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ABSTRACT

This dissertation is based on my graduate research studying complex matter in multiple areas

of biological physics. While the complex matter systems in each area differ vastly in scale and

function, I use similar computational approaches on each to answer scientific queries about their

structure and dynamics. In the first and second sections, I present how graph theory helps interpret

actomyosin networks, which are complex biological active matter composed of filament, linker, and

motor proteins. The results show how the network’s dynamics and structure are reshaped by motor

and multivalent actin-binding proteins (“multilinkers”).

The third section presents my collaborative work with James Liman and Carlos Bueno on the

effect of the actin-related protein (Arp2/3) complex on actomyosin dynamics. Generally, Arp2/3

forms a brancher between a mother and a daughter filament at an angle of 70◦. I show that in

percolating networks of actin monomers, Arp2/3 promotes avalanches (abrupt release of accumulated

mechanical tension) in actomyosin.

In the fourth section, I use deep learning to identify substructures in the global three-dimensional

(3D) folded structure of genomes inside the cell nucleus. Those 3D substructures were originally

detected by the Aiden lab’s Hi-C technology in 2014 when they reported the existence of approxi-

mately 10,000 long-range interactions in the human genome called loops. My deep learning model

detected the most noticeable loops and alluded to the existence of many more loop-like interactions,

which are not easily visible to the naked eye.

In the fifth and final section of this dissertation, I present a collaborative work led by Dr. Fabio

Zegarra on the effect of hydrodynamic interactions on the folding of proteins in water. Here, I

describe how our computational model of hydrodynamic interactions between proteins and live

intracellular media resolved an open question in the literature about whether (a) the effect of

hydrodynamics interactions is negligible; (b) hydrodynamics interactions accelerate the folding

process; or (c) hydrodynamic interactions decelerate the folding process. I show how all three

conclusions are correct under certain circumstances, with an intimate dependence on the system’s

temperature regime.
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1 Introduction

The research reported herein focuses predominantly on complex biological systems, and in particular

on investigations of actomyosin networks on the scale of dendritic spines, which are hallmark for

memory formation and maintenance (Appendix E); the computational-based detection of loops in

the human genome formed between its 3 billion deoxyribonucleic acid (DNA) base pairs; and the

folding of a protein in the complex environment of the cell while considering solvent effects on the

folding procedure. The common theme for all these problems is their complexity. They are complex

systems that cannot easily be simplified (“reduced”) using a straightforward and predictable physical

model. For all, the knowledge of the inter-connectivity between the system’s components facilitates

the development of the main tools required to learn their complex nature. In particular, they all can

be interpreted as complex networks of nodes and edges embedded in three-dimensional space that

create and manage life. In this work, we start by defining the concepts of complexity and complex

matter, and then discuss the concepts of active matter and actomyosin. Subsequently, we describe

the basic definitions of graph theory and network theory, describe what is the human genome Hi-C

map and briefly introduce the major concept of protein folding, all of which are relevant for this

work.

1.1 Complex matter: when biology, computer science, and physics merge

As humans, we admire the skill required to forming a tangible piece of art out of an array of

seemingly disparate elements. When we encounter a piece of art, we are amazed by the human

ingenuity in crafting it. We appreciate both the craftsmanship process and the final artwork. By

the same token, we are intrigued by complex systems in nature. The principle of building a complex

entity from simple components occurs in many disciplines beyond art, including in natural sciences,

mathematics, and social sciences. Since the days of the Greek philosopher Democritus, who was a

younger contemporary of Socrates and lived in the 5th century BCE, scientists hypothesized that

complex systems could emerge from the arrangement and rearrangement of atomic constituents

1



in space [1]. Even though we have an intuitive sense of what complexity and complex matter are,

there is still a range of definitions of complexity and a broader range of how complexity can be

measured [137]. While complexity theory and complex systems are widely accepted terms used by

computer scientists and physicists, the concept of complex matter on a molecular level is relatively

new. In fact, this concept was first introduced by the Nobel laureate Jean-Marie Lehn over the

past two decades [125, 126]. After JM Lehn’s major contribution to the field of supramolecular

chemistry, he tried to spearhead the transformation of supramolecular chemistry of individual

molecules to the higher complexity of self-organization of many supramolecular structures [125, 126].

In particular, Lehn wrote that matter evolves “under the pressure of information” [126], which

naturally lends itself to the development of quantitative measures of complex matter based on

the strong foundations of the theories of computational complexity, information, and statistical

physics. However, complexity is a relative property, to some extent, and as such it is the assumption

herein that all systems under investigation: actomyosin, the human genome, and the folding of

a single protein are complex matter, defined both qualitatively and quantitatively. Qualitatively,

these systems are complex because they exhibit the property of emergence, meaning the individual

constituents and their local interactions evolve into self-assembled structures that are either: (a)

chaotic in nature; (b) require significant energy consumption from the environment to be built; or

(c) create a conformation which has “computational” capabilities to self-replicate and/or divide

the space into functional compartments (e.g., the case of the human genome, which is organized

into active and inactive gene regulation regions). Naturally, all the systems detailed above require

computational power to be analyzed and understood. Quantitative metrics of complexity can be

defined in many ways and shapes [137, 208]; herein, we suggest three possible metrics:

(i) The computational complexity T (N) of the most efficient known algorithm that simulates a

discrete representation of the system with N elements.

(ii) The minimal number of bits Ib(N, t0, t1) required to represent a program that evolves

the system for t1 − t0 timestamps from an initial configuration at t = 0 . Of note, this metric is

inspired by Kolmogorov complexity [131], and the program may be represented in any predetermined

2



programming language or a computational model.

(iii) If the dynamics of the system is nonlinear or chaotic.

The first complexity measure (i) is inspired by the computational complexity theory [202, 13]

which has listed more than 500 classes of complexity, in the context of both classical and quantum

computing [2]. For our purposes, we focus on three of the listed complexity classes: P ⊆ NP ⊆ EXP.

In order to define computational complexity classes, we first have to adapt a generic computational

model. Because it is tedious and beyond the scope of this work to define the Turing machine

(TM) computational model rigorously, we define and adhere to an equivalent and as powerful

computational model called the random-access machine (RAM) [13]. The RAM model is a simple

yet powerful computational model that implements the von Neumann architecture [173]. The von

Neumann architecture resembles the abundant computer architecture we use today.

RAM has a finite set of registers that can store integer values, a program counter PC that points

to the next instruction in the program to be executed, infinite tape of memory, and a program

which is a definite sequence of primitive set of instructions: load, store, read, write, add, print,

subtract, and conditional jump [51, 190].

Using the definition of the RAM model we now define the three complexity classes: P ⊆ NP ⊆
EXP. The complexity class P is the equivalence class of all programs and/or problems whose

execution times T (N) are bounded from above by a polynomial in the input length N . Namely,

P is the class of all programs to successfully complete their execution on a RAM machine within

T (N) = O(Nk) steps, where k ≥ 1 is a constant.

The complexity class NP is the equivalence class of programs and/or problems for which the

execution time on a nondeterministic RAM is a polynomial in N . The term “nondeterministic

RAM” [78, 3] defines a theoretical machine which always produces the same answer on a given

input as RAM does, but instead of following a single branch of execution, all the possible branches

can be invoked at the same time; as such, the nondeterministic computational machine explores

all of the possibilities simultaneously. NP is the class of the problems that, when executed on a

nondeterministic RAM, terminate after T (N) = O(Nk), where k ≥ 1 is a constant, N is the input

3



size, and T (N) is a polynomial in N . EXP is the class of all problems whose execution time scales

as O(2N ) when running on a RAM.

The second complexity measure (ii) is inspired by Kolmogorov complexity [131] and the coding

theory of lossless compression techniques [191], which are used in many communication and storage

applications. Intuitively, the amount of information in a finite string is the size (number of binary

digits, or bits) of the shortest program that without additional data, computes the exact string

and terminates. A similar definition for both finite and infinite strings could be given through the

program that generate the string. For example, if we consider the binary string:

101010 . . . 101010︸ ︷︷ ︸
2,000,000 digits

, (1.1)

and the Python program that generates the 2, 000, 000 characters of the string in Eq. (1.1):

for i in range(0, 1_000_000):

print('10', end='')

Strings and configurations of physical systems are equivalent in terms of evaluating their

complexity. Using the second metric of complexity, we could ask how many bits are needed to

encode a program that generates the final system configuration or a desired output string, given an

initial configuration or an initial input string, respectively.

The third complexity measure (iii) stems from the notion that in some cases, despite the

low Kolmogorov complexity of a system or the length of the generating program, the system is

very complex and cannot be predicted without actually simulating the system. Two examples

are the Conway’s game of life [83, 107] and Wolfram’s cellular automaton [228]. For both cases,

the source code to create the simulate the game of life or the cellular automaton is fairly simple,

but they are irreducible computational systems and the only way to predict the dynamics is to

simulate the system. A similar example, although more predictable and reducible, is the program

to plot the fractal geometry of the Mandelbrot set [147]. In all these cases, even though there is

a simple program to simulate the system, the emergent dynamics may be very complicated and

unexpected [228, 107, 83, 147].
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Overall, we use the conceptual definitions of these three measures to define a physical system as

complex if at least one or more of the aforementioned complexity measures (i complexity class, ii

complex representation of states, or iii complex dynamics) are applicable to it.

According to this definition, the self-assembly of actomyosin, the process of protein folding, and

the complexity of the genome structure are all examples of complex matter, determined by the

computing power required to create the data, to represent it, and/or to analyze it.

Ultimately, complexity is hard to define and there are many ways to define what is complexity,

only some of which are selected to emphasize that the physical system studied in this dissertation

are complex. Nonetheless, maybe the simple duck test–“When I see a bird that walks like a duck and

swims like a duck and quacks like a duck, I call that bird a duck.” [67]–should work here too: is it

complicated to solve? If the answer to this question is yes, then it is a complex system. Alternatively,

another definition of complexity was provided by Tamas Vicsek, who stated that a system is complex

if “the laws that describe the behavior of a complex system are qualitatively different from those that

govern its units.” [218].

1.2 Introduction to graph and network theory

The term “graph” defines a mathematical structure of a pair of sets (V,E), where V is a set of

vertices (nodes of the graph) and E is the set of edges (links between the nodes). Such graphs can

be divided into “directed” and “undirected” subcategories. In a directed graph, the edges have

directionality, e.g., (v1, v2) ∈ E is an edge that goes from node v1 to node v2. In an undirected

graph, by contrast, the edges do not have directionality and if nodes v1 and v2 are linked, then

{v1, v2} ∈ E. The formalism of using graphs and networks provides a powerful tool for humans

as well as computers to describe and model complex systems, including [15]: (a) social networks;

(b) communications infrastructure involving billions of devices; (c) biological networks responsible

for gene regulation and metabolites; (d) neural connectivity; and (e) public transportation. Using

graph or network theory for problems from different domains may help in the development of

universal laws [17], or in drawing parallels between the dynamics of a social media, the stock
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market, or pandemic spread. In this dissertation, graphs are used to represent structural biological

systems, with the goal of using such graphical representations to extract relatively simple insights.

Beyond translating a snapshot of a biological system to a graph G = (V,E), we compute a few

order parameters based on the network theory literature. Originally, those order parameters were

developed to compute structural properties of networks, including: (a) the degree of connectivity

between nodes in the graph; (b) the distance between nodes in the graph; (c) the communities that

exist in that network; (d) the robustness of the network and its internal communication, and many

more [50]. We compute such order parameters on the graph representations of physical systems

to gain an insight into the underlying behavior of the systems, and compare them via their graph

representations [160, 50].

Fig. 1.1 shows three different examples of graphs. The three graphs have the same number of

nodes V = {A,B,C,D,E} with differences among the graphs noted in the connections between the

nodes. While the graphs in Fig. 1.1(a,b) are undirected, the graph in Fig. 1.1(c) is a directed one.

In particular, node A in Fig. 1.1(a) has a node degree, defined as the number of the neighbors of

the node, of 2 because it is directly connected to its two neighbors: node B and node C. In the

graph in Fig. 1.1(b), the degree of node A is 1 since it is only linked to one node, C. In the directed

graph shown in Fig. 1.1(c), node A has an output degree of 0 and an input degree of 1.

To illustrate how a network representation can expose complex pairwise interactions in a wide

range of contexts, we have created a directed graph whose nodes are the top 200 Twitter accounts

of universities (as listed in B), and we have added a directed edge origins from a node e.g., vUH

(University of Houston), to a second node e.g., vMIT (Massachusetts Institute of Technology), if

there was at least one tweet by the UH account that tagged MIT. Fig. 1.2 shows how the different

universities can be divided into nine clusters that puts the universities from California (cluster 4)

together, the universities from the east coast together in cluster 2, Rice University and the University

of Houston in cluster 1, and Duke University and the University of North Carolina in cluster 5.

For convenience, we summarize herein the basic definitions and notations used in graph theory.

Let G = (V,E) be a graph with a set of nodes V connected with set of edges E. The degree of a
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Figure 1.1 Simplified illustration of sample graphs and networks. There are two examples shown
of undirected graphs in (a) and (b), and of a directed graph in (c). All three graphs have the
same set of nodes V = {A,B,C,D,E}, as such, the differences between the graphs are found in
the connectivity between the nodes. In graph (a), all nodes are connected; in graph (b), there are
two connected components: {A,C} and {B,D,E}. In the directed graph (c), there are no strongly
connected components besides the individual nodes. In graph (a), the clique number, which is the
largest subset of nodes that are all directly connected, is 3, and the largest clique is A, B, C. In
contrast, the largest clique in graph (b) is A, C. In graph (c), there are no cliques beyond the single
nodes. The path length between node A and node E equals 2 (going from A via node C or node B
towards node E). In graph (b) and graph (c), the path from node A to node E has length of infinity
because they are disconnected.

node v ∈ V is defined as the number of edges connected to the node. The “betweenness” of a node

is defined as the number of shortest paths between two other nodes that passes through this node,

i.e., paths in which this node is “between” two other nodes. Betweenness is a simple measure of how

central the node is in connecting other nodes. For example, an airport which is a hub (e.g., IAH or

JFK international airports in Houston and New York City, respectively) will have high degree and
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Figure 1.2 Mentioning graph of the Top 200 accounts of universities on Twitter(Appendix B).
This graph is based on the analysis of all the tweets by the Top 200 Twitter accounts of universities.
There is a directed edge between node A → B if the account of A tweeted and tagged node B. The
universities are divided into nine modularity classes [27] based on tweeting patterns used Gephi [18].
The size of the node correspond to the input degree of the node in the mentioning graph.

high betweenness values. A “clique” in a graph is defined as a subset of nodes in V that are all

connected with pairwise edges, much like a clique in real life defines a high degree of connectivity

within the clique and exclusion with respect to outside of the clique. Later in Chapter 2, Chapter 3,

and Chapter 4, I define order parameters that are computed on the graph representation of many

physical systems.
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1.3 Active matter and actomyosin

Living cells require a constant supply of energy to create and preserve biological order [196]. In

order to achieve that energy, cells often extract energy by breaking the chemical bonds found in

food [6].

The required intracellular processes are fairly complicated and rely on complex biochemistry

in cells to control numerous biological feedback loops [6, 9]. This intracellular process is complex,

and relies on complex biochemistry in cells to couple an energetically favorable reaction with an

energetically unfavorable one. Overall, the total energetic cost in such coupled reaction systems will

be favorable [6]. Reaction coupling enables cells to build complex assemblies of new morphologies

from subunit constituent proteins, a highly energetically unfavorable process, by coupling these

reactions with highly favorable ones [176].

In one biological mechanism that uses reaction coupling, actomyosin networks, found in living

cells, use the active process of adenosine triphosphate (ATP) hydrolysis (an energetically favorable

reaction) to assemble and contract biological structures (an energetically unfavorable one) [154].

Actomyosin is complex material composed of filamentous actin polymers (F-actin) that are connected

with actin-binding proteins (ABPs) to enable a range of mechanical tasks such as cell migration

and adhesion [179, 172], mechanical elasticity sensing [66], cell division [138], and the process of

memory formation [123].

There are two main active processes that occur in actomyosin networks, both of which require

coupling with an energetically favorable reaction to proceed. The first is the polymerization of

filament actin (F-actin) from globular actin (G-actin) monomers. The second is the fact that

motor proteins require ATP to walk along the F-actin polymer towards its positive end. When

motors walk on the network, they exert forces that can contract [154] the actomyosin networks. In

Chapter 3, we model an actomyosin network with passive linkers that connect two or more filaments,

motors that can walk on filaments, and filaments without the active processes of polymerization

and depolymerization. In Chapter 4, we simulate actomyosin networks with filaments that are able
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to both polymerize and depolymerize.

1.4 Introduction to protein folding

Proteins are a key player for many biological processes [200], and they account for more than half

the dry mass of the cell [150]. While the complexity related to the physics of proteins has many

facets and active frontiers in modern scientific research, in this dissertation, the main focus is how a

single protein folds under the influence of hydrodynamic interactions with the aqueous solvent, and

on self-assembly processes with many proteins that form complex physical structures, i.e., in the

case of actomyosin networks and the human genome.
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Figure 1.3 Condensation of two amino acids with the side chains R1 and R2 forms a peptide
bond and releases a water molecule.

The building blocks of proteins are amino acids, mostly chiral monomers that contain both

amino (NH2) and carboxylic acid (COOH) functional groups. Amino acids can form long peptides

(the average length of a protein is 350 amino acids [150]) by joining together amino acids via a

condensation reaction to generate an amide (specifically a peptide) bond. In doing so, the two amino

acids release a molecule of water and forms a dipeptide (Fig. 1.3). There are 20 different amino

acids (which can be thought of as letters in an alphabet) and any string using this 20-character

alphabet can plausibly be formed. Interestingly, similar sequences (strings) of amino acids may

result in drastically different 3D conformations (Fig. 1.4). The amino acids, although they have very

similar structures, differ in the structures of their side chains (represented as R1 and R2 in Fig. 1.3).

The initial chain of the amino acids (residues) is formed inside the ribosome, by using the encoding

properties of the transfer ribonucleic acid (tRNA) molecule that encodes for the desired protein
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sequence. While being formed, the protein chain immediately begins to adopt a more complex 3D

structure, which is defined as the “native structure”, and represents the most stable (i.e., lowest

energy) conformation. The process by which a chain of amino acid residues encodes the specific 3D

native structure is called protein folding [55]. Of note, the precise sequences of proteins are encoded

by the DNA, where three letters (i.e., bases) of DNA encode a particular letter in the amino acid

alphabet.

The problem of understanding protein folding includes three major questions [55]: (1) How does

the amino acid linear sequence govern the 3D conformation of the protein?; (2) How do proteins

rapidly fold into their final configuration (referred to as their “native structures”) in less than a

few milliseconds [134]?; and (3) How can we use a computational model to predict the 3D protein

structures from the corresponding linear sequences? Berger et al. [24] previously proved that the

hydrophobic-hydrophilic (HP) lattice model is an NP-complete problem, meaning a problem that if

we find an efficient solution for protein folding, we could solve efficiently any other NP problem. One

of the prevalent hypotheses, which explains the rapid folding times of proteins (∼ μs) in nature [97],

is the hydrophobic collapse hypothesis. This hypothesis postulates that mutual attractions of

hydrophobic residues reduce the number of degrees of freedom to be explored by the protein on

its quest for its minimum energy native state on the energy landscape manifold. As such, water

induces the enthalpic and entropic forces, such as hydrophobic collapse, that direct the protein on

the global energy landscape through a funnel-like surface and towards its native structure [31, 129].

A competing hypothesis, that of prevalent hydrophobic collapse, postulates that mutual attrac-

tions of hydrophobic residues reduce the number of degrees of freedom to be explored by the protein

on its quest for its minimum energy native state. Additionally, water induces the enthalpic and

entropic forces such as hydrophobic collapse that direct the protein through a funnel-like surface

and towards its native structure [28, 117]. There are three commonly used experiments to find

the native structures of proteins: X-ray crystallography [61], nuclear magnetic resonance (NMR)

spectroscopy [42], and cryo-electron microscopy (Cryo-EM) [38]. The retrieved 3D structures of

thousands of proteins are available in a public database known as the Protein Data Bank (PBD) [21].
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Figure 1.4 The four hierarchies in protein folding. (a) The primary structure is a linear polypep-
tide chain of amino acids. The two types of secondary structures are (b) α-helix and (c) β-sheets
(pleated sheets). (d) The tertiary structure is formed as a result of folding and bonding within the
secondary structure. (e) The quaternary structure is the result of interaction with and binding
between tertiary subunits. Yet, not all proteins have quaternary structures. The example shown is
of hemoglobin protein which has four tertiary subunits and is found inside red blood cells. Adapted
from reference [25].

Proteins structures have typically four levels of structural organizations (i.e., hierarchies) [175]. The

primary chain of amino acids Fig. 1.4(a) forms two main types of secondary structures: α-helices

Fig. 1.4(b) and β-sheets Fig. 1.4(c). The tertiary structure Fig. 1.4(d) is the next hierarchy of

organization between the different secondary structures formed from and within a single protein

chain. While the stability of the individual secondary structures is maintained by intramolecular
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hydrogen bonds, the stability of the tertiary structure is generally maintained by intramolecular

electrostatic interactions between amino acid residues and analogous electrostatic interactions

between residues and water molecules. The quaternary structure, the highest level of organization,

occurs when multiple folded subunits of a protein form a multi-subunit protein complex, as shown

in Fig. 1.4(e) for hemoglobin, a protein comprised of four distinct subunits.

1.4.1 The energy landscape theory (ELT)

ELT can be used to understand the complex nature of protein folding. In particular, ELT postulates

that a protein in a random unfolded state is funneled on a multidimensional energy landscape

towards the configuration with the lowest configurational entropy and minimum free energy. The

minimum of the energy landscape is called the protein’s native state. ELT assumes that the folding

dynamics occurs on a multidimensional landscape and can be reduced to one or a few reaction

coordinates without losing crucial information about the complex system.

When a protein navigates down the funnel, there is a mismatch between the configurational

entropy and the free energy, which results in a free-energy barrier that separates the “unfolded”

states from the “folded” states (usually a few kBT , where kB represents the Boltzmann constant

and T represents the temperature). Since the activation barrier depends on the global system

temperature, this leads to a range of temperatures at which the protein could fold in biological

systems, with the rate of folding highly dependent on the system temperature. Using the collective

fraction of native amino acid contacts, Q ∈ [0, 1] as the reaction coordinate for a two-state protein

(folded/unfolded) allows us to generate an illustration of the energy landscape, depicted for an

unfolded protein in Fig. 1.5. Of note, along the pathway towards energy minimization, there are

large numbers of local energetic minima that may trap the protein. Nonetheless, the native state

of the protein is still accessible due to the principle of minimal frustration, which states that all

configurations and energetic differences evolved in order to facilitate a first-order phase transition

for the protein from an unfolded to a folded state [32].
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Figure 1.5 A funnel diagram of the energy landscape of a protein. The width represents the
configurational entropy of the protein and the depth represents the energy of the protein. An
unfolded structure navigates through the energy landscape towards the folded state (native state)
located at the lowest global minimum of the funnel. The small peaks represent kinetic traps. The
figure was adapted from [45].

1.5 The human genome structure as a graph

In the case of the human genome, which can be defined as a hierarchically organized complex

polymer, there are two major groups of proteins that allow the compact folding and regulation of

the three billion DNA base pairs found in the micron-sized nucleus of the cell. The genome structure

is also referred to as chromatin (DNA bound to RNA and protein molecules) remodeling. Of note,

this highly complex structure is responsible for a broad variety of functions, including messenger

ribonucleic acid (mRNA) transcription, DNA replication, and DNA repair. Within the genome, the

smallest subunit that packs 146 base pairs of DNA is the nucleosome [30, 166]. The nucleosome

is shaped like a spool made of eight highly packed histone proteins [143] around which the 146
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base pairs of DNA are wrapped. Fig.1.6 illustrates the different hierarchical ordering in the human

genome: starting from DNA base pairs, through the formation of a double stranded DNA helix,

to the packing of of the DNA around the nucleosomes, all the way to the formation of chromatin

(packed DNA that is bound to protein) and the chromosome.

Figure 1.6 The hierarchy of DNA macrostructure, and how it is assembled and wrapped around
histone proteins, which bundle together to create condensed chromatin, which in turn is tightly
packed into a chromosome. Adapted from [25].

The higher order organization of how nucleosomes pack into chromatin and chromosomes is still

under active debate in the field of genomics, with a few models invoked to explain this structure [164].

One such model, which is particularly widespread, is based on electron microscopy (EM) and X-ray

results, which suggest that nucleosomes are packed into a solenoidal/helical fiber with a diameter

of 30 nm [193, 192]. An in vitro reconstitution of chromatin fibers has suggested that nucleosome

compaction varies under different epigenetic conditions, such as histone modifications, and the

binding of chromatin-associating proteins to the genome [130]. In parallel with extensive research
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of how nucleosomes organize along the chromatin fiber, there was an appreciable improvement in

the understanding of chromatin conformation using next-generation DNA sequencing. One of the

leading methods for this sequencing-based method is the high-throughput chromatin conformation

capture (Hi-C) technique, which has revealed the higher order conformation of the entire genome,

with particular information provided about loops, domains and subcompartments that are regulated

by proteins and other epigenetic conditions [132, 181]. Of note, Fig. 1.7(a) shows a typical Hi-C map

of a human blood cell, with each box in Fig. 1.7(a) representing interactions between two different

chromosomes. For example, the intrachromosomal interactions between the loci of chromosome 2

are enlarged in Fig. 1.7(b), and the interaction between different chromosomes (chr1 and chr14) is

shown in Fig. 1.7(c).
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Figure 1.7 The Hi-C map of the GM12878 human cell line. (a) The entire Hi-C map of the
human genome, where each rectangle corresponds to the interaction between two chromosomes.
(b) Hi-C map of the intrachromosomal interactions of “chromosome 2” at 1mbp resolution. (c)
Interchromosomal interaction Hi-C map between chromosome 1 and chromosome 14 at 1mbp
resolution.
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2 Studying biological physics of matter from the vista of graph

theory

This chapter is based on an arXiv preprint [64] published in 2020, and a talk at the APS (American

Physical Society) conference [63] in 2018.

2.1 Introduction and motivation

Graph theory is a power formalism that originated from discrete mathematics and is used to

represent systems with countable elements (discrete systems). Since Euler’s era, graph theory has

been widely adapted by computer scientists, applied mathematicians, and abstract mathematicians.

Although notable polymaths, such as Euler and Hamilton, developed graph theory in the 18th and

19th centuries, only in the late 1990s did physicists started to use this formalism to study complex

systems. Since that time, physicists have contributed tremendously to graph theory and developed

its synonym, network theory [4, 50]. Because much of the field of physics was founded on a backbone

of differential equations and calculus, physics subfields, including general relativity, electrodynamics,

quantum mechanics, and classical mechanics, rely on similar mathematical underpinnings.

Many of these theories rely on a set of differential equations that has advanced our understanding

of our world, and our technology. One example of such technology is the development of the engine,

which led to a need to understand macroscopic thermodynamic properties of engine systems. The

demand to reduce the complexity of such a system, containing an immense number of particles

(ca. on the order of Avogadro’s constant NA = 6.0221408× 1023mol−1 [12]), led to the evolution of

statistical physics, which treats the large number of degrees of freedom statistically.

The need for further dimensionality reduction for enhanced system understanding dramatically

intensified with the development of computers, large man-made networks, as well as the advancement

in biological experiments using optical devices and next-generation sequencing (NGS) techniques.

Although there are intrinsically irreducible complex systems and computationally intractable

problems (Chapter 1), for almost any type of complex system or problem we can compute an
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insightful quantity to assess the rough yet statistically valid state of the system. This quantity could

be some statistically-driven aggregate signal or some local property of the complex system. Since

graph theory formalism is a generic way to describe discrete systems, I describe herein four examples

of physical systems with their graph representations. We start with a simple continuous version of

the Cahn-Hilliard equation [35, 36, 162] that promotes phase separation [28] in continuous media,

then we simulate a discrete system that undergoes phase separation using off-lattice dissipative

particle dynamics (DPD) [100, 71]. Later, I demonstrate how graph theory representation lays the

foundation that enables accurate predictions of the 3D structures of a folding protein, which can be

represented as a contact map (adjacency matrix) between amino acid residues in the native structure.

We also delineate briefly how an actomyosin network can be mapped as a graph representation,

based on pairwise distances between filaments or based on the connectivity of the filaments using

actin-binding proteins (ABP). Lastly, I explain how Hi-C maps can be represented as weighted

graphs, i.e., graphs in which each edge has a real number weight associated with it.

2.2 Graph representation of complex biological matter

In this section, I list four examples of how to map a complex system into graphs. Once a representation

graph is built for a physical system, an array of order parameters can be derived from the graph.

2.2.1 Phase separation

Cells organize their complex biochemical reactions into compartments to create distinct chemical

regions. Each intracellular compartment then has boundaries within which the chemical compounds

can diffuse freely [105]. Phase separation is the term used to describe the physical processes that form

many of these compartments and divide the space of the cell into regional independent authorities

that can interact with the environment at their boundary positions [5].

Phase field model (continuous) of phase separation

The Cahn-Hilliard equation [35, 36, 162] is a simple continuous model that simulates the process of
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phase separation in a mixed liquid solution.
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Figure 2.1 Equilibrium free energy profile of the Cahn-Hilliard which drives the system towards
phase separation with two states: c = −1 and c = 1.

The underlying equation for this model can be represented as shown below:

∂c

∂t
= D∇2μ

μ =
df(c)

dc
−∇2c,

(2.1)

where c ∈ [−1, 1] is the concentration of the fluid also named the “phase field”, D is the diffusion

coefficient, μ is the chemical potential, f(c) = 100(1−c)2(1+c)2 plotted in Fig. 2.1, and
√
γ =

√
0.01

is defined as a characteristic length of the transition. We solved Eq. (2.1) on the unit square

Ω ∈ (0, 1)× (0, 1) using the finite element method in FEniCS [139, 8]. I ran the system in Eq. (2.1)

for 125 seconds and visualized the system at t ∈ [0, 25, 50, 75, 100, 125] seconds, as shown in Fig. 2.2.

The results demonstrate how a sample mixed liquid is expected to undergo phase separation.
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Figure 2.2 Finite element solution of Cahn-Hilliard equation using FEniCS [139, 8]. The phase
field c(x, y) is plotted versus (x, y) ∈ Ω at the times (a) t = 0 s, (b) t = 25 s, (c) t = 50 s, (d) t = 75 s,
(e) t = 100 s, and (f) t = 125 s. The figure goes from (a) a mixed liquid to (f) a completely
phase-separated system.

Discrete simulation of phase separation using dissipative particle dynamics (DPD)

In order to show how graph theory can assist in building a meaningful reaction coordinate or

order parameter, we set up a binary mixture system using two types of DPD particles [72] in the

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [177, 91]. The relevant
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force field equations for this system are defined below:

Ftot
ij (r) =

⎧⎪⎪⎨
⎪⎪⎩
(
FC + FD + FR

)
r̂ij , r < rc

0, otherwise

FC = Aw(r)

FD = −γw2(r) (r̂ij · vij)

FR = σw(r)α(Δt)−1/2

w(r) = 1− r/rc,

(2.2)

where Ftot
ij is the total force between particles i and j, including a conservative force FC , a dissipative

force FD, and a random force FR. r̂ij is defined as the unit vector between two particles i and j

in the direction ri − rj and magnitude r := |ri − rj |. vij = ṙi − ṙj is the vector difference of the

velocities. α is a Gaussian random number with zero mean and unit variance, dt is the timestep,

and w(r) is defined as a weighting factor that varies between 0 and 1 . rc is the cutoff distance.

σ :=
√
2kBTγ, where kB represents the Boltzmann constant and T is the temperature parameter.

As part of the simulation conditions, the temperature, the volume and the number of particles

within the system are all held constant. There were 4, 050 “Type 1” particles and 20, 000 “Type 2”

particles investigated. The simulated system considered three types of DPD pairwise interactions,

enumerated below:

1. Intra-type DPD force field between two Type 1 particles

2. Intra-type DPD force field between two Type 2 particles

3. Inter-type DPD force field between a Type 1 particle and a Type 2 particle

The difference between the three types of DPD interactions was in their interaction cutoff lengths:

the DPD cutoff distance for the inter-type r
(1−2)
c was twice as large as the cutoff distance observed

for intra-type particle interactions, i.e., r
(1−1)
c and r

(2−2)
c [53, 163]. I developed three graphical

representations from which I derived three possible reaction coordinates that capture the phase

separation phenomena in the discrete system of the DPD particles, as it evolves from a system with
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Figure 2.3 Simulations of phase separation. (a) A system with two types of DPD particles at
t = 0, (c) t = 2.5 s, and (e) t = 5 s. (b) The time signal of the mean squared displacement (MSD),
as defined in Eq. (2.4), plots, when the length units are normalized with the interaction length
constant σ. (d) The time signal of the value of the cut of the bipartite graph representation of the
system as function of time. (f) Illustration of a bipartite graph, where the cut is the sum of all the
weights of the edges between the L (Type 1) and R (Type 2) nodes in the graph.
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uniformly distributed two types of DPD particles in Fig. 2.3(a) into a phase-separated system in

Fig. 2.3(e).

These bipartite graphs are defined as Gbipartite = (L,R,E), where the usual set of nodes V in

G = (V,E) is split into two sets of disjoint nodes L (represented as Type 1 (I) in Fig. 2.3) and R

(Type 2 (II) in Fig. 2.3). In this bipartite graph representation, edges are allowed only between

two nodes that are elements in the two different sets L and R. If there is a node between i ∈ L

and j ∈ R, then {i, j} ∈ E. The bipartite graphs are equipped with a weight function that assigns

values to edges, for example, d(i, j) : L×R 	→ R. In particular, given two nodes i ∈ L and j ∈ R, I

assign the a value to the undirected edge (i, j). In the particular case of DPD simulations, I refer to

the three bipartite graphs with the weight function d(i, j) taken to be w(r) = 1− r/rc from Eq. (2.2)

if r ≤ rc and 0 otherwise. The weight function reads

d(i, j) =

⎧⎪⎪⎨
⎪⎪⎩
w(r) = 1− r/rc, r ≤ rc

0, otherwise

. (2.3)

Overall, the three types of bipartite graphical representations are:

1. G1−1 = (L1, R1, E) is the representation graph of the interactions between “Type 1” particles.

For each “Type 1” particle in the system, I assign two nodes at both the left L1 and the right

R1 sets of nodes, and the weight of edges between any two nodes l ∈ L1 and r ∈ R1 is set to be

d(l ∈ L1, r ∈ R1), as defined in Eq. (2.5).

2. G2−2 = (L2, R2, E) is the representation graph of the interactions between “Type 2” particles.

For each “Type 2” particle in the system, I assign two nodes at both the left L2 and the right

R2 sets of nodes, and the weight of edges between any two nodes l ∈ L2 and r ∈ R2 is set to be

d(l ∈ L1, r ∈ R2), as defined in Eq. (2.5).

3. G1−2 = (L1, R2, E) is the representation graph of the interactions between “Type 1” and

“Type 2” particles. For each “Type 1” particle in the system, I assign a node in L1 and for each

“Type 2” particle, I assign a node in R2. The weight of the any edge between two nodes l ∈ L1 and
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r ∈ R2 is set to be d(l ∈ L1, r ∈ R2), as defined in Eq. (2.5).

From each of the three graphs defined above, I use the cut of the graph order parameters that

demonstrate how the order parameter from the graph representation of the original system can

capture the process of phase separation.

To compare the diffusion of the particles that form the droplets with the particles that form

the background in the phase-separated system (Fig. 2.3(e)), I plot the mean square displacement

(MSD), defined in Eq. (2.4), for a Type 1 particle and a Type 2 particle in Fig. 2.3(b) to show how

they diffuse in the system while undergoing phase separation. “Type 1” particle is either in the

super-diffusion or the normal diffusion regime and the “Type 2” particle diffuses in a subdiffusive

regime. This is due to the fact that the “Type 1” particles will form the droplets shown in Fig. 2.3(e).

MSD := 〈|ri(t)− ri(t = 0)|2〉, (2.4)

where the average 〈·〉 is calculated using over 1, 000 randomly chosen particles, without replacement,

in the three cases: Type 1, Type 2, or both Type 1 and Type 2 simultaneously. The particles of

Type 1 diffuse more rapidly than the Type 2 particles. Additionally, I computed the cut of the

graph, which is defined as the sum of all the graph’s edges between the left L and right R sets of

nodes. Therefore, a cut C(G) of a bipartite graph G = L,R,E is defined as:

C(G) :=
∑

i∈L,j∈R
d(i, j), (2.5)

where d(i, j) is the weight of the edge between i and j. In Fig. 2.3(b) are the plots of the graph cut

C(G) for the three cases: G1−1, G2−2, and G1−2. In the three curves, there is a sigmoidal shape

to the curve starting to emerge after t = 2 s, which capture the phase separation using a graph-based

order parameter. This simple example of a system of two types of DPD particles that undergoes

phase separation is an example of how a graph representation of a physical system may assist in

developing straightforward order parameters to capture nontrivial dynamics and to translate them

into a time signal of a scalar.The ideas of coarse-graining and dimensionality reduction are crucial
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in physics since they help to develop a simplified understanding of the physical system with many

particles, while preserving and capturing the essence of the phase transition or the dynamics of the

complex system.

2.2.2 Conformation of proteins

Since the start of in-silico protein modeling in 1975, scientists have been using a graph-like

representation named “contact maps” [128]. The idea of using contact maps for folded structures

has been widely adapted in the field of protein folding [168, 200], and allowed for the easy adaptation

of deep learning methods for protein folding and the evolutionary study of how proteins coevolve

across biological species, through analysis of their contact maps [151]. There are many ways to

represent the conformation of an amino acid chain through dimensionality reduction on a graph,

most of which utilize pairwise distances between the α-carbon and or the β-carbon atoms of each

amino-acid [205].

Although the distance-based contact maps provide concise structural information, they do not

consider specific secondary interactions within the protein. These secondary interactions include

hydrophobic interactions, van der Waals forces, electrostatic attraction and repulsion, intermolecular

hydrogen bonds and intramolecular covalent bonds. Whereas most secondary interactions between

residue i and j are symmetric with respect to the replacement of chain j and chain i (i.e., non

directional), both hydrogen bonds and covalent bonds are highly directional. For example, a

hydrogen atom in chain i is attracted to an electronegative atom (usually nitrogen or oxygen) in

chain j to form a directional hydrogen bond; the direction of this bond cannot easily be reversed.

Moreover, in contrast to covalent bonds that are usually established between adjacent residues

to form the initial peptide chain, hydrogen bonds are established between distant amino acid

residues and considered a major driving force for 3D structure stabilization and flexibility. Since

hydrogen bonds reflect non-trivial structural information, the idea of describing the secondary

structure (Fig. 2.4(a)) of a protein by visualizing the hydrogen bonding interactions (HB) plots [26]

between the protein’s chain of residues representation (Fig. 2.4(b)) was also adapted (Fig. 2.4(c)),
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Figure 2.4 Representations of the chymotrypsin inhibitor 2 (CI2) protein. (a) Cartoon repre-
sentation of the CI2 protein secondary structure using the Visual Molecular Dynamics (VMD)
program [102]. (b) The chain of beads (residues) coarse-grained representation of the CI2 protein
using VMD [102]. (c) The contact map of the CI2 protein. (d) The corresponding undirected graph
representation of the CI2 contact map, where the node color and size corresponds to the degree of
the protein, as visualized in Gephi [18].

where the undirected graph is used to indicate the presence of a hydrogen bond between chain i

and chain j (Fig. 2.4(d)).
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2.2.3 Morphology in actomyosin networks

We use two general graph-based approaches to describe the morphology of a generic actomyosin

network: (a) a connectivity-based graph that represents how the actin-binding proteins (ABPs)

connect the different actin filaments (F-actins) in the network; and (b) a proximity-based graph that

delineates the pairwise distances among the different filaments in space. Moreover, our framework

is highly relevant for comparisons between biophysical theories and experiments in which usually

only F-actin is visible via fluorescence microscopy. For the ABP connectivity-based graph approach,

we consider each filament as a single entity (i.e., a filament represents one node in the graph) or its

monomers as single entities (i.e., one monomer represents a node in the graph), depending on the

coarse graining level of the simulator.

In one example, as seen in Chapter 3, I assign a node in a graph G for each filament, while in a

finer coarse graining simulations, as presented in Chapter 4, where the monomers of the filament can

polymerize and depolymerize and the level of details of the actomyosin species is in the monomer

resolution, we build a graph where each node in the graph corresponds to a single actin monomer.

Fig. 2.5(a)-(d) show how the actomyosin system evolves when passive ABP linkers are bivalent from

time t = t0 = 1 s (Fig. 2.5(a)) to t = 600 s (Fig. 2.5(b)) along the reduced graph of filaments, based

on proximity with dcutoff = 200 nm in (Fig. 2.5(b),(d). The effect of a passive ABP linker with a

multivalency of six is depicted in Fig. 2.5(e)-(h) and compared with the bivalent morphologies in

Fig. 2.5(a)-(d).

2.2.4 Inter and intra chromosomal subgraphs in the human genome multigraph

The human genome representation as a Hi-C map is a multigraph (i.e., it is permitted to have

multiple edges between nodes) that accounts for both intrachromosomal and interchromosomal

interactions. In particular, the Hi-C map measures how frequently two genomic loci were in closed

proximity in the folded genome. For simplicity, I converted the original adjacency matrix, which

contains integer values depending on the frequency of interactions between loci, to a binary adjacency
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Figure 2.5 Snapshots of actomyosin networks and their graph representations. In (a) and (c),
there are linkers that connect two filaments at most, and (b) and (d) are their graph representations,
respectively. Paths (e) and (g) are simulations at t = 1 s and at t = 600 s of actomyosin with linkers
that can bind up to six filaments at the same time, and (f) and (g) are their graph representation,
respectively. All the graph layouts in (b), (d), (f), and (h) were visualized following the same
procedure: First, I produced a random network layout with OpenOrd, and then ran Yifan Hu’s
algorithm in Gephi [18]. The betweenness of a node is defined as the number of times that the node
lies on the shortest path between any two other nodes in Eq. (24).

matrix. For example, to build a simplified subgraph of a subregion in the genome, I converted

the frequency-based adjacency matrix into a binary adjacency matrix by setting to 1 entries in

the matrix if their value is above some threshold and to 0 if the their value equal to or less than
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the threshold. For this section, I worked at a resolution of 106 nucleotide base pairs (1mbp), so

each node on the graph corresponds to the aggregated signal from a locus of 106 contiguous DNA

bases along the chromosome in question. I built a graph for the intrachromosomal region of the

largest chromosome in the human genome, represented by the abbreviation “chr1”, which has a

measured length 249.2mbp. The raw signal from the Hi-C experiment (represented as the frequency

adjacency matrix in Fig. 2.6(a)) is converted into a binary matrix (Fig. 2.6(b)) after applying the

threshold θintra, which leads to the graph G shown in Fig. 2.6(c).

For the case in which inter-chromosomal interactions were investigated, I used a bipartite graph

with each side representing one of the two chromosomes, e.g., chromosome 1 and chromosome 14.

Of note, in this particular case, the length of chromosome 14 (chr14) is less than half the length of

chromosome 1 (chr1). Specifically, I first visualized the bipartite graph as a regular graph using

Fruchterman Reingold algorithm [81, 18], and the results of this graph visualization indicated four

different subcompartments at which chr14 (represented by green nodes in Fig. 2.5(a) and on the

left in Fig. 2.5(b)) forms with chr1 (represented by pink nodes in Fig. 2.5(a) on the right side of

the bipartite graph in Fig. 2.5(b)). These graph representations of interchromosomal interactions

demonstrate how chr1 and chr14 interact with each other. There are compartments that highly

interact (i.e., green stripes in Fig. 2.5(d) and with close proximity in Fig. 2.5(a)) and there are

compartments that evade each other (i.e., white stripes in Fig. 2.5(d)).

To construct the intrachromosomal graph G = (V,E) in Fig. 2.7, I used the cutoff value,

according to the relation below:

ϑcutoff
intra =

∑|V |−1
i=0 Aii

|V |2 , (2.6)

where A is adjacency matrix of the intrachromosomal graph G = (V,E).

To construct the bipartite interchromosomal graph G = (R,L,E) in Fig. 2.5, I used the cutoff

value defined according to the relation below:

ϑcutoff
inter =

∑|L|−1
i=0

∑|R|−1
j Aij

|L| · |R| , (2.7)
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Figure 2.6 Depiction of chromosome 1 of the human genome as a graph. (a) The intrachromosomal
contact map of chromosome 1 from Rao et al. [181] at 1mbp resolution. (b) The binary adjacency
matrix of chromosome 1 after applying a threshold based on the average signal along the diagonal
of (a). (c) The graph of chromosome 1 is shown based on the values of the binary adjacency matrix
in (b). Note that the sizes of the nodes in graph (c) are scaled according to the betweenness values
of each node.

where A is adjacency matrix of the interchromosomal graph G = (R,L,E).

Using the Clauset-Newman-Moore greedy modularity maximization algorithm [48], I found that
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Figure 2.7 The interchromosomal interaction graph between chr1 and chr14 in the human genome.
(a) The interchromosomal bipartite graph after running the Force Atlas algorithm in Gephi [18]. (b)
The same graph where the nodes on the left in green are the 1mbp bins in chromosome 14 and the
nodes on the right are the nodes of the chromosome 1. (c) The Hi-C matrix of chr1 and chr14 at
1mbp from Rao et al. [181]. (d) The binary adjacency matrix of the interchromosomal graph after
applying a threshold based on the average signal along the the matrix in (c).

there are 3 communities in the bipartite interchromosomal graph of chr1 and chr14, which correspond

to four subcompartments (Fig. 2.5(d)) in the Hi-C map at a resolution of 1mbp [181]. In contrast

to the results obtained with the inter-chromosomal graph, the results of the intra-chromosomal

graph indicate that there are three communities according to the Clauset-Newman-Moore greedy

modularity algorithm [48], which correspond to the most striking and largest domains in chr1

(Fig. 2.3(a)-(c)). In addition, I note that the graph representation shown in Fig. 2.3(c) indicates
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that the node 121, which is near the centromere of chr1, has the highest betweenness value. The

centromere region is depicted in Fig. 2.3(a)-(b) as a white cross, because the Hi-C technology cannot

map DNA sequencing reads to this region. However, node 121 is found on the boundary of the

centromere and it directly connects the three large genomic domains in chr1. As a reminder, the

centromere is the region of the chromosome that links the the two copies of the chromosomes in

the human genome. During mitosis (cell division), fibers (e.g., actin filaments) are attach to the

centromere and work with motor proteins to divide the chromosome into its two constituent copies,

allowing replication to occur.

2.3 Discussion and outlook

In summary, in this chapter, I have briefly outlined a graph-based paradigm to look at complex

biological systems. The ability to look at those systems as networks allows us to develop quantitative

order parameters to assess the phase of the system, to gain insight into the system conformation,

and to learn about the structure of a single protein, complex structures built from proteins, or

the entire human genome. Although contact maps are widely used in biological physics, network

theory tools have been used only rarely to study the dynamics and structure of the conformation

of biological systems. I expect this work to motivate future research directions in this field,

with a particular renewed focus on network theory as a tool to analyze experiments as well

as to establish a quantitative understanding of morphologies and phases in complex biological

matter. The realization that biological systems could be thought of as graphs and networks will

allow researchers to automate the process of coarse-graining using graph neural networks [234].

Presumably, the integration of nonequilibrium physics theories [108, 197, 198] and statistical physics

on probabilistic graphical models [120] could develop a theory of nonequilibrium ensembles and

landscape reconstruction [140, 73] for living complex matter.
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3 Multilinkers augment actomyosin morphology

This chapter is based on an arXiv preprint [64] published in 2020.

3.1 Introduction

Living cells actively regulate the morphologies of actomyosin networks to control the force produced

by these networks during various cellular processes [207, 145]. They do so, in part, by controlling

the activity of specific actin-binding proteins (ABPs) that bind to actin filaments.

Some ABPs, such as Myosin II (a molecular motor) [186], require the hydrolysis of ATP

to actively transmit mechanical changes in actomyosin networks, whereas passive ABPs such as

α-actinin (a bivalent ABP) coordinate contractions and control the density of actomyosin networks

by crosslinking two filaments [155]. A third distinct category of ABPs are those that can bind to

more than two filaments at the same time, such as the multivalent linker CaMKII [114, 220].

Overall, both motors and linkers collectively regulate the morphology of a dendritic spine in

neuronal cells as well as the movement of a cell [215, 172]. ABPs do so by altering the connectivity

between actin filaments, which enables various biological functionalities due to the robust, yet

flexible, nature of actomyosin networks [172, 114]. Most ABPs and actin-related proteins (ARPs),

such as Arp2/3 (discussed in more detail in Chapter 4) [133, 204], operate on two filaments as

“bivalent linkers”. Interestingly, in addition to these bivalent linkers, ABPs with higher valencies

(greater than 2) have also been reported. One example of such a multivalent ABP is the Tau protein,

which acts as both a multivalent linker [76] and as a mediator of neurodegeneration [62]. The

Ca2+/calmodulin-dependent protein kinase II (CaMKII) protein is another multivalent actin-binding

protein [114, 220], which plays a mechanobiological role in tuning and controlling the intricate and

functional shape of dendritic spines in neurons. In this work, I explore how multivalent ABPs

change the morphology of actomyosin networks.

For these simulations, I used Cytosim [156], a software developed to simulate mesoscopic

cytoskeletal biological systems [22, 141]. In this system, polymeric actin is represented as filaments
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Figure 3.1 CaMKII structure and functional domains. (a) Side and (b) front views of CaMKII
crystal structure (PDB ID: 3SOA), with only the association domains of CaMKII shown [220].
(c) The crystal structure of an actin filament made of 10 globular actin (G-actin) monomers
assembled into a filamentous actin (F-actin) in (PDB ID: 3J8I). (d) CaMKII’s functional domains,
including the association domain that binds F-actin [220] and the catalytic domain that binds to
ATP and is regulated by the regulatory (Reg.) domain, which becomes active via the process of
calcium/calmodulin signaling [90].

with bending elasticity and linkers are represented as stochastic entities that can bind and connect

these filaments into a network. Extending Cytosim’s modeling of motors, actin filaments and

bivalent ABPs, I have worked with Prof. Francois Nedelec to develop a model for multivalent ABPs.

With this addition, Cytosim allowed me to investigate the structural and dynamic principles that

govern the organization of random actomyosin networks, with the final simulated structure highly

dependent on both the motor concentration and on the valency of the multivalent ABPs.

Through this work, I have discovered that multilinkers enrich the variety in the dynamics and

structures of actomyosin networks as they evolve heterogeneously in time and space. In order to
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analyze and characterize the emergent networks, I used order parameters from different domains of

science in terms of polymer physics, gelation theory, and graph theory to compare the simulation

results with different multivalent ABPs. I found that the order parameters from network theory

capture local and non-local features in actomyosin networks. I established the state diagrams of

selected network theory order parameters to identify and quantify the effects of motor activity and

multivalent ABP concentration on the actomyosin architecture. Since graph theory considers the

extent of nodes’ inter-connectivity, the graph theory order parameters have facilitated the possibility

of distinguishing between gelated and bundled actin networks.

3.2 Methods

3.2.1 Coarse-grained collective Langevin dynamics model of actomyosin in Cytosim

We used a coarse-grained model to study the morphology and structure of actomyosin networks. In

our 3D model, actin filaments are represented as incompressible bendable polar fibers (i.e., fibers

have a “plus” end and a “minus” end) with a rigidity of 0.075 pN μm2 [88]. Each of the motors has

two walking heads that operate independently and walk towards a filament’s plus end. Additionally,

there are two types of linker species present in the model: (a) the crosslinker (bivalent linker) that

resembles the α-actinin bivalent crosslinker and (b) the multivalent linker inspired by CaMKII

with a variety of permissible valencies, referred to as the “multilinker” throughout this work. The

CaMKII-inspired multilinker is depicted in Fig. 3.1. In summary, the model contains the following

components: filaments, passive bivalent crosslinkers, passive multivalent linkers (multilinkers), and

active bivalent motors.

Collective constrained Langevin dynamics

The vector x (t) stores the coordinates of the N three-dimensional vertices describing the physical

objects in the system at time t. For a fixed temperature T , the physics of an actomyosin system in

Cytosim [156] is described by a Langevin equation [127] that encapsulates the Brownian motion of

the filaments and their bending elasticity, the filament-filament interactions, and the external force
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fields [156]:

dx(t) = μftot(x, t)dt+ dB(t), (3.1)

where μ is a 3N × 3N diagonal matrix consisting the mobility coefficients of all objects, and the

term ftot(x, t) represents a vector that contains all the forces acting on the points x(t) at time t.

B(t) represents the random Brownian noise vector due to molecular collisions and its ith coordinate,

Bi(t), is a temperature-dependent value drawn from a normal distribution with a mean of zero

and a standard deviation that equals
√
2dtDi, where dt represents an infinitesimal time interval.

Per Einstein’s relation [194], we set the diffusion coefficient of the ith random molecular degree of

freedom to be Di := μiikBT , where kB is the Boltzmann constant.

Motor activity and binding and unbinding events

We used the software Cytosim [156] to propagate the equations of motion. After the collective

Brownian mechanics are calculated, Cytosim executes two sub-routines to account for chemical

processes such as binding, unbinding, and motor walking. The first subroutine simulates binding

and unbinding events of ABPs according to the kon and koff rates. The second subroutine simulates

motor activity, computes the motor’s exerted forces on the filaments, and recalculates the locations

of motors on the filaments [156].

Geometry and mobility of fibers and solid objects

Filaments and multilinkers are described by geometrical vertices, each of which has three specific

spatial coordinates. A filament is represented as an elastic, polar, and non-extendable rod, which

can be quantified as a set of p equidistant vertices {mi}pi=1, where m1 and mp are the minus and

the plus ends of the filaments, respectively. A solid object in Cytosim is a nondeformable set

of vertices with a fixed size and shape. For example, the multilinker is made of a solid object

in Cytosim. A solid object is a set of k vertices {si}ki=1 with hard constraints on their pairwise

distances (|si − sj | = dij = dji); e.g., the multilinker’s binding entities that can possibly bind to

filaments lay on the surface of a solid sphere, which due to the hard constraints have effectively only
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translational and rotational degrees of freedom available.

Interactions between objects

In Cytosim [156], any interaction between objects is linearized f (r, t) = A (t) r+ g (t). The matrix

A (t) and the vector g (t) contain the contributions from all the elementary interactions that are

represented by the constant and linear terms of the Taylor expansion. Within this model, two points

ra and rb from different objects a and b can be connected by a link, with Hookean stiffness denoted

as k. The forces between the points can be represented according to the following equation:

fa = −fb = k

(
1− r0

|rb – ra|
)
(rb – ra), (3.2)

where r0 ≥ 0 is the resting length of the link. When a motor is attached to a fiber, the motor’s

position is given by a curvilinear abscissa measured from a fixed reference point on the fiber x0. The

abscissa is increased by δ = τvmotor
max

(
1− f

fstall

)
, where vmotor

max is a constant real value representing

the maximum speed of a motor walking along a fiber, and the sign of this number indicates the

motor’s tendency to walk toward the filament’s minus or plus terminus. The value of f is defined

as the load that the motor experiences projected along the direction of the filament on which the

motor walks. The stall force fstall is defined as the amount of force that is sufficient to stop the

motor from moving. In general, Cytosim uses a force-dependent unbinding rate koff = k0 exp
( |f |

f0

)
to model the dissociation from the fiber. Motors have constant binding kmotor

on and unbinding rates

kmotor
off . Namely, they work in the limit of a constant unbinding rate (f0 → ∞. In addition, we set

vmotor
textmax = 0.2μms−1 and fstall = 6pN). Bivalent crosslinkers and multilinkers have the unbinding

and binding rates denoted as: klinkeron and klinkeroff . The interaction of a linker and filaments is assumed

to be Hookean with a resting length of zero and a stiffness of 50 pN μm−1.

Excluded volume interactions between multilinkers

Cytosim [156] incorporates excluded volume and steric effects that exist between objects in the

system. In general, the simulations account for both attractive and repulsive forces as the interaction
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is taken as piecewise linear radial force, according to the equation shown below:

f(d) =

⎧⎪⎪⎨
⎪⎪⎩
krepulsion (d− d0) , d ≤ d0

0, d > d0

, (3.3)

where d is the distance between two interacting elements, and d0 is the distance at which the

elements are at equilibrium. For the particular system being investigated, d0 = 6nm (the radius of

CaMKII [165]) and krepulsion = 500 pN μm−1.

Parameter space of the simulations

Our system is a 1 μm3 cube with a viscosity of 0.5 pN μm−2. The filaments have a length of 0.5 μm

and are uniformly distributed within the cubic system at t = 0. The actin filaments have a flexural

rigidity of 0.0752 pN μm−2 (corresponding to a persistence length of ∼ 17 μm at the configuration

working temperature, for which kBT = 4.2 pNnm) [88]. An α-actinin-like bivalent crosslinker was

modeled as a Hookean spring of zero resting length between two binding entities, with the spring

stiffness constant equals to kcrosslinker = 250 pN μm−1.

Each crosslinker’s binding entity had a binding range of 17.5 nm, a binding rate klinkeron = 5 s−1,

and an unbinding rate klinkeroff = 0.1 s−1.

A myosin-like motor is represented as an inextensible object with two independent motor heads.

Each head of a motor can walk on a different filament, with the two heads separated by a resting

length of 100 nm. When attached, the connection between a motor and two filaments is modeled as a

Hookean spring, with a stiffness of kmotor = 250 pN μm−1. Motors unbind at the same rate as linkers

kmotor
off = 0.1 s−1, and bind twice as fast as linkers, kmotor

on = 10 s−1, and each motor site has a binding

range of 50 nm. A multilinker of valency ν has ν hands residing on the surface of a sphere of radius

6 nm and are linked to the sphere with a stiffness of kmultilinker = 200 pN μm−1. A multilinker’s

binding entity has a binding range of 5 nm and binding and unbinding rates equal to the rates of

a crosslinker:klinkeron and klinkeroff . The parameters that are systematically varied in the simulations

include the total number of multilinkers in the system (Nmultilinkers ∈ {250, 500, 1000}), the valencies
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of the multilinkers (ν ∈ {2, 3, 4, 5, 6, 7}), the number of motors (Nmotors ∈ {250, 500, 1000}), the
number of filaments (Nfilaments ∈ {250, 500, 1000}), and the number of α-actin-like crosslinkers

(Ncrosslinkers ∈ {10, 250, 500, 1000}). The simulations explored the Cartesian product of all possible

values of the above five parameters. For example, one possible system configuration included 250

pentavalent (ν = 5) multilinkers, 500 filaments, 1000 motors, and 10 crosslinkers. For readability,

Table 3.1 summarizes the possible values of the parameters and the binding properties of objects in

the simulations:

Parameter Description Values

ν Valency of a multilinker {2, 3, 4, 5, 6, 7}
kmultilinker Hookean stiffness of a multilinker binding entity 200 pN μm−1

kcrosslinker Hookean stiffness of a crosslinker 250 pN μm−1

klinkeroff Unbinding rate of a multilinker or a crosslinker binding entity 0.1 s−1

klinkeron Binding rate of a multilinker or a crosslinker binding entity 5 s−1

kmotor
off Unbinding rate of a motor binding entity 0.1 s−1

kmotor
on Binding rate of a motor binding entity 10 s−1

Nmotors Number of motors {10, 250, 500, 1000}
Nfilaments Number of filaments {250, 500, 1000}
Ncrosslinker Number of α-actinin crosslinkers {10, 250, 500, 1000}
Vbox Volume of the simulation box 1 μm3

Nmultilinkers Number of multilinkers {250, 500, 1000}

Table 3.1 System configuration parameter values for the computational model, with, when
applicable, the set of values that have been explored. In all simulations, these parameters are held
constant from start to end of the simulation, and are varied only between simulations.
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3.2.2 Order parameters

I explored the use of various order parameters to effectively analyze actomyosin network simulations.

In general, an order parameter should reflect an interesting feature of the system, ideally reducing the

configuration of a system characterized by a myriad of degrees of freedom into a single, mesoscopic,

physically meaningful value. To achieve this goal, I first examined geometrical quantities such as

the radius of gyration (Rg), the shape (S), and the asphericity (Δ) parameters [104, 57] among all

the filament vertices. Next, I used gel-sol theory order parameters, which considered the molecular

connectivity of APBs, i.e., motors and linkers, to filaments. Each filament was defined as an

elementary unit for this analysis, and if two filaments are connected by at least one ABP, then the

filaments are considered to be in the same cluster. These gel-sol order parameters measure the

number of clusters, the number of filaments in any cluster, the largest cluster size, the smallest

cluster size, the average cluster size, and the standard deviation in cluster sizes. Finally, I created a

network/graph by considering only the spatial information of the filaments and used order parameters

on the undirected graph representation of the actomyosin network: G = (V,E). This graph allows

a rich representation of the system, based only on spatial information of the filaments. The set of

nodes V in this graph corresponds to filaments, and E is defined as the set of edges between the

nodes. An edge is considered to exist between node i and node j if the minimal Euclidean distance

between the filaments is less than the cutoff distance, dcutoff = 200 nm. The distance d between two

filaments is taken to be the minimal distance among all possible pairwise distances of their segments’

center of masses. Thus, the graph G is constructed only from the information of distances between

filaments and without any consideration or knowledge of the microscopic connectivity between

ABPs and filaments. The network-theory-based list of order parameters includes the following order

parameters: the number of communities [48], average clustering [189], clique number of the graph

(the maximal clique size), average closeness centrality [221, 54], average eigenvector centrality [29],

mean average neighbor degree [16], degree assortativity coefficient [159], and graph density. The

Python package NetworkX 2.2 [95] was used to construct the graph G and to compute the order
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parameters.

Geometrical quantities derived from the moment of inertia

We used three order parameters derived from the general field of protein folding [57]: the radius of

gyration Rg (the variance of all the positions of geometrical filament vertices), which is a proxy for

the macroscopic structure, the shape parameter −1
4 ≤ S ≤ 2, and the asphericity measure 0 ≤ Δ ≤ 1.

The shape order parameter [57] specifies how prolate (S > 0) or oblate (S < 0) is the conformation

of an actomyosin network, while asphericity measures how an actomyosin network conformation

differs from a perfect sphere (Δ = 0). The fluctuations in these order parameters reveal the stress

relaxation the system undergoes, and its response at different ABP-filaments concentration ratios.

Using spectral and fluctuation analysis, we evaluate the differences [214] at high versus low motor

content. The three order parameters Rg, Δ, and S are readily derived from the moment of inertia

tensor of filament vertices at time t:

Tαβ (t) =
1

2N2

N∑
i,j=1

(riα (t)− rjα (t)) (riβ (t)− rjβ (t)) , (3.4)

where riα(t) is the α-component of a filament vertex, N is the number of filament vertices, and

α, β ∈ {x, y, z} are the indices of the Cartesian elements. Following this general approach, the order

parameters are given by the following expressions as functions of the eigenvalues of the moment of

inertia tensor λ1 ≥ λ2 ≥ λ3. The radius of gyration is defined as:

Rg (t) =
√

trT (t) =

√√√√ 3∑
i=1

λi (t). (3.5)

The shape parameter is defined as:

S (t) =

∏3
i=1 (λi (t)− λ(t))(

1
3 trT (t)

)3 , (3.6)

where λ (t) = trT(t)
3 .
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Finally, the asphericity measure is defined as:

Δ (t) =
3

2

(∑3
i=1

(
λi (t)− λ (t)

)2)
(trT (t))2

. (3.7)

To calculate the power spectral density (PSD) of the three order parameter detailed above, I

used Welch’s method for spectral density approximation [224] with a flat top window size of 10

samples and a window overlap of 50%. Then we compared the PSD of Rg(t), S(t), and Δ(t) under

conditions of low motor concentration versus conditions of high motor concentrations. The ratio

between any two power measurements P1 and P2 was given in decibels, following the convention

10 log10 (
P1
P2
).

Gelation of actin filaments into clusters formed by actin-binding proteins

A complementary approach to study actomyosin networks is to explore the sol-gel phase transition

with respect to the molecular connectivity of ABPs and filaments. The ith cluster at time t is defines

as a gelated group of filaments connected by either motors, linkers, or both; we denote as Nci(t)

the number of filaments in the ith cluster. By convention, in our framework, a pair of filaments

forms the smallest cluster of size two, meaning that Nci(t) ≥ 2 always holds. The term Nc (t) is

denoted as the total number of clusters that exist in the system at time t. The total number of

gelated filaments in the system is given by the following equation:

Ngel (t) =

Nc(t)∑
i=1

Nci (t), (3.8)

and the gelation ratio order parameter is defined by the following equation:

Ngel (t) =
1

Nfilaments
Ngel (t) . (3.9)
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The largest cluster size is given by

Nmax (t) = max
1≤i≤Nc(t)

{Nci (t)} , (3.10)

then the normalized largest cluster size order parameter reads

Nmax (t) =
1

Nfilaments
Nmax (t) . (3.11)

The average cluster size is given by

μc (t) =
1

Nc (t)

Nc(t)∑
i=1

Nci (t), (3.12)

then the normalized cluster size order parameter reads

μc (t) =
1

Nfilaments
μc (t) . (3.13)

The standard deviation cluster size is defined according to the relation

σc (t) =

√√√√ 1

Nc (t)

Nc(t)∑
i=1

[Nci(t)− μc (t)]
2, (3.14)

then the normalized standard deviation cluster size order parameter reads

σc (t) =
1

Nfilaments
σc (t) . (3.15)

The reasoning behind dividing gelation-related quantities by the total number of filament

Nfilaments is to map the order parameter onto the segment [0, 1].

Network theory order parameters

The third approach to quantify the morphology of an actomyosin network is to consider the graph
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generated from the positions of the filaments. This framework is highly relevant in scenarios of

experiments in which only F-actin is visible via fluorescence microscopy. For this purpose, we

harness ideas and order parameters from graph theory or network theory [4, 50, 68]. As mentioned

above, the actin graph at time t is denoted by G (t) = (V (t), E(t)), after applying a cutoff distance

dcutoff = 200 nm, which corresponds to the length of a motor (i.e., length of the motor is 100 nm and

binding range of each motor head is 50 nm). For higher readability, we occasionally omit the time

argument, t. Because of the applicability of graph theory to a wide range of scientific disciplines,

there are an enormous number of topological order parameters available in the scientific literature.

As a result, once G(t) is constructed for the system, one can compute the global order parameters

on properties such as the community structure [48, 77] and the clustering coefficient [189], as well

as order parameters defined on the level of individual nodes, such as centrality [29, 157].

In general, community structure in a network indicates the presence of heterogeneity in the

density of links in a network: if some nodes are more likely to be connected with each other than

with the rest of the network, they may be said to form a community within the network. This

heuristic definition of community has spawned an enormous literature on the subject of community

structure in networks [77], although in this work, I focus solely on a commonly used method for

community detection: the Clauset-Newman-Moore greedy modularity maximization algorithm [48].

The algorithm first assign a unique community Cv to each node v ∈ V ; then the greedy modularity

maximization procedure of the algorithm joins pairs of communities to maximize the modularity,

defined as

Q =
1

|E|
∑

(v,w) ∈ E

[
Avw − kvkw

|E|
]
δsv ,sw , (3.16)

where |E| is the number of edges in the graph between any two nodes v and w where (w, v), (v, w) ∈ E.
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A is a symmetric adjacency matrix of G, defined as:

Avw =

⎧⎪⎪⎨
⎪⎪⎩
1, (v, w) ∈ E ∧ (w, v) ∈ E

0, otherwise

, (3.17)

where kv is the degree of node v and set as equal to the number of edges connected to v. δa,b

is the Kronecker delta, and equals 1 if a = b and 0 otherwise. Using these definitions and the

Clauset-Newman-Moore greedy algorithm [48], we define the order parameter Ncommunities(t) to be

the number of communities that are represented in graph G.

In many real-world networks, it has been found that triplets of nodes share edges more often

than would be expected by random chance [189]. In particular, the average clustering coefficient of

a network G = (V,E) is defined as

Γ =
1

|V |
∑
v∈V

γv, (3.18)

where γv is the clustering coefficient of node v, and is defined as

γv =
1
2

∑
i,j AviAijAvj

kv (kv − 1)
. (3.19)

Of note, the clustering coefficient referred to in network theory is related to the density of triangles of

edges, and is conceptually distinct from the clustering discussed in the context of gelation literature.

In addition to the aforementioned concepts, the concept of node centrality has been useful in better

understanding the structure of complex networks on the level of individual nodes [29, 157]. There

are many possible measures of centrality found in the literature, each measuring the ’importance’ of

a node in a slightly different way. Herein, I used a few of these centrality measures, discussed in

more detail below [50].

The eigenvector centrality of a node i is the ith element of the eigenvector v of the adjacency

matrix A:

Av = λmaxv, (3.20)
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where λmax ≥ λ1 ≥ . . . ≥ λ|V | is the maximal eigenvalue of the symmetric adjacency matrix A of

the graph G. In general, eigenvector centrality tends to be higher for nodes that are connected to

other nodes with high centrality. Then, the average eigenvector centrality is defined as:

Eλmax (t) =
1

|V (t)|
∑

1≤i≤|V (t)|
λi. (3.21)

A second measure of the centrality of a node v is its average neighbor degree, as evaluated in v’s

neighborhood, with the set of the nearest neighbors of v, N (v) = {u | (u, v) ∈ E}:

κnn,i =
1

|N (v)|
∑

u∈N (v)

ku, (3.22)

where ku is the degree of the node u. Like eigenvector centrality, neighbor degree centrality is higher

for nodes that are connected to other central nodes, but unlike eigenvector centrality, longer paths

are not explicitly considered in this definition. Within the concept of neighbor degree centrality,

I use the mean average neighbor degree as an order parameter, according to the equation shown

below:

knn (t) =
1

|V |
∑
v∈V

κnn,v. (3.23)

In addition to the above centrality parameters, the parameter of “betweenness centrality” of a

node (referred to herein as “betweenness”) measures how central a node is by how often it acts as a

’bridge’ between other pairs of nodes (sketched in Fig. 2). This parameter is quantified by counting

the number of shortest paths in which the node participates:

β (v ∈ V ) =
∑

s,s′ ∈V ∗

g (s, s′|v)
g (s, s′)

, (3.24)

where V ∗ = V � {v} is defined as the set of nodes excluding node v, the function g(s, s′) counts the

number of geodesics (shortest paths) between node s and node s′ , and g (s, s′|v) is the number of

shortest paths between node s and s′ such that v lies along those shortest paths.
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Beyond evaluating the centrality of nodes in a graph, one can measure the similarity of con-

nections within the network. One such connection similarity measure is the “degree assortativity

coefficient” [159]. The degree assortativity, previously described by Newman et al. [37, 158], measures

whether nodes in the graph with similar degrees are also directly connected.

Mathematically, the assortativity is derived from the nodes’ joint probability matrix, a symmetric

matrix in which the Elm element equals the number of edges in the graph that link a vertex of

degree l with another vertex of degree m:

Elm = |{(u, v) : v, u ∈ E ∧ kv = l ∧ ku = m}| . (3.25)

The joint probability matrix is achieved by normalizing Elm with the sum of its elements
∑

l,mElm.

Using this definition, the degree assortativity coefficient order parameter is defined as:

ρ (t) =

∑
l,m l ·m · (Elm(t)− pl(t)pm(t))

σ2
p(t)

, (3.26)

where pi :=
∑

j Eij =
∑

j Eji for any possible node’s degree i, and σp is the standard variation of

the set of the pi values, {pi}|V |
i=1.

Of note, for brevity, I refer to the degree assortativity coefficient as assortativity.

In addition to the detailed order parameters discussed above, the global details of the network

can also be characterized using coarse network measures. One example of such an order parameter

is the graph density, defined as:

dG (t) =
2|E|

|V | · |V − 1| , (3.27)

which measures the number of edges observed in the network compared to the maximum number

that could be observed. Besides the graph density, I also evaluated, as an order parameter, the

maximal clique size, which is the largest subset of vertices from V such that every pair of nodes in

the subset has an edge between them.
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3.2.3 Potential of mean force (PMF) of order parameters

The potential of mean force (PMF) is the natural logarithm of any probability density function

(PDF), defined on a specific degree of freedom of the system [217]. The PDF of an order parameter

ξ ∈ [0, 1], computed along a trajectory of the system, is given by the following relations [217]:

P (ξ) = 〈δ (ξ − ξ (x))〉trajectory :=
Q (ξ)∑
ξ Q (ξ)

, (3.28)

where Q (ξ) is the partition function used to find the system in a state at which the order parameter

of interest has the value ξ. The entropy S ({ξ}) [109, 199] of the PDF of ξ (i.e., P (ξ)) is given by:

S ({ξ}) = −kB
∑
ξ′

P
(
ξ
′)

lnP
(
ξ
′)

= kB
∑
ξ′

P
(
ξ
′)

I
(
ξ
′)

, (3.29)

where I (ξ) := −kB lnP (ξ) is the Shannon information (self-information) as a function of ξ. If kB

is defined as one, both the entropy and the information measures have the “nat” (natural unit of

information) units [201].

In order to compute the PMF, I used the kernel density estimator function, implemented in the

Scikit Python library [174], to estimate I (ξ) via the negative logarithm of the PDF P (ξ). Since

the self-information is related to the potential of mean force (PMF), denoted with U (T, ξ), the

following relations between the entropy, information, the PMF, and the PDF of xi hold [217, 43]:

U (T, ξ) := TI (ξ) := −kBT lnP (ξ) := kBT ln

⎛
⎝∑

ξ′ Q
(
ξ
′
)

Q (ξ)

⎞
⎠ . (3.30)

3.3 Results

3.3.1 Multilinkers enrich the morphologies of actin bundles

I have conducted mesoscopic simulations using Cytosim, over a time course of 600 seconds, to

investigate the role of multivalent linkers on the structural changes that occur in actomyosin networks.
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Figure 3.2 Snapshots of simulation results from Cytosim of three 1 μm3 box systems with a
1 : 1 : 1 : 1 concentration ratio of filaments, motors, multilinkers, and α-actinin like crosslinkers. The
three systems differ only in the valency of the available multilinkers. In the leftmost column, the
multilinkers are bivalent (ν = 2). In the middle column, the multilinkers are trivalent (ν = 3). In
the rightmost column, the multilinkers are hexavalent (ν = 6). The time increases from the top
panels to the bottom panels, with snapshots occurring at t = t0 = 1 s, t = 50 s, and t = 100 s.

In the simulations, the size of the simulation box is set at 1 μm3 with 1:1:1:1 concentration ratio

among filaments, motors, multilinkers, and α-actinin crosslinkers. The snapshots from simulations

with three types of multilinkers, differing in their valency numbers (2, 3, and 6), are provided in

Fig 3.2 at t = 1 s, t = 50 s, t = 150 s and Fig 3.3 at t = 200 s, t = 400 s, and t = 600 s.

In the systems with both crosslinkers and bivalent multilinkers, actin bundles are formed [216,

226], with a smaller variation in the cluster sizes as time evolves compared to systems with
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Figure 3.3 Snapshots of simulation results from Cytosim of three 1 μm3 box systems with a
1 : 1 : 1 : 1 concentration ratio of filaments, motors, multilinkers, and α-actinin like crosslinkers. The
three systems differ only in the valency of the available multilinkers. In the leftmost column, the
multilinkers are bivalent (ν = 2). In the middle column, the multilinkers are trivalent (ν = 3). In
the rightmost column, the multilinkers are hexavalent (ν = 6). The time increases from the top
panels to the bottom panels, with snapshots occurring at t = 200 s, t = 400 s, and t = 600 s.

multilinkers of valency (ν ≥ 3).

In the systems with trivalent multilinkers, the nascent “arborization” of bundles (the appearance

of branched actin bundles) starts to appear at t = 150 s in Fig. 3.3. This phenomenon becomes more

prominent in systems with multilinkers of higher valencies, as shown in Fig. 3.3 at time t = 600 s for

a system with hexavalent (ν = 6) multilinkers.
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3.3.2 Correlation between order parameters from polymer physics, gelation theory,

and network theory

The rich actomyosin structures shown in Fig. 3.2 and Fig. 3.3 have prompted the search for

appropriate order parameters that characterize the complexity and heterogeneity of actomyosin

dynamics in space over time. These order parameters include common measures from polymer

physics, gelation theory, and network theory, as described in the Methods section (vide supra).

Fig. 3.4 shows the Pearson correlation of all order parameters, using the data collected from the

Cytosim simulations. In particular, each group of order parameters presents a different insight into

the actomyosin morphology. The three polymer physics order parameters: radius of gyration (Rg),

the shape parameter S , and the asphericity Δ, are highly correlated; these three parameters are

nearly uncorrelated with the order parameters obtained from gelation theory or with those that are

obtained from graph theory.

To some extent, the order parameters from network theory correlate with the gelation order

parameters (e.g., the gelation ratio order parameter positively correlates with network’s average

clustering order parameter). However, the correlation is below 0.5, because the network order

parameters have more complex time evolution patterns, as shown in detail below. Both the number

of gelated clusters and the node degree assortativity order parameters have negative correlation

with the other order parameters. This is because the number of gelated cluster decays with time, as

the gelation ratio arises. On the other hand, the degree assortativity has a negative correlation with

the gelation and network order parameters, due to the arborization of bundles, as discussed later in

detail.

3.3.3 Motor activity regulates temporal changes in the global structure and the shape

of actomyosin networks

The fluctuations in the distribution of filament vertices in space can be used to provide insight

into the temporal dynamics of the actomyosin networks, since the filaments are the scaffold of the
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Figure 3.4 Heatmap of the Pearson correlation between the order parameters used for this study.
The order parameters are grouped according to the pairwise correlation distance and annotated
by their physical order parameter group: polymer physics (labeled in gray dashed brackets on the
right), gelation theory (labeled in purple brackets on the left), or network theory (labeled in red
brackets on the right).

network. I used the power spectral density functions (PSD) [224] of the three polymer physics-derived

order parameters (Rg, S, and Δ from Eq. (3.5-3.7) to compare the fluctuations at high and low

motor-to-filament ratio values, as shown in Fig. 3.5. Of note, each of these three order parameters

measures a distinctive mesoscopic reshaping mode of the actomyosin network, derived from the

moment of inertia of the filament vertices (Eq. (3.4)). In particular, the PSD of the shape parameter,

S, is a mesoscopic assessment of filament sliding modes (Fig. 3.5(a-b)). The PSD of the asphericity

Δ is a proxy for the rotational modes of filaments (Fig. 3.5(c-d)). The PSD of the radius of gyration

Rg order parameter provides information about the mesoscopic expansion and contraction modes

(Fig. 3.5(e-f)). One observation is that the filament sliding modes in Fig. 3.5(a-b) are energetically
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Figure 3.5 Power spectral analysis of mesoscopic polymer order parameters. Low and high
motor-filament-crosslinker-multilinker ratios, 1 : 100 : 100 : 100 and 1 : 1 : 1 : 1, are examined in
systems with multilinkers of various valencies ν ∈ {2, 3, 4, 5, 6, 7}. (a), (c) and (e) show the power
spectral density (PSD) from the systems with low motor-filament ratios, while (b), (d), and (f) show
the PSD from the systems with high motor-filament ratios. (a)-(b) The topmost row shows the
PDF of the shape parameter S. (c)-(d) The middle row shows the PDF of the asphercity parameter
Δ. (e)-(f) The bottom row shows the PDF of the radius of gyration Rg.

more dominant than the rotational modes in (Fig. 3.5(c-d), which is reflected in the fact that the

PSD of the former is one order of magnitude (10 dB) higher than the PSD of the latter. When

comparing the PSD at the two low and high conditions of motor-filament-crosslinker-multilinker

concentrations, (1 : 100 : 100 : 100) vs. (1 : 1 : 1 : 1), all three of the PSD values in the case of high
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motor-filament ratio are two order of magnitudes (20 dB) greater than those obtained under low

motor-filament ratio conditions.

3.3.4 Gelation of filaments in actomyosin network by actin-binding proteins

Although the shape and structure parameters Rg, S, and Δ from polymer physics provide information

about the fluctuations derived from the various configurations of actin filaments within a network,

they cannot directly capture the individual characteristics of a gelated, or percolated cluster, in

the actomyosin networks [82]. By contrast, the order parameters derived from gelation theory,

which consider the connectivity between actin filaments through actin-binding proteins, can be used

precisely for such detailed analysis, i.e., to monitor the development of a percolated cluster.

In one example, the data shown in Fig. 3.6 demonstrates how motors can regulate the total

number of clusters in a way that is independent of the valency of multilinkers, even at very high

multilinker valency values. Fig. 3.6(a-b) show the normalized largest cluster size over time, defined as

Nmax (t) in Eq. (3.11). This data demonstrates that multilinkers with higher valency promote larger

cluster formation, regardless of the motor concentration. Another way of viewing this data, shown

in Fig. 3.6(c), is by examining the cumulative distribution functions (CDFs) of the average cluster

size, μc (t) at high (1 : 1 : 1 : 1) and low (1 : 100 : 100 : 100) motor-filament-crosslinker-multilinker

concentration ratios, in the presence of multilinkers with varying valency values. Interestingly,

multilinkers with valencies of ν = 2 and ν = 3 create smaller clusters on average at low motor

concentration. However, for a system with multilinkers of ν = 4, systems with both high or low

motor content display a similar distribution of μc (t). Finally, at valency values ν = 5, ν = 6,

and ν = 7, higher motor activity promotes bigger “largest clusters” by connecting smaller clusters

together, as the average cluster size histograms (Fig. 3.6(c)) are shifted to the right compared to

the system with low motor content.
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Figure 3.6 Gelation of filament clusters formed by crosslinkers, multilinkers, or motors. The
condition of “low motor concentration” corresponds to motor-filament-multilinker-crosslinker ratios
of 1 : 100 : 100 : 100, shown in (a). The condition of “high motor concentration” corresponds to
motor-filament-multilinker-crosslinker ratios of 1 : 1 : 1 : 1, shown in (b). The time evolution of the
normalized largest cluster, as defined in Eq. (3.11), is shown in (a) and (b). (c) The cumulative
distribution functions (CDF) of the normalized average cluster size order parameter μc (t), defined in
Eq. (3.13), are plotted in both motor concentration conditions and at the six different multilinker’s
valency conditions. The plots shown in (a) and (b) are averaged over 30 independent simulation
trajectories using the same species parameters, with a confidence interval CI = 90%.

3.3.5 Constructing graphs/networks using the spatial information of actin filaments

In real-world systems, the local microscopic-level information of actin-binding connectivity to

filaments is not always known nor it is easy to determine. In addition, treating actomyosin as a

percolating network or as a gel limits the availability of the information about the hierarchy of
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connectivity within the network scaffold. To conduct further analysis about the morphology of

actomyosin networks, I calculated the order parameters derived from network theory on the graph of

filaments, which is built by accounting only for the distances between filaments, without considering

the types of ABPs responsible for such connectivity, as described also in Section 2.2.3 (vide supra).

In this section, I use this approach to develop an alternative, big-picture representation of

actomyosin networks. In this graph representation of the actomyosin networks, the filaments are

defined as nodes in the graph, and an edge between two nodes exists if they are within a cutoff

distance dcutoff = 200 nm.

3.3.6 Analysis of actin filament networks viewed by order parameters from graph

theory

The topology of an actomyosin network becomes increasingly complex over time, as shown in Fig. 3.2

and Fig. 3.3. Network theory provides a simplified method to describe the hierarchical ranks of a

network built by these filaments. Within such a description, clique numbers, number of communities,

and clustering numbers are used to describe the status of a node, or filament, within a growing

actomyosin network. Graph theory allows a variety of perspectives, from a fine-grained (zoomed-in)

to a coarse-grained (zoomed-out) view. Moreover, the particular strength of network theory lies

primarily in its ability to describe scales beyond the connectivity of ABPs and to provide the social

status of a node (or filament) in a hierarchical actomyosin network. I explore the effect and interplay

of multilinkers with a variety of valencies and motor proteins on the morphology of actomyosin

networks, by studying the time signal of several order parameters such as clique number, node

degree assortativity, and graph density in Fig. 3.7, 3.8, and 3.9, respectively. Lastly, I compare

the PMF of a graph theory order parameter with the PMF of gelation theory; this demonstrates

that network theory may distinguish between bundles and gels in actomyosin networks, as shown in

Fig. 3.10.

We first zoomed in on an actomyosin network at the fine-grained level where multivalency

differentiates topologies at either high or low motor content. At low motor content, filaments
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Figure 3.7 Order parameters derived from network theory, measuring proximity within the
network in the presence of multilinkers for two systems with 1000 nodes (filaments). The left-side
column (a, c, e) represents the system with “low motor concentration”, i.e., 1 : 100 : 100 : 100
concentration ratios among the motors, filaments, multilinkers, and crosslinkers. The right-side
column (b, d, f) represents the systems with “high motor concentration”, i.e., 1 : 1 : 1 : 1
concentration ratios among the motors, filaments, multilinkers, and crosslinkers. The clique number
of the network as a function of time is plotted in (a, b). The average clustering, defined in Eq. (3.18),
is plotted as a function of time in (c, d). The number of communities [48] of the network is plotted
as a function of time in (e, f). Of note, each system profile represented herein is averaged over 30
independent trajectories with a confidence interval of CI = 90%.

produce a similar kind of bundles at all valency values, from ν = 2 to ν = 7, according to the

results depicted in Fig. 3.7(a, c, e). In contrast, at high motor content, the differences in network
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topology obtained with multilinkers of various valencies are more prominent, as the clique number

(Fig. 3.7(b)) profiles, the average clustering profiles, (Fig. 3.7(d)), and the number of communities

(Fig. 3.7(f)) deviate significantly over time. Notably, the number of communities [48] that maximize

the modularity in Eq. (3.16) is the highest for systems with multilinkers of valency ν = 7, as shown in

Fig. 3.7(f). This result provides important insight into systems with multilinkers of higher valencies,

which is due to the effect of high valency on the average degree of the nodes in the graph (as shown

in Fig. 3.7(c-d)).

When zooming out to view the network at a coarse-grained level, it is possible to examine the

node degree relations and their global contributions to hierarchical connectivity in the network.

Higher valency multilinkers reduce the node degree assortativity coefficient defined in Eq. (3.26) both

at systems with low and systems with high motor content, as shown in Fig. 3.8(a) and Fig. 3.8(c),

respectively.

The observation that in systems with high multivalency values (e.g., ν ≥ 4), that can interconnect

more filaments with a single multilinker, the degree assortativity is reduced suggests that motors may

break the large bundles into dendritic network by the arborization of the large bundle, as observed in

Fig. 3.8(d). Indeed, at high motor content, motors reduce the assortativity of the network from 0.7

to 0.5 when the multilinkers are hexavalent (ν = 6) or heptavalent (ν = 7). However, the tendency

of the network at low motor content is to create a meshgrid of bundles (can be thought of as a gel of

actin bundles), where the assortativity is higher, as shown in Fig. 3.8(a,b). Notably, at high motor

content, when a large bundle is emerged in the system the motors arborize the large bundle into a

thick bundles with actin branches, as shown in Fig. 3.8(c,d).

3.3.7 Network theory order parameters reveal rich topologies in a dendritic acto-

myosin network

Beyond the order parameters that are used to quantify the connectivity of both of the nodes

(filaments), the non-local order parameters in graph theory, such as the graph density, reveal the

global heterogeneity of actomyosin networks. In Fig. 3.9(a) in particular, the observed graph density
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Figure 3.8 Node degree assortativity coefficient of actomyosin networks observed in the presence
of multilinkers with varying valencies. The node degree assortativity, as defined in Eq. (3.26), is
plotted as a function of time at “low motor concentration” (i.e., 1 : 100 : 100 : 100 ratios between
motors, filaments, multilinkers, and crosslinkers) in (a) and at “high motor concentration” (i.e.,
1 : 1 : 1 : 1 ratios) in (c). Each profile in panel (a) and panel (c) was averaged over 30 independent
trajectories with a confidence interval of CI = 90%. The snapshots depicted in (b) and (d) are of
1 μm3 cubic systems with multilinkers of valency ν = 6 at low and high motor content, respectively,
at time t = 600 s.

signal shows that even at low motor activity, the presence of multilinkers with valencies ν > 2

increases the density by three-fold. At high motor content, such as in the case depicted in Fig. 3.9(b),

results strongly suggest that the dynamics of the network has more than two phases as in the case

of gel-sol theory, since the graph density can distinguish between a gelated network and a bundled

network. For the case of a multilinker with ν = 3, the graph density shows that there are two stages
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Figure 3.9 Graph density of actomyosin networks in the presence of multilinkers with varying
valencies. The graph density, defined in Eq. 3.27, is plotted as a function of time at 1:100:100:100
concentration ratios between motors, filaments, multilinkers, and crosslinkers in (a) and at 1:1:1:1
ratios in (b). Each profile depicted in (a) and (b) is an average of 30 independent trajectories, with
the same species parameters, with an overall confidence interval of CI=90%.

of evolution characterized by a double sigmoidal curve: the graph density is less than 0.1 before

t = 200 s and abruptly grows to 0.2 after t > 300 s. This double sigmoidal curve suggests that the

disordered network becomes gelated and then bundled. Therefore, tracking only percolation using

the order parameters in gelation theory may be inadequate.

Because network theory order parameters capture the hierarchical order of actin filaments in an

actomyosin network, they are useful in revealing the states of matter in actomyosin. It is desirable

to develop them into the order parameters that describe the complexity of an energy landscape.

To show such a possibility, I show the potential of the mean force (PMF), defined in Eq. (3.30),

as a function of an order parameter from graph theory and as a function of an order parameter

from gelation theory in Fig. 3.10. This figure includes information for a variety of the sizes of gel

clusters and compares it with the PMF of the average node neighbor degree of each node along a

trajectory of 600 s that was sampled every second. The results depicted in Fig. 3.10 support the

observation that with network theory information, there are more than two phases (noted by the

number of local minima) of the actomyosin networks with multilinkers (Fig. 3.10(a)), compared

61



Figure 3.10 Potential of Mean Force (PMF) of (a) network and (b) gelation theory parameters.
The potential of mean force is defined in Eq. 3.30 of the probability density function over the
cluster sizes in (a) of systems with multilinkers of different valencies. The PMF of the probability
density function of the average neighbor degree of each node is plotted in (b). The results plotted in
panels (a) and (b) were computed at 1:100:100:100 concentration ratios between motors, filaments,
multilinkers, and crosslinkers.

with the information about the states revealed from sol-gel theory, as there are only two global

minima in Fig. 3.10(b).
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3.3.8 State diagrams of actomyosin networks in the plane of order parameters from

network theory

Overall, through the use of the proper order parameters connecting local and non-local features in a

complex network established from network theory, I have outlined the state diagrams in Fig. 3.11

and Fig. 3.12 that allow further experimental validation of our hypothesis that both motor activity

and the valency of the multilinkers in the system regulate the dendritic state of the actomyosin

network. The state diagrams in Fig. 3.11 and Fig. 3.12 are computed by averaging over the last 20

seconds of simulations, for which a specific ratio of motor-filament and multilinker-filament holds.

First, I show the state diagram of the node degree assortativity coefficient. At a 2 : 1 (horizontal

dashed line in Fig. 3.11) motor-filament concentration ratio or above, the degree assortativity is

reduced as shown in Fig. 3.11. At a multilinker-filament concentration ratio of 1 : 1 (vertical dashed

line in Fig. 3.11) the network behaves in a non-linear and complex manner, as the degree assortativity

first rises and then drops. Both a high concentration of multilinkers and a high activity of motors

are necessary to regulate the correlation between the nodes in the network. At a multilinker-filament

concentration ratio above 4 : 1, as shown in Fig. 3.11, the motor activity does not attenuate the

assortativity, as in the case where the motor-filament concentration ratio is between 1 : 2 and 2 : 1.

The horizontal dashed line in Fig. 3.12 shows that the graph density of the network does not

necessarily increase by adding more multilinkers, nor does it increase through the addition of more

motors, as suggested by the vertical dashed line in Fig. 3.12. Rather, the data suggests that by

increasing the concentration of multilinkers in the actomyosin system, the graph density was reduced

overall in the filament network.

3.4 Discussion

I simulated in Cytosim [156] the evolution of actomyosin networks that occurs through mediation

of filaments by ABPs. The utilization of several order parameters, adapted from three scientific

subdisciplines, helped to characterize the morphologies of the networks. Order parameters that are
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Figure 3.11 State diagram of the node degree assortativity coefficient. The average over the
steady state values of the node degree assortativity coefficient, defined in Eq. (3.26).

derived from polymeric physics and gelation theory are both valuable, but they lack the ability

to characterize the overall complexity of the topology within the clusters of filaments. Polymeric

physics is inadequate because it was originally developed to classify the conformation of a single

complex polymer; gelation theory on the other hand lacks the formalism to distinguish between a

weakly connected gel and a fully connected bundle, as both conformations have similar gelation order

parameter values. In contrast, using network theory-derived parameters allowed me to distinguish

between three types of gels: a meshgrid of bundles, a large bundled gel, and an arborized bundled gel.

In particular, the clique number derived from network theory shows the organization of filaments in

systems with different types of multilinkers and motor concentrations. At the coarse-grained level,
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Figure 3.12 State diagram of graph density. The average values are defined over the steady state
values of the graph density, defined in Eq. (3.27).

the graph density from network theory allowed us to predict the effects of the valency multilinkers

versus motor concentration on the topology of the networks, through the use of a state diagram. Such

descriptions function effectively across multiple length and time scales, and are particularly useful in

connecting microscopic properties to macroscopic phenomena that can be validated experimentally.

For example, when the concentration of motors or of multilinkers increases, at a one-grained level,

this leads to a reduction in the order parameters, such as the clique number of the network as

well as the degree correlation between the nodes. At a coarse-grained level, similar concentration

changes results in a decrease in the overall system density, as a result of the formation of hierarchical

network structures. This result parallels the known effects, observed experimentally, that adding
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more crosslinkers into systems prevents overall system contraction [23].

This work shows that many interesting features of actomyosin networks are captured by focusing

on the nodes (or filaments) from the system level, starting from the level of connectivity through

actin-binding proteins to a larger scale. This movement of scales can occur by knowing only the

distances between actin filaments, and without specific knowledge of the actin-binding proteins

that are present. Such a reduced graphical representation can markedly ease the analysis of the

dynamics and structures of the actomyosin networks, through which they will accurately reflect the

network reorganization caused by motor and actin-binding protein variations. Such a framework

to evaluate actomyosin networks is valuable also in the context of analysis of live high-resolution

experiments, in which real-time location tracking for the filament components is observed.

Actomyosin structures mediated by multivalent actin-binding proteins shape the synap-

tic plasticity in a dendritic spine

CaMKII is a multivalent ABP that serves a dual role: as a structural protein that organizes actin

filaments and as a signaling protein that mediates calcium signaling. Regarding its structural

role, Khan’s as well as Waxham’s group have shown that CaMKII is a multivalent linker that

forms actin bundles [98] as well as junctions [114]. CaMKII binds actin with high affinity that

maintains the stability of actin bundles [98] over a long period of time, i.e., days or months. My

work agrees with the experimental findings that high valency promotes actin-bundling, as in the

case of CaMKII. In addition, my work suggests that motor activity promotes larger bundles and, at

high multivalencies, I observed arborization of bundles that can explain the dendritic shapes of the

spine in neurons [170, 136].

Possible experimental validation of the effect of multilinkers and motors

Although this study offers only qualitative insights into the role of multilinkers, such as CaMKII, in

regulating the morphologies of actomyosin networks, it should be possible to validate those by in vitro

experiments. For example, I will describe how one could design an experimental setup to validate

the predicted state diagrams of the degree assortativity (Fig. 3.11) and the graph density (Fig. 3.12).
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My suggestion is based on the protocol by Bendix et al. [23], who studied the role of the α-actinin

concentration and the motors concentration on actomyosin architectures. Building on their protocol,

one may add another multivalent actin-binding protein, such as a purified CaMKII [165], and study a

few (e.g., 16) combinations of motor-to-actin and multilinker-to-actin concentration ratios. For each

combination of motor-to-actin and multilinker-to-actin concentration ratios, one would reconstitute

an actomyosin system with a fixed amount of purified actin and α-actinin crosslinker proteins. The

systems may be then visualized using adaptive rheology, as demonstrated by Gupta et al. [93], and

by recording the dynamics of fluorescent labeled F-actin using the “RFP-Ftractin” actin labeling

protocol [232]. In order to compute from experiments the state diagram of any order parameter from

graph theory (e.g., graph density), one could use high-resolution images of the steady states of the

different systems and translate them into graphs using an edge detection algorithm such as Canny’s

algorithm [41]. Once the graphical representations of the experimental images are available, one can

compute the order parameters using NetworkX [95], similar to what I did with the results from the

Cytosim [156] simulations. Overall, I expect the results from the experiments to be qualitatively

similar to the predictions obtained by the multilinker simulations in Cytosim, namely that there

should be a “Goldilocks Zone” (i.e., an optimal amount of multilinkers and motors) at which the

assortativity and graph density achieve their maximum values.

In summary, I introduced a computational mesoscopic model for multilinkers built into Cytosim

and ran the simulations of actomyosin dynamics in the presence of multilinkers with varying binding

valencies to actin filaments. I then analyzed the effects of motor activity and the valency of the

multilinkers on the morphologies of actomyosin, using order parameters from polymer physics,

gelation theory and network theory. Overall, the results elucidate the relevance of these order

parameters for the study of the structure and dynamics of actomyosin networks. I suggest a possible

reduced space, using network theory methods, to understand and characterize complex actomyosin

networks. Although this is only a start, hopefully this will motivate future directions to embrace

network theory as a tool to analyze actomyosin experiments, as well as to establish a quantitative

understanding of cytoskeletal systems. I believe that the representation of actomyosin as graphs
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would be useful beyond the scope of our analysis. The realization that actomyosin could be thought

of as graphs will allow one to apply graph neural network [234] models to analyze and predict

actomyosin dynamics and presumably to integrate nonequilibrium physics theories [197, 198, 108]

with probabilistic graphical models [140, 73] to describe complex active matter, such as actomyosin

networks.
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4 Avalanches in Actomyosin Networks

This chapter is based on a paper published in PNAS [133] in 2020.

4.1 Introduction

Actomyosin networks are vital for proper functioning of living matter [154]. In particular, two

major biological processes that rely on the non-equilibrium behavior of actomyosin are memory

formation [94] and cell motility [39, 179, 152]. Relatedly, a key actin-binding (actin-related) protein

Arp2/3 complex [52] is also implicated in cell motility [39, 153] and memory formation [94, 117, 118].

The Arp2/3 complex (Fig. 4.1(b)) is a protein complex with seven subunits that can bind to the

side of an existing actin filament and initiate the nucleation of a daughter filament at a 70◦ angle

from the mother filament [184], as shown schematically in Fig. 4.1(a).

Figure 4.1 Arp2/3, defined as the brancher protein in actomyosin networks. (a) Conceptual
illustration of an Arp2/3 brancher that creates a 70◦ angle between mother and daughter filaments.
(b) The crystal structure of Arp2/3 [182], as visualized using VMD [102].

Actomyosin networks may also contract, and this motion has been replicated in vitro using purified

actin filaments, crosslinkers, and active motors [23]. Experiments have shown that contractility

emerges in the presence of ATP and above a critical concentration of myosin motors. However,

the dependence of contractility on the concentration of bivalent crosslinkers has shown that such

contractility only occurs at intermediate crosslinker concentrations, when found in a solution of
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actin filaments, motors, and crosslinkers [23]. In addition, it is unclear how the formation of

branches in actomyosin influence system contractility, overall system structure, and the force

generation of the network. Herein, I present the simulations of a 1 μm3 system to study how

branchers, crosslinkers, and motors reshape the actin filaments morphologies and dynamics in

the dendritic spine whose morphological plasticity is strongly implicated in learning and memory

processes [99, 47]. Contractility in actomyosin networks resembles the Feynman-Smoluchowski

thermal ratchet [75, 144, 110, 84], which is a classical thought experiment describing how directional

behavior can stem from randomness. In a similar manner to how ratchets rectify applied force

to allow motion in one direction, actomyosin networks may undergo contraction events in the

presence of an energy-consuming reaction and a broken symmetry to facilitate motion in the target

direction [144]. Contraction events in actomyosin networks originate mostly from forces generated

by motors (across actin filaments), but may also stem from the compression and expansion of actin

filaments due to their polymerization [74, 119, 229, 223, 227]. When forces deform the network and

build up strain, this in turn causes notable changes in the rates of various biochemical processes. The

goal of this research is to explore the contrast between the dynamics of branched and unbranched

networks, via computational simulations of systems with and without the Arp2/3 brancher complex.

The simulations were done on the Mechanochemical Dynamics of Active Networks (MEDYAN)

framework, which is characterized as a mechanochemical computational software that incorporates a

stochastic description of individual chemical reaction events and a deterministic force-minimization

scheme [180] while accounting for the mechanochemical feedback loops. The simulations show that

branched networks (i.e. those that contain Arp2/3) can become marginally stable and abruptly

release stress in the network via a sudden mechanical avalanche. In contrast, in unbranched networks

(i.e. those without Arp2/3), no such event has been observed in our simulations. Finally, I discuss

the finding of avalanche events that occur in actomyosin in light of a recent discovery of earthquakes

in the cytoskeleton (“cytoquakes”) and the implication of such cytoquakes to the micron-length

scale of dendritic spines.

The modeling of Arp2/3 in MEDYAN was a collective effort by James Liman, Carlos Bueno, and
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I. The simulations were mainly carried out by James Liman. Most of the analysis was done by James

Liman with extensive help from Carlos Bueno. My main contribution was the characterization of

contractility and developing the order parameters for the analysis of avalanches.

4.2 Methods

4.2.1 Coarse-grained mechanochemical model of actomyosin systems (MEDYAN)

For this project, the mechanochemical model of actomyosin networks MEDYAN (vide infra) [180]

was used. MEDYAN models the mechanical and the chemical kinetics coarse-grained actomyosin

networks in rounds of mechanochemical steps. In the chemical step of the simulation, MEDYAN

uses a stochastic scheme based on the spatially resolved Gillespie algorithm [86, 87, 85]. In the

mechanical step of the simulation, MEDYAN computes the total mechanical energy in the system

and relaxes the system by minimizing the energy of the actomyosin network [180]. MEDYAN’s

mechanochemical feedback loop is depicted schematically in Fig. 4.2.

The coarse-grained actomyosin system is initialized with filaments that are made of segments

consisting of 10 G-actin monomers each, non-muscle myosin IIA heavy chain (NMIIA) motor

proteins (i.e. motors), α-actinin cross-linking proteins (i.e. linkers), and actin-related protein 2/3

(Arp2/3) branching protein complexes (i.e. branchers). James Liman ran two types of simulations:

unbranched simulations and branched simulations. In the unbranched simulations, the chemical

species included actin monomers, crosslinkers, and motors at various concentration ratios. In the

branched simulations, branchers were also included in the simulations while keeping the same

concentration ratios of actin monomers, crosslinkers, and motors as in the unbranched simulations.

Chemical reactions in MEDYAN

The simulations included chemical events of actin polymerization and depolymerization, motor

walking, and binding and unbinding events of actin-binding proteins (ABPs) such as: motors,

crosslinkers, and branchers. The system was confined to a 11 μm3 box with 15, 000 actin monomers,

corresponding to 25 μM [23], with initial 50 filaments at length of one actin segment (10 monomers),
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Figure 4.2 MEDYAN mechanochemical loop to simulate actomyosin networks. Upon stochastic
simulation of chemical reactions, the mechanical Hamiltonian is updated and the total energy of the
system is minimized. Then the mechanical forces update the chemical reactions before executing
the chemical simulation [180].

meaning that the total number of monomers in the pool at time = 0 was 14, 500. Of note, the

presence of branchers in the system allows the nucleation of a new daughter filaments after binding

to a mother filament. James Liman considered nine different concentration ratios of motor proteins

to actin monomers xm:a and eight concentration ratios of α-actinin crosslinker proteins to actin

monomers xα:a in the simulations, and one concentration ratio of Arp2/3 brancher proteins to

actin monomers xb:a which corresponds to 300 branchers (0.5 μM). The on and off rates for the

crosslinkers, motors, polymerization and depolymerization chemical events follow the values provided

in the original MEDYAN publication [180], which is based on values derived from experimental

data [23, 121, 153, 178, 219]. Due to the known high stability of Arp2/3-actin protein complexes,

the unbinding rate of branchers was set to zero and the binding rate to 10−4s−1, which allowed

gradual brancher nucleation of binding sites along the simulated system trajectories [178].
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Parameter Description Values

xm:a Motor to actin monomer ratio
{
0, 5

103
, 1
102

, 2
102

, 5
102

, 1
10 ,

2
10 ,

5
10 , 1

}
xα:a Crosslinker to actin monomer ratio

{
0, 1

102
, 2
102

, 5
102

, 1
10 ,

2
10 ,

5
10 , 1

}
xb:a Brancher to actin monomer ratio 1

50

Table 4.1 The concentration ratios between ABPs and actin monomer used in the simulations.

Mechanical forces in MEDYAN

After the changes of the chemical composition in the system are simulated, MEDYAN then computes

the total forces in the system. Included within the system design are actin filament bending,

stretching, branching, and exclusion volume potentials; motor and linker stretching harmonic

potentials; and filament-boundary interaction potentials, with the default constant values and

configurations set according to reference from [180]. The bending potential of the semiflexible rod is

defined by the equation

Ubend
i = kbend [1− cos(θi,i+1)] , (4.1)

where kbend = 2690 pNnm [180] is the bending energy constant and θi,i+1 is the angle between

neighboring filament segments at index i and i+ 1. The stretching potential of the semiflexible rod

is given by the equation

U stretch
i =

1

2
kstretch (|li| − l0)

2 , (4.2)

where kstretch is the stretching energy constant, li is the vector connecting the endpoints of the ith

filament segment, and l0 is the equilibrium length of a filament segment.

The polymer branching potential is given by the equation

Ubranch
i,j = Ubranch,stretch

i,j + Ubranch,angular
i,j , (4.3)

where i and j are filament segments in the mother and the daughter filaments, respectively. The
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branched polymer stretching potential is given by the equation

U stretch
i,j = kbranchstretch (|di,j | − d0)

2 , (4.4)

where kbranchstretch = 100 pNnm is the stretching constant of the branched filament, di,j is the distance

between the binding site in segment i in the mother filament and segment j in the daughter filament,

and d0 = 6nm is the equilibrium length of di,j . The branched filament angular potential is given by

the equation

Uangular
i,j = kbranchangular [1− cos(θi,j − θ0)] , (4.5)

where kbranchangular = 100 pNnm is the angular energy constant for the branched filament, θi,j is the

angle between the binding site in segment i in the mother filament and segment j in the daughter

filament, and θ0 = 70◦ is the equilibrium angle between branched polymers [180, 153].

The motor stretching harmonic potential is given by the equation

Umotor
i,j =

1

2
kmotor

(∣∣lmi,j − lm0
∣∣)2 , (4.6)

where kmotor = 2.5 pNnm−1 is the stretching energy constant of motors, lmi,j is the instantaneous

length of the motor, as measured by the distance between its binding sites, and lm0 = 200 nm is the

equilibrium length of the motor. Crosslinkers are also modeled with a stretching harmonic potential

analogous to those defined in Eq. (4.6), but with kcrosslinker = 8.0 pNnm−1 and ll0 = 35nm.

The exclusion volume potential between two filament segments on two adjacent polymers is

given by

Uvol
i,j = kvol

∫ 1

0

∫ 1

0

dsds′

|ri (s)− rj (s′)|4
, (4.7)

where kvol = 105 pNnm3 is the repulsion constant between two filament segments [180], ri (s) and

rj (s
′) are parametric representation of segment i and segment j with s, s′ ∈ [0, 1].
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The interaction potential between a filament and the boundary of the cubic box is given by

Uboundary
i =

⎧⎪⎪⎨
⎪⎪⎩
kboundary e

− di
λ di ≤ dcutoff

0 di > dcutoff

, (4.8)

where kboundary = 41pNnm is the repulsive energy constant from the boundary, di is the distance

to the closest boundary and the ith filament segment, and λ = 2.7 nm is the screening length. After

accounting for all the mechanical potentials listed above, MEDYAN minimizes the energy of the

system using the well-precedented Polak-Ribière conjugate gradient method [180]. After the energy

minimization is completed, a new mechanical configuration of the system (including new locations

and stress profiles of filaments, bound motors and linkers, and branchers) is determined.

Mechanochemical coupling in MEDYAN

MEDYAN runs the chemical and mechanical steps in tandem. This means that once a new

mechanical configuration is determined by the mechanical step, after the energy minimization step,

MEDYAN then updates the rates of the simulated chemical reactions. The reaction rates change in

this context due to the mechanical force that is acting on all system components. In one example

of such force-dependent reaction kinetics, a polymerization reaction is less likely to occur on a

filament that is located closer to the boundary, due to greater repulsion boundary forces that slow

the reaction kinetics. Moreover, the unbinding reaction of linkers is modeled using a slip bond and

the unbinding reaction of motors is modeled using a catch bond. As a result, a linker is more likely

to unbind when pulling forces are applied to the linker, whereas a motor is less likely to unbind

under the same force conditions.

4.2.2 Mechanistic order parameters

We used three order parameters to characterize and analyze contractions and avalanches in the

networks. Two of them are derived from the inertia tensor of filament beads, Tαβ , defined as
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Tαβ =
1

2N2

N∑
i,j=1

(riα − rjα) (riβ − rjβ) , (4.9)

where rαβ(t) represents the α-component of a filament bead, N = 15, 000 is the number of filament

beads, and α, β ∈ {x, y, z} are the indices of the Cartesian elements. The radius of gyration is given

by:

Rg =
√
trT =

√∑
i

λi, (4.10)

where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of T. The shape parameter S is also derived from T [56]

S =
Π3

i=1(λi − λ̄)

(13 trT)3

√
trT, (4.11)

where λ̄ = 1
3

∑
i λi.

To accurately identify an event as an avalanche, the mean displacement of the center of masses

of actin filaments was used, with the understanding that avalanche events often move a few filaments

simultaneously. The mean filament center of mass displacement δxF (t) was carried out by computing

the following equation

δxF (t) =
1

NF

NF∑
i

|xcm
i (t)− xcm

i (t− 1)| , (4.12)

where NF represents the number of filaments in the system, xcm
i is the center of mass of the ith

filament, |·| represents the norm of a vector in 3D. An event was classified as being an avalanche

when the mean filament displacement δxF (t) between a successive pair of snapshots was “sufficiently

large”, defined by requiring its z-score value relative to the displacements for the other intervals to

exceed five standard deviations (corresponds to a p-value of 3 · 10−7).

4.2.3 Gelation and percolation in the connectivity graph of actin monomers

In order to determine how avalanche events are related to the connectivity between actin monomers

in the network, the theories of gelation and percolation were used. These theories have been studied
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extensively over decades [34]: since the work in the early 1940s by Flory and Stockmayer studying

the mechanics, kinetics, and thermodynamics of the gelation process. The name “percolation” was

coined in 1957 by Broadbent and Hammersley to describe the properites of fluids that spread within

a random media. Erdős–Rényi then studied percolation in a random graph, followed by Mandelbrot’s

work that added the idea of a fractal into the theory of percolation. In order to study the percolation

in the finite graph of actin monomers, I first constructed an undirected graph G(t) = (V (t), E(t))

at time t, where each actin monomer represents a node in V and denote the degree of a node v

with k(v). There is an edge between two nodes v1 and v2 if their corresponding actin monomers are

linked by an ABP or are consecutive monomers along the same filament polymer.

Figure 4.3 Illustration of the actin monomer graph construction. (a) The graph representation of
a simple configuration of actin monomers nodes connected with edges according to the connectivity
of the linkers, motors, and branchers. (b) A toy physical configuration of four filaments connected
with one motor, one linker and a brancher.

Of note, in MEDYAN, an actin monomer can bind to up to one ABP. Therefore, within this graph

representation of actin monomers, there are four possible values of node degree k(v) ∈ {0, 1, 2, 3}:
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k(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 node v is a floating monomer

1 node v is at the end of a filament

2 node v is in the middle of a filament

3 node v is in a filament and connected by an ABP to a second filament

, (4.13)

where an ABP can be a brancher, a motor, or a crosslinker that is represented as an edge between

two beads (i.e. actin monomers). For simplicity, from the representation G, I considered only the

subgraph Gsub(t) = (Vsub, Esub), where Vsub � V and Esub � E. The subgraph Gsub contains only

the monomers that are connected to a filament, i.e., only nodes with the degree greater than 0: for

any v ∈ Vsub the degree kv ∈ {1, 2, 3}. A sample illustration of such a graphical representation is

shown schematically in Fig. 4.8(a), which corresponds to the sample actomyosin network shown

schematically in Fig. 4.8(b). Since any possible degree distribution of ksub(v) defined on the subgraph

Gsub has only 3 possible values, it is straightforward to predict if a network will be percolated or

gelated, given the number of actin monomers (beads), number of branchers, number of crosslinkers,

and the number of motors. I defined the probability of an edge emanating from a node vsub of degree

k(vsub) to lead to a node v′sub of degree k(v′sub) as P (k(vsub) | k(v′sub)), which can be simplified to

the notation P (k′ | k). Starting from a random node in Vsub, one could consider the following graph

traversal scheme, using the assumption that the graph has local tree-like properties [50]: at each

step l, one is allowed to go to a neighbor node only if it has not been visited at step l − 1. Now,

when one has arrived at node of degree k there are k − 1 possible steps one could take at the l + 1

step.

This traversal procedure can be written using a transition matrix for any possible subgraph

Gsub. The transition matrix from a node of degree k at step l to a node of degree k′ at step l + 1 is

defined as

Mk′,k = (k − 1)P (k′|k). (4.14)
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A subgraph is percolated when lim
l→∞

MlP(k) diverges, where the vector P(k) is defined for a

graph Gsub = (Vsub, Esub) as [50] as below:

P(k) =

∣∣{v ∈ Vsub ∧ k(v) = k}∣∣∣∣Vsub

∣∣ . (4.15)

The matrix formalism predicts whether at specific conditions of concentration ratios between

actin monomers, branchers, crosslinkers, and motors the network will percolate. The formalism

above is only a theoretical tool to predict if an actin monomer network will percolate. In MEDYAN,

however, all the information of the connectivity between ABPs and filaments is available. Therefore,

it is possible to evaluate the finite component size distribution p(s) on the actin monomer graph [50],

within the distribution most readily defined as the distribution of cluster sizes in the graph. In

other words, p(s) is the probability of having a a finite connected component (cluster) of size s.

For a percolating network, the probability to see a finite connected component that includes all

the nodes goes to one: p(s = |V |) → 1. Following that, it is possible to define the weighted cluster

size of a graph G order parameter as the ratio between the second and the first moments of p(s),

according to the equation shown below:

Nw =

∑|V |
s=1 s

2p(s)∑|V |
s=1 sp(s)

. (4.16)

4.3 Results

4.3.1 Arp2/3 branchers augment actomyosin expansion patterns

Overall, the results of the MEDYAN simulations show that Arp2/3 branchers change the morphologies

of actomyosin networks by promoting the creation of a daughter filament at 70◦ from the mother

filament, leading to a situation in which the geometrical 10 nm brancher protein has a mesoscopic

effect on the global structure of actomyosin. Fig. 4.4 shows two snapshots, taken at t = 1000 s,

from a simulation of an unbranched network (Fig. 4.4(a)) and from a simulation of a branched

network (Fig. 4.4(b)). The filament monomers (G-actin), the filaments (F-actin), the motors,
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the linkers, and the branchers (Arp2/3) were initially distributed randomly within a 1 μm3 cubic

container. Over the time course of the simulation, it became clear that branchers rigidify actomyosin

networks and mitigate their filamentous layout, as seen in Fig. 4.4(b), especially when compared

with the unbranched network shown in Fig. 4.4(a). Overall, after 1000 seconds of the simulation, the

unbranched networks consist of long and parallel filaments displaying liquid crystalline order [59],

while the branched networks consist of short and bifurcated filaments and appear more nearly

isotropic.

4.3.2 Crosslinkers modulate contraction in unbranched actomyosin networks

To study the contribution of the crosslinker concentration on the contraction of actomyosin in

unbranched networks, James Liman focused on four out the nine different concentration ratios of

motor to actin monomers (xm:a) and eight concentration ratios of α-actinin crosslinkers to actin

monomers (xα:a) in the simulations, as detailed below:

(a) Low motor xm:a = 0.01 and low linker xα:a = 0.01 concentrations

(b) Medium motor xm:a = 0.05 and medium linker xα:a = 0.1 concentrations

(c) High motor xm:a = 0.5 and low linker xα:a = 0.01 concentrations

(d) High motor xm:a = 0.5 and high linker xα:a = 0.5 concentrations

For every condition of motor and crosslinker to actin ratios, 16 simulation replicates were

performed, differing only in their initial configuration of chemical components, which were uniformly

and randomly distributed throughout the simulation box. The average length of a filament in

the simulations for unbranched networks is approximately 0.85 μm. Throughout the simulations,

the structure of the networks were recorded at ten second time intervals. Fig. 4.5 shows how the

radius of gyration of the actin monomers Rg, normalized by the “initial” Ri
g, changes with time.

Ri
g is in fact the radius of gyration measured after the initial configuration ran for 10 seconds.

When an actomyosin network contracts due to motor action, the radius ratio Rg/R
i
g decays below

1; in contrast, when Rg/R
i
g is above 1, this indicates that the system has expanded during the

self-assembly process.
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Figure 4.4 Typical snapshots of MEDYAN simulations without Arp2/3 protein complexes (a)
or with Arp2/3 protein complexes (b). The red cylinders represent actin filaments. A black bead
represents a positive (barbed) end of an actin filament. A white bead represents a negative (pointed)
end of an actin filament. A green cylinder represents an α-actinin crosslinker protein. The blue
cylinders represent NMIIA motor proteins. A yellow bead represents an Arp2/3 protein brancher
complex between two filaments, where the angle between the mother and its daughter filaments
through the brancher is 70◦ [212, 153].

Unbranched actomyosin systems with a low motor concentration xm:a = 0.01 and a low linker

concentration xα:a = 0.01 expand at a relatively slow rate (Fig. 4.5(a)) in comparison with the other

three conditions investigated (Fig. 4.5(b-d)). Such expansions are caused by actin polymerization,

which occurs without any significant opposing forces exerted by motors that would pull the actin

filaments together.

Increasing the ratio xα:a leads to a competition between actin polymerization and motor pulling,
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Figure 4.5 Time signals of the ratio Rg/R
i
g in unbranched actomyosin networks at four motor-

to-actin (xm:a) and linker-to-actin (xα:a) concentration ratios. (a) Systems with low motor and
low linker concentrations (xm:a = 0.01 and xα:a = 0.01). (b) Systems with intermediate motor and
intermediate linker concentrations (xm:a = 0.05 and xα:a = 0.1). (c) Systems with high motor and
low linker concentrations (xm:a = 0.5 and xα:a = 0.01). (d) Systems with high motor and high linker
concentrations (xm:a = 0.5 and xα:a = 0.5). The red and dashed lines represent the fit of Rg/R

i
g(t)

to the exponential form Rg(t)/R
i
g ≈ (1− e−t/τ ).

which in turn accounts for the differing extent of the contraction observed. The average of the

normalized radius of gyration ratio 〈Rg/R
i
g〉 among the replicates for a given condition is then

fitted to an exponential form A + B−t/τ , where both A and B are constant values. The radius

ratios 〈Rg/R
i
g〉 achieved at steady state values in the high motor concentration and high linker

concentration systems xm:a = 0.5, xα:a = 0.5, depicted in Fig. 4.5(d), were approximately 16%
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lower than the steady state 〈Rg/R
i
g〉 values in systems with high motor concentration and low

linker concentration systems xm:a = 0.5, xα:a = 0.01 in Fig. 4.5(c). However, in the case of high

motor and low linker concentrations, the systems contract 5-fold faster compared with the rate of

contraction under conditions of high motor and high linker concentrations. Notably, the contractility

in the unbranched systems occurs only in cases where the motor concentration exceeds a threshold

of xm:a = 0.01 in Fig. 4.5(b-d). These simulation results are in qualitative agreement with the

experimental data obtained by Bendix et al. [23] for analogous unbranched systems.

4.3.3 Branched actomyosin networks display convulsive movements

When the Arp2/3 protein in included in the branched network simulations, the Rg/R
i
g time courses

in Fig. 4.6 behave differently during the actomyosin assembly process, compared with the behavior

of the unbranched networks in Fig. 4.5. The branched networks with low concentrations of motors

and low concentrations of linkers xm:A = 0.01 and xα:A = 0.01 Fig. 4.6(a) do not expand like the

unbranched networks expanded in Fig. 4.5(a), due to the fact that the presence of the branches

inhibits actin polymerization and depolymerization. Such inhibition has multiple possible causes:

first, branchers prevent the actin depolymerization reaction from occurring at the branch junction

between the mother and daughter filaments. Second, because the brancher junctions are stable and

their disassociation is unlikely, this inhibits the overall depolymerization reactions at the minus end

of the mother filaments. This in turn increases the favorability of the daughter filament growth

and attenuates significantly the turnover of actin monomers (G-actin). As a result, the network

grows in such a way that at low motor activity the network is approximately static Fig. 4.6(a). Of

note, the concentration of filamentous actin (F-actin) in the branched simulations is slightly larger

than the concentration of F-actin in the unbranched simulations, which is due to the capping of the

minus ends of both the mother and the daughter filaments. Nonetheless, the average length of a

filament is in fact reduced when Arp2/3 is added, due to the increased number of total filaments.

The average length of a filament in branched networks is ≈ 0.15 μm, compared with an average

length of 0.85 μm in the unbranched networks.
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Figure 4.6 Time signals of the ratio Rg/R
i
g in branched actomyosin networks at four motor-to-

actin (xm:a) and linker-to-actin (xα:a) concentration ratios. (a) Systems with low motor and low
linker concentrations (xm:a = 0.01 and xα:a = 0.01). (b) Systems with intermediate motor and
intermediate linker concentrations (xm:a = 0.05 and xα:a = 0.1). (c) Systems with high motor and
low linker concentrations (xm:a = 0.5 and xα:a = 0.01). (d) Systems with high motor and high linker
concentrations (xm:a = 0.5 and xα:a = 0.5). The red and dashed lines represent the fit of Rg/R

i
g(t)

to the exponential form Rg/R
i
g(t) ≈ (1− e−t/τ ).

In addition to the aforementioned differences between branched and unbranched networks, an

additional difference is the fact that the contraction of branched networks occurs in a more irregular

fashion than does the contraction of unbranched assemblies. In particular, in branched assemblies,

contraction occurs intermittently as the network develops, and then abruptly the radius of gyration

ratio signal Rg/R
i
g drops. These convulsive events are inherently stochastic and hence do not occur
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at the same time in different replicates of the simulation. Moreover, these abrupt drops in Rg/R
i
g

occur very quickly. Individually, these events have a duration of less than 10 seconds, and the

sharpest drops reduce the signal by as much as 20%. These drops, referred to as avalanches, are

observed more frequently at higher concentrations of motors and linkers (as seen in Fig. 4.6(d))

than at lower concentrations of these species (as seen in Fig. 4.6(a)). For the range of parameters

studied in the simulations, James Liman, Carlos Bueno, and I have never observed such discrete

and large-scale avalanches in the unbranched actomyosin networks that were created in the absence

of Arp2/3. Fig. 4.7 shows how the accumulated tension circled in the top left area of the network

dissipates and a large movement in the entire network occurs in less than 10 seconds.

Figure 4.7 Two consecutive snapshots before and after an avalanche occurs, indicating the
tension relaxation and long-range movement observed in a branched network. Actin filaments,
motors, and linkers are shown and the tension they experience is indicated by a color bar. These
show the morphology of the network before and after an abrupt drop in Rg(t)/R

i
g. The circled

light blue region in the top-left corner highlights the concentrated epicenter of the avalanches where
high-tension develops before the circled light-yellow region in the bottom-right corner of the figure
occurs.

4.3.4 Two modes of avalanches in branched networks

Branched network are particularly susceptible to avalanches, which can be characterized as an

emerged spontaneous phenomena. For example, when plotting the histogram of the frequencies
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of the mean filament monomer displacement δxF (t) in Fig. 4.8 between all the simulations of

branched and unbranched, it is evident that although polymerization and depolymerization events

are inhibited in branched networks, nonetheless, abrupt movements of major parts of the network

still occur.

Figure 4.8 Graphical representation of the distributions of the mean displacement of filament
monomers δxF defined in Eq. (4.12) for both unbranched networks and branched networks.

To obtain a more comprehensive understanding of the mechanism underlying avalanches, James

Liman examined changes in the radius of gyration (ΔRg/R
i
g) and the changes in the shape order

parameter (Δ(S)) that occur in one branched trajectory with two avalanches.

Results indicate the existence of two types of avalanches, both of which display differences in

their shape and in the size of the reconfigured regions. In one group, which corresponds to shear

events, the temporal changes are manifested by large changes of the shape parameter defined in

Eq. (4.11) between successive pairs of snapshots, changes that occur through filament sliding (e.g.,
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Figure 4.9 Examples of two avalanches in a branched network containing 16 motors and 3,000
linkers. In (a), the time course of the changes in Rg/R

i
g between successive pairs of snapshots that

are separated by 10 s is plotted as: Δ(Rg/Ri
g) (red line). In (b), the time course of the changes in

the shape parameter between successive pairs of snapshots that are separated by 10 s is plotted as: .
In both (a) and (b), the time course of the mean filament displacement δxF is plotted as a dashed
black line.

labeled as “Avalanche 1” in Fig. 4.9). A second group of avalanches involve collapses of local regions

and are characterized by significant changes in the normalized radius of gyration ratio between

successive pairs of snapshots (e.g., labeled as “Avalanche 2” in Fig. 4.9). Presumably, the types of

avalanches described herein are examples of two extreme cases that represent a broad distribution

of avalanches.
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4.3.5 Avalanches arise in branched networks when their corresponding graphs of

actin monomers percolate

Figure 4.10 Probability density plots of the weighted mean cluster size Nw of the unbranched
networks (a) and branched networks (b). The branched networks were further analyzed in the event
of no avalanche occurrence (blue curve) and avalanches occurrence (red curve). A total of 1,152
simulations were carried out and analyzed both for the unbranched networks and for the branched
networks.

Interestingly, Arp2/3 branchers promote avalanches, which occur in cases where the graph of

the actin monomers percolates. Namely, in order for actomyosin network to kick, it must contain

Arp2/3 and also must be connected by actin-binding proteins. Fig. 4.10(a) shows that percolation
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is not a sufficient condition to have avalanches, as no avalanches were observed in the unbranched

simulations. However, in the case of a branched network (Fig. 4.10(b)), when the network percolates

(has a finite connected component or a cluster with most actin monomers in the network) avalanches

occur, in agreement with the probability density function (PDF) of Nw defined in Eq.(4.16). What

is more, even in cases when unbranched networks percolate, as determined by checking the graph of

actin monomers or just by the theoretical mean field approximation of percolation as estimated

by lim
l→∞

MlP(k) in Eq. (4.14), no avalanches or abrupt drops have been observed in any of the

simulations of unbranched networks. Namely, even when both the mean field approximation and

the actual actin monomer graphs predict and indicate that an unbranched system is percolating,

no avalanches occur. In contrast, under similar conditions, a system with branches is likely to

experience such avalanches. In one example of a branched system (depicted in Fig. 4.7), which

has G = 12, 000 actin monomers, L = 3, 000 crosslinkers, M = 16 motors, B = 300 branchers,

compared to an unbranched system with G = 12, 000, L = 3, 000, M = 16, B = 0, I report that

even though both systems are likely to percolate, as determined by the mean field approximation

and the observed actin monomer connectivity in the simulations (Fig. 4.10), only the system with

branchers kicks and undergoes avalanches.

4.4 Discussion

4.4.1 Contractility in actomyosin depends on the ABPs-to-actin concentrations

Consistent with earlier studies, this study found that the contraction of unbranched actomyosin

networks strongly depends on the concentrations of motor protein and linkers present in the system.

In particular, systems with an intermediate value of linker concentration contract faster than systems

with either a high or a low concentration of linkers [23]. This study suggests that the addition of

Arp2/3 complexes to the system stabilizes the scaffolding of the actomyosin networks, which in turn

can explain how actomyosin can drive cell motility and growth [117, 211] when the amount of actin

monomers is indefinite e.g., due to protein synthesis.
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4.4.2 Avalanches are mechanochemical emergent phenomena in actomyosin

Our results suggest that avalanches occur in actomyosin networks in the presence of Arp2/3 and

when the network of actin monomer percolates. Arp2/3 brancher proteins overall act to reduce

the polymerization rate of actin, and to change the actin mesh grid on which the motor protein

can walk. This fascinating interdependent relationship between the mechanical, topological, and

chemical aspects of complex actomyosin networks, which is remarkably modeled and captured

by MEDYAN [180], may explain the abundant phenomena of avalanches in broader physical

contexts such as nano-scale networks [146], earthquakes [188], sand piles [103, 80] and neural

avalanches [21, 14], which occurs on a centimeter-length scale. From this work, I conclude that

in order to observe avalanches in actomyosin networks, the network needs to percolate and ABP

such as the Arp2/3 branchers must be present. From this, I suggest therefore the conditions under

which a general active physical system could experience avalanche-like behavior: (1) the system

needs to have a broken spatial symmetry that is being exploited by an energy-consuming process;

(2) the graph representation of the elements of the system should be above or near the percolation

threshold; and (c) there should be some macroscopic broken detailed balance or inhibition of one or

more backward chemical reactions due to mechanical constraints or negative chemical feedback from

other reactions. One of the striking findings is that having a percolated network and substantial

motor activity are not by themselves sufficient to bring the network into the critical regime of

avalanches. This unique feature of Arp2/3 to enable avalanches and cytoquakes [7] is very intriguing

in the context of biological systems, which usually prefer to function near a critical regime to allow

maximum flexibility while maintaining robustness [14].
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5 Quantitative methods to Characterize Structures and mutations

in genomes

This chapter is based on a poster presented at the ENCODE (Encyclopedia of DNA Elements)

conference in 2018, and at 2019 Rice Data Science Conference.

5.1 Introduction

Hi-C experiments use high throughput next generation sequencing (NGS) of DNA to create two-

dimensional (2D) matrix representations of the spatial proximity between pairs of genome loci [181].

These 2D matrices, called contact maps, share common global structural features across genomes

of different species and cell types [181, 185]. The three major structural features observed to date

in Hi-C of folded genomes are loops, domains, and subcompartments, each of which is defined

herein: (a) loops are defined as genome loci that are far apart (up to millions of base pairs (bp)

away on the linear (1D) DNA strand), which come into close proximity in the 3D folded structure

of the genome inside the cell nucleus; (b) domains are defined as contiguous stretches of DNA

that form self-associating contact domains; and (c) subcompartments are defined as areas of the

contact domains, which segregate into two types of gene regulation areas, or subcompartments,

characterized as “active” or “inactive”. Reported herein are results obtained using both supervised

and unsupervised deep learning approaches to detect loops in Hi-C contact maps, based on the

public data that was published in 2014 by Rao et al. [181]. In their original work, Rao et al. [181]

reported only 10,000 loops, which is between one to two orders of magnitude less than the anticipated

number of loops one would expect to see in a functioning cell, which have hundreds of thousands

of enhancer and promoter pairs that constantly interact. According to a large survey of cell lines

and tissues, there exist hundreds of thousands of enhancers along the human genome, which vastly

exceed the number of human ∼ 20, 000 protein-encoding genes.

In genetics, a promoter is defined as a sequence of DNA to which proteins bind and initiate
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transcription of a single RNA downstream from the DNA. Promoters are located near the transcrip-

tion start sites of genes and their length can be between 100 and 1,000 bp long [138]. Enhancers

are defined as regions on the DNA strand (50-1,500 bp) that can increase the transcription of a

particular gene. Enhancers may be located up to 1,000,000 bp away from the gene. Because of

the prevalent hypothesis that gene regulation in cells is controlled by the looping of enhancers and

promoters [65], there is a discrepancy between the number of reported loops in Hi-C maps and the

expected enhancer-promoter (E-P) loops. Thus there is no solid evidence on whether Hi-C is a

viable technology to find E-P loops nor if the hypothesis of E-P looping mechanism is valid [195]. In

this work, I used a convolutional neural network (CNN) to detect loops in the deepest Hi-C maps

to date from the work by Rao et al. [181], and compared the findings to their reported 10,000 loops.

Although the results are inconclusive and it is still unclear whether E-P exists or if Hi-C is a valid

technology to find them, the deep-learning results suggest that some hidden structures that were

labeled with high confidence as loops by the CNN exist in regions within 1 Mbp from the Hi-C

diagonal.

5.2 Methods and results

I used public Hi-C data and the the official list of loops listed by HiCCUPS, a Hi-C peak finder

software [181], on the human lymphoblastoid cell line GM12878. This cell line is an immortalized

cell lines that was manipulated to proliferate indefinitely. GM12878 is the extraction from the blood

of a female donor with northern and western European ancestry. The loop list contains almost

10, 000 loops distributed throughout the genome, of which chr1 (the largest chromosome in the

human genome) has 931 loops listed and chr14 has 315 listed loops. I used the data from chr1 as the

training set and the data from chr14 as the validation set to train a binary classifier that predicts

the existence of loops in a small 15× 15 submatrix/subgraph of the intrachromosomal Hi-C map

at 5 kbp resolution. I trained a convolutional neural network (CNN) [124] to take a N ×N Hi-C

matrix and output a probability p ∈ [0, 1], depending on whether loops are detected in the input

15× 15 submatrix. A general illustration of this “LoopDetectNet” CNN is depicted in Fig. 5.1(a),
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Figure 5.1 LoopDetectNet and UMAP of the gold standard data. (a) LoopDetectNet’s illustration
of the neural network architecture used as a binary classifier of loops. (b) The UMAP [148] projection
of the training data that shows that Rao et al. [181] is mostly correct, with a few false annotations
observed.

where I used the sigmoid σ(x) = 1/(1 + e−x) function as an activation function in the last layer to

retrieve the probability as an output.
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CNN is a widely used deep learning technique inspired by the discovery in 1968 of how the

visual cortex in living creatures interprets light hitting the retina [101]. After this discovery, it

took 30 years until LeCun et al. [124] published in 1998 the seminal paper that established the

foundation for the contemporary framework of CNN. In 2012, Krizhevsky et al. [122] used graphics

accelerator units (GPUs) to speed up and outperform all prior competitors on image classifications,

which started the new era of deep learning [92]. The main idea of a binary classifier CNN is to use

the backpropagation algorithm to find the optimal convolution kernels and weights in an artificial

neural network such that the cross entropy loss function is minimized on the training data. The

convolutional layer in CNN is a set of K kernels. For this study, I used K = 512 kernels of size

3× 3, where the operation of each kernel is given by the equation

Oi,j =

i+1,j+1∑
m=i−1,l=j−1

Wk,lIm,l, (5.1)

where W is a 3× 3 kernel matrix and O and I are defined as the output and input matrices before

a 2D convolution is applied, both of which have the same dimension N ×N .

Another key layer in CNN models is the max-pooling layer, which can reduce the dimensions of

the input matrix or preserve it, depending on the striding size used. The max-pooling layer is a

non-linear operation that selects the maximal pixel within a contagious submatrix of size m×m,

where m < N .

Since 2014, the data from Rao et al. [181] has become a gold standard in the field of structural

genomics. In Fig. 5.1(a), I used UMAP [148] (Uniform Manifold Approximation and Projection for

Dimension Reduction) to verify that submatrices with loops, as annotated by the gold standard, are

topologically different compared to submatrices with loops. Indeed, most positive calls are clustered

together as shown as red dots on the right side of the plot in Fig. 5.1(b), while the submatrices

without loops are clustered on the left side of the scatter plot. Noticeably, the UMAP of the training

data suggests that the loop calls by Rao et al. [181] have a few false positive calls (red calls that

UMAP classify near the negative cluster) as well as regions which Rao et al. [181] labels as regions
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Figure 5.2 Precision-recall plot at various thresholds using the annotations previously reported
by Rao et al. [181].

without loops, but UMAP projects them within the loop cluster on the right. Overall, UMAP

suggests that the gold standard is mostly reliable and can be used as training data, however, it also

implies that there are a few false positive results in the gold standard (See Fig. 5.1(b)) and may

also overlook regions that contain loops and are not in the gold standard dataset.

After training a model on chr1 using the gold standard, I predicted loops in the testing dataset

from chr14 and compared the results with the gold standard. Of note, I report that on the first

iteration there are many “false positives” (Fig. 5.2), which occur under conditions of high sensitivity

and low precision. Following that, I took the false positive submatrices and added them to the

negative training set, to do another round of CNN retraining. Overall, therefore, I used, during

the retraining, 25% of the time submatrices from the “false positive” regions, 25% of the time a

random tile from the intrachromosomal region, and 50% of the time I took as a positive example a
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submatrix which contains a loop (i.e., “true positive”).

Figure 5.3 Precision-recall plot reported at various thresholds, after retraining the CNN model
by adding the false positive data to the negative data set.

After the augmentation of the training data with the false positive regions, precision was

improved (Fig. 5.3), but there were still many false positives. Further detailed analysis indicated

that the deep learning network detects new regions that possibly have loops which are hard to

see by human eyes and by using the current state-of-the-art Hi-C experimental data. The results

reported in Fig. 5.4 indicate the degree of true positive and false positive loop identifications that

appear for chromosome 14 (chr14).

5.3 Discussion

The discrepancy between the observed number of loops and the expected number of loops is one of the

biggest hierarchy problems in structural biology. According our understanding of gene regulation by
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Figure 5.4 An example of all the the submatrices that LoopDetectNet predicts as loops with a
> 90% confidence. The submatrices are then colored with three colors: FN (false negative), TP
(true positive), and FP (false positive), based on the gold standard.

enhancer-promoter (E-P) interactions, one would expect to see hundreds of thousands of loops, but

even in the deepest map generated to date, less than 10,000 of such loops have been reported [181].

Using deep learning and UMAP, I suggest that the gold standard of calls on GM12878 is indeed

impressive, but significant discrepancies still remain. In addition, deep learning exposes new loops,

mostly around areas that were previously classified as domain boundaries or stripes [181]. I believe

that deeper Hi-C maps, especially those maps that are at extremely high (i.e., nucleosome-level)

resolution will lead to improvements in the gold standard set of loops used in this field. Recently,

a research group has reported that by using a computational enhancement algorithm they detect

loop-like structures in subdomain and domain boundaries regions [142], which are the same regions

where LoopDetectNet’s “false positive” loops reside.
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6 Hydrodynamic interactions alter the folding dynamics of pro-

teins based on the temperature

This chapter is based on a paper published in PRE [233] in 2018.

6.1 Introduction

The three-dimensional (3D) conformation of a protein is crucial in order for the protein to function

properly. In nature, proteins fold and function within a complex cellular environment, where they

interact both with the cytosol (the aqueous medium) and with other proteins or molecules in the

cell. These interactions are classified into two broad classes: (a) hydrodynamic interactions (HI) of

the protein with the solvent; and (b) macromolecular crowding interactions.

Overall, the water that is found inside a cell has a dual impact on a folding protein. On one

hand, the aqueous solvent causes hydrophobic collapse (Section 1.4) of the protein’s side chains,

which in turn initiates the folding process. On the other hand, the motions of protein particles are

not independent, due to solute-solvent coupling between the protein and the water. When the solute

(protein) particles move, they create a flow in the solvent, which in turn, affects the motion of the

other solute particles. This mutual interaction between the solute and solvent particles yields long-

range effects between solute particles that propagate throughout the solvent, known as hydrodynamic

interactions (HI), and have been shown to play a critical role in protein dynamics [89, 149]. In the

simple case of homopolymers in in vitro settings, HI accelerate the process of polymer collapse [115].

However, in the case of proteins, which are heteropolymers formed from up to 20 different types of

amino acid monomers, one has to take into account other long-range interactions that are possible

within the polymer residues, including both Van der Waals and electrostatic interactions, as well as

interactions that occur from hydrodynamic interactions. Before the work reported herein, different

groups published seemingly contradictory findings using computer-based simulations to address

whether HI facilitate [46, 79, 116] or deter [135] protein folding. Surprisingly, the analysis of the

temperature dependence of these findings was inadequate, although temperature effects are expected
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to be significant due to the known temperature-dependence of the phase transition from folded to

unfolded protein states [167, 169]. This aforementioned literature motivated this work to reconcile

the differences in the reported results by studying HI effects over a broad range of temperatures,

with the goal of learning how HI affects the dynamics and the dependency of the temperature on

the folding of the chymotrypsin inhibitor 2 (CI2) protein, which has 64 amino acid residues [233].

Overall, this work suggests that despite the inconsistent results obtained from the work of previous

research groups [46, 79, 116, 135], each of the results may be correct at the particular temperature

investigated. The protein targeted for investigation, CI2, is a two-state (unfolded-folded) protein,

whose folding mechanisms were extensively studied in various contexts [58, 40, 222]. The simulations

in this work that were conducted by Fabio Zegarra, had two types: (a) simulations of the protein

polymer with Brownian dynamics; and (b) simulations of the protein polymer with incorporated HI

by implementing the Ermak-McCammon scheme [69, 194], which emulates the effect of HI on solute

particles by introducing a configuration-dependent diffusion tensor.

This work revealed that the effect of HI on folding rates can both facilitate protein folding at

a temperature lower than the folding temperature and impede protein folding at a temperature

higher than the folding temperature. Therefore, the results reported herein were able to arbitrate

the dispute in previously reported results on the temperature-dependent effects of HI on protein

folding.

6.2 Methods

6.2.1 Coarse-grained protein model

The coarse-grained [213] model used to investigate the dynamics and structure of the CI2 protein

(Fig. 6.1(b)) represented the protein as a chain of beads (Fig. 6.1(a)) placed at the residue’s α-carbon

position of each amino acid. The native (folded) structure of the protein in the coarse-grained

representation of the chain of beads is defined as Γ0. Then, the Gō-like Hamiltonian, which is

an energy-based loss function to compare a configuration Γ of the chain with Γ0 (i.e., the native

structure of the protein). Because the contact map that represents Γ0 is a binary contact map
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(adjacency matrix), and each native interaction weighs the same in the energy calculation, the

Hamiltonian reads as follows [49]:

H (
Γ,Γ0

)
=∑
i<j

ε kr
(
rij − r0ij

)2
δj,i+1 +

∑
l∈ angles

ε kθ
(
θl − θ0l

)2

+
∑

i∈ dihedral

ε kφ

{[
1− cos

(
φi − φ0

i

) ]
+

1

2

[
1− cos

(
3
(
φm − φ0

m

)) ]}

+
∑

|i−j|>3
i,j∈native

ε

⎡
⎣5

(
r0ij
rij

)12

− 6

(
r0ij
rij

)10
⎤
⎦

︸ ︷︷ ︸
nonbonded term

+
∑

|i−j|>3
i,j /∈native

ε

(
σ

rij

)12

︸ ︷︷ ︸
nonbonded term

,

(6.1)

where a configuration of a chain with N beads is defined as Γ :=
(
{θi}Ni=1, {φi}Ni=1, {rij}Ni,j=1

)
, and

rij ≡ |ri − rj |. The rij term is the pairwise Euclidean distance between the ith and the jth beads;

θl is the lth angle defined between three consecutive beads, and φm is the dihedral angle between

four consecutive beads and δ is the Kronecker delta function.

In the simulations, the constants were set to: ε = 0.6 kcalmol−1, kr = 100 nm−2, kθ = 20 rad−2,

and kφ = 1 [49].

The native state configuration value of the CI2 protein was obtained from its crystal structure [96]:

Γ0 =
(
{θ0i }Ni=1, {φ0

i }Ni=1, {r0ij}Ni,j=1

)
. In order to choose the native contacts, the contacts of structural

units (CSU) software was used [205]. The nonbonded terms comprise the Lennard–Jones (LJ)

potential between native bead pairs, and a pairwise excluded volume interaction between non-native

beads. For the native pairs, the 10–12 LJ potential was used to allow shorter-range interactions

and to enrich the population of the unfolded ensemble, compared with the traditional 6–12 LJ

potential. For the non-native contact repulsive potential in Eq. (6.1), the LJ constant was set as

σ = 0.4 nm [49].

The CI2 protein has one α-helix packed against three β-strands, and a 310 helix, with the overall

structure of CI2 shown schematically in Fig. 6.1(c). The two key cores in CI2 are the hydrophobic
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core and the minicore, and their key residues [112, 106] are emphasized in Fig. 6.1(b) .

6.2.2 Brownian dynamics with or without HI

Fabio Zegarra conducted two sets of simulations: (a) systems with both Brownian dynamics and

hydrodynamic interactions (BDHI); and (b) systems with only Brownian dynamics in the absence of

HI (BD). To simulate BDHI, the Ermak-McCammon method [69] and its software implementation

that was developed by Ando et al. [11] were used, as a far-field HI approximation without periodic

boundary conditions. The equation of motion of the system is defined below:

xi(t+ dt) = xi(t) +

∑
j DijFj

kBT
dt+Gi(dt), (6.2)

where xi(t) is the position vector of the ith bead in coarse-grained chain model of the protein, and

dt is the integration time step. Dij is the 3× 3 submatrix in the 4-rank diffusion tensor D, which

is an N ×N super matrix whose ith row and jth column is Dij . In the case of BDHI, the entire

hydrodynamic coupling between all possible pairs of beads was computed in the diffusion tensor

D, whereas in the case of BD, all the off-diagonal 3× 3 submatrices in D vanish. Fj is the total

force acting on the jth particle. Finally, the Gi term in Eq. (6.2) is the random displacement that

mimics the stochastic effects on a bead due to the implicit solvent considered in the system.

In order to construct the diffusion tensor explicitly, the diffusion tensors for both the BD

and BDHI scenarios were derived, according to the equations shown in Eq. (6.3) and Eq. (6.4),

respectively. Let kB be the Boltzmann constant, η be the viscosity of the aqueous solvent at

temperature T , and a = 0.53 nm [79] be the hydrodynamic radius of the beads [11]. For both

BD and BDHI, the diagonal terms Dii were calculated from the Stokes-Einstein relation between

temperature and mobility. In the presence of HI, the off diagonal elements of Dij were obtained

from the Rotne-Prager-Yamakawa approximation, which is one of the most common ways to account

for HI [183, 230]. As such, the diffusion tensors in the BD and BDHI cases can be defined according
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to the equation listed below:

Dij =

⎧⎪⎪⎨
⎪⎪⎩

kBT
6πηaI3 i = j

03 i �= j

, (6.3)

and as

Dij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

kBT
6πηaI3 i = j

kBT
8πηrij

[(
1 + 2

3
a2

r2ij

)
I3 +

(
1− 2a2

r2ij

)(
rij⊗rij

r2ij

)]
i �= j ∧ rij ≥ 2a

kBT
6πηa

[(
1− 9

32
rij
a

)
I3 +

3
32

rij⊗rij
arij

]
i �= j ∧ rij < 2a

, (6.4)

where I3 represents the 3 × 3 identity matrix and 03 represents the 3 × 3 null matrix. The ⊗
operator represents the tensor product between two vectors. The random displacement Gi(dt)

and the diffusion tensors are linked by the condition in Eq. (6.5), which guarantees that the

fluctuation-dissipation theorem holds:

〈Gi(dt)⊗Gj(dt)〉 = 6Dijdt ∧ 〈Gi(dt)〉 = 0, (6.5)

where 〈·〉 represents the ensemble average.

6.2.3 Equilibrium thermodynamics simulations

The free energy profiles of the CI2 protein were obtained by Fabio Zegarra for both the BDHI and

BD simulation conditions. In order to enhance the sampling of conformations, the replica exchange

method (REM) [210] was used, and was equipped with the Metropolis–Hastings acceptance criteria

for exchange between two consecutive replicas i and j at the temperatures Ti and Tj :

min
(
1, exp {[βi − βj ] [H (Γi)−H (Γj)]}

)
, (6.6)

where β := 1
kBT and H(Γ) is the Hamiltonian from Eq. (6.1). Ultimately, the free energy profiles

were estimated with the weighted histogram analysis method (WHAM) [44].
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6.2.4 Non-equilibrium kinetic simulations

In protein folding, the activation barrier that exists between the folded and unfolded states is

temperature dependent and can be represented as a non-Arrhenius chemical reaction [206]. For

these simulations, a configuration Γ was considered in a folded state if the corresponding sum of the

nonbonded terms in Eq. (6.1) was no greater than 0.9H(Γ0,Γ0). Once the non-Arrhenius plot was

created, two working temperatures were selected for below the “folding temperature” (0.95TCI2
f )

and above the “folding temperature” (1.06TCI2
f ), where TCI2

f denotes the “folding temperature”,

defined as the temperature at which the unfolded and folded are equally populated in the energy

landscape profile (see Fig. D.1).

6.2.5 The reaction coordinate Q measures the fraction of native contacts

Q ∈ [0, 1] measures the similarity of the contact map of any protein chain configuration, Γ to the

contact map of the “native state”, Γ0. According to the energy landscape theory [33, 168], protein

folding can be reduced to a stochastic motion of a few collective degrees of freedoms (reaction

coordinates), which are used to effectively describe protein kinetics and conformations. In the

reduced space of the reaction coordinate, the probability P (Q, t) of the protein to have a similarity

Q to the native state at time t may be described by a Fokker-Planck equation [33, 168, 206]:

∂P (Q, t)

∂t
=

∂

∂Q

{
D(Q, T )

[
∂P (Q, t)

∂Q
+ P (Q, t)

∂βF (Q, T )

∂Q

]}
, (6.7)

where Q is the reaction coordinate, F (Q, T ) is the free energy at temperature T , and D(Q, T ) is

the diffusion, which is proportional to the transition rates from state Q′ to Q, as shown in the

equivalent master equation representation below [33] :

∂P (Q, t)

∂t
=
∑
Q′

[
kQ′QP

(
Q′, t

)− kQQ′P (Q, t)
]
, (6.8)
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where kQ′Q is the transition rate from Q′ to Q, and in which many states may contribute collectively

to the rate kQ′Q.

Using the aforementioned equations, we determined that the effect of HI on the protein chain

is purely kinetic, i.e., the Hamiltonian defined in Eq. (6.1) remains the same at both the BD

and BDHI conditions, while the diffusion tensors of the beads change (Eq. (6.4-6.3)). Since HI

do not change the free energy profile, one would expect to observe changes in the profiles of the

mean-squared displacement (MSD) of Q over a lag time t′ for both BD and BDHI at T = 0.95TCI2
f

and at T = 1.06TCI2
f . The fraction of native contacts Q ∈ [0, 1] is the chosen reaction coordinate,

because Q captures the global configuration of the chain. From the energy landscape theory (ELT)

of protein folding, Q is likely to have a diffusion coefficient D(Q), which reflects the changes in the

folding rates that occur due to the kinetic effect of HI on the beads [168]. The notation 〈f(Q(t))〉Ω
indicates an average over all simulated frames of the function f(Q(t)) over all the trajectories, at

the same normalized time t/tmax.

6.2.6 Data analysis

To analyze the data from trajectories and to study the effect of HI at both temperatures above Tf

and below Tf , I helped Fabio Zegarra define two numerical quantities: (i) the pairwise displacement

correlation matrix Cij(t) between all the N beads in chain, and (ii) the chance of correlation vector

Π(|i− j|, t) between beads i and j whose linear separation on the chain is |i− j| at time t.

Displacement correlation matrix

Let sk(t) := xk(t) − xk(t − dt) be the 3D displacement vector of the kth bead throughout the

simulations. Then the displacement correlation matrix C(t) at time t is given by:

Cij(t) = 〈ŝi(t) · ŝj(t)〉Ω , (6.9)

where si(t) · ŝj(t) is the dot (inner) product between the two displacement vectors and the 〈·〉Ω is

the ensemble average at time t.

104



Chance of correlation occurrence

The chance of occurrence Π(|i− j|, t) measures is defined as the ratio of number of residues with a

sequence separation i − j > 0 whose magnitude of displacement correlation is above a threshold

μ(t), to the total number residue pairs at that sequence separation:

Π(|i− j|, t) =
∑

i′>j′ Θ
(
Ci′j′(t)− μ(t)

)
δ|i′−j′|,|i−j|∑

i′>j′ δ|i′−j′|,|i−j|
, (6.10)

where Θ is the Heaviside step function and δ is Kronecker delta function. The chosen threshold μ(t)

is the average positive displacement correlation from the ensemble:

μ(t) =

∑
i>j Cij(t)Θ (Cij(t))∑

i>j Θ(Cij(t))
. (6.11)

Figure 6.1 Representations of protein models of chymotrypsin inhibitor 2 (CI2). (a) Coarse-
grained representation of the secondary structure of CI2 using VMD [102] in (b), representation of
the same protein in which the three key residues of the hydrophobic core and three key residues
of the minicore are represented with green and orange beads, respectively. (c) Protein topology
cartoon created with the Pro-origami software [209].
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6.3 Results

6.3.1 The impact of BDHI on the folding time depends on temperature

The folding temperature Tf is defined as the temperature at which the folded and the unfolded states

have an equal population, as depicted in Fig. 6.2. Of note, at Tf this condition is met for both the

BD and BDHI conditions, since the Hamiltonian is independent of the effect of the hydrodynamics

interactions. Fig. 6.2 shows that the energy landscape is identical for BD and BDHI systems, at

T > Tf and at T < Tf , as expected.

Figure 6.2 Free energy (F ) in units of kBT with respect to the fraction of native contact formation
Q without or with HI (BD and BDHI, respectively) for CI2 at a temperature below the folding
temperature Tf , at Tf , and above Tf . The transition state region is indicated by TS. Error bars
are included.

Although the equilibrium thermodynamics characteristics profiles of BD and BDHI are identical,

their dynamics profiles differ drastically. At a temperature below Tf , the folding that occurs in the
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Figure 6.3 Temporal evolution of the fraction of native contact formation Q averaged over all
trajectories as a function of normalized time t/tmax at T < Tf and T > Tf . Shaded width of lines
represents the error bar, which was calculated using a jackknife method.

presence of HI is markedly accelerated, and at temperatures T > Tf , the existence of HI decreases

the rate of protein folding (Fig. 6.3). The results shown in Fig. 6.3 indicate the average number of

native contacts formed 〈Q〉Ω as a function of normalized time, which depicts the effects of HI on

protein folding dynamics across various temperatures.

6.3.2 Hydrodynamic coupling of midrange and long-range contacts and their oppos-

ing impact on the general ordering of contact formation at T < Tf and T > Tf

Knowing that the effect of HI on the folding depends on the system temperature, and knowing that

HI diffusion tensor, defined in Eq. (6.4), considers pairwise distances between different beads of

the protein, I sought to determine how the induced pairwise displacement correlation matrix Cij(t)

(Eq. 6.9) influences the global secondary structure of the CI2 protein. First, with the help of Fabio

Zegarra, I focused the analysis on the point where Q = 0.4, which corresponds to the transition
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Figure 6.4 (a) The probability of contact formation of each native pair Qij(t) (represented in
the upper triangle) and the displacement correlation Cij(t) (represented in the lower triangle) at
T < Tf at a normalized time where 〈Q〉Ω = 0.4. (b) The same representation as (a) for Qij(t) and
Cij(t) at T > Tf . (e) The displacement correlation at T < Tf (blue) and T > Tf projected on the
3D structure of CI2, where all the pairs are classified into three sets based on the magnitude of
positive correlations. If the magnitude of the correlation is similar at both temperatures, the pair is
colored with a green edge on the left structure. If the magnitude of the correlation is greater at
T < Tf than at T > Tf a pair is colored with a blue edge on the right structure. If the magnitude
of the correlation is greater at T > Tf than at T < Tf a pair is colored with a red edge on the right
structure. Only the pairs with a sequence separation greater than 8 residues and a magnitude of
displacement correlation above the threshold μ = 0.061 as defined in Eq. (6.11) are considered in
this representation. The key residues for the hydrophobic core and the minicore are illustrated with
green and orange beads, respectively. (d) Π(|ij|) from Eq. (6.10) for all pairs whose magnitude of
the displacement correlation is above μ are organized according to the sequence separation |ij.

state region (Q ∈ (0.4, 0.6)) in Fig. 6.2. The analysis suggests that at both T < Tf and T > Tf

the hydrodynamic interactions create a correlation between the native contacts in both types of
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secondary structures (i.e., β-sheets and α-helices), as shown in Fig. 6.4(a-b). However, surprisingly,

at high temperatures, HI retards the folding process in three ways. First, the paired residues move

cooperatively in the same direction, thus adversely affecting the formation of the midrange contacts

around the minicore. Second, in addition to the native pairs, the surrounding non-native pairs are

more correlated and such pairs need to unfold in order for the folding process to commence. Lastly,

the HI at high temperature accelerate the formation of long range native residue contacts earlier

than at lower temperatures, a fact which reduces the overall ability of the protein to maneuver

towards folding since its two termini are too close (Fig. 6.4(b,d)). Overall ,while the long and

mid-range interaction are amplified in T > Tf , the short range interactions are stronger in T < Tf

as shown in Fig. 6.4(c), using the chance of occurrence defined in equation Eq. (6.10). To illustrate

how the correlation in the case of BD where the diffusion tensor does not depend on the pairwise

distances of different beads, the data represented in Fig. 6.5 is shown for both low (T < Tf ) and

high (T > Tf ) temperatures.

6.4 Discussion

This work has settled the controversy of the extent of the impact of HI on folding kinetics by

comparing the effect of HI over a broad range of temperatures instead of focusing exclusively on

a single temperature [46, 79, 116, 135]. Neither of the groups who previously investigated HI in

protein folding discussed temperature effects, nor did they discuss how HI change the dynamics

of the formation secondary structure. In contrast, in this work, after a careful analysis of the

CI2 protein, the conclusion is that HI affect protein folding depending on the system temperature.

Finally, I want to conclude that the correlated motion between beads in viscous solvents, due to HI,

accelerate the folding process when T < Tf , because it facilitates the formation of local structures,

in high temperature conditions (T > Tf ), by contrast, the correlation is counterproductive and

retards the rate of protein folding by reducing the protein flexibility and its concomitant availability

to find a productive folding pathway on the energy landscape. Moreover, HI, at high temperatures,

add correlation between non-native pairs, which leads to misfolding of local secondary structures
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Figure 6.5 The Brownian motion of residues without HI (BD) shows small and random displace-
ment correlation for native and non-native pairs of the CI2 protein. Upper and lower triangles
represent the probability of contact formation for each native pair Qij(t) and displacement correla-
tion Cij(t), respectively. There are two scenarios shown: (a) T < Tf and (b) T > Tf . Both at a
normalized time where 〈Q〉Ω = 0.4.

that have to be undone before the completion of folding process. Ultimately, the results show that

HI [203] has a minor yet measurable effect on on protein folding, which cannot be overlooked in

cases where high accuracy is needed, and that temperature is a key parameter to be considered in

future HI investigations.
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7 Conclusion

In this dissertation, I have summarized our work on three unique examples of complex biological

matter. Although complexity has many definitions, I use intuitive and well-precedented definitions

in order to study the complex systems investigated herein. Results reported herein demonstrate how

network theory and graph theory can be used intuitively to describe the configuration of discrete

systems. Moreover, using the formalism of a graph helps in the study of systems using generally

applicable techniques, as well as in the ability to visualize the system on as small of a scale as a

one-grained representation. This trend of analyzing physical systems using network definitions,

parameters, and simulations has been gaining attention in recent years, with a particular focus

on the use of network theory for understanding real-world network physics. Moreover, the field of

computer science uses a graph-based model in many contexts to describe complex problems and

even to describe the nature of complexity itself (i.e. via a computational model such as a Turning

machine). As deep learning becomes smarter and smarter and the computational force required

for such deep learning continues to increase, there is ample opportunity for network theory to

function as a language that can bridge between simple and complex systems. Comparisons also

exist between such network understanding and biological systems. In one example, the human

brain can be thought of as a billion-node network, including both neural networks as well graphical

networks with both edges and directionality. The idea to take a big system and construct a graph

from its instant configuration based on pairwise interactions makes it a computationally simple

problem to solve, since graphs are fundamental data structures that are highly amenable to analysis.

Moreover, network scientists can analyze these systems using network theory and graph theory; as

such theories are generally applicable to a broad variety of networks. Additionally, humans will study

such systems due to their inherent social nature and interest in understanding connectivity. Finally,

neural network researchers are expected to be interested in these results because the graphical

representations can be thought of as tensors and/or matrices, and convolutional networks may

outperform humans in visual recognition tasks in the near future. The idea of using networks and
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complexity has spread also to the field of many-body quantum problems using tensor networks, as

well as the connection of and the consolidation between the theory of complexity, networks, and an

entanglement towards a unified quantum gravity theory. The novelty of using such networks and

network analysis for such complex systems is that it is intuitive for humans to formalize connections

between system components, precisely in the way that network analysis requires. I humbly show

only the tip of the iceberg of how simple mapping from physical systems to their contact maps

can open up a new world. In fact, the striking and surprising fact is that although graph theory

existed for decades in analyzing both protein folding and Hi-C experiments, we are the first who

brought this theory to the analysis of actomyosin networks. In all cases, the hope remains that

graph theory will be able to dramatically advance the pace of predictions, the classification of phases

and morphologies, and the development of new theories. I hope that this dissertation will motivate

people from wide range of scientific disciplines to consider adopting graph theory, to teach it in

undergraduate science classes, and to use it as an intermediate representation to reduce the degrees

of freedom of the original system and simplify such analysis. With that, I hope we will learn to

let the language and tools of network theory assist us in simplifying complex matter, similar to

how Feynman diagrams, which are also one type of graph, describe complex quantum subatomic

interactions.
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A Appendix 1

A.1 Input file of the phase separation simulations

units lj

timestep 0.001

dimension 2

boundary p p p

atom_style atomic

neighbor 0.3 bin

neigh_modify every 20 delay 0 check no

# variable temp equal 0.5

lattice hex 0.5

region simbox block 0 100 0 100 -0.1 0.1

create_box 2 simbox

lattice hex 0.5

create_atoms 1 region simbox

lattice hex 0.1 origin 0.5 0.5 0

create_atoms 2 region simbox

mass 1 1

mass 2 1.0

comm_modify vel yes

velocity all create ${temp} 343432 dist gaussian

pair_style dpd ${temp} 25.0 12345132

pair_coeff 1 1 25.0 1.0

pair_coeff 2 2 25.0 1.0

pair_coeff 1 2 50.0 1.0

fix 1 all nvt temp ${temp} ${temp} 0.1

dump 1 all atom 10

outputs/temp_${temp}.lammpstrj

write_data dpd_data.all

thermo 500

run 5000
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A.2 Input file of the Cytosim simulations

% Cytosim property file

% Sat Mar 7 13:46:36 2020

% pid 10707

set simul system

{

time_step = 0.004;

viscosity = 0.5;

random_seed = 3158880834;

steric = 1, 500, 100;

}

set space cell

{

property_number = 1;

shape = square;

dimensions = 1 1 1;

}

set fiber filament

{

property_number = 1;

rigidity = 0.075;

segmentation = 0.1;

viscosity = 0.5;

confine = 1, 100, first;

display = (line=0.5, 1; color=orange;);

}

set hand motor

{

property_number = 1;

binding = 10, 0.05;

unbinding = 0.1, inf;

display = (size=2; color=green;);

activity = move;

stall_force = 6;

unloaded_speed = 0.2;

}

set hand binder

{

property_number = 2;
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binding = 5, 0.0175;

unbinding = 0.1, inf;

display = (size=2; color=blue;);

}

set couple crosslinker

{

property_number = 1;

hand1 = binder;

hand2 = binder;

stiffness = 250;

diffusion = 10;

fast_diffusion = 1;

}

set couple complex

{

property_number = 2;

hand1 = motor;

hand2 = motor;

stiffness = 250;

diffusion = 10;

fast_diffusion = 1;

}

set hand binder_multivalence

{

property_number = 3;

binding = 5, 0.006;

unbinding = 0.1, inf;

display = (size=2; color=blue;);

}

set single grafted

{

property_number = 1;

hand = binder_multivalence;

stiffness = 200;

}

set solid blob

{

property_number = 1;

viscosity = 0.5;

steric = 10, 0;
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confine = 1, 100, cell;

display = (style=7; coloring=0; color=0x88888888;);

}

A.3 Chemical reaction input file for MEDYAN

############################ SPECIES ###########################

####_Rep

SPECIESDIFFUSING: A 14500 80.0 0.0 0.0 REG

#Branching

SPECIESDIFFUSING: BD 300 80.0 1.0 0.0 REG

SPECIESDIFFUSING: MD _M_ 0.8 10.0 0.0 REG

SPECIESDIFFUSING: LD _L_ 8.0 0.0 0.0 REG

SPECIESFILAMENT: AF 0

SPECIESPLUSEND: PA 0

SPECIESMINUSEND: MA 0

SPECIESBOUND: LMBEA 0

SPECIESMOTOR: MOA 0

SPECIESLINKER: LA 0

SPECIESBRANCHER: BA 0

LINKERBINDINGSITE: LMBEA 0

MOTORBINDINGSITE: LMBEA 0

BRANCHERBINDINGSITE: LMBEA 0

########################### REACTIONS ##########################

#Normal polymerization

POLYMERIZATIONREACTION: 0 A:DIFFUSING + PA:PLUSEND -> AF:FILAMENT + PA:PLUSEND

0.151↪→

POLYMERIZATIONREACTION: 0 A:DIFFUSING + MA:MINUSEND -> AF:FILAMENT + MA:MINUSEND

0.017↪→

#Normal depolymerization

DEPOLYMERIZATIONREACTION: 0 AF:FILAMENT + PA:PLUSEND -> A:DIFFUSING + PA:PLUSEND

1.4↪→
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DEPOLYMERIZATIONREACTION: 0 AF:FILAMENT + MA:MINUSEND -> A:DIFFUSING +

MA:MINUSEND 0.8↪→

#Motor and linker binding and unbinding

MOTORREACTION: 0 LMBEA:BOUND:1 + LMBEA:BOUND:2 + MD:DIFFUSING <-> MOA:MOTOR:1 +

MOA:MOTOR:2 0.2 1.7 175.0 225.0↪→

LINKERREACTION: 0 LMBEA:BOUND:1 + LMBEA:BOUND:2 + LD:DIFFUSING <-> LA:LINKER:1 +

LA:LINKER:2 0.009 0.3 30.0 40.0↪→

#Motor walking

MOTORWALKINGREACTION: 0 MOA:MOTOR:N + LMBEA:BOUND:N+1 -> MOA:MOTOR:N+1 +

LMBEA:BOUND:N 0.2↪→

#Branch binding and unbinding

BRANCHINGREACTION: 0 BD:DIFFUSING + A:DIFFUSING + LMBEA:BOUND <-> BA:BRANCHER +

PA:PLUSEND 0.0001 0.00000000001 ALL 0.0↪→

#Destruction

DESTRUCTIONREACTION: 0 PA:PLUSEND + MA:MINUSEND -> A:DIFFUSING + A:DIFFUSING 1.0

A.4 System input file for MEDYAN

##################################################

##################### GEOMETRY ###################

NDIM: 3

NX: 2

NY: 2

NZ: 2

COMPARTMENTSIZEX: 500.0

COMPARTMENTSIZEY: 500.0

COMPARTMENTSIZEZ: 500.0

MONOMERSIZE: 2.7

CYLINDERSIZE: 27.0

BOUNDARYSHAPE: CUBIC

##################################################

################### MECHANICS ####################

### ALGORITHM ###
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CONJUGATEGRADIENT: POLAKRIBIERE

GRADIENTTOLERANCE: 1.0

MAXDISTANCE: 0.05

LAMBDAMAX: 0.005

### FILAMENTS ###

FSTRETCHINGFFTYPE: HARMONIC

FSTRETCHINGK: 100.0

FBENDINGFFTYPE: COSINE

FBENDINGK: 2690.0

FBENDINGTHETA: 0.0

VOLUMEFFTYPE: REPULSION

VOLUMECUTOFF: 54.0

VOLUMEK: 1E5

### MOTORS ###

MSTRETCHINGFFTYPE: HARMONIC

MSTRETCHINGK: 2.5

### LINKERS ###

LSTRETCHINGFFTYPE: HARMONIC

LSTRETCHINGK: 8.0

### BOUNDARY ###

BOUNDARYFFTYPE: REPULSIONEXP

BOUNDARYCUTOFF: 200.0

BOUNDARYINTERACTIONK: 41.0

BOUNDARYSCREENLENGTH: 2.7

### BRANCHING ###

BRSTRETCHINGFFTYPE: HARMONIC

BRSTRETCHINGK: 100.0

BRSTRETCHINGL: 6.0

BRBENDINGFFTYPE: COSINE

BRBENDINGK: 100.0

BRBENDINGTHETA: 1.22

BRDIHEDRALTYPE: COSINE
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BRDIHEDRALK: 100.0

BRPOSITIONFFTYPE: COSINE

BRPOSITIONK: 100.0

##################################################

################### CHEMISTRY ####################

CHEMISTRYFILE: chemistryinput.txt

CALGORITHM: NRM

NUMTOTALSTEPS:

RUNTIME: 2000.0

SNAPSHOTTIME: 10.0

MINIMIZATIONTIME: 0.05

NEIGHBORLISTTIME: 0.05

NUMDIFFUSINGSPECIES: 4

NUMBULKSPECIES: 0

NUMFILAMENTTYPES: 1

NUMFILAMENTSPECIES: 1

NUMPLUSENDSPECIES: 1

NUMMINUSENDSPECIES: 1

NUMBOUNDSPECIES: 1

NUMLINKERSPECIES: 1

NUMMOTORSPECIES: 1

NUMBRANCHERSPECIES: 1

NUMBINDINGSITES: 1

NUMMOTORHEADSMIN: 15

NUMMOTORHEADSMAX: 30

MOTORSTEPSIZE: 6.0

##################################################

############## DYNAMIC RATE CHANGING #############

DFPOLYMERIZATIONTYPE: BROWRATCHET

DFPOLYMERIZATIONLEN: 2.7
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DMUNBINDINGTYPE: LOWDUTYCATCH

DMUNBINDINGFORCE: 12.62

DMWALKINGTYPE: LOWDUTYSTALL

DMWALKINGFORCE: 15.0

DLUNBINDINGTYPE: SLIP

DLUNBINDINGLEN: 0.24

##################################################

################# INITIALIZATION #################

NUMFILAMENTS: 50

FILAMENTLENGTH: 1

FILAMENTTYPE: 0
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B Twitter university ranking table

Rank University Handle Followers

1 Massachusetts Institute of Technology mit 1,065,024
2 Harvard University harvard 1,040,326
3 Stanford University stanford 732,453
4 Yale University yale 494,248
5 Princeton University princeton 382,973
6 Columbia University in the City of New York columbia 349,614
7 The Ohio State University OhioState 338,224
8 Louisiana State University lsu 318,282
9 Arizona State University asu 288,268
10 Cornell University Cornell 287,788
11 Texas A&M University tamu 279,081
12 Michigan State University michiganstateu 243,938
13 University of Michigan umich 231,723
14 The University of Texas at Austin utaustin 225,164
15 Indiana University Bloomington IUBloomington 219,030
16 Penn State University penn state 212,145
17 University of Houston UHouston 206,284
18 University of Florida UF 198,140
19 University of South Carolina UofSC 194,890
20 University of California, Los Angeles ucla 191,775
21 University of Wisconsin-Madison UWMadison 187,046
22 West Virginia University westvirginiau 185,783
23 Brown University BrownUniversity 184,195
24 University of California, Berkeley UCBerkeley 183,199
25 University of Central Florida UCF 179,031
26 Georgia Institute of Technology georgiatech 175,895
27 Texas Tech University texastech 170,602
28 The University of Oklahoma uofoklahoma 169,538
29 The University of Alabama UofAlabama 168,226
30 University of Notre Dame NotreDame 163,396
31 University of Washington UW 163,004
32 The University of Arizona uarizona 162,965
33 Temple University templeuniv 158,654
34 University of Southern California usc 152,953
35 University of Pennsylvania Penn 152,592
36 Texas Christian University tcu 147,834
37 Mississippi State University msstate 147,502
38 University of Oregon uoregon 144,507
39 Rutgers, The State University of New Jersey RutgersU 134,638
40 The University of Tennessee, Knoxville UTKnoxville 132,461
41 New York University nyuniversity 132,384
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Table B.1 continued from previous page

Rank University Handle Followers

42 University of Missouri Mizzou 130,858
43 Auburn University auburnu 126,804
44 University of North Carolina at Chapel Hill UNC 126,491
45 Grand Canyon University gcu 124,898
46 North Carolina State University ncstate 122,371
47 Clemson University clemsonuniv 118,308
48 Florida State University floridastate 117,666
49 University of South Florida USouthFlorida 117,341
50 University of Iowa uiowa 116,093
51 The University of Utah uutah 115,456
52 University of Georgia universityofga 113,467
53 University of Kentucky universityofky 108,280
54 United States Military Academy westpoint usma 106,704
55 University of Minnesota UMNews 106,654
56 The University of Texas MD Anderson Cancer Center mdandersonnews 106,480
57 University of Connecticut uconn 103,011
58 Purdue University lifeatpurdue 102,457
59 San Diego State University sdsu 101,086
60 Johns Hopkins University johnshopkins 100,199
61 Boston University BU Tweets 98,829
62 Baylor University baylor 98,019
63 University of Maryland UofMaryland 97,891
64 University of Mississippi olemissrebels 95,939
65 Texas State University txst 94,341
66 University of Cincinnati UofCincy 94,103
67 Liberty University libertyu 92,823
68 University of Miami univmiami 91,902
69 University of Virginia uva 89,660
70 The New School thenewschool 85,764
71 Duke University DukeU 84,985
72 University of North Carolina at Charlotte UNCCharlotte 84,926
73 California State University, Fullerton csuf 83,838
74 University of Colorado Boulder cuboulder 83,551
75 University of Akron uakron 83,424
76 United States Air Force Academy AF Academy 82,284
77 University of Illinois at Urbana-Champaign Illinois Alma 81,778
78 Howard University HowardU 81,759
79 California Institute of Technology caltech 80,732
80 Syracuse University syracuseu 80,239
81 University of New Mexico unm 79,393
82 San Josa State University SJSU 77,750
83 The University of Texas at Arlington utarlington 77,729
84 Dartmouth College dartmouth 76,408
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Table B.1 continued from previous page

Rank University Handle Followers

85 Oregon State University oregonstate 75,835
86 Virginia Polytechnic Institute and State University virginia tech 75,579
87 Oklahoma State University okstate 74,558
88 California State University, Fresno fresno state 74,077
89 United States Naval Academy NavalAcademy 73,593
90 Ohio University ohiou 72,921
91 The University of Texas at San Antonio utsa 72,859
92 Kansas State University KState 71,411
93 Boston College BostonCollege 70,072
94 Virginia Commonwealth University VCU 69,632
95 Brigham Young University byu 68,026
96 Georgetown University georgetown 67,833
97 University of Toledo utoledo 66,559
98 Wichita State University wichitastate 65,753
99 University of California, Irvine UCIrvine 65,571
100 University of Arkansas uarkansas 64,335
101 Berklee College of Music BerkleeCollege 64,103
102 Colorado State University ColoradoStateU 63,738
103 Kennesaw State University kennesawstate 63,434
104 Northwestern University northwesternu 62,372
105 Missouri State University missouristate 59,810
106 University of California, San Francisco ucsf 59,461
107 The University of Memphis uofmemphis 59,092
108 University of Chicago UChicago 58,344
109 Grand Valley State University gvsu 58,200
110 The Culinary Institute of America CIACulinary 57,955
111 East Carolina University EastCarolina 57,425
112 Georgia Southern University GeorgiaSouthern 57,348
113 James Madison University JMU 57,072
114 Carnegie Mellon University carnegiemellon 57,010
115 George Washington University Gwtweets 55,530
116 University of Delaware Udelaware 54,938
117 North Carolina Agricultural and Technical State University ncatsuaggies 54,595
118 Miami University miamiuniversity 52,925
119 University of California, Davis ucdavis 52,316
120 Vanderbilt University vanderbiltu 52,306
121 University of Massachusetts Amherst umassamherst 52,094
122 California State University, Northridge csunorthridge 51,650
123 Appalachian State University appstate 51,623
124 Florida International University fiu 50,828
125 Marquette University MarquetteU 50,126
126 Emory University emoryuniversity 49,429
127 Illinois State University IllinoisStateU 48,522
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Table B.1 continued from previous page

Rank University Handle Followers

128 University of Pittsburgh PittTweet 48,267
129 Hillsdale College hillsdale 47,752
130 Drake University drakeuniversity 47,673
131 University of Rochester UofR 47,585
132 Wayne State University waynestate 47,422
133 Ball State University ballstate 47,240
134 University at Albany, State University of New York ualbany 46,967
135 Arkansas State University ArkansasState 46,397
136 American University AmericanU 45,904
137 University of Dayton univofdayton 44,791
138 Tufts University TuftsUniversity 44,787
139 Florida Atlantic University FloridaAtlantic 44,429
140 Florida Agricultural and Mechanical University FAMU 1887 44,211
141 University of California, Santa Barbara ucsantabarbara 44,112
142 College of Charleston CofC 43,691
143 Washington State University WSUPullman 43,685
144 Northeastern University northeastern 43,541
145 Georgia State University georgiastateu 43,492
146 Kent State University kentstate 43,258
147 Western Michigan University WesternMichU 43,062
148 Morehouse College morehouse 42,621
149 University of North Texas untnews 42,383
150 The University of Texas at El Paso utep 42,045
151 University of Nebraska-Lincoln UNLincoln 42,012
152 Middle Tennessee State University mtsunews 41,808
153 Northern Illinois University NIUlive 41,528
154 Savannah College of Art and Design SCADdotedu 41,228
155 Iowa State University of Science and Technology IowaStateU 40,961
156 University of North Carolina Wilmington UNCWilmington 40,341
157 University of California, Riverside UCRiverside 40,189
158 University of Nebraska at Omaha unomaha 39,565
159 Northern Arizona University nau 39,277
160 Southern Methodist University smu 39,274
161 Spelman College spelmancollege 39,257
162 Bowling Green State University bgsu 38,678
163 California State University, Sacramento sacstate 38,537
164 North Dakota State University NDSU 38,389
165 Jackson State University jacksonstateU 38,379
166 University of Northern Iowa northerniowa 38,136
167 University of California, San Diego ucsandiego 37,847
168 Loyola University Chicago LoyolaChicago 37,649
169 Central Michigan University CMUniversity 37,432
170 Lehigh University lehighu 37,254
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Table B.1 continued from previous page

Rank University Handle Followers

171 University of Wisconsin-Milwaukee uwm 37,213
172 Butler University butleru 37,194
173 Indiana University - Purdue University Indianapolis iupui 37,156
174 Valdosta State University valdostastate 36,932
175 California Polytechnic State University, San Luis Obispo calpoly 36,257
176 Quinnipiac University QUINNIPIACU 36,152
177 Rice University RiceUniversity 35,903
178 Oakland University oaklandu 35,705
179 Washington University in St. Louis wustl 35,225
180 University of California, Santa Cruz ucsc 34,981
181 Villanova University VillanovaU 34,094
182 Stony Brook University stonybrooku 33,847
183 University of North Carolina at Greensboro uncg 33,724
184 Binghamton University, State University of New York binghamtonu 33,437
185 University of Louisiana at Lafayette ULLafayette 33,141
186 Towson University TowsonU 33,064
187 College of William & Mary williamandmary 32,980
188 Hampton University hamptonu 32,742
189 University of Rhode Island universityofri 32,400
190 University of Nevada, Las Vegas UNLV 32,061
191 Wake Forest University WakeForest 31,914
192 The University of Tampa UofTampa 30,862
193 Pratt Institute prattinstitute 30,680
194 University of Vermont uvmvermont 30,628
195 The Juilliard School juilliardschool 30,435
196 University of Louisville uofl 30,383
197 Purdue University Global purdueglobal 30,264
198 University of Denver uofdenver 30,231
199 Rowan University RowanUniversity 30,192
200 University of Nevada, Reno unevadareno 29,702

Table B.1 a list of all twitter account that was created based on some this list was created based
on http://www.4icu.org/, as obtained on May 30, 2020.
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C Pool-testing algorithm to enhance COVID-19 detection in mass

populations

C.1 Pooled Testing Strategy

Testing of multiple samples, also known as pooled testing, [60] allows one to significantly reduce the

number of tests performed when screening a susceptible population, resulting in a quicker screening

and using less resources compared to screening each individual in that population. In order to devise

an optimal pooling strategy for such testing, researchers first need to estimate the viral prevalence

in the population in question [225].

s
2

s
1

s3

p1

p2

N

1

Figure C.1 Nested pooling schematics. A population N is divided into pools containing s1, s2
and s3 samples per pool in each stage of the pooling. Each pooling stage reduces the population by
a factor pi to a presumptive positive population used in the next stage of pooling. The final pooling
consists of individual testing, s3 = 1.

C.2 Optimal Pooled Testing Strategy

In a population of size N with a prevalence r0 of the virus, the number of expected tests following a

nested pooling strategy with n pools containing s1, s2, .., sn pools is given by

En(r0, {si}ni=1) = N

[
n∑

i=1

(
1

si

i−1∏
k=0

pk

)
+

n∏
k=1

pk

]
. (C.1)

where p0 = 1, pk>0 = 1− (1− rk−1)
sk is the positive fraction in pool k, and rk>0 =

rk−1

pk
is the
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effective prevalence.

The two most common examples in practice are the 1- and 2-pool testing. Using Eq. (C.1) with

n = 1 and n = 2 we get,

E1(r0, {s1}) = N

(
1

s1
+ p1

)
, (C.2)

and,

E2(r0, {s1, s2}) = N

(
1

s1
+

p1
s2

+ p1p2

)
, (C.3)

where p1 = 1− (1− r0)
s1 , p2 = 1−

(
1− r0

p1

)s2
.

We note that for a test with a non-zero false positive rate φ, the above expressions of pk are

readily adjusted with the replacement below [10],

pk → 1− (1− φ)(1− rk−1)
sk , (C.4)

where (1-φ) is also known as the specificity of the test.

In Fig. C.2, we show the optimal pool sizes for 1-step and 2-step pool-testing and the expected

number of total tests given as a percentage of the population T = En/N . As Eq. (C.1) indicates, the

pooling strategy is independent of the size of the population, with both small and large populations

using the same general strategy; only the prevalence of the virus in the population is used for

strategy development.
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Figure C.2 Simulation of the optimal sizes of the pools in a (a) single-step pooling and (b)
double-step pooling framework. The color bar of T represents the total number of tests performed
(shown as a percentage of the whole population) to screen the population. r is prevalence of the
virus, and s1, s2 are the sizes of each pool in the first and the second steps, respectively.
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D Appendix 4

Figure D.1 The average folding time tfold in units of reduced time t/τ with respect to temperature
for CI2 in the presence or in the absence of hydrodynamic interactions (HI). Panel (a) shows tfold
over a broad range of temperatures using the Brownian dynamics (BD) without hydrodynamics
interactions (HI). The temperature is expressed in units of their corresponding folding temperature
Tf . Note the U-shaped dependence of the folding time (non-Arrhenius behavior). tfold using BD
with HI (BDHI) is compared to tfold using only BD in panel (b). The crossover occurs when the
two curves intersect. Error bars are calculated using the jackknife method.
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E Appendix 5

E.1 Actomyosin and memory formation

Dendritic spines in neurons

Neurons are brain cells that communicate using electrical and chemical signals through action

potential signaling and neurotransmitter release. Such communication, of note, occurs without

any degree of physical contact. At the junction between the two neurons, called a synapse, the

presynaptic neuron releases a chemical signal that interacts with and affects the postsynaptic neuron,

allowing for signal propagation. Dendritic spines are protrusions that arise from postsynaptic

neurons, defined as neurons which are on the “receiver” end of the synapse. The spine volume ranges

between 0.001 μm3 and 1 μm3 [161], and each neuron may grow thousands of spines. Consistent with

the Hebbian theory of learning and memory, spines expand during long-term potentiation (LTP) and

shrink during long-term depression (LTD) [171]. Experiments of high-resolution imaging have shown

that LTP induction causes morphological changes in dendritic spines [231, 235]. Moreover, besides

the shrinking or expanding of spines that occur during LTD and LTP, the generation and destruction

of spines have also been observed [161]. Of note, the spine is rich with ABPs such as CaMKII,

which are crucial in maintaining the information and structural integrity of a spine [187, 111].

CaMKII, morphogenesis, and synaptic plasticity

The Ca2+/calmodulin-dependent kinase II [20] (CaMKII) holoenzyme protein serves a dual role

as a Ca2+ signaling decoder and as a structural agent in directing calcium signals to change the

makeup of actomyosin networks in a spine. It is an extremely common protein, which accounts for

up to 2% of the mammalian brain proteome [20, 70]. Even beyond mammals, this protein is found

in vertebrates in four major CaMKII isoforms observed in over 40 different splice variants. Overall,

these variants are genetically expressed in diverse tissue types.

The two most prevalent isoforms in the brain are CaMKIIα and CaMKIIβ isoforms [114, 113]

and the number of the protein domains in these multimeric complexes varies from 12 to 14. Each
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unit is made up of several connected domains that serve distinctive functions [220]. Besides being a

biochemical catalyzer and having autophosphorylation capabilities [19] in one domain of the CaMKII

protein, each monomeric unit is capable of binding actin filaments. To date, the highest actin-binding

valency observed for CaMKII is six for the dodecamer (12-mer) CaMKIIβ isoform [113].
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A., Margadant, F., Mège, R.-M., Lim, C. T., Voituriez, R., and Ladoux, B.

Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nature
Communications 6, 1 (2015), 1.

[94] Hadziselimovic, N., Vukojevic, V., Peter, F., Milnik, A., Fastenrath, M., Fenyves,

B. G., Hieber, P., Demougin, P., Vogler, C., Dominique, J.-F., et al. Forgetting
is regulated via Musashi-mediated translational control of the Arp2/3 complex. Cell 156, 6
(2014), 1153.

137



[95] Hagberg, A., Swart, P., and S Chult, D. Exploring network structure, dynamics, and
function using NetworkX. Tech. rep., Los Alamos National Lab.(LANL), Los Alamos, NM
(United States), 2008.

[96] Harpaz, Y., Elmasry, N., Fersht, A., and Henrick, K. Direct observation of better
hydration at the N terminus of an alpha-helix with glycine rather than alanine as the N-cap
residue. Proceedings of the National Academy of Sciences 91, 1 (1994), 311.

[97] Hingorani, K. S., and Gierasch, L. M. Comparing protein folding in vitro and in vivo:
foldability meets the fitness challenge. Current Opinion in Structural Biology 24 (2014), 81.

[98] Hoffman, L., Farley, M. M., and Waxham, M. N. Calcium-calmodulin-dependent
protein kinase II isoforms differentially impact the dynamics and structure of the actin
cytoskeleton. Biochemistry 52, 7 (2013), 1198.

[99] Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G. C., and Kasai, H. The
subspine organization of actin fibers regulates the structure and plasticity of dendritic spines.
Neuron 57, 5 (2008), 719.

[100] Hoogerbrugge, P., and Koelman, J. Simulating microscopic hydrodynamic phenomena
with dissipative particle dynamics. EPL (Europhysics Letters) 19, 3 (1992), 155.

[101] Hubel, D. H., and Wiesel, T. N. Receptive fields and functional architecture of monkey
striate cortex. The Journal of Physiology 195, 1 (1968), 215.

[102] Humphrey, W., Dalke, A., Schulten, K., et al. VMD: visual molecular dynamics. The
Journal of Molecular Graphics 14, 1 (1996), 33.

[103] Hwa, T., and Kardar, M. Avalanches, hydrodynamics, and discharge events in models of
sandpiles. Physical Review A 45, 10 (1992), 7002.

[104] Hyeon, C., Dima, R. I., and Thirumalai, D. Size, shape, and flexibility of RNA structures.
The Journal of Chemical Physics 125, 19 (2006), 194905.
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[169] Onuchic, J. N., Nymeyer, H., Garćıa, A. E., Chahine, J., and Socci, N. D. The
energy landscape theory of protein folding: insights into folding mechanisms and scenarios.
Advances in Protein Chemistry 53 (2000), 87.

[170] Otmakhov, N., and Lisman, J. Measuring CaMKII concentration in dendritic spines. The
Journal of Neuroscience Methods 203, 1 (2012), 106–114.

[171] Park, M., Salgado, J. M., Ostroff, L., Helton, T. D., Robinson, C. G., Harris,

K. M., and Ehlers, M. D. Plasticity-induced growth of dendritic spines by exocytic
trafficking from recycling endosomes. Neuron 52, 5 (2006), 817.

[172] Parsons, J. T., Horwitz, A. R., and Schwartz, M. A. Cell adhesion: integrating
cytoskeletal dynamics and cellular tension. Nature Reviews Molecular Cell Biology 11, 9
(2010), 633.

[173] Patterson, D. A., and Hennessy, J. L. Computer Organization and Design ARM Edition:
The Hardware Software Interface. Morgan Kaufmann, 2016.

[174] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. Scikit-learn:
Machine learning in python. The Journal of Machine Learning Research 12 (2011), 2825.

[175] Petsko, G. A., and Ringe, D. Protein structure and function. New Science Press, 2004.

[176] Phillips, R., Kondev, J., Theriot, J., and Garcia, H. Physical biology of the cell.
Garland Science, 2012.

[177] Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. Tech. rep., Sandia
National Labs., Albuquerque, NM (United States), 1993.

[178] Pollard, T. D. Rate constants for the reactions of ATP-and ADP-actin with the ends of
actin filaments. The Journal of Cell Biology 103, 6 (1986), 2747.

[179] Pollard, T. D., and Borisy, G. G. Cellular motility driven by assembly and disassembly
of actin filaments. Cell 112, 4 (2003), 453.

[180] Popov, K., Komianos, J., and Papoian, G. A. MEDYAN: Mechanochemical simulations
of contraction and polarity alignment in actomyosin networks. PLoS Computational Biology
12, 4 (2016), e1004877.

[181] Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D.,

Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., et al. A
3D map of the human genome at kilobase resolution reveals principles of chromatin looping.
Cell 159, 7 (2014), 1665.

[182] Robinson, R. C., Turbedsky, K., Kaiser, D. A., Marchand, J.-B., Higgs, H. N.,

Choe, S., and Pollard, T. D. Crystal structure of Arp2/3 complex. Science 294, 5547
(2001), 1679.

[183] Rotne, J., and Prager, S. Variational treatment of hydrodynamic interaction in polymers.
The Journal of Chemical Physics 50, 11 (1969), 4831.

143



[184] Rotty, J. D., Wu, C., and Bear, J. E. New insights into the regulation and cellular
functions of the Arp2/3 complex. Nature Reviews Molecular Cell Biology 14, 1 (2013), 7.

[185] Rowley, M. J., and Corces, V. G. Organizational principles of 3D genome architecture.
Nature Reviews Genetics 19, 12 (2018), 789.

[186] Rubio, M. D., Johnson, R., Miller, C. A., Huganir, R. L., and Rumbaugh, G.

Regulation of synapse structure and function by distinct myosin II motors. The Journal of
Neuroscience 31, 4 (2011), 1448.

[187] Ryu, J., Liu, L., Wong, T. P., Wu, D. C., Burette, A., Weinberg, R., Wang, Y. T.,

and Sheng, M. A critical role for myosin IIb in dendritic spine morphology and synaptic
function. Neuron 49, 2 (2006), 175.

[188] Sammis, C. G., and Sornette, D. Positive feedback, memory, and the predictability of
earthquakes. Proceedings of the National Academy of Sciences 99, suppl 1 (2002), 2501.
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