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ABSTRACT

In the study of Laplace transforms, the need sometimes 

arises to calculate a transform or inverse transform involv

ing variables of non-integer order. The integral definitions 

of the Laplace transform can always be used directly but the 

required integration is sometimes rather difficult to carry 

out. When the variables involved are of integer order, a num

ber of convenient operational techniques are available to aid 

in calculation. The purpose of this thesis is to generalize 

certain of these techniques so that application is possible 

to non-integer order variables.

Before extending the methods of handling Laplace 

transforms, it is necessary to introduce the concept of fra

ctional calculus. Since the subject is not widely known, a 

part of this thesis is concerned with providing the background 

material necessary to develop the Laplace transform extensions. 

Included is a historical review of fractional calculus along 

with a presentation of certain methods which can be used to 

calculate fractional derivatives and integrals for several 

specific functions.

Finally, certain theorems of Laplace transform theory 

are modified to encompass the concepts of fractional calculus. 

These theorems are then applied to several example problems to 

demonstrate their usefulness.
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CHAPTER I

INTRODUCTION

The basic definitions of the Laplace transform and its 
inverse for a function f whose domain is E0,“] are given by 
eqs. 1-1 and 1-2 below.

F(s) = / 
o

f(t)e“s^dt

For convenience in the discussions of Chapters I 
and IV, reference will be made to the time domain and the 
corresponding variable "t"; but the results are in no way 
restricted to that particular domain or variable.

1-1

f(t) =
o+i” ,J F(s)estds 

2iri ' . o-l°°
1-2

The variable "t" is usually time or some spatial variable 
while ns" is. called the frequency variable."^ From these 
relations, it is possible to deduce a number of useful 
properties, some of which are given in Table 1. Note that 
the symbol ”<----- >" is used to indicate a transform pair,
ie., if f(t)<----->F(s), F(s) is said to be the Laplace
transform of f(t) and f(t) is said to be the inverse trans
form of F(s). The true advantage of these properties is 
realized when they are used to determine a transform or 
inverse transform without the direct application of eqs. 1-1 
and 1-2. In fact, it is possible to start with a very 
limited number of transform pairs and build an extensive 
list without resorting to the original definitions.

In their present form, the properties of Table 1 have 
certain limitations. For instance, it is generally not
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TABLE I 

9 PROPERTIES OF THE LAPLACE TRANSFORM

OPERATION ....... TIME DOMAIN . . FREQUENCY DOMAIN

1. Linearity a^f1(t)+a2f2(t)<— >a1F1(s)+a2F2(s)

2. Time
differentiation

df(t) 
dt --->sF(s)-f(0“)

3. Time Jf(t)dt<—___^(s) + f~1(0~)
integration s s

4. Frequency
___.dFCs)

' dsdifferentiation -tf(t)<—

5. Frequency 
integration

f(t)< ---> J F(s)ds
s

6. Time shift
t0>0 f(t-tQ)<—--->F(s)e~s^0

7. Frequency
shift f (t)esOt<—--->F(s-s0)

8. Scaling (at)<—--- a a
9. Time

convolution f1(t)*f2(t)<— >F1(s)F2(s)

10. Frequency
convolution f1(t)f2(t)<— >2^ [^(3)^(3)]

2B.P. Lathi, Signals, Systems and Communication 
(New York: John VJiley & Sons, Inc., 1967), p. 186.



3
possible to utilize these properties to derive transform 
pairs that involve non^integer orders of "t" or ”s". The 
transform pair of eq, 1-3 is such an example:

-L- <> 4 .
/■nt Vs 1-3

The error function, Bessel function, and numerous others 
involve non-integer powers in the time domain and/or the 
frequency domain. The essential purpose of this thesis is 
to develop a method of extending the properties of Table 1 
so that transform pairs involving non-integral powers of 
”t” or "s'* can be derived.

To achieve this stated purpose, properties two through 
five of Table 1 are of primary concern. Note that these 
properties allow for multiplication and division of integer 
powers of ”t” and ”s” only. A casual inspection yields the 
conclusion that this integer limitation is somehow related 
to the fact that these same properties involve only integer 
order differentiation and integration. It seems at least 
reasonable that if non-integer differentiation and integration 
were possible, then these same properties might produce non- 
integer powers of "t" and "s". Subsequently, this conjecture 
will be shown to be correct.

A major limitation involving the generalization of 
properties two through five is the lack of general knowledge 
concerning Calculus of non-integer order. The concept of a 
•'fractional*1 derivative may seem difficult to accept intuitive
ly; yet, it is a perfectly valid idea provided it is properly 
defined. A body of knowledge does exist on the subject though 
it is highly disorganized and in some cases quite obscure. A 
fairly large proportion of this thesis will be needed to 
establish the basic concepts of this so-called generalized
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Calculus. Once the basic ideas of generalized Calculus are 
clearly put forth. It Is rather a simple matter to deal with 
the Laplace transform applications.

Chapter II Is devoted mainly to a presentation of histor
ical background on generalized Calculus. Surprisingly, It Is 
as old as ordinary Calculus, having been originally suggested 
by Leibnitz in the late 1700*s. Searches through the litera
ture have failed to produce any definitive presentation of 
the rather extensive historical development generalized 
Calculus has undergone. Chapter II attempts to alleviate 
this situation and at the same time present a basic introduc
tion to the subject. The concentration of interest will be 
mainly toward contributors to generalized Calculus before 
1900. This period is of particular interest since most of 
the truly practical contributions are found therein. Writers 
since 1900 have generally dealt with details of a purely 
theoretical nature achieving sometimes Important results on 
relatively small points. These papers have often Ignored the 
more practical aspects of generalized Calculus such as actually 
calculating the non-lnteger derivatives and Integrals of the 
most simple functions. In short, the needed working knowledge 
of generalized Calculus is best achieved by a detailed study 
of early writers who emphasized practical details.

The generalized derivative concept is further developed 
in Chapter III and a method of obtaining non-lnteger deriva
tives and Integrals is given. Pitfalls in the interpretation 
of the generalized derivative and the implementation of the 
methods are discussed. Finally, the generalized derivatives 
of several simple functions are calculated.

The concepts of generalized derivatives are utilized in 
Chapter IV to extend the properties of the Laplace transform. 
Example problems are worked to illustrate the various methods 
developed. A physical problem dealing with a distributed 
parameter system is discussed to show how non-lnteger powers
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of ”t" and ns" arise.
The findings of the work are given in the concluding 

Chapter V.



CHAPTER II

HISTORICAL BACKGROUND

The state of generalized Calculus today is much the 
result of inconclusive treatments that have been given it 
over the past two hundred fifty years. As will be seen in 
this chapter, some of the world’s foremost mathematicians 
have made passing references to the subject, but only a 
very few have made significant contributions. In most 
cases, the efforts have been directed at providing a basic 
definition of generalized differentiation. Several writers 
have provided applications to illustrate the usefulness of 
their respective definitions. The various accounts that 
follow attempt to illuminate the more important contributions.

Recent mathematical historians credit Gottfried Leibnitz 
and Isaac Newton as co-inventors of the Calculus. But credit 
for the idea of a generalized Calculus must be given to 
Leibnitz alone. In Leibnitz’s memoirs there are three letters 
written to his contemporaries which give his basic thoughts 
on the idea of a differential of non-integer order. The 
letter to John Bernoulli dated December 28, 1695, seems to 
be the earliest and most complete. By the time of this 
letter, Leibnitz had formulated several basic concepts of 
the Calculus for first order differentials. He had also 
invented a very convenient symbolism similar to that used 
today. Although he had a relatively firm understanding of 
first order differentials, Leibnitz had considerable difficulty 
with those of higher order. He relied heavily on geometric 
example which often caused him confusion. Prompted by a

3C.I. Gerhardt, Leibnizens Mathematische Schriften.
(Vol. 21. Haile: H.W. Schmidt, 1859), p. 226. 
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question from Bernoulli concerning his rule for the derivative 
of a product of functions, Leibnitz gave the following explana
tion 6f the generalized differential. First, he considered 
the second order differential. Using the concept of ratios, 
he wrote

,2 , ,d x : dx = dx : x

2or d x  dx
dx x .

He further noted that if "a" were a constant and ndhn were a 
constant differential, then

dx  dh 
x a

, dhor dx = — x.

A simple substitution yielded

Leibnitz then made the simple generalization that 

where ne" could take on any value whatsoever. For instance.
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he wrote

1

The reader may be somewhat puzzled as to how this definition 
could be applied since Leibnitz did not clearly define the 
values "a" and ”dh". In later works, he completely abandoned 
this approach in preference to a geometrical interpretation 
very similar to that given today in courses of elementary 
Calculus. The concept of a slope was used to generate each 
higher order derivative from the graph of the previous 
derivative. Such a procedure did not give any physical 
interpretation to non-integer derivatives. As a result, 
Leibnitz made no further attempt to define a generalized 
derivative. It should be noted that the lack of physical 
interpretation in terms of a geometrical slope does present 
a significant obstacle in gaining an intuitive feeling for a 
generalized derivative. Although his direct contributions to 
the subject were meager, Leibnitz had established the idea 
of non-integer ordered differentials from which many to follow 
would take interest.

Examination of the next two hundred years following 
Leibnitz’s work reveals three fairly definite periods in the 
development of generalized Calculus. The distinction between 
periods can be based primarily on the differences in approach 
taken to define general ordered differentiation and integration. 
The periods fall basically in chronological order. Although 
the techniques became more sophisticated in the later years, 
all the methods from the very earliest have at least some 
appeal from the practical sense.

The first period of study extends from the early 1700’s 
through 1840. This era was a productive one for all of mathe-• 
matics and especially for ordinary Calculus. Several prominent
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mathematicians of the time had. occasion to at least conjecture 
on the generalization of the Calculus. This first period, was 
characterized by the attempt to base the definition of non
integer ordered differentiation on the generalization of 
integer ordered differentiation for certain simple and 
well-known functions. As an example, suppose the expression 
for the nth integer ordered derivative of a function were 
known. To define the non-integer order derivative for that 
function, the order parameter n would be allowed to take on 
all positive real values. Such a procedure is not always 
possible as will be demonstrated shortly for the function xm 
(m constant). Nonetheless, the guiding principle for this 
technique is this: the general ordered derivative of a 
function must reduce to the correct integer ordered derivative 
for integer values of the order parameter n.

The earliest example of this first period ^echnique was 
displayed by Leonard Euler (1707-1783) in 1730. The basic 
function he chose was f(x) = xm, m being a constant. The 
multiple derivative of xm was well established at the time, 
and in this respect the choice was a logical one. But 
generalizing the derivative was far from straightforward. 
Before dealing explicitly with Euler’s method, consider how 
a solution might be attempted. The n^ order derivative of 
xm for n an integer and m + 1 > n is

2-2L. = m(m-l) . . . (m-n+l)xm n. II-l 
dx11

li .Leonhard Euler, Commentatones Analyticae (in Series 1, 
Vol. XIV of Leonhardt Euleri Opera Omnia. Berlin: B.G. Teubneri, 
19211), pp. 1^2in

The simplest way to generalize the expression is to allow n 
to take on positive real values. Denoting this generalized



10

parameter by v, eq. II-l becomes

—~ = m(m-l) . . . (m-v+l)xm~v . II-2
dxv

This result is virtually meaningless since the coefficient 
product is calculatable only for integer values of v. In 
1806, Joseph Lagrange (1736-1813) actually suggested this 
form as the definition of the general derivative of xm.
He did not elaborate on the obvious flaw it contained. It 
should be clear that merely generalizing the order parameter 
is a rather weak technique.

Euler apparently realized that such a difficulty would 
be encountered and proceeded to develop a different form of 
generalized derivative for xm. In the Commentationes 
Analyticae of 1730, Euler presented a paper in which he 
investigated the properties of the progression,

1, 2, 6, 24, 120, 720, etc.

The nth-term of the progression was n!. Euler subsequently 
demonstrated that for integer values of N, the following 
equation could be verified:

1
n! = J (-Ln x)ndx n > 0 .

o

5̂Joseph Lagrange, Lecons sur le Calcul des Fonctions. 
(Vol. X of Oeuvres de Lagrange. Paris: Gauthier-Villars, 
1884), pp.95-96.

^Euler, loc. cit.
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The n13 derivative of xm he then wrote as

Joseph Fourier, The' Analytical Theory' of Heat (New York: 
G.E. Stechert & Co., 1945), PP• ^34, 437.

. ,.n m d x
j n dx

m! xm~n
(m-n)!

II-3

Using the formula previously developed for n!> he wrote 
eq. II-3 as

r / T \ ni, J (-Ln x) dx
d x o  m-n 11-4, n 1 • x .
dx r / t \in-n,J (-Ln x) dx

Euler made the further observation that there was no reason 
to limit n to integer values since the integral was valid in 
any case. He then concluded that eq. II-4 could be used to 
define the generalized derivative for xm. Euler’s result can 
be verified under certain limitations on m and n. Chapter III 
will deal with this question more fully.

The next contributor to the first period of generalized. 
Calculus was Joseph Fourier (1768-1830). His reference to 
generalized Calculus was briefly stated in the latter portions 
of his comprehensive treatise, The Analytical Theory of Heat / 
The results Fourier obtained were of little consequence to him 
and thus, he did not elaborate beyond a mere definition. 
Fourier’s method of definition relied upon a conclusion drawn 
from the integral representation of a function which now bears 
his name, the Fourier Integral. The integral is usually given
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as

F(x) = f f F(x’)cos k(x-x’)dx’dk. II-5Zir oo''

Fourier noted that under this special representation, the 
function F was affected by the dummy variable x’, not the 
variable x. Therefore, he could take a derivative of F(x) 
with respect to x by taking a derivative of the cosine 
function under the integral signs with respect to x. Thus, 
he wrote

-|2ipZ X / xi 4-CO 4-00

- = ■ ~-1-— J f F(x’)k^1cos k(x-x’)dx’dk II-6
dx21 27r -0= -co

- A. ,1' ; ---  J J F(x1 )k2:L+1sin k(x-x’)dx’dk II-7
dx21+1 

for i = 0, 1, 2, . . .in each case. He then generalized the 
derivative of cos kx so that both expressions could be written 
as one. He first assumed that

  cos(kx) = kncos(kx+^Z) II-8 
dxn------------------------- 2

for n = 0, 1, 2, . . . . Rewriting the pair of equations above, 
he produced a single expression for the n^^1 derivative of F:

^n--,/ x , +” +oo
------= 2tT F(x ’ )kncos (k{x-x ’ }+^)dx ’ dk. II-9
dx —00 —°o
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He reasoned that there was no need to restrict n to integer 
values. Thus for n real and positive, eq. II-9 could be taken 
as the definition of a generalized derivative. Involved in 
Fourier’s result was the assumption that the generalized 
derivative of the cosine function was correctly given in 
eq. II-8. Although the choice was arbitrary for the most 
part, eq. II-8 did satisfy the characteristic principle of the 
first period, ie. for integer values of n, it reduced to the 
known multiple derivatives of the cosine function.

Before leaving Fourier’s work, it should be pointed out 
that he was rather vague regarding the definition just present
ed. Although he implied that he sought a relation for the 
derivative of general order, he never explicitly stated that 
n could be any more than a positive integer. Writers generally 
credit Fourier with the definition of non-integer ordered 
derivatives apparently overlooking his hesitation on the point. 
It is quite probable that Fourier was purposely vague so as 
not to be put into a position of having to defend the then 
obscure notion of a generalized Calculus.

At about the time of Fourier’s publication, Pierre-Simon, 
Marquis de Laplace (1749-1827) published his important work, 
Theorie Analytique des Probabilities. Within this rather 
lengthy volume is found a suggestion by Laplace of a generalized 8 derivative. While Euler and Fourier had attempted to generalize 
the ordinary derivatives of xm and cos kx respectively, Laplace 
chose to use a function which is commonly associated with him, 
the exponential eas. His argument proceeded in the following 
way: Suppose a function f could be written as an integral of 
the form

f(s) = J <j>(x)e""sxdx. 
o

o°Pierre Simon Laplace, Theorie Analytique des Probabil- 
ities. (Vol. VII of Oeuvres de Laplace. Paris: Gauthier-Villars, 
1886), pp. 159-160.
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This is easily recognized as the Laplace transform already 
discussed. 4>(x) would be chosen such that the integral 
existed and was equal to the function f for all s e D^. 
Since within the integral, <j> did not depend on s directly, 
the problem of finding the n derivative reduced to knowing 
the derivative of e-sx with respect to s. For n an integer, 
he wrote that

dn -sx , »n -sx—- e = (-x) e
ds

There would appear to be no difficulty- in permitting n to 
take on real positive values. Hence, Laplace deduced that 
the generalized derivative of f could be written as 

dvf(s) 
dsv

= J <|>(x)(-x)ve sxdx 
o

11-10

where v was a real, positive number. Laplace made no further 
contributions on the subject.

Both Fourier and Laplace gave definitions of non-integer 
derivatives for arbitrary functions that depended on the 
correctness of the generalized derivatives of cos kx and eas, 
respectively. It will be demonstrated subsequently that under 
the appropriate conditions, their assumptions were correct. 
Thus, the definitions of generalized derivative given in 
eqs. II-9 and 11-10 have merit and could be applied. A more 
general definition will be given presently that has certain 
^advantages over both of these.

Another famous mathematician made a unique contribution to 
generalized Calculus which is not commonly recognized by writers 
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on the subject. He was Niels Henrik Abel (1802-1829). Abel’s 
work belongs to this first period because he sought his defini
tion by assuming a generalized form for the derivative of xm. 
His results are of particular interest because included was a 
primitive form of the integral definition of the generalized 
derivative that has become the basis for modern approaches to 
the subject.

In 1823, a short article appeared in "Magazin for 
Natiroidenskaberne" containing Abel’s elegant solution to 

o the tautochrone problem. His solution is of no concern to 
the present subject, but at the end of the article he made 
some very interesting comments which are summarized below.

Abel assumed that a function ip could be given as a power 
series of x. There then existed constants a such that m

’f'Cx) = I a -xm . 
all m 11-11

For n an integer, the derivative of ip was simply

m! m-k 
(m-k)! x am ‘

dntp(x) = y
Fl kdx all m

11-12

Abel generalized this result for a real number, v, in a manner 
similar to Euler’s. The form of the generalized factorial 
function (now called Gamma function) used by Abel was

r(a) = J (Ln i)a 1dx. 11-13

q̂Niels Henrik Abel, "Solution de Quelques Problemes A’ 
L’aide D’Integrales Definies," ' Oeuvres de Niels Henrik Abel 
(Christiana: Imprimerie de Grondahl & Son, 1881), pp. 11-27.
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For a an integer and non-negative, it was true that

r(a) = (a-1)!. 11-14

Abel concluded that for v real and positive.

dVTp (x) _ y r(m+l) m-v
, v ,x r(m-v+1) jdx all m ' z

Abel then derived the expression given as eq. 11-16.

Substituting the result of eq. 11-16 into 11-15 led to

V- I1— 
dxv all m xvr(-v) o (1-t)^ 11-17

or

i Z a (xt)m 
dvip(x) 1 r1 all m m 11-18
dxv xvr(-v) o (l-t)1+v
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with the assumption that the order of summation and integration 
could be changed. But clearly,

i/»(xt) = a (xt)m. 
all m m 11-19

Hence, he concluded that

dvip (x) = 1 r1 <p(xt) dt
dxv xvr(-v) o (l-t)"L+v 11-20

Abel thus arrived at a definition of the generalized derivative 
based on an ordinary first order integral. His result was 
restricted to functions expandable in a power series. As will 
be shown later, this restriction can be removed. In fact, a 
simple change of variable leads to a special case of the 
Liouville-Riemann integral definition which is the basis of 
most modern theory on the generalized differentiation.

A very interesting application of generalized derivatives 
discussed-by Abel concerned his tautochrone problem. Although 
he solved the problem with an integral equation, Abel showed 
that if one were willing to accept the idea of non-integer 
ordered differentials, the solution to the tautochrone problem 
could be written as a differential equation of one-half order.

<l> ( s)
1 

lx d?Ks) 
2J 1 11-21

where s is the solution curve and <j> is the time required for
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the point mass to slide down the curve s as a function of the 
height x. This is simply a variables-separable differential 
equation whose solution is obtained by performing a one-half 
order integration. If generalized Calculus were available, 
the solution would be relatively simple compared to the 
solution of an integral equation. If the physical laws of 
nature were appropriately generalized to accept this expanded 
concept of Calculus, it is very possible that many now 
mathematically tedious problems might yield much simpler 
solutions.

The first period was brought to a close by a French 
mathematician Joseph Liouville (1809-1882). In 1832, several 
long articles by Liouville appeared in the Journal de L^Ecole 
Polytechnique regarding the Calculus of general order. 
Although his treatment of the subject was more extensive than 
given by his predecessors, it generally lacked rigorous 
arguments. Included in the articles were a number of inter
esting applications to the theory.

Liouville’s basic approach involved the same assumption 
made by Laplace; that is,

dveax = aveax 11-22
dxv

where v is real. He then proceeded to write various functions 
mxas discrete sums of e as in eq. 11-23 below:

f(x) = 1 A emx 11-23
all m m

lOjoseph Liouville, "Questions de Geometrie et de 
Mechanique," Journal de L’Ecole Polytechnique. Vol. 13, 
(1832), pp. 1-K^
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where is constant. Using eq. 11-22, he then wrote that

slhri = y A mvemx. 
dxv all m m

11-24

He also considered the case where eq. 11-23 might include an 
integration with respect to m. To illustrate the method, he 
gave the following short example: Find the v^ derivative 
of x-1.

It is true that

i 00x~ = - / eaxda for x < 0.
o

Then

v -1 “d x r v ax,—— = - J a e da. 
dx o

And finally,

dvx-1 = (-l)vr(v+l) 11-25
dxv " xv+1

Under proper conditions on v, this result reduced to the 
correct form for integer order derivatives. Liouville used 
this same technique to obtain generalized derivatives for 
other functions.

Liouville’s work extended to an integral definition 
similar to Abel’s. Recall that Abel assumed that the given 
function could be expanded into a power series. Similarly,
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Lionville assumed the function, say f, could be expanded in a 
series of emx. Following an argument very much like Abel’s, 
Liouville deduced the following integral definition:

, ti-y J f (x+t)t~^v+1^dt v < -1 • 11-26
dxv o

Note that with v < -1, he had actually defined a generalized 
integral. This important connection between generalized 
derivatives and integrals was formalized by Anton Krug and 
will be discussed later in this chapter.

Liouville*s work was criticized by his contemporaries 
on the grounds that the expansion of functions in exponential 
series was not formally established. In addition, objections 
were raised regarding the fact that his generalized integration 
process did not reflect the then popular concept of the indefi
nite integral. Whereas a multiple indefinite integration yield
ed the so-called anti-derivative plus a power series in the 
independent variable with arbitrary constants, Liouville’s 
formula yielded only the anti-derivative. This important point 
will be considered in more detail in Chapter III. Recent critics, 
such as Ferrari" have found other weaknesses in Liouville’s 
treatment. Nonetheless, his work was the first serious attempt 
to deal directly with the concept of generalized Calculus. A 
slightly different form of the integral definition of eq. 11-26 
now bears Liouville’s name.

The second period in the development of the generalized 
Calculus was characterized by the concentration of efforts to 
develop a rigorous integral definition while maintaining

■^W.L. Ferrar, ’’Generalised Derivatives and Integrals,” 
Proceedings of the Royal Society of Edinburgh, Vol. 48 (1927). 
PP. 18.------------------------------------------ 
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maximum generality. Although there were several contributors 
to this period, the two most important were Bernhard Riemann 
(1826-1866) and Anton Karl Grunwald. Although Riemann’s 
paper is most often sighted by modern writers, Grunwald’s 
treatment is more rigorous and certainly more easily under
stood. Riemann’s arguments are difficult to follow and in 
some cases reside on insecure ground mathematically. Full 
elaboration on Riemann’s paper does not seem Justified, and 
only a brief description of what he attempted to do will be 
given. A more detailed explanation of Grunwald’s method is 
included since it appears the more satisfactory of the two. 
In Appendix A, an intuitively convincing derivation of the 
Riemann-Liouville formula is presented- from the rather basic 
concept of generalized areas. Arguments of this type were 
used by a number of authors of the period, most notably the 
Russian mathematicians.

Although written during his student days in 1847, 
Riemann’s paper on generalized Calculus was not published 
until after his death. His basic approach involved produc
ing a doubly infinite series analogous to the Taylor series 
expansion of a function. This generalized Taylor series 
contained non-integer order derivatives. Riemann then 
deduced the coefficients of the series necessary to produce 
the desired functional expansion. After considerable 
manipulation, he was able to recognize the necessary form

12Arthur Cayley, "Note on Riemann’s Paper," Collected 
Mathematical Papers of Cayley, (Vol. XI, Cambridge: University 
Press, 1896), pp. 235-23^

13A.V. Letnikov, "Theory of Differentiation of Fractional 
‘ Order," Moscow Mathematicheskii Sbernik, Vol. Ill (1868), pp. 
1-68.

14Heinrich Weber, Collected Works of Bernhard Riemann 
(New York: Dover Publications, Inc., 1953T, p. 353.
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of the derivative as

, x ,
= TT^vT f (x-t)'"v~1f (t )dt 

k"" 1 c

15Anton Grunwald, "Ueber begrenzte Derivationem und 
deren Anwendung,” Zeitschrift for Mathematik und Physik, 
Vol. 12 (1867), PP. 441-480.

CO y“V-1 11-27
Ki r(-i-v+l)

where v is real and v < -1. The integral on the r.h.s. has 
been given the name Liouville-Riemann integral, or simply the 
L-R integral formula. The lower limit of integration c, is 
usually called the origin of the derivative. Note that the 
limitation v < -1 implies again that eq. 11-27 represents 
the definition of an integral of arbitrary order. is one 
of a possibly infinite collection of arbitrary constants. The 
sum on the r.h.s. is called the generalized complementary 
function. It is clear that this definition is extremely 
ambiguous depending as it does on arbitrary constants and 
c. In Chapter III, some of this ambiguity will be removed.

In Grunwald’s 1867 paper, he employed a generalization 
of the definition of the integer order derivative to derive 
the L-R integral formula."*"5 Before presenting a brief synopsis 
of his derivation, a few words are necessary regarding the 
notation to be used in the remainder of this thesis. Rather
than writing the derivative in the conventional manner, ie.
A 
dx11’ 
used.

the notation often seen in operational Calculus will be
Thus, Dnf will be taken as meaning the n^h derivative

‘of- f with respect to x. Later, the D notation will be modified 
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further.
To simplify Grunwald’s arguments, assume that the function 

f is continuous on the interval of definition of f. The first 
derivative of f at all points on the interval of definition 
is given by

~1~/ \ t. f(x) - f(x-d) D f(x) = lim —-—-- ------
j dd -> o

The second derivative is

,. D1f(x) - D1f(x-d) 
lim --- -—--- 3--- ------d ■» o d

D2f(x) = 11m f(x) " 2f(x-d) t.f.(x-2d)

d -> o d

Similarly,

D3f(x) = llm f(x) - 3f(x-d) 1 3(x-2d) - f(x-3d) 
d -> o d"5
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where n Is an integer and is the coefficient given by

/’n'' h(n+l)(h+m-l)
*L1J m! . 11-29

Consider a new function F such that

f(x)+ ^(-l)1-®-f(x-id)
r -l 1 = 1F[u,x,e,d] = Lim -----—--- ------------ 11-30

d->o de

X—LIwhere n = —For e negative and real.

x=x 
Def(x)| = Lim F(u,x,e,d) 11-31

x=u d->o

x=x
where Def(x)lx-u defined as the e order integral of f(x) 
over the limits of integration u to x. If e is a negative 
integer, eq. 11-31 does indeed reduce to the definition of the 
definite integral in the Riemann sense. Since u + d = x - (n-l)d, 
then

n71 if e^f(x)+ j;(-l)1.®.f(x-id)
*1 — "1 L JF[u+d,x,e,d] = Lim ------ -----------------  , U-32

d->o de
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Consider

F[u+d,x,e,d] - FEu^x^ejd] _ -.n+1 fe''. f (x-nd)
d ^n] de+l 

= (-l)n+1 re'1 ne+'1~f (u) 
^(x-u)e+1

11-33

Taking the limit as d o, the l.h.s. is merely the partial
derivative of lim F with respect to u or 

d o

3
3u

Def(x) x=x'
x=u<

11-34

Since n =° as d ■* o and because

Lim (-Dn ('e'' e+1 
inJ*n 1

’r(-e)

eq. 11-34 becomes

MDef<x> I x=x
* x=u<

1 f (u) 
r(-e> (x-u)e+1

11-35
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Integrating eq. 11-35 with, respect to u

ru d [ef, 1ix=xl _ 1 fu f(u)du> aT D f(x)lx=u " " J (x_u)e+i 
Zl \ Zk M. /

or

Def(x) Ix:x - Def(x) Ix:x = n-36,

Since f is continuous, an integral of zero width must be zero.
With a simple change of variable, the final result is obtained.

Def(x)|x-x
1x=u

1 rX f(4>)d^ 
r("e) uJ (x-*)e+1 11-37

for e < 0. Eq. 11-37 is the Liouville-Riemann integral defining 
integration of arbitrary order. Note that the u of eq. 11-37 
is the origin of the general integral and that the complementary 
function of Riemann’s result does not appear. A similar 
derivation yields a slightly different result which is given 
eq. 11-38 below.

Def(x)|x"x =*x=u
1 rU f(<j>)d<j1 

r(-e) xJ (x-^e+1 11-38
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Eq. 11-37 is termed the left-hand L-R integral with origin u 
while eq. 11-38 is termed the right-hand L-R integral with 
origin u. Both forms will be found useful. During the second 
period in the study of a generalized Calculus, the L-R integral 
became firmly established as the basic definition for integra
tion of arbitrary.order. Several important questions remained 
unanswered, however. For instance, there appeared to be a 
limitation on the use of the L-R integral to define differenti
ation of arbitrary order. Grunwald’s derivation had led to the 
most general result in this regard, yet it limited the order 
to be less than zero which provided for integration of arbitrary 
order only. The question still remained: Could the L-R formula 
be used to define general differentiation and integration with 
the common parameter v? The nature of the origin was likewise 
unsettled. No procedure was available for finding the correct 
origin to be used with any given function. So long as the 
origin was seen to be arbitrary, the results of the L-R formula 
could not be of much use. The uncertainty with regard to the 
origin led to disagreements as to the correct form of the 
generalized integral of various functions. For instance, 
Liouville and Riemann obtained two completely different results 
for the integral of xm. Although it was not immediately obvious 
to the mathematicians of the time, the differences were due to 
different choices of origin. All these difficulties remained 
to be resolved in the third period.

Another and more general method of attack was to come to 
the forefront in the third period of study. During the 1880’s 
interest in generalized Calculus was revitalized by the appli
cation of certain results from the theory of complex variables. 
In particular, mathematicians discovered that Cauchy’s integral 
formula for the derivative was merely a special case of a more 
general formula for the derivative of any order. Cauchy’s 
work with his integral had taken place in the 1820’s; so it is 
a little surprising that it took more than sixty years for the 
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connection to be made. At any rate, the use of Cauchy’s 
formula characterized the third period in the development 
of generalized Calculus.

Cauchy’s formula for the derivative can be stated in 
the following way: Given a function of a complex variable 
z denoted by f, then

dnf(z)।  n! r f(z)dz
, n 2iri ? , „ >.n+ldz o C (z-zo)

11-39

for n = 0, 1, 2, . . . where f is analytic everywhere within 
and on a closed contour C and zq is any point interior to C. 
In order to generalize this definition, it was necessary to 
replace the factorial with the Gamma function, r(n+l). The 
new definition of the derivative of general order was

dvf(z)।  r(v+1) r f(z)dz
dzv - 2^1 9 (z,z )VH

o
11-40

where v could be a complex number. The use of eq. II-40 was 
pioneered by Grunwald and a fellow German, R. Most.1^ Their 

efforts were primarily concerned with justification of the 
L-R formula by the use of eq. 11-40. While the work of 
Grunwald and Most is at least worthy of note, a more excellent

R. Most, ’’Ueber die Anwendung der Differentlalquo- 
tienten mit allgemeinem Index zum Integrirem von Differential- 
gleichungen," ' Zeitsctirift' for Mathematik und Physik, Vol. 16 
(1871), pp. 190-210.
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and complete analysis was published in 1889 by another German

■ 17 mathematician, Anton Krug. A discussion of Krug’s approach 
and his principal conclusions will be most beneficial for 
present purposes.

Krug chose the form of eq. 11-40 as the basis for a 
definition of generalized differentiation. He then proceeded 
to show that the integral existed for all v e 0. The case of 
v a negative integer would have seemed particularly question
able since the gamma function was not defined for these values. 
Krug was able to show that the integral did exist in the limit 
as v approached any negative integer. He then proceeded to 
verify the very important conclusion that differentiation and 
integration could be considered continuous operations of the 
same index. Thus, eq. 11-40 defined

(1) derivatives of arbitrary order for Re(v) > 0
(2) integrals of arbitrary order for Re(v) < 0

■ and (3) the function f itself for v = 0.

It is as a result of this that the term, "generalized 
differentiation" is accepted as being all-inclusive in its 
meaning.

Krug’s next major point was to demonstrate that the L-R 
integral formula was a natural consequence of Cauchy’s formula 
provided the contour C was chosen properly. Thus, the L-R 
formula could be thought of as the special case of the Cauchy 
formula when only real variables were involved. In a sense, 
the choice of contour determined the value of the origin of 
the derivative for a given function. Krug then proceeded to 
find the derivatives of general order for several elementary 
functions. In each case, the choice of contour was the critical

17Anton Krug, "Theorie der Derivationem," Denkschriften 
der Mathematisch Naturwissenschaftliche Klasse, Vol". 57", (1890), 
pp. 151-228.
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element.

Another significant result found in Krug’s paper greatly 
eliminated the ambiguity in the choice of origin for a 
particular function. Before presenting this, it is necessary 
to modify the D operator notation. Since the origin of the 
derivative for a function can have one or more values depending 
on various parameters that might be involved, the D notation 
should give the particular origin involved in any calculation. 
Therefore, the vL derivative of f with respect to x and with 
origin a is defined as

Dv f(x). 
a

Krug investigated the necessary requirements for the generalized 
derivative to possess the semi-group property. This property 
held for integer ordered derivatives so it seemed reasonable to 
determine the conditions under which the generalized derivative 
defined by the L-R formula possessed this property. He reached 
the following important conclusion: in order for

Dm Dn f(x) = Dm+n f(x) 
a a

it was necessary that

11-41

Lim [(t-a)1 nf(t)] = 0. 
t->a

11-42
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It should be noted that the condition of eq. II.-42 does not 
necessarily- imply- that the generalized differential operator 
possesses the commutative property. At any rate, a variation 
of this condition will be used to great advantage in Chapter III 
to determine origins for several elementary functions.

The remainder of Krug's paper was concerned with a wide 
variety of other topics concerning the use of Cauchy's formula 
in its generalized form. He touched upon the concept of the 
complementary function and discussed the form of derivatives 
for certain of the higher functions. Elaboration on these 
remaining points does not seem required in light of the material 
yet to be presented in Chapter III.

Krug's paper is lengthy and covers the subject completely 
from the standpoint of contour integration. Dealing with the 
subject on that level is not necessarily required for the 
purposes of understanding the concepts of generalized Calculus 
for functions of a real variable. Therefore, in the remainder 
of this thesis, contour integration techniques will be avoided 
when possible. Krug's results with regard to the semi-group 
property will be indispensable, however.

The interest aroused in the third period walned rather 
quickly, and from 1900 to the present, little has been contri
buted concerning the generalization of Cauchy's formula. To 
close this chapter, it seems appropriate to mention some of 
the most important work that has been done since 1900. The 
L-R integral has been the center of interest for this latest 
period. Its properties have been wgll established in papers 
by G.K. Hardy and J.E. Littlewood. In most papers, the 
origin has been assumed arbitrarily zero and little attempt 
made to deal with the specific cases of individual functions. 
In an excellent paper by E. Post, the idea of a generalized

^^G.H. Hardy and J.E. Littlewood, "Some Properties of 
Fractional Integrals," Mathematische Zeitschrift, Vol. 27 
(1928), pp. 565-606.
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operator was dealt with very completely, but again specific ' 
19 examples were avoided. v Several articles have appeared 

giving applications of fractional ordered integration to 
20 certain potential theory problems. One rather interesting 

article by B. Spain treated the problem of finding non-integer 
21 order derivatives by applying interpolation techniques. In 

his analysis, the generalized derivatives were obtained by 
interpolating between known integer order derivatives and 
integrals using the cardinal interpolation formula. His 
results are particularly impressive since he showed that the 
L-R formula followed from an arbitrary function when his tech
nique was applied. The reader is referred to the bibliography 
for other recent papers on the subject- of generalized Calculus.

l^Emil L. Post, ’’Generalized Differentiation,” 
Transactions of the American Mathematical Society, Vol. 32 
(1930), pp.723-7ST

20A. Erdelyi, ’’Axially Symmetric Potentials and 
Fractional Integration," Journal of the' Society for 
Industrial and Applied Mathematics, Vol. 13 (19657^ 
pp. 216-228.

21B. Spain, "Interpolative Derivatives," Proceedings
of the Royal Society of Edinburgh, Vol. 60 (19^0), pp. 134-1^10.



CHAPTER III

GENERALIZED DERIVATIVES

The purpose of this chapter is twofold. First, an 
attempt will be made to properly establish the role of 
the L-R integral definition in computing the generalized 
derivative. Second, the generalized derivatives of several 
elementary functions will be calculated. The results obtained 
in this chapter will be preparatory to the derivations con
cerning the Laplace transform in the next chapter.

In the previous chapter, two questions arose which 
must be answered before any intelligent use can be made of 
the L-R formula. These were as follows:

(1) What is the sigificance of the 
complementary function?

and (2) How does one choose a value for
the origin to be used in the 
calculation of the generalized 
derivative for a given function?

The former has been the subject of much controversy in the 
literature while the latter has been avoided almost totally. 
The following resolution of these questions has a strong 
intuitive appeal and is as mathematically rigorous as 
practically possible.

In the case of the complementary function, resolving the 
question is most readily accomplished by interpreting the 
general case in terms of what is already known about the 
integer order Integration process. When one discusses the 
indefinite integral of first order, he usually assumes that 
it arises in the following way: Suppose the derivative of a 
function is given and it is required to find the function. Or 
restated, find a function F such that when it is differentiated 
once, the result will be a given function f. It is in this 
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sense that a desirable definition of the Integral or anti
derivative as the inverse of differentiation seems called 
upon. Thus, a loose definition of integral could be the 
following:

If f(x) is a given function and if F(x)

dF Cx)is a particular solution to - = f(x)

over a given interval [a,b], then F(x) is 
called the integral or antiderivative of f(x).

The solution to the stated problem requires a more general 
form than the integral as just defined. For instance, one 
could add a constant 0 to F(x) and still have a proper 
solution. Thus, it is necessary to define the indefinite 
integral in the following way:

The most general integral of a function f(x) 
is called the indefinite integral of f(x) and 
it is denoted by the symbol

J f(x)dx

so that J f(x)dx = F(x) + C

where F(x) is the integral of f(x) as 
previously defined and C is an arbitrary 
constant.

In other words, J f(x)dx is the most general solution of the 
differential equation

dF(x) 
dx = f(x). III-l
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Suppose the problem had been posed in a slightly more 

general way: Find a function F such that when it is 
differentiated n times (n, an integer), the result will be 
a given function f. In this case, F is the most general 
solution of the differential equation

= f(x).dnF(x) 
dxn

III-2

By applying the definition of indefinite integral n times, 
the desired solution of eq. III-2 is the n order integral 
of f(x) plus a power series in x with n arbitrary constants. 
This power series is sometimes called the complementary 
function. For an n^^1 order indefinite integral it is given 

by

n C.x11-1
*(x) Mi • IH-3

Then suppose D-nf(x) denotes the nth order integral of f(x); 
F can be written as

n C.xn-i
F(x) = D nf(x) + -Cn-i)'"! * 111-4

Eq. 111-4 is the most general solution of the differential 
equation given in eq.III-2.

Before making the connection between eq. III-4 and the 
generalized.derivative, the concept of the definite integral 
must be introduced. Using the fundamental theorem of integral



36
Calculus, the definite integral below is given by

x
J f(x)dx = F(x) - F(c1) III-5

C1

where F(x) is the integral of f(x). One would be tempted to 
conclude that this result was identical to that obtained by 
an indefinite integration of f(x). But this is not necessarily 
the case since FCc^) is not necessarily an arbitrary constant. 
To illustrate this point, consider the following problem:

The function x is the derivative of some 
unknown function F(x), and the value 
F(0) = 1. Find F(x).

The solution is the Indefinite integral given by eq. III-4; 
thus,

2 F(x) = Jxdx = | + C.

Applying the boundary condition it is clear that

x2 F(x) = | + 1.

Now, attempt a solution using the definite integral. Write

9 -X C1

C1
F(x) = J xdx = 2" - 2
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It is immediately evident that no real value of coexists that 
will cause the boundary- condition to be satisfied. Hence, the 
definite integral lacks sufficient generality to be equivalent 
to an indefinite integral. It is equally wrong to consider 
the multiple definite integral below equivalent to a multiple 
indefinite integral of equal order. Thus,

/JJ...Jf(x)(dx)n = / /....J Jf(x)(dx)^ III-6 
n times c c n cncn

n C.x13""^ 
j/f..jr(x)(dx)n = g-nf(x) + i (n-±yr II1"8 
n times n 1=1

n n-1 2 1

Putting this conclusion aside for the moment, consider 
the form of the L-R integral where the order v is an integer 
n and n > 0.

D"nf(x) 1 pX f(u)du 
(n+1) ! •’ , x-n+1c (x-u)

III-7

Inherent in Grunwald’s method and especially in the derivation 
given in Appendix A is the fact that the L-R integral of 
eq. III-7 represents an n^h order definite integral like the 
r.h.s. of eq. III-6 with all constants c^, C2, . . •» cn equal 
to the same constant c. Therefore, the L-R integral is not in 
general equivalent to an indefinite integral of equal order. 
To generalize D-nf(x) sufficiently so as to obtain a true 
multiple indefinite integral, the following approach could be 
taken. First, a choice of c could be made such that the L-R 
integral formula would produce only the integral of f(x). 
With the addition of an appropriate complementary function, 
D~nf(x) could be made an indefinite integral of order n, ie., 
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where cn is the special choice of origin c described above.
Eq. III-8 is now a perfectly general solution to

dnF(x) 
dxn

f(x)

provided cn exists.

Armed with this conclusion and the one previously 
established, it is now possible to interpret the meaning 
of the L-R integral formula and the complementary function 
for arbitrary order v. Recall Riemann’s result of eq. 11-27 
where v > 1:

d~vf(x) 
dx"v

= rTTvy (x-t)+v 1f(t)dt

<» +v-i
Ki r(-i+v+l) •

Suppose one chooses the origin c such that the L-R integral 
(the first term on the r.h.s.), produces the integral of f(x). 
Then Riemann’s complementary function (the second term on the 
r.h.s.) serves the purpose of generalizing the L-R integral 
so that eq. III-9 defines the indefinite integral of arbitrary 
order. Eq. III-9 is then the solution of the general order 
differential equation given below.

dvF(x)
LF-= f(x).
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The fact that Riemann’s complementary function involves 
an infinite number of arbitrary constants may seem odd at 
first glance. To gain reassurance in the reasonableness of 
his result, one could check to see if this generalized 
complementary function reduces to the complementary function 
for integer order given in eq. III-3. If v is an integer 
n, Riemann’s form is

»(x) =. Vi nSrry ‘ 
1=1 '

Note that for all values of the index i greater than or equal 
to n+1, the argument of the Gamma function is a negative integer 
or zero, respectively. From the theory of the Gamma function, 
it is found that

= 0 for n = 0, -1, -2, . . . .

Using this fact, eq. III-10 reduces to

n n-i
r (n-i+1)

from which it immediately follows that

n n-i
ip(x) = Y K. v Xt-v, • i=l 1 (h-1'! III-ll
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Eq. II.I-ll is exactly the form of the complementary function 
for Integer order integrations of n^^" order. This agreement 

lends credibility to Riemann’s generalized complementary 
function.

As has been noted previously, when v is non-integer, 
Riemann’s complementary function yields an infinite number 
of arbitrary constants. Any attempt to dispute this result 
from an intuitive point of view is destined to fail. Although 
one arbitrary constant is clearly needed for a single indefinite 
integration, how could one possibly decide the specific number 
for a one-half order indefinite integration? One’s intuition 
fails miserably to solve this problem. Leibnitz’s difficulty 
with fractional derivatives and the slope concept is somehow 
better appreciated at this point. Although Riemann’s result 
seems plausible enough, his methods of derivation are still 
in question. It is hoped that mathematicians will take an 
interest in verifying his work.

In summary, the complementary function for the general 
order v represents the function which must be added to the 
Integral of f(x) to form the general solution of the differential 
equation

- - = f(x). III-12, v dx

In all the previous discussion, v has been regarded as being 
positive so that the solution of eq. III-12 would be an in
definite integral of order v. If v is less than zero, the 
general complementary function given by Riemann agrees with 
expected results for integer values, ie., ip(x) = 0. For 
nori-integer v less than zero, intuition fails again to justify 
the result.
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Fortunately, the somewhat ambiguous quality of the 
complementary function need not offer much difficulty so 
long as the origin is chosen so that the L-R formula gives 
the integral of the function. In operational Calculus, an 
integral operator applied to a function is expected to give 
the integral or equivalently the indefinite integral with 
all arbitrary constants set to zero. The L-R formula seems 
to offer a way of producing a generalized integral operator 
provided the origin is chosen properly. If the resulting 
operator possesses the semi-group property, then derivatives 
of arbitrary order can be obtained by taking the appropriate 
integral first and then taking whole order derivatives of 
the result.

The next necessary step in this analysis is to describe 
methods one might use to determine the origin that will pro
duce this generalized integral operator. There are two methods 
that have proved useful in providing a suitable value for the 
origin c. Before these are discussed, a statement of caution 
is necessary. A trap exists for the unwary in the use of the 
L-R formula given again below.

nvpfv') = J fX f(t)dt 
C TKTX J (x_fc)v+l '

Let G(z) be the integrand of eq. III-13. One might be tempted 
to choose a value of c that would make the integral of G(z) 
evaluated at c equal to zero. In that case, the integral of 
G(z) evaluated at x would give the desired generalized deriva
tive of f. In general, such a procedure does not yield the 
correct result. The difficulty lies in the fact that G(z) is 
actually a function of z and x. To illustrate this point 
more clearly, consider the following example: Find the 
third integral (not indefinite integral) of the constant 1.
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Applying the L-R formula.

D"3(1) 1 rx dt
CJ (x-t)-34'1 •

Solving the integral.

D-3(l) = .

III-14

No constant c exists which makes the term in brackets zero. 
Further, evaluation at x produces zero regardless of c. The 

x3
desired result is known to be yy. By inspection,’ this can be 

obtained only for c = 0 which is clearly not the value of 
origin which makes the integral of the integrand in eq. III-14 
equal to zero!

A method which does give results in certain instances 
involves a principle introduced in the first historic period 
of generalized Calculus. Restated it is this: The non-integer 
ordered derivative or integral must produce the correct form 
for integer values of the order index. To use this method, 
the general index v in the L-R formula is assumed to be an 
integer n. The indicated integration is performed and the 
result is evaluated at both x and the origin c (as yet 
unspecified). The n order differentiation or integration 
of the function can generally be found by applying conventional 
techniques and the result compared to that already arrived at 
by means of the L-R formula. .A value of c is then chosen that 
will cause both to be the same. The L-R integral is reevaluated 
with this fixed value of c and a general order index v. This 
method has two prominent disadvantages. In the original 
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integration of the L-R formula for integer index n, it is not 
always possible to obtain a form that lends itself to easy 
determination of a value for c. In such cases, recognizing 
a value of c may well be impossible. The second disadvantage 
lies in the fact that functions sometimes require more than 
one value of origin as parameters of the function and the 
order index v are varied. The first method can give ambiguous 
results in such cases.

The second method appears to offer a more general approach 
and one that is decidedly easier to use. The method to be 
described had its conception in a result obtained by Krug. It 
seems desirable that the L-R integral define integral and 
differential operators that possess the semi-group property. 
This property is expecially important since it will be used to 
allow non-integer order derivatives to be defined in terms of 
non-integer order integrals. For example, suppose the three- 
halves order derivative of f is desired. If the semi-group 
property holds, a convenient way to get this result is to first 
compute the one-half order derivative. Then the three-halves 
derivative is given by

2 —1 2—1 1D D 2f(x) = 2f(x) = D2f(x)
C C C C •

To generalize this technique, one merely uses the formula given 
in eq. III-15 below. p

p6f(x) = [DS 1f(x)] O<B<1 . III-15

Higher order derivatives can be found by taking subsequent 
whole derivatives of eq. III-15.
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In connection with. eq. III^l, Krug derived a formula 
which, showed that possession of the semi-group property 
hinged directly upon the choice of origin. He did not use 
the result to determine origins since his contour integration 
techniques avoided the question altogether. But for the real 
variable case and hence, the L-R formula, requiring the semi
group property to hold gives a convenient way to choose the 
origin. The so-called Krug condition is given in eq. III-16.

DnDvf(x)= Dn+vf(x) 1 
r(l-n-v) III-16

1 f(1)(c) ' 1 f(n-:L)(c)

(1) For a negative order index, the L-R formula 
gives the integral of the function, ie., the 
complementary function of the indefinite 
integral is identically zero,

r(2-v-n) (x_c)v+n-l r(-v) (x_c)v+n

where n is any positive integer and v is arbitrary. The choice 
of origin c is made so that all of the terms on the r.h.s. are 
zero except Dn+v f(x). For that c, the semi-group property 
will hold. The examples to follow shortly will adequately 
illustrate the use of the Krug condition.

It seems appropriate at this juncture to summarize the 
conclusions of the proceeding analysis. The L-R integral 
formula is a satisfactory definition of the generalized 
derivative provided the origin for a particular function is 
properly chosen. Two methods are available to aid in choosing 
the correct origin. Use of the Krug condition of eq.III-16 
offers the best approach of the two. A properly chosen 
origin has two major effects:
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and (2) .Within limits established for the particular
function, the semi-group property will hold 
for the generalized derivative.

Once the origin is determined, the L-R formula, eq. III-13, 
can be used to calculate the generalized derivative. If an 
origin for a function cannot be found, it is still possible 
to find the generalized derivative. The techniques necessary 
to circumvent this difficulty will be illustrated shortly in 
regard to the function xm.

Several generalized derivatives will now be calculated 
to aid in the understanding of the procedures just outlined. 
Attention will be directed to functions that have potential 
use in solving Laplace transform problems. Among those to be 
considered are: xm ("m" constant); xmU(x) where U(x) is 
the unit step function; eax ("a" constant);eaxU(x); sin ax 
and cos ax ('’a” constant); also sinh ax and cosh ax ("a” 
constant).

The function xm is chosen first because its solution 
requires the greatest diversity of techniques. In addition, 
through the use of power series expansion, the generalized 
derivative of a broad collection of additional functions can 
be found. Applying the Krug condition to xm, the following 
terms must be identically zero for any positive integer n:

cm mcm~^ m(m-l). . . (m-n+2)crtl~n+~1-
(x-c)v ’ (x-c)v-1 ’ " ‘ ’ (x-c)v+1"n

where v is the order of the generalized derivative and c is the 
origin of the derivative. The choice of c is made so that each 
term is zero for all x within the domain of xm. It can be shown 
that if the condition is satisfied for n=l, then the condition 
is satisfied for all remaining values of n. For v > 0, the
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following values of c are indicated:

c = 0 for {m since Lim —------  = 0
V2° c»0 (i - l)v

c

and c = ±<» for { n } since Lim --------  = 0 .V20 ,x - xvC->+co (---i)

In the second instance, c = -m is selected in order to 
preserve the sense of the L-R integral. Substitution in 
eq.III-13 produces

dv(xm) nv, ms 1 d rXv +.\-v,m/,, -= § (x ’ = rn^T J 1 dt

and sloh = Dv(xm) 
y —co x z

Completing the integration, the derivative of order v becomes

dv(xm)  r(m+1) m-v
dxv - r(m-v+l) x for m>v III-17

and

To calculate the integral of arbitrary order, the same Krug 
condition must hold for v < 0. Since for v < 0 and m < v.

Lim
C->—co

m-vc____
(f - DV 



then an origin of -■» is proper. The situation where 
v < 0 and m > v has an origin of c = 0 provided m > 0 
because

m nT • c n r, rm>01 ~Lira ------  = 0 for { n}z \V v<0c-*o (x-c)

Thus, the generalized derivatives of xm for v < 0 are as 
follows:

and

dv(xm) 
dxV

= DV(xm) r(m+l) m-v 
r(m-v+l) x for tm>0 III-20

In the case where v < 0 and v = m, there is no value of 
c which causes the Krug condition to be satisfied. Interesting
ly enough, this is similar to the case which produces the odd 
situation in ordinary Calculus when one integrates x*""1". In 
that case, the result is ln|x|. One might expect that for 
arbitrary index, the integral might produce a like result. The 
following derivation confirms that this is indeed the case and 
at the same time illustrates how to avoid the L-R formula when 
no proper origin exists. First, assume that the semi-group 
property holds. For -1 < v < 0, it is true that

, r^Vz V\i ,v+lz Vxd d (x ) _ d (x )
dx , v , v+1kdx dx

III-21



Since v+1 > 0 and v+1 > v, eq. III-19 yields
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dv(xv)] _ / nv+l x-1
J " (_1) III-22

By direct integration, it follows that

dv(xv) 
dxv

= H-v)-' Ln*x| III-23

for -1 < v < 0 only. A similar approach for the nth interval, 
-n < v < -'n+1, shows that eq. III-23 holds for all negative 
non-integer values of v. In this case, it is true that

dn fdv(xv)" 
dxn*-dxV

dn+v(xv) 
axn+v

III-21I

Since n+v > 0 and n+v > v, eq. III-19 can be used to obtain
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Finding the n^^1 ordinary integral of eq. III-25 yields the 
final result:

dv(xv) (-l)v+1 
dxv - r(-v) Ln | x | III-26

Ordinary integration also verifies that eq. 111-26 is valid 
for v a negative integer. Therefore, eq. 111-26 is correct 
for all v < 0.

The region where v < 0, m < 0, and m > v has not yet been 
considered. Here again, the Krug condition fails to give a 
meaningful value of origin. To interpret this result, consider 
what this type of generalized derivative means. In the region 
defined, one is taking the (-v)^^ integral of xm where m > v. 
Therefore, the semi-group property provides that

.,Vz. in>. . .,.v-m f.m, m^ d (x ) _ d d (x )
, v , v-m , mdx dx ^dx •

III-27

The terms in brackets is given by eq. III-26 since m < 0; thus, 
eq. III-27 reduces to
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Since v-m < 0, it is clear that for this region one needs to 
take the -(v-m)th integral of In |x|. The integral of In |xj for 
arbitrary order does not appear soluble with any of the 
methods described in this paper. Fortunately, leaving the 
generalized derivative of xm undefined in this region is of 
no great consequence since applications to Laplace transform 
theory do not usually involve such conditions.

A vastly more important region is the case for m = 0.
This is the generalized derivative of the constant 1. Since 
the L-R formula involves an ordinary integral, the generalized 
derivative of a constant C is simply C times the generalized 
derivative of 1, For v > 0, it is clear from eq. III-17 that

-d = DV1 =
V —co (-l)v r(v) -v 

r(o) x o

dVCC)- ■ = 0 for v > 0 .
dxv

In looking through the literature, one is amazed to find the 
statement that the v^d derivative of a constant is some 
function of x. If such were true, then derivatives of non
integer order greater than one would be a function of x while 
the first derivative would be zero. This clearly violates 
the semi-group property and seems quite unacceptable. This 
inconsistency arises from the tacit assumptions of some authors 
that the origin for all functions is zero. Shortly it will be 
shovm that such an assumption is valid in some cases when the 
function is multiplied by the unit step, U(x). The non-zero 
derivative of a constant turns out to be the derivative of 
CU(x) instead.
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For m = 0 and v < 0, the Krug condition does not provide 
an origin. The solution is obtained by

(1) assuming the semi-group property holds,
(2) finding the (l-v)^h derivative of the 

first integral of 1 for 0 > v > -1,
and (3) recognizing the result as the (-v)th

integral of 1.

Thus, ^O). = x~V for _! < v < o . III-29
,vv r(l-v)

Higher order integrals can be obtained by taking a sufficient 
number of whole order integrals of eq. III-29.

This completes the analysis of the generalized derivative 
of xm. To aid in getting an overall view of the results, a 
special graphical representation is presented in Figure 1. 
The vertical axis corresponds to the exponent m while the 
horizontal axis represents the derivative order parameter v. 
The various regions are coded to indicate which formula is to 
be used to calculate the generalized derivative of xm.

For applications to problems in Laplace transform theory, 
it is necessary to calculate the generalized derivative of 
xmU(x). The special technique used in Chapter IV to solve 
such problems requires only that the integral of arbitrary 
order be known. Thus, the region where v < 0 is the only one 
of Interest. Since U(x) is zero for all x < 0, the regions 
of origin c = 0 in figure 1 for which v < 0 are unaffected and 
the value of generalized integral for xmU(x) is the same as 
that for xm alone. The region with origin c = is affected.
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dv(xm)  r(v-m) m-v
, v r(-m) dx

,v, lUxIV. ——L unspecified 
dxv

Figure 1
Generalized Derivatives of x™
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however. In this case, the L-R integral is broken into two
separate integrals as in the equation below:

DV(xmU(x)) 1 c° tmU(t)dt 1 fx tmU(t)dt
r(-v)-l (x-t)v+1 (x-t)v+1

Because U(t) = 0 for t < 0, the first integral on the r.h.s. 
is zero. With U(t) = 1 for t > 0, the second integral is 
simply Dv(xm). In the region v < 0 and m < v, the generalized 
integral is given by eq. III-19. The generalized integral 
along the line m = v for v < 0 and throughout the wedge- 
shaped region where v < m < 0 for v < 0 need not be considered 
since no use will be made of these regions in subsequent 
applications. Finally, it is easily shown that the generalized 
integral of U(x) is given by

for all
is true

v < 0. Summarizing all of the above for xmU(x), it 
that

dv(U(x)) = 1 -v
a V r(l-v)dx

dv(xmU(x))  r(m+l) m-v 
dxv " r(m-v+l) x III-30

so long as v < m < 0.
The next function to be considered is the exponential 

eax where a is a constant. The Krug condition is found to be
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satisfied by origins c = ±» since

eac
Lim —-—- = 0 
c->±“> (x-c)v

for a < 0 and a > 0 respectively. The v derivative of eax 
is therefore

sflsdll = Dv(eax) 
dxv

x aat,,1 (■ e dt
r(-v) •' , ^xv+l-°= (x-t)

which, if solved, yields

dv(eax) v ax —= a e III-31

By using the concept of left hand derivative introduced briefly 
in Chapter II, the generalized derivative for a < 0 is found 
by taking the origin +°° and solving

,v, axx , +~ at,.d (e )  1 r e dt
, v r(-v) J , , xv+1dx x (x-t)

from which it is found that

t ax, d (e ) v ax —= a e

HI-32
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Thus for all a / 0, eq. III-31 is the generalized derivative 
» ax of e

For applications in Laplace transform problems, the 
integral of general order for eaxU(x) is found. This is 
accomplished most easily by writing eaxU(x) as a power series. 
This series is known to be uniformly convergent and can be 
integrated term by term. Since the L-R formula is an 
ordinary integral, term by term integration of arbitrary order 
is readily justified. Thus, write

eaxU(x) = [ 1 + ax + ^|x)2 + ... + .(g-x)n + . ..]U(x)

For v < 0, term by term general differentiation produces.

F(l_v)' M[l,l-v,ax] U(x) HI-33

where M is the confluent hypergeometric function called 
Kummer’s function. M is given by the equation below:

(a),z (a),z2 <a)„zn
M[a,b,z] = ! + + + ... + + ...

where (a)n = a(a+l)(a+2) . . . (a+n-1) and (a) = 1. The
Kummer function reduces to any one of a number of functions 
depending on its arguments. A list of^thirty-nine such 
reductions is given in the references.

22Milton Abramowitz and Irene Stegun (ed.). Handbook of 
Mathematical Functions (New York: Dover Publications, Inc., 
1965), P. 509.
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Knowing the form of the generalized derivative of eax 
now permits the derivation of several additional forms. For 
instance, the expression for sin(ax) in terms of exponentials 
is

+iax -lax
sin(ax) = ---- -------  • 111-34

Taking the generized derivative of eq. 111-34 gives

d Lsin(ax)J  (la) e-(-ia) e 
, v 21 *dx

Recognizing the fact that (ia)v = aveav*'ir//^) an(j that

(-ia)ve""j"v^ir/'2^ (using the principal roots only), it is

possible to write eq. III-35 as

av[sln(ax)] , avsln(ax+v„/2) , 
dxv

A similar technique produces the following result for cos(ax):

dVCcos(ax)J = avcos(ax+V7T/2) , III-37
dxv
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As a sidelight, notice that the generalized derivative of 
eax and cos(ax) agree with the assumptions made by Laplace 
and Fourier respectively. Their methods of defining 
generalized derivatives are quite valid and worthy of further 
investigations.

The generalized derivatives of cosh(ax) and sinh(ax) are 
easily found by noting the relationship between the hyper
bolic and circular functions, ie., 

sinh(ax) = -i sin(iax) 

cosh(ax) = cos(iax) .

Hence,

dv(cosh(ax))— --------- — = (xa) cos(iax+vir/2)
dxv

and dv(sinh(ax)) ,.xv+1 v .— --------- — = -(i) a sin(iax+vir/2)
dxv

This completes the derivations of generalized derivatives.



CHAPTER IV

LAPLACE TRANSFORM TECHNIQUES

Nov; that the basic ideas of generalized differentiation 
have been discussed, it is possible to consider applications 
to Laplace transform theory. The valuable use of the proper
ties of Table 1 in determining transforms and inverse trans
forms was alluded to in Chapter I by use of a simple example. 
The purpose of this chapter is to broaden the use of these 
properties to encompass the concepts of generalized differenti
ation. In addition, examples will be used to illustrate the 
techniques developed.

From Table 1, properties two through five will be of 
primary concern. Consider first the frequency integration and 
frequency differentiation properties. It will be shown that 
under the concepts of generalized differentiation these two 
properties can be written as one. Recall that the definition 
of Laplace transform is

L{f(t)} = F(s) = Jf(t)e~stdt . 
o

The generalized derivative of order v is then given by

sfEVl = SL [ /f(t)e-stdt ] . 
, V , V L j x ' J •ds ds o

It is now necessary to interchange the order of general differ
entiation and ordinary integration. Theorems developed in the 

23 literature are not sufficiently general to justify this step.

23n,v/. McLachlan, Laplace Transforms (New York: Dover 
Publications, Inc., 195^), p. 172.
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When dealing with the Laplace transform, it is often easier 
to make the interchange and later check the results by per
forming the inverse transformation. This method will be 
considered acceptable here. Therefore, assuming the order 
of general differentiation and ordinary integration can be 
changed, gives

■ arm = dfc .
, V J J Vds o ds

s tSince t > 0, a left-hand derivative of e with origin +=°
is required. This result has already been given in eq. III-32.
Thus,

SlECsl. ff(t)(-t)ve-stdt IV-1
dsv o

for all real values of order parameter v. Properly interpret
ing eq. IV-1, the general frequency differentiation property 
is deduced as given below:

If f(t) <----- > F(s)
IV-2

Then (-t)vf(t) < dvF(s) 
dsv

It is clear, from eq. TV-2 that multiplying in the time domain 
by (-t)v where v is any real number corresponds to taking the 
generalized derivative of v^^1 order.
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Next, one might want to consider the effect of multiply
ing in the frequency domain by sv where v is any real number. 
In this case, a generalized form of the time differentiation 
and time integration properties of Table 1 appears necessary. 
While generalizing the time integration property is straight
forward, the generalization of the time differentiation 
property reveals certain mathematical difficulties which are 
yet unsolved. Fortunately, an alternate approach is available 
that allows one to avoid these problems. Before discussing 
this approach, it is necessary to develop the generalized 
time integration property.

As given in Table 1, Laplace transforms satisfy the time 
convolution property, ie.,

If f1(t)<--- >F1(s) and f2(t)<---- >F2(s)
t

Then Jf1(u)f2(t-u)du<----- >F1(s)*F2(s) .
o

Suppose F2(s) = — and F^(s) is the transform of some function 
sv

f^(t) whose form is subject to certain limitations shortly to 
be imposed. It is known that

t^-1 _____ 1
r(-v) < > sv

where v < 0. Applying the time convolution property yields

n t f-. (u)du1 f 1_____
r (-v) •' ,, xv+io (t-u)

IV-3

where v is real and less than zero. For functions with a 
right-hand generalized derivative of origin zero, the l.h.s. 
of relation IV-3 is simply the L-R definition of the general 
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order Integral of f1(t). At this point, it is an easy matter 
to deduce the generalized integration property:

If f(t) <--- > F(s)
dvf(t) x F(s)
U. u S

provided (1) v e Reals and v < 0 and (2) f(t) is a function 
whose integral of real order is right-handed with origin zero. 
The added restriction on f(t) is not particularly severe. The 
generalized derivatives of tm and ea^ meet this condition when 
multiplied by U(t) as is always done in time domain analysis 
using Laplace transforms. All functions that can be written as 
uniformly convergent series in either tmU(t) or ea^U(t) would 
also qualify under these restrictions.

The generalized time integration property allows the 
division in the frequency domain by positive real powers of s 
when the appropriate generalized integral is taken in the time 
domain. Use will now be made of this fact to perform multipli
cation in the frequency domain by positive real powers of s. 
In this case, the following procedure could be used: Suppose 

k4* V it is desired to multiply by s in the frequency domain. 
Here, k is a positive integer or zero, and v is any real number 
between zero and one. Two steps are necessary. First, the 
derivative of order (k+1) is taken in the time domain. By the 
ordinary time differentiation property, the transform in the 
frequency domain is multiplied by s^+1. This step may introduce 
additional terms involving the initial value of the time function 
and its first k derivatives. These terms can be removed by 
selecting an appropriate, new time function. See example 3. 
In the second step, the generalized time integration property 
is used to divide in the frequency domain by s^""v. Multiplica- 
tion by s in the frequency domain has been accomplished.
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With the generalized properties and techniques just 
described, it is possible to multiply or divide in the time 
or frequency domain by any real power of the respective domain 
variable. To illustrate how each of these results can be used 
to calculate either the transform or inverse transform of a 
particular function, several examples will be given. For all 
the examples, the only transform pair that will be assumed is

U(t)<----- > ,

The properties of Table 1 and the techniques just described 
will be used to obtain the desired results.

Example 1: Find the inverse transform of — where v is 
real and positive.

It is true that

U(t )<----- : IV- 4

Using the generalized time integration property.

d~v+1U(t) <_____ > 1__ , 1
,,-v+l „v-l ‘ s

QU S

where v > 1. (The case for 0 < v < 1 will be dealt with 
separately). The (v-l; general integral of U(t) was derived 
in Chapter III and is given by eq. III-30. Using this result.

t^^Ct) „ 1
' "r'CvJ  <------ ^7 iv-5



63

for v > 1. In the case that 0 < v < 1, take the first 
derivative of U(t) and apply the ordinary time differentiation 
property. This gives

dU(t) < 
dt •> 1.

dU(t)
dt is the unit impulse function, 6(t). Where 0 < u < 1, 
use the generalized time integration property to write

dU~16(t) ____ 1
a4,u-l 1-u 'dt s

Since u-1 < 0, it is necessary to find the general order 
integral of 6(t). It can be shown quite simply that an origin 
of -=° used in the L-R formula yields the following result:

du 16(t) = . 1 U(t) e____ > 1__
dtu-i r(i-u) tu Bi-u •

Letting v = 1-u where v now is valid for 0 < v < 1,

tv-:Lu(t) <> 1_ 
r(v) sv

IV-6

Eq. IV-6 is identical to eq. TV-5; therefore, the solution for 
all v > 0 is given by the l.h.s. of either IV-5 or IV-6.

Example 2: Find the Laplace transform of

e“at(l-2at)U(t) .
/ irt
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Using eq. IV-4 and the ordinary time differentiation property, 
one obtains

U(t) <---- > i

and
tU(t) < 1_

2 s

Applying the generalized frequency differentiation property 
to multiply in the time domain by ——■ , the relations above 
. /-tbecome

U(t) < 
/-t

d"1/2(s"1)  , n,l/2 r(l/2) „-l/2 
---- > ^172 r(T).. s

— e"at(l-2at)U(t) < 
/ Tit

and

A. u(t) <---- > <X/2S"2) = (-D1/2 s"3/2 .
✓^t ds"1/2 r(2)

After reduction of the Gamma functions, the frequency shift 
property of Table 1 can be used to write

e-atU(t) <----- >(-l)1/2/ir s-1/2
/-t

and

e"atU(t) <----- >(-l)1/2(l/2)/7 s"3/2 .
/=t

Finally, the linearity property (entry 1 in Table 1) is applied 
to produce the solution:

s 
(s+a)3/2



Example 3: Find the inverse transform of

Vs

From the frequency translation property and eq. IV-4, 
it is found that

ea2tU(t)<----- >—

s-a

All that is needed is to multiply in the frequency domain by 
/s". To arrive at this, first take a full derivative and 
apply the ordinary time derivative property. Thus,

22 a tTT /, x sa e U (t) <----- > --- p 1
s-a^

or

2a2ea ^(t) + 6(t) <----- > .

2
-------- d^!i/2 ( J = r(3/2"T Mtl,3/2,a t]U(t) .

s-a^

A one-half order integration in the time domain will divide 
in the frequency domain by Vs. The one-half order integral 
of 6(t) has already been computed. To find the one-half 

a2torder integral of e U(t), use is made of the more general 
result, eq. III-33. Thus,

IV-7
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Using the relation M[a,b,z] = ezM[b-a,b,-z] and consulting 
Appendix B, It Is found that

,-l/2r a2tTT,, x-| a2t
= V- erf(a/t)U(t) 

dt"1/2 a IV-8

It is a simple matter to write down the answer:

-A- + aea terf (a/t )U(t) < > --A
/rrt" s-a^

Example 4: In this final example, a practical problem 
will be presented to illustrate how non-integer powers of s 
and t are introduced.

Given a semi-infinite transmission line driven by a 
constant voltage source Eo through a source resistance Rq. 
Assume that the initial current throughout the line is zero 
and that the charge in the line is also initially zero. Also 
assume that for all time and all positions on the line, the 
voltage remains finite. The transmission line parameters are 
as follows:

R = constant 
0 = constant 
L = 0 
G = 0

Find the current flowing in the source resistance, R .
Beginning with the partial differential equations 

describing this particular transmission line, one can write
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r 3V(x,t) =  3l(x,t)
31 3x

IV-9
R I(x,t) = - 1^*1 

d a

where V(x,t) is the voltage along the line and I(x,t) is the 
current flowing in the line. Taking the Laplace transform 
with respect to t produces

C V(x,0) + CsV(x) = -’ . dx

IV-10

Since the charge on the line is zero at t = 0, so also must 
be the voltage. Therefore, V(x,0) = 0. Combining eqs. IV-10 
a and b, the second order equation below is obtained.

d - RCsV(x) = 0 . IV-11
dx^

The solution to IV-11 is given as

V(x) = A(s)e-/RCsx+B(s)e+/RCsx.
IV-12
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IV-13

Since V(x,t) is finite for large x, B(s) = 0. Note that the 
following equation must hold by simple circuit theory:

E
RoK0) = - V(0)

By eqs. IV-lOa and IV-12, it is possible to show that

1(0) = /RCs fl

and

V(0) = A(s)

Substitution of these relations in eq. IV-13 produces a value
of A(s); thus.

A(s) = E --------i.
s[l + (Ro/R)/RCsJ

Using eq. IV-13 and letting K = —it is possible to write 
1(0) as Ro C

Which is the Laplace transform of the required result. Inversion 
of the first term of eq. IV-14 is simply made by applying the 
frequency shift property to eq. IV-4. The inverse of the second 
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term is /k times the one-half order integral of the inverse 
of the first term. Thus,

ktTT,, x 1e U(t) <---- >

and IV-15

d-1/2(ektU(t)) <____ , /k
at-V2 /?(s_k) •

Using eq. IV-8, the final result is

E , ,1(0,t) = eKt[l - erf(/kt)]

This completes the presentation of illustrative examples.



CHAPTER V

CONCLUSION

The previous chapters of this thesis have dealt ultimately 
with the development of a technique to calculate Laplace trans
forms and inverses involving non-integer powers of s and t. 
The eventual necessity to use generalized Calculus to achieve 
this end required the presentation of an introduction to the 
subject. Chapter II provided a historical treatment of gener
alized Calculus in which a number of basic approaches were 
elaborated upon. Chapter III proceeded to interpret certain 
of the basic ideas presented in Chapter II and finally estab
lished the form of generalized derivatives for certain elemen
tary functions. In Chapter IV, the basic principles of gener
alized Calculus were used to broaden certain of the properties 
of the Laplace transfrom. Finally, several examples were 
presented to illustrate the use of these properties in calcu
lating Laplace transforms and inverses.

Although this thesis has emphasized the application of 
generalized Calculus in working Laplace transform problems, it 
should be noted that the potential use of similar techniques 
with other operational transforms is yet to be fully researched. 
Fourier and Hankel transforms offer definite possibilities in 
this regard. Uses of generalized Calculus appear not to be 
restricted to operational mathematics. Various branches of 
science stand to benefit if additional work in the area is 
forthcoming. The use of fractional order differential equations 
to describe physical phenomena has already been alluded to in 
a previous chapter.

An important consideration for the employment of general
ized Calculus in any further practical usage depends heavily 
on the firmness with which the tenets of the subject are develop
ed. The presentation of Chapters II and III of this thesis 
served only to illuminate the basic ideas and was not meant to 
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be rigorously complete in itself. The inconclusive nature of 
that treatment is most readily apparent in the limited appli
cation of the L-R definition of the generalized derivative. 
The heavy dependence on selection of a proper origin makes the 
L-R definition somewhat restricted. Selecting an origin by 
applying the Krug condition worked reasonably well for the few 
elementary functions treated in Chapter III, but application 
to more complex functions seems at best uncertain. Of course, 
if one limits himself to the class of functions expandable in 
a power series, then the results of Chapter III can adequately 
define the generalized derivative. This limitation should not 
be needed. It is not altogether implausible that an entirely 
different definition than the L-R integral can be found that 
will avoid the difficulties expressed. This possibility remains 
to be explored.

Whether this improved state of generalized Calculus will 
ever be realized is somewhat doubtful based on the past perfor
mance of mathematicians. In addition to the inherent difficul
ties, there seems to be a perpetual lack of interest in develop
ing the subject. The renowned Scottish mathematician. Professor 
Kelland had a taste of this extreme disinterest. Kelland pre
sented an introductory paper in a Royal Society of Edinburgh 

n 24journal on the generalized derivative of x . He seemed 
certain that his colleagues in Great Britain would find the 
new subject engrossing and that considerable interest would be 
generated by his article. Several years passed after publica
tion and virtually nothing was forthcoming from contributors to 
the journal. Kelland finally wrote an additional article in 
which he upbraided his colleagues for not pursuing the subject 
further. The total lack of interest was very disappointing to 
him. The situation Kelland contended with has not much improved 
today. Until it is, the great practical utility of generalized 
Calculus may never be fully realized.

24 P. Kelland, ”0n General Differentiation," Transactions 
of the Royal Society of Edinburgh, Vol. 16 (1840), pp^ 567-618.
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APPENDIX A

In elementary Calculus, the appeal is often made to the 
geometric intuition of the student. While a degree of intel
lectual satisfaction is often achieved, it is generally at the 
expense of mathematical rigor. The usual demonstration given 
for the definite integral is an example of this type of argu
ment. In this case, the area under the graphed curve of a 
function is used to define the definite integral. In the 
following discussion, the same technique is utilized to produce 
the definite integral of higher order from which the L-R for
mula follows as a simple generalization.

Consider Figure 2a. Assume the function f is continuous 
and bounded on the interval [a,b]. Divide this interval into 
n subintervals each with width Ax. In each subinterval, choose 
a point E^, i = 1, 2, . . . , n. Define

a. = E. - i • Ax i i A-l

for 1 = 1, 2, . - . . , n. Note also that

Ax = b-a 
n A-2

Then form rectangles of width Ax and height equal to the value 
of the function at E^. The area under the curve for the i^h 
interval is approximately f(E^)Ax. The area under the curve 
from a to b can be approximated by

n
Atotal “1 /(Epix . A-3

1=1



Figure 2a

Approximation of First-Order Integral by Area

Figure 2b

Approximation of Second-Order Integral by Area
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The definite integral is then defined by a limiting process 
as

b n
J f(x)dx = Lim f(E . ) Ax . A_ji

a Ax->o 1=1

Next consider the procedure for obtaining the definite 
integral of second order over the same Interval. In this 
case, a curve could be plotted representing the approximate 
area under the curve of f from a to each point x^ on [a,b] 
for 1 = l,2,....n. The second definite Integral is then 
obtained by finding the area under this new curve as n -> 00 
and Ax ■> 0. Consider Figure 2a again/ The area under the 
graph of f for a particular x^ can be approximated by using 
the summation of areas for the appropriate rectangles. Thus,

,X1 A1 = J f(x)dx - f(Ei)Ax

,x2A2 = J f(x)dx = f(Ei)Ax + f(E2)Ax

xn-l
An_1 = J f(x)dx = f(E1)Ax + f(E2)Ax + . . .+ f(En_1)Ax

b
An = J f(x)dx = f(E1)Ax + f(E2)Ax + . . . + f(En)Ax . 

a
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These discrete values are plotted In Figure 2b. If rectangles 
are formed for 2b. as they were for 2a, the area under this new 
curve is given approximately by

bb p n
JJ f(x)(dx) = A.- Ax . A-5

aa 1=1

Using the fact that

Ax = b - (En-an)

2Ax = b - (E q - a ,) n-1 n-1

A-6

(n-l)Ax = b - (£2+02)

nAx = b - (E^+a^)

it is possible to reduce the second definite integral approxi
mation of eq. A-5 to

bb 9 nJJ f(x)(dx)^ = AxCb-Ej^-ctj^) f(E±) . A-7
aa 1=1

Again taking the limit as n -> » and Ax -> 0 yields

bb p bJJ f(x)(dx)2 = J (b-x) f(x)dx. A-8
aa a

The definite integral of order three is generated from 
the approximate form of the second order (eq. A-7) in a very
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similar way. Its approximate, value is given by

■bbb o 9JJf f(x)(dxp = [(1+2+...+n)(Ax)^f(E.) A-9
aaa

+ (1+2+..,+{n-l})(Ax)2f(E2) + . . .

+ (l+2)(Ax)'2f(En_1) + (l)(Ax)2f(En)] .

Using the fact that

1 + 2 + . . . + n = “<2±11
A-10

and the relations of eqs. A-6, eq. A-9 above reduces to

bbb q , n 9JJJ f(x)(dx)j = I (b-E.-a.)2f(E.)Ax 
aaa -L ^1=1 11 1

-i n
+ Ax • V (b-E.-a.)f(E.)Ax . A-ll 1*2.i i7 iz

Passing to the limit as n » and Ax -> 0, eq. A-ll becomes

bbb o • • i b oJJJ f(x)(dx)j = J (b-x)2f(x)dx . A-12
aaa a

which is the definite Integral of order three.
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Following this same procedure m times and passing to 
the same limits produces the m^^1 order definite integral of 

f, ie.,

bbb b b ,///•••/ f(x)(dx)m = /^yy J(b-x)m 1f(x)dx. a-13 
aaa a v '' a
m times

To generalize this relation to non-integer values of m, it is 
only necessary to replace the factorial with the appropriate 
Gamma function.equivalent. It is possible to perform this step 
in a fairly rigorous manner before the. limit is taken to produce 
eq. A-13. The arguments follow closely those of Grunwald and 
will not be discussed here. Finally, if b is permitted to be 
any value of x in La,b], eq. A-13 becomes

d~vf(x) 
dx"v

, xyyyy J(X-U)V-1f(U)du A-14

Eq. A-14 is easily recognized as the L-R integral formula 
discussed in the main text.



APPENDIX B

SPECIAL CASES OF KUMMER FUNCTIONS* * s

*Milton Abramowitz and Irene Stegun (ed.). Handbook of 
Mathematical Functions (New York: Dover Publications, Inc.,

s 1965), p. 509.

Ml(a,b. z)
a b z Relation Function

1 v+l 2v+l 2iz r(l+v)eZLZ(lz)-vJv(z) Bessel

2 v+l 2v+l 2z r(l+v)ez(lz)-vIv(z) Modified Bessel

3 n+1 2n+2 2iz i7 “n~9r(|+n)elz(lz) Jn+i(z)
2

Spherical Bessel

4 -n a + 1 X • T ( 01 ) ( y )(a+l)n L n (x) Laguerre

5 a a+1 -X ax y(a3x) Incomplete Gamma

6 a a z ez Exponential

7 1 2 -2iz
-iz e ----  sin zz Trigonometric

8 1 2 2z eZ •— sinh z z Hyperbolic

9 12
3
2

2 -X
1
— erf x 2x eri x Error Integral

10 -n 1 
2

lx3 2X (2n)! 2^ He2n^x^ Hermite


