 roughness area

for the fully rough regime in zero pressure gradient. The
sand-grain roughness height k must be obtained from corre-
lations for specific roughness types.

Dvorak (12) extended Betterman's correlation to the
roughneés density A 5 and this is also shown above. Two
distinct linear regions are clearly seen, and these meet in
a discontinuity.

Dvorak also extended this correlation to small pres-—
sure gradients by the use of a momentum integral eguation
and a shape factor equation. The resulting expression seems
to work well for small or zero pressure gradients.

May (28) constructed thirty-two rough pipes of differ-
ent periodic rectangular roughness geometries and measured

friction factors over each. Substantiating the earlier spec-
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ulations of Morris (32), May concluded that five flow regimes

existed near rough surfaces, which he classified as follows:

Description Quantifying Criteria
Smooth turbulent LAE = 2 logygNp £ - 0.8 (Prandtl-
von Karman)
Normal turbulent AU = 1 loge(Ro/y)
Usx k
Stable vortex p/A{1.15
(Morris' "quasi-smooth")
Unstable vortex
Quasi-stable 1.15¢P/A ¢ 8
Hyperturbulent AU = 1 logly/» ) + 8.5
U, k
Isolated roughness 8< P/A ¢ 200

The terms P and A are defined as shown below.

A

s sasi

May's analytical approach is interesting in that the
mechanisms of the two vortex regimes were derived based on
gross assumptions of the dynamics of the vortices that exist
in such flows. Also, geometric criteria are given to charac-
terize each type of flow. The data are shown to correlate
well with the semi-empirical expressions derived.

Yost (62), in a study of two-dimensional turbulent
channel flow over a large-scale sawtooth roughness, measured
mean velocity components very close to the roughness elements.

By a momentum balance of the terms of the turbulent Navier-
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Stokes equations, he showedthat the mean momentum convection

dU.

terms Uj 1  were of considerable importance close to the

JU..
]
rough surface ( 2y/DO(O.2) and that the time-dependent terms

contributed somewhat, indicating that some unsteady process
takes place and that the momentum equations were balanced when
averaged over a wavelength of roughness. This means that any
consideration of energy effects, such as represented by the
friction factor, must be wavelength-averaged.

Robertson, Burkhart, and Martin (38) showed, as Schlicting
had done (44), that a maximum roughness effect occurred in
the parameter k/e¢ , when plotted against a roughness density

defined as

(projected area of roughness on plate normal to flow)
(unoccupied plate area)

F=

as shown in Figure 2. Different maxima exist for rounded

and slat type roughness.

Koo 0ED Si4ars
b2 =1}, /7N
-~ R&DS i ! | F}'/ :
— ~ i )
e - j
— . m— # - :“:
. LTS L | Tamo
z = 8t ¥
¢ S | / /A= 1 o /S
N /XN
/(/ \S. L, rma=27 to ¥
*r e \%
o - . ~
‘O"3 wo 167! .0
F

FIGURE 2
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A number of investigators have used a roughness height
+
e=§_NRe4f/2 to correlate Stanton number data for heat trans-

D

fer over rough surfaces. Among these are Dipprey and Sabersky
(10 ), Sheriff and Gumley (46), and Sutherland (54).

Burck (4), (5) used a roughness height efl=k_ _ N_ v£/2

g DSg Re

to correlate heat transfer data where ksg is the equivalent
sand-grain roughness height.

Webb, Eckert, and Goldstein (63) correlated friction

factors for square-rib roughness by the empirical relation

-.53
+
ug (2) =g (") 2.1
e
where ui=12/f+ 2.5 ln[_Z_e)+ 3.75 . The function u; was de-
D

veloped by Nikuradse (64) to correlate his sand-grain rough-
ness data. Equation 2.1 is apparently valid only for square
rods where the spacing is large compared to the amplitude.
The authors argue against the feasibility of a single corre-
lation for all roughness geometries.

It is observed that most of the friction factor corre-
lations are based upon a measure of the roughness height, e,
which conforms to the idealized sand-grain concept. The
roughness height does not afford a unique representation of
roughness geometry. Moreover, the roughness height is often

compounded with a friction factor or wall shear velocity Us.
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Some degree of correlation is thereby assured since both
abscissa and ordinate are functions of the same variables.
Such correlations cannot be used for prediction purposes

and serve only to correlate the data.

Phenomenological

By using an extension of Boussinesqg's eddy viscosity
approach to calculating total shear stress in turbulent pipe
flows, Worley (60) added a roughness eddy viscosity term

so that the total shear stress is

Tg, = (4+&+&') _du 2.2
dy
The eddy viscosity was calculated from the Gill and Sher (14)
equation
2 42 + + 2 +
& = - -— -
£ k% y (l-exp(-fy /y_ .. ))*- gU 2.3
Y

By assuming a linear shear stress distribution and substituting

equation 2.3 into 2.2, a differential equation results

au* =[x er ) + /(1 + & )2 + acD Jav* 2.4
2C

2 42 + ot
c = - -
where k“ y (1 exp (-Zy /ymax))

D=1 - Yyyﬁax-

2

Having this expression, Worley found that there exists an ¢
for a velocity profile and pressure drop such that a universal

c
correlation can be given of the form_fi =A(Re)b(f)
2

where A,B, and C are universal constants, independent of
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roughness type. Unfortunately, one must have some method of
predicting the pressure drop before a velocity profile can

be obtained by integrating equation 2.4,

Analvtical (sine wave roughness)

As a sinusoidal boundary is a nearly ideal roughness
form from the point of view of ease of representation, it is
not surprising that a large amount of literature is devoted
to it. Also, because of its analyticity, it has lent itself
to some interesting theoretical approaches. As such, it will
command a section of its own in this report.

A number of investigators have measured friction factor
data over sine wave roughness in pipes, including Motzfeld (33),
Stanton; Marshall and Houghton (49), Gibson (13), Streeter (52),
Morris and Straub (51), Webster and Metcalf (58), Chamberlain
(6 ), and Konobeev and Zhavoronkov (23).

Morris (32) seems to have been the first of these to
note the variety of flow effects which occur over sinusoidal,
and indeed, all roughness forms. He recognized that all the
combinations of parameters were important, such that
f=ﬂ(NRe, A/D, A/D,S/D). He states that the friction effect
is due to viscousdissipation and form (pressure) drag which

is caused by large-scale vorticity produced behind each rough-
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ness element. This vorticity interacts with the elements
to the extent that three distinct flow processes exist.

1. Isolated roughness flow--the elements are spaced
far enough apart so that the separated flow re-
gion reattaches before the next roughness ele-
ment is encountered. The proper descriptive
index is A/A.

2. Wake interference flow--the wake is unstable and
interacts with the downstream element. The
proper index is D/2 .

3. Skimming flow-~stable vortices exist in the cav-
ities formed by the elements such that the mean
flow is not disrupted and "skims" over the rough-
ness. The proper index is 2/T.

Friction factor relations are derived for each type, and a
correlation on the basis of a roughness Reynolds number is
presented for sinusoidal roughness, which is designated as

a representative geometry for wake interference flow. No
criteria are given, however, to distinguish which of the three
flow types will prevail for a given size and spacing.

The origin of theoretical analyses of sinusoidal waves
is to be found in the works of Lamb (24), Wuest (61), and
Lock (27), and formed the bases for the later work of Miles
and Benjamin.

Kapitsa (18), in a pioneering work on films, analyzed

the structure of moving interfacial waves by solving linearized

equations of motion and continuity for a falling film to
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predict the velocity, wavelength, and frequency of interfacial
waves.

The interest here in these and the following wave models
is for the case where the boundary velocity is zero, which
is equivalent to a solid, rigid roughness.

Miles (29) formulated a mechanistic model for flow over
a wavy boundary, such that the boundary introduces a pertur-
bation to the two-dimensional linearized equations of motion.
Equations for the pressure and shear stress were derived and
phase relations shown to exist between these stresses and the
boundary profiie. Such stresses out of phase with the boundary
would contribute to the growth of waves at a gas-liquid inter-
face.

Benjamin (2 ) expanded Miles' approach and achieved
a slightly better approximation to the problem by the use of
orthogonal curvilinear (sinusoidal) coordinates. Like Miles,
he found certain phase relationships between the wall stresses
and the boundary profile which were equivalent to effects
observed in such flows, as for example, separation, where
the pressure profile is out of phase with the boundary (dis-
turbance). The Miles-Benjamin models are valid only for
laminar of "quasi-laminar" flows of an inviscid fluid and for

waves of small amplitude-to-wavelength ratio.
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Davis (92 ) has extended the models of Miles and Ben-
jamin to predict wave-induced turbulence stresses as well.
Numerical solutions of the linearized turbulent Navier-

Stokes equations were made with the conclusion that such models
are inadequate to describe turbulent flows, since no conclu-
sive verification of the adequacy of the Miles-Benjamin theory
could be made with existing data.

Konobeev and Zhavoronkov (23) present an interesting
approach to the analysis of flow over a sinusoidal boundary.
They assume that the mean velocity streamlines follow the
boundary (potential flow) and are exponentially damped as
the distance from the wall increases. The pressure loss due
to these velocity gradients is evaluated at the wall as a
function of wavelength (A ) and amplitude (A ). The total
wall shear stress is then taken to be the sum of the smooth
wall viscous diséipation and the contribution from the wall

pressure profile when integrated over a wavelength, as

~z 4
G A Y A

smooth wall shear stress

N
I

where

- - ; P o 2
P = PO An.sin nx-e XpUO

i
il

o= centerline mean velocity.

Friction factor expressions are derived for two cases:
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1. long wave roughness-- f= l+2.1152W6(A/2}.)2 ;

’

2. short wave roughness--f= 0.123/(log2d/2A) .
These expressions fit the data but contain empirical constants.
The pertinent lengths are A/ for long wave and D/A for short
wave roughness, where D is the pipe diameter. No analysis

is provided for roudghness intermediate to these extremes, but

a parameter E=4%¥ is proposed for this intermediate region

where all three lengths are important. All the roughness sizes

could be grouped by this parameter from observing the flow

effects:
long wave-- .061¢ E < .32
intermediate~~ 0.35 ¢ E{ .58
short wave-- .61 ( E(18.4

This grouping brings to mind the three roughness categories
suggested by Morris (32).

Smith and Tait (48) used Benjamin's model to predict
friction factors for seven of Konobeev's long wave geometries
which were in the model's range of validity. Benjamin's
equation for the viscous pressure (P,) of a sheltered wave
was used with the periodic normal stress component being
assumed to lag the boundary profile by 90 degrees. The re-
sulting wall pressure was

P - -a k13/3 7;-5/3 /04/3 (U—c) glgz cos (kx—17/2)
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where k = wave number of boundary

U

it

velocity of fluid

e velocity of wave.

The wall shear stress

= - P 1
TPV a k P sin (kx)

was integrated over an assumed velocity profile and wavelength-

averaged to give, in friction factor form

1 a2 (16/3 f—5/3/;4/3/74/3 (U-c) =23 5, 9,

(-)2 2

where ﬁl= Benjamin's G function

2
o= [g"’(u;c_L‘exp (-x/y) ay |
o (U—C)
f = smooth wall friction factor.
Their success (from zero to 300 per cent error) in predicting
friction factors is significant, but considering the limita-

tions of the model and the assumptions used, may be only for-

tuitous.

Closure

The foregoing attempts to treat the roughness problem

have demonstrated the following:

1. similarity exists between bulk flows over rough and
smooth surfaces, as shown by the nearly universal
slope of the velocity shift equations and the fric-
tion factor correlations of Morris

2. similarity exists for enerqgy dissipation in roughness
flows as indicated by Worley's roughness eddy vis-
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cosity concept and the law of the wall
3. roughness effects can be correlated by geometric para-
meters, the most common of which is the sand-grain
roughness height.

The above declarations seem to hint at a syllogism that
roughness effects could be universally related, regardless of
geometric shape. Some means of proving this tantalizingly
apparent similarity remains to be found. This seems to have
been done only for those roughnesses of the sand-grain type,
which can be directly assigned an identifying parameter, e/D.

Miles and Benjamin have shown tractable analytical
approaéhes for sinusoidal waveforms, and the development of
faster computers and adgorithms using finite difference ap-
proximations, such as that by Chorin ( 7) may eventually pro-
vide answers.

The main problem in any case is obtaining boundary con-
ditions, particularly the wall pressure. A correlation based
purely on roughness geometry is hence needed so that the cir-

cle relating velocity profiles and pressure loss may be broken.



CHAPTER III

CORRELATION OF FRICTION EFFECTS

At the initiation of this work, it was desired to try

to discover whether or not some property of pipe flow over

rough surfaces could be predicted strictly on the basis of

geometry. This proposition gave rise to two basic tasks:

1. finding some means of representing a roughness geometry

on some general, rational basis

2. correlating some flow property after establishing

this basis.

The scope of this work is limited to two-dimensional
periodic roughness in fully roughened pipe flow. A fully
roughened pipe is defined as a conduit having a completely

rough inner periphery, with the roughness elements set trans-

verse to the flow, as shown below:

A
ALY L ST A TIINTRIRETRY
JIAU(J__‘ D,
= T -
= :
97770//4///////nf/7///

A roughness system will be defined as a conduit of hydraulic
diameter D5, having some roughness as described above of
some particular shape with given amplitude A (measured peak-

to-peak), and wavelength A . The diameter is the minimum
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diameter of the pipe.
Sine wave roughness was considered first, on account
of its analyticity, and the existence of a large amount of
published friction factor data. The data of Konobeev and
Zhavoronkov (23) was particularly appealing as it was measured
for a wide rangé of amplitude, wavelength and diameter com-

binations, although its veracity was not yet established.

Representation of a roughness system

It was necessary to represent a roughness system on
the basis of the minimal number of parameters needed to com-
pletely identify a sinusoidal geometry: wavelength, ampli-
tude, and a pipe diameter. Separation of flow was thought
to be a'significant effect in flows over rough surfaces,

so the radius of curvature R, at the roughness crest

(//’I\\\\\Zizif)) was investigated. It is defined as
R

| - ;
R = L1+ ldx = Cc A
B ’
dx /2
where y(x)= A sin 27Tx . When made dimensionless by a
2 A
characteristic flow length, which is the pipe diameter, the
?{Z

radius of curvature becomes R= FORk Strikingly enough, this

AD
is essentially the reciprocal of the parameter E = 4 32 of

Konobeev, et al., which was shown to afford some categorization
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of the flow processes? This parameter R was later modified
2

to be more unique as R = Eqs, where ¢~ 1is the root mean
square (RMS) of the amplitude of the roughness waveform when
averaged over a wavelength and normalized by its mean "W
so that it is defined 6'5[;.§2y4x ﬂ) 1; , where

W= %‘?y(x? dx . The parameter R becomes very large
with increasing wavelength, for )77U;DO and < D, which
approaches an effectively smooth surface. It becomes very
small as A® A and 2A,A <X Dy, which also becomes effectively
a smooth surface. Each sinusoidal roughness system can there-
fore be assigned a fairly unique numerical identity by which
it can be represented graphically.
B'K,
’ 5

flow property to be plotted against R to see if some relation-

The Darcy friction factor f = was chosen as a
ship could be found. The friction factor was chosen as it
contains the important properties of pipe flow for engineering

purposes and is a familiar concept to all engineers.

*It is also noteworthy that an important result of the
Miles-Benjamin theory is that the pressure supplied by the
flow to the wall is proportional to the curvature of the vel-
ocity profile. The velocity is assumed to follow the boundary
shape (2 ).
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Correlation of sine wave roughness friction factors

The similarity principles set forth by Reynolds and
extended by Prandtl, von Karman and many others in the analy-
sis of fluid flows have shown that the processes may be charac-
terized by the dimensionless physical parameters of importance
to the system. The resulting expressions and criteria, such as
the universal velocity distributions and dimensionless numbers,
apply to any size system. Similarity analysis has thus made it
unnecessary to know the exact nature of the fluid processes,
but only the dimensions of importance. Were this not so, very
little progress indeed would have been made in this field,
owing to the complexity of the processes.

For the case of two-dimensional, periodic pipe roughness,
two dimensionless quantities, £ and R, had been selected to
represent, respectively, the flow process and the system geo-
metry. The friction factors were chosen at a Reynolds number
of 10° so that any Reynolds number effect would be absent for
initial considerations. The friction factors for each of Kono-
beev's roughness systems were then simply plotted against R,
resulting in Figure 3a. After much appraisal, certain regular-
ities could be seen, so the friction factors were then suc-
cesively modified by various dimensionless conbinations of
2/D

system dimensions, such as A/x, A/D etc., and these

o o’
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modifications likewise plotted against R. The use of a digital
computer and plotting subroutine greatly accelerated the proc-
ess of testing these combinations. It was observed that the
modified friction factors clustered together over certain
portions of the R-space as shown in Figure 3b, 3¢, and 3d.
This was encouraging as it meant that a correlation could be
accomplished strictly on the basis of geometry and that f was
a viable representation of the friction effect. It was subse-
quently established that a linear combination of modifying
parameters was necessary for correlation to account for the
overlap of portions of R-space where the parameters were
individually dominant. The combination which produced the best
statistical fit for all the data was f .

La/a +{A%/D, +%/D_]

The parameters A/A and ﬁqk)are dominant for small and large

values of R, respectively. The combination {KZVDO was added
for the intermediate values of R, where evidently all three
dimensions are important.

The resulting correlation for sine wave roughness is
presented in Figure 4. The traces of three regions can be dis-
cerned and are labeled 1, 2, and 3. These regions will become
more distinct as the correlation is extended to all roughness
waveforms in the subsequent section. The parameter E of Konobeev

is seen to compare approximately to the regions shown in
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Figure 4. The obvious conclusion is that friction factor data
can be correlated by means of dimensionless combinations of
geometrical system parameters.

The correlation procedure also involved a great deal of
trial and error. For example, it was not known at the outset
which of the dimensions that could properly be called a dia-
meter was the correct one to use. This and other fine adjust-
ments had to come after the correlation had been extended to
other waveform shapes. It was found that Dy, the minimum flow
diameter, and d, instead of A, worked best. This was determin-
ed by varying one parameter at a time and performing the cor-

relation calculations.

Parametric limits in the correlation

Over the range of the variable R, it is observed that
as R becomes small, the amplitude of the roughness is approx-
imately the order of magnitude of the wavelenéth and each 1is
much smaller than the diameter. The effective roughness ap-
proaches a smooth surface and the modifying parameter becomes

lim[gx_+ {2n + 3]9 A 231
A2 LA D D A

A,AKD
! o
so that the modified friction factor approaches that for a

o]

smooth pipe. For large values of R, the wavelength becomes
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larger than the diameter and much larger than the amplitude
so that no corresponding smooth pipe limit exists for the
modified friction factor. It becomes vanishingly small, in-
stead. Although not esthetically pleasing, this is apparently
a consequence of using /)/DO as a modifier, as A may increase
without bound in relation to the diameter. There appear to be
no other options, however, as the correlation in this range of
R requires ')/DO as a modifier. Although sine wave data are
lacking throughout this range, the validity of the correlation
will be strengthened later. The intermediate range of R-space

evidently requires the inclusion of the term{3A/D_, implying

ol
the dominance of a process characterized by all three length
scales..This ratio can also be written as (&DO)/'ﬂA/DO , which

is a combination of the two independent parameters, Z\/Do and

A/D .

O

Revnolds number effect

A definite Reynolds number effect on the friction fac-

tor was noted for several of the sine wave roughness systems.

4 :
Data points as Nrg = 10 are shown in Figure 5. Previous points

from Figure 4 at NRe = 1O5 are shown as boxes.

There is a different Reynolds number effect in very.

large pipes (Do> 10 inches), in that a maximum friction effect
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is attained at NRe of 106 and higher. Also, the Reynolds
number corresponding to this maximum increases as the pipe
diameter increases. In smaller pipes, the friction factor
either decreases or remains constant as NRe increases. Most
data for these large pipes were taken at high Reynolds num-
bers, mainly because of the difficulty of having the pipe flow
full at lower Reynolds numbers. A direct comparison with the
small-pipe data thus is not possible except where extrapola-
tions can be made. The extrapolated data of Morris and Straub

_ 5
(51) at NRe = 10

fit the small pipe correlation.

Also shown in Figure 5 are data taken from a design
manual for corrugated pipes prepared by Norman and Bossy (34),
which presents data for five different standardized éine wave

sizes at a variety of diameters. These are summarized in the

following table:

Amplitude Wavelength
1/2n 2 2/3n
1 6" all for
2" 6"
lu 39 1 \( D s 20!
O
21/2n 9n

The Darcy friction factor had been correlated for a given sine
wave size along lines of constant Q/D2'5, which is a common

design parameter for hydraulic engineers. These data are pre-

sented in Figure 5 ( Y's and Z's) for two common values of
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Q/D2‘5, which correspond to the range 5x105< NRe< 5x106.

It is interesting to note that the trend of the curve
for smaller diameter pipes is followed, but the large-pipe
curve 1is displaced upwards by an almost constant amount. The
friction factor is therefore not general enough to account for
such Reynolds number effects in this correlation. There seems
also to be a lack of similarity between large and small diam-
eter pipes. Kellerhals (19) compared friction factor data from
a 60" diameter, %" x 2 2/3" size sine wave corrugated pipe to
that of a 1/16.6 scale model ( D=3.6"). It was found that
the friction factor of the scale model reached a lower max-
imum value at a lower Reynolds number than that of the large
pipe. This suggests that dynamic and geometric similarity
do not exist between pipes of small and very large diameter.
The critical diameter seems to be from 10 to 18 inches, on the
basis of the data which have been presented.

Some typical Reynolds number effects on friction factor
are shown in Figure 6.

If the discrepancy between flow dynamics of large and
small diameter conduits is momentarily ignored, the correla-
tion of Figure 5 can be used with good accuracy to predict

friction factors for a very wide range of sine-wave-roughened

pipe sizes and a wide range of Reynolds numbers. The error for
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small pipes is a maximum of + 25% from the mean, and for large
pipes is at most * 5%. The implication of the regions of the

correlation plot will be discussed in Chapter 4.

Extension to other roughness waveforms

A fair degree of success has been obtained in correla-
ting sine wave roughness on the basis of geometry, notwith-
standing the high-Reynolds-number effect in large pipes. It
was logical to desire to extend this correlation to roughness
waveforms of other shapes, for which a plenitude of data were
available. Such an extension would not only strengthen the
correlation, but serve to prove the existence of similarity
of friction effects for roughness of different shapes.

The method of attack was to use the sine wave as a ref-
erence waveform, and relate friction factor data for other
waveforms to it. It was necessary as a consequence to find
some flow property which could be directly related to the
waveform of the boundary. This referencing approach requires
that the modifying parameters A/ ’szi/Do' and 7\/Do be

universally wvalid.

The crosscorrelation coefficient

In communications theory, it is often necessary to com-

pare one waveform with another for purposes of assessing its
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information content. This may involve extracting a signal from
noise or comparing the power of one signal with another. This
is done by an averaging procedure called correlation. A cross-—
correlation coefficient Ry,(L) may be defined for two wave-
forms Fj(x) and F,(x), here taken to be periodic with phase

difference L, as follows (25):

((Fy (x4L) -0,) (F,y (x)-1,))
(L) = :
12 S G =1 ) 2) (P, () -N5) 2)

R

The mean ¥|; is the average of Fi(x) over a wavelength Al

The variance (7 = ((Fi(x)—ni)2>!§

is the root mean square
average of F.(x) about its mean. The brackets {7’ denote av-

eraging:: over a statistically significant interval, which here

is a wavelength. The average is defined as

gx)y = _Lgag(x) dx.
Mo
The crosscorrelation coefficient R12(L) in equation 3.1 is
normalized with respect to the mean and variance of its com-
ponent functions, which centers each waveform about its mean
and makes Ry, (L) independent of wave amplitude. Normalization

sets the bounds for R12(L) so that

-1.0¢4R. (L) £1.0 .
1.0 12( )4$1.0
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The autocorrelation coefficient ( for Fl(x) = Fz(X)) is
R,;(0) =1.0 .

The crosscorrelation coefficient is thus potentially useful
as a modifying factor to relate two gquantities which are
thought to be linked by their shapes. As a multiplier, it
should necessarily always be positive to give a meaningful,
non-zero product when compounded with positive physical quan-
tities.

It is found that the friction factors for pipe flow

over two different wall waveforms can be related by the cross-

correlation coefficient of the wall waveforms, as

ASILAEE S HN 3.2
12
<f27

Hence, if (fl)corresponds to the wavelength-averaged friction
factor for flow over a sine wave wall roughness Fl(x), one
need only multiply the friction factor {fz} of an arbitrary
roughness waveform F2(X) by their crosscorrelation coefficient
and the friction factors are universally related. This means

that, with regard to the correlation presented previously for

sine wave roughness, if the friction factor {fy) is modified

2
as <f,7 . Ry, (L) and plotted versus A, it will coin-
0D
LA/ +,{A’)\/Do + ’A/Do] o

cide with the cluster of points delineated by the sine wave

correlation of Figure 4. The factor RlZ(L) then relates the
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two friction factors according to their shape. The modifying

factor (A/A +4A%/Do+?VDO) adjusts the friction factors for
z
R = 2

the system size, and the parameter g

identifies the
roughness system. This correlation is given in Figures 10 and
11 and will be discussed in detail in Chapter 4. Eqguation 3.2
will be derived heuristically in the next section on the basis
of some simplistic assumptions about the nature of flow over
rough surfaces.

It became evident that this approach was not adequate
to correlate friction factors for all the systems considered
as the factor R12(L) became negative for some waveforms. These
waveforms were closely spaced and had generally lower friction
factors than those which would correlate with sine wave rough-
ness according to equation 3.2. Another approach was necessary
to account for these waveforms and was developed from the
realization that a different flow process was involved which
might require different parameters for representation. Morris
(32), May (28) and others had shown that several flow proces-
ses exist near the wall for different rough surfaces.

It was found that the class of roughness examined in
this work was separable into two groups:

1. projection type, which is characterized by a strong

interaction between the bulk flow and flow near the
boundary
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2. groove type, which is characterized by a weak inter-
action between bulk flow and flow near the boundary.

These definitions will be refined as the development proceeds.
An assessment was made of the flow processes which
could occur over the two roughness types. It had to be that
some dynamical property of the flow in common with sine wave
roughness occurred over projections which in turn could be
directly related to the wall shape so that the heuristic
equation 3.2 would result. A program of experimentation using
a 9" diameter corrugated metal pipe was instituted to explore
flow effects near the wall. The results are given in the next
section as a basis for the analysis of projection type rough-

ness.

Experimental work

The friction factor embodies only the pressure drop
and the velocity as entities which would potentially deviate
most from the effect of large-size wall roughness. These quan-
tities were examined in the wall pressure distribution and the
velocity behavior near the wall.

Wall pressure profiles had been previously measured
for air flow over fixed sine wave boundaries by Motzfeld (33),
and Stanton, Marshall, and Houghton (49). Stanton, et al.

found that the wall pressure distribution was not harmonic
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with the boundary, but contained substantial second and third
harmonics of the wall wave number. Motzfeld's distribution
was somewhat similar, but he used only three wavelengths as
a test section. It was thought that the flow pattern was there-
fore not fully developed.

Measurements of wall pressure distributions and flow
visualization studies were carried out on a 9" nominal diam-
eter commercial corrugated steel pipe. This equipment is lo-
cated in the Fluid Mechanics Laboratory of the Chemical Engi-
neeriﬁg Department of the University of Houston. The observa-
tion and measuring section was located 32 diameters from the
inlet to ensure fully developed turbulent flow.

The air mover was a Buffalo Forge size 30 MW centri-
fugal fan which could produce Reynolds numbers from 60,000 to
270,000. Pressure drop data were measured by taking centerline
dynamic pressure differences of two Pitot tubes set apart in
the piperso that the tips were positioned over the roughness
crests. This method was found to be far less sensitive to
longitudinal positioning than measuring static pressure dif-
ferences from wall taps.

The friction factor was found to be independent of
Reynolds number in the range 60,000 <NRe(27O,OOO. The long-

itudinal wall static pressure distributions were measured
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from 18 static pressure taps set perpendicularly to the wall
and uniformly spaced over 1% wavelengths. The wall pressure
distribution was not harmonic with the wall wave, and resem-—
bled the distributions of Motzfeld. A comparison of wall pres-
sure distributions is shown in Figure 7.

For flow visualization, a suspension of carbon black
in kerosene was painted on an area inside the pipe near the
outlet and allowed to be dried by the airstream. The resulting
streak pattern left by the carbon black traces is shown in
Figure 8 and in Appendix A. An irreqular pattern in a space
bounded by lines of accumulated carbon black indicates the
existence of a separated region, which begins slightly down-
stream of the roudghness crest and reattaches at the trough.
No evidence of vortex shedding could be detected, as the car-
bon black pattern was steady, so it is interpreted that a
sheltered unsymmetrical vortex is a characteristic of flow
near the boundary for this geometry, and the axial velocity
streamlines follow approximately the roughness waveform over
most of the wavelength. The results of the above investigations
are included in Appendix A.

As a result of these experiments, the guantity which

could be related most directly to the wall waveform was found
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. . *
to be the time~averaged velocity near the wall. The longitu-
dinal wall pressure distributions presented in Figurxe 7 have
a similarity in that the lowest values occur near the rough-
ness crest and reach a maximum about halfway between the crests.

These two observations will be applied in the following analy-

sis of projection roughness.

Analysis of projection type roughness

The friction factor for an arbitrary two-dimensional
periodic pipe roughness will be related to that for a sine
wave roughness of similar size and hydraulic diameter. The
friction factors will be written as a ratio, and the observa-
tions made earlier about the wall pressure distributions and
velocities will be applied. 211 other unknown guantities will
divide out or become unity in the ratio. The resulting expres-
sion will be integrated over a wavelength.

The friction factor was originally defined to be a mea-
sure of energy loss due to fluid friction over a length of
smooth-walled conduit. When applied to large-size periodic
pipe roughness, it is calculated as an average over a discrete

number of roughness wavelengths. The friction factor may be

*
The steady-state velocity at a point in which turbu-

lence fluctuations are averaged out is termed "time-averaged"
and is distinct from the time-averaged velocity averaged over
a length, which is termed the "average" velocity.
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expressed as a local function of the longitudinal direction
x, as follows:

f(x) = _8 Tw(x) 3.3
/ Uz(x,y)

where f(x) is the Darcy friction factor,
T.(x) is the local wall shear stress,
U(x,y) is the local time-averaged mean velocity.
The friction factor fl(X) for roughness waveform Fl(x) will
be related to the friction factor f,(x) for roughness waveform

Fz(x) as follows:

£, (x+L) = 8 71 (x+L) /Ug(x,y) 3.4
£,(x) L U1%(xtL,y) 87 5(x)

The length L has been included for complete generality to allow
for a phase difference in comparing the waveform-related gquan-
tities. The individual guantities will now be evaluated and
substituted into equation 3.4.

According to Konobeev and Zhavoronkov (23) the normal
(y) velocity component U, may be assumed to follow the boun-
dary and be damped exponentially with the distance from the
wall. For a sinusoidal boundary the normal velocity will be

Uy = Asin nx e Y 3.5

From the two-dimensional equation of continuity for the time-
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averaged mean velocity

du, +9u, = 0 3.6

d x dy
the longitudinal velocity, UX, is
Uy = U, (1 -Ansin(nx) e 1Y) 3.7
where n is the wave number,
Uo is the centerline velocity,
A is the amplitude of the boundary.
It will be assumed that for a generalized function F(x) which

has continuous derivatives the wvelocity is

Uy =U (1- Flx) e™), 3.8
For some of the roughness shapes in question, Konobeev's method
is not strictly true, since the derivatives of F(x) may not
yield convergent derivatives for discontinuous waveforms
(e.g. orifice type). Nevertheless, it is assumed that the fluid
streamlines "smooth out" any discontinuities of the roughness
waveform and hence the velocity function near the wall can be

written as F(x) in equation 3.8.

Substituting U(x,y) from equation 3.8 into equation 3.4

gives

£ (x#L) = T,p (x+L) U3y (1- F (x) e 1Y) 2

£,(x) T, 2(x) Ugl(l— F, (x+L) e™1Y) 2

The fluctuating part Ei(x) of the velocity must be
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normalized with respect to its mean Lo and variance 0 - The
term ¥ ;Uoi - e is added and subtracted in equation 3.8 to
give

U (x,y) = Ug(1-1; - ™™ - (F, (x)-y)e” ™). 3.11
The velocity can be made dimensionless by dividing the fluc-
tuating term by the variance of F(x) while dividing the unity
term by a quantity nearly equal to T, say 0, which effectively
preserves the order-of-magnitude relationship between the
velocity in bulk flow and the velocity near the wall. Also,
0, must be a universal constant to preserve the relative values
of a ratio of velocities,as written in equation 3.9. The resul-

t
ting dimensionless velocity U; is

U;_(x,y) = U (t ~Mi TN - (i () -wy)e™) | 3.12
% 0 a5

The shear stress for circular pipes is

T(x) = @@ D, (x) 3.13
dx 4

where Di(x) is the local diameter of the pipe. The diameter is
written

LY
D.(x) =D + 2Fx) 3.14
1 fe) N
neglect

where the fluctuating part is neglected. Di is therefore a
constant, equal to the minimum diameter across the pipe from

roughness crest to roughness crest.
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The pressure at the wall can be written as the sum
of a term linear in x which is the dissipation from the micro-
scopic wall roughness, and a non-linear term arising from
the separation of flow and other friction effects. The func-
tional form of the non-linear term cannot be predicted so it
will be aséumed to have a similar shape for all roughness types.
The pressure profile is then
P(x) = px + PO g(x) e--ky
where p is the microscopic ("smooth wall") dissipation,
g(x) is the generalized pressure distribution,
P, is the pressure amplitude.

Taking the differential of equation 3.15 gives

dP = p + P g'(x) e7kY, 3.16
dx

Since, for most of the surface textures encountered, the con-
stant "smooth wall" dissipation is about an order of magnitude
smaller than the other term, it will be neglected. Equation 3.16

-k
is dP = Po g'(x) e y. 3.17

ax
Substituting equation 3.17 into the friction factor ratio

equation 3.9 gives

[1—42- e ™ (Fz(x)—ﬂz)e_ny]z 3.18
D
1

£1 (etD) = Poyg° (e U3

02 % a2 a2 .
£2(x)  Pgag' (x)e Ry UZ, Dz[l-ql- e~nY- (Fl(x+L)-ql)e‘ny]2
T %



Considexr the term I in equation 3.18:

Poy g'(x) e~kY y2

Py, 9 {x) e kY U2

It is further assumed that the pressure amplitude PO is rel-

2
ated to the square of the velocity maximum U, by a universal

constant so that

2 -
Poy Uop e _ 1. 3.20
2 —
Ol P02 e Y

Also, the damping coefficients are assumed to be equal. The

friction factor ratio now becomes

_ _ 2
A, - (Fz(x)—ﬂz)e ny]
£q (x+L) _ N —

0o ] 3.21
f2(x) - Ty 2
A, - (Fl(x-I-L)—V[l \e :'
i e /
- -1
where Al = i -N e Yy,
o a1
By=1-n, ™
% 6

Expanding the square terms in equation 3.21 and multiplying by
(Fl (X'I'L) "‘Yl]_) (ri

25 (Fl(xﬂ'-) Yy 2{‘2 (x )= \(B berDinle ™ T+ Fz(x)-qzz (x+L)—v]le_2ny
bl )k 4l ) ( o )(Fl 0 )
£2(x) [A}El(xm) |- (F (x+L) Y(\e (Fl(x+L)-vzl \3 e~2ny]

/ /

T 3.22

unity with the factor results in
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The third order terms are neglected because the factors
(Fi(x)—qi)/01 are less than one; also there are squared nega-
tive exponential terms. Equation 3.22 is cleared of fractions

preparatory to being integrated over a wavelength:

A 2 2 -ny
N Al/Fl(x+L)—ql>— A Fl(x+L)—ql e . 2 93
__7_\_ 1 X \ G_i 0_1 X

o

A AZ/F. (x+L)-n.\~ A_/F (%) =Y,\F, (x+L) =y y e Y
= ;gfz(x) 2( L '[l) 2< 2 22 yll) ]dx.

A o1 oz N\ @
The friction factors are now taken as an average over a wave-

length and removed from inside the integral. The integration

is performed, to yield

o

B3 G R AYE) (o) -y e‘ny>

<fl> zg .//Ui / \ 01 )
g o

2 =T -
=<f Az«Fl(x+L)/—/Vll)>— A2<(F2(x)—q2)c‘l(x+l-)~7ﬁe n>]’ 394
2 G - o35/
7

where the brackets denote wavelength-integration. It is obser-

ved that the first order terms in Fi(x) are zero, and only the
second ordexr terms are significant. The factors Al and A

are nearly equal and can be divided out, as can the exponen-

tial terms, to yield

(£} Ry; (0) =(f2> R, (L) . 3.25
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This is rewritten as

Il

()
(557

(0)

Rpo (L) 3.26

since by definition, R 1.0 with the result that R12(L)

11
is the normalized crosscorrelation coefficient between the two
waveforms. This is the heuristic equation 3.2. The phase dif-
ference L is a consequence of the correlating scheme and must
by determined by trial and error in correlating the data.
Physically, this means that there is an equivalent effect in
the reference (sine wave) pipe and the test pipe if the fric-
tion effects are evaluated with respect to a common longitu-
dinal datum as shown in Figure 9. Thus the correlation is made
by referencing the friction factor for pipe flow over an ar-
bitrary waveform to that for a sine wave of similar dimensions
in the same pipe diameter, Do’

T |le——o
1

F_(x)
2 _%a4 .

| e

o

Fq (x+L) %:\\\\x\\\\J

< A -

!
E3EY

Figure 9
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Equation 3.26 actually says that two friction factors
are so related regardless of their respective amplitudes. This
is a consequence of the definition of the dimensionless velo-
cities made so that a normalized correlation coefficient could
be obtained. These were very strong conditions and have remov-
ed the dependence on amplitude. Hence, it must be addition-
ally specified that equation 3.26 is true only for friction
factors for waveforms of the same amplitude.

The resulting correlation for projection type rough-
ness is shown in Figures 10 and 11l. A list of the roughness
shapes correlated is given in Table 1. It is noted that the
data.points of the many investigators represented coincide
with the sine wave correlation plots of Figure 5. The data
for the.large diameter pipes are not represented here. It is
emphasized that each point on the graphs represents a roughness
flow system of a shape, size, and pipe diameter. The Reynolds
number ranges in the legend are those over which the friction
factor value is nearly constant.

The validity of the correlation is shown from the
diversity of roughness types correlated and the fact that the
deviations from the means of the plots appear to be random.

A complete listing of the data used and pertinent calculated

quantities is given in Appendix B.
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TABLE I

SUMMARY OF ROUGHNESS GEOMETRIES

Investigator and

reference

CORRELATED

Typical rough-
ness pattern

Pipe cross

section

55

How AP was
measured

Konobeev and

Zhavoronkov (23)

Gaddis

Streeter (52)

Morris (32)

Webster and

Metcalf (58)

Gibson (13)

Norman and
Bossy (34)

Stevenson (50)

Sacks (41)

Nunner (35)

T L0

round

round

round

round

round

round

round

54" x4"
rectang.
channel

round

round

not given

A(dynamic P)
at centerline

static pres-
sure tubes set
halfway to
centerline

not given

AP from static
tubes set 6"
into pipe

AP from static
wall taps at
crests and
troughs

static wall
taps

static wall
taps

static wall AP
over entire
rough section;
smooth entrance
section
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TABLE I (continued)

Investigator and Typical rough- Pipe cross How AP was
reference ness pattern section measured
Streeter and Chu (53) round static pressure

tubes set halfway
to centerline

Sams (42) round static wall AP
over entire rough
section; no
smooth entrance

Koch (21) round same as Nunner

but isothermal

Mobius (30) round wall taps in

troughs

May (28) ’ round wall taps at

crests

Savage (43) n round static AP at
centerline

Tripp (56) _L______——“"_' rectang. not given

Kolar (22) round wall AP over en-

\ / \ / tire rough section;

smooth entrance
section

Skoglund (47) \ / rectang. wall taps on
crests
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Reynolds number effects

As a generalization, it can be stated that the friction
factor-Reynolds number curves are fairly horizontal for rough-
ness waveforms with discontinuities, i.e. sharp edges as in
the orifice type. Those friction factor curves for rounded
roughnesses are in general influenced by the Reynolds number,
as shown in Figure 12.

Since flow separation is involved, the point of sepa-~
ration is evidently dependent primarily on velocity for round-
ed waveforms, but is well-defined by the edges of orifice-

type roughness.

Groove_ type roughness

The existence of stable vortices within cavities pro-
duced by certain waveforms is well documented by May (28),
Knudsen and Katz (20), Perry, et al.(37), Liu, et al. (26),
and Morris (32). These processes are very different from those
common to projection type roughnesses and require a different
analysis for correlation.

This type of roughness has characteristically lower
friction factors than the projection type having similar
dimensions and was apparently denoted by Morris as producing

"skimming flow." Since the roughness elements do not provide
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obstacles to the mean velocity streamlines, the only energy
loss results from maintaining the vorticity plus the usual
viscous dissipation at the wall.

A new problem also arises because the representation

7
parameter A is not sufficient to characterize this rough-

D
o
ness type. The wavelength is no longer a useful parameter,

since different friction effects may be produced by waveforms
having the same wavelength, as shown below:

A—= F—2— —2—

Criteria also had to be developed to distinguish geom-

etries amenable to stable vortex formation from those which

have characteristics of projection roughness.

When do projections become grooves?

By examining several waveforms for this type roughness,
it is noted that the cavity length P and crest length T are
the significant dimensions rather than the wavelength and

amplitude. A new classifying parameter p2 is created, simi-

TD
]

lar in form to that necessary for projections, except that an
amplitude is not included. The dimensions P and T combine to
approach smooth surfaces as shown below, where on the one hand
P becomes very small in relation to T (widely spaced cavities),

and on the other hand P becomes larger than T (widely spaced
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projections)

S

s I I .

TP and P«KD T,P<D P> T,D
22_ > small 2_?«_—_} intermediate P_2_=¢ lgrge,
’I'DO TDo TDo
approaches smooth TP or Ax1 approaches
surface P projection
roughness

This combination of parameters seemed to afford a fairly

unique identity for the waveform types considered, and approach-
ed projection roughness as P increased. The limits where the
amplitude becomes large (deep grooves) were not considered,

as the parameter A seemed not to be important. Such deep

grooves have been studied by Atherton and Thring (55)and
Knudsen and Katz (20). The effect of amplitude in such cases

is to afford containment for several superimposed vortices

within the cavity.

Analysis of groove type roughness

The following analysis was conceived from the heuristic
analysis for projections, and was used as a basis to correlate
friction factor data over groove roughness of different shapes
and sizes.

The friction factors for roughness waveforms Fl(x) and

F5(x) are written as a ratio



6l

£ _ 8Ty () pU3(y) 3.27
£,(x)  p UZ(y) 8T, (x)

where fl(x) is the local friction factor over the reference
waveform Fl(x) and fz(x) is the local friction factor over
the arbitrary roughness waveform F2(x). Now, a new reference

waveform is defined as a groove with a sinusoidal half-wave

fera cavity as shown below:

T P

A-———-—-——-l
F2(X)

]

A + A sin{mwx/P)

Fl(x) . “<‘};
- A

Here the phase difference L is zero on account of a common

1ongitu§inal datum.

There are no friction factor data extant for such a
reference waveform, but this is inconsequential, since if a
correlation is achieved for the variety of waveforms for which
data exist, it will be for the reference waveform in the
identity limit that Ry,(0) = 1.

It is now assumed that the waveform of the roughness
does not disturb the mean velocity streamlines near the wave-
form, so that the time-averaged local velocity Ux can be

written in a power-law form:

Uly) = U 3.28
y o(y_o\
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where Uo is the centerline velocity,
m is a universal constant,
R, is the radius of the pipe.

The shear stress at the wall, T,, is

T,(x) = dP D(x) . 3.29
dx »4 '

For this case, the local diameter is
Di(x) =D_+ 2 Fi(X)’
The fluctuating part must be normalized by its mean and var-
iance. Adding and subtracting the waveform mean v ; gives
Di(x) = Do +2Hi + 2 (Fi(x)—ﬂi).
A dimensionless diameter Di can be defined where the wall term
Fi(X) is divided by its variance Ti and the bulk flow term D,
is divided by a constant, say 0, , to give

Di = + 2%, + 2 (Fi(x)—ni) 3.30

i
i i

Alo”

The variance and a;are of the same order of magnitude, but not
necessarily equal, to preserve the order-of-magnitude rela-

tionship between the wall term and the bulk flow term. However,

. . . . D:
0, must be unique for a given Dg, so that in the ratio, _i = 3

w]
-

for DOi = Doj.
The wall pressure profile is assumed to be composed

of a term linear in x for the viscous dissipation, and a gen-

eralized function h(x) which is assumed to be universal for
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any groove type roughness. The pressure distribution decays

exponentially away from the wall so that it is written

-k
P.(x) =px + P . hix) e Y. 3.31
h S O3
The differential is
ar , ~-ky
ax = P T Poi h'(x) e . 3.32

Substituting equations 3.28, 3.29, 3.30, and 3.32 into equa-

tion 3.27 gives

2m
Dy +29y+2(F, (x)-q.) y
fl(X)= ptPoq h' (x) e kY [T,g-o‘ T‘:—I —];7-?—;—1 Uiz(—R—O—) 3.33
£,(x) ptPo, h' (x) e ¥ Dy +215+2(F, (x)-1p) ] Ugl(_y_)Zm
G 9 T2 "o

It is now assumed in equation 3.33 that p{ POi h' (x) e—ky,
It is further assumed that the pressure amplitude and square

of the maximum velocity are related by a universal constant,

so that
P U2
ol 02 = 1.
U2 P
o1 02
Equation 3.33 becomes
1(X) L% ! 0 . 3.34
f,ix
2 [3‘3 + 212_ + 2 (Fz(x)—vzz)]
% 5

In order to avoid the result <f1}=<f2>upon wavelength averaging,

equation 3.34 is multiplied by unity in the factor (Fl(X)—ﬁ)gﬁsl.
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Equation 3.34 is expanded and cleared of fractions preparatory

to integration:

)
D+ 24\ F. (x) -y, + 2 [JF (x)-1q)\|F, (x)-
.ljfl(x) o ﬁ”l - (1 T2 M)
Ao “ gl 9 ) S A
D, +20, Fl(x)—v(l + 2 Fl(x)—vll 2 3.35
= l}[ L, (x)|l—= — dx.
Ad, 7 W 1

A
Now, it is assumed that the friction factors are defined as

averages over a wavelength and brought outside the integral

sign. Eguation 3.35 is integrated to yield:

(,)[ D + 2»12<F (x)/-)’(l>+ 2<(F :lc) V\lv\Fz(z—Vlz»

/

o
Z 2
(éo + 2qufl(ngqi>+ ?KFl(X)—nl )’> 3. 36
= (Nl =N {(\—=— . .
\G s g 07

It is observed that the first order terms are zero, and the
second order terms are correlation coefficients. Equation 3.36

is rewritten as

(F1) R1p(0) = (fp) Ry, (0. o 33T
By definition, Rll(O) = 1., so equation 3.37 is

<fl> = <f2> 3.38

Rlz(O)

The derivation was similar to that for projection roughness

but here the crosscorrelation coefficient is in the denominator.
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Equation 3.38 shows that friction factors for flow over groove
type roughness can be related in shape by the reciprocal of
the crosscorrelation coefficient of the roughness waveforms.
As before, the normalization has removed any specification
of the waveform amplitudes so that equation 3.38 is wvalid
for friction factors over waveforms of the same amplitude.

The friction factors so modified for groove roughness
were correlated by further modification with dimensionless
combinations of length parameters. This correlation was done
by trial and error.

Although several combinations of parameters appeared
to cause the friction factor data to cluster after some fashion,
the besﬁ from a least sguares basis was the combination

P + i\,}g+d§'

S Do DO
where S is the perimeter of the waveform along a wavelength
and P, A, and DO are defined as for projections. The physical
implication of S is that the wall dissipation is prevalent in
the space where P2/TDO becomes small and a smooth surface is
approached. The modifiers were established for large and small
values of the base variable P2/TDo and are mutually negligible
in the other's domain. The modifier fKEVDO was added to better

the correlation in the intermediate region of P2/TDO.
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The resulting correlation for groove type roughness is
presented in Figure 13. Each point represents the friction
factor of a roughness system of a different shape, size and
pipe diameter. The friction factor is nearly constant over the
Reynolds number range given in the legend.

A trend is observed which forms two regions that can be
fit with straight lines. These regions are labeled 4 and 5.
At P2/TDo = 70, the data no longer are correlated as the geo-—
metries approach the long-wave projection type roughness, which
correlates with sine wave roughness. The data of May and Savage
which fit the projection correlation were plotted to show this
divergence as the cavity length P becomes very large in rela-
tion to T. The correlation is judged to be valid since the
data gréup about the means such that any deviations appear to
be random. The data cover the extreme types of groove roughness

as shown below:

\/ \/ Skoglund Y Y Y\ Nunner

NV Kolar ll l| Savage, Koch

LT Triee U M
A listing of the data and calculated quantities for the groove

roughness is given in Appendix C.
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Reynolds number effects

The graph of friction factors for some of the various
groove geometries given in Figure 14 shows slight dependence
on the Reynolds number. The correlation graph can be used

with little error for a wide range of Reynolds numbers.

Closure

The essence of the analytical correlating scheme has been
to reference all arbitrary roughness geometries to a single
reference shape of similar dimensions. The unknown quantities
and y-direction dependence were eliminated by division, and
the resulting expression integrated over a wavelength. The re-
sult is that the friction factors are related by the cross-
correlation coefficients of their waveforms. This procedure
has necessitated the division of roughness into two major
groups, which will be shown to have distinct flow processes
occurring within the roughness cavities.

All the available data on two-dimensional periodic
pipe roughness fit either of the two correlation graphs accor-
ding to the generalized precepts for representing such geometries.
The graphs are valid in the Reynolds number range of5XIﬁ$NRe(5X105
The waveforms represented have friction factors from 0.0l to
1.0 on a smooth-pipe basis, and have 7\/DO ratios from 0.006 to

24. Interpretations of the correlation graphs will be given in
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Chapter 4 as well as numerical criteria for predicting which
of the two predominant flow classifications will be produced by

a given geometry.



CHAPTER IV

DISCUSSION OF RESULTS

The two correlation graphs are presented in usable
form in Figures 15 and 16, which are the least équares lines
of fit of the data points of Figures 11 and 13. The fegions
were all fit by straight line equations in the appropriate
semilog or log-log form according to standard least squares
procedures (11).

The accuracy that may be expected from using the least-
square equaﬁions for prediction of friction factors is given
in Table 2 as the average deviation from the mean based on the
total number of data points used in each region. It is also
shown tﬁat(ris a better correlating variable than A in XZ/WDO
on a sum-of-squares basis.

It is seen from Figures 11 and 13 that the points of
intersection are least well fit by the regression lines. It is
thought that these intersections represent an unsteady process
of flow, hence are not accounted for in the analyses given in
Chapter 3. Another region, 3a, seems to begin in Figure 11 for

%Q/WDO >3xlO4. This region represents geometries where A<KKA
and R)DO so that another effect, that which is largely smooth
wall dissipation, may start to predominate here and not be

represented by the correlation. At the other approach to a
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LEAST SQUARES FIT OF CORRELATION FOR PROJECTION

FIGURE 15,
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TABLE II

SUMMARY OF STATISTICS
OF CURVE FIT EQUATIONS

%
SUM OF NO. OF DATA AVG.
REGION EQUATION SQUARES POINTS ERROR

Projections, X = 7\2/0‘Do

1 Y = .1556 + .0733 loglOX .0087 23 10.4
2 Y = .2188 - .102 loglO X .2095 52 l6.7
3 lOglOY = -.0624~ .760 logy, X .0491 6l 22.4

Projections, X = /'\2/ADO

1 Y = .1825 + .0766 loglOX .0106 23 12.5

2 Y = ,1709 - .1183 loglOX .4042 52 18.3

3 logy ¥ =-.1577 -1.0539 log, X .1723 61 36.3
Grooveé

4 Y =-1.036 + .4301 1 X . .9

logqg o3, 0008 17 17

5 lOglOY =-0.701 + .615 log lOX .0077 29 14.2

For projections, (f) R12(L) .
Y= [_z; + fBA_ + 2
A D D
o o

For grooves, Y = _{f) [g_ + 4AP + lg'] and X = PZ/TDo .
S D
o

Rlz(O) DO
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smooth surface (3%/0‘D0‘<.01) no data exist, but it is thought
that another region will occur here, where again viscous ef-

fects should be predominant as A% A and 3,A<(DO,

Interpretation of the correlation graphs

The salient features of each correlation graph of Fig-
ures 15 and 16 are the linear regions and apparent discontin-
uities at their junctures. It will be shown that these regions
represent the parametric space of ﬁz/ﬁ'Do and P2/TDO where
different flow processes occur near the rough surface. This
will be assessed on the basis of available flow visualization
studies. These flow effects can be quantified parametrically
so that they may be predicted for a given geometry of roughness.

It is observed that the data points in Figures 11 and
13. delineate distinct regions, and these have been given
straight line fits in Figures 15 and 16. These regions have
been labeled 1, 2, and 3 for projections and 4 and 5 for grooves.
The regions can be quantified in terms of the base variables,
but a further quantification is necessary'in order to distin-
guish projections from grooves. This was done by comparing flow
visualization observations for certain roughnesses and observ-
ing where these corresponded, parametrically, on the correla-
tion graphs. The general nature of the wall flow processes was

then inferred to occur over a particular region. Geometric
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criteria were then established for each region.

Projections

Region 1 is characterized by wavelengths and amplitudes
which are very small in relation to the diameter. Recent visu-
alization studies by Verma and Cermak (57) for flow over sine
waves in a 6'x6' cross section wind tunnel indicate a flow
pattern as shown below, which is a shedding vortex located

centrally in the roughness trough. The wavelength and ampli-

tude range studied was A=4.2", with A=1.7", 1.0", and 0.5" so
that O;4<12/0‘D0< 1.37, which places the roughnesses in
region 1.

In a recent paper by Williams and Watts (59), studying
rib roughness configurations for augmenting heat transfer,
extensive flow visualization studies were made on square, cham-
fered, and sawtooth ribs of different spacings and amplitudes.
These shapes were used to roughen one sidewall of a rectangular

46 cm. by 62 cm. duct. The dimensions were such that all
geometries illustrated were in region 1. The friction data
could not be compared directly because only one wall was rough-

ened. The visualization diagrams are presented in Figure 17
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FIGURE 17. FLOW PATTERNS FOR ROUGHNESS
IN REGION 1 (FROM WILLIAMS AND
WATTS (59))



78
and show that vortices are produced in fairly regular growth
sequences and are ultimately shed into the bulk flow. The
manner of growth varies with the waveform shape, however.

Heat transfer data presented indicate that the closely spaced
( A/A=3) chanfered rib produces the best performance for im-
proved heat transfer, where the performance was measured by
the ratio of the Stanton number to friction factor. It is con-
cluded that geometries ih this parametric region produce vor-
tices which are shed into the bulk flow.

Region 2 represents waveforms where A%~ A, but neither
is very small in relation to D,. Studies by the author on a 9"
diameter corrugated pipe show that an unsymmetrical vortex
exists as shown below which occupies less of the cavity than

those for region 1. This region seems to compare with Morris'

"wake interference flow."

Region 3 apparently represents Morris' "isolated rough-
ness fiow," in that the roughness elements are far apart, and
the wavelength is on the'order of the diameter, or greater.

It is also possible to suggest a flow regime on the basis of

studies by Liu, et al. (26). Their studies were done in an



79
open channel in zero pressure gradient and no equivalent diam-
eter can be deduced from their data. However, from the work
of May, 8<P/A K200 is a criterion for this parametric region.
A flow pattern is presented by Liu, et al. for P/A »8 which

is shown below. It is seen that small vortices exist near the

NN
M/
1
4 /Q d 18
ol A0 — ob A
Yy aw i /I/I/rlfzr‘ri"llllff// //l/f

roughness elements and the flow streamlines follow the rough-
ness contours. It is expected that the presence of a pressure
gradient would not alter the separation structure except per-
haps to shift the points of attachment somewhat.

It is seen for projection roughness, in general, that
the bulk flow interacts to a great éxtent with the roughness
cavities. At present,‘it is not possible to predict the precise
flow pattern which will occur over a given roughness shape.

It is possible to generalize about the flow patterns which

correspond to the regions on the correlation graphs.

Grooves

Region 4 consists of geometries which produce low fric-
tion factors (2--10 times smooth pipe values), and whose
cavity 1lengths are the measures of spacing. Also, it is al-

observed that P/AS$ 1. Flow patterns for the four data points
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of May in this region show that stable, circular vortices
having constant rotational speed exist in the cavities as

shown below. Likewise, work by Knudsen and Katz (20) and
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Roshko (39) shows that cavities for which P/A$1.15 are con-
ducive to this type of flow pattern. From observing the corre-
lation of Figures 13 and 16 it is seen that Savage's rough-
ness pattern #1 has P/A=1 but lies in region 5. The parameter
P/A is not sufficient to predict when this type of flow will
prevail, so it must be specified that P/A £ 1 and PZ/TDO< 0.32
for thi; stable vortex pattern to occur.

Region 5 has geometries where, nominally, 1 ¢ P/A < 10.
This is also the approximate point where such geometries fit
the projection curve well. Liu, et al., show that a large,
unsteady captive vortex exiéts which tends to fill the space

of the cavity as shown below, for 1. (P/A (8. It is concluded

4
NC >
%
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that such a vortex system exists in pipe flow for 1. {P/A 10

A a e way
\43’ o
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-

and 0.32 (P2/TDO<'7O. May's work and the values of P/A for the
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data which lie in region 5 support this conclusion.

Note that Nunner's pattern of adjacent half-round rings
also fits in region 5. This roughness pattern (£ Y Y YY)
did not correlate with projection roughness, nor did it fit
the groove correlation scheme as no dimension "T" exists for
it. T was arbitrarily chosen as T=A/4 and correlation done on
that basis. T was varied by + 20 % and still fit the groove
correlation in region 5, which indicates that a captive vor-
tex occurs in this roughness type which conforms to the cavity
shape. From this example, it is seen that the parameters are
somewhat compensatory if some dimensions must be chosen arbi-
trarily for waveforms otherwise difficult to represent.

The arguments given above afford numerical criteria
for preéicting which flow patterns at the wall will occur for
a given roughness geometry in pipe flow. These criteria are

summarized in Table 3.

Statistical assessment of the correlations

All the regions of the correlations were fit by stan-
dard least squares techniques to linear models of the form
A
Y = /0’0 +/61 ]_oglo X

or

A

logioY = 4, +/dl log,, X

A
where Y is the ordinate and X is the abscissa. These regres-
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SUMMARY OF CRITERIA FOR DEFINING REGIONS

OF THE ROUGHNESS CORRELATIONS

Parametric
criteria

P/A Y1 and A%/0D (2.5

1<{P/A <10 and
2.5< A2/0° D, { 45

P/A Y10 and 45{A2/0° D,

P/A&1 and P2/TD, £ .32

1< P/A £10 and
1 < P2/TD_ € 70

Basis for
evaluation

Verma and Cermak (57),
Williams and Watts (59)

this work,

May (28)

Liu, et al. (26),
May (28)

Liu, et al. (26),
May (28)

Liu, et al. (26),
May (28)
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sions are given in Figures 15 and 16.

To assess the validity of such models, consideration
must be given the number of data points used, mean square
errors (F-test) and an examination of the residuals ( Y(actual)
~-Y(estimated)).

The significance of each data point in this work is
that it represents the friction factor of a roughness flow
system at a particular Reynolds number. Multiple points for
those systems which were Reynolds-number-dependent account for
most of the variance shown in Figures 10, 11, and 13. For those
systems which exhibit no great Reynolds number dependency, the
scatter to be observed results only from the inadequacy of the
models and variation between results of different investiga-
tors. I£ is fairly certain that the data used are in themselves
precise, so any variation about the means will be random and
the data points will be distributed randomly about the regres-
sion lines. Hence, although an infinite number of such points
could have been chosen, the correlations would not have any
greater statistical significance.

Significance of the regression can be judged by an F-
test which compares the mean square due to regression (Z(§i—?)2)
with the estimated variance ( s%= 2§Y~—§)2 ) to form the sta-

nz2

tistic F = Z(Yi—Y)z/s2. For significance of regression,
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i.e., that the postulated model adequately describes the
cluster of data, then F.iiculated ) Fdistribution - This was
found to be true for all correlation regions.

Finally, an examinations of the residuals was done to
see if the models were adequate over the range of the X-var-
iable. The residual plots of Y—§ versus log,,X were distribu-
ted in a uniform band about Y—§=O, indicating that the models
were adequate over the X-variable range. Tabulations of the
statistical tests done are given in Appendix D for all 5 re-
gions. It is concluded that the straight line models are ade-
quate and that regression is significant for pipes of DO< 18".
The data for very large pipes were not considered further be-
cause of limited roughness shapes, although those represented
in Figure 5 are closely grouped by the correlation for a wide

range of sizes and Reynolds numbers.

Analysis of variance

The lack of fit observed on the correlation graphs may
be attributed to several factors.

1. Imperfect assumptions in the analyses--This is judged
to be the greatest effect, as available visualiza-
tion data show that the assumptions of velocity fol-
lowing the wall waveform is not very realistic, ex-
cept in the case of wake interference flow (region 3)
where, indeed, the fit is least good. The assumption
of pressure profile similarity is of uncertain valid-
ity since few data exist for evaluation.
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2. Choice of dimensions used to represent roughness and
modify the friction factor--The method of analysis
is one of comparing one process to another as a ratio,
averaging, and then evaluating the moments which are
said to describe these processes. Therefore, the thesis
of this paper is refuted, since one cannot hope to
find all the geometric moments, much less represent
then on a two-dimensional graph. Considering the suc-
cess of the attempt, it must be that moments of high-
er order than two can be neglected. This also explains
why O causes a better fit of the data than A in the
base parameter Az/G"DO,.as it is a second-order moment.

3. Variation between individual experimental studies--One
can expect an experimental error of several per cent
in collecting friction factor data. This error could
be greater, perhaps to 5 or 10 percent when comparing
the diversity of techniques and equipment as represent-
ed in this work. Heretofore, there has been no such
general basis for comparing friction factor data for
geometric roughness, so the correlation may be more
accurate than it appears from the data fit.

A study was made to determine the effect on the correla-

tion of a 1% deviation of the dimensions used in the function

5

Y=(f) R, , (L) = 2 AP D] R, (L)
[é+£\~_2_+21 /1Q2[z\_+4/_A.z’+1]
A Do D A Dy  Dg

and

[£+ A {P’]
— 5 =
Y—ZAPDO S D DO

O
Pl 02 R..(0)

A total derivative of Y was taken as a function of those para-
meters considered most important as a source of scatter due to

lack of precision in the original measurements:

— oY Y Y
dy = 2Xga + 2igp  +8%1 + - - .
AAd aDO o é}d%
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The results are presented in Table 4. The total deviation is
the sum across the rows. The deviation in Y was expressed as
a fraction of Y evaluated for each geometry and presented as
an average over the parametric region, as the function is sen-
sitive to different dimensions in different regions of the
correlations. The analytical expression for Y has been derived
for the case of the orifice type roughness. It is expected
that the sensitivities given are typical, as the analytical
procedure becomes very difficult for all other shapes. The
results for A and D, are valid for all shapes, however. It will
be noted that the most important single parameter is the diam-
eter D, as it appears to the fifth power in Y. Also, the fin
thickness T is important for widely spaced fins. Errors in

pressure drop cause 1l:1 errors in Y.

TABLE IV

SENSITIVITY ANALYSIS OF
ROUGHNESS CORRELATION

SHAPE % DEVIATION IN Y FOR 1% DEVIATION IN
Projections A Do A T

sine wave .08--.7 5.2--6.0 .03-~.45 ————

orifice .05~-.2 5.9 .40~-~.50 .10--18.0
Groove

all .02--.2 4.5--4.9 ——— —-———
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Use of the correlations

The following procedure is given as a guide in using
the correlations to predict friction factors in pipe flow for
any arbitrary roughness waveform, provided that it is two-
dimensional, piecewise, periodic and otherwise conforms to the
Dirichlet conditions. Some typical examples of waveforms which
conform to the conditions set forth above are shown below:

//"\\\\\\—/// _Jn\___~___ nﬁ
/////N\\\\v///” \./ __F\L_______
1 () e

The calculation procedurxe is as follows:

1. specify the shape and size of roughness and the diameter
of pipe

2. determine whether it is a projection or groove according
to the criteria of Table 3

3. calculate the value of the abscissa of Figure 15 or 16

4. locate value of ordinate, calculate the modifying factor
and RlZ(L) or R12(O) and solve for {fJ.

Determining the crosscorrelation coefficient is unfor-
tunately not trivial analytically for most waveform shapes ,
but it is easily done numerically by computer. The orifice
type (rectangular wave) is quite common and the analytical
formula for the normalized crosscorrelation coefficient and

the RMS value Tare given by
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Ry, (L) = ~cos W(%- T/A ) ~ cos W(4 + T/a)
Y2 & (T/a - (T/A )2)%

a A (T/A -(T/A )2)%,

For the sawtooth waveform ( -~~~ ), Rlz(L) and U, are

Ry, (L) = 4 V6 = 0.99%4
42
o= a/ \iz.

No friction factor data are available, but should be nearly
that for sine wave roughness. The derivation of these functions
is given in Appendix E. Crosscorrelation coefficients for a
number of different roughness waveforms are presented in Fig-
ures 18 and 19 for projections and in Figure 20 for grooves.
Some waveforms can be imagined where it will be dif-
ficult to assign the generalized dimension "T", particularly
in rounded forms whose elements have minimum spacing:
ANANANAL ANV
It is not now possible to designate such types as projections
or grooves, except for the half-round roughness of Nunner.
An example of a waveform for which the correlations do

not apply is the ramp wave:
Hlotg e f/ﬂw PR,

(a) PN ® 11

In either form, the crosscorrelation coefficient RlZ(L) is
identically zero. No usable friction factor data are available
for fully roughened pipes, but it has been shown that form (a)

produces a higher friction factor than form (b).
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Closure

The net interpretation is that the distinct regions
of the correlation graphs delineate the parametric space for
geometries which are conducive to the existence of a particu-
lar flow process in the roughness cavity. This space is quan-
tified in the parameters ')\Z/G'DO and PZ/TDO. Numerical cri-
teria have been given so that these processes can be predicted
for a given geometry of roughness.

The implication of the various regions is that they
represent the transition of one flow process to another with
progression of the base variables AZ/U'DO and P2/TDO_ These
transitions certainly must occur and it would therefore be of

interest to investigate these points experimentally.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

From the results of this work, it is possible to draw

a number of conclusions.

1. Techniques of communications analysis have been shown

It

It

to be applicable in treating fluid processes which
can be related on the basis of averaged properties
of the system geometries.

is possible to correlate friction factor data for
flow in pipes fully roughened by two-dimensional
periodic roughness strictly on the basis of geometry.
Friction factors can thus be predicted for a given
roudghness flow system.

has been shown that such a correlation delineates
certain regions within the parametric space which
correspond to distinct flow patterns within the
roughness cavities so that not only the friction fac-
tor but also the flow regime at the wall may be pre-
dicted given only the shape of the roughness and the
size of the roughness system.

Two-dimensional periodic pipe roughness is divided into

two main groups according to the wall flow processes
they cause to occur: projection type, where the bulk
flow interacts with the wall, and groove type, where
the flow processes at the wall are contained in the
roughness cavities. These distinctions merge into
one process for widely-spaced roughness elements.

5. A uniform basis has been established for comparing

friction factor data for any such shape of two-dim-
ensional periodic pipe roughness.

The minimum diameter D, is the proper diameter to use

for a flow dimension.

7. A linear combination of dimensionless parameters is
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necessary to use as a modifying factor to adjust the
friction factor on the basis of roughness size.

8. The correlations are valid over the Reynolds number
range of about EﬂﬁatOSXlOSalthough this spread varies
with roughness type. The range is greater for sharp-
edged forms, as they seem to be more insensitive to
Reynolds number effects than rounded forms.

It is recommended that studies be made of flow over
geometries conforming to the intersections of the regions oc-
curring in the correlation graphs. These points may possess
desirable flow effects as they are thought to represent geo-
metries where there is the greatest interaction between flow
at the wall and flow in the bulk region; hence they could be
the most useful for augmentation of heat or mass transfer. As
a very wide range of roughness sizes has been investigated,
more attention can now be paid to shape effects.

The technique developed here should be applicable to
the correlation of friction effects for roughened annular flow
and boundary layer flow. These applications are respectively
important in nuclear reactors and in wind flow over rough ter-
rain. The latter case could involve a metropolitan area as a
roughness in the prediction of pollutant dispersal. The devel-
opment here has been restricted to two-dimensional processes,

but could be extended with little more difficulty to three

dimensions.
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FIGURE 21. FLOW CHANNEL

ATTACHMEN I~ SEPARAT/ON
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FIGURE 22. CARBON BLACK PATTERN OF VISUALiZATION
EXPERIMENT FOR 60,000 (NRe <270,000
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APPENDIX B

LISTING OF DATA USED IN THE CORRELATION
OF PROJECTION ROUGHNESS

Dictionary of computer listing of data:

A amplitude
DO D

o
F £, (£

FM £/(a/an + A 7\'/DO+ 2/Dg)

LAMBDA A

N identifying number of roughness system, usually corres-
ponding to the author's original notation

NR Reynolds number code: 14 = l.xlO4, 275 = 2.7 x105, etc.
Q volumetric flow rate

R A2/ @D

R12 Ry, (L)

sigMa O

T length of roughness element

Dimensions of the lengths A, Do' A, T, and 0are given in inches,
except for those of Konobeev and Zhavoronkov, Nunner, Koch,

" . . 0 . .
and Mobius, which are given in millimeters.
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0.1028-32
C.342E-02
Gel3vE~2l
J«395:-01
0.106E 04

15
FMeR]2
C.6735-G2
C.2376~9¢
G.816E-03
D.622F-013
C.ce47-33
D.653F-22
Le235—C2
Leb8%E-C03
Ce3565-G3
9.220E-03
C.528E5-02
G.1925-02
C.c03i-23
G.315E-23
€.202E~03

10
F4®*R12
J.2158-02
0.343€-91
ve193E-31
Qe0G22-01
J.1324% 00
C.1795-02
C«330:-01
2.1958-31
Ueb593IE-G1
0.144€ 50

2
FusR]12
3.350€-L1
0.263E-01

1
FMsR12
C.025E-71

2
Fua212
velbsF 50
2.201E 0L

7
Fvar1Z
3.3 1e-21
L.6676-33
Ce49TE- T4
“el278-51
$.922E-37
£.5852-24
£.5835-03

12
FHeR 1
0.491F~C1
G.3G2E-C1
N.E14E~02
0.1406-1
1.534E-31
C.ET2E-02
0.194E-01
5.39¢E-C1
€.525i-C1
€.5756~01
C.117E ¢€
C.2a68-C}

H
Fr*R12
G.8218-01
Ced2b6¥-21
Ge3476-01
0.975€-02
C.215€8-22
CeblIE-58
ue552Z~L1
C.197E-21
C.49)7-(2
(-952¢-03
5.180k~-03
Ce3346E~31
D.%31:7-0¢
T.2328-C2

UeFhtf~-o3

3
Fus2)2
fa%12i-u2
FLlRIF=0]
Te2d3- 2C
ERRE A A0
PR Sl |

-

Ten20E-21 4

R
0.6&9c 0%
0.154% T4
V.273E G3
Us485E 02
J.F122 01

R
U.555F D3
0.31%€ 4
0.179€ C»
0.487F 0%
0.1G1E CA
0.55%€ 3
0.314E C4
0.179¢ 05
C.48%E 05
0.101E 0&
0.55¢€ 3.
0. 2155 04
0.1798 05
0.483E 05
C.1C1E Co

&
U.217E 04
0.75TE 02
0.15SE 03
0.289E 02
0.5815 01
0.217€ o4
0.707 02
0.155€ 03
0.2R9F O.
G.581€ C}

R
0.719€ 02!
0.718E C2

R
0.544E-G1

R
0.4R78 SC
0.257€ 01

3
O.E43E 02
C.754E 04
0. 19CE CE
0.31ve 03
D.045E D&
Ce}OCE Lo
C.t1.E C&

R
0.133E 97
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C.4T0E 02
0.142F 03
0.472E 02
C.2B1E 03
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6.519F 22
6.26CE 02
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J.133F G2
D922 G2
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0.25PE 06
0.143F 05
0.472E 02
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0.117F J4
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APPENDIX C

LISTING OF DATA USED IN THE CORRELATION
OF GROOVE ROUGHNESS

Dictionary of computer listing of data:

A

DO

F

FM

LAMBDA

NR

R12

SIGMA

amplitude

DO

£, <£>

£-( /S +{AP/D, + 4B/D_)
A

identifying number of roughenss system, usually corres-
ponding to the author's original notation

Reynolds number code: 14 = l.xlO4, 275 = 2.7x105, etc.
2

P</TD

RlZ(O)

a

length of roughness element

Dimensions of the lengths A, Do’ A, T, and O are given in

inches,

except for those of Kolar and Koch, which are given in

millimeters.



MAY  RECTANGULAR GROZve
N NR ou A LAYL0N ¥
1 15 2136 0.2292 G500 202500
2 15 2.759% 6.%5023 CaB270 L4930
3 15 2.243 0.7593% 15057 Ca75535
4 15 1.751 1.0083 £.,0230 [.0200
5 15 3.196  0.2,57 D750 L2530
5 15 2.755 0.2373 Co¥29) L4399
7 15 2.75%  (eeuts 1.234C .483)
a 15 2.755 (.4392 1.637) C.4340
? 15 2.24%  L,7427 2.2550 £.1550
1 15 1.751 l.o0041 2.7083) 12200
1l 15 R.l¥e 0.z421 107508 va 2530
12 15 2.755% J.2371* 1.,4390 (.4395
13 15 2.243 2.7511 3.7555 C.755
14 15 1.751  1.9031 5.0770 1.0200
1% 15 2.755 J.43°% 2.6290 (4950
15 15 2.755 0.2373 2-4685" {4950
17 15 319 ga?013 2.2270 Ca2500
18 15 3.136  5.25403 &.25800 5
15 15 3.196 Q.2on2 H.Z99° 2506
2¢ 15 3.1 02503 1%.2500 (12500
2! 15 3.196 UV.2G633 32,2570 C.2500
22 15 2.755 (.4974 4.46%9%) 0.4330
23 15 2755 0.44977 B AR 0.4P30
24 15  2.755 0.4976 1A.4900 (48140
25 15 2.755 G.4976 32.4377 C.4390
25 15 2,795 0.4770  64.45)0 B.489)
27 15 2.248 0.720%4 6.7550 0.7550
25 15 2424F QuTn0b  12.T357% 0,750
25 15 2.248 0.730Ch  24.7550 C.755D
3u 15 1.751 1.CL20 J.0200 1.C020C
31 15 1.751  1.4837 17.02200 1.0290
32 15 1.751  1.0039 23,0207 1.0200
saMs SQUARE THReAD
N NR DL & LAM=DA T
2 15 0.500 ©.0095 C.Clys C.0C85
3 15 Q.500 0.07242 €. 0034 0,027
STRLETER AND CHU=~=---SIUA2E THREAD
N WR plv A Laveng T
Kr,)lﬁ 4.547 0,0255 GaU53% (L0273
A5 %947 0.0510 Oellly Cat350
XIL)IE 4.538 0.0322 02237 $.09790
TRIPP SQUARE 3RuUIVE
h nR PO & LaviDe T
198 15 2.060 0.1250 Nen250 D500
203 15 3.300 0.12%9 C. 6257 0,500
KOLAR V=GFOVE RITNUHLHZSS
K NR Du A Larnfa T
1 15 26.00u 2.,070 C.2009 0.2000
2 15 26.000 l.0OCu Loal™ Y 004020
3 15 2%.C00 1.5 2.4502 Ca50L30
SEAGLUND V-G12IVE
R [119) 3 LA Pa ¥
1 15 D672 0.0125 0.0600 0.0475
2 15 0.923 0.7125 DML R AGT5
KOLCH—GIQOVF TYPE
1 N2 Cu & LAMECA T
5 14 40,000 S5.L0C0  17.639% 1.00Cs
9 14 300200 106.0CCA 39,2070 1.000¢
SAVAGE--FIN RIMOCMNESS 5 uhUCVE TYPE
N KES A LA pn T
3 15 1.05C, 1000 0, 0486)
2 s 1.0.00 2.02 G.nasd
3 15 1. 000 3.3070 (L9uet
4 15 1.73G0 505300 LR
5 15 1.7uGn Le7T iy CL3MS
5 15 1ol 1302700 0,044%
§ 1% 6507 LL.TL0) W BDTT (1, 0345
10 '15 G.SHn 0TS0 X3 4 Ry
11 15 L.55 0100 Se a2l Lm0
12 15 4.54u  3.1%57 Eoriol CauBul
14 1% 9,055  C.Hn37”" PRIV B AN LW ¢]
15 15 G.06Y 0.3127 1.u0% 2839
lo 15 5008 Lun 7 3.075 L2440
17 1% Falimy D800 S oweBlty
13 15 5.56% Negat? AR APRF 4]
2% 15 54505 LT se0337)
21 15 5.56% 2300 FSSARI IR L
22 15 Seohd Lo luhn 300N BT

U759

L6173

veléb
Ca5%C
d.0643?
CebTH

SatTh ¢

0.567

AR S

1.332
Ja247
0.177
[ -1 )
0.465
0.335
Cozhé,
0.175
0.568
C.h4g
0.%39
G.571
0.451
V.34)

R12
0.8(8
6.827

R12

0.823
UeB26
{aP24

R12
3,850
J-880

La0262
N.5136
C.C2T2
C.ud37
O.uJle
c.C558
G.0312
O.2lon
0.1002
D.0542
DaL249

SIGMA
5.0 306
0.00¢C

»SROOVE-LIKE

SIGvA
0.0022
L.0u7
0.0.21

SIGva

D025
GalJ25

R12 SIiGMs

0.979
2.9
G.932

R12
0.922
0.9R2

R12
[
Te313

rRi2

©.522
~.397
J1.37%
9.243
L.21C
Colbf
vebnh
S.333
'\.zsl
Geclt
delhrns
H. 522
0.337
n.210
NMebay
veSLL
D)7
‘ta3 37

c.0o2u7
0.1152
0.2330

SIGMa

2.0300
2.7C0)

SSIcva

1.2109
2.4155

SIC*a
[SYC-2
C.05619
v.2al
nLo171
" l1o0
LIS
D.uals
fe 159
J.%lv0
Qellbe
n.n3xaz
ALl
J.27"1
Te372
"l

AL ]

T3
3.0 827
e
LeT425
Naunel
naub2h
wel330
Ta3737
L3787

R 1

- Lal30

Sel3n,
Talouks
L ITuN

26,1772,

v P70
Coinlu
3.275.
Lel77M
C.1207
0,472
2.0397
C.25CC
0.2200
G.14%7
.73
0.070
C.z2250
G.2C4C
0.1200
r.zzun
C.ls2c
G.0Ts

F
G.0432
C.G24¢C

F
Qo206
0.027
L0230

F
C.C270
Qed2en

F

C.033In
D.52519%
GalkuB

F
Uv.0610
2.9350

D.2294
0.223?

£
C.l44C0
n.1e3n
fu2sl.,
2.3217
D.343%

Calelt

GROOVE ROUGHNESS

Ew
C20233
G.C249
PR 4
0.6351
0.05%6
Te3073
G.07%%
£.0658
L1774
£.2953
J.létr
0.133
D473
J.5422
23740
Ta.2%63
€.3477
33870
Ba3435
0.26%1
01967
0.5361
0.7194
0.63¢83
0.4243
n.2in2
€.92¢5
$.5590
n.7292
C.9PCE
Jebtl2
0.04C2

Fy
C.0196
2.2009

Fu
S.0C3
0.%112
0.3125

Fr
<0121
t.nrel

FM
n.0197
2.0304
Ced4ll

3
N.0144
0.rL97

(39
n,2553
L. RERT

Fu
S.14583
n.2763
Colr &l
fa7~31
1.0t 45
3.7 54
weNT4]
Nk 520
ek
Se7/5b
e N20Y
Col&AL
[ TN
LS 3 T
TR EY
uel* T
1.2+-32
962771

32
Fr/R12
G.278E~-D1
C.408E-01
Cat7oi-01
G.103E 00
Q.728E-Q1
G.5T745-Cl
C.yn32-(1
0.1725F 0Ou
C.231E 0C
G.3R5E (O
GucbtE 0O
0.1772 Ly
9.599& 00
C.ED4F G
Ca45CE GC
Bas621E LO
Veb13E 00
0.863% GO
. 1058 O1
0.1G5E Ot
C.111E 01
¢el13E 01
C.162¢ 01
C.182E vl
Cel1738 CI
G.1660 G1
C.1%3E 01
€.200E O}

«21%E Q01
L.173% 01
C.191t OL
C.1RFE 01

2
FM/RLI2
0.244£~01
0.107E-01

3
FM/RY12
0.119¢-01
G.136€~0)
f.16838-n)

2
Frrse}2
0.137€-Ct
0.920£-02

3
Fr/ul2
0.202£-01
0.3145-01
0.4C82-01

2
Fm/R12
0.147L-01
0.99PE-02

2
FM/R12
0.%41E 00
C.1818 N}

1:
F»/R12
D.279y% CO
0.716C 0C
e 13%E L1
0.28n% 91
S.478C Q1
La4265 OL
Call2e 00
f.13¢e 0L
0.242% 01
G.367% 01
C.123L Gu
042732 €O
5.1371 M
L.243¢ UL
Ja1357 C¢
0.32.% LC
Jen3 3 OC
N.e628 GC

14
0.7372E-01
0.185E 00
G.321E8 €O
0.560F CO
G.313F 00
C.186E 06
Q.41 OO
Ga742F 0O
0.133E C)
G.224E 0}
2.125E 01
C.742F 00
0.530LE N
C.696F 01
0.297¢ O}
0.297 01
9.5C1IE N
0.200€ 02
0.501F 02
0.329t 03
0.123t D4
0.119E ©2
0.475E 02
0.190E 03
C.76CE 0©3
N.304E O4
0.2128 02
G.848E O¢
0.339E 03
G.35tF 02
0.143F 03
0.573E 03

R
0.285%E-01
0.940E-902

R
C.641E-02
0.1256-01

i
|
!
i
1

0.227e-01

R
C.152€-01}

0.922E—02ﬂ

14

0.692E-01.

0.133E Q4

0.2CEE ul -

R
0.688E-02
0.358E-02

R
0.865€ 01
0.486F 02

P
0.233€ 01
0.102E 02
0.237€ G2
0.4574¢ 02
0.175E 03
0.4668 03
0.423% CO
9.211F 97
0.5C1E 02
0.156f €3
0.241€ ©C
0.187F ¢}
C.1308 C2
d.l4ut 03
J.347F 02
C-170F C1
O-7a6t 9l
C.173= 02
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APPENDIX D
STATISTICAL ANALYSIS OF

REGIONS OF FRICTION FACTOR
CORRELATIONS

Dictionary of computer listings:

BO /o ——intercept in straight line least squares fit
Bl /63 -— slope in straight line least squares fit

F F-statistic calculated by MSR/MSSR

FS F-statistic from 2? distribution

MSR mean square due to regression = jZ(Yi—§)2

MSSR  mean square about regression = ;Z(Yi—YHATi)z/(NP—Z)
NP number of data points

REG region

SUMSQ sum of squares about regression = Ej(Yi—YHATi)2
vV "Student t" statistic

Y value of ordinate, from data

YHAT value of ordinate, from least squares estimate
Y mean value of Y = Z:Yi/NP

95% Y+ upper 95% confidence value of the mean

95% Y- lower 95% confidence value of the mean

X value of abscissa
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APPENDIX D

DERIVATION OF CROSSCORRELATION
COEFFICIENTS
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DERIVATION OF RlZ(L) FOR RECTANGULAR BAR (ORIFICE)
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DERIVATION OF Rl2 (L) FOR SAWTOOTH WAVEFORM
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APPENDIX E

NOMENCLATURE
A waveform amplitude, peak-~to-peak
c wave velocity
D nominal diameter
D, minimum diameter of rough pipe
d volumetric average diameter
e sand~-grain roughness height
E eddy viscosity
&' roughness eddy viscosity

f, (£) Darcy friction factor = 8 7@//)32 averaged over a wave-
length of roughness

Fi function of the waveform i

F F statistic

k constant

k wave number

L phase difference length of two waveforms

m constant power in power-law velocity distribution
n wave number

np numbexr of data points‘

NRé Reynolds number

Po wall pressure

P length of cavity of groove roughness



1le

PO wall pressure amplitude

Py wall static pressure

Q volumetric flow rate

Re roughness Reynolds number

R = %2/0~D for projection roughness and P2/TD for

groove roughness
RlZ(L) crosscorrelation coefficient for projection roughness

Rlz(O) crosscorrelation coefficient for groove roughness

S wetted perimeter of a roughness element over a wavelength
T length of crest of a roughness element

U point velocity, time averaged

U space- averaged velocity

U, centerline (maximum) velocity

Ux shear velocity = 1’1"w//»

AU UO—U

X longitudinal direction of flow in a pipe

X abscissa in least-squares regression

% direction normal to flow(radial direction in round pipes)
Y ordinate in least-squares regression

Greek svyvmbols

/51 slope in linear least-squares equation
/fo intercept in linear least-squares equation

A amplitude



e R M I vy > s

equivalent sand-grain roughness height
wavelength-averaged mean

wavelength

dynamic viscosity

kinematic viscosity

modified kinematic viscosity for rough surfaces
3.14159

density

root mean square of amplitude

a summation

smooth wall shear stress

total rough wall shear stress

functional dependency
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