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Abstract 

 
 

Recently, Geiger-mode and single photon lidar sensors have emerged on the 

commercial market, advertising greater collection efficiency than traditional linear mode 

lidar systems. Non-linear photon detection is a new technology for the geospatial 

community, and its performance characteristics for surveying and mapping are not yet 

well understood. The goal of this thesis, therefore, is to examine the geospatial quality of 

the data produced by one of these new sensors, the Leica SPL100. The SPL100 was 

shown to have a lower ranging precision than linear lidar and that its precision is more 

negatively affected by surface properties such as low intensity, roughness, and slope. The 

accuracy of the SPL100, however, was found to be comparable to that produced by linear 

lidar for smooth horizontal surfaces. It was also observed that the post-processed SPL100 

data has limited ability to resolve multiple returns through vegetation due to the current 

filtering algorithms employed.  
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1. Introduction 

Airborne lidar (Light Detection and Ranging) systems have become a ubiquitous 

surveying instrument for a variety of applications, including high-resolution mapping, 

earth sciences, forestry, bathymetry, and even archaeology [1], [2]. The basic underlying 

principle of lidar is the ability to precisely measure the travel time of light to calculate 

distance, or range. Traditionally, this has been done with linear mode lidar (LML) 

systems, which require hundreds to thousands of photons to achieve a single range 

measurement. Recent advances have brought new technologies to the commercial market 

in the form of single photon lidar (SPL) and Geiger-mode lidar (GML), which are 

systems that maximize collection efficiency using detectors that are sensitive to 

individual photons. In contrast to LML, such systems can achieve range measurements 

with just a few photons. SPL and GML systems can collect data at faster rates and with a 

lower cost than LML sensors [3]–[5]. However, given their recent release to the 

commercial market, the performance characteristics of these systems are not yet fully 

understood and are therefore examined in this work. In particular, this thesis focuses on 

the performance of the Leica SPL100, a single photon system that was released 

commercially in 2017. The Leica SPL100 is marketed as an ideal system for large area 

terrain mapping, e.g., collections on a county and state-wide scale [3], [6].  

 

 Leica SPL100 Lidar System 

The SPL100 derives much of its heritage from NASA’s Microlaser Altimeter or 

“microaltimeter,” which, in 2001, demonstrated the first proof-of-concept of airborne 

photon-counting [3], [7]. The microaltimeter established the use of a 532 nm Nd:YAG 
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laser, which was chosen because the high efficiency commercial off-the-shelf sensors that 

were needed for single photon detection were limited to peak sensitivities in the visible 

wavelengths [3], [7]. Later generations of SPL systems, developed by Sigma Space, split 

the outgoing pulse to create a 10 x 10 array of “beamlets” that would then be received 

with an array of detector elements [3], [7], [8]. The High-Resolution Quantum Lidar 

System (HRQLS) and HRQLS-2 prototypes, which were the precursor to the SPL100, 

were completed in 2013 and 2016, respectively [3]. These systems were designed to fly at 

moderate altitudes and to map larger areas more quickly while still allowing the point 

density to be adjusted for individual needs [3], [7].  

In 2016, Hexagon/Leica Geosystems acquired Sigma Space, and in 2017 the 

commercial release of the SPL100 (Figure 1) was announced [9], [10]. By splitting a 

single laser beam into a 10x10 array of low energy beamlets, the SPL100 can collect up 

to 6 million points per second with a 60 kHz pulse repetition frequency (PRF). On return, 

these beamlets are detected with sensors sensitive enough to detect individual photons. 

The SPL100’s higher efficiency does come at the cost of reduced ranging precision and 

higher measurement noise from false returns, however [11], [12]. 

 
Figure 1: Leica SPL100 597 L x 508 W x 454 H mm (~1/5 scale) 
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Although not the focus of this thesis, a similar technology, Geiger-mode lidar, has 

been in development at the Massachusetts Institute of Technology, Lincoln Laboratory 

since the 1990s [13]. Until recently, GML was primarily used by various federal agencies 

for defense purposes. With assistance from DARPA, GML has been commercially 

available since 2015 through Harris Corporation’s IntelliEarth system [4], [13]. There are 

several key differences between the GML and SPL systems. First, the SPL systems 

utilize commercial off-the-shelf photomultipliers while the IntelliEarth instead uses a 

relatively more expensive 32 x 128 array of single avalanche photodiodes (SAPDs) [3], 

[13], [14]. Although the IntelliEarth and SPL100 both have an array of detectors, the 

IntelliEarth outputs a single large laser spot, in contrast to the SPL100, which uses a 

diffractive optical element to split a highly collimated laser pulse into an array of 

beamlets [3], [4], [13]. Finally, these different technologies also operate at different laser 

wavelengths: the SPL systems in the visible spectrum at 532 nm and the IntelliEarth in 

the near-infrared (NIR) at 1064 nm [3], [4], [13].  

 

 Performance Evaluation 

Given the SPL100’s entry into the commercial sector just a few years ago, there is 

a paucity of peer-reviewed literature that has quantitatively evaluated its performance. Of 

the published studies available, Stoker et al. (2016) and Mandlburger et al. (2019) present 

the most rigorous analysis of data quality [4], [15]. There are, however, several authors 

that have given conceptual comparisons between LML, GML, and SPL, such as Ullrich 

and Pfennigbauer (2016, 2018) and Jutzi (2017) [11], [12], [14]. Additionally, researchers 

at Sigma Space have discussed the historical development of their SPL sensors in several 
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papers [3], [7], [8]. Degnan (2016) presented an overview of the HRQLS system design 

and expected performance characteristics derived from theoretical modeling [3].  

A notable weakness of the available literature stems from the fact that most of the 

studies comparing the performance of SPL and LML systems examined data acquired 

with HRQLS, the precursor to the SPL100, e.g. Degnan (2016), Kim et al. (2015), Stoker 

et al. (2016), Swatantran et al. (2016) [3]–[5], [16]. Few studies have used the Leica 

SPL100, e.g., Mandlburger et al. (2019) [15]. Therefore, one of the goals of this thesis is 

to present an analysis of SPL100 data quality that takes into account the improvements 

that have been made in system design, system operation, and data processing in the 

intervening years. Additionally, the review presented here is more thorough and 

comprehensive than any previous study on the SPL100.  

The relative accuracy of the SPL100 has been shown to be adequate for most 

applications, with point densities that generally surpasses LML [3]–[5], [15]. Given its 

operational efficiency, the SPL100 is well-suited for applications that require mapping 

large areas. In their evaluation of the HRQLS’s ability to meet the needs of the 3D 

Elevation Program, Stoker et al. (2016) found that non-vegetated vertical accuracies were 

well within the USGS Lidar Base Specification v1.2 specifications1 for both quality 

levels 1 and 2, but raised concerns about point densities and vertical accuracy in dense 

canopy for QL1/2 [4], [17]. Mandlburger et al. (2019), using the SPL100, concluded that 

the system is capable of moderate vegetation penetration and similar precision to LML 

over flat, smooth horizontal surfaces. The LML system, however, provided better ground 

                                                 
1 USGS Lidar Base Specification: https://pubs.er.usgs.gov/publication/tm11B4 

https://pubs.er.usgs.gov/publication/tm11B4
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coverage under tree canopies and its precision was considerably better over sloped and 

grassy surfaces. Because the SPL100 uses a 532 nm laser, which can penetrate water, 

bathymetric studies using the SPL100 are also possible. Although this will not be 

examined further, other papers have examined the SPL100 bathymetric performance, 

e.g., Mandlburger and Jutzi (2019) [18]. 

Previous research has shown that the SPL100 can be used to measure forest 

variables such as tree heights and biomass with accuracy similar to linear mode systems 

[5], [19]. For forest monitoring, the collection efficiency of the SPL is perhaps its most 

significant advantage over traditional LML. The high point density of the SPL100 and its 

ability to efficiently map large swaths of forested areas in less time is a more cost-

effective way to monitor forest health, logging, fires, and other time-sensitive concerns 

[5]. While there is a clear interest in vegetation analysis with the SPL100, current studies 

have focused primarily on ground penetration through trees and the ability to estimate 

forestry parameters. As of yet, no known studies have presented a quantitative analysis 

demonstrating the distribution of multiple returns in vegetation for the SPL100, which 

can shed light on the effective, rather than theoretical, pixel recovery time of the sensor.  

 

 Objective and Contributions 

The geospatial community does not yet have a thorough understanding of the 

performance characteristics of SPL and GML. Non-linear photon detection, using either 

single photon lidar or Geiger-mode lidar, is not an emerging technology, but applying 

these techniques for commercial surveying and mapping, however, is new [20]. The 

primary purpose of this thesis, therefore, is to build towards a more complete 
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understanding of the geospatial quality of the lidar data produced by the Leica SPL100 

airborne single photon system. The research presented in this thesis will examine the data 

quality and accuracy of the SPL100 point cloud and derived digital elevation models 

(DEM). The analysis will also compare the current capabilities of the SPL100 to those of 

conventional LML systems.  

There are four primary objectives this thesis seeks to address. Firstly, there will be an 

evaluation of the horizontal and vertical accuracy of the SPL and LML point clouds on 

known features using survey-grade GNSS observations. There will also be an 

examination of SPL and LML point cloud precision using an analysis of flat surfaces of 

various materials and with different angles of incidence. In addition to these localized 

quality checks, there will also be a comparison of an SPL100-derived DEM to that of an 

LML DEM. The final objective is a quantification of precision under tree canopies and 

the SPL100’s ability to resolve multiple returns through vegetation.   
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2. Lidar Systems 

Lidar (Light Detection and Ranging) systems use light, typically in the form of a 

pulsed laser, to make accurate distance measurements. Lidar systems are thus active 

sensors, meaning they provide their own energy source to illuminate the target and 

produce a measurement. In contrast, passive sensors, such as traditional film and digital 

cameras, record reflected solar electromagnetic radiation. There are two traditional 

methods to measure long distances with lasers: pulsed and continuous wave systems [1]. 

Most airborne lidar sensors are pulsed systems, which use short, discrete laser pulses and 

rely on the precise measurement of the time of flight (TOF). TOF refers to the two-wave 

travel time from when the pulse is emitted and when it returns to the sensor after 

reflecting off a target. The range between sensor and target can be solved by 

d = c t
2
 ,     (2-1) 

where c is the speed of light adjusted for the refractive index of air and t is the total travel 

time. Alternatively, continuous wave, or phase-based systems, emit a continuous beam of 

laser radiation and determine distance using the phase difference of the emitted and 

received signals. Continuous wave systems are not commonly used in airborne surveys, 

however. A notable exception is the Scanning Laser Altitude and Reflectance Sensor 

(ScaLARS), operated during the 1990s [21], [22]. 

Lidar systems can be mounted on a variety of airborne and terrestrial platforms, 

and are commonly flown on airplanes for mapping studies. Airborne laser scanning 

(ALS) began in the 1960s and 1970s with profilers that could only record a two-

dimensional topographic cross-section along the flight line [1]. Because a laser beam has 

a narrow instantaneous field of view (IFOV), the beam must be moved across the flight 
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direction to obtain area coverage instead of a profile [23]. Typically, mechanisms such as 

rotating mirrors and prisms are used to create a scan pattern on the ground. Improvements 

in computing, scanning mechanisms, and GPS/IMU (Global Positioning System/ Inertial 

Measurement Unit) technology in the 1990s began the advent of modern lidar systems, 

which are capable of collecting three-dimensional distributions of georeferenced points. 

Current linear mode sensors can produce data at 2–4 points/m2 at a flying altitude of  

2100 m above ground or lower [4]. The USGS Lidar Base Specification v1.3 requires an 

aggregate nominal pulse spacing of ≥ 8 pulses/m2 for quality level 1 data, and ≥ 2 for 

quality level 2 [17]. Additionally, modern lidar systems can achieve centimeter to 

decimeter absolute vertical accuracy [1]. The USGS specifications state that QL1/2 data 

must be under ≤ 0.196 m for non-vegetated absolute vertical accuracy [17].  

 

 Multiphoton Detection 

The most mature and widely-used lidar technologies are pulsed systems that utilize 

avalanche photodiodes (APD) operating in linear mode [1], [2]. In its linear mode, an 

APD generates an electrical signal proportional to incident photon flux (Figure 2). Hence, 

these systems are referred to as linear systems. Because the sensor has a multiphoton 

detection threshold, they may also be called a multiphoton lidar (MPL). At a minimum, 

hundreds of photons are needed to generate a detector response in a linear system. Linear 

systems use high energy lasers and broad pulse widths of a few nanoseconds to achieve a 

high signal-to-noise ratio (SNR) [2], [24].   
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Figure 2: Linear mode APD response2 
 
 

Linear mode systems can provide either discrete returns or digitized waveforms 

(Figure 3). Ranging for a discrete system is done by estimating the peak, or multiple 

peaks, of the return energy in hardware, in real time. A constant fraction discriminator 

(CFD) circuit is generally used as it is invariant to changes in pulse amplitude [1]. The 

CFD combines the return waveform with a delayed, inverted, and scaled copy of itself 

[1], [2]. Discrete ranges can be identified from zero-crossing points on the combined 

signal. Early discrete lidar systems could only record one backscattered echo per emitted 

laser pulse, with later discrete systems introducing the capability to record multiple 

returns per pulse [25]. Full-waveform systems, however, return intensity information 

over the entire observed vertical or horizontal structure by digitizing the entire 

backscattered echo waveform. In post-processing, improved multi-target resolution along 

the digitized waveforms is possible through decomposition or deconvolution of the 

waveform [25], [26]. Because of this, full-waveform lidar is especially useful for 

                                                 
2 Figure source: Leica Geosystems 
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vegetation studies. A detailed canopy profile that includes intermediate peaks allows for 

estimation of characteristics such as biomass [25]. By using a green laser for water 

penetration, bathymetric lidar surveys can also utilize full-waveform data to understand 

water column scattering properties and measure water depth [27].  

 

 
Figure 3: Full-waveform lidar versus discrete return lidar 
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  Single Photon Detection 

It is possible to design lidar detectors that are sensitive to individual photons. Such 

systems can achieve range measurements with a single photon rather than hundreds or 

thousands of photons. Lidar systems capable of single photon detection are a new 

development for the commercial market, and there are currently two competing 

technologies: single photon lidar (SPL) and Geiger-mode lidar (GML) [3], [4], [13]. The 

most recent SPL instrument is Leica’s SPL100, based on Sigma Space’s High-Resolution 

Quantum Lidar System (HRQLS), while Harris Corporation’s IntelliEarth utilizes GML. 

In contrast to traditional linear (multi-photon) systems, both SPL and GML have an array 

of detector elements and transmit lower energy laser pulses with shorter pulse widths [2], 

[4], [24]. Regardless of the sensor design, linear lidar, SPL, and GML are all pulsed 

systems that calculate range measurements based on TOF.  

The primary advantage of SPL and GML is their efficiency; they boast faster 

acquisition rates than linear systems [3]–[5]. Extremely sensitive detectors allow these 

systems to fly at higher altitudes, and using an array of detectors ensures high point 

density even at these altitudes. This efficiency comes at the cost of reduced ranging 

precision because each range measurement is determined from individual triggering 

photons [11], [12]. As would be expected, photon-sensitive detectors are highly 

susceptible to background noise from solar illumination during the daytime as well as 

detector noise (dark counts) [3]–[5], [24]. The use of narrow bandpass filtering, smaller 

field of views (FOVs), and noise filtering algorithms can mitigate the effects of solar 

illumination. Because the output from LML systems is well above the noise level of the 

detector, single photon solar or dark count events do not affect the data as it does with 
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SPL. As a final point of consideration, studies on SPL and GML range accuracies have 

just begun (e.g., Stoker et al., 2016), and further investigation is needed. Linear mode 

lidar, however, is a mature technology capable of low range noise and high precision 

[11]. 

SPL and GML require detectors that are sensitive to individual photons and are 

capable of determining exact arrival times. Until recently, the two primary choices were 

photomultiplier tubes (PMTs) and Geiger-mode APDs, but new silicon photomultipliers 

(SiPMs) present an attractive alternative to both (Figure 4) [28]. Massachusetts Institute 

of Technology’s Lincoln Labs pioneered research into Geiger-mode lidar in the late 

1990s, and subsequent private industry and military GML systems include JIGSAW, 

FOPEN, ALIRT and HALOE [13], [29]. In 2015, Harris Corporation’s IntelliEarth 

became the first commercial Geiger-mode lidar system. Sigma Space’s HRQLS relied on 

microchannel plate photomultiplier tubes, but its successor, the Leica SPL100, uses 

SiPMs instead.    

 

 

Figure 4: Illustrated examples of photodetectors3 

                                                 
3 Figure source: Hamamatsu http://hamamatsu.magnet.fsu.edu/articles/digitalimagingdetectors.html 

http://hamamatsu.magnet.fsu.edu/articles/digitalimagingdetectors.html
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2.2.1 Geiger-Mode APDs 

An avalanche photodiode internally multiplies photocurrent when a reverse voltage 

is applied, which enables the measurement of low-level light signals [30]. As previously 

discussed, the APD response can be highly linear (a detector’s linearity refers to the 

degree the output response is proportional its input) when the reverse voltage is operated 

below a so-called breakdown voltage (Figure 5) [30]. If the reverse voltage applied is 

above this breakdown voltage, the APD will operate in its Geiger-mode. Above the 

breakdown voltage, a single photon can trigger a self-sustaining avalanche current [31]. 

Regardless of the number of photons received, once triggered the output voltage 

saturates. Because of this, a Geiger-mode APD (GmAPD) can only provide a binary 

response, unlike a linear-mode APD (Figure 2, Figure 6). The APD must be reset through 

a process referred to as “quenching” before another photon can be detected.  

 
 

 

Figure 5: Multiplication (gain) versus reverse bias of avalanche photodiode 4 

 

                                                 
4 Figure source: MIT Lincoln Labs 
 https://www.ll.mit.edu/mission/electronics/ait/imaging-technology/geiger-mode-photodiodes.html 
 

https://www.ll.mit.edu/mission/electronics/ait/imaging-technology/geiger-mode-photodiodes.html
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Figure 6: Binary response from a Geiger-mode APD using lower pulse energy5 

 

Harris Corporation’s IntelliEarth makes use of not a single detector, but an integrated 

array of thousands of these Geiger-mode APDs (GmAPDs) [13]. The most significant 

limitation of the IntelliEarth is the relatively long dead time. The detector dead time 

refers to the time needed for the sensor to reset itself from a detection event so that it is 

ready to detect another photon; it may also be called recovery time or blanking loss. 

Current GmAPDs have dead times of around 50 – 1600 ns, meaning objects require a 7.5 

m – 240 m separation, respectively, to be distinguished [3]. This dead time constrains 

IntelliEarth’s ability to detect occluded targets, such as penetrating through multiple 

vegetation layers [4], [11]. Because of the long dead time, each GmAPD detector usually 

has only one measurement opportunity per imaging cycle [13]. This limitation is 

compensated for with high PRF and large detector arrays, but future asynchronous 

readout circuits could enable multiple TOF measurements per imaging cycle.  

Furthermore, because a GmAPD can only provide a binary response, intensity 

information is not directly available.  

 

                                                 
5 Figure source: Leica Geosystems 
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2.2.2 Photomultiplier Detectors 

In contrast to GML with the IntelliEarth, which utilizes an array of individual 

GmAPDs, SPL instead uses photomultipliers, such as tubes, microchannel plates, or 

silicon, which have much shorter dead times [3], [32]. Sigma Space’s HRQLS, the 

precursor to the Leica SPL100, used microchannel plate photomultiplier tubes (MCP-

PMTs). Now, the SPL100 uses a silicon photomultiplier (SiPM). 

Conventional photomultiplier tubes, which have been available since the 1930s, are 

extremely sensitive detectors capable of multiplying the current produced by incident 

light. They consist of a vacuum tube with an input window, a photocathode, focusing 

electrodes, an electron multiplier (dynodes) and an anode sealed into an evacuated glass 

tube (Figure 7, Figure 8) [33]. In a process referred to as the external photoelectric effect, 

the photocathode emits free electrons when light strikes it. These electrons are then 

accelerated with a high voltage and focused onto the first dynode, where they are 

multiplied by secondary electron emission. This process is then repeated in successive 

dynodes. Around the 1980s, microchannel plates began to be incorporated into PMTs in 

place of the conventional discrete dynodes for photon counting applications (Figure 9) 

[34], [35]. These microchannel plate photomultiplier tubes (MCP-PMTs) feature a two-

dimensional array of channels bundled in parallel in the shape of a disc, where each 

channel acts an independent electron multiplier [33]. MCP-PMTs are more compact than 

traditional PMTs, have improved spatial and time resolutions, and have a higher tolerance 

to magnetic fields [34]. 
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Figure 7: Example of a typical photomultiplier tube 
 
 

 
 
Figure 8: Cross-section of a photomultiplier tube6 
 
 

 

 

 
Figure 9: Cross-section of a microchannel plate 
 
                                                 
6 Figure source (middle and bottom): Hamamatsu’s Photomultiplier Tube Handbook [33] 
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Because photomultiplier tubes are widely available and well-established, they 

have been an attractive option for single photon counting. There are, however, several 

significant drawbacks to using PMTs, particularly their mechanical complexity and 

sensitivity to magnetic fields [31]. Additionally, currently available photon-counting 

PMTs’ have peak sensitivities in the visible wavelengths, which limited the HRQLS 

system to operating at 532 nm (Figure 10) [3]. The advantages of solid-state silicon 

detectors like the SiPM include increased compactness, mechanical robustness, higher 

quantum efficiency, lower operation voltages and insensitivity to magnetic fields [31], 

[36], [37].  

 

 

Figure 10: Spectral sensitivities of photodetectors7 

 
 

Because of these advantages, silicon photomultipliers (SiPM), which have been 

available since the 2000s, are now a viable alternative to PMTs, MCP-PMTS, and APDs 

for photon counting applications such as SPL [28], [38], [39]. A SiPM consists of an 

                                                 
7 Figure source: Hamamatsu http://hamamatsu.magnet.fsu.edu/articles/digitalimagingdetectors.html 

http://hamamatsu.magnet.fsu.edu/articles/digitalimagingdetectors.html
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array of densely packed (1000–5000 per mm2) Geiger-mode APDs arranged on a single 

chip, each with their own quenching resistor and connected in parallel to a single output 

[31]. A microcell on this array is comprised of an independent Geiger-mode APD and its 

quenching resistor. Each microcell in the array detects and amplifies the charge from 

incoming photons, but are decoupled from each other so that the final detector output is 

the sum of the number of microcells triggered [30], [31]. The Leica SPL100 system 

features a 10 x 10 matrix of detector cells, each of which consists of many closely-spaced 

GmAPD microcells (Figure 11). The detector cell array is roughly analogous to pixels, 

but it is essential to bear in mind that the SiPM is not an imaging device. 

 

 

Figure 11: Illustration depicting the structure of the SPL100 detector and microcells        
(from Mandlburger et al. 2019) 
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Using SiPMs overcomes some of the limitations of quenching recovery times and the 

lack of proportionality to the incident flux inherent to using a single detector, as 

described in section 2.2.1 [31], [36], [37]. The system’s dynamic range is determined by 

the total number of microcells and the microcell recovery time [30]. If the number of 

photons received is much less than the number of microcells, the signal is relatively 

linear. Because of this, SiPM linearity gets worse as the number of incident photons 

increases; the output saturates when the number of photons is about equal to the number 

of microcells [30], [31].  The biggest downside to SiPMs is the high dark count rate, 

which results in increased noise as compared to using MCP-PMTs [37]. Other limitations 

include optical crosstalk and limited sensor area [40].  

 

 Leica SPL100 

2.3.1 System Design 

The Leica SPL100 system achieves a high density of returned points (12-30 points 

per sq. meter) by splitting the outgoing laser beam using a diffractive optical element to 

create a 10 x 10 array of “beamlets,” which are then captured by a 10 x 10 SiPM array. A 

rotating prism, referred to as an optical wedge, is used to generate a circular scan pattern 

on the ground [41]. In the SPL100, each of the 10 x 10 cells consists of closely-spaced 

GmAPD microcells, allowing multiple photons to be detected by each cell [15], [32]. 

Because of this, the SPL100 can deliver a rough estimate of intensity, an uncalibrated 

measure of the strength of the returning laser pulse. Intensity is typically recorded as the 

peak amplitude in an LML system, but in the SPL100, the intensity is the pulse width 

derived from the distance between the recorded rising and falling edges. A summary of 
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system properties for linear mode, Geiger-mode, and single photon lidar systems is 

presented in Table 1. The table has been adapted from Jutzi (2017) and updated with 

information from the Leica SPL100 product specification sheet [6], [14], [42].  

 

Table 1: Typical system specifications for LML, GML, and SPL (Jutzi 2017) 

 

  

Type Linear Mode 
Lidar (LML) 

Geiger Mode 
Lidar (GML) 

Single Photon 
Lidar (SPL) 

Technology Various companies Harris IntelliEarth Leica SPL100 
Laser Wavelength 532/1064/1550 nm 1064 nm 532 nm 
Laser Pulse Width 
@ FWHM 

1-5 ns 0.55 ns 0.6 ns 

Laser Beam 
Divergence @ 1/e2 

0.25-1 mrad ~ 5 mrad 0.08 mrad/beamlet 

Field-of-View 
(FOV) 

≤ 72° 30° 20°, 30°, 40° or 
60° fixed 

Detector Elements 1-2 PIN/APD 128x32 = 4096 
GmAPD 

10x10 = 100 
PMT/SiPM 

Min. Surface 
Detection 

250-10000 Photons 8 – 10 Photons 1 Photon 

Instantaneous FOV 
(IFOV) 

0.25-1 mrad 0.035 mrad 0.13 mrad 

Jitter Timing 
(Precision) 

50 – 500 ps 250 – 500 ps 50 – 100 ps 

Blanking 
Loss/Dead/Recovery 
Time 

N/A 50-1600 ns typical 1.6 ns 

Pulse Repetition 
Frequency (PRF) 

≤ 2000 kHz 50-60 kHz 60 kHz 

Max. Flying Height 
(AGL) 

≤ 5000 m ≤ 11000 m ≤ 4500 m 

Aerial Coverage @  
8 pts/m2 

≤ 450 km2/h ≤ 2000 km2/h ≤ 1000 km2/h 



  

21 
 

2.3.2 Ranging Noise 

The fundamental measurement of a lidar system is the distance, or ranging, 

measurement. Ranging noise, or ranging precision, describes the repeatability of the lidar 

measurements, i.e., random error. A GmAPD will produce lower ranging precision as 

compared to LML [11], [12]. To see why this is, consider that the received pulse, ℎ𝑟𝑟, is a 

temporal convolution of the instrument response function, ℎ𝐼𝐼𝐼𝐼𝐼𝐼, and the surface response 

function, ℎ𝑆𝑆𝑆𝑆𝑆𝑆, expressed as 

ℎ𝑟𝑟(𝑡𝑡) =  ℎ𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡) ∗ ℎ𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) .      (2-2) 

 
The received echo pulse thus has a width and shape that is dependent on the properties of 

the target surfaces it interacted with (reflectivity, roughness, slope, etc.) and the 

parameters of the sensor (pulse width, pulse power, etc.) [26], [43]. When acquiring data 

with a GmAPD, each photon that is detected originates from somewhere in this 

distribution, and because of this, there is a significant range uncertainty. If the device 

took enough samples of the same footprint, the histogram of time-of-flights recorded 

from each photon detection event would eventually reconstruct the temporal waveform of 

the return pulse, equivalent to the digitized waveform captured by full-waveform lidar 

[14].  For an analog lidar device (LML), many photons are detected at once, generating 

the same waveform distribution but per laser shot. Ranging is done by estimating the 

peak, or multiple peaks, of the return energy either in hardware or by digitizing the entire 

backscattered echo waveform [1], [15]. The accuracy and precision of range estimation 

are proportional to the signal-to-noise ratio and the inverse of the pulse width [2], [12].   
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It is also expected that surface roughness or steepness will significantly worsen the 

ranging precision in an SPL system. Adding slope or roughness to the target surface will 

broaden the convolved temporal shape of the received pulse, creating further distribution 

uncertainty in single photon detection [43]. This effect is also seen in LML but is not as 

pronounced because although the pulse widens, using peak detection for ranging results 

in less uncertainty. Although studies on SPL100 performance are limited, research from 

Mandlburger et al. (2019) supports this theoretical basis, finding a 9.8 cm dispersion for 

tilted roofs as compared to 1.2 cm for flat roofs and 1.5 cm dispersion for paved surfaces 

as compared to 5.8 cm for meadows (increased roughness). Another study by Yang et al. 

used a Monte Carlo simulation to show that atmospheric conditions and surface 

roughness will increase uncertainty in the ICE-Sat2, a space-borne SPL [44].  

 

2.3.3 Additional Error Sources 

The previous section addressed the intrinsic ranging precision of the SPL100 system, 

but other error sources will contribute to the uncertainty in the final data product. The 

errors associated with the georeferencing subsystems are particularly important to 

consider. Without knowing the precise position and orientation of an airborne lidar 

system throughout the flight, the range measurements collected would be meaningless. 

To this end, three primary subsystems are used to collect data: a Global Positioning 

System (GPS) for location, an Inertial Measurement Unit (IMU) for orientation, and the 

laser scanner assembly [1]. The raw navigation records (GPS/IMU) are continuously 

recorded in-flight and must be synchronized with the range measurements post-flight. All 

of these subsystems contribute to overall error, and the uncertainty in the final point 
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cloud reflects the combined uncertainties from all the subsystems [45]. Uncertainty 

analysis for lidar data is non-trivial, as the navigation and ranging measurements are 

captured in different relative frames of reference and contribute to the overall uncertainty 

in a non-linear manner [45]–[48]. In addition to the individual errors from the various 

subsystems, any error in the calibration of the relationship between subsystems will be 

reflected in the final product. 

Information from the GPS and IMU are integrated in post-processing to georeference 

the data. The origin of each of these subsystems are not co-located, however, and 

therefore they each have different frames of reference. The process of transforming the 

data amongst the different coordinate systems to calculate ground coordinates can be 

expressed through the following georeferencing formula [1], [45]: 

P𝐺𝐺𝑚𝑚 = PGPSm + Rb
m�Rs

b ∙ rs − ℓb�,       (2-3) 

where: 

P𝐺𝐺𝑚𝑚: Coordinates of the target point in the mapping frame (m) 
 
PGPSm : Coordinates of navigation sensor (GPS) in mapping frame (m) 
 
Rb
m: Rotation matrix from body frame (b) to the mapping frame (m) 

 
Rs
b: Rotation matrix from laser scanner frame (s) into the body frame (b) 

      (Usually referred to as boresight matrix) 
 
rs: Coordinates of the target point in laser scanner frame (s) 
 
ℓb: Lever arm from scanner origin to navigation center origin given in the body frame (b) 
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The georeferencing formula can alternatively be expressed more completely as 

�
𝑋𝑋
𝑌𝑌
𝑍𝑍
�
𝐺𝐺

𝑚𝑚

= �
𝑥𝑥
𝑦𝑦
𝑧𝑧
�
𝐺𝐺𝐺𝐺𝐺𝐺

𝑚𝑚

+ Rb
m(ω,φ, κ ) ∙ �Rs

b(dω, dφ, dκ ) ∙ rs(𝛼𝛼,𝑑𝑑) − �
ℓ𝑥𝑥
ℓ𝑦𝑦
ℓ𝑧𝑧
�

b

� .                (2-4) 

The GPS (x, y, z), IMU (ω, φ, κ), scanning mirror unit (α), laser ranging unit (d) and 

component integration all contribute to the overall error [45]–[48]. The system 

integration includes the boresight angles (dω, dφ, dκ), and lever arm offset (lx, ly, lz).  

Thus, the basic characterization of lidar error includes 14 parameters [45], [48]. A 

georeferenced point cloud contains random error that occurs as a result of unpredictable 

sampling variability as well as possible systematic biases that can arise from system 

imperfections or human errors such as incorrect calibration. Although the above 

georeferencing equations apply to any lidar system, there are concerns specific to the 

SPL100 to note. Because the SPL100 is designed to be flown at higher altitudes (~2,000-

4,500 m) than traditional LML, this will result in larger uncertainty in the IMU output 

because angular error increases proportionally with object distance [45], [47]. Angular 

biases, atmospheric refraction, and pulse group velocity effects also have a more 

significant impact on geolocation accuracy due to the longer slant range distances, but 

Sigma Space has applied algorithms to account for these problems [3]. 

Imperfections in the rotating prism wedge, which produces the circular scan pattern 

on the ground, also exist in the SPL100. A slight wobble in the vertical axis in which the 

prism spins can produce small pointing errors whose influence will be magnified on the 

ground due to the higher altitudes the SPL100 operates at [41]. Pan et al. (2017), 

demonstrated how each HRQLS system has a unique wedge calibration which needs to 
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be reassessed whenever new boresight angles are required. Uncertainty in the final point 

cloud may also be introduced from misalignments of the returned laser array on the 

detector array. The images of the beamlet array may become displaced relative to their 

assigned pixel centers due to long pulse TOFs and high scan speeds [3], [7]. By the time 

the receiver views the photons returning from the surface, the optical wedge has 

advanced in phase relative to the time of laser fire [49]. Thus, the receiver FOV is 

displaced from the area of illumination on the ground. The HRQLS and the SPL100 

systems address this by implementing an optical TOF correction using an annular 

corrector wedge that is attached to the main scanner wedge in order to bring the 

transmitter and receiver FOVs into alignment for a specific flying height (Figure 12) [3], 

[7], [49]. Although the angular speed of the scanner can be adjusted for different flying 

heights to maintain alignment, high terrain relief or significant altitude changes during 

flight may result in the corrector wedge being insufficient to compensate for the 

movement [3], [50]. The SPL100, therefore, uses receiver-based georeferencing, where 

the timing and pointing are tied to the detector pixels rather than the “laser-centric” 

model traditionally used in LML sensors [50]. In the laser-centric model, the direction of 

the outgoing laser beam is used for determining point position on the ground. Taken 

together, any errors in this process would result in the beamlets striking the wrong 

detector element. As of yet, no studies have examined how possible misalignments 

impact the total expected error budget.  

Additional accuracy issues may arise for an SPL system in the form of systematic 

ranging biases that occur due to an effect referred to as “first photon bias.” Because 

photon arrival times follow a Poisson distribution and photon-sensitive detectors only 
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record the arrival time of the earliest photon, the range to the target appears to be closer 

to the sensor [11], [43]. The bias is affected by the number of incoming photons, and less 

incoming photons will make the target appear farther away [43], [44]. Such systematic 

ranging biases can be partly compensated for if the signal strength is known, but no 

specific information has been made available regarding the SPL100’s handling of the first 

photon bias.  

 

Figure 12: Side profile of spinning prism wedge and corrector wedge 
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3. Data Sources 

Single photon lidar (SPL) and linear mode lidar (LML) data were collected over the 

University of Houston campus (Houston, TX, USA) in February 2017 using the SPL100 

and Optech Titan systems, respectively. The Optech Titan is a discrete return system with 

three independent wavelength channels at 1550, 1064, and 532 nm [51]. Later, in 

November 2018, a GNSS survey of the campus was conducted. This chapter will detail 

these collections and the processing procedures applied to them. 

  

 Airborne Lidar Data Collection 

The SPL100 was flown over Houston by Leica on February 25, 2017, during leaf-

on conditions and was operated at 12,000 ft. (~3700 m) above ground level (AGL). The 

SPL data was provided in the WGS84(G1762) datum. The raw point cloud from the 

SPL100 is intrinsically noisy due to false returns from solar illumination and dark counts. 

Because of this, noise filtering is an essential step in post-processing single photon and 

Geiger-mode data. The SPL100 data was post-processed and noise filtered using the 

proprietary algorithms in the Leica HxMap software. The data was initially processed in 

2017 and reprocessed in 2019 with an updated version of the HxMap software. In both 

cases, the processing was performed by, or under the direct guidance of, Leica 

employees. The Optech Titan was flown over the University of Houston campus on 

February 16, 2017, at 1640 ft. (~500 m) AGL by the National Center for Airborne Laser 

Mapping (NCALM). NCALM also performed data processing using Optech LMS and 

TerraScan and made the data available in NAD83(2011) with NAVD88 orthometric 
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heights. Intensities were normalized to a flying height of 1000 m. The survey boundaries 

of these two missions are shown in Figure 13.  

 

 

Figure 13: Survey boundaries of the LML and SPL datasets 
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Table 2: Summary of Flight Parameters 
 

SPL100 Optech Titan 

Flying Height 12,000 ft (~3700 m) 1640 ft (~500 m) 

Laser Wavelength 532 nm (visible) 1550 nm (IR) 
1064 nm (NIR) 
532 nm (visible) 

Pulse Repetition Frequency 50 kHz 175 kHz / channel 

Point Density ~25 p/m2 ~12 p/m2 
Expected Vertical Precision   < 10 cm* < 2 cm** 

* Mandlburger et al. (2019) 
** Fernandez-Diaz et al. (2016) 

  

 GNSS Data Collection 

Global Navigation Satellite System (GNSS) data were collected throughout the 

University of Houston survey area in November 2018. Because this survey was 

conducted long after the lidar collections, each site was carefully chosen to ensure it 

could be clearly distinguished in the SPL and LML point clouds and that its location had 

not changed. Candidate sites had flat surfaces and sharp, distinct corners (e.g., raised 

flower beds, benches, concrete blocks). In the field, a rapid static survey was performed 

at thirty-four different sites using a Trimble NetR9 GNSS receiver (Figure 14, Figure 15). 

Rapid static surveys can produce centimeter-level accuracy with short observation times 

of 5-30 minutes [52]. For this study, all sites were observed for at least 40 minutes. 
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Figure 14: Examples of GNSS survey locations 



  

31 
 

The GNSS data were post-processed using the National Geodetic Survey’s Online 

Positioning User Service (OPUS)8 website, as well as the software package GrafNet, 

which was used to post-process data for days in which OPUS produced poor results. 

OPUS allows users to upload GPS data freely and returns an email report containing the 

positional coordinates and other quality information. OPUS has two different processing 

algorithms depending on the length of the data observation: OPUS-S for static data 

between 2-48 hours, and OPUS-RS for rapid static data between 15 minutes and 2 hours. 

OPUS-RS was used to process the data collected for this survey. Under normal 

conditions, OPUS-RS can produce centimeter-level accuracy [53].  

Both OPUS-S and OPUS-RS algorithms use data from Continually Operating 

Reference Stations (CORS) within the United States to calculate positional coordinates. 

The OPUS-RS algorithm, which is optimized for short observation times, achieves high 

accuracy by using three to nine CORS to estimate atmospheric delays at the rover 

(surveyed site) [54]. Estimates of the rover’s coordinates are calculated using data from 

each of the selected CORS individually; then the final coordinates are computed with a 

simultaneous least-squares adjustment of all the data together [53], [55]. In the OPUS-RS 

email report, users are given an estimated uncertainty for each component of the final 

positional coordinate. A root-mean-squared difference (RMSD) for each component is 

calculated from differences between the final coordinate and the coordinates calculated 

using only individual CORS data [53], [55]. These error estimates can help determine if 

the survey quality is within the required tolerance. It is suggested that for a high-quality 

                                                 
8 OPUS: http://geodesy.noaa.gov/OPUS/ 
 

http://geodesy.noaa.gov/OPUS/
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survey, the RMS difference in latitude, longitude, and ellipsoidal height should be less 

than 5 cm [56]. OPUS-RS also provides two “quality indicators” related to estimating 

atmospheric parameters and the rover position. Both should be above three [53], [56]. 

Given these criteria, positional coordinates with more than 5 cm of horizontal or vertical 

error, quality indicators less than 3, or those that used less than 50% of total observations 

were instead post-processed with GrafNet. The final results from the GNSS data 

collection are included in the Appendix (Table 8, Table 9). 

 
Figure 15: University of Houston survey area and GNSS observation sites 
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4. Methodology  

 

 Positional Accuracy 

The SPL100 data was transformed to the same horizontal and vertical datums as the 

Optech Titan collection using NOAA's free software VDatum9. The SPL horizontal UTM 

coordinates were shifted from WGS84(G1762) to NAD83(2011), and the elevations were 

transformed from WGS84(G1762) ellipsoid elevations to NAVD88 orthometric 

elevations (based on Geoid12B). After this, the areas of interest (the GPS collection sites) 

were extracted from the full point clouds and then displayed in Matlab to manually 

determine the point cloud position corresponding to each GPS site. The differences in the 

horizontal and vertical positions were recorded for every survey location for both the SPL 

and LML data sets.  

 

 Positional Precision 

The TerraScan software package within MicroStation was used to identify and 

export fifty planar regions throughout the survey site; samples were saved as LAS files to 

preserve relevant metadata (intensity, flight line, GPS time stamp). These planar regions, 

which were at least 10 m2 in surface area, were chosen to include a variety of surface 

materials and slopes. Many of these samples came from various rooftops of commercial 

and residential homes, but other flat regions such as sidewalks, tennis courts, and parking 

lots were also used. The same sample regions were used to analyze both the SPL and 

                                                 
9 VDatum: https://vdatum.noaa.gov/ 

https://vdatum.noaa.gov/
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LML data sets. The precision of a lidar system can be inferred from measuring the 

dispersion of elevation values on flat surfaces within a single flight line [57]. 

Matlab was used to determine both the normal vector of the best-fit plane and the 

standard deviation of the planar fit for each of the samples (Figure 16). It is important to 

note that for each sample only points from a single flight line were used, thus removing 

the possible effects of misalignments between flight lines. Additionally, because the 

Optech Titan has three lasers at different wavelengths, each of these channels was 

analyzed separately. After this, the trajectory data was used in conjunction with the best-

fit plane to find the angle of incidence of the laser on the sample surface. For each plane, 

the position of the first time-stamped point was used to construct a laser path vector. The 

angle of incidence is then simply the angle between the planar normal and laser vector. 

The mean intensity for each planar sample was also calculated.  

 

 
Figure 16: Using planar fitting to find the angle of incidence on a flat sample of points 
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 DEM Comparison 

Before a Digital Elevation Model (DEM) can be generated, lidar returns from the 

ground must first be identified. This classification was performed using the TerraScan 

embedded ground classification routine with the default parameters (88° for terrain angle, 

10° for iteration angle, and 1.4 m for iteration distance). TerraScan’s ground 

classification routine is based on work by Axelsson (2000) [58]. Before analysis, the SPL 

dataset was transformed to the same datum as the LML data, as described in Section 4.1. 

Additionally, the mean elevation bias was subtracted from each data set. (The elevation 

bias is the mean value calculated from the differences between each GPS survey height 

and the height of the corresponding point cloud return.) TerraScan provides a simple 

method for adding a constant Z value to all points with the “Transform Points” tool. 

 After this, the entire process of generating and comparing DEMs was done with 

Esri’s ArcMap software. In ArcMap, a LAS dataset can be created to reference multiple 

LAS files and their statistics. The dataset can be configured to filter only points classified 

as ground returns and to ignore importing other classes. ArcMap can then create a DEM 

from the elevation values with the “LAS Dataset to Raster” tool. A one-meter resolution 

image was created for both the LML and SPL datasets using the default parameters (cell 

assignment based on average value and void filling with linear interpolation). Each DEM 

raster image was then clipped to a specific spatial extent in ArcMap to ensure matching 

boundaries before the LML image was subtracted from the SPL using Raster Calculator 

tools. Some artifacts are visible in this difference of DEM image due to slight differences 

produced from the ground classification routine in areas with buildings. In particular, 
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edges of buildings had stray misclassifications, which led to discrepancies between the 

SPL and LML data. 

 

 Canopy Performance 

TerraScan was used to identify areas where the tree canopy completely covered the 

ground. Those trees were then segmented out and exported to LAS files that could be 

further analyzed and plotted in Matlab. An important part of this analysis was 

determining how many of the emitted pulses reached the ground. To accomplish this,  

Zhang et al.’s cloth simulation filtering (CSF) algorithm (2016) was used to classify 

ground points [59]. The CSF algorithm creates a surface model by inverting the point 

cloud and simulating a cloth draped over the terrain (Figure 17). It has been made 

available in a variety of programming languages, including Python and Matlab, as well as 

a plugin for the open-source program CloudCompare10. The CSF algorithm was more 

effective at creating a suitable classification for these small sample areas than using 

TerraScan. The following CSF parameters were used: 0.1 for cloth resolution, 500 

iterations maximum, and 0.1 classification threshold.  

 

                                                 
10 https://www.mathworks.com/matlabcentral/fileexchange/58139-csf-cloth-simulation-filter  
    https://github.com/jianboqi/CSF 

https://www.mathworks.com/matlabcentral/fileexchange/58139-csf-cloth-simulation-filter
https://github.com/jianboqi/CSF
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Figure 17: Overview of Cloth Simulation Filtering (Zhang et al., 2016) 

 

 A Matlab script was constructed that first identified the number of ground points 

using the CSF algorithm. After that, all the point cloud returns were sorted by their time 

stamp. For the SPL100, the returns were further sorted by their beamlet number (1-100), 

which is stored in the 8-bit “user data” field of the LAS file11. Because the LML data was 

collected with a system with three laser wavelengths, these returns were further sorted 

instead by the “scanner channel” data field. After thusly organizing the data, it was 

possible to determine how many emitted pulses were contained within each sample area, 

distinguishing pulses from different beamlets or channels as appropriate. The LAS file 

structure also contains data fields that identify, for every point, what return number the 

point was, and how many total returns the originating pulse contained. This information 

was used to plot the data by return number and to calculate the vertical separation 

between multiple returns from the same pulse. The script also found the number of pulses 

with multiple returns, and how many pulses within the sample area had only a single 

return.  

 

                                                 
11 https://rapidlasso.com/2018/09/14/scrutinizing-lidar-data-from-leicas-single-photon-scanner-spl100-aka-spl99/ 
    https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities 

https://rapidlasso.com/2018/09/14/scrutinizing-lidar-data-from-leicas-single-photon-scanner-spl100-aka-spl99/
https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities


  

38 
 

5. Results 

 
 Positional Accuracy 

The positional accuracy of a lidar system refers to how close a georeferenced 

position in the final point cloud is to its true, observed location position. Accuracy was 

assessed by examining the mean vertical and horizontal differences between 33 GNSS 

collection sites and their corresponding LML and SPL point cloud positions (see Table 3, 

Table 4). A Z-test was used to determine if the mean differences in easting, northing, and 

ellipsoidal height were statistically different from zero at a 95% confidence level [60], 

[61]. The mean easting difference of the Optech Titan data from the GNSS was not 

statistically significant, nor were the mean easting and northing differences of the 

SPL100 data. For the remaining values presented in Table 3 and Table 4, the null 

hypotheses that the mean differences were equal to zero were rejected. With one 

exception, the horizontal differences are statistically equal to zero, but the vertical 

differences are not. These mean vertical differences indicate a systematic vertical bias in 

the point clouds, potentially from the kinematic trajectory solution. This observation fits 

with the knowledge that the vertical component of a GNSS position is weaker than the 

horizontal components. 

A two-sample Z-test was then used to determine if the mean positional differences 

for the Optech Titan and SPL100 were statistically different from each other at a 95% 

confidence level. Although the mean easting differences were not statistically significant, 

the null hypotheses that the mean differences were equal were rejected for the northing 

and ellipsoidal heights. The SPL100 data set has a positive elevation bias (11.67 cm) 
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between the recorded GNSS and point cloud heights, while the Optech Titan has a 

negative height bias (-13.27 cm). As previously mentioned, these differences from zero 

are statistically significant at 95% confidence and are therefore clearly statistically 

different from each other. However, if the vertical biases are examined in terms of their 

magnitude only, there is no statistical difference in their magnitudes at 95% confidence 

according to a two-sample Z-test. This result indicates that the vertical accuracy of the 

SPL100 is similar to the linear mode system despite the worse intrinsic ranging precision. 

Table 3 and Table 4 also show that the horizontal differences in the Optech Titan had 

higher standard deviations than the SPL100, which can be attributed to the lower point 

density of the Optech Titan. By virtue of having denser coverage, the SPL100 is more 

likely to produce a return that closely corresponds to the corner being measured.  

Overall, these results indicate that the SPL100 is capable of similar positional 

accuracy as a linear mode lidar system, represented here by the Optech Titan, in regards 

to the final post-processed data product. An important caveat, however, is that the survey 

sites chosen here consisted of primarily flat, smooth surfaces. In light of the results 

presented by Mandlburger et al. (2019) and in the next section of this thesis, these error 

estimates may be optimistic [18]. Over rough terrain or sloped surfaces, SPL100 

positional accuracy may be considerably worse than that from a traditional LML sensor.   
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Table 3: Optech Titan Absolute Horizontal and Vertical Georeferencing Quality 

 Δ Easting GNSS Δ Northing GNSS Δ Ellipsoidal GNSS 
Mean   0.45 cm 12.58 cm -13.27 cm 
Standard Dev 17.83 cm 15.60 cm  7.63 cm 
RMSE 17.30 cm 19.56 cm  15.02 cm 

 
 
 
Table 4: SPL100 Absolute Horizontal and Vertical Georeferencing Quality 

 Δ Easting GNSS Δ Northing GNSS Δ Ellipsoidal GNSS 
Mean -2.92 cm -1.27 cm 11.67 cm 
Standard Dev 11.00 cm 10.68 cm   7.88 cm 
RMSE 11.05 cm 10.44 cm 13.80 cm 

 
 
 

 Positional Precision 

As expected, the standard deviation of flat regions is higher in the SPL100 dataset 

than the linear mode lidar captured with the Optech Titan. The overall standard deviation, 

calculated from all residuals across the fifty chosen samples, was 3.2 cm for the SPL100. 

In the Optech Titan, however, it was less than half of that, approximately 1.2 cm (Table 

5). When standard deviations were calculated for each sample, the SPL100 also had a 

much broader range of standard deviations- from 1 cm up to 11 cm. The sample standard 

deviations for the Optech Titan ranged from a minimum of 0.5 cm to around 3 cm. A 

two-sample F-test was conducted for each sample to determine whether the differences in 

planar variances in the SPL and LML data were statistically significant at 95%. Three of 

the samples from the Optech Titan channel had distributions similar to the SPL100, with 

the remaining samples showing statistically significant differences in variance, and hence 

precision. Two of these samples were from the SPL surfaces with the lowest standard 
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deviations, likely due to bright intensity values and moderate angles of incidence (15° - 

20°). The other was from an exceptionally noisy LML sample with an angle of incidence 

around 30°, whereas the SPL was recorded from an angle of about 11°. Several example 

surface profiles are shown in Figure 18-Figure 20 (data is shown for a single flight line 

and with all three Optech Titan channels).  

 
Table 5: Standard Deviation of Planar Surfaces 

System Standard Deviations (cm) 
Optech Titan (1550 nm) 1.2 
Optech Titan (1064 nm) 1.2  
Optech Titan (532 nm) 1.1 
SPL100 (532 nm) 3.2 

 
 

 
Figure 18: Profile of a sampled roof (~7.5 m wide, σ ~ 1 cm for LML, σ ~ 4 cm for SPL) 
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Figure 19: Profile of a sampled roof (~21 m wide, σ ~ 1.6 cm for LML, σ ~ 8 cm for SPL) 

 

 

Figure 20: Profile of a sampled roof (~20 m wide, σ ~ 1 cm for LML, σ ~ 2.7 cm for SPL) 
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To better understand how other variables may be affecting these observed planar 

standard deviations, the mean intensity and angle of incidence were examined with 

respect to the planar fit standard deviations. The intensity values recorded by lidar 

systems are a measure of the strength of the returning laser pulse, and typically the peak 

amplitude is used. However, among lidar manufacturers, there is no standardized method 

of deriving this from the return signal. Furthermore, although intensity values are related 

to surface reflectivity, they are a relative measure affected by other variables such as 

acquisition geometry and the laser scanners themselves [62], [63]. Despite this, intensity 

values are useful for classification, object detection, and many other applications. Among 

many other possible sources of error, lidar range finder accuracy has been shown to 

decrease with low reflectivity, and thus low intensity, because the accuracy and precision 

of range estimation are proportional to the signal-to-noise ratio (SNR) [12], [48], [57]. 

With all other factors held equal (e.g., distance, atmosphere, and incidence angle), the 

strength of the returning signal depends on the surface reflectivity. Studies have found the 

range error associated with varying intensity values to be in the range of mm for LML 

[64], [65]. A recent study by Wujanz et al. (2017) found that in laboratory-controlled 

conditions, with calibration targets, the range error in a terrestrial lidar system decreased 

non-linearly as the recorded intensity increased [66]. 
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Figure 21: Intensity versus standard deviation of ranges (taken from Wujanz et al. 2017) 

 
 
 In their examination of recorded intensity versus ranging precision (standard 

deviation of recorded ranges), Wujanz et al. (2017) found the data fit a power function 

(Figure 21). Assuming that the behavior of real-world targets will bear some resemblance 

to those under laboratory-controlled conditions, the following equation was used to fit the 

planar standard deviations (𝜎𝜎) versus intensity (𝐼𝐼), where 𝑎𝑎 and 𝑏𝑏 are unknown constant 

parameters: 

                  𝜎𝜎 = 𝑎𝑎 ∙ 𝐼𝐼𝑏𝑏.               (5-1) 

Although the data for the SPL100 had a high fit to the power function (R2=0.658), the 

data from the Optech Titan were a poor fit (R2 < 0.3) (Figure 22-24). The LML plots do 

show a non-linear relationship, and it is possible that under controlled conditions the data 

would exhibit a power function type relationship. There are several possible reasons for 

the poor fit in the LML data. Although the planar samples were chosen to be as 

homogeneous as possible, these regions may well have been a composite of several 

materials with different reflectivity properties. It is also possible that the targets chosen 
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did not represent the full dynamic range of the detectors. The 1550 nm channel, which 

had the poorest fit to the predicted behavior (R2=0.136), also had the smallest range of 

intensity values (~150 – 4,200) as compared to the 532 nm channel, which had a slightly 

better fit (R2=0.300) and the broadest range of intensity values (~350 – 10,000).  

 

 
Figure 22: SPL100 intensity versus standard deviation 
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Figure 23: Optech Titan intensity (1550 nm) versus standard deviation 

 

 
Figure 24: Optech Titan intensity (1064 nm) versus standard deviation 
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Figure 25: Optech Titan intensity (532 nm) versus standard deviation 

 
 

Finally, the effects of the angle of incidence on the observed planar standard 

deviations were also considered. A ranging error can occur when a laser beam illuminates 

a surface at a non-normal angle. Baltsavias (1999) characterized the maximum range 

error, ∆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 , that would occur at an angle of incidence 𝜃𝜃 for a given flying height (ℎ) 

and beam divergence (𝛾𝛾) with the following equation [67]:  

∆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  = ℎ𝛾𝛾 |tan𝜃𝜃|
2

 .        (5-2)  

Using the above equation with a flying height of 3700 m and a beam diverge of 0.08 

mrad/beamlet, the SPL100 would have a maximum expected range error of 26 cm for a 

60° angle of incidence (Figure 26). For the infrared Optech Titan channels (ℎ = 500, 𝛾𝛾 =

0.35 mrad), the error would be 15 cm. At 30°, this drops to 8.5 and 5 cm, respectively. 

These values are far in excess of what was observed in this study. At 60°, the SPL100 
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had planar standard deviations of about 8-10 cm, while in the Optech Titan it was about 

1.5-2 cm. The Baltsavias equation appears to be a poor predictor for ranging uncertainty 

due to incidence angle as the magnitude of the effect appears to be much smaller. There 

is, however, a linear trend between the angle of incidence and planar standard deviation 

for both systems at all wavelengths (Figure 27-Figure 30), which is not dissimilar to the 

trend predicted by Equation 5-2 between 0° and 60°, albeit with a lower slope.  

 

Figure 26: Theoretical Effect of Angle of Incidence on Ranging Error from Baltsavias 
(1999) 

 

It is difficult to separate the effect of intensity and angle of incidence. For example, a 

high noise level could be explained by either a high reflectance surface recorded at a high 

incidence angle or a dark surface observed at a normal angle of incidence [66]. 

Furthermore, for a Lambertian surface, intensity decreases with the cosine of incidence 
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angle [68]. The resulting decrease in intensity, resulting in a lower SNR, will give rise a 

noisier measurement. When the angle of incidence and standard deviation are plotted 

together and colored by intensity values, it can be seen that the steeper angles were 

predominately darker targets (Figure 31, Figure 32). (Similar distributions were observed 

for all LML channels.)   

 

 
Figure 27: SPL100 Angle of Incidence versus Standard Deviation 
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Figure 28: Optech Titan (1550 nm) Angle of Incidence versus Standard Deviation 

 
 

 
Figure 29: Optech Titan (1064 nm) Angle of Incidence versus Standard Deviation 
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Figure 30: Optech Titan (532 nm) Angle of Incidence versus Standard Deviation 

 

 

Figure 31: SPL100 plot of angle of incidence versus standard deviation, colored by 
intensity value 
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Figure 32: Optech Titan (532) plot of angle of incidence versus standard deviation, 

colored by intensity value 

 

 DEM Comparison 

Thus far, the accuracy and precision analysis have been limited to GNSS spot 

checks and small planar patches. A DEM comparison between the LML and SPL data, 

however, provides a spatially continuous macro view of relative system performance that 

will reveal systematic differences. In Figure 33, two one-meter resolution maps show the 

difference between the DEMs derived from the Optech Titan and two SPL100 DEMs 

generated from data processed with two different versions of HxMap. There are artifacts 

visible in both images in areas with buildings due to slight differences and 

misclassifications from the ground classification routine. Furthermore, water bodies such 

as the bayou and man-made ponds differ in elevation between the SPL100 and Optech 
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Titan data because the ground classification routine did not identify the Optech Titan 532 

nm bathymetry as ground returns, while the SPL bathymetry was identified as ground. 

More significantly, the SPL100 point cloud derived from the HxMap software in 

2017, when the lidar data was collected, contains noticeable artifacts at the edges of the 

SPL100 flight lines. At these edges, the SPL100 differs from the Optech Titan DEM by 

about 4 cm. Reprocessing the raw data in 2019 revealed that recent updates to the HxMap 

software have improved post-processed data quality. In the right side of Figure 33, with a 

2019 version of HxMap, the flight line artifacts have been minimized, and the DEM is in 

closer agreement to the Optech Titan derived DEM. These visual observations are 

confirmed with a histogram of the DEM differences (Figure 34), which shows a mean 

bias of -2.5 cm between the Optech Titan DEM and the 2017 HxMap post-processed 

SPL100 data, and 1.4 cm using the most recent version (2019) of HxMap software. 

Given that the SPL100 is marketed for large area terrain mapping, it should be 

capable of producing DEMs that are of comparable quality and accuracy to those 

currently produced from traditional LML systems. The close agreement between the 

SPL100 DEM produced from the most recent version of HxMap and the Optech Titan 

DEM indicates that the SPL100 largely meets these requirements, but small systematic 

problems still exist at SPL flight line edges. There is an increased point density where 

flight lines overlap, and errors may occur when near-surface points from residual 

calibration errors or post-processing filtering bias the DEM. The updated HxMap 

workflow includes a decimation filter to produce a more homogeneous point density, 

which appears to reduce the artifacts at flight edges. 
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Figure 33: Difference of DEMs using 2017 HxMap software (left) and after using 

updated 2019 software (right) 

 

 
Figure 34: Histogram of the difference of DEMs between LML and SPL data 
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 Canopy Performance 

Both the Optech Titan and SPL100 are capable of capturing tree canopy structure 

and underlying ground surfaces (Figure 35, Figure 36), but their distinct detection 

methodologies result in considerably different underlying data characteristics. This study 

examined the ability of these systems to produce multiple returns and to penetrate 

through to the ground under tree canopies, as well as the minimum vertical separation 

possible with multiple returns, which is referred to as range resolution. Statistics 

describing these characteristics, generated from thirty sample canopy areas, are shown in 

Table 6. It can be readily observed that even though the SPL100 produces more detected 

laser pulses than the Optech Titan, the Titan generates more multiple and ground returns 

as a percentage of the total pulses. 

 
Table 6: Canopy Performance Statistics  

 Avg. Number 
of Pulses 

% Multiple 
Returns 

% Ground 
Returns 

Avg. Vertical Separation 
from Return 1 to 2 

Optech Titan ~ 17,000 87% 71% 4.3 m 
SPL100 ~ 36,000 22% 43% 9.9 m 

 

Of the thirty sampled tree canopies, only 22% of SPL100 pulses had multiple 

returns, as compared to 87% for the Optech Titan. The Optech Titan, which is a discrete 

return lidar system, can record up to four returns per pulse. In this dataset, the SPL100, 

however, usually generates only one or two returns through the canopy. Although some 

pulses had three returns, this made up less than 1% of the total pulses analyzed. In 

contrast, pulses with three or four returns comprised 50% of the total pulses in the Optech 

Titan samples.  
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Figure 35: Trees representing samples (A) and (C), on left, and trees representing samples (B)  
and (D), on the right, that are depicted in Figure 36 and Figure 37 
     

 

 
Figure 36: Canopy structure in Optech Titan point cloud (left) and SPL100 (right) 

 
 
 

It is apparent that in terms of range resolution, the SPL100 is considerably more 

limited than an LML system. On average, the first and second returns had about 10 m of 

vertical separation, and only a small fraction of the second returns came from lower in 

the canopy. Visual inspection of the point cloud, colored by return number, and the 
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histogram of range separations shows that the second returns in the SPL100 are 

overwhelmingly from the ground (Figure 37, Figure 38). The first and second returns in 

the Optech Titan are separated, on average, by 4.3 m. This average, however, comes 

from a bimodal distribution made of up second returns from the canopy and on the 

ground. These observations are in agreement with the study from Mandlburger et al. 

(2019), which found that the SPL100 had on average 1.06 returns through thick 

vegetation, as compared to 1.84 mean returns using a full-waveform lidar system [15]. 

Previous studies on the SPL100’s predecessor, HRQLS, specify that the system has 

a 1.6 ns pixel recovery time, and is thus capable of recording returns separated by 24 cm 

[3], [4]. The SPL100 range resolution is not held back by inherent detector limitations, 

but rather due to noise filtering. During post-processing, a dead distance filter is applied 

to the SPL100 data to eliminate after-pulsing noise [69]. However, this filter also 

removes a significant amount of multiple returns, which are necessary for adequate 

canopy penetration. Mandlburger et al. (2019) also postulated that noise filtering during 

post-processing removed valid multi-returns in the canopy [15]. The range resolution of 

unfiltered SPL100 data was analyzed to validate this assumption. Unfiltered SPL data, 

however, has a large column of noise extending above and below the surface returns. To 

get around this limitation, any noise points above the canopy or below the ground level 

were removed. The return numbers of the remaining points were then adjusted so that 

first returns could only occur within the bounding box.  
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Figure 37: Multiple returns in tree canopy for Optech Titan (left) and SPL100 (right) 
 

 

 
 
Figure 38: Histograms of range distance between first and second returns for Optech 
Titan (left) and SPL100 (right) 

 



  

59 
 

As depicted in Figure 39, the unfiltered SPL100 has multiple returns distributed 

throughout the canopy. On average, the first and second returns in an unfiltered SPL100 

point cloud are separated by 4.0 m, which is slightly better than what was observed with 

LML data. This average, of course, does include the separation between multiple returns 

in the canopy and between valid returns and noise points. These results confirm that 

SPL100 range resolution is presently limited by noise filtering. In the future, Leica could 

possibly address this with more sophisticated filtering algorithms that would reduce 

noise while better preserving multiple returns through vegetation.  

 

 

 

Figure 39: Multiple returns in tree canopy for unfiltered SPL100 point clouds 
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In addition to producing more pulses with multiple returns, more of the pulses 

reached the ground with the Optech Titan (71%) than in the post-processed SPL100 

(44%). However, the reason the SPL100 is capable of generating higher ground densities 

under tree canopies, as compared to the Optech Titan, is due to the higher number of lidar 

measurements rather than superior penetration performance. For the samples tested here, 

the LML data had a point density of about 10 pts/m2 under the treetops while the SPL 

data had about 28 pt/m2, but at the flight edges, this can increase to over 100 pt/m2. In the 

Mandlburger et al. study, which planned their data acquisitions to achieve similar overall 

point density (20 points/m2), the full-waveform lidar point density under vegetation 

surpassed that of the SPL100 [15]. In general, an LML sensor with a higher ground 

sampling rate will surpass the SPL for ground density under the canopy. 

Lastly, this analysis of canopy performance considered the ranging precision of flat 

terrain under the treetops as compared to adjacent areas of open terrain with roughly the 

same land cover. Surprisingly, the SPL100 did not exhibit a large decrease in precision 

under treetops, as Stoker et al. (2016) had noted a drop in vertical accuracy under canopy 

[4].  Under canopy cover, flat terrain had an overall standard deviation of 3.6 cm 

(computed from all residuals for 25 samples) and 3.0 cm in open terrain (Table 7). In 

contrast, the Optech Titan fell from 2.7 cm under the canopy to nearly half that, 1.7 cm, 

in open terrain. A two-sample F-test determined that for both systems, differences in 

planar variances were statistically significant at 95% when comparing the residuals of 

samples under the canopy and those in open terrain. 

These results are roughly in line with the Mandlburger et al. (2019), although they 

did not look into standard deviation statistics under the canopy. They found that the 
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SPL100 had a dispersion of about 3.9 cm in open meadows while in a full-waveform 

LML system, it was 1.0 cm [15]. In their examination of the HRQLS’s ability to meet the 

needs of the USGS, Stoker, et al. (2016) raised concerns that the vertical accuracy in 

vegetated areas for the bare-earth DEMs was unacceptable during leaf-on conditions [4]. 

The reduced accuracy was attributed to noisier points and larger voids under the canopy 

as compared to LML. The results presented here, however, are not directly comparable 

due to differences in study sites. The study from Stoker et al. considered both a forested 

region in addition to an urban area, while this analysis looked mainly at small groves of 

trees in urban areas, typically with manicured lawns underneath. Only a few areas of 

denser tree cover, such as parks and empty lots, were included. Further research is needed 

to test whether the SPL100 is capable of acceptable accuracy under dense canopy for 

non-urban areas.  

 

Table 7: Standard Deviation of Terrain under Canopy 

 Std Dev Under Canopy (cm) Std Dev Open Terrain (cm) 
Optech Titan 2.7 1.5 
SPL100 3.6 3.0 
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6. Conclusion 

The Leica SPL100, which utilizes a detector array of many single photon sensitive 

elements, is capable of large data acquisition rates while maintaining superior point 

density as compared to the traditional linear mode lidar (LML) systems on the market. 

The results shown in this thesis validate theoretical expectations of lower ranging 

precision in the SPL100 than in LML, and also demonstrate how the precision is more 

negatively affected by surface properties such as low intensity, roughness, and slope [11], 

[12], [15], [43]. For the fifty planar surfaces tested, the SPL100 shows a much larger 

range of standard deviations, from 1 cm up to 11 cm. The LML data, collected with an 

Optech Titan, had planar standard deviations that only ranged from 0.5 to 3 cm. Taking 

the residuals of all the samples together, the SPL100 had an overall standard deviation of 

3.2 cm, while in the Optech Titan it was only 1.2 cm. Even though the SPL100 was flown 

from a significantly higher flying height, and has worse ranging precision, GNSS survey 

data found that the post-processed SPL100 point cloud has similar positional accuracy to 

that of the LML data, at least for the smooth, flat surfaces tested. Furthermore, the DEM 

derived from the SPL100 closely agrees with the DEM produced from the Optech Titan; 

the mean difference between the two DEMS was 1.4 cm. Although recent updates to 

Leica’s HxMap have improved post-processed data quality, biases at the SPL100 flight 

line edges remain visible in the difference of DEM image.  

System performance under tree canopy was also considered. In vegetation, only one 

or two returns are to be expected from the post-processed SPL100 data. In the samples 

tested, the first and second returns had, on average, a vertical separation of about 10 m. 

Most of the second returns came from the ground, rather than lower in the canopy. In 
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contrast, the Optech Titan, a discrete return LML system, can record up to four returns 

per outgoing pulse. Multiple returns are well distributed throughout the canopy. The first 

and second returns in the Optech Titan are separated, on average, by 4.3 m. Analysis of 

unfiltered SPL100 data confirmed that noise filtering during post-processing was the 

primary reason for the poor range resolution in the SPL100 as the algorithm removes a 

portion of the multiple returns. The unfiltered data set had a similar ability to resolve 

multiple returns as the LML, with an average of 4.0 m between the first and second 

returns within the canopy. In the future, more sophisticated noise-filtering algorithms 

may be able to preserve valid returns better while removing spurious noise points. 

Despite its limited range resolution, the high point densities of the post-processed 

SPL100 data do, however, permit tree canopies to be reconstructed with enough accuracy 

to allow for variables such as tree heights and biomass to be measured [5], [19]. Under 

the canopy, the SPL100 had a planar standard deviation of 3.6 cm while in the Optech 

Titan it was 2.7 cm. Although Stoker et al. raised concerns about vertical accuracy under 

vegetation with the HRQLS, differences in study sites did not allow for a direct 

comparison of results.  

In its current state, the SPL100 is likely best suited for applications in which the need 

for data collection efficiency outweighs the need for the best possible accuracy and 

precision. Despite its lower ranging precision and higher rates of false returns, the 

SPL100 is nonetheless capable of accuracy similar to LML[4], [15]. Additionally, for 

some users, the SPL100’s lack of full-waveform information and being restricted to using 

a laser wavelength in the visible light may also present a significant disadvantage as 

compared to the wide variety of LML systems available. 
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Going forward, single photon lidar and Geiger-mode lidar systems will benefit 

from additional research so that users of these new technologies will have a thorough 

understanding of best practices for data collection and processing. In particular, future 

studies should focus on the SPL100’s positional accuracy on sloped and textured 

surfaces, including terrain under vegetation cover. It has been demonstrated here in this 

thesis and elsewhere that such conditions significantly worsen ranging position, but more 

information is needed to quantify its effect on accuracy. The SPL100’s suitability for 

forestry applications should also be examined in light of the knowledge that noise 

filtering removes returns in the canopy. The SPL100 is a promising new sensor for 

efficient large-area mapping, but given that its detection capabilities are very different 

from traditional LML systems, it is crucial to understand its performance limitations and 

in what conditions they occur.  

The use of SPL and GML for commercial surveying and mapping is not yet a 

mature technology. It is expected that the SPL100 capabilities will continue to improve 

from what is reported here. In 2016, for example, the study by Stoker et al. critiqued the 

HRQLS for not providing point clouds with time stamp, multiple returns, or intensity 

information [4]. The SPL100 that is now available for commercial use has addressed all 

these deficiencies, however. The DEM comparison presented in this thesis, likewise, 

indicates that the Leica software for post-processing the SPL100 data is also being 

refined. It is thus possible, likely even, that future hardware or software changes will 

bring the SPL100 closer into line with the precision and accuracy that is now available 

from an LML system.   
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Appendix 

Table 8:  OPUS-RS Output Report Values 

Survey Latitude  
RMS (cm) 

Longitude 
RMS (cm) 

Ellip Height 
RMS (cm) 

% Observations 
Used 

Quality 
Index 

Quality 
Index 

1 1.0 0.8 3.7 82 7.21 46.55 
2 1.0 0.8 3.3 92 8.40 40.40 
3 0.9 0.8 1.6 81 16.87 47.13 
4 1.2 0.9 1.9 74 18.12 14.43 
5 1.3 0.9 3.6 63 20.85 22.30 
6 1.4 0.9 3.4 82 4.18 37.20 
7 1.1 0.7 2.3 88 26.61 68.82 
8 1.1 0.7 3.7 89 23.29 58.62 
9 1.3 0.8 2.8 80 19.08 42.48 

10 1.3 0.8 2.8 76 16.09 34.39 
11 1.4 0.7 2.3 72 19.28 41.46 
12 1.2 0.7 1.9 71 25.56 47.28 
13 1.2 0.7 2.1 72 24.14 42.99 
14 1.0 0.8 2.3 91 14.99 38.69 
15 1.1 0.7 3.3 87 21.05 37.38 
16 1.2 1.2 2.6 81 12.46 31.96 
17 1.0 1.5 3.7 50 17.50 11.51 
18 Unable to process N/A N/A N/A 
19 1.1 0.6 2.4 81 19.56 44.46 
20 1.1 0.8 3.9 76 10.79 23.75 
21 1.6 0.9 6.2   43 6.90 12.09 
22 1.6 1.5 7.2 68 4.12 11.09 
23 0.9 0.7 4.2 76 12.31 51.61 
24 0.9 0.7 6.1 73 11.81 47.04 
25 1.2 1.5 5.0 75 10.40 33.56 
26 1.4 1.2 2.9 88 8.66 30.22 
27 0.9 0.6 5.0 90 12.21 17.67 
28 1.1 1.0 5.5 67 15.39 30.83 
29 1.2 0.6 5.2 69 17.71 33.28 
30 1.3 0.6 5.5 73 17.05 21.77 
31 0.8 0.7 6.9 79 19.09 29.75 
32 0.7 0.7 3.5 85 7.62 2.85 
33 1.0 1.0 6.8 98 7.47 24.94 
34 1.1 0.9 3.6 100 5.69 45.90 
35 1.2 0.6 4.0 80 19.76 34.85 

MEAN 1.1 0.9 3.9 78 14.77 34.10 
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Table 9: OPUS-RS and GrafNet, Final Results 

Survey Latitude  
RMS (cm) 

Longitude 
RMS (cm) 

Ellip Height 
RMS (cm) 

1 1.0 0.8 3.7 
2 1.0 0.8 3.3 
3 0.9 0.8 1.6 
4 1.2 0.9 1.9 
5 1.3 0.9 3.6 
6 1.4 0.9 3.4 
7 1.1 0.7 2.3 
8 1.1 0.7 3.7 
9 1.3 0.8 2.8 

10 1.3 0.8 2.8 
11 1.4 0.7 2.3 
12 1.2 0.7 1.9 
13 1.2 0.7 2.1 
14 1.0 0.8 2.3 
15 1.1 0.7 3.3 
16 1.2 1.2 2.6 
17 1.0 1.5 3.7 
18 Unable to process 
19 1.1 0.6 2.4 
20 1.1 0.8 3.9 
21 0.5 0.5 0.6 
22 0.5 0.5 0.6 
23 0.5 0.5 0.6 
24 0.5 0.5 0.6 
25 0.5 0.5 0.6 
26 1.4 1.2 2.9 
27 0.5 0.5 0.7 
28 0.5 0.5 0.7 
29 0.5 0.5 0.7 
30 0.5 0.5 0.7 
31 0.5 0.5 0.6 
32 0.5 0.5 0.6 
33 1.0 1.2 3.2 
34 0.9 1.0 2.0 
35 1.2 0.6 4.0 

MEAN 1.0 0.8 2.1 
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Table 10: Positional Accuracy for Optech Titan 

 

 

 

Survey Δ Easting (cm) Δ Northing (cm) Δ Ellipsoidal (cm) 
1 14.40 10.30 -12.90 
2 -6.10 18.60 -16.50 
3 -12.40 27.10 -12.10 
4 -21.00 -13.40 -19.50 
5 -8.00 18.70 -11.90 
6 -17.20 -0.30 -12.90 
7 11.30 -10.40 -24.10 
8 8.70 25.10 -21.00 
9 5.70 29.10 -18.30 

10 7.00 20.00 -11.50 
11 16.30 23.10 -15.10 
12 -37.50 35.70 -4.50 
13 5.20 -1.00 7.50 
14 6.40 23.70 -13.10 
15 -3.00 3.10 -13.60 
16 -11.00 25.80 -13.90 
17 5.30 13.90 -9.10 
18 24.50 9.80 -18.90 
19 17.50 21.30 -16.00 
20 35.63 -0.98 -26.65 
21 14.75 -8.55 -17.04 
22 -17.83 8.26 -11.45 
23 0.40 35.53 -14.22 
24 27.70 2.00 -23.70 
25 -4.56 8.34 -10.97 
26 -5.27 -10.18 -11.83 
27 -27.18 3.26 -10.98 
28 35.78 -7.86 -15.93 
29 -14.79 36.77 -12.13 
30 11.72 13.78 -10.02 
31 -25.28 -11.37 12.92 
32 -12.20 36.10 -12.20 
33 -10.20 29.80 -16.40 

MEAN 0.45 12.58 -13.27 
STD DEV 17.83 15.60 7.63 
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Table 11: Positional Accuracy for SPL100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Survey Δ Easting (cm) Δ Northing (cm) Δ Ellipsoidal (cm) 
1 3.40 -11.70 12.10 
2 -25.10 -9.40 12.50 
3 2.60 8.10 10.90 
4 -8.00 -11.40 6.50 
5 -18.00 4.70 12.10 
6 -20.20 -2.30 15.10 
7 -9.70 -0.40 14.90 
8 12.70 13.10 5.00 
9 -1.30 -1.90 0.70 

10 9.00 4.00 6.50 
11 4.30 -7.90 9.90 
12 9.50 3.70 11.50 
13 7.20 4.00 18.50 
14 -7.60 11.70 5.90 
15 -2.00 -2.90 12.40 
16 -2.00 -16.20 14.10 
17 4.30 3.90 19.90 
18 7.50 -1.20 4.10 
19 11.50 12.30 16.00 
20 -4.37 8.02 -8.65 
21 -5.25 5.45 19.96 
22 -2.83 7.26 9.55 
23 -9.60 -6.47 2.78 
24 7.70 6.00 5.30 
25 -5.56 -13.66 22.03 
26 -5.27 -5.18 18.17 
27 -33.18 -33.74 14.02 
28 5.78 -14.86 16.07 
29 0.21 20.77 12.87 
30 -0.28 -1.22 4.98 
31 -19.28 -1.37 35.92 
32 7.80 -12.90 4.80 
33 -10.20 -0.20 18.60 

MEAN -2.92 -1.27 11.67 
STD DEV 11.00 10.68 7.88 
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Table 12: Canopy Penetration Statistics for Optech Titan (LML) 

Sample Area (m2) Percent of Pulses 
Reaching Ground (%) 

Percent of Pulses with 
Multiple Returns (%)  

1 362.8 91.5 98.7 
2 496.5 86.7 92.1 
3 472.8 80.2 90.0 
4 595.1 60.5 80.2 
5 483.7 58.7 82.5 
6 393.6 72.3 85.2 
7 333.6 67.0 85.4 
8 385.4 76.5 86.0 
9 455.0 63.4 73.9 

10 1,189.8 76.1 88.2 
11 893.0 78.7 89.3 
12 480.8 88.1 91.2 
13 603.0 77.4 86.4 
14 515.6 75.1 84.2 
15 894.5 67.8 82.7 
16 786.7 52.4 74.8 
17 684.4 58.3 79.3 
18 1,282.8 59.5 82.5 
19 4,830.4 56.1 86.7 
20 1,778.4 59.2 84.3 
21 1,109.8 96.6 91.8 
22 1,174.9 78.3 87.7 
23 2,025.9 71.5 82.4 
24 1,135.8 92.1 93.0 
25 5,231.1 76.6 86.8 
26 1,560.9 79.2 89.2 
27 1,182.1 86.9 89.5 
28 3,069.6 81.8 89.3 
29 858.0 84.3 88.9 
30 1,307.1 95.2 88.6 

 MEAN 74.9 86.4 
 STD DEV 12.4 5.2 
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Table 13: Canopy Penetration Statistics for Leica SPL100 

Sample Area (m2) Percent of Pulses 
Reaching Ground (%) 

Percent of Pulses with 
Multiple Returns (%)  

1 360.3 53.1 35.7 
2 491.0 48.8 24.9 
3 470.9 50.3 22.9 
4 597.2 31.5 16.9 
5 406.8 31.0 18.9 
6 393.9 38.5 21.6 
7 338.1 49.4 21.3 
8 249.9 52.8 20.9 
9 448.9 43.1 19.7 

10 1,198.3 42.1 23.0 
11 885.7 48.2 23.4 
12 482.8 40.8 21.6 
13 602.7 46.0 20.9 
14 513.9 39.7 17.7 
15 904.2 46.2 23.9 
16 784.3 26.2 13.7 
17 413.3 45.1 19.2 
18 1,354.3 14.9 6.4 
19 4,845.2 17.2 11.9 
20 1,803.6 14.7 9.6 
21 1,182.4 70.6 22.9 
22 1,167.8 46.5 14.2 
23 2,019.8 59.2 23.6 
24 1,132.6 66.6 23.1 
25 5,217.0 41.7 23.5 
26 1,548.1 37.8 19.8 
27 1,195.6 61.2 30.4 
28 3,051.1 58.3 14.1 
29 854.3 54.1 21.9 
30 1,295.2 72.9 15.9 

 MEAN 44.9 20.1 
 STD DEV 14.8 5.8 
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