
PRIORITY HANDLING HARDWARE AND SOFTWARE
FOR THE HP 2100A COMPUTER

A Thesis
Presented to

the Faculty of the Department of Electrical Engineering
University of Houston

In Partial Fulfillment
of the Requirements' for the Degree

Master of Science in Electrical Engineering

by
Rashinikant B. Patel

Aug 1974

ACKNOWLEDGMENT

A great deal of credit for this thesis goes to my brothers
for their help,and encouragement.

I would like to gratefully thank Dr. J. D. Bargainer for
his guidance and enthusiasm.

A special thank you goes to Mr. Bill Price for his help
and instruction and to Ms. Michele Maes for her alacrity and effi
ciency.

PRIORITY HANDLING HARDWARE AND SOFTWARE
FOR THE HP 2100A COMPUTER

An Abstract of a Thesis
Presented to

the Faculty of the Department of Electrical Engineering
University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Electrical Engineering

by
Rashmikant B. Patel

Aug 1974

ABSTRACT

Although it is general purpose and highly'efficient data
processor, the HP 2100A Computer lacks efficiency for fast com
putational process, if it is not equipped with the high speed in-
put/output peripherals. It is designed for input/output flexi
bility with plug-in interfaces as the main feature. In order to
have an efficient computational processing system, a high speed
paper tape reader and a high speed paper tape punch were inter
faced with the HP 2100A Computer. The high .speed reader, which
operates on photo sense principle, reads at a rate of 300 charac
ter s-per-second. The high speed punch punches data at a rate of
60 characters-per-seconds. A selecting feature was added to
facilitate the full use of a high speed reader and a high speed
punch, as common devices between the HP 2100A Computer and the
SDS-92 Computer.

In a process control environment there would be several
tasks to be performed, parameters to be input and messages to be
printed to the operator. It would be desirable to have the
priority for these tasks which could be controlled by the oper
ator. This function was achieved by writing a priority handler.

A priority handler was written partly in FORTRAN and
partly in assembly language. An optional feature was created for
interrupting a task service subroutine by one of the higher
priority service subroutines. A queue table was generated to
keep track of all task subroutines asking for service. Also,
a capacity for nesting all interrupts from different subroutines
was developed. The indication for the errors were generated by

the error messages.
A priority table was developed for the priority of the

different task service subroutines, which could be controlled by
the operator by re-configuring it. The priority handler was
written to accept the request for servicing task subroutines by
setting bits of a word on a particular interface card. The pro
gramming problems, due to the existing HP software were also re
solved.

TABLE OF CONTENTS

CHAPTER PAGE
I. INTRODUCTION 1

1.1 The HP 2100A Computer Interface'........ 1
1.2 I/O Priority Structure 1
1.3 Interface Interrupt Mechanism 3
1.4 INPUT/OUTPUT Transfer 5
1.5 I/O Device Commands.................... 7

II. HIGH SPEED PAPER TAPE READER........ 9
2.1 REMEX 9131 Perforated Tape Reader 9
2.2 9131 Perforated Tape Reader Coupler Sys

tem 11
2.3 Design Requirement for the Interface Card 14
2.4 Design of the HP 2100A Interface Card for

the Reader....................... 15
III. HIGH SPEED PAPER TAPE PUNCH.................. 21

3.1 Tape Perforator 21
3.2 Tape Perforator and Coupler System . . . 22
3.3 Design Requirement for the Punch Interface 25
3.4 Design of the HP 2100A Interface Card for

the Punch........... 27
IV. PRIORITY HANDLER.............................. 35

4.1 Introduction.......................... 36
4.2 Priority Table........................ 41
4.3 Typical Subroutines 43
4.4 Generation of the Priority Handler System 44
4.5 Use and Configuration of the Priority

Handler 48

CHAPTER PAGE
V. SOFTWARE DEVELOPMENT 51

5.1 Software Development of the Priority
Handler...................... 51

5.2 The Problems and Solutions Involved
in the Priority Handler . . . 69

BIBLIOGRAPHY 75
APPENDIX A - Priority Handler Listing 76
APPENDIX B - Logic Symbols........................ 102
APPENDIX C - Backplane Driver/Receivers 104
APPENDIX D - Layout and Connection Table for the

High Speed Reader.................... 106
APPENDIX E - Layout and Connection for the High Speed

Punch.......................... . . . Ill

CHAPTER I

INTRODUCTION

The HP 2100 Computer is a small, general purpose data
processor. It is designed for input/output flexibility with
plug-in interfaces as the main feature. This computer can ac
cept 14 interrupts from device interfaces. An additional 31
interrupt channels can be interfaced by using an extender. •

1.1 The HP 2100A Computer Interface
Interfacing a peripheral device includes both hardware

and software development. Hardware interfacing requires design
ing a printed-circuit card which fits into the input/output
slots in the computer, and the necessary cable connection to
the device. Software interface involves re-configuring the
Basic Control System. A driver which handles the particular
device interrupt, may be required if it is not available.

1.2 I/O Priority Structure
The priority of the device is determined by the physical

location of the slot in which device interface card is install
ed. The lower order channel (10B) has highest priority among
the I/O devices. The address called "select code", is the num
ber of the slot into which the interface is connected. Since
many device interfaces will be requesting service at random
times, it is necessary to grant service in an orderly sequence,
starting from highest priority. I/O priority is established

2

by an enabling line running in series through all interface
cards. Figure 1.1 shows the priority structure and the device
connections to the computer. The device can interrupt the com-

Figure 1.1 The I/O Priority Structure

puter for the service by breaking the priority enable line (re
presented by relay). The higher priority can break the line,
such as Power Fail, at any time and temporarily disable the de
vice that was being served. The interrupted transfer will con
tinue when the higher priority device finishes. Thus due to
the series linkage of the priority line, the lower priority
device will be disabled when any of the higher priority needs
service. The priority line should not be broken or there should

3

not be any open slots otherwise the lower priority devices will
be disabled. The intermediate empty slots must be replaced by
a jumper card.

1.3 Interface Interrupt Mechanism
There are three signals which determine whether an in

terrupt can occur or not. Figure 1.2 shows the block diagram
of the essential signals. The signals PRH, Flag and Control
are logically AND-ed as shown, to give an interrupt request sig
nal (IRQ). IRQ is the signal which requests interrupt to the
computer. PRH is the signal corresponding to the priority en
abling line which is the input to the interface card from a de
vice of higher priority. PRL is the signal to the next lower
priority device. The Flag indicates that the device needs ser
vice and the Control signal enables the device. Thus when all
the signals (PRH, Flag, Control) are logically true, then IRQ
causes interrupt to the computer program. After the interrupt
is granted, the interrupt flip-flop is cleared by the interrupt
Acknowledge (IAK) signal. Flag flip-flop is set by the instruc
tion "STF", or by the device itself, and can be cleared by the
instruction "CLF". The device is enabled by setting the control
with the STC instruction, and disabled with the CLC instruction.
Upon interrupt to the computer, a Jump Subroutine (Indirect) to
the word holding the absolute address for the entry point of
the Interrupt Processor is executed. The interrupt location
is reserved in the low core .area of the memory. The Interrupt
Processor processes the interrupt request and resumes the in-

4

Figure 1.2 Flag and Control

5

terrupted program at the completion of interrupt procession.

1.4 Input/Output Transfer
INPUT.' The basic block diagram for the input transfer

of data is shown in Figure 1.3. The particular interface card
is enabled when its address (LSCM/LSCL) is selected by the
computer. The Flag signal, from the device, is used as a strcbe
to put data into the interface register. The device Flag in
addition to strobing data, sets the Flag flip-flop of the in
terface card (Figure 1.5) to interrupt the computer. When the
computer interrupts, it transfers data from the interface re
gister to the A or B register of the computer through the IOBI
lines. The instructions for loading A or B register from the
interface register are LIA, LIB, or MIA, and MIB. These in
structions essentially provide 101 and IOG signals which are
used actually to transfer data as shown in Figure 1.3. After
one operation is completed, the computer has to be interrupted
in a same manner for the next single operation.

OUTPUT. The Figure 1.4 shows the output of data from
computer to the interface card. The card is enabled by STC as
was done for input. After the card is selected, the output in
structions (OTA/OTB) provide the 100 and IOG signals necessary
to transfer the data from the A and B registers (I0B0 lines)
into the interface register. The device will accept the data
when a signal from the control flip-flop (Figure 1.5) indicates
that the data is ready.on an interface card.

6

Figure 1.3 Input Transfers

Figure 1.4 Output Transfers

7

1.5 I/O Device Commands
The device command for input/output operation is as

shown in Figure 1.5. On output operation, STC instruction from
the computer sets the control flip-flop which provides an En
code signal to indicate that data is ready on the output lines.
The device Flag is cleared after the data is transferred to
the device and resultant interrupt indicate that a single output
operation is completed. On input operation the Encode signal
indicates to the device that the interface card is ready to ac
cept data. The device Flag strobes data into the interface
register, and interrupts the computer to indicate that the data
is ready in the interface register. This data is transferred
into the memory by driver subroutine. The device Flag also
clears the control flip-flop.

8

Figure 2.7. Device Commands

Figxire 1.5 Device Commands

CHAPTER II

HIGH SPEED PAPER TAPE READER

The high speed paper tape reader was interfaced with
the SDS 92 computer. "The TTY reader reads the paper tape at
the speed of 10-characters-per-second, while the high speed
reader reads at a rate of. 300 characters-per-second. So it
was decided to interface the high speed reader with both the
HP 2100 and to the SDS 92 computer, with a switch to select
the computer. Thus the high speed reader is a common device
shared by the two computers. " The detail of the interface is
discussed in the following sections.

2.1 REMEX 9131 Perforated Tape Reader
The REI4EX Perforated Tape Reader consists of the fol

lowing components. The tape transport mechanism consists of
a pinch roller that pulls the perforated tape through the
reader at a constant velocity, and a brake system used to halt
the tape movement through the reader. The tape passes over a
photocell block which senses the tape perforations. The out
put from the photocell is amplified by the HK61 Photo Sense
Amplifier (in the SDS chassis) then routed to the reader out
put receptacle and then transmitted to the SDS coupler by
means of a cable.

The drive system operating in the forward direction
only, consists of a constant velocity drive roller shown in
Figure 2.1, and a de electromagnetically operated pinch roller
(Jam Roller.) The pinch roller is operated by the application

10

Figure 2-1 Tape Transport Drive System

11
of a +50 volt, 600ma de drive signal to the drive solenoid.*
When activated, it forces the pinch roller, and hence the tape,
against the constant velocity drive roller. This causes the
tape to be pulled in a forward direction. This de signal can
be applied by the computer or by the spring-loaded FEED switch
on the reader front panel of the SDS-92 computer. Removal of
this de signal de-energizes the drive solenoid, releasing the
rocker arm and pinch roller, and energizes the brake solenoid
causing the tape movement to halt.

2.2 9131 Perforated Tape Reader Coupler System
A simplified functional block diagram of the coupler

system is shown in Figure 2.2. All the necessary power supply
for the coupler, and the reader is derived as shown in the dia
gram from the SDS computer.

DATA
INPUT

DATA IN

TIMING
AND

DRIVER
LOGIC

DATA FROM
OUTPUT FROM
PHOTO SENSE
AMPLIFIER
(HK61)

FEED SWITCH

READ SOLENOID

BRAKE SOLENOID

READER

-----> N Kff
address
BUFFER

FILL SWITCH
Kf

Rd ---------
Rb

■ 1>*

D.C POWER D.C POWER D.C POWER
SDS COMPUTER

Figure 2.2 COUPLER 9131 READERFunctional Block Diagram of 9131 Per
forated Tape Reader Coupler System

See Reference 1 (Figure 5.9) for Schematic Diagram.

12

Data to the SDS-92 computer is transferred in parallel from the
9131 Reader through the coupler. Channels 1 through 8 is the
data buss from the Photo Sense Amplifier. Whenever there is a
hole on the paper tape, the corresponding channel data is made
high and converted to the SDS positive logic level by the Photo
Sense Amplifier. (+8 volts for logic 'True', representing 1,
and 0 volt for logic 'False* representing 0). Only seven chan
nels are used for the SDS computer, but provision for the
eighth channel is provided, and its output is available at the
output terminal of Photo Sense Amplifier.

For the SDS computer there is no ready status test for
the reader, it is always ready for operation. When addressed
by the computer W Buffer, the output of the address decoder en
ables the reader to start. The reader starts sending data with
in approximately one character time (1/300 of second). Three
methods are available for enabling the reader in the SDS computer
system:

1. Computer to reader control
2. Manually
3. By computer FILL switch

when the reader is addressed during a program execution, output
of address decoder enables the reader. Manual enabling of the
reader is accomplished by depressing the FEED switch (signal
Kff) on the reader front panel. The FILL switch (signal K^)
on the computer control panel may also be used to enable the
reader. When is logically true it enables the reader. The

13
purpose of FILL switch is to load the first few instructions of
a program into the computer and initiate I/O operation. The
effect of Kj- signal is to enable Re, which in turn enables the
reader. When reader is addressed, the Re signal, to enable
reader, goes true.* In its true state. Re causes the coupler
relay driver circuit controlling the reader pinch-roller solen
oid to function (i.e. switch its output to ground).’ As the low
end of the pinch-roller solenoid is logically connected to the
relay driver output, this grounds the low end of the pinch-roll
er solenoid. When this occurs, the pinch-roller solenoid (Rd)
is energized, the brake solenoid (R^) is de-energized, the
reader is enabled and begins to transport and read perforated
tape. Data read from the tape is transferred to the SDS com
puter via the coupler. The reader may be energized in a same
way if manual FEED switch is pressed down (K^f = D• Thus
simplified logic system for two signals R^ and Rd is as shown
in Figure 2.3.

Figure 2.3 Coupler System

Normally and Re are low (Logic 0) so the brake solenoid is
engaged. When any one of the two signal goes high (Logic 1)

See Reference 1 (p. 3-11) for Logical Signal Path for Rb,Rd and Re.

14

the drive solenoid is engaged, which causes the paper tape to
move.

2.3 Design Requirement for the Interface Card
After studying the reader and coupler system, it was de

cided to use the SDS driver, and SDS power supply for interfac
ing the reader. The design requirements for the HP 2100 inter
face card for the reader were as follows:

1. The reader should be compatible with all the HP 2100
hardware and software.

2. The reader should be used as a common device for
both the computers.

3. The reader should be enabled, when FEED switch is
pressed down, for manual feed operation by any of
the two computers.

The first requirement can be satisfied by designing the
interface card for the HP 2100 to meet requirements discussed
in Section 1.4 for the input transfer of the data. The reader
should be able to enable, i.e. should be able to read one
character whenever a STC XX, instruction (XX = select code) is
given. There should be a buffer register on the interface card,
and the device flag has to be generated from the device in or
der to store data into the interface register and to interrupt
the computer.

The second requirement can be met by putting a select
able switch for the use.of the reader as a common device for
both the computers. The reader can be enabled manually by

15
keeping the logical connection for the signal in the same
position as it is.

2.4 Design of the HP 2100A Interface Card for the Reader
The design requirements for interfacing the reader are

as mentioned in the Section 2.3. The reader is enabled manually
by FEED switch on the SDS computer reader panel. In order to
enable the reader manually, when it is used by HP computer, the
signal coming from the reader to the coupler driver is
used as it was for the SDS computer. This is shown in the Fig
ure 2.4. Thus signal in its true state enables the reader,
when FEED switch is pressed down. The source of the Re signal
is either the SDS or the HP machine and is determined by the
switch s.

Figure 2.4 Modified Coupler System

When the switch s is in the SDS position, the reader is enabled
by SDS computer. When it is in the HP position it is enabled
by the HP computer. The signal ReHP (from HP computer) goes to
ground whenever a SIC XX, instruction is executed to enable the
reader.

16
The design of the interface card starts with the require

ment of flag and interrupt logic. The Standard HP Interface
Breadboard contains TTL Flag and Interrupt Logic. This board
was available and was used for the Flag and Interrupt logic.
The detail logic diagram of the Flag and Interrupt Logic is pre
sented in Figure 2.5.*

The mechanism for the input transfer of data is as ex
plained in Section 1.4. The output from the Photo Sense Ampli
fier is at the SDS logic level (+8 volt for logic 1). Since the
interface card is design for TTL logic level, the SDS logic
level is converted to the TTL by means of 3.0 volt zenner diode
in series with the signal. The data lines are tapped off from
the output of the Photo Sense Amplifier, (which comes to the
chassis 45 s of the SDS computer), and bought to the interface
card (Bq-B?) through the chassis 31 s of the SDS computer. Fig
ure 2.6 shows the detail logic diagram of the interface design.
The signal from the sprocket (P) is used to generate the de- sp
vice flag by triggering a monostable multivibrator on the trail
ing edge of the signal. External" capacitor and resistor of the
monostable multivibrator (D5) are adjusted so that the output
signal pulse width is 200 ns long. This signal is used to
strobe the input data, and the data are latched into the latch
7475 (C2,C3) which is used as an interface storage register.
In addition to strobing the data, the invert of the device flag
is used to set the flag buffer flip-flop (at TP1) to interrupt

See Reference 3 (Section 2.21) for the Detail Explanation.

17

Figure 2.5 Breadboard Flag and Interrupt Logic

18
the computer. Command flip-flop is used to generate the signal
ReHP, which enables the reader as explained in Section 2.2. The
STC XX instruction sets the control flip-flop in the flag in
terrupt logic circuit, and the output of the control flip-flop
(TP4 as in Figure 2.5) is used as an input to the command flip
flop to set it. A logic level of +8 volt for true state is nec
essary for the SDS computer. Hence the output of the command
flip-flop is used as an input to the 7403, and the output of the
7403 is tied to +8 volt through the 1.3K ohms resistor, which
converts TTL logic level to SDS logic level for the signal ReHP.
This command flip-flop should be cleared by the Device Flag,
CLC XX instruction and the CRS signal. When it is cleared, the
reader is disabled (drive solenoid de-energized, and the brake
solenoid energized). The CRS signal occurs at power turn-on,
when PRESET button on the HP computer panel is pressed, or a
CLC 00 instruction is executed. Since the NAND gate R-S flip
flop is used as a command flip-flop, the actual inputs (FLAG,
TPS, TP6) for resetting this flip-flop are the compliment of
the above three signals, (TPS and TP6 are from Flag Interrupt
Logic) which are as shown in Figure 2.6.

The Device Flag notifies the flag and interrupt logic
(by setting the flag buffer flip-flop at TP1) that data is now
available to the computer. As explained in Section 1.4, data
should be transferred to the A or B registers (via IOBI lines)
with an input instruction (which provides IOI and IOG signals).
and the proper address. Any signal to the TTL logic on the in
terface card requires a resistor pull to -2V.* The IOI signal
* Refer to Appendix C for Legal Receiver.

19

l-ZK

Figure 2.6 The Detail Logical Diagram of the Reader Interface
Note : (1) The Pin Assignment Is Given In Reference 3(Table 2.42)

(2) [YY] The Pin Number YY, Connected to the Device.

20
(with pull down resistor to -2V) and TP9 (which is output of the
AND gate with LSCM, LSCL and IOG as inputs in Figure 2.5) are
NAND'ed together. The output of the NAND gate and the inverted
data are NOR’ed together, and this output signal is used as in
put to the emitter followers (Qq-Q?) with a emitter resistor
tied to -2V. The outputs from the emitter of the 2N3643 are the
IOBI input data lines going into the computer. Signals going
to the backplane (computer) require a CTML 9956 driver, with a
1.5K resistor pull to -2V. The above discrete circuit is used
in place of CTML 9956 driver, and the resultant circuit is as
shown in Figure 2.6. To bypass noise from the signals, appro
priate capacitors are used as shown in the Figure 2.6. The lay
out of the Interface card and the list of components used and
the necessary change in connection on the SDS chassis is given
in the Appendix D. After the Interface card was built, an in
terrupt test was executed with a Interrupt Test Program and
various signals were checked with a small program loop.

The software requirement of the interface, which is an
input driver (to handle input from the reader) was supplied by
Hewlett-Packard and is used for the system input from the High
Speed Reader. The Basic Control System was reconfigured to in
clude the high speed reader driver using the special purpose
program (Prepare Control System which is a part of system soft
ware package). Thus interface design was completed for inter
facing the High Speed Reader to the HP 2100 computer.

CHAPTER III

HIGH SPEED PAPER TAPE PUNCH '

The high speed paper tape punch, which was a perephreal
of the SDS 92 computer, punches a tape at a speed of 60 charac
ter s-per-second. Like high speed reader, it was decided to in
terface the high speed punch with the HP 2100 computer. Thus
the punch is used as a common device shared by both the computers
and can be connected to any one of them at a time by means of
a switch. The following sections discuss the detail about the
interface.

3.1 Tape Perforator
The Tape Perforator is an electrically operated medium

speed unit capable of perforating paper of varying widths from
five to eight channels, at a rate of 60 characters'per second.
The unit is asynchronous, and can be operated at any repetition
rate below the maximum, since each character is initiated by
a separate, independent pulse. The perforator consists essen
tially of a perforator mechanism, a capstan drive mechanism
and a 1/12 HP motor. The motor drives both the perforator
which punches holes in the tape when the coils inside it are
energized, and the capstan drive mechanism which moves the tape
when energized. Both the mechanisms require de pulses of 4.5
±0.5 milliseconds duration, at 48 volts. Thus one pulse must
be supplied for each movement of the tape and one pulse is re
quired for each character to be punched. Punched pulses for
all channels and the pulse for the advancement must be derived

22
from a common pulse, and the interval for the drive pulse should
not be less than 16.7 milliseconds. (Leading edge to leading
edge) These 4.5 ms pulses at 48 volts are obtained by tying one
end of the solenoids, which energize the movement for punching
and advancing, to the +48 volt and another end to the output of
the driver. When a 4.5 ms pulse is applied as an input to the
driver, the output of the driver goes to ground which in turn
grounds the another end of the solenoid and energizes it. The
output remains open when the input to the driver is at logic 0.
The necessary power supply for operating the performator is ob
tained from the SDS computer power supply.

Tape Perforator and Coupler System3.2
Figure 3.1 represents the simplified functional block

diagram for the Tape Perforator and the Coupler System. The DC
inputs,power supply is obtained from the SDS computer, and the
the SDS
for

*See Reference 2, for the detail explanation.

COUPLER
Figure 3.1 Functional Block Diagram for the Coupler

System and Perforator

R.-r,, are the bits of the character to be punched from X O
computer buffer to the coupler system. R^ is the input

TAPE PERFORATOR

23
the parity bit, and the signal Pe goes true when the punch is
addressed by the SDS computer which starts the motor in the
perforator. The signal from the FEED button on the SDS front
panel is KSp, and is used for the same purpose as Pe. The out
put of the driver, Pdl-Pd7, are tied to one end of the punch
solenoids, and the driver outputs P^ and Pgp are tied to the
feed solenoid and sprocket solenoid for feeding the tape and
punching the sprocket hole respectively. The output of the
driver, Pd, enables the Punch Drive Motor by closing the relay
in the Perforator which, in turn, closes the ac circuit to the
punch motor. The following paragraph explains the manual feed
operation of the tape.

When the feed button on the punch is manually depressed,
the signal, KSp» goes true. The relay driver Pd closes a relay
in the punch assembly which, in turn closes the-ac circuit to
the punch motor (Pd = Kgp+...) Figure 3.2 represents the sim
plified logic diagram for the punch coupler.* When Kgp goes
true, the signal Fd which remains at logic 1 after some delay
is generated. The signal Dp which is a series of pulses of
width 4.5 msec and of the duration 16.5 msec is also generated
after some delay.** The delay is provided in order to allow
the motor to get up to the speed. The feed solenoid driver and
the sprocket hole solenoid driver are now actuated and tape
leader is generated as long as the button remains depressed.

* See Reference 5, for the detail logic layout for the punch.
**See Reference 4, for the detail explanation for the generation
of the signals Fd and Dp.

16

NOTE-: D- Solenoid Driver.
See Appendix B for Logical Symbol.

Figure 3.2 Simplified Logic Diagram for the
Punch Coupler

24

25
P, = P,D f dp (feed solenoid driver)

Psp FdDp (sprocket solenoid driver)

A toggle switch (on perforator front panel) can be set in either
the 'auto1 or 'run* position. If it is placed in the 'auto1
position, the punch motir is turned on only when the SDS com
puter has addressed the punch or the feed button has been manual
ly depressed. In the 'auto' position, there is an automatic de
lay each time the punch is addressed, in order to allow the motor
to get up to speed. In run position the motor operates con
tinuously.

3.3 Design Requirement for the Punch Interface
The SDS coupler can handle only seven data channels and

a sprocket hole channel, but the perforator can handle eight
data channels. After studying the coupler system and the per
forator, the design requirements for interfacing the high speed
punch were determined to be as follows:

1. A new driver should be designed in order to handle
the capacity for eight channels since the HP 2100
computer punches ASCII characters. The seven drivers
already built in the SDS coupler could be used for
the another seven channels.

2. The punch should be used as a common device between
the two computers.

3. The manual feed operation of the paper tape by press
ing the FEED switch could be done when the punch
.is used by any of the two computers.

26

I - r~ I I-------------1

Figure 3.3 Darlington Pair for New Driver

27

4. The punch should be compatible with all the HP soft
ware and hardware requirements.

3.4 Design of the HP 2100A Interface Card for the Punch
The first requirement of having a new driver (for eighth

channel) can be satisfied by designing a Darlington pair circuit
with a R8D3 diode in series with a base resistance of 10K and
2N1838 transistors to meet the solenoid current of 0.3 amp,
when the output of the driver connected to the one end of the
solenoid is connected to the ground. The circuit diagram is
as shown in Figure 3.3. (This is mounted on SDS card 29S).
The requirement to operate the punch as a common device is met
by putting a rotary switch which connects all the connections
in the coupler back to their original position as they were be
fore the interface when it is in the SDS position. The switch,
when put to the HP position, connects the necessary signals to
the HP 2100A. The simplified logic diagram, Figure 3.2, is
modified to show the switch connections and the resultant new
diagram is as shown in Figure 3.4. The switch when put to the
SDS position connects the vertical connections, (Figure 3.4)
and when in the HP position connects the horizontal connections.
The output bits B0-B7 of the character to be punched from the
HP computer replaces the data driver inputs (R1-R7 from SDS)
when switch is in the HP position, with B7 as an input (parity
check) to the new driver. When FEED switch on the SDS front
panel is pressed, the series of pulses of width 4.5 ms are gen
erated as mentioned in Section 3.2. In order to operate the
punch manually when switch is in the HP positions, signals Fd

•3-'4

28

NOTE: DS1-S13 Are Switches on Rotary Switch.
The Signals from HP Interface Are Shown Ih
Figure 3.6

2)D- Driver In SDS Coupler.

Figure 3.4 Simplified Logic Diagram of Drivers
with Switch Connection.

29

and Dp are brought to the interface card and ORed with the 4.5
ms pulse from the interface card. By keeping Kgp in the same
way the motor can be enabled manually, with the switch in either
of the two positions. The actual wiring connection for the
switch is given in the Appendix E.

Regarding compatibility of the interface with the HP
computer, the interface card should be designed as explained in
Section 1.4 for the output transfer. The data from A or B re
gister is transferred by the output (OTA-OTB) instruction, which
generates 100 signal. The"output bits (I0B00-I0B07) are latch
ed into the interface register (SN7475) by the enabling signal,
which is the output of the AND gate with the 100 and TP9 (TP9
is as shown in Figure 2.5 of flag and interrupt logic) as inputs.
The flag and interrupt logic was built as shown in Figure 2.5
for this interface card. As discussed in section 3.2 the 200 ms
delay should be provided whenever the punch is first enabled
and afterwards, to punch the data a 4.5 ms pulse with a period
of 16.5 ms is required for each character to be punched and for
each movement of the tape. The NAND gated RS flip-flop is used
as acommand-flip-flop. The schematic diagram of the design is
as shown in the Figure 3.5. The STC (TP4) sets this flip-flop
with the CRS (TP6), CLC (TPS) and Device FLAG as the reset in
puts. The timing diagram for the different pulses is given in
Figure 3.6. When command flip-flop is first set by the instruc
tion STC XX, a pulse from M550 (MON) and another pulse from
M200 are generated. The WAIT flip-flop (SN7474) was reset be
fore the pulse from M550. The signal HPPe as shown in Figure

30
IO0OO

as ------

-2V 1-5 K A3

-IV 1-5 K

z< V5K-

-zv f-5R

-2V l-SK A5

-zv i-Sil

IS
I-5K-2V

45 ^6P3

53_>I0606

51-^21

51 -y10^05

.10604

-2V 1-5

38^2!----------- -

4/ Z0602-

£
A

6
Jl

7
13

2
Jt

3
t3

3
13

TOO
Z0 »-i -

Figure 3.5 The Detail Logical Diagram of the Punch Interface
Note: (1) The Pin Assignment Is Given In Reference 3(Table 2.42)

(2) [YY] The Pin Number YY, Connected to the Device.

31

+5V
QCOM

16.5

HPPe

ms

Extended to 550ms more Every Time STC XX
Is Executed

WAIT

QCOM.WAIT

16.5mi

DEVICE FLAG

NOTE: X= Time Between the Interrupt of the Computer
and the STC XX Instruction

Figure 3.6 Punching Data under HP Computer Control

32

3.5 enables the motor in the perforator. M550 monostable is
connected to Rs input of the WAIT flip-flop, and the Q of M200
is connected as a clock input to the same flip-flop. During a
pulse from M200, WAIT signal is false (logic 0) and the output
of the command flip-flop is at logic 0. At the trailing edge
of pulse from M200, the WAIT goes to its true state, which in
turn enables the output of the command flip-flop (QCOM) and
disable the M200 monostable from triggering. In addition, when
the WAIT goes to its true state, the M4.5 monostable is trigger
ed which enables all the drivers for the data (B0-B7) to be
punched and for the movement of the tape (HP^^) for the duration
of 4.5 ms which is the requirement for the drive pulse. At the
trailing edge of 4.5 ms pulse, M12 monostable is triggered in
order to have a period of 16.5 ms for the drive pulse. The
Device Flag signal is generated by triggering M675 monostable,
at the trailing edge of the 12 ms pulse. The command flip-flop
is cleared by the Device Flag and in addition, the computer is
interrupted to indicate that the output transfer is completed.
Thus one character is punched. If there are more to be punched
then STC XX instruction is given individually for each character.
If the pulse from M550 is at the logic level false (punch motor
OFF) when the STC XX instruction is given for the next charac
ter, the above cycle of operation will be repeated. If the
pulse from M550 is at the logic level true when the STC XX in
struction is given, the pulse from the retriggerable monostable
M550 is extended from the time the STC XX is given, to another
550 ms (motor on for another 550 ms). The output of the command

33
flip-flop is also enabled when STC XX instruction is given, and
due to WAIT being in its true state, a M4*5 monostable is trig
gered. At the trailing edge of 4.5 ms pulse the M12 monostable
is triggered, and Device Flag is generated at the trailing edge
of the 12 ms pulse. Thus 4.5 ms, 12 ms and Device Flag together
with the STC XX instruction form a counter to provide pulses
for punching the data. Thus if next STC XX instruction is given
within 550 ms (when the motor is ON) there will be no delay of
200 ms and data will be punched at every 16.5 ms interval for
each instruction.

The line drivers (7400) are added as shown in Figure 3.7
to the SDS chassis to bring two signals Fd and Dp, in order to
operate punch manually by the FEED switch. These signals are
ANDed together and the output is ORed with the pulse from M4.5
to drive the feed and the sprocket drivers when the FEED bottom
is depressed. The data (I0B00-I0B07) from TTL to SDS logic
levels (B0-B7) are converted by open collector NAND gates with
the output tied to +8 volts through 1.2K resistors as shown in
Figure 3.5. The detail change in" wiring on the SDS chassis is
given in Appendix E. The cable connection for the Punch Inter
face is shown in Figure 3.8. The small program loop was exe
cuted to test the interface and the interrupt test was done by
INTERRUPT TEST program. The layout of the interface card and
the list of the components is given in Appendix E. The software
part of the interface, adding a BCS High Speed Punch driver
which was available and reconfiguring BCS system, was also done
to operate the punch in the BCS environment. This completed
the interface for the High Speed Paper Tape Punch.

34

NOTE: Z- Zenner Diode 1N746A,3V

(SDS)

Figure 3.7 Line Driver on 29S Card

Front Panel)

27S-Card
(SDS)

29S-Card
(SDS)

Figure 3.8 Cable Connection for the Punch Interface

CHAPTER IV

PRIORITY HANDLER

In a process control environment there would be several
tasks to be performed by the computer. There would be status
inputs to be checked, parameters to be input and messages to be
printed to the operator. Each task would have a service sub
routine. It would be desirable to have the priority for these
tasks which would be controlled by the operator.

This is a function"of a software priority handler to
perform tasks according to a priority table entered by the op
erator. Such a handler should have the following characteristics.

1. Should allow service routines in FORTRAN.
2. Should allow an option to interrupt a subroutine

by one of the higher priority.
3. Should keep track of all service subroutines ask

ing for service.
4. Should allow nesting of interrupts.
5. Should be capable of logging error messages and

setting different types of alarms for the errors.

The operational aspects of such a priority handler is
discussed in the following sequences.

1. Start the program execution as given in the section
OPERATING INSTRUCTION.

2. Enter priority table as given in Section 4.2, which
sets up the priority for executing the service sub-

36
routines for different tasks.

3. Indicate for each service subroutine if it can be an
interruptable or a non-interruptable routine. This
can be indicated by the sign of the entry in a
priority table as given in Section 4.2.

4. Request service routine by setting a bit of a word
in a particular interface card. If a particular
bit is one, the corresponding subroutine needs ser
vice. If a bit is zero, the corresponding subrou
tine doesn't need service. The service routine will
be serviced according to its priority in the priority
table. At the most there can be sixteen service
routines asking for service at a time.

4.1 Introduction
The simplified Priority Handler functional flow chart

is shown in Figure 4.1. It is written partly in FORTRAN and
partly in assembly language. The Priority Handler system execu
tion is started at program location 2O. Like any other relo- o
cated program it is executed using the BCS system.* Loading of
the priority table (IPRTB) is done by typing the elements of
the table using TTY. If an error is made in configuring the
priority table, the error messages are given and the priority
table has to be loaded again. If no error is made, the interrupt
location parameters are set in low cone area to link the in
terrupt from the Digital Input device and then the Digital** In
put device is enabled by STC instruction. Afterward a wait

*See Reference 6, for the detail operation of the BSC system.
**See Appendix A, for the Digital Input Device.

Figure 4.1 Functional Flowchart of Priority Handler

38

Figure 4.1 Functional Flowchart of Priority Handler (cent)

39

on flag set loop is created for the service request word. When
the flag is set, the program is interrupted to process the request
word for running the subroutines. The 11.77 subroutine is exe
cuted as a result of the above interrupt. After the entry, the
interrupt system is turned off so that no interrupt occurs dur
ing the processing of the requested word. The request word is
loaded into a register after storing all working registers and
the return address. Each bit of the request word corresponds to
the request for running a particular subroutine out of 16 sub
routines. If a bit is 1 O', the corresponding subroutine doesn't
need service and if it is 'I* the corresponding subroutine needs
service.

These bits are loaded into the temporary queue table and
then the permanent queue table (Q-table) is updated and the note
for the doubly requested subroutines is made in order to print
the error messages, when the computer is free. If any one of the
subroutine was in service and interrupted, and if that subrou
tine (SUB YY) has to be finished immediately, (depending upon
priority table) the return is made after restoring the working
registers and setting the interrupt system active. If SUB YY
does not have to be finished, the working registers and return
address are stored into the storage area corresponding to the
SUB YY depending upon the priority table. After this the Priority
Handler processes as below. If none of the subroutines was in
service or after being processed as above, the subroutines which
are in queue according to the Q-table will be served starting
from the highest priority subroutine to the lowest priority sub

40
routine, depending upon the priority table configuration. The
highest priority subroutine number is loaded in ITEST and check
is made whether corresponding SUB YY (YY = ITEST) needs service
or not by looking into the corresponding entry of the Q-table.
If it does not need service, the next order priority subroutine
is checked for the service in the same way. If none of the sub
routines need service and the end of the priority table is reach
ed, (computer is free), the check for the doubly requested sub
routines, (if any of them were noted before) is made. If any of
them were detected, error messages are given. After this or if
no doubly requested subroutines are detected a loop on flag set
(on s.c = 10B) is created in order to wait for the subroutine
service request. When the flag is set, the program is interrupt
ed by the interrupt on s.c = 10B, (Digital Input Device) which
transfers control to the 11.77 subroutine.

If any of the subroutines (SUB YY) needs service and if
it was serviced before, depending upon priority table the sub
routine is started from the beginning or from the point where it
was interrupted. If it has to start from the .point where it was
interrupted, the working registers are restored from the corre
sponding storage area of the SUB YY and the interrupt system is
enabled before the transfer is made to the SUB YY. If the SUB YY
is running the first time or it has to be started from the be
ginning, the transfer is made to the beginning of the SUB YY
after enabling the interrupt system.

The entry to the CLRQ section of the program is made by
calling the CLRQ subroutine at the end of all the subroutine
which are handled by the Priority Handler. After the entry, the

41

interrupt is turned off and the Q-table entry corresponding to
SUB YY (which was in execution) is cleared indicating that the
subroutine is serviced and the execution of this subroutine is
finished. Transfer to the point A in flow chart is made to pro
cess the request for running the lower order priority subroutines
after the interrupt system is enabled.

4.2 Priority Table
The Priority Table for running the subroutine has a typi

cal element,

+/-NN, +/-YY

where,

NN = The order of loading the element of the Priority
Table. Starting from 1 to 16 in the ascending
order.

YY = The subroutine number in the name of the subroutine
•SUB YY1. YY equal to any number from 01 to 16.

The signs attached to NN and YY are for running the subroutine
•SUB YY'. The significants of the signs are,

1. +NN, SUB YY should be finished immediately when in
terrupted.

2. -NN, SUB YY does not have to be finished when in
terrupted .

3. +YY, when SUB YY is serviced, the execution is start
ed from the point where it was interrupted.

42

4. -YY, when SUB YY is serviced, the execution is start
ed from the beginning.

A sample of the Priority Table is illustrated as below.

-1,16
-2,-2
3,3
4,-4

-5,5
6,6

-7,-7
8,11

-9,13
10,-10
11,9

-12,-1
13,8
14,12
15,14
16,15
Sample Priority Table

In the above sample Priority Table, SUB 16 has highest priority,
then SUB 02 and so on. SUB 15 has lowest priority. Now lets
consider the entries for first four subroutines starting with the
highest priority and following the sign conventions as discussed
above, SUB 16 does not have to be finished when interrupted and
whenever it is serviced execution starts from the point where
it was interrupted. SUB 02 does not have to be finished and when
ever it is serviced it starts from the beginning. The SUB 03
and SUB 04 have positive sign attached to number NN, so the sign
attached to YY does not have any significant because whenever
any one of them is interrupted, the execution of that subroutine
starts back immediately..

43
4.3 Typical Subroutines

The subroutines handled by the Priority Handler can either
be in FORTRAN or in assembly language. Following are two pro
grams which illustrate the sequence of a typical subroutine
handled by the Priority Handler.

FORTRAN SUBROUTINE.
The general form of the subroutine is:

SUBROUTINE SUBYY
COMMON IDMMY(186),...*

* ,If COMMON statement is specified in the program, the first array
in COMMON statement should be IDMMY(186) which is a dummy array
to reserve 186 common locations.

CALL CLIOC
READ (....
CALL ST1OC

CALL CLIOC
WRITE (....
CALL STIOC

CALL CLRQ
RETURN
END •
END$

Before READ and WRITE statement CALL CL1OC, should always be
specified, and CALL ST1OC should follow after them as illustrated
above. The statement CALL CLRQ should always be placed before
the 'RETURN* statement.

44
ASSEMBLY SUBROUTINE
The general form of the assembly subroutine is:

NAM SUBYY name of subroutine is SUBYY
ENT SUBYY YY = any number from
EXT CL1OC,ST1OC,CLRQ 01,02,...,16
COM IDMMY(186),...

SUBYY NOP

JSB CL10C
DEF *+l

formatter calling
sequence

JSB ST10C
DEF *+l

JSB CL10C
DEF *+l
JSB . IOC...... .. input/output calling
• sequence
JSB ST10C in place of <normal return>
DEF *+l

JSB CLRQ
END

If the formatter or .IOC.(for input/output operation) calling se
quence is used, the CL10C and ST10C should be used before and
after the calling sequence as shown in the general form. The
1JSB CLRQ' should be placed before the 'END* statement.

The Priority Hanlder may not work if above rules are not
followed strictly. Care should be taken to see that the proper
sequence is used.

4.4 Generation of the Priority Handler System
Like all relocatable programs, the Priority Handler sys

tem can be generated in two forms: (1) using BCS, relocate the
code into core memory then execute it. (2) Using BCS, relocate

45

the code and punch an absolute tape which produces a permanent,
runnable copy of the program.

OPERATING INSTRUCTIONS
1. Load a configured BCS into core with BBL or BBDL.

2. Set a starting address of 2g.

3. Set all switch register bits off, then select the
following options:

Bit 15 oh (suppress memory allocation listing)
off (includes memory allocation listing)

Bit 14 on (punch absolute tape copy of program)
off (relocate into core, do not punch tape)

If Bit 14 on and a teleprinter, is to be used for
punching then,

Bit 13 on (teleprinter is a 2754B and can print
and punch separately; set teleprinter mode
to KT)
off(teleprinter cannot print and punch
separately; BCS halts before and after each
line of printing so that the operator can
turn on/off punch unit to avoid punching
list output, then punch absolute binary out
put) .

4. Place the first relocatable program tape (one of the
sixteen subroutines to be handled by the Priority
Handler) into the reader. Press PRESET and RUN. BCS
reads and relocates the binary code on the tape.

46
If switch register bit 14 is on, an absolute binary
tape is punched. (Otherwise, BCS relocates the pro
gram in memory).

5. BCS halts after typing.
♦LOAD
Load rest of the fifteen subroutines and the Prior

ity Handler programs tapes as follows: set switch
register bits 2-0 off. Place the tape in the read
er. Set switch register bit 15 on (if desired) to
suppress memory alocation listing. Press RUN.
when tape has been read, BCS halts after typing.
♦LOAD

6. To read a library subroutine tape (and load only
those subroutines which are necessary to resolve ex
ternals) . Set switch register bit 2 on (bits 1 and
0 off). Place the relocatable library tape in the
'reader, in the following order one after another.
a. B.O.S. library
b. FORTRAN IV library
c. BCS library
Set switch register bit 15 on to suppress the memory
allocation listing, if desired. Press RUN every
time. When the tape has been read, BCS halts after
indicating:
No undefined externals

♦LST

47
(Set switch register bit 2 off and go to Step 9) or
Undefined externals

symbol
symbol

symbol
*LOAD

6a. To list undefined externals (or bypass further load
ing if there are no undefined externals), go to Step
7 or,

6b. To bypass further loading even if undefined externals
remain, go to Step 8.

7. Set switch register bit 0 on (bits 1 and 2 off).
Press RUN. BCS indicates whether undefined externals
exist by printing either: No undefined externals

*LST
(set switch register bit 2 off and go to Step 9) or
Undefined externals

symbol
symbol

symbol
*LOAD

Return to Step 6a.

8. Set switch register bit 1 on (bits 2 and 0 off). Press
RUN. BCS goes on to Step 10, even though undefined
externals may still exist.

48
9. BCS has completed loading and is ready to print the

Loader Symbol Table (LST), common bounds, and linkage
area bounds. Set switch register bit 15 on to sup
press listing of these items. Set bit 15 off to list
them. If a 2754B Teleprinter is used, set the mode
switch to "T" to enable the tape punch. Press RUN.

10. BCS completes listing (if requested by bit 15). If
the program was relocated into core (bit 14 off),
BCS prints

*RUN
Press RUN to execute the program.

11. If the program was punch onto paper tape (bit 14 on),
BCS prints

*END

12. Tear off the absolute tape output and wind. To exe
cute the program:
Load the tape with BBL or BBDL.
Start the program at location 2g.

4.5 Use and Configuration of the Priority Handler
The priority table is illustrated in Section 4.2. After

starting the execution of the Priority Handler System, (as dis
cussed in Section 4.4) the computer types-,

*** LOAD. PRIORITY TABLE ***

Load priority table entry one after another as decided. Terminate

49
each reply with a RETURN and LINEFEED. If an error is made while
typing an entry of the priority table, press RUBOUT, RETURN and
LINEFEED, then retype the entry. If no error is made in loading
priority table, the computer prints,

*** NO ERROR ***

If an error is made, refer to the next section for the error
messages and retype whole priority table again as corrected cor
rection. After the computer types no errors message, load the
input request word by means of the Digital Input Device Bit 1
corresponds to SUBO1, and if it is 1, SUBO1 needs service. If
it is 0, SUB01 does not need service. The same correspondance
is applied for rest of the fifteen subroutines.

4.6 Priority Table Error Messages
During the configuration of the priority table, error

messages are printed on the TTY. Errors detected in the entry
of the table are indicated by a numeric code inserted before and
after the ’ERROR'. The' formats are as follows:

1. LL *** ERROR-XX ***
2. YY ERRORS ****

LL The entry line number in which error was de
tected, starting one from the top of the
table.

XX The error diagnostic code shown below.
YY Number of errors totally occurred.

50

ERROR CODE
01 NN in the entry is not in the ascending order,

starting from 1 to 16.

02 YY, greater than 16 is an invalid subroutine num
ber.

03 YY=0 is an invalid subroutine number.

04 YY is a duplicate subroutine number.

CHAPTER V

SOFTWARE DEVELOPMENT

5.1 Software Development of the Priority Handler
The detail software development of the Priority Handler

is discussed in this chapter. The simplified flow chart for
the Priority Handler subroutines are illustrated for the expla
nation purpose. The complete listing of the Priority Handler
is given in the Appendix A. The symbols for the common arrays
are explained in the beginning of the program LPRTB. Dummy
labels for the common arrays are used in some of the subroutines
where only few common arrays are required. Each subroutine is
discussed separately one after another.

a. LPRTB
Refer to Figure 5.1 and the complete listing in the

Appendix A. This is the program written in FORTRAN to load
correct priority table, IPRTB(J), array IFINS(J), and array
IRSTR(J).

THE COMMON ARRAYS ARE,

IQTB(J) - QUEUE TABLE ENTRY FOR SUBYY, J=YY.
J=l,16 = 0, SUBYY DOES NOT NEED SERVICE

= 1, " NEEDS SERVICE
IQTEM(J) - TEMPORARY QUEUE TABLE FOR 'SUBYY', LOADED FROM DIGI-
J=l,16 TAL INPUT DEVICE.

= 0., DOES NOT NEEDS SERVICE.
= 1, NEEDS SERVICE.

ISVTM(J) - TEMPORARY STORAGE AREA FOR WORKING REGISTER A,B,E,O,
J=l,4 AND RETURN ADDRESS WHEN SUBROUTINE IS INTERUPTED.
INOW - THE PRESENT SUBROUTINE NUMBER IN SERVICE, ANY FROM

1 TO 16.
IFINS(J) = +VE, IF ENTRY IS '+NN,+/-YY' FOR SUBYY, AND J=YY
J=l,16 = -VE, " " " '-NN,+/-YY' " " " "

IF +VE, THEN SUBYY IS FINISHED IMMEDIATELY WHEN INTERRU
PTED.

52

IF -VE, THEN SUBYY IS NOT FINISHED IMMEDIATELY WHEN
INTERUPTED.

IREG(J) - STORAGE AREA FOR A,B,O,E REGISTERS AND RETURN ADORES
J=l,16 FOR 16 SUBROUTINE, FOUR FOR EACH SUBYY.
IRSTR(J) - +VE, IF ENTRY IS '+/“NN,+YY' FOR SUBYY, J=YY
J=l,16 = -VE, " " " '+/-NN,-YY' "

IF +VE, THEN WHENEVER SUBYY IS SERVED, IT SHOULD BE
STARTED FROM THE POINT, WHERE IT WAS INTERUPTED.
IF -VE, THEN SUBYY SHOULD BE STARTED FROM THE BEGINING

IPRTB(J} - THE PRIORITY TABLE ENTRY, STARTING FROM HIGHEST.
J=l,16 = YY, IN THE ENTRY ’+/“NN,+/-*¥', AND J=NN.
ILOAD(J) - TO RESTORE A,B,O,E REGISTERS AND RETURN ADDRESS FOR
J=l,4 THE INTERUPTED SUBROUTINE WHEN IT IS SERVED.
ICHAK(J) = -VE,IF SUBYY YY=J WAS ASKED FOR THE SERVICE AGAIN
J=l,16 WHILE PREVIOUS REQUEST WAS NOT FINISHED.

SUBYY IS PRINTED AS DOUBLY REQUESTED SUBROUTINE, IF
ICHAK(J) =-VE, AND COMPUTER IS FREE.

ICHAK(17)= +VE, NONE SUBROUTINES WERE DOUBLY ASKED.
= -VE, SOME SUBROUTINES WERE DOUBLY ASKED.

INUMM(J) = NN,THE ORDER OF THE PRIORITY TABLE IN '+/-NN,+/-YY*
J=l,16 AND J=NN. THIS ARRAY ELEMENT ARE +VE IN THE BEGINING

WHEN SUBYY IS SERVED, THEN INUMM(YY) IS MADE -VE TO
INDICATE THAT SUBYY WAS SERVED. WHEN SUBYY IS SERVED
COMPLETELY, IT IS MADE +VE.

These common arrays are initialized by calling the subroutine
INITL. IEROR, which represents the number of errors occurred
in the priority table, is also initialized. Then computer prints
message for loading the priority table through the TTY. The
priority table and the message are as given in the Section 4.2
and Section 4.5 respectively. The reading of the entry is done
one after another. The DO loop is created to check the correct
priority table. If INUMM(J) (which is equal to NN in the entry)
is negative ,it is made positive, and NEGNM is made negative. If
INUMM(J) is not in the ascending order, starting from 1 to 16,
error 01 is given and IEROR is incremented. If IPRTB(J) (Equal
to +—YY in the entry) equal to zero, error 03 is indicated
and IEROR is increased by 1. If IPRTB(J) is positive and if

START 53

Figure 5.1 LPRTB

54

it is less than 16, INUMM(J) was negative or not is checked (By
NEGNM). If it was negative, IFINS(IPRTB(J)) is made negative to
indicate that the subroutine (SUBYY) need not be finished when
interrupted. If INUMM(J) was positive, IFINS(IPRTB(J)) is not
changed (which is zero) to indicate that the subroutine has to
be finished immediately when interrupted. If IPRTB(J) is.great
er than 16, error 02 is given and IEROR is incremented. If
IPRTB(J) is negative, it is made positive. If the absolute
value of IPRTB(J) is greater than 16, transfer is made to A
for the error 02. If negative and the absolute value is less
than 16, IRSTR(IPRTB(J)) is made negative to indicate that when
ever subroutine corresponding to IPRTB(J)(SUBYY) is served, it
should be started from the beginning. Then transfer is made
to B for restart condition as explained above. When above loop
is finished, the check for the duplicate subroutine number is
made. If any duplicate number is found, error 04 is indicated
and IEROR is increased. Finally if any error is made in the
priority table, the transfer is made to point C for loading
the priority table again. If no error is involved, message
for that is given and then subroutine ICHNG is called which
does not transfer the control back to LPRTB.

b. ICHNG
Refer to the Appendix A. (The flow chart is not

given). This assembly language subroutine sets up the interrupt
linkage parameters in the base page to link the interrupt on
channel 10. The wait on system bussy loop is created to finish

55
the printing message, then JSB 3OB,I is loaded in location 10B
and absolute address of 11.77 is loaded in location 30B. The in
terrupt system is turned off and the wait on flag set (s.c.=10B)
loop is created, after starting the device (Digital Input) when
the flag is set, meaning request word for running subroutines
needs to be processed, the interrupt system is turned on and JMP*
is executed for the loop. The interrupt on s.c.=10B transfers
the control to the subroutine 11.77.

c. 11.77
This subroutine is entered as a result of an interrupt

generated for loading the service request word. It stores the
working registers overflow and return address in the array
ISVTM(J). It also loads request word into temporary queue table
IQTM(J) and then jumps to subroutine INHAN. Refer to Figure 5.2 .
This section, 11.77, is entered via a Jump Subroutine instruction
stored in the interrupt location associated with the Digital In
put device. When interrupt on s.c.=10B occurs, the return ad
dress is stored in the entry address 11.77. Upon entry to the
11.77, the interrupt system is disabled, in order to prevent fur
ther interrupt while processing of the request word is not finish
ed. The flag on S.C.=10B is cleared and then all working re
gisters and return address are stored into the temporary common
array ISVTM(J). The request word from the Digital Input device
is loaded into temporary common array IQTM(J). Finally trans
fer is made to the subroutine INHAN.

d. INHAN
This subroutine makes note of doubly requested sub-

Figure 5.2 11.77

Figure 5.3 INHAN

57
routines. After this it transfers control to either subroutine
ICONT or LTEST, depending upon certain conditions. If it trans
fers control to LTEST, the working registers, overflow and return
address which were stored by 11.77 are transferred to array
IREG(K). Figure 5.3 represents the simplified flow chart of the
subroutine INHAN. The request word which was loaded into the
temporary queue table IQTEM(J) is processed and permanent queue
table IQTB(J) is up-dated in this section. The DO loop is formed
to check the request for all the subroutines as below. If
IQTM(J) equal to 1, the corresponding subroutine (SUBYY,YY=J)
needs service. If it is zero, the subroutine does not need ser
vice. So if IQTM(J) is zero, the array element ICHAK(J) is made
zero which indicates that the subroutine is not doubly requested.
If IQTM(J) equal to one and if the permanent queue table entry,
IQTB(J), is zero, IQTB(J) entry is made one with ICHAK(J) equal
to zero. If IQTB(J) equal to 1 (the corresponding subroutine
SUBYY, YY=J, is already requesting service) and the subroutines
is again requesting for the service (IQTM(J)=1), the error for
the doubly requested subroutine is indicated by making ICHAK(J)
negative. The ICHAK(M) is made negative to indicate that there
are some doubly requested subroutines. Thus all the sixteen
subroutines request is checked one after another.

After finishing the above loop, INOW is checked which
indicates the subroutine number which was in service and interrupt
ed. If INOW is greater than zero, some subroutine was in service
when interrupt occurred. If INOW is zero, none of the subroutines
was in service and the transfer is made to the point A as shown
in the flow chart. If INOW is greater than zero and IFINS(INOW)

58

is not less than zero, the subroutine ICONT is called to continue
the subroutine, SUByy (YY=INOW) which was in service. If IFINS
(INOW) is negative (the subroutine which was in service does not
have to be finished now), the IRSTR(INOW) is checked. If IRSTR
(INOW) is negative, (the SUBYY, YY=INOW, should be started from
the beginning whenever it is serviced) the subroutine LTEST is
called. If the subroutine has to start from the address where
it was interrupted, (IRSTR(INOW) greater than zero) all the work
ing registers and return address, which are stored temporarily
in the array ISVTM(J), -are stored into the four storage areas of
IREG(K). IREG(K) is the common array of length 64, four for each
subroutine. Then subroutine LTEST is called.

e. LTEST
Refer to Figure 5.4. This subroutine processes the

request for running the subroutines, which are waiting for the
service according to queue table (IQTB(J)) which is updated by
the subroutine INHAN. The subroutines are tested for the ser
vice, starting with the highest priority. If a subroutine needs
service, condition for servicing it from the beginning or from
the address where it was interrupted depending upon the priority
table, is set up.

Upon entry to the LTEST, the DO loop is formed as
shown in the flow chart. Figure 5.4. ITEST is loaded with the
highest priority subroutine number from the priority table, which
is IPRTB(L) for L=l. The Q-table entry (IQTB(ITEST)) correspond
ing to the subroutine number, ITEST, is checked for the service.
If IQTB(ITEST) is not greater than zero, (the subroutine does

59

Figure 5.4 LTEST

60

not need service) the lower order priority subroutine is check
ed for service request. If IQTB(ITEST) is greater than zero,
(the subroutine needs service) it is served as below.

The INUMM(ITEST) is checked. If it is zero, the subrou
tine is running for the first time, and if negative, the subrou
tine was serviced before but it is unfinished. So if INUMM(ITEST)
is not negative, it is made negative and INOW, which indicates
present subroutine in service, is loaded with the subroutine
number ITEST. The subroutine IONGO(M) is called with M=-l which
indicates that the subroutine corresponding to INOW, has to start
from the beginning. If INUMM(ITEST) is negative, the IRSTR(ITEST)
is examined. The IRSTR(J) array is set up at the time of con
figuring the priority table. If IRSTR(J) is negative, the sub
routine, (SUB YY, YY=J) should be serviced from the beginning.
If IRSTR(J) is not less than zero, the SUB YY, YY=J, should be
serviced from the address where it was interrupted. So if
IRSTR(ITEST) is less than zero, INOW is made equal to ITEST and
subroutine IONGO(M), with M=-l is called to start the subroutine
from the beginning. If IRSTR(ITEST) is not less than zero, the
common array ILOAD(K) of length four is loaded to load the re
gisters and return address, from the four storage area of IREG(K)
corresponding to the SUB YY, YY.= ITEST. Then INOW is made equal
to the ITEST and IONGO(M) is called with M=1 to start the sub
routine from the point where it was interrupted.

f. ICONT
Refer to the Appendix A for the detail listing.

This subroutine is called from the subroutine INHAN. Upon entry

61

Figure 5.5 IONGO(M)

62
to the subroutine, the working registers (A,B,E and 0) are re
stored from the temporary storage area ISVTM(J). The transfer is
made back to the address ISVTM+3 of the subroutine which was in
service, after enabling the interrupt system.

g. IONGO(M)
Refer to the simplified flow chart. Figure 5.5.

The subroutine IONGO(M) is called from the subroutine LTEST.
This subroutine transfers the control to the beginning of a sub
routine, for M=-l or to the address from where it was interrupted
when M is equal to 1. If M is not positive, the subroutine ad
dress for SUB YY, YY = INOW, is obtained and jump to the begin
ning of the subroutine is made after turning the interrupt sys
tem on. If M is positive, registers A,B,E and 0 are restored
using ILOAD(X) and transfer to the return address for the sub
routine which is going to be served is made. Thus subroutine
corresponds to INOW is restarted from the point where it was in
terrupted, after the interrupt system is turned on.

h. WFLAG
Figure 5.6 represents the simplified flow chart

for the subroutine WFLAG. When none of the subroutines need ser
vice, this subroutine is called to work for the new service re-'
quest word. Besides waiting for the new request word, it calls
subroutine WEROR to print the errors for the doubly requested
subroutines if they exist.

Upon entry to the subroutine, INOW is cleared to
indicate that none of the subroutines is in service. If ICHAK(17)

63

Figure 5.6 WFLAG

64
is negative, (doubly requested subroutine exist) the subroutine
WEROR is called to print the error messages after enabling the
interrupt system. When control returns, interrupt system is
turned off. If ICHAK(17) is not less than zero, (doubly request
ed subroutines do not exist) the interrupt system is turned off.
Then ICHAK(17) is made zero to indicate that doubly requested
subroutines do not exist. The wait on flag set loop (Flag on
s.c. = 10B) is created. The flag set means the request word needs
to be processed. If the flag is set, interrupt system is enabled
and jump to itself loop is created to wait. The interrupt on
s.c. = 10B interrupts the computer, and control is transferred to
11.77.

i. CLRQ
Figure 5.7 shows the simplified flow chart for the

subroutine CLRQ. As shown in typical subroutine. Section 4.3,
the CLRQ subroutine is always called at the end of a program.
The subroutine in service calls CLRQ at the end, to clear the
request for running this subroutine. (Which is represented by
corresponding entry in IQTB (J)). Thus when subroutine is serviced
completely, the corresponding entry in Q-table is cleared. Upon
entry to*this subroutine, interrupt system is turned off and •
IQTB(INOW) is cleared. Also NUMM(INOW) is cleared to indicate
that the subroutine corresponding to INOW is serviced completely.
Finally LTEST is called to process other request for running the
subroutines which are waiting in a queue.

j. WEROR
The detail listing of this subroutine is given

65

^Figure 5.7 CLRQ

66
in the Appendix A. Upon entry to the subroutine WEROR, which
writes errors for the doubly requested subroutines, the CL1OC is
called before the loop. The ST1OC is called at the end, before
return is made. As shown in the typical subroutine, Section 4.3,
it was necessary to call these two subroutines. The reason for
this is explained in the next section. The error for doubly
requested subroutine is given, if TCHACK(J) corresponding to
this subroutine is negative. The normal return is made at the
end of the program.

The flow between the Priority Handler subroutines
is shown in Figure 5.9. The names in the blocks are the entry
name of the subroutines. A short description of each subroutine
function is given below.

1. LDPRT: LDPRT loads correct priority table through
TTY. Any error during generation of priority
table is indicated and it waits for the cor
rected table.

2. INITL: INITL initializes the common arrays.

3. ICHNG: ICHNG sets up the interrupt linkage parameters
in the base page to link the interrupt to sub
routine 11.77 and then generates the interrupt
to jump to subroutine 11.77.

4. 11.77: 11.77 is entered as a result of an interrupt.
It loads request word in the temporary queue
table after restoring the A,B,E and 0 re
gisters, and return address.

67

Figure 5.9 Flow Chart for the Priority
Handler Subroutine

68
5. INHAN: INHAN makes note of doubly requested subrou

tines and updates the queue table. Then it
transfers control to either subroutine ICONT
or LTEST, depending upon certain conditions.

6. LTEST: LTEST tests the subroutines for the service,
starting with the highest priority. A condi
tion for running a subroutine from the begin
ning or from the address where it was inter
rupted depending upon the priority table, is
set up.

7. ICONT: ICONT transfers control for continuing the
execution of the subroutine, which was in
service and interrupted, at the address where
it was interrupted.

8. IONGO: IONGO transfers control to the beginning of
a subroutine or to the address from where it
was interrupted after turning on the interrupt
system.

9. WFLAG: WFLAG waits for the new service request word
when no more subroutine needs service.

10. WEROR: WEROR writes error messages for the doubly
requested subroutines.

11. CLRQ: CLRQ clears the entry in the queue table
corresponding to the subroutine from which
it is called.

69
12. CL10C: CL1OC clears the control flip-flop of the de

vice on channel 10B.

13. ST1OC: ST1OC waits for any of the device being busy.
When none of the device is busy, and if a new
request word needs to be loaded in the queue
table for the service, control is transferred
to 11.77 by means of an interrupt. Otherwise
it enables the control flip-flop of the device
on channel 10B.

5.2 The Problems and Solutions Involved in the Priority Handler
In the beginning the Priority Handler was written without

the changes mentioned in this section. The problems involved
without the changes are discussed with their solution. The changes
are, (1) calling the CL1OC and ST1OC subroutines before and after
the FORTRAN WRITE or READ statements, or any time the IOC sub
routine is called for the input/output operation. (2) Addition
of new B.O.S. library subroutine tape. (3) Changing the .ENTR
subroutine in the B.O.S. library.

The change number one is introduced to inhibit the in
terrupt from channel 10B while input/output operation was being
executed.

The problem was present due to the fact that the existing
HP software system subroutines are not re-enterant. The re-enter
ant subroutine means, if the interrupted subroutine is used by
some other program and if it is entered again from the interrupt
ed address, that subroutine should work without any error.' Thus

70
due to the existing HP software, the problem comes about is dis
cussed by an example given below.

Let consider SUBO3" and SUB1O are two of the sixteen sub
routines with SUBO3 having a higher priority than SUB1O, written,
only for printing messages on TTY. Also, assume that the priority
table is set up in such a way that SUB1O is interruptable and will
continue from the interrupted address whenever it is serviced.
When the computer will be interrupted for loading the request
word for the SUBO3 while printing the message for SUB1O is in
progress, the transfer-will be made to the beginning of the SUBO3
due to SUB1O being an interruptable subroutine. The request for
printing the message for SUBO3 will be rejected by IOC (Input
Output Control subroutine) because of TTY driver being busy for
printing the message for the SUB1O. Thus a loop will be created
in SUBO3 for IOC request until the printing of the message for
SUB1O is finished. When printing the message for SUB1O is com
pleted, the request from SUBO3 will be granted and it will be
serviced completely by the priority handler. Then the priority
handler will transfer the control again back to the address of
SUB1O, from where it was interrupted for loading the request word

■^for SUB03,‘,‘ eventhough the SUB1O is finished. To solve this pro
blem, the interrupt from 10B was inhibited while an input/output
operation was being executed. This is done by calling CL1OC and
ST1OC before and after any I/O operation. The CL1OC and ST1OC
are written for this purpose which are discussed individually
one after another.

71

CL10C
Refer to the Appendix A for the detail listing of the CL1OC

subroutine. Upon entry to'the subroutine interrupt system is
turned off and then the control flip-flop on channel 10B is clear
ed, (to which Digital Input is connected) so that the computer
can not be interrupted for loading the request word even though
the flag is set. The return is made back to the calling program
after enabling the interrupt system.

ST1OC
Refer to Figure 5.8 for the simplified flow chart of the

subroutine ST1OC. The complete listing is given in the Appendix
A. This subroutine is called after the FORTRAN WRITE or READ
statement or any time the IOC is called for the input/output
operation is called. In the beginning the wait on system busy
loop is created. When system is free, interrupt system is turned
off and the return address is made indirect. If the flag on
s.c. = 10B is set, the return address is stored in the entry 11.77
after starting the device on channel 10B, and jump to II.77+1 is
made to load and process the request word. If the flag on sc=10B
is not set, the device on channel 10B (Digital Input) is started
and the interrupt system is turned on. After this the normal
return is made to the calling program.

The next change was to introduce the B.O.S. library sub
routine tape which was available from the HP compony. This
subroutine tape has almost all the arithmetic subroutines SIN,
COS, ABS etc.) calling sequences. When any of the subroutine
is called, the corresponding sequences in B.O.S. library replaces

72

Figure 5.8 ST10C

73

that subroutine call. The calling sequences in B.O.S. library
turns off the interrupt system, then it calls the arithmetic sub
routine. When the transfer is returned back to the B.O.S. sub
routine, the interrupt system is turned on. Thus the purpose of
this library tape is to inhibit interrupting any of the arithmetic
subroutine once it is started. The error could result if the
B.O.S. library tape is not used and if a subroutine is in exe
cution, is interrupted, is called by another program, and then
re-entered again to the point from where it was interrrupted.

The third change of the subroutineJENTR of the B.O.S.
library was required due to the fact that the interrrupt should
not be on, after any time the entry is made to 11.77 and until
the final decision of running the subroutine is made. The two
subroutines, INHAN and LPRTBare written in FORTRAN language.
Whenever FORTRAN subroutine is written, the compiler generates
a calling sequence for subroutine.ENTR to obtain the direct ad
dress of the arguments, if any exist, and to set the correct re
turn address. Since the sequence for subroutine^ENTR in the
B.O.S. library disables the interrupt when entered and enables
the interrupt at the end before return is made, the interrupt
system remains on after the ,£NTR in the above two subroutines
(INHAN and LPRTB) is serviced. This violates the requirement of
not turning the interrupt system on, whenever the decision of
running the subroutine is in process as mentioned above. If the
interrupt system is turned on, the error could result if, the
computer is interrupted again for the new request word while the
previous request word is not processed completely. For this

74
reason, the .ENTR subroutine in the B.O.S. library is replaced by
new .ENTR subroutine which has NOP (no operation) instruction in
place of STF 00 (turn on interrupt) instruction at the end. Thus
new .ENTR subroutine does not turn"on the interrupt system when
finished so that the program is not interruptable any time the
request word is being processed, and until the decision is made.

The disadvantage of solving the problem this way is the
inability to interrupt a write sequence or arithmetic subroutines.
A higher priority subroutine has to wait in a queue if there is a
long write statement in the lower priority subroutine which is
being executed. Same way if there is a long arithmetic subrou
tine in execution, the higher priority subroutine can not be
executed until the execution of the arithmetic subroutine is
finished. In order to minimize this effect, the long write
statements should be split into a series of smaller write state
ments .

BIBLIOGRAPHY

[1] SDS Technical Manual, Perforated Tape Reader, Coupler.
Models 9130, 9230, 9330.

[2] SDS Technical Manuals, Tape Perforator, Tally 1521, In
struction Manual.

[3] A Pocket Guide to Interfacing the HP 2100 Computer.
[4] SDS Technical Manual, KSR Keyboard Printer and Tape •

Punch Control Couplers.
[5] SDS Technical Manual, Keyboard Printer and Punch, Logic

Layouts.
[6] A Pocket Guide to the 2100 Computer.

76

APPENDIX A
PRIORITY HANDLER LISTING

77

APPENDIX A

The detail listing- of Priority Handler is given in the
same order as it is discussed in Chapter 5. Detail listing in
cludes the symbol table and then the assembly listing of all the
assembly language subroutines. It also includes the listing of
the FORTRAN programs.

The Digital Input Device was chosen as an input device,
to load the request word for running the service subroutines,
which was plugged into the highest priority slot of the HP com
puter (SC=10B).

78

TN, B
PR0GRAM LDPRT

*** PR0GRAM LDPRT ***
THIS IS THE PR0GRAM T0 L0AD C0RRECT PRI0RITY TABLE, IPRTBCJ), *
ARRAY ’IFINSCJ)’, AND ARRAY ’IRSTRCJ)*. *
THE TYPICAL ENTRY FBR L0ADING THE PRI0RITY TAELE,AFTER THE *
COMPUTER PRINTS, ”** L0AD PRIORITY TAELE **” IS, *

” +/-NN,+/-YY ” *
WHERE, NN-THE INCREASING ORDER 0F THE PRIORITY TAELE, *

STARTING FROM 1 T0 16. *
YY-THE SUBP.0UTINE NUMBER IN ’SUBYY’, SUBYY IS THE " *
NAME 0F ONE 0F THE SIXTEEN SUBROUTINES. *
SAY, IF NN=1, AND YY=15, THEN SUB 15 HAS HIGHTEST *
PRIORITY. *

THE COMMON ARRAYS ARE, *
*

IQTBCJ)- QUEUE TABLE ENTRY-FOR SUBYY, J=YY. *
J=l,16 =0, SUBYY DOES NOT NEED SERVICE *

=1, ” NEEDS SERVICE *
IQTEMCJ)- TEMPORARY QUEUE TABLE FOR ’SUBYY*, LOADED FROM DIGI- *
J=l,16 TAL INPUT DEVICE. " *

=0., DOES NOT NEEDS SERVICE. *
=i, NEEDS SERVICE. *

ISVTMCJ)- TEMPORARY STORAGE AREA FOR WORKING REGISTER A, B, E,0, *
J=l,4 AND RETURN ADDRESS UHRJ SUBROUTINE IS INTERUPTED. *
IN0W - THE PRESENT SUBROUTINE NUMBER IN SERVICE, ANY FROM *

I TO 16. *
IFINSCJ) =+VE, IF ENTRY IS *+NN,+/-YY’ FOR SUBYY, AND J=YY *
J=l,16 =-VE, ” ” ” *-NN,+/-YY* •’ ” ” ” ♦

IF +VE, THETJ SUBYY IS FINISHED IMMEDIATELY WHEN INTER*
PTED. *
IF -VE, THEN SUBYY IS NOT FINISHED IMMEDIATELY WHEN *
INTERUPTED. *

IREGCJ) -STORAGE AREA FOR A,B,0,E REGISTERS AND RETURN ADDRES *
J=l,16 FOR 16 SUBROUTINE, FOUR FOR EACH SUBYY. *
IRSTRCJ) -+VE,IF ENTRY IS *+/-NN,+YY* FOR SUBYY, J=YY *
J=l,16 =-VE, ” ” M *+/-NN,-YY* " ” ” *

IF +VE,THEN T.JHENEVER SUBYY"! S SERVED, IT SHOULD BE *
STARTED FROM THE POINT, WHERE IT WAS INTERUPTED. *
IF -VE, THEiJ SUBYY SHOULD BE STARTED FROM THE EEGINING

IPRTBCJ) - THE PRIORITY TABLE ENTRY, STARTING FROM HIGHEST. *
J=l,16 =YY, IN THE ENTRY ’+/-NN,-J-./-YY’, AND J=NN. *
ILOADCJ) -TO RESTORE A,B,0,E REGISTERS AND RETURN ADDRESS FOR *
J=I,4 THE INTERUPTED SUBROUTINE WHEN IT IS SERVED. *
ICHAKCJ) =-VE,IF SUBYY YY=J WAS ASKED FOR THE SERVICE AGAIN *
J=l,16 WHILE PREVIOUS REQUEST WAS NOT FINISHED. ♦

SUBYY IS PRINTED AS DOUBLY REQUESTED SUBROUTINE, IF *
ICHAKCJ) =-VE, AND COMPUTER IS FREE. *

ICHAKC17) =+VE, NONE SUBROUTINES WERE DOUBLY ASKED. ♦
= -VE, SOME SUBROUTINES WERE DOUBLY ASKED." *

INUMMCJ) =NN,THE ORDER GF THE PRIORITY TABLE IN ’+/-NN,+/-YY* *
J=l,16 AND J=NN. THIS ARRAY ELEMENT ARE +VE IN THE EEGINING*

WHEN SUBYY IS SERVED, THEt-J INUMMCYY) IS MADE -VE TO *
INDICTE THAT SUBYY WAS SERVED. WHEN SUBYY IS SERVED *
COMPLETELY, IT IS MADE +VE. *

79

C0MM0N IQTBC16>» IQTEMC16)> ISVTM(4)»IN0W,I FINSC16)»
CIREG(64),IRSTRC16),IPRTBC16),IL0ADC4),ICHAKC17),
CINUI1M(16)

C IF ERR0R IS MADE IN LOADING TABLE, IER0R IS INCREASED F0R EACH *
C ERROR. *
5 IER0R=O

C CALL ’INITL’ T0 INITIATE ALL COMMON ARRAYS. *
905 CALL INITL
906 URITEC2,210)

C READ ENTRY FOR PRIORITY TABLE ONE BY ONE.
907 D0 10 K=l,16
908 READC 1,*) INUMM(K),IPRTB(K)
10 CONTINUE

C CHECK WEATHER NN IS IN THE INCREASING ORDER STARTING FROM 1 TO 16
C OR NOT, IF IT IS NOT, ERROR IS GIVEN.
C DEPENDING UPON THE ENTRY +/-NN,+/-YY, THE ARRAYS IFINS(J),
CIRSTR(J) ARE LOADED, AND ELEMENTS 0F INUMM(J),IPRTBCJ) ARE MADE
C POSSITIVE IF THEY ARE NEGATIVE".
50 D0 40 J=l, 16
19 NEGNM=O
20 IF(INUMM(J))21,909
21 NEGNM=-5
23 INUMM(J) =-INUMMCJ)
909 IFC INUMM(J)-J)51,52,51

C WRITE ERROR-01, F0R NN NOT IN THE INCREASING ORDER, WITH
C THE ENTRY LINE IN WHICH ERROR HAS 0CCURED.
51 IE=01
910 WRITEC2,240)J,IE
911 IER0R= IER0R+1

C JUMP HERE IF NN IS IN INCREASING ORDER, AND PROCESS IPRTBCJ)
C DEPENDING UPON, -VE,0 0R +VE.
52 IFCIPRTBCJ))60,70,80

C JUI-1P HERE IF IPRTBCJXO,WRITE ERROR-02 IF IPRTBCJ)<- 1 6,
C WITH THE ENTRY LINE.
60 IPRTBCJ) =-IPRTB(J)
912 IFCIPRTB(J)-16)61,61,30
61 M=IPRTBCJ)

IRSTR(M)=-5
GO TO 82

C JUMP.HERE IF IPRTBCJ)=0,WRITE ENTRY LINE WITH THE ERR0R-O3
C FOR YY=0, BEING INVALID SUBROUTINE NUMBER.
70 IE=03
914 WRITEC2, 240)J, IE

G0 T0 81
C JUMP HERE IF IPRTBCJ)>0,WRITE ENTRY LINE WITH THE ERROR-02
C IF IPRTBCJ)>16.
80 IFCIPRTB(J)-16)82,82,30
82 IF(MEGNM)88,40
88 M=IPRTBCJ)

IFINSCM)=-5
GO TO 40

30 IE=02
916 WRITEC 2,240)J,IE
81 IER0R= IER0R+1
40 CONTINUE

C CHECK F0R YY BEING DUPLICATED.
C GIVE ERR0RR-O4, IF DUPLICATE SUER3UTINE NUMBER YY 15 F0UND>
C WITH ENTRY LINE NUMBER F0R WRONG ENTRY. 80
917 D0 42 K=U15
918 L=K+1
919 D0 41 LL=L>16
83 IFCIPRTBCLL)-IPRTB(K))41,84,41
41 CONTINUE

G0 T0 42
84 IER0R=IER0R+1
920 IE=04

J=LL
921 VRITEC2,240)J,IE
42 CONTINUE

C IF IER0R>O,THEN WRITE NUMBER 0F ERR3RS AND G0 T0 5, T0 START AGAIN
922 IFCIER0R)9O,91,9O
90 VRITEC2,260)IER0H

G0 T0 5
C IF IER0R=O, THEN WRITE •NO ERROR *, AND CALL ,ICHNG*, WHICH D0ES
C NOT RETURN THE EXECUTION. " ' "
91 WRITEC2,250)

CALL ICHNG
GO TO 100

210 F0RMATC7C/),I OX,"**** LOAD PRIORITY TABLE ****”,/,/)
240 FORMATC/, 5X, I2,X, ***** ERROR-", 12, " ***") " ""
250 FORMATC/,/,1 OX,"*** NO ERROR ***")
260 FORMATC/,/,1 OX,14,"ERRORS ****")
100 ST0P

END
ENDS

FTN^B
SUBROUTINE INITL
COMMON IDMK186)
DO 10 J=l,136

10 IDMICJ)=0
RETURN
END

■ ENDS.

81

82

0001 •
.177 I
.ioc. :
ICHNG I
11.77 1
** M 0

PAGE 0001.

000020
C 000002
I 000000
C 000001
errors*

ASMS, R,B,T,L

83

PAGE 0002 #01 **** SUBROUTINE ICHNG ****

0001 ASMB, P.j T, L
0003* THIS SUBROUTINE CHANGES THE LOCATION 10B AND 3GB, TO LINK
0004* THE INTERUPT ON S.C.=1EB FOR THE SUBROUTINE "11.77”, AND
CC05* TURNS ON THE DEVICE . THEN IT WAITES FOR FLAG. WHEN FLAG IS
0006* SET, INTERUPT SYSTEi-l. IS TURN ON AND * JMP ** IS EXECUTED
0007* TO MAKE LOOP.
0008*
0009*
0010* IN THE BEGINING SYSTEM REQUEST IS ASKED,(TO FINISH THE
0011* PRINTING FOR ’PRIORITY TABLE’) AND IF BUSSY , WAIT ON BUSSY
0012* LOOP IS CREATED UNTIL PRINTING IS FINISHED.
0013*

** NO ERRORS*

0014 00000 NAM ICHNG
0015
0016
0017 00000 000000

EXT 11.77,.IOC.
ENT ICHNG

ICHNG NOP
0018 0000-1 016002X JSB .IOC. JUMP TO SUB .IOC. FOR SYSTEM REQUEST
0019 00002 040000 OCT 40000' IF BUSSY, LOOP ON STATUS REQUEST.
0020 00003 002020 SSA
0021 00004 026001R JMP *-3
0022 00005 062021R LDA =3114030
0023 00006 070010 STA 10B
0024 00007 062020R LDA .177
0025 00010 070030 STA 30B
0026 00011 000000 NOP
0027 00012 103100 CLF 00 **** TURN OFF INTERUPT SYSTEM ****
0028 00013 1.037 10 STC 10B,C START DEVICE AND WAIT FOR FLAG
0029 00014 102310 SFS 10B
8030 00015 026014R JMP *-l WHEN FLAG IS SET
0031 00016 102100 STF 00 ** TURN ON INTERUPT
0032 00017 026017R JMP * AND INTERUPT TO 11.77
0033*
0034* ADDRESS AND CONSTANTS
0035*
0036 00020 00000IX .177 DEF 11.77 ADDRESS OF 11.77
0037

00021 114030
END

84
PAGE 0001

0001
B 000001
.1016 R 000035
.IQTM R 000033
.NEXT R 000001
BUFFR R 000032
FINIS R 000027
11.77 R 000000
INHAN X 000001
IQTB C 000000
IQTEM C 000020
ISUTM C 000040
LOOP R 000016
14.01 R 000034
** NO ERRORS*

ASMS, R, B» T,"L

PAGE 0002 //0l **** SUBROUTINE 11.77 ****
85

0001 ASME,P,B, T,L
0003* THIS PROGRAM FIRST TURNS OFF THE INTERUPT SYSTEM
0004* AND AFTER STOI-JUG THE REGISTERS AND RETURN ENTRY POINT INTO
0505* THE TEMPORARY ARRAY "ISVTM.", I T LOADS THE SUBROUTINE SERVICE
0036* REQUEST FROM THE INPUT CHANNEL INTO THE TEMPORARY Q-TABLE,
0057* IQTH-1. THEN TO PROCESS THE REQUEST IT JUMPS TO SUB ”INHAN”
0008*
0009* IQTEM - IS AN ARRAY OF LENGTH 16, TO LOAD TEMPORARY Q-TABLE
0013* ISVTM - IS AN ARRAY OF LENGTH 4, TO STORE ALL REGISTERS AND
001 1 * RETURN ENTRY POINT, IN COMMON AREA.
0012*
0013*
0014* ENTERED BY JSB,I IN THE DEVIC E INTERUPT LOCATION.
00'15 00000 NAM 11.77
0316 COM IQTB(16), IQTEK 16), ISVTMC4)
0017 ENT 11.77,.NEXT
0018 • EXT INHAN
0019 00000 000000 11.77 NOP •
0020 00001 103100 .NEXT CLF 00 *** TURN OFF INTERUPT ***
0021 00002 103110 CLF 10B
0022 00003 072040C STA ISVTM STORE A,B,E ,0
0523 00004 076041C STB ISVTI‘i+1 REGISTERS AND RETURN
0024 00005 001520 ERA, AL S EJTRY ADDRESS INTO
0025 00006 102201 soc AN ARRAY -ISVTM-
0026 00007 002004 INA
0027 00010 072042C STA ISVTM+2
0328 0001 1 062000R LDA 11.77
3329
0530*

0'0012 072043C STA ISVTM+3
0031* LOAD REQUEST FROM SC INTO IQTEM
0032*
0033 00013 102510 LIA 10B
0334 00014 072032R STA 2UFFR STORE BITS OF REQUEST WORD
0035 00015 066033R LDB .IQTM ’BUFFR', *1' OR ’0* INTO
0036 00016 012034R LOOP AND M.01 iQTE4Cl), " 1 = 1, io;
0037 00017 170001 STA B, I'
0038 00020 006004 INB
0039 00021 056035R CPB .IQ16
0040 00022 026027R JIIP FINIS
0041 00023 062032R LD/^ BUFFR
5042 00024 C01300 RAR
0043 00025 072032R STA BUFFR
0544 00026 026016R JMP LOOP
0045 00027 000000 FINIS NOP •
0046 00030 016001X JSB INHAI>J JUMP TO SUB ’INHAI'J'.
0047
0048*

00031 000032R DEF *+l
0049* ADDRESS AND CONSTANTS
0052*
0051 00001 B EQU 1 B- REGISTER
0352 00032 ■000000 BUFFR OCT 0
0353 00033 000020C .IGTM DEF IQTEM ADRS OF ARRAY IQTE4CI).
0354 00034 000001 M.01 OCT 1
0355 03035 000040C .1016 DEF IQTEM+ 16
0056 END
** NO ERRORS*

86
FTN,B

SUBROUTINE INHAN
C **** SUBROUTINE INHAN ****
C
C THIS SUB UPDATES THE O-TABLE, ’lOTBCJ)', FROM TEMPORARY 0-TABLE
C •lOTEM(J)*. IF SUB YY IS ASKED AGAIN FOR SERVICE, THE ERROR IS
C GIVEN WHICH WILL BE PRINTED LATER-ON,IF IT IS NOT CORRECTED.
C IF SOME SUB YY, IS INTERUPTED, AND IF IT HAS TO EE RESTARTED
C NOV, DEPENDING UPON ’IFINSCYY)’, THEN SUB ’ICONT’ IS CALLED."
C IF SUB YY CAN BE SERVED AFTERWARD THEN,DEPENDING UPON *IRSTS(YY)*
C TEMPORARY SAVED REGISTERS ARE STORED INTO THE REGISTERS ’IREG(K)',
C FOR SUE YY. FINALLY IT CALLS SUBROUTINE 'LTEST*.
C
C

COMMON IQTBC16),IQTEMC16),ISVTM(4),INOW,IFINS(16),
CIREGC64), IRSTRC16), IPRTB(16),ILOADC4),ICHAKC17),INUMMC16)

20 DO 22 J=l,16
C IF IQTEM(J) = 1,AND IGTB(J) = 0; THEM IQTB(J) = 1 IS LOADED. ,'
C IF IQTEM(J)=1, AND IOTB(J)=1, THEN IQTB(J) IS NOTE CHANGED,
C BUT ICHAK(J)=-VE IS LOADED FOR THE ERROR FOR THE DOUBLY
C RECUESTED SUBROUTINE.
C IF ERROR FOE DOUBLY REQUESTED SUBROUTINE OCCURES ICHAK(17) =-VE,
C IS LOADED.
21 IF(IQTEM(J)-1)24,23,24
23 IF(IQTB(J))25,26,25
25 ICHAK(J)= -J
29 ICHAKC17)=-5

GO TO 22
26 IQTB(J)=1
24 ICHAK(J)=0
22 CONTINUE

C IF INOU=0, NONE OF THE SUBROUTINE ARE IN SERVICE, SO CALL ’LTEST*.
C IF I1JOW>0, AND IF IFINS(INOU) = 0, OR >(5,THEI'J CALL 'ICONT*
C IF INOW>0, AND IF IFINS(INOU)=<0, AND IF IRSTRCINOU)=0
C OR >0, THEN STORE * ISVTM(J)’ (TEMP. STORAGE AREA) INTO ’IREG(K)*
C CORROSPONDING TO SUBYY, HERE YY= I NOW.’
32 IF(INOU)44,44,34
34 IF(IFIIJSC INOU))35, 36
36 CALL ICONT
35 IF(IRSTRCINOU))44,37
37 IFRST=CINCW-1)

IFRST=IFEST+IFRST+IFRST+IFRST
38 ISTRT=IFRST+1
39 IFINL=ISTRT+3
40 DO 41 K=ISTRT,IFINL

M=K-IFRST
41 IREG(K)=ISVTM(M)
44 CALL LTEST

RETURN
END
ENDS

87
FTM, B

SUBROUTINE LTEST
C
C **** SUBROUTINE LTEST ****
C THIS SUBROUTINE STARTS TESTING HEATHER ’SUBYY* NEEDS SERVICE
C OR NOT, STARTING WITH THE HIGHEST PRIORITY. IF IT NEEDS SERVICE
C (IQTBCYY)=1), AND IF INLM4(YY)> OR THEN IT CALLS 'lONGOdl)*
C UITH M=-l. IT NEEDS SERVICE, AND INUMMCYY)<0CSUEYY WAS SERVED ’
C AND INTERUPTED), THEN IF IRSTR(YY)> OR =0, ARRAY 1ILOAD(J)< IS
C LOADED FROM STORAGE REGISTER AREA *IREGCK)’(CORROSPONDING TO
C SUBYY)., THEN TIONGO(M)*, WITH M=1 IS CALLED.

COMMON IQTEC16),IQTEMC16),ISVTHC4),INOW,IFINSC16),
CIREGC64),IRSTRC16),IPRTE(16),ILOADC4),ICHAKC17),INUMMC16)

C START TESTING , STARTING WITH THE HIGHEST PRIORITY, FOR SERVICE
10 DO 20 L=l,16
21 ITEST=IPRTB(L)
23 IFCIQTBdTEST))20,20,22
20 CONTINUE .. . '

GO TO 50 .
C IF INUMM(YY)<0,THEN SUBYY WAS SERVED AND INTERUPTED.
C IF INLT-iM(J)> OR =0, THEN SUBYY. IS GETTING SERVICE FIRST TIME
22 IFCINUMMCITEST))222,25
25 INUHHCITEST) =-5

GO TO 40
222 IFCIRSTRCITEST))40, 30
30 IFRST=CITEST-1) ' •

IFRST=IFRST+IFRST+IFRST+IFRST
31 ISTRT=IFRST+1
32 IFINL=ISTRT+3
33 DO 34 K=ISTRT,IFINL

M=K-IFRST
34 ILCADCM)=IREGCK)
35 IMOT..T=ITEST

C CALL I ONG0CM), WITH M=l, IF SUBYY HAS TO START FROM THE POINT
C UHERE.IT WAS INTERUPTED.
36 M=1
37 GO TO 44
40 INOW=ITEST

C CALL IONGOCM),WITH M=-l, IF SUBYY HAS TO START FROM THE EEGINING
41 M=-l
44 CALL I ONG0 CM)

50 CALL UFLAG
RETURN
END
ENDS

page 0001
88

0001
I CONT R
IQTB C
IQTEM C
ISVTM C

000000
000000
000020
000040

** NO ERRORS*

ASMB, R,B^T, L-

89

PAGE 0002 #01 *** SUBROUTINE ICONT ***

0001 ASMB,R>B, T,L
0003* THIS SUB RESORES WORKING REGISTERS, WHICH ARE IN TEMPORARY ARRAY
0004*
0005*
0006*
0007*

’ISVTM*, TURNS ON THE INTERUPT SYSTH-I, AND THEN JUMPS TO RETURN
ADDRESS •ISVTM+3’.

0008 00000 NAM ICONT
0009
0010
0011

COM IQTBC16),IQTEMC16),ISVTMC4)
ENT ICONT

00000 000000 ICONT NOP
0012 00001 062042C LDA ISVTM+2 RESTORE A,B,E,O,AMD
0013 00002 103101 CLO .
0014
0015
0016
0017
0018

00003 000036 SLA,ELA RETURN ADDRESS
00004 102101 STF IB
00005 062040C LDA ISVTM
00006 066041C LDB ISVTM+1
00007 000300 NOP

0219 00010 102100 STF 00 *** TURN ON INTERUPT ***
0020 00011 126043C JMP ISVTM+3,I JUMP BACK TO SUB IN SERVICE
0021 END
** NO ERRORS*

90

** NO ERRORS*

PAGE 0001

0001
.ADD.
• ENTR
.SBAD
ADFNL
GETAD
IADI4Y
IBDMY
ILOAD
IN OU
INTON
IONGO
MADP-S
SUB01
SUS02
SUB 03
SUB 04
SUB05
SUB 06
SUB 07
SUB 08
SUE09
SUB 10
SUB1 1
SUB 12
SUB 13
SUB 14
SUB 15
SUB 16

ASMB> Rj B» L» T
R 000051
X 000001
R 000031
R 000052
R 000020
C 000000
C 000045
C 000225
C 000044
R 000026
R 000001
R 000000
X 000002
X 000003
X 000004
X 000005
X 000006
X 000007
X 000010
X 000011
X-000012
X 000013
X 000014
X 000015
X 000016
X 000017
X 000020
X 000021

PAGE 0002 #01 **** SUBROUTINE IONGO *♦**
91

0001 AS1IB,R,B,L,T
0003* THIS SUB TURNS ON INTERUPT SYSTE4 AND THEN JUIIPS TO SUB YY, YY=INO
0004* IF M IS NEGATIVE, IT JUIIPS TO THE BEGINING OF THE SUB. IF M IS
3G G 5 a FCSSITIVE, IT JUiviPS TO THE ENTRY, FROM WHERE IT WAS I NT ERUPT ED
0006* AFTER RESTORING THE WORKING REBISTERS.
0007*
0008*

IADMY(36), AND IBDMY(112) ARE DUMMY ARRAYS.
0009
0010
0011
0012
0013

■ 00000 NAM IONGO
COM IADMYC36),IN0W,IBDMYC112),ILOADC4)
ENT IONGO
EXT . ENTR, SUB0I, SUB02, SUB03, SU304, SU355, SUB06, SUB
EXT SUB 1 0, SUB 1 1, SUB 1 2, SUB 1 3, SUB 1 4, SUB 1 5, SUB 1 6

0014 00000 000000 MADRS BSS 1
0015 00001 000020 IONGO NOP
0016 00002 01600IX JSB .ENTR -
0017 00003 000000R DEF MADRS
0018 00004 162000R LDA.MADRS,I LOAD VALUE OF M
0019 00005 002020 SSA • IF M IS POSSITIVE; THEN JUi’IP TO E
0020 00006 026020R JMP GETAD POINT, FROM WHERE IT WAS INTERUPT
0021 0 0 007 062227C LDA I LOAD*2 AFTER RESTORING THE REGISTERS.
0022 00010 103101 CLO
0023 00011 000036 SLA, ELA
0024 00012 102101 STF IB
0025 00013 062225C LDA ILOAD
0026 00014 066226C LD3 ILOAD+1 i
0027 00015 000000 NOP
0028 00016 102100 STF 00 ** INTERUPT ON **
0229 00017 126230C JMP ILOAD+3,I
0030 00020 062051R GETAD LDA .ADD. FOR M NEGATIVE,' (.ADD.) + C IIJOU) GI
0031 00021 042044C ADA INOW THE ADRS OF THE SUB YY, YY=IN0W I
0032 00022 072052R STA ADFNL GET THIS ADDRESS AND STORE IN ‘AD
0033 00023 162052R LDA ADFNL,I
0034 00024 072052R STA ADFNL
0035 00025 000000 NOP
0036 00026 102100 INTON STF 00 ** TURN ON INTERUPT **
0037 00027 116052R JSB ADFNL,I
0338 00030 000031R DEF *+l
0039 00031 000000 »SBAD BSS 16 RESERVE 16 LOCATION FOR .SBAD
0040 00031 ORG .SBAD STORE ADDRESS OF SUB YY, YY=1 TO 1
0341 00031 0000022? DEF SUB31 INTO ARRAY ’.SBAD’
0042 00032 000003X DEF SU302 *
0343 00033 000004X DEF SUB03
0344 00034 000005X DEF SUB04 •
0045 00035 000006X DEF SUBS 5
0046 00036 000007X DEF SUB06
0047 00037 0000L0X DEF SUB07
0548 00040 00001IX DEF SUB08
0049 00041 000012X DEF SUB09
0050 00042 000013X DEF SUB 10
0051 00043 000014X DEF SUB 11
0-352 00044 000015X DEF SUB 12
0053 00045 000016X DEF'SUB13
005Z1 00046 0S5017X DEI' SUB 14
0055 00047 000020X DEF SUB 15
0056 00050 0000212: DEF SUB16
0057 '
rtr? e

00051 ORR RESETS ORIGIN AT .SBAD+16

92

PAGE 0C03 #01 **** SUBROUTINE IONGO ****

0059* ADDRESS AND CONSTANTS
0060*
0061 00051 000030R .ADD. DEF .SBAD-1
0062 00052 000000 ADFNL OCT 0
0063 END
** NO ERRORS*

ADRS OF ’.SBAD - 1•
FINAL ADDRESS

93

PAGE 0001

0001
.WRIT R 000007
IADMY C 000000
ISDMY c 000045
ICHAK c 000231
INOFF R 000012
I NOW c 000044
UEROR X 000001
WFLAG R 000000
** NO ERRORS*

ASMS, Pt, B,L,T

94

PAGE 0002 #01 *** SUBROUTINE VFLAG ***

000! ASI-IB, R, B# L, T
0003* THIS SUB FIRST WRITES ERRORS FOR THE DOUBLY REQUESTED SUBROUTINS
0004* IF THERE EXIST, AND WHEN FINISHED WAITS FOR FLAG.
0005* INOW IS CLEARED FIRST, AMD WHE'J ALL ERRORS ARE
0006* PRINTED IN SUB ’WEROR’,INTERUPT IS TURNED OFF AND IT WAITS FOR
0007* FLAG,. WHEE4 FLAG IS SET FOR SERVICE , INERUPT IS TURNED ON ,
0008* AND FLAG IS SET ON SC=10B TO JUMP TO SUBROUTINE •11.77’
0009* ICHAKC17) IS CLEARED, WHEN PRINTING OF ERRORS IS FINISHED IN WEROR
0010*
0011 00000 NAM WFLAG -

0012 EXT WEROR
0013 ENT WFLAG
0014 COM IADMYC36) ,INOW,IBDMYC116),ICKAKt17)
0015 00000 000000 VFLAG NOP
60 1 6 00001 002400 CLA
00.17 00002 072044C STA INOW CLEAR ’INOW’
0018 00003 062251C LDA ICKAK+16 IF ’ICHAXC17)’ IS NEGATIVE,
0019 00004 002020 SSA
0020 00005 026007R JMP .WRIT WRITE ERRORS. WHEN PRINTING
0021 00iu06 026012R JMP INOFF IS FINISHED , WAIT FOR FLAG

C
JC
J
c?ISJ 00007 102100 •WRIT STF 00 ** INTERUPT ON **

0023 00010 016001X JSB WEROR JUMP TO SUB ’WEROR’, TO WRITE
SC24 0001 1 000012R DEF *+l
0025 00012 103100 INOFF CLF 00 ERRORS. WHEN COMES BACK
0026 00013 002400 CLA * TURN OFF INTERUPT
0027 00014 072251C STA ICEAK+16 ICHAKC17)=0to

O
J

w

C
-l 00015 000000 NOP

0029 00016 102310 SFS 10B
0030 00017 026016R JMP *-l WAIT FOR FLAG
0031 00020 103710 STC 10B, C
0032 00021 102100 STF 00 *: INTERUPT ON **
0033 00022 102110 . STF 10B
0034 00023 026023R JMP * SET FLAG ON SC=10
0035 END
** NO ERRORS*

95

PAGE 0001

0001
MI R 000020
• ADRS R 000021
ADFML R 000.022
AD I MM R 000023
CLRQ R 000000
FAD IN R 000024
IADMY C 000045
IN OU C 000044
INUI-'M c 000252
IGTB c 000000
IQTEM c 000020
ISVTM c 000040
LTEST X 000001
** NO ERRORS*

ASI1B> R, B, T, L

96

PAGE 0002 #01 **** SUBROUTINE CLRQ ****

0001 ASMS, R, B, T, L
0003* THIS SUB CLEARS THE Q-TABLE EI>jTRY, IQTBCIUOW), INUIIMCINCU), CORROS
0004* TO 1 INOU', AFTER SUB IS SERVED COIIPLETELY. THEN IT JUMPS TO SUB
0005* •LTEST*.
0006*
0007 00000 NAM CLRQ
0008
0009
0010
0011 00000 000000

COM IQTBC16),
ET^’T CLRQ
EXT LTEST

CLRQ NOP

IQTEMCI 6),ISVTMC4),INOU,IADMY(133),I

0012 0000 1 103100 CLF 00 ** TURN OFF INTERUPT **
0013 00002 062021R LDA .ADRS GET ADRS OF ♦IQTBCJ)* AND
001 4 00003 042044C ADA INOU CLEAR IT.
0015 00004 042020R ADA MI
0015 00005 072022R STA ADFNL
0017 00006 062023R LDA ADINM CLEAR INUMM(INOU), THEN
0018 00007 042044C ADA INOW JUMP TO SUB ’LTEST’.
0019 00010 042020R ADA Ml
0020 00011 072024R STA FADIN » 1
0021 00012 002400 CLA
0022 00013 172022R STA ADFNL^I
0023 00014 172024R STA FADIN,I
0024 00015 000000 NOP
0025 00016 016001X JSB LTEST
0026 00017 000020R DEF *+l
0027*
0023* CONSTANTS AND ADDRESS
0029*
0030 00020 177777 Ml DEC -1
0031 00021 000000C .ADRS DEF IQTB "ADRS OF ’IQTB’
0032 00022 000000 ADFNL OCT 0 FINAL ADRS OF ’IQTB(INOU)’.
0033 00023 000252C ADINM DEF INUMM ADRS OF ’INUMM’.
0034 00024 000000 FADIN OCT 0 . FINAL ADRS OF ’INUMMCINOW)’.
0035 END -
** NO ERRORS*

97

FTN/B
SUBROUTINE WEROR

C THIS IS A SUBROUTINE TO WRITE ERRORS FOR DOUBLY REQUESTED
C SUBROUTINES.

COMMON IDMMYC153),ICHAKC17)
CALL CL10C

1 WRITE(2,210)
C
C IF ICHAKCJ) <0, WRITE CORROSPONDING SUB IN ERROR AND THEN HAKE
C ICHAK(J)=0.
C RETURN IS MADE WHEN FINISHED.
C
20 DO 30 J=l,16
21 IF(ICHAKCJ))25,30
25 WRITEC2,220) J -
26 ICHAK(J)=0
30 CONTINUE

CALL ST10C ,
2- GO TO 230
210 FORMATC/,/,/,"** THE FOLLOWING SUBROUTINES WERE ASKED,

C AGAIN FOR SERVICE **",/,/,/)
220 FORMAT(5X,”*SUB”,I2>/>
230 RETURN

END
ENDS

98

PAGE 0001

0001
CL 100 R 000000
Ml 00 R 000010
** NO ERRORS*

ASI-IB, R,B,L,T

99

PAGE 0002 #01 **** SUBROUTINE CL10C

000! ASMB,R,B,L,T
0003* THIS SUBROUTINE FIRST TURNS OFF THE INTERUPT, AND
0004* THEN CLEARS THE CONTROL, CLC 10B, FLIP-FLOP OF CHANNEL..
0005* 10B. RETURN IS MADE AFTER CABLING THE INTERUPT SYSTEM.
0006*

** NO ERRORS*

0007 00000 NAM CL10C
0008 ENT CL10C
0009 00000 000000 CL10C NOP
0010 00001 103100 CLF 00 ** INTERUPT OFF **
0011 00002 106710 CLC 10B CLEAR CONTROL ON 10B
0012 00003 062000R LDA CL10C
0013 00004 032010R IOR Ml 00 INDIRECT RETURN ADDRESS
0014 00005 072000R STA CL10C
0015 00006 102100 STF 00 * INTERUPT ON *
0016 00007 126000R JMP CL10C,I
0017. 00010 100000 M100 OCT 100000
0018 END

100

PAGE 0001

0001
.IOC. X 000001
.NEXT X 000003
.STC R 000016
11.77 X 000002
Ml 00 R 000021
ST10C R 000000
STL UP R 000001
** no :ERRORS*

A5MB,R, B>L»T

101

PAGE 0002 #01 ** SUBROUTINE ST10C ***

0001 ASMB,R,B,L»T
0003* THIS SUBROUTINE CHECHES THE STATUS OF THE SYSTEM.
0004* IF ANY OF THE DIVICE IS BUSSY, A LOOP ON BUSSY IS CREATED
0205* WHEN COMES OUT OF LOOP , IF FLAG IS SET ON 10B, THEN
0006* SETS CONTROL ON 10B, STORES RETURN ADDRESS INTO 11.77, AND
0007* JUMP TO II.77+1, OTHERWISE SETS CONTROL UIHOUT
0008* SETTING THE FLAG, AND RETURN IS MADE WITH THE INTERUPT ON.
0009 00000 NAM ST10C
0010 ENT ST10C
0011 EXT .IOC.,11.77,.NEXT
0012 00000 000000 ST10C NOP 1 • .
0013 00001 016001X STLUP JSB .IOC. JUMP TO SUB .IOC., FOR SYSTEM STATU
0014 00002 040000 OCT,40000 ' IF BUSSY, LOOP ON STATUS REQUEST,
0015 00003 002020 SSA ‘ UNTIL OPERATION IS COMPLETE.
0016 00004 026001R JMP STLUP
001? 00005 103100 CLF 00 INTERUPT OFF
0018 00006 062000R LDA ST10C INDIRECT RETURN ADDRESS
0019 00007 032021R IOR M100
•0020 00010 072000R STA STI0C
0021 00011 102310 SFS 10B
0022 00012 026016R JMP .STC IF FLAG ON 103, IS SET
0023 00013 103710 STC 10B,C SET CONTROL WITH FLAG CLEAR
0024 00014 072002X STA 11.77
0025 00015 026003X JMP .NEXT JUMP TO II.77+1
0026 00016 103710 .STC STC 10B,C
0027 00017 102100 STF 00 INTERUPT ON
0028 00020 126000R JMP ST10C,I SAY BYE
0029 00021 100000 M100 OCT 100000
0030 END
** NO ERRORS*

102

APPENDIX B
LOGIC SYMBOLS

103
APPENDIX B

The logic symbols of the SDS Coupler system and HP in
terface are as shown below.

1) SDS Coupler Logic Symbols:

XXT
or XXS
AND gate

XXT
or XXS
OR gate

where,
the particular location of the- The pin number of

chassis.
XXT - The card location XX on chassis T.
XXS - The card location XX on chassis S.

2) HP Interface Logic Symbols:

AND-gate

OR-gate

NAND-gate

NOR-gate

zn-pin number of an IC chip A

104

APPENDIX C
BACKPLANE DRIVER/RECEIVERS

105

APPENDIX C

The I/O signals coming from the HP busses are CTL-driven,
typically by a Fairchild type 9956. The interface capability of
a 2100 Computer would be reduced to half if there are two loads
per signal. The 9956 pulls positive to +2.5V. So a resistor
pull to -2V is required when receiving into TTL. A resistor pull
to -2V is also required for the driver to increase the speed.
The receiver and driver are as shown below.

RECEIVER
(FROM BACKPLANE)

DRIVER
(TO BACKPLANE)

106

APPENDIX D
LAYOUT AND CONNECTION TABLE FOR THE HIGH SPEED READER

107
APPENDIX D

The layout of the high speed reader interface card, the
component list and the wiring connection are given here.

Table D.l Wiring Connection for the Reader

From HP Reader
Connection Pin#

Color Code Wire
Base-Tracer

To SDS
31S Card

12 Brown-Yellow 31S-37
13 Orange-Red 31S-36
14 Brown-Violet 31S-35
15 Brown-Red 31S-33
16 Brown-White 31S-38
17 Orange-White 31S-32
18 Green-White 31S-31
19 Red-Gray 31S-30
20 Gray-Red
21 Blue-White 31S-45
22 Red-Green
23 Gray-Yellow
24 Purple-Orange 31S-44
P Yellow-Green 31S-34
R Violet-Brown 31S-43
S White-Brown 31S-43
T Black-Brown
U Black-Blue
V White-Orange
W White-Green
X White-Blue
Y Green-Red
Z Yellow-Brown
AA Yellow-Gray
BB Blue-Purple

108
Table D.2 Wiring Connection for the Reader

From SDS Chassis
(Back Side)

Color Code Wire
Base-Tracer

To SDS Chassis
(Back Side)

31S-30 Green-Brown 45S-8
31S-31 Orange-Gray 45S-7
31S-32 Blue-Green 45S-6
31S-33 Orange-White 45S-4
31S-34 Green-White 45S-9
31S-35 Blue-Gray 45S-3
31S-36 Blue-Brown 45S-2
31S-37 Orange-Brown 45S-1
31S-38 Blue-Orange 45S-5
31S-43 Orange-Gray 45S-26
39S-31 Blue-Brown 45S-28
42S-43 Green-Brown 45S-30

Card P4-26 Cable Card P19-26
Card P4-28 Cable Card P19-28
Card P4-30 Cable Card P19-30
Back Side P19-26 White-Green 1* •
Back Side P19-28 Brown 2*
Back Side P19-30 Gray 3*

* 1 HP (one of the connection on
S the- rotory switch mounted

UlT SDS on SDS front panel)

Note: 45S Card (P4) is connected to cable plug module
P19 Card.

109

COMPONENTS

1) A2-MQ7400
2) B2,B3-SN7402N
3) C2,C3-SN7475N
4) CO-SN7403N
5) D4-MC7410P
6) D5-SN74121
7) Za-27, Z -Zenner Diode 1N746A, +3V0 sp
8) Q0-Q7-2N3643

9) RcO~RC7,RC1~1,3K
10) RC0-RC7-50Q
11) RA1-1.5K
12) RD5-10K
13) Cl-C4-2.2pF
14) CD5-100PF
15) C -1000PFsp

110

Layout of the Reader‘Interface Card

Ill

APPENDIX E
LAYOUT AND CONNECTION FOR THE HIGH SPEED PUNCH

APPENDIX E

112

This appendix is supplied for the wiring connection on
rotary switch and the wiring from the HP Punch Interface card to
SDS chassis. The layout of the punch interface card with the
components list is also given.

113
Table E.l Wiring for the Rotary Switch

From Rotary
Switch

Color. Code Wire To SDS
Base-Tracer 27S-Card, Pin#

SI Yellow-Brown 13
Green-Yellow 14
Blue-Black 15

S2 Blue-Yellow 16
Orange-Yellow 17
Yellow-Gray 18

S3 Brown-Yellow 19
Yellow-Green 20
Gray-Black 21

S4 Yellow-Blue 22
Gray-Yellow 23
Black-Orange 24

S5 Yellow-Orange 25
Black-Gray 28
Green-Black 27

Sb Bl ack-Brown *2*6
Orange-Black 29
Black-Blue 30

S7 Black-Green 31
Brown-Black 32
White-Green 33

S8 Red-Blue 34
Orange-Red 35
White-Gray 36

S9 Orange-White 37
White-Blue 38
White-Brown 39

S10 Blue-White 40
Green-Red • 41
White-Orange 42

Sil (OPEN)
Green-White 13
Red-Green 14

S12 Brown-Red 15
Red-Gray 16
Brown-White 17

114

From Rotary
Switch

Color Code Wire To SDS
Base-Tracer 27S-Card, Pin#

S13 Gray-Red 18
Red-Brown 19
(OPEN)

Note: When switch is in SDS position, all 1st
and 2nd wires of all switches are con
nected, say pin 13 and 14 for SI. When
it is in HP position, all 2nd and 3rd
wires of all switches are connected,
say pin 14 and 15 for Si.

115

Table E.2 Wiring from HP Punch Interface Card to SDS 31S Card

From HP Punch
Connector Pin#

Color Code Wire
Base-Tracer

To SDS
31S-Card, Pin#

1 Yellow-Orange
2 Blue-Red
3 Yellow-Blue
4 Gray-Black
5 Black-Green
6 Red-Brown 13
7 Black-Brown 14
8 Red-Orange 15
9 Black-Gray 45
10 Purple-Green 17
11 Orange-Purple 18
12 Gray-Purple 19
13 Green-Black 20
J.4 Gr een - YoULow .21

15 Orange-Yellow 22

16 Gray-White 23
17 Purple-Gray 24
18 Brown-Black 25
19 Orange-Black
20 Purple-Blue
21 Blue-Green
22 Red-Blue
23 White-Gray
24 Blue-Black 44
E Green-Purple

116

Table E.3 Wiring on SDS S and T Chassis

From SDS Chassis
(Back Side)

Color Code Wire
Base-Tracer

To SDS Chassis
(Back Side)

27S-13 Gray-Red 40T-25
27S-14 Orange-Yellow 43T-16
27S-15 Red-Brown 31S-23
27S-16 Brown-Red 40T-4
27S-17 Yellow-Orange 43T-28
27S-18 Red-Gray 31S-22
27S-19 Yellow-Gray 40T-12
27S-20 Gray-Yellow 43T-38
27S-21 Brown-Yellow 31S-21
27S-22 Yellow-Brown 40T-18
27S-23 Blue-Yellow 42T-16
27S-24 Brown-Black • 31S-20
27S-25 Black-Brown 40T-22
27S-28 Black-Blue 42T-28
27S-27 Blue-Black 31S-19
27S-26 Black-Orange 34T-43
27S-29 Orange-Black 42T-38
27S-30 Gray-White 31S-18
27S-31 Black-Gray 40T-28
27S-32 Gray-Black 44T-16
27S-33 Blue-Red "31S-24
27S-34 Red-Blue 27S-44
27S-35 Green-Yellow 29S-39
27S-36 Green-White 31S-25
27S-37 Brown-White 44T-38
27S-38 Red-Green 37T-39
27S-39 White 29S-35
27S-40 Green-Red 44T-27
27S-41 White-Gray 37T-29
27S-42 Purple-Orange 27S-31
29S-13 Orange-White 44T-26
29S-14 Red-Orange 31S-17
29S-15 Orange-Red 36T-25
29S-16 Green-Black 41T-38
29S-17 White-Gray 31S-15
29S-18 White-Orange 36T-6
29S-19 Green-Brown 42T-14
29S-32 Orange-Purple 31S-13
29S-33 White-Brown 31S-14
29S-35 White 27S-39
29S-31 Purple-Orange 27S-42
29S-39 Green-Yellow 27S-35
29S-29 Black-Green 45T-32
31S-13 Orange-Purple 29S-32
31S-14 White-Brown 29S-33
31S-15 White-Gray 29S-17

117
From SDS Chassis

(Back Side)
Color Code Wire

Base-Tracer
To SDS Chassis

(Back Side)
31S-17 Red-Orange 29S-14
31S-18 Gray-White 27S-30
31S-19 Blue-Black 27S-27
31S-20 Brown-Black 27S-24
31S-21 Brown-Yellow 27S-21
31S-22 Red-Gray 27S-18
31S-23 Red-Brown 27S-15
31S-24 Blue-Red 27S-33
31S-25 Green-White 27S-36
31S-44 GROUND BUS ON S-CHASSIS
31S-45 +8V BUS ON S-CHASSIS

118
Table E.4 The Components List

Lable Components
A1,B4,B5,D2 SN7400
B2,B3,C2 SN7403
A3,A5 SN7475N
DI SN7420N
C4,C6,C6,E4 ' SN74121
D3 SN74123
CP1,CP2,CP3 lyF,15V
CP4-CP8 .IpF,10V,Ceramic
RO-R8,RA1 1.5K
R11-R18,RC1,RC2 1.2K
RC4 8.2K
RC5 . 2.2K
RC6 700 Ohm
RE4,RD3 27K

“CU4 locrpf
CC5,CC6,CE4 10pF/Electrolyte
F2 SN7474

119

Figure E.5 The Layout of the Punch Interface Card

