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ABSTRACT

This thesis is an exposition of approximation tech

niques on irrational and transcendental functions. Continued 

fractions are used for approximating the irrational and 

transcendental functions. A new general matrix is then de

veloped for the inversion of the continued fractions. Two 

digital computer programs for the expansion and the inversion 

are included.
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CHAPTER I

INTRODUCTION

Control engineers often encounter a large number 

of control systems which involve distributed parameters. 

Thermal processes, hole diffusion of transistors, elec

tromagnetic devices and transportation lags are typical 
12 3examples. ' ' Correspondingly, the mathematical de

scriptions in the Laplace transform domain for these 

elements usually contain the operator s under the radical 

sign or other irrational or transcendental functions. To 

analyze or synthesize an isolated irrational transfer 

function is not particularly difficult; however, when 

the element in question is represented by an irrational 

function in a closed loop system, the problem becomes very 

complicated. Historically, the first irrational transfer
4 

function in engineering was noticed by Heaviside. He 

observed that the impedance of an infinite RC cable is
1

js* . Subsequently, many kinds of irrational or transcen

dental functions have been derived from physical mathema-
5 

tical models. Some typical ones are listed as follows:
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If any one of these functions is contained in a 

closed loop system, the analysis is indeed quite tedious. 

One popular method of attacking the problem has been to 

approximate the irrational function by a rational one.

A fundamental approach utilizing this technique has been 

to replace the irrational transfer function by a ratio of 

two polynomials. The historical developments of this 

approach will be reviewed first.

The Method Based on the Logarithmic Potential. 

Lerner® used a method for constructing the broad-band im

pedance which is similar to potential analog approximation 

methods. He found that a finite array of alternating 

poles and zeros placed along the negative real axis in the 

complex frequency plane produces a good approximation.
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The Method Based on a Regular Newton's Process.
7

The main contributors are Carlson and Halijak. Their 

approximation is to predistort the algebraic expression 

f(s) = sn - a = 0. The resulting approximation in real 

variables has the unique property of preserving upper and 

lower approximations to the nth root of the real number a. 

By using this regular Newton's process, they generate 

rational functions for the approximation.
■ 8The Method Based on Pade's Approximation. Stewart 

perhaps was the first to generalize the well known Pade's 

approximation by minimizing the magnitude of the complex 

error phasor in the steady state. He found the particular 

case of the Taylor approximation about zero frequency to be 

equivalent to the Taylor approximation in terms of the com

plex variable.

The Method Based on Substitution. Kilomeitseva and
q

Netushil conceived a novel approach to this problem. They 

substituted J's", by p. An irrational transfer function of 

s then becomes a rational one of p. The regular Heaviside 

expansion is performed on the new transfer function, and 

the inverse process is taken by using certain typical 

irrational function tables.

In reviewing the methods mentioned above, one finds 

that the first is for driving point impedance approximation 

only, while the second method is limited to fractional 
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capacitors. The third method has a very poor result for 

the transport lag case whereas the fourth method is re

stricted to radical functions only.

It is highly desirable that a unified approximation 

technique be developed by which most irrational functions 

can be treated in a simple manner. In addition, this ap

proach should be digital computer-oriented.



CHAPTER II

GENERAL CONSIDERATIONS OF FUNCTION EXPANSION

To approximate an irrational function by a rational

involves two steps:one generally

To expand the function into a convergent1.

series.

To approximate the series by the first2. few

dominant terms.

can expand the exponential functionFor example, one

into a Maclaurin series:

(1)

also first rewrite the function into a

Then expand the numerator and denominator into two series

and then take the dominant parts.

(2)

-TS e

-TS e

One can
. . 10fraction

-TS e

T 
"2s e

T
7s e

2 2 3 3
1 - TS + +i ib + 2,, 3/ + . . .

and take the first few terms as the approximation.

, T ,127 S
1 + 2s + 2/

1 - Ts +
-TS 2e =--------------

2 3
-) 2 fT.

S 13> S
T"! 3.1

m 2 m 3
s3

3 /



Fade's method can be derived from Equation (2), and the 

result is somewhat better than that obtained from Equa

tion (1) .

6

Analogously, the method developed in this thesis 

can also be described by two steps:

1. To expand the function into a continued 

fraction.

2. To truncate the fraction and discard unim

portant parts.

For example, following Auslander's approach,one can use 

the differentiation technique to expand the exponential 

function as the following continued fraction:

a-TS _ 1
6 TSI1 + ----------------------IE----------------------------------

1 + TS____________________
-2+ _________ TS__________________
TS(3)

If the parts appearing in the lower positions are discarded, 

one has the following familiar approximations:

—TS ~ 1e = j™+" -Tg i if only one element is taken;
(4)

„ 2 - TS
or = 2 + TS' only two elements are considered, 

etc.
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The accuracy of an approximation depends on where 

we truncate the function, of course. In general, if more 

terms are taken, a better result can be obtained. In view 

of the availability of high speed, large capacity digital 

computers, one can take as many elements as desired. How

ever, two new problems arise:

1. Expanding an irrational function becomes 

increasingly tedious.

2. The inversion process by which one can change 

the truncated continued fraction into a 

rational fraction becomes very laborious.

If a digital computer is used and a more accurate approxi

mation desired, the foregoing two fundamental problems 

must be solved. This thesis will develop a new approach 

to solving these problems one by one:

1. An algorithm will be developed for the con

tinued fraction expansion and a matrix for 

performing the reverse process will be given.

2. The technique will be applied to some daily 

encountered irrational and transcendental 

functions.

3. An analysis of a closed loop system with an 

irrational function will be shown by using 

the approximate transfer functions.
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4. Several tables with various degrees of ap

proximations for the general often used 

irrational and transcendental functions will 

be worked out and presented as an appendix.



CHAPTER III

CONTINUED FRACTION EXPANSION

Among the numerous forms of continued fraction 
12 13expansions, ' the following one will be chosen and

used as a standard form:

According to Lerner’s theory, if the poles and zeros are 

alternately distributed, a good approximation can be 

achieved. Therefore, the continued fraction (5) usually 

gives a satisfactory solution.

The next problem we are facing is that if an irra

tional or a transcendental function is given, how do we 

expand it into the standard form (5)?

There are many techniques available, among which 

Auslander’s differentiation method is a popular one. We 

would rather analyze the problem from a different angle.

Consider, for example, a given irrational function 
3 r's. Its continued fraction form is required. Expanding

3 /—the irrational function s into Taylor series about 1, 

we have:
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1
3a/T-= I1 + (s-1)] 3

2 3 4, s-1 (s-l)z , 5(s-l)J 10(s-ir ,
3 9 si “ m -*-•••

(6)
3 /----Assume that s can be expanded into the following con

tinued fraction:

(7)

where h^ are undetermined constants.

Equating (6) and (7), we obtain

2 3. , s-1 (s-1)2 , 5(s-l)J  u , (s-1)
3 9 81 * * * ~ 0 + , (s-1)

(8)

Let s=l, hg is immediately found; or hg=l. Substituting 

hg into (8), we rewrite
Js-rT (s-l'T, 5 (s-1 A _ Is-tT

3 " 9 “81 * * * . , ' (s-1)
1 h2 + _^1)

(8a)
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1 - l(s-l) + Ijls-l)2... 1 h2 +

(8b)

Again, setting s=l, we have h1=3. Repeating these pro

cesses give
9 4

h2 = h3 = 2' h4 = 5 * * *

Consequently, the complete expansion has been obtained.

(10)

It is interesting to note that the procedure we just 

developed is very similar to that of Heaviside's partial 

fraction expansion. If we desire to expand a transcendental 

function into a continued fraction expansion, the same 

technique can be used. For example, assume

_S  . , se = hn + -----------------------------------------------0 . , s
1 h, + ____ 5_____________ I11’

h3 +

We can easily rewrite the left hand side of (11) into a 

series:
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1 + s + + + s_ +

(12)

Setting s=0, we have hg=l. Then a similar procedure is 

used and the result is found as follows:

es = 1 + ----------------------- =-------------
1 + ------------------- _s---------

-2 + -------------s-------
-3 + ------- -—

2 + —-
(13)

In control systems studies, some particular irra

tional functions are usually of interest. The following 

examples are well known.

(i) V s

(ii) / s+1
— (14)

(iii) iJ s +1
(iv) //s2 + 1

These functions can be considered as special forms of ,/s+k. 

If we want to approximate this function by a continued 

fraction, a somewhat simpler technique can be applied.

Let ,7 s+k = B
2 (15)

or s + k = B .



Adding B to both sides, we have s+k+B = B(l+B).

Rewriting gives

t>  s+k+B
B “ 1+B —

 l+B+s+(k-l) 
1+B

 t , s+(k-l)
X 1+B

or

= 1 + TTb—

Continually substituting (15a) into (15b), we obtain

1
2+-----------
2+-------

2+—
2+

s+k = 1 s+(k-l)
1+1+______s+(k~1)

1+B

s+(k-1)__________________
s+(k-1) 

s+(k-l) 
s+(k-l)

s+(k-1)

If k=0. Equation (16) becomes

s = 1 + s-1
2+--------

2+—
2+

s-1
s-1
s-1

13

(15a)

(15b)

(16)

(17)
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If k=l. Equation (16) is reduced to

s
s

(18)

The third function of (14) is easily seen to be

il s +1 = 2 + s-1

(19)

Replacing s by s , into (16), and letting k=l, we have

(20)

The methods we developed so far are better than the 

existing techniques; however, they are still not suitable 

for digital computers. If high accuracy is desired, we have 

to take more elements. Then to find certain algorithms for 

performing the expansion process is not only highly desira

ble but more important. We will, based on the principles 

of this section, present an algorithm in the next chapter.



CHAPTER IV

EXPANSION BY ROUTH'S ALGORITHM

Expanding a ratio of two polynomials into a conti

nued fraction by using Routh's algorithm was first done by 
15 12Frank and later developed by Wall. However, they re

strict themselves to Stieltjes' form and to Cauer's first 

form. Neither formulation can be used in a low pass filter 

transfer function. Thus, their forms and algorithms cannot 

be applied in expanding a ratio of two polynomials or an 

irrational function into a continued fraction like (5).

We will develop a new algorithm so .that not only 

can a ratio of two polynomials be converted, but also an 

irrational function can be easily expanded into a continued 

fraction.

For deriving the algorithm, we consider the following 

transfer function:

g2 (s)
F(s) = .gi(s)

Ad + Ao „ iSn"2 +-------- + A01
 2 , n 2 , n-1___________________ 21 (21)

An T..L-iSn + a, „Sn-1 +-------- + A,,l,n+l l,n 11

First, rearrange the polynomial of (21) into ascend

ing order.
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g9 (s)
F(s) = gy^s)

A21 + A22S + A23S + - + A2/nS

A11 + A12S + A13s2 + ---- + Al,n+lSn (21a)

It will be shown that since most daily encountered control

systems act as low pass filters, the truncated continued

function obtained after this rearrangement gives excellent

F(s)

approximation. Performing synthetic division on (21a) gives

A11
A21 2

Ann + AqqS + +*• fa* fa* o

___________ 1 _______ • • • •
A21A12 ~ A11A22 A21A13 " A11A23 c2

A21

+ a9 nsn-12 ,n

1 
2 3

A11 A31S + A32S + A33S + 
a + o
A21 A-, + A99S + A97S + -----XX X fa* fa* o

A11
A21

:.............. ...................................... 1...........................................
. + ■ s2 ....................................

A21 A21 A41S + A42S +
A31 + A31 + A32S + ---- (21b)
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It is seen that the manipulation of A3jrA32'----- and A4j

A^2 ----- can be written in the following formula:

A = a Aj-1'1 Aj-l,k+l j = 3,4,-----n+1
j,k j-2,k+l Aj-l,l k = 1,2,— (22)

and A
hn = A^-----  P = 1'2'3----- (23)

P A(p+l),l

If the coefficients of g^^Cs) and g2(s) in (21a) are arranged 

in the first row and the second row respectively of the Routh 

array Formula (22) coincides with the traditional method 

for evaluating the elements of the Routh Array.There

fore, the continued fraction expansion can be simplified

by the Routh Algorithm as follows:

b A11 A, ,
H1 ~ A ’ 11 

21 ,
A12 A13 A14

A21 A22 A23 A24

K _ A21 „ _ A21A12~A11A22 A A21A13~A11A23
2 A31 ’ 31 A21 h32 A21

h3
A31
A41 A42 “ ■A41 = '

A23A31~A21A33
A31

A22A31~A32A21
A31

-- (24)

Clearly, the elements of continued fraction (5), h^, may be 

obtained by the quotients of members of the first column 

in Routh's array.
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 (25)

An alternate algorithm which is somewhat simpler 

than the regular one is developed as follows. First,

identify the rows of Routh's array with

A11 A12 A13 a14— gjts)

A21 A22 A23 A24"~" *- g2(s) (26)

A31 A32 A33 A34 *-g3(s)

gj(s), g2(s),-----and respectively, as indicated.

Expanding gives

• 1.....................
h + sg3(s)

.92(s)...........
1

h +--------- - --------- ----------1 S g4(s)
h + --------- -—---------

2 g3(s)
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then

g1(s) = h1g2(s) + sg3(s)

g2(s) = h2g3(s) + sg4(s) (27)

g3(s) = h3g4(s) + sg5(s)

Two general formulas can be written as

9m(s! = hm 9m+l|s) + s 9m+2(s)

and h = (28)
m Am+l,l

m=l ,2,3------

where m is the nth row of the Routh Array. The details

of applying the algorithm are:
A11

1. Find h, = .
x a21

2. Each element in row 2 of the Routh array is

multiplied by h^ to form a new row (2a).

3. Subtract the new row (2a) from row 1 forming

row (2b).

4. Shift all elements of row (2b) one column

left, dropping the zero first element to form

row 3.
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A numerical example is given for illustrating the 

above steps.

Row 1 720 702 71 1 -—gj^ts)
. _ 720
hl 360 2

Row 2 360 171 10 0 g2 (s)

Row (2a) 720 342 20 0

Row (2b) 0 360 51 1

Row 3 360 . 51 1 — g3(s)

How does one apply this algorithm in a practical

problem? Consider the following transfer function:

2 _ 360 + 171s + 10sz (29)r (  J " vj- ■■■
720 + 702s + 71s* + 3 s

and find its continued fraction.

Recognize the coefficients and substitute into (26) ,

and we have

hl =
= 720 = , 720 702

360 360 171

71 1 -_g1(s)

10 «e-g2(s)

Using (28) yields

g3(s) = i (gl^s^ - hig2(s)

b 360 - 1
n2 360 1

) = 2
360 + 51s + s
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g4(s) = ^g2(s) - h2g3(s^) = 120 + 9s

, 360  
3 12 0

gs(s) = [g3(s) - h3g4(s)] = 24 + s

H 120 - Rh4----- 2"4 " 5

g6(s) = i [g4(s) " h495(s))' = 4

H 24 ,Hr- = —j- = 6□ 4

g7(s) = I lg5(s) ~ h5g6(s)) = 1

h6 = I = 4

Finally, the required continued fraction is obtained.

F(s) 

Based on the new algorithm, a digital computer pro

gram has been written. The input nomenclature are listed 

as follows:

ND = the total terms of the first row of the Routh

Array.

A(l)-----A(ND) = the numbers of the first row of the

Routh Array.
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NN = the total terms of the second row of the Routh 

Array, where NN is equal to ND or ND-1.

B(l)-----A(NN) = the numbers of the second row of the

Routh Array.

We read the results h(l)-----h(ND+NN-l) from the output of

the computer. These values are the required quotients of 

the continued fraction. The program is printed on the 

next page.
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C MAIN PROGRAM BEGINS HERE
DIMENSION A(200)»B(200)>H(500) 

1000 READ(5,50D ND , ( A ( I ) , I =1 »ND ) 
READ(5,50D NN»(B(I)♦!=!»NN) 

501 FORMAT!I5/(5F16.6)) 
WRITE(6,601)

601 FORMAT(/5X»12HA(1)•e»A(ND)) 
WRITE(6,602) (A(I)»1=1»ND)

602 FORMAT(//(15X»(6F16•6))) 
WRITE(6,603)

603 FORMAT(/5X♦12HB(1)••eE(NN)) 
WRITE(6,602) (B(I),I=],NN) 
1=0
IF(ND.EO.NN) GO TO 1 
IF(ND.NE.NN+1) GO TO 1000

2 L=L+1
H(L)=A(1)/B(1 ) 
WRITE(6,602) (A(I)»I=1»ND) 
WRITE(6i60A) L,H(L)

604 FORMAT(/2X»2HH(»12»3H) =,E16,6) 
B(ND)=O.
ND=ND-1 
DO 10 I=1»ND 
A(I)=B(I ) 
11=1+1

10 B(I)=A(I1)-B(I1)*H(L) 
1 L=L+1

H(L)=A(1)/B(1) 
WRITE(6,602) (A(I),I=1,ND) 
WRITE(6,604) L»H(L) 
IF(NDoEO.l) GO TO 3 
ND=ND-1

DO 20 1=1,ND 
A(I)=B(T) 
11=1+1

20 B(I)=A(I1)-B(I1)*H(L) 
ND=ND+1 
A(ND)=B(ND) 
GO TO 2

3 WRITE(6,602) B(l) 
GO TO 1000
END
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CHAPTER V

CONTINUED FRACTION INVERSION

It is known that a rational function, when expanded, 

becomes a finite continued fraction, while an irrational 

function would become an infinite one. For convenience, 

write the infinite continued fraction

(30)

in the following form,

h0 + x[hirh2,h3' hk 1

and a finite continued fraction

(30a)

(31)

in the following expression:

h0 + xlhl,h2z hk] Ola)
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The general approximation technique is to truncate an in

finite continued fraction into a finite one. Then change 

the latter into a ratio of two polynomials:

g9 (x^hp^h^h^,-----h.)h h ' b - h\-- (32)
g^ (x,h0,h1,h2/- — h^.)

To convert a truncated continued fraction (31) into 

a ratio of two polynomials, or transfer function (32) is 

called the inversion of continued fraction.

The inversion process seems to be very simple and 

straightforward; however, when k is high, the operations 

become very laborious. In this section, we will particular

ly develop a matrix and some related algorithms to simplify 

this tedious problem.

Rewrite (21)

f(s) = A2'1 + R22S + a23g2 + — + (33)

h2 + (33a)
h3 + -------------- - ------------------

Al,l + A12S + A13s2 + + Al,n+lsn

and then expand it h
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An alternate form is easily written as.

f (s)

(33b)

Equation (33b) can be represented by the block diagram of 

a physical system shown in Figure 1. If a state space for

mulation is used, the equations in the time domain are 

written as follows:

ho„hn t.2n 1 n

£2 “ ~h2hlzl h4 (h1+h3) z2-h6 (h^^) z3. . • ~h2n ^hl+h3^ zn +r

•-h2n(hl+h3+h5)zn+r

- “h2hlZl h4(hp+h3)z2 h6(hl+h3+h5)Z3----

-h2n(hl+h3+‘--+h2n-l)zn+r

where z^ are state variables and r is the input.
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A corresponding matrix form is

Mi = [H)i I2) + (D)ir

h2hl h4(h1+h3) hg(h1+h3+h5)

(2) It is a state diagram of (35) in the time domain.

where

h2hl h4h1 h6hl

(34)

..,hn h, 2n 1

h2hl h4(h1+h3) h6^hl+h3^ * *,h2n^hl+h3)

h6(hp+hg+hg)

*'eh2n(hi+h3+h5)

(35)

Figure 1 can be interpreted in two ways: (1) It is an equi- 
g2(s)

valent block diagram of -—in the frequency domain; and
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Fig. 1. Block diagram corresponds to continued 
fraction expansion.

Fig. 2. Reduced block diagram corresponds to 
continued fraction expansion.
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expression

det | S [I] (36)

teristic equation of the system, g^(s).

omit the outer feedback and feed forward loopsIf we

in Figure 1 we would obtain a configuration as shown in

Figure 2. corresponding state equation can be writtenA

(h] 2 lzJ 3=
where

3

(37)

1

1

and (38)3

12 n

h4h3

h4h3

h4h3

z4

hg(h3+h5)

h6h3h4h3 h8h3

hg (h3+h5)

hg(hg+hg+h?)

hg(h3+hg)

hg(hg+hg)

hg(hg+hg+h7)

z2

Z3

is the denominator of the transfer function, or the charac-

ty 3

+ . [o] 3

Of course, the determinant of (35), or the following 

* h2n(h3+h5+h7)

* h2nh3

* 1 h2n(h3+h5 ~+h2n-l)

* * h2n(h3+h5)
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The determinant of (37) would give us the elements of the 

third row of Routh's Array, or g^Cs).

After g-^(s) and g^ (s) are found, 92(2) can be 

evaluated by substituting the values of elements of g^(s) 

and g^Cs) into (28).

If (hJjz (.H)3'---- are extended further, the follow

ing general formula is obtained: 

l^m =

^m+l^m ^m+3^m

hm+lhm hm+3hm+hm+ 2 

hm+lhm hm+3 ^hm‘rhm+2^

^m+1^m ^m+ 3 ^m+^m+ 2

* * Jl-l mh h

* • »-l(hm+hm+2)h

* * £-l^ m+hm+2+hm+4^h h (38)

h (h +h o-f------ Fh -ji-1 m m+2 4-2

where m is the required mth row of the Routh Array.

•i. is the total number of rows of the Routh Array, or 

k+1.

Several observations may be made:

(1) The elements in the state matrix LHjm are 

simple combinations of the quotients obtained 

from the continued fraction expansion.

(2) The element appearing in a position lower than 

the diagonal has the same value as the element 

at the diagonal.



31

(3) The element which appeared in the upper dia

gonal can be expressed in terms of quotients 

in a very regular way.

(4) ^m matrix is a negative square matrix. The

dimension of ^2^ x (When

SL is odd, m should be odd also; when is 

even, m should be even).

For illustrating the procedure of inversion, consi

der the examples.

Given: the first column of Routh's Array:

Ah = 720

A21 = 360

Ag i = 360
A41 =' 120 (39)

A51 = 24

A61 = 4

A71 = 1

Find: the first two rows of Routh's Array.

From the given information, we have

SL = 7

and h^ = 2,

h2 = 1,

h3 = 3' (40)

h4 = 5,

h5 = 6,

h6 = 4.
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If the first row is required, taking m=l, and substituting

(40) into (38), we have

h2hl h4hl h,-h o 1

= - h2hl h4(h1+h3) h6< hi+h3)

, h2hl h4(h1+h3) h6< hl+h3+h5^

’ 2 10 8

= — 2 25 20

2 25 44.

Then g^ (s) is found by evaluating the characteristic equa

tion.

, _ 9 o
g1(s) = det | S (I] - [Hj J = 720 + 702S + 71S + S

(41)

The third row is found in a similar way, or

15 12'

15 36

}9
= 360 + 51S + S (42)
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By substituting (41) and (42) into (28) , we find

2 
g2(s) = 360 + 171S + 10S .

g^(s) and g2(s) are the required first two rows of the

Routh Array.

Example 2

Given: the first column of Routh's Array.

Ah = 720

A21 = 720

A31 = 360

A41 = 360

A., = 120 (43)
31

R61 = 24

a71 = 4

A81 = 1

Find: the first two rows of Routh's Array.

In this example, we have

1 = 8

and h^ = 1

h2 = 2

h3 = !

h4 = 3 (44)

h5 = 5

hc = 6 o
h? = 4
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If the first rovz is required, taking m=2, and substituting

(4 4) into (38) , we have

h-.h« ht-h

to 2 = " h3h2 h5(h-2+h4)

h3h2 h5(h2+h4^

h7h2

h7(h2+h4)

h7(h2+h4+h6)

2 10

= - 2 25

2 25

8

20

44

Then g2(s) is found by evaluating the characteristic equa

tion

g2(s) = det{ S[I] - LHJ 2

2 3= 720 + 702S + 71S + S (45)

Secondly, let m=4, we have

(H)4 -
h^h4

h5h4

h7h4

^7^4+^6

15 

15

g4(s) = det j S [I] - [H] 4J

2 = 360 + 51S + S
(46)
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By substituting (45) and (46) into (28), we find

g1(s) = 720 + 1062S + 242S2+ IIS3

Functions gj(s) and 92(5) are the required rows of the 

Routh Array.
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CHAPTER VI

INVERSION OF THE ROUTH ARRAY BY DIGITAL COMPUTER

Let us summarize the nature of [Hl from the calcu- u J m 
lation viewpoint.

(1) M matrix is a negative square matrix.
, r .,1 ■ 1 -m „ ft -mThe dimension of (.Hj is x —

When £ is odd, m should be odd; and when 

1 is even, m is even.

(2) Each element of Ih] is the product of two 

elements, A and B. We define A and B:

A (K,P) is an element at K row and P column.

B (K,P) is an element at K row and P column also.

A* (K,P) = h(m+2’p-l)

B (K,P) = B (P,K) and
k

(a) B (K,K) = h(m+2'(j-l))
3=1

= B (P,P)

P
= S h(m+2-(j-l)) , if k=o (47) 

3=1

(b) B (K,P) = B (P,P) if k>p

(c) B (K,P) = B (K,K) if k< p

In order to set up a computer program, the general 

formula (28) should be translated into a computer oriented 

form.
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Let us define Am = det S £l] - LH]m^

Am+2 = M St11 - l-HJm+2i

(48)

(49)

Al,l 
jt,l h1h2---- ht_1 (50)

h = -—Pii—, p = if2-----Cfi-D, and h * 0 (51)
P A(p+l),l P

where m is the mth row of the Routh Array

JL is the total rows of the Routh Array 

or the total given quotients of the continued 

fraction plus one.

L is a normalization constant.

The general formulas are written accordingly:

(1) when Ji is odd, m = odd; 1,3,5-----J^-2.

Then gm(s) = L • A m (52)

%+i(s) = 4- -Um - s-Am+2] (S3)
m 2

(2) when £ is even, m = even; 2,4,6---- J2 -2.

Then gm(s) = L m (54)

9m-l(s) “ "K"' ((Vlhm+s,’Am-s^m+2) 
m >

(3) ZXjL= 1, gjz(s) = L, and g<_1(s) = g^ (s/55)

If the inverse process is wanted, we simply substitute 

m=l in (52), (53) when the number of quotients is even. 

When the number of quotients is odd, substitute m=2 into

(54) and (55).
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The required function is then

g2(s) 
f(s) = gi(s)

In performing (48) or (49), we find that the calcu

lation is tedious when the order is high. In order to ob

tain the characteristic equation in a systematic way, we 

form the Newton formula into a matrix form. For clarifi

cation, consider the characteristic equation

det{s[l) - = Sn + A-jS11-1 + A2Sn“2 +-----+ An_1S + An

(56) 

The Newton formulas are written as follows:

Ai = -T,

A2 = -|(A1T1 + T2)

. . . (57)

A„ = --(A 1T1 + A OTO + ----- + AnT , + T )n n n-1 1 n-2 2 1 n-1 n'

where Tj = Trace £h] j = 1,2,---- n

Equation (57) in matrix form is:
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A1
f

1

2A2 A1 1

3A3 A2 A1

• • A2

• • •

nA A n A nn n-1 n-2

(58)

Equation (58) can be considered as a series of algorithmic 

equations and can be solved by computer easily.

Basing on Equations (48)-(58), vze write a digital 

computer program for finding the inversion of the continued 

fraction.

The input symbols are:

NH = Numbers of total quotients.

H(l)---- H(NH) = quotients of the continued fraction
A , 

or the ratio of --------- p=l,2-----
A(p+l),l

NR = How many rows of the Routh Array are required.

M(l)-----M(NR) = Any required rows of the Routh Array.

KS = 1 for inverse of continued fraction.

KS = 0 for inverse of the Routh Array.

AO = 1 if KS = 1.

AO = A(l,l) if KS = 0.

The program is printed in the following pages.
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THE INVERSION OF THE ROUTH ARRAY OR CONTINUED FRACTION
H(1). ,.H(NH) ... QUOTIENTS OF THE CONTINUED FRACTION

.OR. H(J)=R(J,1)/R(J+l.l)
WHERE R(J,K)=THE ROUTH ARRAY

NH... NO. OF TOTAL QUOTIENTS.
NR... HOW MANY ROWS OF THE ROUTH ARE REQUIRED.
KS... =1 FOR CONTINUED FRACTION.
KS... =0 FOR ROl'TH ARRAY
M(1)...M(NR)... AN') REQUIRED ROWS.
AO=1. IF KS=1
AO=R(1»1) IF KS=O

MAIN PROGRAM BEGINS HERE
DIMENSION H(100 ) ,M(100)sF(100)♦HH(40♦40)
DOUBLE PRECISION DA(50} ,DB(50)>DC(50),DD(50) 

1000 READ(5,501) NH»NR»KS»AO
501 FORMAT(3I5,F16.9)

READ(5,502) {H(I)»I-1»NH)
502 FORMAT!5F16,9)

READ!5,503) (M(I),I=1,NR)
503 FORMAT(16I5)

WRITE(6,601) NH.NR.AO
601 FORMAT! //5X,21HNH...NO. OF QUOTI ENTS,13,18H NR...NO. OF ROWS,13

1,7H KS...,39H AO...COEFF, AT 1ST. ROW AND 1ST. COL.,F16.6/)
WRITE(6,602)

602 FORMAT!/9X,34HGIVEN QUOTIENTS H(1),H(2),...H(NH)//)
WRITE(6,603) (H(I),1=1,NH)

603 FORMAT!5X,6F16.6)
WRITE(6,604)

604 FORMAT!/9X,36HTHE REQUIRED ROWS OF THE ROUTH ARRAY//)
WRITE(6,605) (M(I),I=1,NR)

605 FORMAT(3X,10I10) 
N=NH/2
IF (KS.EQ.l) DAO=AO 
IF (KS.EQ.l) GO TO 11 
S= 1. 
DO 10 1=1,NH

10 S=H(I)*S 
DAO=AO/S

11 WRITE(6,610)
610 FORMAT! /20X,43H**..**  . . ..**..**/)

DO 100 IM=1,NR
IF(M(IM).EQ.(MH+1) ) WRITF(6,6O6) M(IM),DAO

606 FORMAT! /1OX.26HTHE REQUIRED COEFF. AT ROW, I 5,5X 21H0F THE ROUTH
1ARRAY IS// 5X,E20.12)
IF(M(IM).GE.(NH+l)) GO TO 100
IF(2*M.NE.NH) GO TO 1
IF! 2<f!M( IM)/2 ) .EO.M! IM) ) GO TO 2
NM=N-(M(IM)-l)/2
MM=M(IM)
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CALL HMAT(NM»MM»H,HH)
CALL CHAR(NM»HH»DA) 
NM1=NM+1 
DO 20

20 DA(I)=DAO*DA(I)
GO TO 3

2
NM=N-(MM~l)/2
CALL HMAT(NM»MM»H»HH)
CALL CHAR(NM»HH,DB)
MM=M( IM) 4-1
NM=N-(MM-D/2
CALL HMAT(NM,MM»H,HH) 
CALL CHAR(NM,HH»DC) 
NMl=NM+2
DC(NM1)=:O-
DO 30 I=2>NM1
11=1-1
M1=M(IM)~1

30 DA(Il)=DAO*(DB(I)—DC(I))/H(M1) 
NM1=NM1-1 
GO TO 3

1 IF(2*(M(IM)/2).NE.MlIM)) GO TO 4 
NM=N-(M(IM)-2)/2 
MM=M(IM) 
CALL HMAT(NM,MM,H,HH) 
CALL CHAR(NM,HH»DA) 
NM1=NM+1
DO 40 I=1»NM1

40 DAI I)=DAO*DA(I)
GO TO 3

4 MM=M(IM)+1
NM=N-(MM-l)/2
CALL HMAT<NM,MM»H,HH)
CALL CHAR(NM,HH»DB)
MM=M(IM)+3
NM=N-(MM-l)/2
CALL HMAT(NM,MM,H,HH)
CALL CHAR(NMtHH,DD)
NMl=NM+2
DDtNMl)=0.
DO 50 I=2»NM1
11=1-1
M1=M(IM)+1

50 DC(Il)=(DB(I)—DD(I))/H(M1) 
NMl=NM+2 
DC(NM1)=O.
DO 60 I=1»NM1

60 DA(I)=DAO*(DB(I)*H(M(IM))+DC(I))
3 DO 70 1=1,NM1

I1=NM1-I+1
DB(I)=DA(Il)

70 F(I)=SMGL(DA(I ))
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V/RITE ( 6 >607 ) M ( IM) » ( DB ( I ) ♦ I = 1 ♦NMl)
607 FORMAT! /10X»26HTHE REQUIRED COEFFe AT ROW*15 ♦5X»22HOF THE ROUTH 

1ARRAY ARE// (5X»5E20.12) )
WRITE(6*610) 

100 CONTINUE
GO TO 1000 
END

SUBROUTINE HMAT(NM*MM*H*HH) 
DIMENSION H(100)*HH(40*40) 
DO 10 I=1»NM 
I2=MM+2*I-1 
DO 10 J=1,NM 
S=0. 
IF(J.GT.I) HH(J*I)=G 
IF(J.GT.I) GO TO 10 
DO 20 K=1*J 
K2=MM+2*(K-1) 

20 S=S+H(K2)
HH(J*I)=-H(I2)*S
G=HH(J*I)

10 CONTINUE
RETURN
END

SUBROUTINE CHAR(NM*HH* DA)
DIMENSION HH(40»40)
DOUBLE PRECISION DA(50)»TR(40)»AA(40>40)*CC(40»40)*S*SS 
DO 10 1=1.NM 
DO 10 J=1»NM 

10 AA(II.J) 
S=0. 
DO 20 I=1,NM 

20 S=AA(I,I)+S 
TR(1)=-S 
DO 30 L=2.NM 
DO 40 1=1.MM 
DO 40 J=1»NM 
CC(I,J)=0. 
DO 40 K=1.NM

40 CC(I*J)=AA(I,K)*HH(K.J)+CC(I.J) 
S=0.
DO 50 1=1.NM 

50 S=CC(I.I)+S 
TR(L)=-S 
DO 60 I=1.NM 
DO 60 J=1.NM 

60 AA(I,J)=CC(I.J) 
30 CONTINUE

DO 70 1=1.MM
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DO 70 J=1»NM
IF(I.EO.J) AA(I»J)=1.
IF(I.EO.J) GO TO 70 
AA(I»J)=0.

70 CONTINUE
DO 80 I=1»NM 
8=0.
DO 90 J=1»NM

90 $=AA(I,J)*TR(J)+S 
SS=S/FLOAT(I) 
11=1+1
DA(Il)=SS
IF(I.EO.NM) GO TO 81
nmi=nm-t
DO 100 K=1»NM1
L=K+I

100 AA(L»K)=SS
80 CONTINUE
81 DA(1)=1.

RETURN 
FND



CHAPTER VII

APPROXIMATIONS OF THE ERROR FUNCTION

Many physical phenomena are the result of the motion 

of material particles due to density gradients. The mathe

matical description of these phenomena requires the use of 

an equation of continuity which accounts for the generation, 

decay, and transport of the material particles under consi

deration. Heat flow, the changing of a transmission line, 

the diffusion of liquids and the flow of mobile charges in 

semiconductors are examples of this type of process.

Consider the non-inductive transmission line, the 

propagation function y , and the characteristic impedance 

Zq are

r = J R(G + CS)

and I------ - -----
2 =; /

0 / G + CS respectively. In the transient

evaluation of this type of problem, an error function or a 

gamma function are usually involved. We can apply the 

techniques developed in this thesis to approach the problem.

For illustration, we consider the function —SjJ s + 1 
first. Based on the technique which is similar to Equation 

(18) of Chapter III, we have the continued fraction expansion
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1 _ 1............................... .1
S f/ s+t .............................................. s

14- -----------------------------°---------------------------
' s............................. (59)

The first, second and third ----- quotients of the continued 

fraction are h^=l, h2=2, hg=2,----  respectively.

When we truncate the continued fraction, it means 

that we approximate the infinite one by a finite one, of 

course. For k=2 as an approximation, we have

1
s

2____ _ , _1
s+2 * s

a
+ 2s (59a)

The time domain curve of (59) is shown in Figure 3. (The 

curve which is indicated by n=2). We see that even k=2, we 

have had a very good approximation to the original standard 

curve.

If k=3, 4 or more, we will obtain different approxi

mations, of course, and if more quotients are taken, better 

results will be obtained.



(even number quotients)
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Figure 3 shows the different approximation when 
kk=2,4,6-----. (These correspond to n^-^- + 1 = 2,3,4----- ).

The comparison of numerical data is listed in Table 1.

On the other hand, if k=3,5,7----- (these correspond
k+1to n=—2~ = 2,3,4-----), we would have the inverse Laplace

transforms shown in Figure 4.
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TABLE I

COMPARISON OF DATA

EXACT APPROXIMATIONS

X 4. 2 1t=x erf (JT) n=2 n=3 n=4 n=5 n=6
0 0 1 0 0 0 0 0 0

0.02 0.0004 0.0226 0.0008 0.0016 0.0024 0.0032 0.0039

0.04 0.0016 0.0451 0.0032 0.0064 0.0095 0.0126 0.0156

0.06 0.0036 0.0676 0.0072 0.0142 0.0211 0.0277 0.0339

0.08 0.0064 0.0901 0.0127 0.0251 0.0369 0.0478 0.0576

0.1 0.01 0.1125 0.0198 0.0388 0.0564 0.0719 0.0851

0.2 0.04 0.2227 0.0769 0.1424 0.1895 0.2172 0.2295

0.3 0.09 0.3286 0.1647 0.2796 0.3319 0.3426 0.3377

0.4 0.16 0.4284 0.2739 0.4178 0.4466 0.4374 0.4292

0.5 0.25 0.5205 0.3935 0.5363 0.5349 0.5215 0.5185

0.6 0.36 0.6039 0.5132 0.6293 0.6096 0.6016 0.6024

0.7 0.49 0.6778 0.6247 0.7007 0.6775 0.6756 0.6775
0.8 0.64 0.7421 0.7219 0.7575 0.7394 0.7409 0.7423
0.9 0.81 0.7969 0.8021 0.8045 0.7941 0.7967 0.7972

1.0 1.0 0.8427 0.8647 0.8445 0.8408 0.8429 0.8428

1.2 1.44 0.9103 0.9439 0.9074 0.9101 0.9105 0.9103

1.3 ■ 1.69 0.9340 0.9659 0.9310 0.9341 0.9341 0.9339

1.4 1.96 0.9523 0.9802 0.9497 0.9526 0.9523 0.9523

1.5 2.25 0.9661 0.9889 0.9642 0.9664 0.9661 0.9661

2 4 0.9953 0.9996 0.9954 0.9953 0.9953 0.9953

3 9 0.9999 1.0000 0.9999 0.9999 0.9999 1.0000





CHAPTER VIII

APPROXIMATION OF —^=

For automatic control systems which, in addition 

the components with lumped parameters, also contain one 

more elements with distributed parameters, the transfer 

function is written in the following form:

w1w2
w = ---1 +

where Wj is a transfer function containing distributed 

parameters. The forms could be and W2 is the element 

involving lumped parameters.

In this chapter, we will approximate this irrational 

function, » by rational functions with different degrees 

(see Figures 5 and 6) and then apply the approximation 

functions to the feedback system.

Now we study the given feedback system of (60):

The transfer functions are defined as

to

or

(60)

1 1 + 0.63 ^s"

w2 = 1
1 + s

Assume that we can approximate (fs- by

___ g2(s) 
' s gj (s)
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Then

w3 =

100_________ ___
g2 (s)

(1 + s) (1 + 0.63-^-T^r-)

100_____________
g2 (s)

(1 + s) (1 + 0.63—-r v) 

100 g1(s)
"(101 + s)g^(s) + 0.63 (1 + s) g2 (s)

And when a unit step input is applied, we easily obtain 

the output

2. e 100S + 1000S + 500C (s) - 2
4.15Stt + 120.45S-5 + 1021.93 S + 505.63S

If a better approximation is used, or let

92 (S) 9S4 + 84S3 + 126S2 + 36S + 1
gl(s) S4 + 36S3 + 126S2 + 84S + 9

the corresponding output will be as follows:

4 3 2~ 100S%3600So+12600S +8400S + 900c (s) - 7 g J = =
6.67S°+195.59SD+3894.35^+12912.OOS^+SSie.31SZ+909.63S

Figure 7 shows the two approximation curves in time domain. 

It is noted that when n=6, the approximation curve almost 

coincides with the original standard curve.



Fig. 5. Response Curves of (even number quotients).

Ln 
bJ



Fig. 6. Response Curves of (odd number quotients).
cn
U)



Fig. 7 Response curves of closed loop system.
m
4s.



CHAPTER IX

APPROXIMATIONS OF THE DELAY FUNCTION

Consider a unit step input being applied to a pure 

time delay system as shown in Figure 8. The Laplace trans

form of the delay function is the transcendental function, 

e s. We expand es as a Taylor series about s=0 first.

—S _ q ■ q ■ S S S fa6 - l + S + ^r+^y+^y + ^y +— (61)

Equation (61) is assumed to be expandable into a continued 

fraction as follows:

where h. are the constants to be determined. We set that

s=0, it is seen that hg=l.

Both sides are divided by S,
2 3i + s+sz s21 ZL 

s* +___ __ 1x + 2T 31 + TT + 5 / +
hl+ s

^’2'^-------
s

^3"^—
s

(63)
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The left hand side of Equation (63) can be considered as

a ratio of two polynomial

s s2 s3 s4
1 + 2T+3T+4T+5T +

2 3 41 + OS + OS + OS + OS

g2 (s) 
f(s) = Vt-v (64)

We can rearrange Equation (64) into the following Routh Array:

1 0 0 0 0 — — — g1 (s)

1 1 1 1 *- g2(s)1 2? " 3/ 4/ 5?

Applying Equation (28), repeatedly we can easily obtain

hn=l/ ho=-2, hn=-3, h.=2z hI-=5, hc=-2z h-7=-7,-----. Thus,l/2,3 4,5,6,7
the continued expansion of the transcendental function,
-s . ...e , is written:

(65)

After truncating and inverting the continued fraction, we 

have two approximation formulas for e s. The time curves 

are shown in Figure 8. It is noted that the results of the 

approximating of the delay function by continued fractions 

are not as good as before. This is because our technique 

is particularly suitable for low pass filter systems. Un

fortunately, time delay function does not belong to this class.





CHAPTER X

CONCLUSIONS

Techniques for expanding certain irrational and tran

scendental functions into a particular continued fraction 

and for inverting the truncated continued fraction into an 

approximate rational transfer function are established.

The continued fraction expanding method is similar 

to the Heaviside partial fraction expansion method. It is 

very easy for using while the inverting method is based on 

the state variable analysis and a new matrix for the inver

sion has been developed.

The two techniques are converted into digital com

puter programs through using Routh's algorithm in the gen

eral sense.

The error function and time delay function approxi

mations by using the techniques developed are illustrated 

as applications. Finally, a feedback system which involves 

lumped and distributed parameters components is investigated.

It is believed that this digital computer oriented 

approach to the irrational transfer function problem is 

simple and useful.
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eS = l+s(l,-2,-3,2,5,-2,-7,. ..,2,2n-l,-2 (2n+l)

| s'| <°>

s
e = s+1

-s-2
s-2

2
 s +4s+6

-2s+6

2
 s i-6s+12

2
s -6s+12

3 2
-   +9s +36s+6O*s

3 2
s -12s +60s-120

4 3 2
 s +16s +120s +480s+840

- 3 2
-4s +60s -360s+840

2
3s -24s+60

3 2
—s -12s -60S-120



4 3 2
s +20s +180s +84Os+168O

4 3 2
s -20s +180s -84Os+1680

5 4 3 2
s +25s +300s +21OOs +8400s+15120
4 3 2

5s -120s +1260s -6720s+15120

.5 4 3 2
—s -30s -420s -3360s -15120s-30240

5 4 3 2
s -30s +420s -3360s +15120s-30240

6 5 4 3 2
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