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ABSTRACT

The problem of large-angle, three-dimensional reorientation of 

asymmetric space vehicles in a fuel optimal manner is considered. A 

general problem is posed and solved numerically. The resultant numerical 

data is compared to a feedback configuration derived from a subset of 

the general problem. In both instances, Pontryagin’s Minimum Principle 

is utilized to determine the set of differential equations which describe 

the optimal trajectory. The control is presumed to be unconstrained, 

resulting in a continuous optimal control.
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SYMBOLS AND NOTATION

DEFINITION DIMENSION

The nine element transformation matrix 
relating the body system at time t to 
a desired inertial orientation. n.d.

Body-fixed unit vectors colinear with the 
principal moment of inertia axes, with 
origin at the center-of-mass of V. n.d.

The orthogonal unit vectors defining a 
desired orientation of V. n.d.

The unit matrix.

The r.h.s. of equation (3.10) -

The coefficients of the inertial cross
coupling terms of Euler's Equations: 
2(1 -I )/l , 2(1 -I )/l , 2(1 -I )/l y z x’ z x y’ xy z 
respectively.

The state function of Pontryagin.

The diagonal inertia tensor, with com
ponents 1^, I , 1^.
The moment of inertia about n.

The functional to be minimized as an 
index of performance.

The control torque about n for the 
restricted problem.

The unit vector with components n , n , 
n^ in body axes, about which a single 
rotation may be performed to attain [AM = H-

The r.h.s. of (3.11).

The independent variable time, and 
final- trajectory time respectively.

The system control acceleration.

n.d.

rad/sec'

n.d.

n .a.

, c 2 slug-ft
1 r 2 slug-ft

n .a.

rad/sec^

n.d.

Various

sec
rad/sec^

vii



SYMBOL DEFINITION DIMENSION

V The vehicle. n.a.

x> X The state vectors for the restricted 
and general problems respectively. Various

cc(t) The component of cross-coupling torque 
along u^n. rad/sec^

P(t) The input to plant defined by the res
tricted problem. rad/sec^

[r]
The Jacobian matrix used in the Modi
fied Newton-Raphson algorithm. Various

6 . . ,e. .. ij’ijk The Kronecker Delta and Levi-Civita 
Epsilon. n. d.

e(t) The angle through which V must rotate about n to attain ^A(t^)J = FeJ . rad

X(t) The costate variables defined by Pontry
agin's Minimum Principle; associated 
with the general problem. Various

£<t) The costate variables defined by Pontry
agin's Minimum Principle; associated 
with the restricted problem. rad/sec^

2 co The weighting coefficient selected for 
x2 in Jr. n. d.

NOTATION
Brackets indicate matrix or interval.
Dot indicates differentiation w.r.t. time.
Underscored variables indicate vectors.
Vertical bars indicate magnitude.

SUBSCRIPTS
c refers to cross-coupling acceleration.
N refers to the nth iteration of the numerical scheme, 
r refers to the restricted problem.
x, y, z refer to vector components along b^, b^, b.

SUPERSCRIPTS
o refers to the optimal path or control.
T indicates transpose.
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CHAPTER I

INTRODUCTION

The purpose of this work is two-fold. First, to examine a problem in 

three-dimensional attitude control in a general (albeit numerical) manner. 

Given a rigid space vehicle of constant mass in a torque-free environment, 

the problem may be stated as follows: what unconstrained control torque 

exerted on the interval CO,t^J will rotate the vehicle to some arbitrary 

attitude in a fuel optimal manner? The assumptions of vehicular mass sym

metry and small-angle maneuver have been purposely avoided. Numerical 

results from the general nonlinear problem provide a framework for the 

second purpose of the paper, which is to demonstrate a simple system whose 

fuel usage falls close to the general (open-loop) optimal.

The method of solution is based upon standard implementation of 

Pontryagin’s Minimum Principle (1). In the general case, an open-loop 

optimal control u°(t) results. For the restricted problem, u°(t) may be 

expressed in part as a function of the system state variables, so that a 

feedback configuration is feasible.

Chapter II contains the differential equations describing the system, 

and poses both the general and restricted problems under consideration. 

In Chapter III the minimum principle is used to derive the constraining 

differential equations for the general problem, and a closed-form solution 

for fuel-optimal control in the restricted problem. Chapter IV provides 

numerical results for the general problem, given some specific sets of 

initial conditions for the system. Additionally, a comparison is made to 

the restricted problem. Chapter V presents some conclusions resulting 

from the work.
1



CHAPTER II

DEFINITION OF THE PROBLEM

Consider a rigid, asymmetric vehicle V in three-dimensional space. 

Let b^, b , bz denote the body-fixed principal axes of inertia through its 

center of mass. These axes form body-fixed vector bases whose relation to 

some inertial bases d^, d , d^ is given uniquely at any time t by

I’d d d 1= [A(t)l T Fb b b "| (2.1)
|_-x -y -z J L J [-x -y -zj

where ^A(t)J is just the usual orthogonal direction cosine matrix whose 

determinant is +1. If d , d , d describe a desired inertial orienta--x -y -z 
tion of V, then we may consider the following problem: given £a(0)J , 

what is the unconstrained fuel-optimal control on [O,t^J such that

[ACt^J = [E] (2.2)

Many portions of this general problem have been attacked by various 

authors. At present, no analytic solution has been found (2). A numer

ical solution is presented in this paper. Two points should be noted 

concerning this solution: the control is unconstrained (with the result 

that u°(t) is continuous), and normalized quaternions are used as attitude 

variables. This particular configuration is chosen because of current 

interest in (continuous moment) control moment gyros (3) and quaternion 

techniques for onboard systems (4).

2
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FIGURE 1. A Sketch of the Reorientation Problem.
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The vehicular orientation may be parameterized in rational 

algebraic form by four normalized quaternions (5), y^ (i=i,4):

2A. .= 2y.y. + § . . (y, - y, y, ) + 2e . y y. tj 1 J k k ijk k 4

*The summation convention for repeated indices has been utilized, with 
i,j,k allowed to range from one to three.

(2.3)*

Accordingly, the initial attitude of V corresponding to [a(o)] is given

by

y/o’
y10

y2(o)
— y20

y3(o) y30

y4(0) y40

(2.4)

A final condition on the quaternions equivalent to Equation (2.2)

is (4):

(2.5)
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If y5’ y6’ y7 are the components of vehicular angular velocity about

the kinematical equations for the attitude

by (5):

"y3

y4
(2.6)

yl

-y2

. or equivalently

b . b , b respectively, then—x ’ —y ’ —z 
variables are given

(6):

(2.8)



Without loss of generality, let the initial and final angular velocities 

on ro,tf] be L 1

5

(2.9)

A general problem may now be posed: given the plant defined by 

equations (2.7) and (2.8) with boundary conditions (2.4), (2.5), and 

(2.9), find the unconstrained control u°(t) on [O,t^J such that the 

following cost functional is minimized:

J = Jo f( [IJ -)T( t1] -)dt (2.10)

Since [1 ] H (control torque) is proportional to fuel expenditure, mini

mization of J should provide fuel optimal control.

A restricted problem may also be posed as an outgrowth of Euler’s 
Theorem (7). The theorem states that given [a(O)J there exists some 

body-fixed (and inertially-fixed) axis n and some angle 6(0) such that a 

single rotation of magnitude 6(0) about n will result in ^A(t^)j = 

There are an infinity of trajectories other than the Euler trajectory 

which will achieve this result. These trajectories will in general be 

characterized by the time histories n = n (t), 6= 6(t). The axis n(t)



and angle 0(t) are directly related to the quaternion parameters (4):
6

y^t) = nx(fc) sin0(t)/2 

y2(t) = ny(t) sinQ(t)/2 

yQ(t) - n (t) sin0(tl/2 

y^(t) = cos9(t)/2

(2.11)

Euler's Theorem states that achievable with a constant
axis of rotation (n(t) = n(0))• If n is not a function of time, then the 
attitude of V is a function of 6(t) only. Additionally, if V is con
strained to rotate just about n, then since

'y5‘

^6 = *0n (2.12)

equation (2.8) reduces to

where (6)

0*(t)  = m(t)/l 
n (2.13)

(2.14)

If indeed n is constant, then since V is asymmetric the total control 
must be given by

where

u(t) = ur(t)n + Hc(t) (2.15)

u (t) = m(t)/lr n
u^(t) = - 1/2—c

®5y6y7
g6y7y5
g7y5y6

(2.16)

(2.16a)
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I.e. u^Ct) is just that constraint torque which negates inertial cross
coupling. The component of u^(t) along u^n is given by

g5y6y7

(t) = - 1/2 (sign^-u^jn

^87y5y6_

e 2a(t) = -3 sign (u ) 6 n n n (g +g,+g )/2 J- X, jf <4 3 v / (2.17)

Note that in two important cases, cl = 0: V has at least one axis of sym
metry (g^+gg+g^= 0); the rotation ^A(t)J doesn't involve all body axes 

(n^n^n^ -- 0). In the general case of asymmetric V and rotations where 
a(t) 0, there is no a priori, knowledge of cc(t); it may be a help or a 

hindrance. Consequently, a reasonable control philosophy would be to 
minimize |uc(t) | .

Select the following counterpart to the cost functional (2.10):

rtfJr = Jo |ur + 1/2 ((g5y6y7)2 + (g6y7y5)2 + (g7y5y6)2 ) 1 2 jdt (2'18)

This will minimize both ur(t) and u^t), although a less stringent (non
quadratic) minimization requirement is placed upon u (t). The reason for 

this will become apparent later. Since V is now constrained to one axis 
of rotation, the system dynamics are given completely by (2.13). Let 

x^ = 9, — 0. Then a restricted problem may be posed: given

and the boundary conditions

xl(0) =x10 (= 2cOS"15'40> 

x2(0) = x1(tf) = x2(tf) = 0

(2.19)

(2.20)
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find u^Ct) such that the functional

f

0
J r

2 2 ) wx. dt

2 (where to =1/2 / , \2 , x2 , ,2 \ 1/2
(gcn n ) + (g,n n ) + (g^n n ) )\ 5 y z o z x °7 x y ) —z

is minimized. The reason for selecting Equation (2.18) is now 

a quadratic performance index has been obtained.

(2.21)

apparent:



CHAPTER III

THE GENERAL OPTIMAL TRAJECTORY 
AND A RESTRICTED CONTROL

Pontryagin’s Minimum Principle (1) will be utilized to obtain solu

tions for both the general and restricted problems. In the general case, 

a set of fourteen first-order nonlinear differential equations will result. 

Since these equations are not easily integrable, numerical solutions for 

specific cases will be obtained in Chapter IV. The restricted problem will 

result in a feedback configuration.

For convenience, combine the plant equations (2.7), (2.8) to obtain 

the standard form y = £ (^,u,t):

0 y7 -y6 y5 0 0 0 "" "o’"

-y7 0 y5 y6 0 0 0 0

y6 -y5 0 y7 0 0 0 0

i = 1/2 "y5 -y6 "y7 0 0 0 0 JZ + 0 (3.1)

0 0 0 0 0 85y7 0 U5

0 0 0 0 0 0 g6y5 U6

0 0 0 0 g7y6 0 0 _T U7_

Equation (3. 1) together with the cost functional (2. 10) may be used to

develop the state function of Pontryagin: •

T r I T r "i~ + |_1J ( [Ij H) (3.2)

9



10

By substitution, H is given by

H = 1/2 \(y7y2- y6y3+ y5y4)

+ 1/2 X2(" y7yl+ y5y3+

+ 1/2 X3(y6yl" y5y2+ y7y4)

+ 1/2 X4(‘ y5yl‘ y6y2" y7y3}

+ 1/2 x5(g5y7y6) + X5u5

+ 1/2 x6(g6y5y7) + x6u6

+ 1/2 x7(g7y6y5) + x7u7

(3.3)

The optimal control u°(t) must satisfy

dH(^,u,X,t) = Q (34)

du " • •

From (3.3), this condition is met if

u° = - 1/2 Xjl2
5 5 x

u° = - 1/2 X6/? 0.5)

u° = - 1/2 x7/l2
7 7 z

The optimal Pontryagin state function may now be obtained:

HO(£,X,t) - XTf [y,u0(_y,X,t) ,t J

+ ( [l] u°)T( [l] u°) (3.6)
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h° = 1/2 x1 (y7y2- y6y3+ y5y4)

+ 1/2 x2 (‘y7yi+ y5y3+

+ 1/2 X3 (y6yr y5y2+ Vt? "

+ V2 X4 (-y^- y6y2-

+ 1/2 X5 (S5y7y6) + 1/2 X6 (86y5y7) + 1/2 X7

- l/li (X2/I2+ X2/!2 + X2/!2) 
5 x 6 y 7 z

The optimal trajectory 5°(t) on [0,tf] must satisfy the differential 

equations

y = dH°
“ — ' (3.8)

X = - 5H°
— (3.9)
djy

Then

0 y7 "y6 y5 0 0 0 0

"y7 0 y5 y6 0 0 0 0

y6 -y5 0 y7 0 0 0 0

y - 1/2 -y5 -y6 -y7 0 0 0 0 2. + 0

0 0 0 0 0 g5y7 0 -1/2X./I2
5 x

0 0 0 0 0 0 86y5 -1/2X,/!2
6 y

0 0 0 0 g7y6 0 ■0 -1/2X7/I2
7 z

(3.10)
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0 -y7 y6 -y5 0 0 0

y7 0 -y5 -y6 0 0 0

-y6 y5 0 -y7 0 0 0

X = 1/2 y5 y6 y7 • 0 0 0 0 X (3.11)

y4 y3 -y2 ‘yl 0 g6y7 g7y6

"y3 y4 yl -y2 g5y7 0 g7y5

y2 "yl y4 -y3 g5y6 g6y5 0

Equations (2 .4), (2 -5), (2.9) provide the boundary conditions

2(0) = Ey10,y20,y30,y40,0, 0, 0] T (3.12)

2(tf)= Eo, 0, 0, 1, 0, 0, 0 ] T

Equations (3.10) - (3.12) completely specify the solution to the general 

problem. A numerical solution to this system will be developed in 

Section IV.

Vc Vi*

The (linear) restricted problem given by (2.19) - (2.21) is much 

simpler, and by application of the same technique will yield a closed- 

form solution. Proceeding in the same manner, form

2 2 2H (2S> ur, = Pix2+ P2Ur+ Ur+ W X2 (3.13)

The optimal control again must satisfy (3.4):

u° = - P2/2 (3.14)
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Then

= p1x2-p|/4+co2X2 (3.15)

and from (3.8), (3.9) the optimal trajectory x°(t) is specified by

together with the boundary conditions (2.20).
2Consider the case where oj = 0 (V is fully symmetric or n is colinear

with one of the body axes b , b , b ). Then: J _X> —y! —g.

u°(t) = 12x1Qt/t| - 6x10/t2 (3.18)

or the optimal control is just a ramp, symmetric about t^/2.
2

When cd 0,

P^t) P10 

e 2x2(t) = P^q/2 + x2(t)

Applying the Laplace Transform results in

X (s) = P10 - P20
Z 9 > 9 7

2s(s -CD ) 2(s -co )

The inverse transformation gives

x (t) = p10 coshcot - P20 sinhcot - P10
2 2 2

2co 2co . 2co 

(3.19)

(3.20)

(3.21)

(3.22)
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where

 32o) x1A sinhcot,.P10 = _____ ____________ f____________ (3.23)
(Dtf sinhcot^ - 2 (coshojt^ - 1) 

2 2co x (coshcot, - 1) ..P2o - _________19_________f (3.24)
cotf sinhcot^ - 2 (coshcot- 1)

Then, since x^ = Jx^dt,

x^(t) = ^IQ sinhcot - £2£ coshcot - ^10 t 
" " 2co3 2co2 2co2

+ £20 + Xio (3 25)

2co

Note that from (3.17),

p2(t) = -2x2(t) = - p^gsinhcot + p^coshcot (3.26)

co

Then from (3.25)

P2(t) = -2co x1(t) + p(t) (3.27)

where

2P(t) = -p1Qt + 2(0 x1() + p2() (3.28)

This is equivalent to the following configuration:
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(The necessary corrective acceleration for cross-coupling has been 

neglected. It takes the form of a nonlinear feedback element). In 

Chapter IV, the control history associated with this configuration 

(including u^ ) will be compared to that achieved by the general optimal 

control.



CHAPTER IV

NUMERICAL RESULTS

The solution to the general problem is now stated in the form of a

nonlinear differential equation with initial and terminal conditions on.

seven of the (state) variables specified. Since initial conditions on the

remaining (costate) variables are unknown, a numerical solution is called

program which permits iterativecomputer

solution of this type of problem. The technique is that of the generalized

correct initial conditions (y/0) is of course known), then successive im-

(10):provements are obtained from the following algorithm

(4.1)

where £ is the r.h.s. of equation (3.11) and

(4.2)
N

N

(4.1) isare detailed in Appendix A. The linearThe elements of set

(8). conditionssolved by superposition of particular solutions Necessary

interesting to note that by inspection at least one known sufficiency condi

tion (10) is not met:

e • T^N+k

d(f, £)T

d(^, A)t

for. Childs (8) has developed a

Newton-Raphson operator (9), wherein the nonlinear problem is transformed

to a sequence of linear problems. If ■*- s Nth approximation of the

for the convergence of the sequence j—J are not known (10). It is 

N

16
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rij )n > °’ (413)

Regardless of (4.3), convergence was obtained for the example cases below.

The three cases chosen to illustrate the application of this approach 

(and to obtain a comparison with the restricted problem) are summarized in 

Appendix B. Appendix C contains tabulated time histories of for each 

case.

Case I is a physically uninteresting case chosen to illustrate the 

accuracy of the program for this particular problem. No real attempt to 

achieve ultimate accuracy was made; the run was simply terminated after 

ten iterations. Case I represents a fully symmetric V. For this case, 

the general optimal control coincides with the restricted control (a single 

rotation about n), since no cross-coupling is present. The closed-form 

solution for this case is given by (3.18). Figure 2 below illustrates the 

fact that the closed-form solution coincides almost exactly with computed 

values of control acceleration. In the absence of cross-coupling, then, 

excellent convergence is obtained.

In Case II, V has one axis of inertial symmetry (b ). Since the 

cross-coupling accelerations are symmetric about t^/2 for the restricted 

problem, as would be expected the controls are symmetric about t^/2. Note 

that the restricted control acceleration x^n+u^, has maximum degradation at 

the endpoints of the trajectory. Also, greater differences with the gen

eral solution u° occur for the b , b axes, an undesirable situation
— —y ’ —z

because of the larger inertias associated with these axes. (We have pre

sumed in the development that for the ith" body axis fuel consumption ~ I^u^) .



Figure 2, Case I Control Acceleration vs. Time. (All Axes)
Co

nt
ro

l 
Ac

ce
le

ra
ti

on
 (

ra
d/

se
c

18



Figure 3e Case II Control Acceleration vs. Time (b^ Axis)
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Figure 4. Case II Control Acceleration vs. Time (b Axis)
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The b control for the restricted problem (x°n +u ) falls closer to
—x 2 x ex

optimal (u°), since cross-coupling is not present in this axis.

The most general case, Case III, involves a completely asymmetric V.

We see that again, the restricted problem yields reasonable results when 

compared to the general problem. As in Case II, maximum degradation 

.occurs at the endpoints of the trajectory.



Figure 6. Case III Control Acceleration vs. Time (b Axis)
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Figure 7. Case III Control Acceleration vs. Time (b Axis)
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Figure 8. Case III Control Acceleration vs. Time (b Axis)
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CHAPTER V

CONCLUSIONS

Two main results are presented in this paper. First, a technique is 

developed which permits numerical determination of the fuel optimal control 

for reorientation of an asymmetric vehicle. This technique could prove use

ful in the design of attitude control systems. Since it provides realistic 

information as to the actual fuel optimal control, comparisons can be made to 

implementable systems as an integral part of the design process. The second 

result of the paper is to demonstrate a simple system whose control will 

produce fuel usage close to that obtained by the optimal control. For 

three specific sets of initial conditions and mass properties, the resul

tant fuel consumption was shown to be reasonably close to the general 

optimal. Better results might be possible if a more judicious selection
2of the weighting parameter co is made.

It should be noted that the convergence characteristics of the Newton- 

Raphson approach are limited for this problem. For example, the author 

has attempted to attain a convergent result for the physically interesting 

case of a dumbbell inertia configuration (g^ = 0., g^ = ., g^ = .)

with no success. It appears that as the inertial cross-coupling terms 

become significant in the Jacobian matrix , instability results. It 

should be emphasized that this is only a tentative judgement. The author 

is continuing with work in this area, and some result may yet be obtained. 

It is possible that an indirect method such as the gradient technique 

would yield better results, since a fairly good estimate of the general 

fuel optimal control is available from the restricted problem.

26



27

BIBLIOGRAPHY

(1) Schultz, D. G. and Melsa, J. L., State Functions and Linear Control
Systems, McGraw-Hill, 1967.

(2) Athans, M. and Debs, Atif S., "On the Optimal Angular Velocity
Control of Asymmetrical Space Vehicles", IEEE Transactions 
on Automatic Control, Vol. AC-14, No. 1, p. 80, February 1969.

(3) Sabroff, A. E., "Advanced Spacecraft Stabilization and Control
Techniques", Journal of Spacecraft and Rockets, Vol. 5, No.
12, pp. 1377-1393, December 1968.

(4) Ickes, B. P., "A New Method for Performing Digital Control System
Attitude Computations Using Quaternions", Paper 68-825, AIAA, 
1968.

(5) Roberson, R. E., "Kinematical Equations for Bodies Whose Rotation
is Described by the Euler-Rodrigues Parameters", AIAA Journal 
Vol. 6, No. 5, pp. 916-917, May 1968.

(6) Goldstein, Herbert, Classical Mechanics, Addison-Wesley, 1950.

(7) Whittaker, E. T., Analytical Dynamics, Dover Publications, 1944.

(8) Childs, B., et al., A User's Manual for QUASI, Report RE7-69,
Project THEMIS, ONR Contract N00014-68-A-0151, University 
of Houston, August 1969.

(9) McGill, R. and Kenneth, P. "Solution of Variational Problems by
Means of a Generalized.Newton-Raphson Operator", AIAA Journal, 
Vol. 2, No. 10, pp. 1761-1766', October 1964.

(10) Greensite, A. L., Analysis and Design of Space Vehicle Flight
Control Systems, Volume IX- Optimization Methods, NASA 
CR-828, July 1967.



1/2

0 y7 -y6 y5 y4 -y3 y2 0 0 0 0 0 0 0

-y7 0 y5 y6 y3 y4 -yl 0 0 0 0 0 0 0

y6 -y5 0 y7 -y2 yl y4 0 0 0 0 0 0 0

-y5 "y6 "y7 0 -yl -y2 -y3 0 0 0 0 0 0 0 ELEI

0 0 0 0 0 85y7 g5X6 0 0 0 0 -l/(2l2) 0 0
6
2 
H 
CO

0 0 0 0 0 0 0 0 0 0 0 0 -l/(2l2) 0 O

H >
Ti0 0 0 0 g7y6 0 0 0 0 0 0 0 0 -1/(2I2) 

z
M 13

M
C-, Z
> o
n h0 0 0 0 X4 "X3 X2 0 y7 -y6 y5 0 0 0 o X
to
H S>

0 0 0 0 X3 X4 -X1 -y7 0 y5 y6 0 0 0

AN MATH

0 0 0 0 -X2 X1 X4 y6 -y5 0 y7 0 0 0 X

0

XA

-X3

X2

0

X3

X4

-X1

0

"X2

X1

X4

0

-X1

-X2

-X3

-X1 

0

-g7X7

"86X6

-x2

■g7X7

0

-g5X5

-x3

-g6X6

"g5X5

0

-y.5

"y4

y3

-y2

-76

-y3

"y4

yl

-y7

y2

-yl

"y4

0

yl'

y2

y3

0

0

-g5y7

"g5y6

0

-g7y7

0

-g6y5

0

-g7y6

-g7y5

0

00



APPENDIX B

SUMMARY OF CASES

The initial and terminal conditions on the state vectors were the 

same for all cases:

T ^(O) = [.4085, .4085, .4085, .70711, 0., 0., 0.] 

2(tf) = [0., 0., 0., 1., 0., 0., 0.]T 

x(0) = [tt/2, 0.]T 

x(tf) = [0., 0.]T

Also, for the restricted solutions in all cases

n = 1/ V3 [1., 1., l.]T

The remaining parameters of interest are summarized below:

Case 
No.

I
X

I 
y

i z 0Q
 

C
O

 
0Q

«x
j 

O
' 

U
n

2 
to I n

I 1.0 0. 0. 1.0000
1.0 0.
1.0 0.

II 1.0 0.
1.2 .33333 .13608 1.1333
1.2 -.33333

III 1.0 -.20000
1.1 .36364 .12910 1.1000
1.2 -.16667
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APPENDIX C

TABULATED NUMERICAL RESULTS

Time ^i ^2 y3 y4 y5 y6 y7

Case I: 0. .40825 .40825 .40825 .70711 0. 0. 0.
2. .37365 .37365 .37365 .76235 -.08732 -.08732 -.08732
4. .28132 .28132 .28132 .87326 -.13097 -.13097 -.13097
6. .15749 .15749 .15749 .96208 -.13097 -.13097 -.13097
8. .04694 .04694 .04694 .99669 -.08730 -.08730 -.08730.

10. -.00005 -.00005 -.00005 1.00000 .00004 .00004 .00004

Case II: 0. .40825 .40825 .40825 .70711 0. 0. 0.
2. .37486 .37120 .37491 .76233 -.08860 -.09133 -.08317
4. . .28399 .27509 .28491 .87322 -.13309 -.13195 -.12791
6. .15963 .15131 .16146 .96206 -.13307 -.'12790 -.02372
8. .04763 .04456 .04858 .99669 -.08855 -.08314 -.06850

10. -.00001 .00002 -.00015 1.00000 .00007 .00005 .00000

Case III 0. .40825 .40825- .40825 ,70711 0. 0. 0.
2. .37569 .37173 .37354 .76233 -.08625 . -.09113 ! -.08432"
4. .28632 .27614 .28152 .87322 -.13147 -.13332 -.12816
6. .16217 .15201 .15822 .96206 -.13386 -.12890 -.13017
8. .04867 .04473 .04737 .99669 -.09035 -.08349 -.08799

10. -.00003 .00001 -.00013 1.00000 .00005 .00006 .00000


