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ABSTRACT

Pulse code modulation (PCM) involves transforming analog signals
into a series of digitally coded pulses. The binary code is a widely
used special case of the coding theoretically possible in a PCM system.
One of the code structures used in binary coding is referred to as
"bi-phase-level" or "split-phase". A technique used in generating a
split-phase code utilizes the binary states "10" to represent a logic
one and the binary states "01" to represent a logic zero. In a typical
telemetry system the split-phase code is used to modulate the amplitude,
phase, or frequency of a carrier.

This thesis provides an analytical determination of the ensemble-
average autocorrelation and the power spectral density of a carrier which
is amplitude-shift-keyed (ASK), phase-shift-keyed (PSK), or frequency-
shift-keyed (FSK) by a split-phase code. These transmission characteristics
are first obtained for "non-coherent" modulation of the carrier by the split-
phase code, and then obtained for "coherent" modulation of the carrier by
the split-phase code. It is then shown that the time average of the
autocorrelation and spectral density functions for the coherent cases
reduce to the corresponding autocorrelation and spectral density functions

for the non-coherent cases.
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CHAPTER 1
INTRODUCTION

In the design of near optimal communications systems, it is
necessary to determine as accurately as possible the transmission require-
ments of each subsystem. In order to determine the requirements of each
subsystem it is necessary to define the characteristics of the communi-
cation signal. Some general characteristics of a communication signal
might be its amplitude dynamic range, frequency spectrum, information rate,
etc.

In data transmission the signal can usually be described only in a
statistical manner. Some of the statistical characteristics of the signal
might be its autocorrelation function, power spectral density, moments,
etc.

This thesis develops the autocorrelation function and power spectral
density for an amplitude-shift-keyed (ASK), phase-shift-keyed (PSK) or
frequency-shift-keyed (FSK) system non-coherently modulated by a split-
phase PCM code. The autocorrelation function and power spectral density are
also developed for an ASK, PSK, or FSK system coherently modulated by a
split-phase PCM code. It is then shown that the time averaged autocorrela-
tion and spectral density functions for the coherent ASK, PSK, and FSK
cases are identical to the corresponding autocorrelation and spectral

density functions for the non-coherent cases.



CHAPTER II
HISTORICAL BACKGROUND

The background material necessary for the development of the sta-
tistical characteristics of ASK, PSK, and FSK systems where the modulation

is a random PCM split-phase code is developed in this chapter.
I. PULSE CODE MODULATION

Pulse modulation exhibits many characteristics which make it partic-
ularly applicable to communications systems. One of the most important of
these characteristics is the ease with which many intelligence signals can be
transmitted over a single link utilizing time division multiplexing. 1In
time division multiplexing the intelligence channels are sampled sequen-
tially with each sample sequentially occupying an allotted time slot. The
sequential sampling is then repeated after the last designated intelligence
signal has been sampled. The sampling must be rapid enough so that the
signal amplitude of a particular intelligence channel does not change tuo
much between sampling instants. Theoretical studies based on an idealized
case have shown that no information is lost if the sampling rate is at least
twice the highest frequency component in the sampled intelligence channel.
Because physically realizable systems cannot attain the ideal system charac-
teristics, and because of a desire for the elimination of unnecessarily com-
plex circuitry, the sampling rate in a typical telemetry system is about five

1

times the highest frequency component in the sampled intelligence channels .

This series of samples might then be used to modulate the amplitude, phase,



p.3
or frequency of a sinusoidal carrier., If the samples of the intelligence
channels are used to modulate the amplitude of the sinusoidal carrier, the
system is called a pulse amplitude modulation system (PAM), if the samples
are used to modulate the phase of the sinusoidal carrier the system is
called pulse phase modulation (PPM)*, and if the samples are used to modulate

the frequency of the sinusoidal carrier the system is called pulse frequency

modulation (PFM).

The pulse modulation technique discussed to this point uses the
samples of the intelligence channels to modulate the amplitude, phase, or
frequency of the sinusoidal carrier. A very important pulse modulation
technique which does not use the samples of the intelligence channels to
directly modulate the carrier is called pulse code modulation (PCM)Z. PCM
involves transforming the intelligence channels into a series of digitally
encoded pulses. The first operation is to "sample" the intelligence channels
as previously discussed. Next, the voltage amplitude of each sample is
assigned to the nearest value of a set of predetermined discrete voltages.
This process is known as "quantizing" and is equivalent to rounding off to
the nearest whole number in mathematics. The error introduced in the

quantizing process is called "quantization noise". The final step is to

"encode" each discrete amplitude value into N-ary digital form. The PCM

*This should not be confused with pulse position modulation (PPM) where
the modulation varies the position of a pulse with respect to some

reference.
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technique has the advantage of having only "N" discrete voitage levels to
be recognized at the receiver, It is only necessary to determine which of
the N possible voltage levels the received signal is closest to, and not the
exact magnitude of the signal.

A binary code is a widely used special case of the encoding theoreti-
cally possible in a PCM system. In the binary PCM code it is only necessary
to recognize two discrete voltage levels at the receiver. As mentioned in
the PCM N-ary system it is only necessary to determine which of the N possi-
ble voltage levels the received signal is closest to, and not the exact
magnitude of the signal. In the binary PCM system (N = 2) the minimum
possible number of voltage levels needed to carry information is used.
Therefore, it is only necessary to determine at the receiver which of the
two possible binary voltage levels was transmitted. The binary PCM Tends
jtself to detection by the integrate and dump detéctor, which is one form
of the "matched filter" optimum detector for signals with a "white noise"
background,

One of the code structures used in binary encoding is called "bi-
phase-Tevel" or "split-phase" coding. A technique used in generating a
split-phase code utilizes the binary states "10" to represent a logic one
and the binary states "01" to represent a logic zero. A characteristic of
split-phase encoding is that at least one transition occurs during each bit
period. Transmission of all logic ones or all logic zeroes results in two
transitions per bit period, while alternating logic ones and logic zeroes

result in the minimum one transition per bit period. The greater transi-

tion density for a random PCM split-phase code usually allows more
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efficient bit synchronization to be maintained at the receiver. A segment

of a random split-phase code is shown in Figure 1.
IT. ENSEMBLE AVERAGE AUTOCORRELATION

In obtaining the statistical description of a random variable, it is
necessary to determine the frequency of occurrence of a given outcome in a
large number of experiments repeated under similar conditions. The relative
frequency of occurrence can be determined by observing a large number of
identical experiments simultaneously, or by observing the same experiment
repeated in time succession. In the first method, referred to as the
"ensemble" method, it is assumed that there are available a large number of
identical experiments and that a set of instantaneous observations are made
at the same instant of time. In the second method, referred to as the
"extension-in-time" method, the samples are obtained from a single system
over an extended period of time.

From the discussion to this point, two types of averaging can be
determined.3 The first kind of average is the "ensemble average" and is

defined as

(2.1) E[x] = X = r X p(x,t) dx

In general this average is a time dependent function. The second type of

average is the "time average" and is defined as

. T
(2.2) x=1im L fT x(t) dt
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A random process is said to be "stationary" if all orders of the ensemble
averages and all orders of the time averages are independent of the times
at which the observations took place. A random variable is said to be
"ergodic" if all orders of ensemble averages are equal to the corresponding
order of time averages. A random process is said to be wide sense stationary
if its expected value is a constant and if its autocorrelation is only a
function of the time difference, t; - t, = v, between samples and not the
actual time of sampling.

It should be noted that the expected value of the random PCM split-

phase signal, Figure 1, is zero.
(2.3) E[vm(t)] = V E[m(t)] = 0.

Two types of autocorrelation functions corresponding to the two types
of averages exist. The "ensemble average autocorrelation function" is

defined as

(2.4) R(t,r) = E [£(t) £(t + 1)]

In the form of Equation 2.1 this becomes

(2.5) R(t,7) = J' j F1 f, p(F1s Fu3 t, ) dfy dF, |
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The "time average autocorrelation function" is defined as

(2.6) R(<) = TE) F(E + 1)

and in the form of Equation 2.2
tim 1 7
(2.7) R = 1 71 |0 f(e ) at

In order to appreciate the importance of the autocorrelation function,
the physical meaning of the concept of the autocorrelation function is con-
sidered. If the amplitude of a random variable at time t is very small, it
is unlikely, for t sufficiently small, that at time t + t the random variable
will have a large amplitude. But as t becomes larger the random variable
might possibly have any possible amplitude. Therefore the autocorrelation
function is an indication of the statistical relationship existing between
two samplies of the random variable at t and t + t. As 7t becomes sufficiently

large, so that the two samples can be assumed to be statistically

independent (S.I.), the mean value of the product becomes the product

of the mean values.

(2.8) E[f(t) f(t + t)] = E[f(t)] E[f(t + )] where S.I.

It should be observed that the autocorrelation function is an even function,

if the process is wide sense stationary.
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The ensemble average autocorrelation function for a random PCM
split-phase code, Figure 2,

(2.9) R (1) = VZE[m(t) m(t + ©)]

has been found.4 Changing the nomenclature to that of this thesis the
ensemble average autocorrelation function for a random PCM split-phase

code is

0 T < =T
V2
‘-\'I[-—(T'l'T) -T<'r_<__-%
2
2100 R (3 +T) STt
. 1) =
m
2
'y—r-(-3T+T) 05_1'5_%
2
lT—(r-T) %iTiT
0 T< 1

In the derivation of this result it was assumed that the process was at

least wide sense stationary.
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III, POWER SPECTRAL DENSITY

The power spectral density is defined as
(2.11) s = [ R (e g0

and by virture of the Fourier transform pair

A

(2.12) R() = o= fm S(w)etIeT gy |

The power spectral density, as the name implies, is a function describing
the distribution of signal power as a function of frequency.

The power spectral density for the random PCM split-phase code

(2.13) sul@) = [ Ryl o

has been found 5

I}
-

N
—

(2.14) Sm(w)

and is pictorially represented by Figure 3.
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CHAPTER III
AMPLITUDE SHIFT KEYING

An expression for a sinusoidal carrier amplitude modulated by a

split-phase code is
(3.1) ensk(t) = ALl + s¥n(t)]sin[u t + o]

where

A - carrier peak amplitude
g - modulation index
V - voltage level of split-phase code
m(t) - split-phase code switching function (#1)
w. - carrier angular frequency

6 - initial phase of the carrier
I. NON-COHERENT MODULATION

For non-coherent amplitude modulation the carrier frequency, fc’
is not an integral multiple of the bit rate, fB, of the split-phase

code

fC # KfB K = integer

—h
“H
—|=
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This relationship between the carrier frequency and the bit rate of the
split-phase code, requires that the initial phase of the carrier, 6, be

considered a random variable uniformly distributed between O and 2n.

oy - random variable uniformly distributed
between 0 and 2n

Figure 4 pictorially represents non-coherent ASK.

Autocorrelation Function

The ensemble average autocorrelation function for the non-

coherent ASK signal is

(3.2)  Rpgpy(tisr) = E[eASKN(tl)eASKN(tl ¥ T)]

(3.3)  Rygpy(tiot) = E[A}] + BVm(tl)}sin

wctl + GN}
A{] + gVm(t; + r);s1ng (t; + 1) + eNf}
(3.4)  Rygpq(tiot) = A2E[{1 + am(t;) {1 + gVn(ty + )]
sin:wctl + eN}singwc(tl + 1) + eN}]

Multiplying and expanding trigonometrically RASKN(tl,T) becomes

(3.5) RASKN(tl,T) = %E-E{[1 + gVUm(t;) + 8Vm(t; + t) + Bg2V2m(ty)m(t, + T)]

[COS W.T + cos wc(2t1 + 1) + ZGNH}
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Since the modulation process is non-coherent, the carrier and split-
phase modulating signal can be assumed to be statistically independent.
Recognizing that the expected value of a sum is equal to the sum of the

expected values, RASKN(tl’T) becomes

(3.6)  Rygpy(trot) = %2-{1 + BVE[m(tl)] + BVE[m(tl + T)]

+ BZVZE[m(tl)m(tl + T)]}{E[cos wCT]
+ E[cos{wc(Ztl + 1)+ ZGN}”

But it has previously been shown that

(2.3) E[m(t)] - efn(t,)] - efn(t, + )] = 0

and noting that the expected value of a sinusoidal with a random phase

uniformly distributed between 0 and 2r is equal to zero.

(3.7) E[;os{wc(Ztl ¥ 1)+ 2eN§] = 0

Now

(3.8) Raskn(tis™) = Ragyy(e) = [1 * BZRM(T)]RCarrier(T)
where

(2.9) Ry(x) = VZE[n(t)n(t; + 1))



and

(3.9) R

_ A2 _ A2
Carrier(T) = E—-E[?os mCT] = 5= COS u,T

The autocorrelation function, RM(T), for the split-phase code,

Vm(t), changing the nomenclature to that of this thesis, is

0 T<=T
2
- ¥—'(T + T) -T<1<- %
2
¥-—(3T+T) -%1110
(2.10) Ruler = ¢ o 1
T—(-3T+T) Oi’fif
2
'¥—'(T-T) g—in_T
0 T>T

where T is the inverse of the bit-rate (T = ;r->.
B

Power Spectral Density

The non-coherent ASK autocorrelation function, Equation 3.8, can

be written as

(3.10) Raskn (™) = Ragin( ™) + 8%Ragyy(t)
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with a power spectral density

(3-]1) SASKN(w) = SASKN(w) + BZSASKN(W)

where SASKN(w) and SKSKN(w) are the Fourier transforms of the first and
second terms respectively of Equation 3.10. The first term of Equation

3.11 is the power spectral density of the carrier

1 - © -ij
(3.12) SASKN(w) '.j(; RCarrier(T)e dr
2 it 3
(3.13) Saskn(e) = %—l)(; coS w Te JuTy,
But
(3.14) %;- cos uxoejuxdu = %1}(x - Xg) + 8(x + xo)}

- 00

Making a change of variable and putting Equation 3.13 in the form of

Equation 3.14,

(3.15) Shskn(®) = 52 [s00 + w0 + 5w - uy)]

The second term of Equation 3.11 can be obtained by realizing that
the Fourier transform of the product of two autocorrelation functions is

equivalent to the convolution of the two power spectra. Therefore

(3.16) Sasknte) = Sylw) * Scappier (w)



where

(2.14)

(3.17)

Sylw) = F[RM(T)] = yoT

~

S _a(w + wc) + 6(w ~ wc)]

Carrier(w) = SASKN(M) =

Ry
2

Implementing Equation 3.16

(3.18)

(3.19)

(3.20)

(3.21)

Shskn () =L Sm(©0)Seappiep(e = wo)dug

[ . u(on)
S1n —4—

s lu) = / Vet
ASKN - (mOT)Z
T

;G(w + we = wo) + 8w - we - wo)}]dwo

(A2
_2

SASKN

. l+(U)()T)
(o) = A2V2rT /°° ST
w 2 5

'y

on)
o ¢int|——
s1n(4

T

. (w + wC)T - (w - wC)T
A2y2,T sin" — sin't|——7——

Sll ) =
Asky (@) 7 [(w N wc)T]z [(w i “c)T]z
AR S 7

§(w + we = wg )dwg

p.19
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Therefore, utilizing Equation 3.11, the power spectral density for the

sinusoidal carrier non-coherently amplitude modulated by the split-phase

code is

(3.22) SASKN(w) = —2—[6((» + wc) + 8w - w )]

Figure 5 pictorially represents SASKN(w) of Equation 3.22.

As observed from Equation 3.22 and Figure 5, the power spectral
density for the non-coherent ASK signal consists of discrete carrier
components, and sidebands resulting from the split-phase spectrum being
translated to appear about plus and minus the carrier frequency. It
should be noted that maximum sideband power occurs when the product 8V
equals one (gV = 1), which corresponds to "on-off" keying of the carrier

by the split-phase code.
IT. COHERENT MODULATION

For coherent amplitude modulation the carrier frequency, fc, is

an integral multiple of the bit rate, fB’ of the split-phase code.

fC = KfB K = integer

_K
fe=71



4 Saskn(e)
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This condition has the effect of making the e of Equation 3.1 a constant

8 = ec = constant

Figure 6 pictorially represents coherent ASK. It should be noted
from Figure 6 that the minimum system bandwidth requirement occurs
when o . equals zero (ec = 0) or some integral multiple of = (eC = K,

K = integer). Under these conditions no instantaneous amplitude change
is required when a transition occurs in the split-phase code. The
system bandwidth requirement increases with increased 6¢ from the
minimum bandwidth conditions to a maximum when 6c equals an odd integral
multiple of %—(ec = Q %3 Q = odd integer), where the maximum possible

instantaneous amplitude change is required.

Autocorrelation Function

The ensemble average autocorrelation function for the coherent

ASK signal is

(3.23) Rpgye(t157) = Efepgue(t)epgelts + )]

(3.24) R

ASKC(tl’T) E[A}] + BVm(tl)}singwctl + ec}

A{1 + gVm(t; + 1){sin mc(tl + 1) + ecﬁ]

(3.25) Rygyelt>e) = A2E[{1 + svm(t)|{1 + svm(t, + )]

sin wc(tl + 1) + ec}]

+ .
wctl ec§s1n

(3.26) RASKC(tl,-c) = AZE[{l + gVm(t;) + gVm(t; + ©) + 82VZm(ty)m(t; + 1)

Sin{wctl + eczsin{wc(tl + 1) + GC:]



+V
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The random variables here are m(t;) and m(t1 + t), and from the defini-

tion of ensemble average autocorrelation function, Equation 2.5,

(3.27) Ryee(ty,r) =

/“fmA2[1 +im(ty) + gin(ty + <) + s2V2n(tyIn(ty + 1))

sin[wctl + 6C]s1'n[mc(t1 + 1)+ ec]p[m(tl)m(tl + —r)]dm(tl)dm(tz)

(3.28) Rygyc(tist) =

Azsin[wctl + ec]sin[wc(tl + 1) + ec]
{—/-;.Z; m(ty + T)]dm(tl)dm(tl + 1)
+ BV[mm(tl)p[m(tl)]dm(tl) + sv[:m(tl ¥ T)p[m(tl + T)]dm(tl + 1)

+ BZVZ/m/wm(tl)m(tl + T)p[m(tl)m(tl + T)}dm(tl)dm(tl + T)

where

(3 29)/ / m(t]_ tl)m t]_ + T)]dm(tl)dm(tl + T)
- fmm(tl)p[m(tl)]dm(tl)
(3.30) /m/mm(tl + T)p[m(tl)m(tl + T)]dm(tl)dm(tl + T)

= -[;mm(h + 'r)p[m(tl + T)]dm(tl + 1)
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But

(3.31) Lmj;wp[m(tl)m(tl + T)]dm(tl)dm(tl + ) =1

(3.32) me(tl)p[m(tl)]dm(tl) = E[m(tl)] = 0
(3.33) me(tl + T)p[m(tl + T)]dm(tl) = E[m(tl + r)] =0

(3.38) Ry(<) = v2/°°/°°m(1;1)m(t1 + op[n(tyIn(t, + ©)]dn(t; an(t; + <)

Utilizing Equations 3.29 through 3.34,RASKC(t1,T) of Equation 3.28

becomes

(3.35) Rygyc(tisr) = A2[1 + BZRM(T)]S'in[thl + ec]sin[wc(tl +7) + ec]

Noting that
(3-36) Rcarr.ier(tl,fl') = AZSin[wct]_ + ec]Sin[wc(t]_ + 'l') + ec]
Raske(t1s7) becomes

(3.37) Rasic(t1e) = [1+ 82Ry ()] Rey o (t107)

Time averaged autocorrelation function. The time averaged auto-

correlation function for coherent ASK is

T
R (Taa) = 1
(3.38) RASKC tl,T = T[ RASKC(tl,T)dtl



T
Rt =4 2
(3.39) RASKC tl,'r = T.[ [] + B RM(T)} RCGY‘Y"ieY‘(tl’T)dtl

] + 62R (t) T
(3.40) RASKCItl’TS / Rcarr‘_ier(tl,‘[)dtl
0
Before the integration is performed it should be noted that RCarrier(tl’T)

can be trigonometrically changed to

(3.41) R

Carrier

2
(t1,1) = 2—{COS w.T = COS [chtl tut ZGC];

T
R

(3.42) R (tl ,T) = (tl,‘l‘)dtl

|

Carrier

I
(3.43) RCar‘Y"ier‘(tl’TT —T‘{/ cos w Tdt1 - / cos[chtl tower 26C]dt1}
0

0

Carrier

j>

Expanding the second term trigonometrically

I
2
(3.44) Reappiep(tist) = %{cos Wt - Jr— cos(u.t + 29)/ cos 2w tydt,

T
+ % S'in(wc'r + 26)/ sin Zthldtl}
0

T

C
CcOos U)CT - T ) 2(1)

c

Az cos(w,T + 20) [sin 2u .t
2

(3.45) R (t1,7) =

Carrier

sin(wCT + 20) |cos 2w.ty T

T 2wc
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; A2 COS(wCT +20)
(3.46) RCarrier(tl’T) = 5= )C0S w.T - ZwCT [s1n 2wcT - O]
sin(wcr + 28)
- Z%T DmsZ%T- q}

But from the definition of the coherent ASK signal
w, = K = integer

Utilizing this relationship

A2 COS(th + 26) .
(3.47) RCarrier(tl’{jr_ 5 §C0S w. T - e [s1n 47K - 0]

S'in(wc'f + 20)
- K [cos 4qK - 1]}

Noting that

]
o

sin 47K where K = integer

cos 47K = 1 where K = integer

The time averaged autocorrelation function for the carrier becomes

_ A2
(3.48) RCarrier(tIFy = 2—- cos wCT
(3.49) RCarrier(tl’%yr= RCarrier(T)

Thus, the time averaged autocorrelation function for the carrier with
the constant phase 0 is equal to the autocorrelation function of the

carrier with a uniformly distributed random phase.
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The time averaged autocorrelation function of coherent ASK becomes

- 2

(3.50) RI-\SKC“:I’T; = ['l + B RM(T)]RCarr‘ier‘(T)

which is equal to the autocorrelation function for the non-coherent ASK
signal.

Power Spectral Density

The coherent ASK autocorrelation function, Equation 3.37 can be

written as

(3.52) RASKC(tl,r) = RASKC(tl,T) + BZRKSKC(tl’T)
with corresponding Fourier transforms

(3.53) Faskc(tisw) = Facye(tisw) + 82Fpepa(ti,w)

] 1] : s
where FASKC(tl,w) and FASKC(tl’w) are the Fourier transforms of the first
and second terms respectively of Equation 3.52,

The Fourier transform of Equation 3.53 can be interpreted as a time

varying power spectral density.

(3-54) SASKC(tl sw) = SASKC(tl’w) + BZSRSKC(tl ’“’)

The first term of Equation 3.54 is the Fourier transform of the

autocorrelation function, R (ty,t), of the carrier.

Carrier

(3.55) Stokc(t100) = Rigye(tr,0)e e



t - ® —ij
(3.56) SASKC(tl’T) '.j(; RCarrier(tl’T) € dr

The expression for R (t1,7), Equation 3.41, is

Carrier

2
(3.41) RASKC(tl,T) = é—{?os wT = COS

2wct1 + w.T + Zec}]

which can trigonometrically be reduced to

2

(3.57) RASKC(tl,T) = %—[;os weT - COS 2(wct1 + ec)cos W,T

+ 57 + i
sin 2(wct1 ec)s1n wcr]

Utilizing Equation 3.56, SASKC(tl’w) is

2 o s
(3.58) SASKC(tl’w) = %—{_[; cos w_te JWTqr

©

-jwt
- +
cos 2(wct1 ec) cos w,Te dr

- 00

o]

+ sin 2(wct1 + ec) sin wcTe-JwTdTJ

- 00

p.29
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Noting Equation 3.13 and Equation 3.15 and that

1 ) ‘ i 1
3.59) 7~-J/~ Jux = : - 8(X -
(3.5 5 sin ux e du 73 §(X + Xo) S(X XO)

-0

(3.60)  Spcye (tisw) =

Azﬂ Ia(w + wc) + 5w - wc)] [1 - Cos Z(wctl + Ucﬂ

A2, .
+ —2—\]—7— |:C3(w + wc) - 5(w - wc)] sin Z(wct1 + GC)

The second term of Equation 3.54 can be obtained by realizing
that the Fourier transform of the product of two autocorrelation func-

tions is equal to the convolution of the two power spectra.

(3.61)  Shope(tiow) = Sylw) *S

ASKC (t1,0)

Carrier
Implementing Equation 3.61

(3.62)  Sheyeltrse) f S(60) Sgappiap( 150 - wg)dug

-
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woT
VZT sin“ (T> AZTr
(3.63) SKSKC(tI,w) =£ [ 5 {6((» + we - wo)
(=)
4
2
+ G(w-wc-wg)}{] - CO0S 2(wct1+Oc)}+ Az-g—.{ﬁ(w'*'wc-wu)-ts(w-wc-wo)}
{sin Z(wctl'*'wc)}]dwo
2\2
(3.64)  Spoyc(tisu) = EFTE 11 < cos 2(u ty + o,)|
u)oT
w gint (T)
f-m T{‘)T-z—— [6(w+wc-w0) + G(u)-wc-wo)‘ dwo
()
- on
. AZVZ T ) © SN —
-3 ———2*1— Sin Z(wctl + OC) J:w _wOT-?L 6(w+wc-~mu)-d(m—u:c-wo) dwo
)
2\2
(3.65)  Speyc(tihw) = AT [1 - cos 2(u t +ec)]
B ‘(w+w )Ti :(w-w )T ;—
sin® < sint < o\2
a1, 4 - 5 BT sin 20 tr + 5.)
(w+wC)T12 (w-wC)le
L4 ]
o ‘(w‘l'u) )T (w-w )T B
sint l 4c sin % 4C
‘(w*‘wC)T'Z (w-wc)TI 2
e e
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Substitution of Equation 3.60 and Equation 3.65 into Equation 3.54
yeilds the expression for the time varying power spectral density of

the coherent ASK case.

(3.66) SASKC(tl’w) =

A2y ]
"’2—[6(00 + wc) + 8w - wc)] 5 [(w N wch]Z
e
w - w)T
o ]
+ 1]?w — ?T]Z [1 - cos 2(wct1 + ec)]
_ <
]
(wte. )
AZq A2VZT ‘5"””[“"4""_
-3 T [deteg) - 6(“"‘*’C)J T2 [(w+wc)T 2
4

sin 2(wct1 + oc)
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As observed from Equation 3.66, the power spectral density for
the coherent ASK signal consists of discrete time varying carrier
components, and time varying sidebands resulting from the split-phase
spectrum being translated to appear about plus and minus the carrier
frequency. The imaginary term appears because RASKC(tl’T) is not an
even function of v . It should be noted that maximum sideband power
occurs when the product gV equals one (8V = 1), which corresponds to

"on-off" keying of the carrier by the split-phase code.

Time averaged power spectral density. It should be observed that

the expression for the time varying power spectral density of coherent
ASK when time averaged with respect to t; reduces to the expression for

the power spectral density of non-coherent ASK, as follows. Note that

Equation 3.66 can be written as

(3.67) S/—\SKC(tl’w) = [] - COS Z(wctl + GC)] SASKN(w)
- Q(w) sin Z(wctl + Oc)

Taking the average with respect to t;

21
(3.68) SASKC(tl,wS = T[ SASKC(tl,w)dtl

T
( ] = 1 1 /7
(3.69) SASKC tl s W = SASKN(w) { T[ dt - T_[ cos 2(wct1 + Gc)dtl}

T
s Q) J’ .
Iy A sin 2(wct1 + ec) dt



Expanding cos Z(mctl + ec) and sin 2(wct1 + ec) trigonometrically

cos 2(wct1 + ec) = cos 2w, t; cos 26, - sin 2w t; sin 26,

sin 2(wct1 + ec)

- 1 T
(3.70) SASKCItl’“’; = SASKN(“’){] - T cos ZeC[ cos 2w, tydty

1 . T ..
+ 5 sin ZGC/ sin Zthldtl}
0

. + .
sin 2wct1 cos Zec cos 2wty sin 26,

T

: T
+ sin ZGC/ cos 2wct1dt1}
0

- 1 1 . 2w T
(3.71) SASKCZtl’“’j = SASKN(‘”) {1 - T cos ZSC[Z—J— sin x] c

c 0

T
- QLg—“ilgcos 26C f sin 2wct1dt1
0

. 34



]

(3.72) Sporcltrae) = Saskn (@) {1 - ?B'C'T_ cos 20, sin 2w T

1 . ;
- ?IJC_Tsm 20, [cos 2u.T - 1]} - j Qw)

1 ] . .
{ szT cos Zec[l - CcOoS 2wcT] + chT sin Zec l:sm ZwCT]}

From the definition of coherent ASK

- =K = 4
fc = KfB =T K = integer
%c T T

(3-73) SASKC“:]' ,w) = SASKN(w) { 1

0 0
- ﬁ cos 20, SW- ﬁsin ZeM
g
- 5 0(w) {E‘}K cos 20, |1 = 4n|<]
0

1 . .
+ T-K sin ZGC/[quﬂT/K]}

(3-74) SASKC(tl ,w) = SASKN(w)

Showing that the time average of the coherent ASK time varying power

. 35

spectral density is equal to the power spectral density of non-coherent

ASK.



CHAPTER IV
PHASE SHIFT KEYING

An expression for a sinusoidal carrier, phase modulated by a

split-phase code is

(4.1) epsi(t) = A sinfuct + o + gin(t)]

where
A - carrier peak amplitude
B - modulation index

V - voltage level of split phase code

3
—
—+
~
)

split-phase code switching function (+1)

w. - carrier angular frequency

<D
1

initial phase of the carrier

Expanding Equation 4.1 trigonometrically

(4.2) £) A[sin(wct + 6)cos Un(t) + cos(u_t + 8)sin BVm(t)]

epsk !
(4.3) ePSK(t) = A sin(mct + 6)cos gVm(t) + A cos(wct + 96)sin gym(t)
Noting that

COS[i x]= cos x

sin{t x|= + sin x
then

(4.8)  epe(t) = A[cos BV]sin(wct +8) + Am(t) [sin BV]cos(wct + o)
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Since BV is a constant, the first term represents a discrete carrier
component, and the second term represents double sideband suppressed-

carrier modulation by the split-phase code.
I. NON-COHERENT MODULATION

For non-coherent phase modulation the carrier frequency, fc, is

not an integral multiple of the bit rate of the split-phase code.

fC # KfB K = integer
K
fe? 7

This relationship between the carrier frequency and the bit rate of the
split-phase code, requires that the initial phase of the carrier, 6, be

considered a random variable uniformly distributed between 0 and 2«

oy - random variable uniformly distributed
between 0 and 2r

Figure 7 pictorially represents non-coherent PSK.

Autocorrelation Function

The ensemble average autocorrelation function is
(4.5) Rpgyy(t1:7) = Efepgiay(tr)epgiq(ts + 7))
(4.6) RPSKN(tl,T) =
E[}A cos gV sin(wctl + eN) + A sin BVm(tl)cos(wctl + eN)

{A cos gV sin(wc(tl + 1) + eN)

+ A sin gVm(t; + T)COS(wc(tl + 1) + eN)}]



+V

Non- Coherent PSK
f. # Kfp, = integer
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!
|

Split-Phase Code

FIGURE 7

NON-COHERENT PSK WITH SPLIT-PHASE
CODE MODULATION
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Noting that the expected value of a sum is equal to the sum of the
expected values, and that since the carrier and modulation are non-

coherent, the expected value of the product is equal to the product of

the expected values.

(4.7) RPSKN(tl’T) =
A2 cos? BVE[sin(wch + GN)Sin{wc(tl +1) + GN}]
+ A2 sin gV cos BVE[m(tl)]E[sin{wc(tl + 1)+ eN§cos(wct1 + eN)]
+ A2 sin gV cos BVE[m(tl + T)]E[Sin(wctl + eN)COS{wc(tl tr) o+ QNH

+ A2 sin2 eVE[m(tl)m(tl + T)]E[COS(wctl + eN)cos

wc(tl + 1)+ GNH
Expanding trigonometrically

(4.8) Ry (t1>7) =

2 2
A—-%—-&Vg[E cos wcT] - E[cos

0o (2ty + ) + 2eN§]}

2
g sin gV cos BVE[m ]{E[sm (2t; + 1) + 26N=] + E[sin wcr:”

N 2_2 sin 8V cos BVE[m(t1 + T)]{E[siniwc(Ztl + 1) + ZeN”

- E[sin wcT]} + ‘2‘—2 sin2 BVE[m(t1)m(t1 + T)]

e

w,T + COS wC(Ztl + 1) + ZSN}]}
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Again, recognizing that the expected value of a sum is equal to the sum

of the expected values, and noting that

2 2
(3.9) RCarr'ier(T) = g— E[COS wcr] = é—- COS w.T

(2.9)  Rylx) = vaE[m(t,n(t; + 1)
(2.3) e[n(t)] - E[m(tl)] = £[n(t, + )] = 0
E[}os wc(2t1 + 1) + 29] = E[sin wc(2t1 + ) + 26] =0

The expected value of a sinusoid with uniformly distributed random phase

is zero. Therefore

- - 2 sin? gV
(4.9) Rpskn(tist) = Rpgylz) = cos BVRCarrier( )+ V2 RM(T)RCarrier(T)

Power Spectral Density

The non-coherent PSK autocorrelation function, Equation 4.9, can

be written as

)
sins gV R

(4.10) Rpskn(T) = cos? BRpgey(t) + 22 = Rpgyy (7)

with corresponding power spectral density

sin? BV «u
(4.]]) SPSKN(w) = COSZ BVSIIDSKN(U)) + T SPSKN(w)
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where SﬁSKN(w) and SBSKN(“) are the Fourier transforms of the first and

second terms respectively of Equation 4.10.

' _ . -jur, _ ° -jwt
@12) Spele) = [ Rpglole dT-.[mRCaMer(T)e &

This integral has been evaluated previously, Equation 3.12, and found to

be, from Equation 3.15,

2ﬂ
(4.13) Sl;SKN(w) = AT[G(w + wc) + 8w - wc)]

The second term of Equation 4.11 can be obtained by noting that
the Fourier transform of the product of two autocorrelation functions is

equivalent to the convolution of the two power spectra.

(4.14) SBSKN(“) = S(0) * Scappien(w)

This convolution has been previously implemented, Equation 3.16, and

found to be, from Equation 3.21,
(

w+ow )T w=-w)T
)sin“ [E__jz_Ez_] sin“ [S___ﬁfﬁﬁ_]

+

’K [(w +4wC)T]2 [(w - wC)T]2

(4.15) Sp

2y2
PSKN(U)) - A V TTT

74
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Utilizing Equation 4.11, the power spectral density for the sinusoidal

carrier non-coherently phase modulated by the split-phase code is

(4.16) SPSKN(w) = 5;1{;052 s@[d(w + wc) + 8(w - wc)]

(w+w)T] (w + 0 )T
2,2 sin“[—————ii—— sint |——S—
+ A—g?i[ﬁinz BV 4 + 4

e

Figure 8 pictorially represents SPSKN(w)’ the power spectral density

for the non-coherent PSK case.

In general, as observed from Equation 4.16 and Figure 8, the
power spectral density for the non-coherent PSK signal consists of dis-
crete carrier components, and sidebands resulting from the split-phase
spectrum being translated to appear about plus or minus the carrier
frequency. It should be noted that as the sideband power is maximized,
the carrier components tend to vanish, and indeed at gV = Q %3
Q = odd integer, the carrier does vanish and the sideband power is a

maximum.
IT. COHERENT MODULATION

For coherent phase modulation the carrier frequency, fc’ is an

integral multiple of the split-phase code bit rate, fB.

fc = KfB K = integer
_K
fe=7



pskn(®)

FIGURE 8

POWER SPECTRAL DENSITY FOR NON-COHERENT PSK
WITH SPLIT-PHASE CODE MOUDLATION
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This condition has the effect of making the & of Eauation 3.1 a constant

g = ec = constant

Figure 9 pictorially represents coherent PSK. It should be noted from
Figure 9 that the minimum system bandwidth requirement occurs when b,
equals zero (o

= 0) or some integral multiple of = (6. = K,

C c

K = integer). Under these conditions no instantaneous amplitude change
is required when a transition occurs in the split-phase code. The system
bandwidth requirement increases with increased 0. from the minimum band-
width conditions to a maximum when 6c equals an odd integral multiple of
i

= (6.=0Q%, Q= odd integer), where the maximum possible instantaneous
2 ''°c 2

amplitude change is required.

Autocorrelation Function

The ensemble average autocorrelation function for coherent PSK is
(4.17) Rpsie (t1+7) = E[epsyc(tr)epsyclts + 7))

Utilizing Equation 4.4 with ¢ = 0

(4.]8) RPSKC(tl,T) =
E%[A cos gV sin(wctl + ec) + A sin BVm(tl)cos(wctl + ec)]

[A cos BV sin wc(tl + 1) + ecf

+ A sin gVm(t; + r)cosgwc(tl + 1) + ec}]}



+V

Coherent PSK
fc = Kf = integer
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COHERENT PSK WITH SPLIT-PHASE
CODE MODULATION
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(4.19) R

PSKC(tl’T) =
2 2 . -
EjA% cos? gV s1n(wct1 + ec)s1n[wc(t1 + 1) + ec]
+ A% sin BV cos BVm(tl)cos(wctl + ec)sin[wc(tl + 1) + ec]

+ A% cos BV sin BVm(t; + T)sin(wcu + eC)COS[wC(t1 + 1) + ec]

+ A2 sin2 gim(t,)m(t; + T)COS(U)Ct]_ + ec)cos[wc(tl + 1) + eCJ:

The random variables here are m(t;) and m(t; + ), and from the defini-

tion of ensemble average autocorrelation function, Equation 2.5.

(4.20) Rocye(tys7) =

AZ cos? gV sin(u.t; + ec)sin[wc(tl + 1) + ec]

Lm[mwp[m(t1)m(t1 + T)]dm(tl)dm(t1 + 1)

+ A2 sin gV cos gV cos(wctl + ec)sin[wc(tl + 1) + ec]
f m(t1)p[m(t:)]dn(ts)
+ A? sin gV cos gV sin(wctl + ec)cos[wc(tl + 1) 4+ ec]

L”mm + p[n(ts + D)dn(t + 0

2 cim?
+ A< sin® g/ cos(wctl + ec)cos [wc(t1 + 1) + ec]

fmfwm(tl)m(tl + Dp[n(taIn(ts + )]dn(tr)dn(ts + )
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where

(3.29)Lm—[;mm(tl)p[m(tl)m(tl + o)) dn(t; yem(e, + <)

- me(tl)p[m(tl)]dm(tl)
(3.30)'/_:9‘/_;mm(t1 + r)p[m(t1)m(t1 + 1)]dm(t1 Jm(t; + )
| = j;mm(t, + r)p[m(t1 + T)]d"‘(tl *t 1)

But

(3.31) '/_;mj;mp[m(tl)m(tl + r)]dm(tl)dm(tl + 1) =1
(3.32) me(tl)p[m(tl JEICHIE E[m(tl)] = 0

(3.33) [:)m(t1 + T)p[m(tl + 'r)]dm(tl) = E[m(t1 + T)] =0

RM< o)

(4.21) m(t, n(t, + T)p (t;m(t, + r)]dm(tl)dm(tl 1)
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Utilizing Equation 3.29 through Equation 3.33, and Equation 4.21,

RPSKC(tl,T) of Equation 4.20 becomes

(4.22) RPSKC(tl’T) = A2 cos? gV sin(wctl + ec)sinE»C(tl +7) + ec]

2 ein2
+ AZ sin¢ gV

e coslogty + og)cos[uc(tr + 1) + o [Ry(x)

Noting that

(3.36) R

. 2 » »
Carrier(tl’I) A s1n[@ct1 + ec]s1n[éc(t1 + 1) + ec]

(4.23) Rq4Carrier(t1’T) = A2 COS[QCt1 + ec]cos[»c(tl + 1) + ec]

where R (t;,7) is the autocorrelation function for the quadrature

g-Carrier
component of the carrier. Then RPSKC(tl’T) becomes

(4.24) RPSKC(tl,r) = cos? gVR (ty,7)

Carrier

in2
+ SI_EV p ()R (t1,7)

V2 g-Carrier

Time Averaged Autocorrelation Function

The time averaged autocorrelation function for coherent PSK is

T
_ 1
(4.25) _RPSKC'(t'l','T) = T[ %SKC(tlgT)dtl

T
ey = 1 cos?

. T
sin? gV
* V2 RM(T)[ Rq-Carrier(tl’T)dtlf



The first integral has previously been evaluated

T

_ 1 14

(3.42) RCarrier(tl’T) - Tl/f RCarrier(tl’T)dtl
0

and found to be, from Equation 3.48 and Equation 3.49

(t1,1) = ——-cos w_T

(3.48) e

Carr1er

(3.49) RCarrier(tl’T) = RCarrier(T)

Similarly, the time average of the autocorrelation function of the

quadrature component Rq-Carrier(tl’T) is
T
_ 1
(4.27) Rq-Carrier(tl’T) - 7:4r Rq-Carrierdtl
_ A2
(4.28) Rq-Carrier(tl’T) = 5= COS w.T
(4.29) Rq-Carrier(tl’T) = Reaprier(t)

Substitution of Equation 3.49 and Equation 4.29 into Equation 4.26

p.49

yeilds the time averaged autocorrelation function of the coherent PSK

sin? gV
Carrier(®) * V2 Ri( Rearrier

(4.30) RPSKCltl,TS = cos? gVR

(1)

which is equal to the autocorrelation function for the non-coherent

PSK signal.

(4.31) Roskc(t1-T) = Rpgyey(T)
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Power Spectral Density

The coherent PSK autocorrelation function, Equation 4.24, can be

written as

sin2 gV R"

= 2 !
(4.32) RPSKC(tl sT) cos BVRPSKC(tl ,T) + " PSKC(tl’T)
with corresponding Fourier transforms

- 5 ' sinZ gV
(4.33) FPSKC(tl ,T) = COS BVFPSKC(tl w) + ———VZ FPSKC(tl )

where FﬁSKC(tl’w) and F;SKC(tl,w) are the Fourier transforms of the first
and second terms respectively of Equation 4.33. The Fourier transform of
Equation 4.33 can be interpreted as a time varying power spectral density

in2 gV

= 2 1 S u
(4.34) SPSKC(tl ,w) cos BVSPSKC(tl ,(.0) + V2 SPSKC(t]‘ ,w)

The first term of Equation 4.33 is the Fourier transform of the

autocorrelation function, R (ty,7), of the carrier

Carrier

4.35 o) = [ r (te)e ety
( 3 ) Spch( 1 w) LRPSKC( 1 r)e T

This integral has been previously evaluated, Equation 3.56, and found to

be, from Equation 3.60,

(8.36) Sheyc(tion) = B5Tfota + ug) + 86w - w)][1 - cos 2lugts + 5]

- A;I-sin 2(w .ty + ec)[}(w *ug) - §(w - wc)]



S"PSKC(tl"”) of Equation 4.34 can be obtained by noting that the
Fourier transform of the product of two autocorrelation functions is
equal to the convolution of the two power spectra.

(4.37) S"PSKC(tl’w) = SM(N) * S (tlsw)

g-Carrier

Obtaining an expression for Sq-Carrier(tl’w) R

- ® -jot
(4.38) Sq-Carrier(tl’“’) f Rq-Carm’er(tl’T)e de

Utilizing Equation 4.23,

_ 2 } -ij
(4.39) Sq-Carm‘er (tl,w) = Af cos [“’ctl + ec]cos [wc(t1+r)+ecle dt

-0

Expanding trigonometrically

_A2 [T [
(4.40) Sq-Carrier(tl"*’) = | {cos Zth1 + T + Zec]
+ cos wc‘r} e JuT g,
_ A2 ® -jwt
(4.41) Sq-Carrier(t1"”) = > Cos w,T e dr

-0

+ Az . -Jwt
2 cos[ 2(w t +o.) + wcT]e dt

-0



Noting Equation 3.13 and Equation 3.15 the first integral of Equation 4.41

can be obtained. Expanding the second integral trigonometrically

(4.42) S

A2
q-Carrier(tl’ w) = ‘51 [6(w + wc) + 8w - wc)]

A2
* 5 {cos 2(wct1 + ec) Cos w.T

- sin Z(wctl + ec) sin wcr}e'J“T dt

(tp o =BT [6(u+u) + 80 - w)]

(443) S c c

g-Carrier

<]

A? -J
+ 5= cos 2(wct1 + ec)fcos w.T e JOT 4o

- 00

Az, > -Jut
- 3= sin 2(wcti + ec)fsm w.T e dt

- 0D

Again noting Equation 3.13 and Equation 3.15, and using the identity

of Equation 3.59,

(4.48) S (t10) = BT [5(0 + 0) + (v - 0 )]

g-Carrier

[T + cos 2(wct1 + ec)]

2
- A?E- sin 2(w t + ec)[é(m *u) - §(w - wcﬂ

Now implementing Equation 4. 37

(40 37) SESKc(tls w) = SM(‘”) * S (tl’ w)

g-Carrier



(4.45) SESKC(tl’ w) i}(.SM(wo) Sq-Carrier(tl’w - wo) dwo

wF’ZT Si"”(%‘T‘) A2
(4.46) Stc ~(t1s w) =/ . {S(w g = )

PSKC J [ﬂ]z 2
4

* 8w - wg - wo)} {1 + cos 2(w ty + ec)}

. A2 .
-] —EE- sin Z(wctl + GC) {6(w + we = wo) - 8w - we = wo)} dwo

, T
(4.47) S' (t1,u) = 22001 + cos 2(w ty + © VTsm(o
. pskcitisw/ = 77 cos 2(w ty + 8)

()

lé(w + we - wo) + §(w - w. - wo)] dw

0
H q(wOT
-36—2151n2(wt1+e)'/‘ VT s\
-0 (on)Z
NN
[6(w + W, = W ) - 8(w - w, = wo)} dwo



n Az
(4.48) SPSKC(tl’“) = —53-{1 + cos 2(wct1 + ec)}

) ) 4[(w + wC)Tl ) . u[(w - wc)T
VT sin —7 ]| . VT sin 7

[(w + mc)T]2 [M)_T_]Z

Y 4

(w + wC)T
A2 V2T sin* — I
-] E sin Z(wctl + ec)
(w + wC)T]Z

—

(w - w )T
V2T sin“———7r£L—

[(w - wC)T]2
—

Substitution of Equation 4.36 and Equation 4.48 into Equation 4.34
yields the expression for the time varying power spectral density

of the coherent PSK case.



(4.49) Speycltisw) = A%ﬂ- COSZBV{IF(w tu)tse - wc)]

[1 - CO0S Z(wctl + ecﬂ - j sin 2(wct1 + ec)[%(w + wc) - 6(w - wcﬂ}

w4+ w )T
sin”{f——iz—s——}

A2nT .
t = sin?eV [‘ +cos 2{ucty * ec)] (0 + 0 )T)2
]
Vs w+ w)T w - w )T,
sin“{( 7 " S"”“{( +4 : } s"““{( 4 .
+ - J sin 2(w ty + 8) N
((w - wc)TI2 ‘(w * “’c)T)2 (o - wc)le
[ | BRI P

In general, as observed from Equation 4.49 the power spectral
density for the coherent PSK signal consists of discrete time varying
carrier components, and time varying sidebands resulting from the
split-phase spectrum being translated to appear about plus or minus
the carrier frequency. The imaginary term appears because RPSKC (ty,7)
is not an even function of t. It should be observed that as the sideband
power is maximized the carrier components tend to vanish, and indeed
at 8V = Q n/2, Q = odd integer, the carrier does vanish and the
sideband power is a maximum,

Time averaged power spectral density. It should be observed

that the expression for the time varying power spectral density of
coherent PSK when time averaged with respect to t; reduces to the

expression for the power spectral density of non-coherent PSK, as follows.



Inserting SPSKN(w) and taking the time average with respect to t;

- A2n 2
(4 50) S SKC(tl’ 5 = SPSKN(w) - —Z—T- cos<gY

{F(w + wc) + 8(w - mcﬂJ(FTcos Z(wctl + ec)dtl

# 5[50+ ug) - 8lu - mc)]/Tcos 200ty + ec)dtlz
0

%(w + wC)T _ u{_(w - wc)T), :
sSin _—"_‘
+ 4 f cos 2(w.t; + 8 _)dt;
{(w + wC)sz {(w - wC)T 2 0 ¢ ¢
— _—t

(w+ )T 0 - W,
_ sin“’ ¢ sink { -]./f
-J ;(w N wC)T - {(w — sin 2(w o toe)dt
e —4—%

Noting the evaluation of the above intesrals in Eguation 3.69 throuah

Equation 3.74,
2

(4.53) W = AZ'” [cos2 BV][G(ZD + wc) + 8w - “’c)]

. q[(“’ + mC)T] sin‘*[(w + wC)T]
sintl—g— . -4

(w + wcn] [m : wc)T]z‘
e B

' E%Zﬂl[sinz 8V



A comparison of Equation 4.53 with Equation 4.16 yields

Showing that the time average of the coherent PSK time varying power

spectral density is equal to the power spectral density of non-coherent

PSK.



CHAPTER V
FREQUENCY SHIFT KEYING

The case of a sinusoidal carrier frequency modulated by a split-
phase code is equivalent to switching between two oscillators separated
in frequency. When the split phase code assumes a +V voltage level, the

modulated signal will be of the form
(5.1) epcy(t) = A cos{w;t + 04)

where

w; - oscillator angular frequency

8, - oscillator initial phase angle

and when the modulation assumes a -V voltage level, the output signal

will be of the form

(5.2) eFSK(t) = A cos(uw,t + 6,)

where

w2 - oscillator angular frequency

8, - oscillator initial phase angle

Physically, the FSK case consists of gating the first oscillator on and
the second oscillator off when the split-phase code assumes a +V voltage
level and gating the first oscillator off and the second oscillator on

when the split-phase code assumes a -V voltage level. One scheme which
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will allow this switching pattern to be accomplished requires that the

split-phase code and its inverse be converted into unipolar codes,

Figure 10.

The split-phase code can be expressed as

(5.3) em(t) = Vm(t)

m(t) = +1 is the split-phase switching function
the inverse of the split-phase code can be expressed as
(5.4) e'm(t) = Vm'(t)
where

m'(t) = F1 is the inverse of the split-phase
switching function.

The unipolar modulation can be expressed as

(5.5) eml(t) =my(t)V
where
my (t) = +1  random unipo]ar gatiqg function
0 corresponding to split-phase code
and
(5.6) em;(t) = mi(t)V
where

\ _Yo when my(t)
mi(t) =37 when my(t)

inn
o



+Y
-V

e (t)

+

-V

e’ (t)

ersk(t)

+V
o1
Split-Phase
P e (1) m e ()
> to : > ;>><:
Unipolar j /
A cos(w]t + 6])
A cos(wzt + 62)
Split-Phase emi(t) :>:;E?\\\ ego(t)
to -
Unipolar - \\\\\__////’
+V
0 —11

FIGURE 10

A METHOD OF GENERATING AN FSK SIGNAL WHEN
THE MODULATION IS A SPLIT-PHASE CODE

09°d



I. NON-COHERENT MODULATION

For non-coherent FSK the two oscillator frequencies f; and f,

are not integral multiples of the split-phase code bit rate f

B
fi# KfB K = integer
fr7d
and
f, # DfB D = integer
fo # %
where
D#K

These reiationships between the two osciilator frequencies and the
split-phase code bit rate require that the initial phase angles of the
two oscillators be considered as random variables uniformly distributed

between 0 and 2r.

8, - random variable uniformly distributed
between 0 and 2.

8, - random variable uniformly distributed
between 0 and 2r.

Figure 11 pictorially represents non-coherent FSK.
As observed from Figure 11, the output signal from the first

multiplier is

(5.7) eo1(t) = Aeml(t) cos(wyt + 87)-



+V

A cos(wyt + 67)

Non-Coherent FSK
f, # KfR, K = integer

f2 # DfB, D = integer

A cos(wzt + 62)

AVANINAWATAY /A ANAWA

vulLy UUU U U UUN
}_ Logic One Logic One } Logic Zero  ———oy
— 7 — split-Phase Code

FIGURE 11

A NON-COHERENT FSK SIGNAL WITH
SPLIT-PHASE CODE MODULATION
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(5.8) e01(t) = Ale(t) cos (wlt + el)

and the output signal from the second multiplier is

(5.9) epa(t) Aeal(t) cos (wpt + 65)

(5.10) ega(t) = AVmi(t) cos (w,t + 6,)

The complete output signal isgiven by the sum of ey (t) and eg,(t)
(5']]) eFSKN(t) f 901(t) + e02(t)

(5.]2) eFSKN(t) = AV[ml(t) cos (wlt + 61)

+ my(t) cos (wyt + 6,)]

Equation 5.12 is the expression for the non-coherent FSK signal.

Autocorrelation Function

The autocorrelation function of the non-coherent FSK signal is
(5.13)  Regpy(tis 7) = E[eFSKN(tl) erspn(t1 * T)]
(5.14) RFSKN(tl’ T) = E[{AV[ml(tl) cos({wity + 8;)
+ mi(t1) cos(uwyt + 92)]}

{AV[ml(tl + T) COS{wl(tl + T) + 61}

+ mi(t; + 1) cos{wzitl + 1) + 62}]}]
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(5.]5) RFSKN(tl, T) = AZVZElml(tl) ml(tl + T)

COS(wltl + 91) COS{wl(tl + 1) + 91}
+ mi(ty) my(t; + 1)
cos(wpty + 05) cosfwy(ty + 1) + 01}

+my(ty) mi(ty + 1)

cos(wity + 6,) cosfup(ty + 1) + 65}

+mi(ty) my(t; + 1)

cos(wpty + 82) cosfup(ty + 1) + 65}

Noting that the expected value of a sum is equal to the sum of the

expected values, RFSKN(tl’ 1) can be written

(5.16)  Regy(t1s 1) = A2V2{EIm,(£5) my(t; + )]

E[cos(wity + 81) cosfwi(ty + 1) + 0,}]

+ E[mi(ty) my(t, + 1)1
E[cos(wot; + 65)] E[cos{wl(tl + 1) + 01}]
+ E[my(ty) mi(ty + )]

E[cos(wyty + 81)] E[cosfwa(t) + 1) + 65} ]
+ E[my(ty) mi(ty + 1))
E[cos(uwpty + 65) cosfup(ty + 1) + ez}]}
where the fact that the two oscillators and the unipolar gating

function are statistically independent of each other has been

utilized.
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Noting that the ensemble average of a sinusoid with random

phase is zero

(5.17) E[cos(woty + 65)]

E[cos(wyt; + 61)]
E[COS{wz(tl + T) + 92}]
E[COS{wl(tl + 1) + 61}] =0

and utilizing the fact that

(5.18) R (1)

ml V2E[my(t1) my(ty + 1)]

(5.19) R ()

VZE[m'(t1) mi(ty + 1)]

(5.20)  Regey(ti» ©) = A2{R. (<) Elcos(uits + o)
COS{wl(tl + T) + 61}]
+ RmH(T) E[cos(uwyty + 65)

cosfup(ty + 1) + ezﬂ}

Expanding the cosine products trigonometrically

(5.2]) COS(wltl + 91) COS{wl(tl + 1) + 91}

= 1/2[coswit + cos{w (2t + 1) + 26,}]

(5.22) cos(upty + 82) cos{wa(ty + 1) + 65}

= 1/2[coswyT + COS{wz(Zt] + 1) + 292}]

Noting again that the ensemble average of a sinusoid with random
phase is zero
(5.23) E[cos{uy(2ty + 1) + 20,}]

= E[cosfup(2t) + 1) + 20,}]1 =0



(5.24) RFSKN(tl’ 1) = RFSKN(T)
= le(T) Rcarrier(])(
where
_ A2
2
(5.26) Rcarrier(z)(T) = %— COSwyT
But it can be shown that
2
(5.27) Roy(1) = R A(x) = 4=+ TR (1)
(5.28) Recplc) = =R (x) + 2R (1)
y FSKN'' = 7 “carrier(1)'\" 7 7T "p\T

+Lp (1) + TR
4 “carrier(2) 4 "m

Power Spectral Density

T) + le(T) R

(

Rcarrier(])

7) Rcarrier(Z

p.66

carrier(Z)(T)

1)

)(T)

The non-coherent FSK autocorrelation function, Equation 5.28,

can be written as

(5.29)  Reepul(t) = LR (1) + LR
: FSKN 4 Tcarrier(1) 4 “FSKN
V2

+7R

1 pu
carrier(z)(T) * 7 Res

with corresponding power spectral density

2
(5.30) y 1

2
) +lsu

(1)

L

Seskn(®) = 77 Scaprier(1)(®) * 7 Sgogn(®)

* ﬁ_'scarrier(l)(w) 7 Spskn(e)



p.67
SFSKN(N) and SESKN(w) can be evaluated by recognizing that the product
of two autocorrelation functions is equivalent to the convolution of

the two corresponding power spectra.

(5.31) Sesn(e) = Sylw) * Scarr‘ier(])(‘“)

(5.32) Seskn(w) = Sylw) * Scarm‘er(z)(‘“)

To evaluate Equation 5,31 and Equation 5.32 it is necessary to

have the expressions for SM(w), S (w), and S

carrier(1) carrier(2)(w)'

Noting Equation 3.12 and its results, Equation 3.15

(5.33) Scarrier(])(w) = [8(u+ w1) + 6(0 - wy)]

(5.34) scar‘r'ier‘(Z)(w) = T [G(w + wl) + 6(&.\ - wl)]

Noting that SM(w) is

—
w
-y
=]
P
o
€
i~
S

(2.15) SM(w) V2

Noting Equation 3.16 and its results, Equation 3.21
(w+ w))T (w = w))T
p2y2qr )i || sin* g

skn(®) = = ¥
[(w + wl)T]2 [(w - wl)T]z

(5.35) S#

4 4
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- [(w + wy)T ] - [(w - wy)T

(w) _ AZVZHT s1n ""1(‘*-— . sin —-—‘7r—-——
SKN 2 [(w + wz)T]Z [(w - wz)T]z
4 4

(5.36) S;

Utilizing Equation 5.30

(5.37)  Sepy(@) = AL [o(u + w1) + 8(u - wy)]

) (w + wl)T _— (w - wl)T
prvear )Sin || sint |7

8 [(w + wl)T]2 [(w - wl)T]z
— —

2y2 '
+ AT [ + wg) + 6(u - wp)]

- [(w + wz)T] - l(w - wZ)TJ
, Rt )Sint ||, sint |

8 [(w + wz)T]z [(w - wZ)T]z
— e

+

The power spectral density for non-coherent FSK, Equation 5.37,
is pictorially represented in Figure 12. The similiarity between
non-coherent FSK and non-coherent ASK should be observed. Intuitively
this similiarity results from the fact that the non-coherent FSK was
shown to be the sum of two "on-off" keyed carriers of different

frequency.



(EVEN)

AS

Fskn(®)

- FIGURE 12

POWER SPECTRAL DENSITY OF NON-COHERENT FSK
WITH SPLIT-PHASE CODE MODULATION
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II. COHERENT MODULATION

For coherent FSK the two oscillator frequencies f; and f, are

integral multiples of the split-phase code bit rate f

B
fi= KfB K = integer
K
fl = T
and
fy, = DfB D = integer
D
f, = T
where
D#K

These relationships between the two oscillator frequencies and the
split phase code bit rate make the initial phase angles of the two

oscillators constants.

@1 = 63c = constant

0o = 6,¢ = constant
Figure 13 pictorially represents coherent FSK.

It should be observed that the minimum system bandwidth
requirement occurs when the initial phase angles 6;c and 6,¢ are
equal to zero or some integral multiple of m. The system bandwidth
requirement increases as either 6;c or 6,c increases toward an odd
integral multiple of n/2 (Q n/2, Q = odd integer) and reaches a

maximum when 6 ;¢ and 6,¢ are odd multiples of =#/2 and opposite in

Sign (elc = ﬂ/z, 8oc = 3 w/2 = -ﬂ/2).



+V

Coherent FSK
f] = KfB, K = integer
A cos(m1t +87) f, = Dfg, D = integer A cos(u,t + 0,

K#D

ﬂ/\/l

AN/
UU UU\/(

— Logic One % Logic One

/U U

6 —92)

Logic Zero --_—_4

!
i

Split-Phase Code

FIGURE 13

A COHERENT FSK SIGNAL WITH SPLIT-PHASE
CODE MODULATION
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The output signal from the first multiplier of Figure 10 is
(5.38) eo1(t) = Aem}(t) cos (w t + elc)

(5.39) egy(t) = Avm; (t) cos (wyt +e. )

and the output signal from the second multiplier is

(5.40) eg2(t)

)

Aeml(t) cos (wpt + 8¢

(5.41) eo2(t) = Avmj (t) cos (wpt + ezc)

the complete output signal is the sum of ey (t) and ej,(t)
(5-42) eFSKC(t) = eOl(t) + eOZ(t)

(5.43) eFSKC(t) = AV[m;(t) cos(w;t + elc) + mj(t) cos(uwpt + ezc)]

Equation 5.43 is the expression for the coherent FSK signal.

Autocorrelation Function

The autocorrelation function of the coherent FSK signal

(5.44) RFSKC(tl’ 1) = E[eFSKC(tl) eFSKC(ti +1)]

(5.45) RFSKC(t]_s T) = E[;Av[ml(tl) COS(u)lt]_ + elC)
+ mi(t;) cos(uwyt; + GZC)]g
{AV[ml(tl + 1) cosfuwy(t; + 1) + elc}

it ) ansfuts ¢ ) + 0, ]

(5.46)  Regpe(ts 7 = AVE[m (t1)m (£ + 7) coslorty + oc)
COS{wl(tl + 1) + 91c§ +mi(ty)m(ty +1)
cos(wpty + 92c) cos}wl(tl +7) + elcf
+my(t)m{(t; + 7) cos(uty + 6 )
cosfuy(ty + 1) + 0,0 + Mt Imi(t; + 1)

COS(wztl + eZC) Cosng(tl + T) + 62(:;]
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Noting that the expected value of a sum is equal to the sum of the

expected values RFSKC(tl’T) can be written

(5.47) RFSKC(tl,r) = szz{cos(w1t1+elc) cos{wl(t1+r)+elc}
J:I: my (£)my (400 p[my (£)m (£1+0) ] dmy (£, )dmy (£141)
+ cos(w2t1+ezc) cos{wl(t1+r)+elc§
.[:.[: mi(tl)ml(t1+T)p[mi(tl)ml(t1+r)]dmi(tl)dml(t1+T)
+ cos(w1t1+®1c) cos{wz(t1+r)+ezcg
.[:‘[: ml(tl)m{(t1+r)p[ml(tl)mi(t1+r)]dml(tl)dmi(t1+r)
+ cos(wyti+0, ) cos{wz(t1+T)+@2C)

[ ] mitemitecp o et (erse)] am (e, ) (242)

where the random variables are my(t;), my(ti+t), my(ty), and my(t,+1).
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(5.48) Reskc(tist) = Rcarrier(p(tl’T)le(T) t A2 {%ﬁ" %'Rm(T)

{cos(w2t1+ezc) cos[wl(t1+r)+elc] + cos(w1t1+elc) cos[wz(t1+r)+ezc]}

+ R (tl,T)R 1 (1)

carrier() m

where VZE[mi(tl)ml(t1+T)] = VzE[ml(tl)mi(tlﬂ)J =¥ R (1)

(5.18) R (1)

m VZElml(tl)ml(tl"'T)]

—
(8]
.
(Ve

~
=

—
Lal

~—

|

= V2E[my (t,)my(ty+0)]

(5.49) Rcarrier(n(tl’f) = Azcos(w1t1+elc) Cos{wl(t1+T)+®lc

(5.50) R

(ty,1) ) cos{w,(ty+c)+o |

2 Sttt
AZcos (wyt; 0, 2 |

carrier (2 c

Substituting the expression for le(T) and Rmi(T), Equation 5.27,
2
(5.27) R (1) =R.a(1) = y—-'*' ]—Rm(T)

RFSKC(tl’T) becomes

.k 1
(5.51) Reske(t1st) = 4 Rcarrier(n(tl’T) 7 Rm(T)Rcarriera)(tl’T)

vz 1 2V 1
7 Rcarriercn(tl’T) *3 Rm(T)Rcarrier@)(tl’T) * A ;4 ! Rm(T)}

cos(w2t1+ezc)cos[w1(t1+r)+elc] + COS(w1t1+Olc)COS[wz(t1+T)+®2cJ;



Time averaged autocorrelation function.

correlation function for coherent FSK is

(5.52)

(5.53)

;
]
Reskc(t1st) = 1 ,{ Reskc(tist) dty

2 Rm(T)
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The time averaged auto-

. T
_Jv 1
RFSKC(tl’Tj - §T+ | }Tjo. Rcarrier(l)(tl’T) dt,

+{.v.2_+5n_‘fl}1

T
4 4 T_!; Rcarrier(Z)(tl’T) dt,

T
{j; cos(w2t1+ezc)cos [wl(t1+r)+elc] dt,

T
+f cos (w1t1+elc)cos [wz(t1+1’)+®2c] dtl}
(

Noting Equation 3.42

(3.42)

T
2
Rearriertt157) = Tj(; Rcarm’er(tl’T) dt,

and its results Equation 3.48

(3.48)

_ A?
Rearrier{tist) = 5 cos w

utilizing these results

(5.54)

(5.55)

_ A2
Rcarrier(l)(tl’T) = 7 C0S wT
" (troe) = Rcarm‘er(l)(T)

carrier(n)

+ A2

T

|

V2

i

1
E-Rm(r)}



and

R - K
(5.56) carrier%a(tl’f) = 5 COS wyt
(5.57) Rcarrierwm(tl’T) B Rcarrierxm(T)

Utilizing the defining conditions for coherent FSK

f1 = Kfy K = integer
K
f1='-i-‘
and
f, = Dfp D = integer
D
fz-T-
where D#K
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It can be shown in a manner analogous to that of Equation 3.41 through

Equation 3.47 that the last two integrals of Equation 5.53 are equal to

zero. Substitution of Equation 5.55 and Equation 5.57 into Equation 5.53

yields

. R (7)
e - 2 It
(5.58) RFSKC ty,t) = G Rcarr-ieru)(T) * 4 Rcarm’er‘(l)(T)

() + Eﬂéil R (1)

Vz
+ -
carrier()

g Rcarrier(m

A comparison of Equation 5.58 and Equation 5.28 will show that the

time averaged autocorrelation function for coherent FSK is equal to the

autocorrelation function for non-coherent FSK.

(5.59) RFSKCItl’Tj = RFSKN(T)
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Power Spectral Density

The coherent FSK autocorrelation function, Equation 5.51, can be

written as

v
(5.60)  Regpe(trsr) =

b Rcarrier(l)
V2

ve 1 oo 2)V2 1
* T Rearriere (8157 * 7 REgye(tist) + A {4 1 Rm(T)g

(tlsT) + % RII:SKC(tl’T)

{cos(wztﬁozc) [cos(wltlﬂalc)cos wyT - sin(w1t1+olc)sin wl'r]

+ cos(w1t1+®lc) [cos(w2t1+92c)cos wyT - sin(m2t1+ezc)s1'n wer
with a corresponding Fourier transform FFSKC(tl’“’)’ which can be inter-
preted as a time varying power spectral density SFSKC(tl’“’)'

- vz 1l vz
(5.61) SFSKC(tl’“’) ! Scarrier(l)(tl"”) 2 SFSKC(tl’“’) 7 Scarrier(z)(tl’w)

1 qn Az
tg Spskeltisw) + 7 cos(w2t1+ezc)cos(w1t1+elc)

{V2f cos wit e 94T dr - f R (1) cos wr e Jur d'r;

2 © )
- AT cos(w2t1+ezc)sin(w1t1+elc) {VZ f sin w1 e Y dy

e o] . -, A2
- [me(r)s1n w T € J‘*_’T dTI'l" T cos(w1t1+elc)cos(w2tl+ezc)

:VZ f COS wot e 0T g - I R (t)cos wt e Jut dr}

=]

2 © -3
- %—- cos(w1t1+olc)sin(w2t1+02c) {VZJ sin wyt e YT de

- J‘ Rm(‘r)S'in wp T e JuT dr}
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The fi}st term of Equation 5.61 is the Fourier transform of the

autocorrelation of carrier number one, Rcarrier(n(tl’T)’
- ” 'ijd
(5.62) Scarrier(n(tl’w) - Jim Rcarrieru)(tl’T) € t
(5.63) Scarrier(n(tl’“) = J. Azcos(w1t1+elc)cos wl(t1+T)¢elc}e'JwTdT

Noting Equation 4.39 and its results Equation 4.44

(5.64) scamerm(tl,w) == [G(w"'wl) + G(w-wl)] [1 + cos 2(m1t1+61c)}
2
- 3 B8 sin 2(uitive, ) fs(ater) - 6(u-m)]
Sinilarly
= Pem - |
(5.65) Scarrier(Z)(tl’w) =5 [G(w'*'wz) + 8(w wz)] [] + cos 2(w2t1+®2C)J

2
-3 A-Zl sin 2(w2t1+62c) [5(w+w2) - G(w-wz)]

S'FSKC(tl,w) and S;SKC(tl,w) can be evaluated by recognizing that
the Fourier transform of the product of two autocorrelation functions is

equivalent to the convolution of the corresponding power spectra.

(tlsw)

(5.66) S%SKC(t”w) = Sm(w) * Scaprierq)

(5.67) S;SKC(tl’w) = Splw) Scarrier(m(tl’w)

0

(5.68)  Spggcltisw) = J. Smlwo) Scarrier@{tre® - wg) dug

-0
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w T
wf V2T sin‘*(—%—) Aty |
5 16(w+w1-w0)+6(w-w1-wo)

(5.69) Spgycltisw) =f >
1

. A2 .
{1+cos 2(w1t1+olc)§ - —Eﬁ-s1n 2(w1t1+elc)

6(w+w1-w0)-6(w-w1—wo)}]dwo

: A2V2qT
(5.70) Sigpc(tiow) = AUTL 1+ cos 2 (wrty¥o, )]

. q[(mm] . q[(w—wl)T}\
sin S1n i

i
l(w+w1)T ‘ (w=wy)T :
: =
) u[(w+w1)T‘ . u[(w-wl)TJ
Sin sin
-] BE%EEI. sin 2(w1t1+elc) 4 5 -
[(w+w1)T] [(w—wl)T]z
4 4
Similarly
(5.71) Stepetion) = LI 1+ cos 2 (uytyvo, )|
‘ q[(w+w2)T] . q[(w-wz)T ]
sin'| — \ sin T
[(w+w2)T] 2 [(w-wz)T ]2
4 4
. “[(w+w2)T] q[(w-wzyq
2 sSin i
-5 BT i 2(wpt te N D

)
2¢ [(MZ)TT [(w'wz)T2
g 3 ]
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The other terms of Equation 5.61 can be evaluated utilizing the fact that
the Fourier transform of the product of two functions is equivalent to

the convolution of the individual power spectra. Using Equation 3.14

(5.72) f R, (t)cos wyt e JuT g,

Sm(w) * g 6(w‘w1)+6(w+w1)]

[ Satu) =

[(w-wl)T] [(w"’wl)Tl
sint sin%
VZyT +

4 4
[(w-wl)T] z [<w+w1)T]2

(5.73) J- Rm(T)COS wyT (’.'-‘jwT dr

G(w'wl'wo)"‘é(w"‘wl'wo)] dwg

(5.74) f Rm(r)cos Wy T e duT g

4 4
Similarly
. 4[(“"0’2”] . l+[(w“‘mz)T]
® ; sin sin
(5.75) [ Ry()cos wyr eI 4o = vauT |, 1
. [(w-wz)T] 2 [(w+w2)T 2
4 4

and

(5.76) f cos wit e 3YT dr

i [é(w-wl) + §(wtw; )}

m [6(w-w2) + 6(w+w2)]

whwy )T w=wy )T
sin“[( o) J sin“[———( J }

(5.77) f cos wyt e 39T dg

Utilizing Equation 3.59 in a like manner

q 7

[(ml)T] z [(w-wm] 2
3 —F

(5.78) f Rm(T)S'in wiT (-E_jmT dr= -jVeqT
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whwy)T w-wy )T
sin”l(*-l) ] sin“[( z ]

4 4 ‘
[(w+w1)T]2 [(w-wl)T J2
4 4

(5.79) J’ R ()sin wyt €797 dr = -gvaaT

(5.80) f sin wyt e-jw*c dt ﬂ[d(uﬁ'wl) - S(w-wl)}

(5.81) f sin wyt e-ij dt n[d(wh»z) - G(w-wz)]

Substitution into Equation 5.61 yields the time varying power

spectral density for coherent FSK.

The imaginary components appear because RFSKC(tl,T) is not an

even function of t.

(5.82) SFSKC(tl,w) = Az\éz" [5(w+w1) + §(w-w )] [1 + cos 2(w1t1+91c)]

22
- ;R g T sin 2(w1t1+olc){5(w+w1) - G(w'ml)]

. ql(w+m1)T] . u[(w-wl)T]
. B2VAeT B S b

1 2(witi+e
5 { + cos 2(wity+ lc)} [(w+w1)T] ==+ l(w-wl)T ]2
4 T

wtwy )T w=w1)T
| sw[( +41) ] _ SW[( 41) ]

O Tt [T
4 4
4 R2Veq

3 §(wtwy) + 5(w'w2)][] + cos 2(w2t1+®2c)]

22
. T
- A“Vem

8 sin 2(&)1‘(21'*’e

2V2. .
- A \8I L sin 2(w2t1+62C) [é(w'*'mz) - G(w-wz)]
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|

)

. q—(w+w2)T] . “l(w-NZ)T]

2y2 sin sin
+ A_%;EI. 1+cos 2(w2t1+@ C); | 4 > + 4 :

2 (w+w2)T] [(m'wz)TJ
i

. l+[(m"’wz)T] . u[(m‘wz)T]

22 sin sin
- ;A VS“T sin 2(wyty ezc) s TR

(w+w2)T (w-wz)T

| =]

A

COS(w2t1+O ) COS(w1t1+Olc){[6(w-w1) + 6(w+w1ﬂ

|

I[G(w+w1) - 8(ww;)

}

WWm)+Mﬁmﬂ

|

{k(m+w2) - §(w=wp)

A2V2
(w-ml f(w+w1)T}—
s1n“l 7
w-wl (whwy)T 2
4 i
V cos(wzt1+o sin(w1t1+elc)
wTw T w=w T_
sin“{( fo1) : sin”{( L }
+ -
;(w+w1)T} 2 §(w-wl)T¥ 2
- g i
¢ B2V2r cos(w tito, ) cos(w,tyte, )
4 wi ] 1C wy by 2C
) ”{(w-mz)T} ] 4{(w+w2)T£
sin sin
- T 4 + 4
(wmwp)T) 2 {(w“'wz)T }2
4 4
- A2X21T COS(w1t1+@lc) Sin(w2t1+@2c)
wTw T w=w T
sin“{( +42) } sin“{( 2) }
T _ .
(whwy )T (w-wp)T 2

e

7

=

)
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Time Averaged Power Spectral Density

It should be observed that the expression for the time varying
power spectral density of coherent FSK (Equation 5.82) when time averaged
with respect to t; reduces (in a manner analogous to that of Equation
3.69 through Equation 3.74, the terms which are a function of t; average
to zero) to the expression for the power spectral density of non-coherent

FSK.

2y2
(5.83) SFSKcztl’wj = A g ul 16(w+w1) + §(w-w;)

. H[(w+w1)T} ) q[(w—wl)T"
-G o A e B B ‘>
8 [(w+w1)T]2 [(w-wl)T]z
4 4

+ A2V2q

3 6(w+w2) + G(M'wz)

\
' L*[(w*'wz)T] . L*[(w“wz)T-
+A2V§nT il A S B N ‘>
[(w+w2)T]2 [(w-wz)T]Z (
- i
y,

A comparison of Equation 5.83 and Equation 5.37 shows that indeed

the time average of the time varying power spectral density for coherent

FSK is equal to the power spectral density for non-coherent FSK.

(5.79) SFSKC‘tl’w’ = SFSKN(w)



CHAPTER VI
SUMMARY AND CONCLUSIONS
I GENERAL

A general discussion of pulse modulation techniques was developed,
leading to the introduction of PCM coding. The ability to time multiplex
many channels of information over a single transmission link was given
as one of the most important characteristics of pulse modulation. Some
general information concerning sampling and sampling rates was introduced.
PCM was then defined, with an explanation of "quantizing", "quantization
noise", and "encoding'. The decided advantage of only having to discern
which of two possible voltage levels was transmitted, for a binary PCM
code was discussed. Split-phase coding was introduced as one technique
used in binary encoding. It was noted that the higher transition density
of split-phase codes usually allows more efficient synchronization to be
maintained at the receiver.

Ensemble averages and ensemble average autocorrelation functions
are introduced. The ensemble average and ensemble average autocorrelation
functions for a random PCM split-phase code are presented in Equation 2.3
and Equation 2.10. The definitions of "stationary" and "ergodic" random
variables were presented. The power spectral density function is defined
and the power spectral density function for a random PCM split-phase code

is presented in Equation 2.14,
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It was observed that the autocorrelation and power spectral
density functions were time varying for coherent ASK, PSK, and FSK where
modulated by a random PCM split-phase code. The fact that these functions
are time varying implies non-stationary. For coherent ASK, PSK, and FSK
where the modulation was a random PCM split-phase code, the time varying
autocorrelation and power spectral density functions when time averaged
reduced to the corresponding non-coherent autocorrelation and power

spectral density functions,
IT AMPLITUDE SHIFT KEYING

The ASK case with coherent or non-coherent split-phase code
modulation was discussed in Chapter III. The autocorrelation and power
spectral density functions were found for both coherent and non-coherent
split-phase code modulation. It was observed in Equation 3.22 and
Equation 3.66 that maximum sideband power occurs when gV equals one

(8V = 1), corresponding to "on - off" keying of the carrier.

Non-Coherent Modulation

It was observed that the condition for non-coherent modulation of
the carrier by the split-phase code was that the carrier frequency not
be an integral multiple of the split-phase code bit rate (fC + K fB’
K = integer). This condition for non-coherent modulation required that
the initial phase of the carrier be considered a random variable uniformly
distributed between zero and 2w, (0 = O ON = random variable uniformly

distributed between 0 and 27). Non-coherent ASK with split-phase code
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modulation is represented pictorially by Figure 4. The autocorrelation
function for non-coherent ASK with split-phase code modulation is
expressed in Equation 3.8. It should be observed that the autocorrelation
function consists of the sum of the carrier autocorrelation function and
a term resulting from the product of the split-phase code autocorrelation
function and the carrier autocorrelation function. The power spectral
density for this case,expressed in Equation 3.22 and pictorially repre-
sented by Figure 5 was shown to consist of discrete carrier components
and sidebands resulting from the split-phase spectrum being translated

to appear about plus and minus the carrier frequency.

Coherent Modulation

It was observed that the condition for coherent modulation of the
carrier by the split-phase code was that the carrier frequency be an
integral multiple of the split-phase code bit rate (fc = K fB’ K = integer).
This condition for coherent modulation required that the initial phase of
the carrier be a constant (o = 6, = constant). It was observed from
Figure 6 that the minimum system bandwidth requirement occurs when 0.
equals zero (ec = 0) or some integral multiple of = (@C = Kr, K = integer),
for these conditions no instantaneous amplitude change is required when
a transition occurs in the split-phase code. The system bandwidth re-
quirement increases with increased 0. from the minimum bandwidth conditions
to a maximum when 9¢ equals an odd integral multiple of %—(eC = Q %—,

Q = odd integer), where the maximum possible instantaneous amplitude

change is required.
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The time varying autocorrelation function is expressed in Equation
3.37 and consist of the sum of a time varying carrier autocorrelation
function and a term composed of the product of the split-phase autocor-
relation function and the time varying carrier autocorrelation function.
It was then shown that the time varying autocorrelation function for
coherent ASK with split-phase code modulation when time averaged reduced
to the autocorrelation function for non-coherent ASK with split-phase code
modulation, Equation 3.51.

The time varying power spectral density for coherent ASK with
split-phase modulation is expressed in Equation 3.67. As observed from
Equation 3.66 the power spectral density consists of discrete time vary-
ing carrier components, and time varying sidebands resulting from the
split-phase code being translated to appear about plus and minus the
carrier frequency. It should be observed that the expression for the
time varying power spectral density of coherent ASK modulated by a split-
phase code when time averaged reduced to the expression for the power
spectral density of non-coherent ASK modulated by a split-phase code,

Equation 3.74.
III PHASE SHIFT KEYING

The PSK case with coherent or non-coherent split-phase code
modulation was discussed in Chapter IV. The autocorrelation and power
spectral density functions were found for both coherent and non-coherent
split-phase modulation. It was observed from Equation 4.16 and Equation

4.49 that as the sideband power was maximized the carrier components



p.88
tend to vanish, and indeed at gV = Q %3 Q = odd integer, the carrier

does vanish.

Non-Coherent Modulation

It was observed that the condition for non-coherent modulation
of the carrier by the split-phase code was that the carrier frequency
not be an integral multiple of the split-phase code bit rate (fc + K fB,
K = integer). This condition for non-coherent modulation required that
the initial phase of the carrier be considered a random variable
uniformly distributed between zero and 2w, (0 = O GN = random variable
uniformly distributed between 0 and 27), Non-coherent PSK with split-
phase code modulation is represented pictorially by Figure 7. The
autocorrelation function for non-coherent PSK with split-phase code
modulation is expressed in Equation 4.9. It should be observed that
the autocorrelation function consists of the sum of the carrier auto-
correlation function and a term resulting from the product of the split-
phase code autocorrelation function and the carrier autocorrelation
function. The power-spectral density for this case expressed in Equation
4,16 and pictorially represented by Figure 8 was shown to generally
consist of discrete carrier components and sidebands resulting from the
split-phase spectrum being translated to appear about plus and minus

the carrier frequency.
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It was observed that the condition for coherent modulation of the
carrier by the split-phase code was that the carrier frequency be an
integral multiple of the split-phase code bit rate (fC = K fy, K= integer).
This condition for coherent modulation required that the initial phase
of the carrier be a constant (o = o, = constant). It was observed from
Figure 9 that the minimum system bandwidth requirement occurs when 0.
equals zero (@C = 0) or some integral multiple of « (@C = Km, K = integer),
for these conditions no instantaneous amplitude change is required when
a transition occurs in the split-phase code. The system bandwidth

requirement increases with increased 6c from the minimum bandwidth

m

2
(eC =Q %3 Q = odd integer), where the maximum possible instantaneous

conditions to a maximum when 8 equals an odd integral multiplie of

amplitude change is required.
The time varying autocorrelation function is expressed in Equation

4.24 and consist of the sum of a time varying carrier autocorrelation
function and a term composed of the product of the split-phase auto-
correlation function and the time varying carrier autocorrelation
function., It was then shown that the time varying autocorrelation
function for coherent PSK with split-phase code modulation when time
averaged reduced to the autocorrelation function for non-coherent

PSK with split-phase code modulation, Equation 4,31.
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The time varying power spectral density for coherent PSK with
split-phase modulation is expressed in Equation 4.49. As observed from
Equation 4.49 the power spectral density consists of discrete time vary-
ing carrier components, and time varying sidebands resulting from the
split-phase code being translated to appear about plus and minus the
carrier frequency. It should be observed that the expression for the
time varying power spectral density of coherent PSK modulated by a split-
phase code when time averaged reduced to the expression for the power
spectral density of non-coherent PSK modulated by a split-phase code,

Equation 4,54,
IV FREQUENCY SHIFT KEYING

The FSK case with coherent or non-coherent split-phase code
modulation was discussed in Chapter V., The autocorrelation and power
spectral density functions were found for both coherent and non-coherent
split-phase code modulation. A technique for generating a Frequency-
Shift-Keyed signal was introduced and pictorially represented by Figure 10.
This technique transforms the split-phase code modulation signal and its
inverse into unipolar signals and uses the resulting orthogonal signals

to gate two oscillators of different frequencies,

Non-Coherent Modulation

It was observed that the conditions for non-coherent FSK with
split-phase code modulation were that the two carrier frequencies be

different and that they not be integral multiples of the bit rate
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(f;1 + K fB’ K = integer; f, #+ D fB, D = integer; D + K). These
relationships between fhe two oscillator frequencies and the split-
phase code bit rate require that the initial phase angles of the two
oscillators (0; and ©,) be considered as random variables, uniformly
distributed between the 0 and 2x. Figure 11 pictorially represents
non-coherent FSK with split-phase code modulation. The autocorrelation
function for non-coherent FSK modulated by a split-phase code is
represented by Equation 5.28. The power spectral density for non-
coherent FSK with split-phase code modulation is presented in Equation
5.37, and pictorially represented by Figure 12. It should be observed
that the spectral density consists of discrete carrier components and
sidebands resulting from translation of the split-phase spectrum about
plus and minus the two carrier frequencies., The similarity between
non-coherent FSK and non-coherent ASK should be observed. Intuitively
this similarity results from the fact that non-coherent FSK was shown

to be the sum of two "on - off" keyed carriers of different frequency.

Coherent Modulation

It was observed that the conditions for coherent FSK with split-
phase modulation were that the carriers be of different frequencies but
jntegral multiples of the split-phase code bit rate (f; = K fB’ K = intege!
f, =D fB’ D = integer; D # K). These conditions for coherent FSK
require the initial phase of the two oscillators to be constant
(0 = Olc = constant, 0, = 92C = constant). It should be observed from

Figure 13 that the minimum system bandwidth requirement occurs when the

initial phase angles %¢ and 0,. are equal to zero or some integral



p.92
multiple of n. The system bandwidth requirement increases as either
elC or Ozc increases toward an odd integral multiple of %3 and reaches
a maximum when 0, ¢ and 6,. are odd multiples of %—and opposite in sign,
for example o = %3 0, = §§-= - %—.

The time varying autocorrelation function for coherent FSK with
split-phase modulation is expressed in Equation 5.51. It was then shown
that the time varying autocorrelation function for coherent FSK with
split-phase modulation when time averaged reduced to the autocorrelation
function for non-coherent FSK modulated with a split-phase code,
Equation 5.59. The time varying power spectral density for the coherent
FSK case is expressed by Equation 5.82. It should be observed that the
expression for the time varying power spectral density for the coherent

FSK when time averaged reduced to the expression for the power spectral

density for the non-coherent FSK case.
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