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ABSTRACT

Electrodermal activities (EDA) are any electrical phenomena observed on the skin. Skin

conductance (SC), a measure of EDA, shows fluctuations due to autonomic nervous system

(ANS) activation induced sweat secretion. Since it can capture psychological and physio-

logical information, there is a significant rise in the research for tracking mental and phys-

iological health with SC recording. SC signal that is an observation of the EDA dynamics

is representative of the class of signals generated by sparse dynamic systems. These sig-

nals can be deconvolved to uncover hidden variables. However, the current state-of-the-art

of system theoretic deconvolution and consequent investigation has many challenges. The

challenges include the need for a framework that incorporates prior physiological knowledge,

the absence of a robust inference framework that can reliably fuse multichannel observa-

tions, and the non-convexity of the parameter estimation optimization problem. In addition

to that, there is a lack of a comprehensive physiologically motivated model, the existing

deconvolution method has poor scalability, and there is the presence of motion artifacts.

Therefore, firstly, we model the fast varying fluctuations, i.e., the phasic component of

SC using a two-dimensional state-space model representing the diffusion and evaporation

processes of sweating with a sparse impulsive signal as the input representing ANS activa-

tion. We model the slowly varying fluctuation, i.e., the tonic component of SC with several

cubic B-spline functions. We formulate an optimization problem with physiological priors

on system parameters, a sparsity prior on the neural stimuli, and a smoothness prior on

the tonic component. Finally, we employ a generalized cross-validation-based coordinate

descent approach to balance the smoothness of the tonic component, the sparsity of the

neural stimuli, and the residual. Secondly, we propose a model that combines multichannel

SC recording that relates to the impulsive sparse ANS activation. Then we introduce a

generalized cross validation-based deconvolution approach utilizing this model. Thirdly, we

utilize the continuous system identification technique to reformulate the cost function as a

convex one for the deconvolution problem. Fourthly, we propose a comprehensive model

for the SC dynamics. The proposed model is a 3D state-space representation of the direct
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secretion of sweat via pore opening and diffusion followed by corresponding evaporation

and reabsorption. The comprehensive model enables us to derive a scalable fixed interval

smoother-based sparse deconvolution approach for scalable ANS activation inference. We

incorporate generalized cross-validation to tune the sparsity level. Finally, we propose a

motion artifact reduction scheme that leverages multiresolution linear/nonlinear adaptive

filters and three-axis accelerometer-based motion reference. We further perform experiments

to obtain the motion artifact contaminated data and the corresponding motion reference

signal for validating the proposed scheme. For evaluation, we utilize both experimental,

publicly available, and simulated datasets to investigate the performance of our proposed

schemes. Our results show that our approach is successfully recovering ANS activation

from SC recordings by addressing the existing challenges. Furthermore, we validate our

approaches for reliability, robustness, and scalability by evaluating their event SC response

detection performance. Finally, our results validate that our physiology-motivated state-

space model can comprehensively explain the EDA dynamics and outperforms all previous

approaches. Our findings introduce a whole new perspective and have a broader impact

on the standard practices of EDA analysis and the analysis of similar systems with sparse

dynamics.

vii



TABLE OF CONTENTS

DEDICATION iii

ACKNOWLEDGMENTS iv

ABSTRACT vi

LIST OF TABLES xii

LIST OF FIGURES xvii

1 Introduction 1
1.1 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Prior Studies and Existing Challenges . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Identification of Sympathetic Nervous System Activation from Skin
Conductance: A Sparse Decomposition Approach with Physiological
Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Robust Inference of Autonomic Nervous System Activation using Skin
Conductance Measurements: A Multi-Channel Sparse System Iden-
tification Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Sparse Deconvolution of Electrodermal Activity via Continuous-Time
System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.4 Physiological Characterization of Electrodermal Activity Enables Scal-
able Near Real-Time Autonomic Nervous System Activation Inference 7

1.3.5 Evaluation of Adaptive and Bayesian Filters for Artifact Removal
from Electrodermal Activity Leveraging Noise Source Reference . . . 8

1.4 Scientific Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Identification of Sympathetic Nervous System Activation from Skin
Conductance: A Sparse Decomposition Approach with Physiological
Priors 12
2.1 An Overview of Sympathetic Nervous System Activation and Corresponding

Skin Conductance Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Discrete Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Priors on SCR Shape Parameters . . . . . . . . . . . . . . . . . . . . 22
2.2.5 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.6 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.7 FOCUSS+ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.8 GCV-FOCUSS+ Algorithm . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.9 Coordinate Descent Approach . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

viii



2.3.1 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Simulated Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Robust Inference of Autonomic Nervous System Activation using Skin
Conductance Measurements: A Multi-Channel Sparse System Identifi-
cation Approach 44
3.1 An Overview of Autonomic Nervous System Inference from Multi-channel

Skin Conductance Measurement . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Model Formulation for Phasic SC Deconvolution . . . . . . . . . . . 48
3.2.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.4 Expectation Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.5 Maximization Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.1 Dataset 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.2 Dataset 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Sparse Deconvolution of Electrodermal Activity via Continuous-Time
System Identification 72
4.1 An Overview of Continuous-Time System Identification-Based Electrodermal

Activity Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.4 System Identification using Hartley Modulating Functions . . . . . . 82
4.2.5 Choice of HMF Dependent Time Domain Optimization for Estimating β 88
4.2.6 Sparse Inverse Problem in Hartley Modulating Function Domain . . 90
4.2.7 FOCUSS+ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.8 GCV-FOCUSS+ Algorithm . . . . . . . . . . . . . . . . . . . . . . . 93
4.2.9 Initialization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.10 Coordinate Descent Deconvolution . . . . . . . . . . . . . . . . . . . 94
4.2.11 Proof of Convexity of The HMF-based Cost Function in terms of u

and Θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.2 Simulated Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Physiological Characterization of Electrodermal Activity Enables Scal-
able Near Real-Time Autonomic Nervous System Activation Inference 107
5.1 An Overview of Physiological Characterization of Electrodermal Activity for

Scalable Autonomic Nervous System Activation Inference. . . . . . . . . . . 107

ix



5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.2 Proposed Physiological Model . . . . . . . . . . . . . . . . . . . . . . 111
5.2.3 Physiological Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.1 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.2 Simulated Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Evaluation of Adaptive and Bayesian Filters for Artifact Removal from
Electrodermal Activity Leveraging Noise Source Reference 146
6.1 Overview of Electrodermal Activity and Importance of Motion Artifact Re-

duction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.2.2 Additional Publicly Available Dataset . . . . . . . . . . . . . . . . . 150
6.2.3 Wiener Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2.4 Least Mean Squares (LMS) Adaptive Filter . . . . . . . . . . . . . . 152
6.2.5 Recursive Least Square (RLS) Adaptive Filter . . . . . . . . . . . . 153
6.2.6 Second Order Volterra Adaptive Filters (LMS and RLS) . . . . . . . 154
6.2.7 Artifact Reduction from Skin Conductance Signal with Accelerometer

As Noise Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2.8 BayesianEDA for Deconvolution of Skin Conductance Response . . . 156
6.2.9 Isolating Respiration Related Skin Conductance Activation . . . . . 158

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3.2 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Conclusion and Future Directions 171
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.1.1 Identification of Sympathetic Nervous System Activation from Skin
Conductance: A Sparse Decomposition Approach with Physiological
Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.1.2 Robust Inference of Autonomic Nervous System Activation using Skin
Conductance Measurements: A Multi-Channel Sparse System Iden-
tification Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.1.3 Sparse Deconvolution of Electrodermal Activity via Continuous-Time
System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.1.4 Physiological Characterization of Electrodermal Activity Enables Scal-
able Near Real-Time Autonomic Nervous System Activation Inference 173

7.1.5 Evaluation of Adaptive and Bayesian Filters for Artifact Removal
from Electrodermal Activity Leveraging Noise Source Reference . . . 174

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.2.1 Utilization of Different Sparse Recovery Algorithms . . . . . . . . . 174

x



7.2.2 Extention of Proposed Methods for Scalable Mutli-channel Concur-
rent and Nonlinear Implementation . . . . . . . . . . . . . . . . . . . 175

7.2.3 Concurrent Artifact Removal and Deconvolution with Unified Bayesian
Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.2.4 Deep-Learning for Deconvolution and Artifact Reduction . . . . . . 176
7.2.5 Experimental Design for Real-World Implementation . . . . . . . . . 176
7.2.6 Close-loop Control and Other applications . . . . . . . . . . . . . . . 177

REFERENCES 179

A Appendix 204
A.1 Additional Results for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . 204
A.2 Additional Results for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . 215
A.3 Additional Results for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . 219
A.4 Additional Results for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . 221

xi



LIST OF TABLES

1 Summary of Datasets Used In the Study. . . . . . . . . . . . . . . . . . . . 16
2 The Estimated Model Parameters and the Squares of the Multiple Correla-

tion Coefficients (R2 ) for the Fits of the Experimental Skin Conductance
Time Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 The Estimated Model Parameters and the Squares of the Multiple Correla-
tion Coefficients (R2 ) for the Fits of the Simulated Skin Conductance Time
Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Deconvolution Errors with Our Single Channel and Concurrent Deconvolu-
tion using Simulated Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Information of Subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6 Results from Experimental Data. . . . . . . . . . . . . . . . . . . . . . . . . 98
7 Results from Simulated Data. . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8 The Estimated Model Parameters and the Squares of the Multiple Correla-

tion Coefficients (R2 ) for the Fits of the Experimental SC Data . . . . . . 131
9 The Estimated Model Parameters, Estimation Errors, and the Squares of the

Multiple Correlation Coefficients (R2 ) for the Fits of the Simulated SC Data 133
10 The Estimated Model Parameters and the Squares of the Multiple Correla-

tion Coefficients (R2 ) for the Fits of the Experimental Skin Conductance
Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

11 The Estimated Model Parameters, Estimation Errors, and the Squares of
the Multiple Correlation Coefficients (R2) for the Fits of the Simulated Skin
Conductance Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

12 The Comparison between Different Algorithms with Noisy Experimental
Data in terms of Number of Estimated Pulses . . . . . . . . . . . . . . . . . 229

13 The Comparison between Different Algorithms with Noisy Experimental
Data in terms of Multiple Correlation Coefficient . . . . . . . . . . . . . . . 230

xii



LIST OF FIGURES

1 An General Overview of the Proposed Multi-channel Deconvolu-
tion Scheme for Inferring Brain Acrivity from SC. . . . . . . . . . . 10

2 Tonic Component Modeling with Cubic B-spline Functions. . . . . 20
3 Model Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Histograms of the Estimated SCR Shape Parameters. . . . . . . . . 22
5 Estimated Decomposition of the Experimental SC Signals for One

Female Participant and One Male Participant. . . . . . . . . . . . . . 29
6 Estimated Decomposition of the Simulated SC Signals with 25 dB

SNR for One Female Participant and One Male Participant. . . . . 30
7 Histograms of Estimated SCR Shape Parameters using Our Ap-

proach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8 Estimation Accuracy of SCR Shape Parameters in Different Noise

Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9 Average Amplitude Error of Estimated Neural Stimuli in Different

Noise Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
10 Root Mean Square Error (RMSE) of the Reconstruction for SC

signal and Corresponding Components with Respect to the Ground
Truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

11 R2 SC signal reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . 32
12 Performance Comparison of Proposed Approach with Existing Ap-

proaches for Simulated Data. . . . . . . . . . . . . . . . . . . . . . . . . 33
13 Model Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
14 Estimated Deconvolution of the Experimental Phasic SC Signals

Two Female and Two Male Particiapants. . . . . . . . . . . . . . . . . 60
15 Three Channel Deconvolution on Experimental Data. . . . . . . . . 61
16 Estimated Deconvolution of the Simulated Phasic SC Signal. . . . 62
17 Performance Comparison of Proposed Concurrent Deconvolution

Approach with Existing Approaches. . . . . . . . . . . . . . . . . . . . 63
18 Noise vs Accuracy Plot for Rise Time and Decay Time. . . . . . . . 64
19 Stress State Estimation from Drivers Stress Dataset. . . . . . . . . 64
20 Discretization of Neural Stimuli. . . . . . . . . . . . . . . . . . . . . . . 80
21 Kaiser Windows With Different Shape Parameters. . . . . . . . . . 89
22 Tonic Component Separation Example. . . . . . . . . . . . . . . . . . 96
23 Estimated Deconvolution of the Experimental Phasic SC Data in

6 Participants from Dataset 1. . . . . . . . . . . . . . . . . . . . . . . . 96
24 Estimated Neural Stimuli and Reconstructed Signals of the Sim-

ulated Phasic SC Data with 25 dB SNR in 6 Participants from
Dataset 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

25 Estimated Neural Stimuli from the Experimental Phasic SC Data
in two Participants from Dataset 2. . . . . . . . . . . . . . . . . . . . . 99

26 Comparison of Different Sparse Recovery Algorithms with Simu-
lated Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

27 Comparison of Two Deconvolution Algorithms using Simulated Data.100

xiii



28 An overview of the physiology and corresponding proposed model. 112
29 Estimated Decomposition of the Experimental SC Signals for Fe-

male Participant 1 to 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
30 Estimated Decomposition of the Experimental SC Signals for Fe-

male Participant 8 to 13. . . . . . . . . . . . . . . . . . . . . . . . . . . 127
31 Estimated Decomposition of the Experimental SC Signals for Male

Participants 1 to 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
32 Estimated Decomposition of the Experimental SC Signals for Male

Participant 7 to 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
33 Histograms of Estimated SCR Shape Parameters using Our Ap-

proach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
34 Event Related SCR Detection Performance Comparison. . . . . . . 132
35 Deconvolution Results From the Simulated SC Signals with 25 dB

SNR for Female Participant 1 to 6. . . . . . . . . . . . . . . . . . . . . 134
36 Deconvolution Results From the Simulated SC Signals with 25 dB

SNR for Female Participant 7 to 13. . . . . . . . . . . . . . . . . . . . 135
37 Deconvolution Results From the Simulated SC Signals with 25 dB

SNR for Male Participant 1 to 6. . . . . . . . . . . . . . . . . . . . . . 136
38 Deconvolution Results From the Simulated SC Signals with 25 dB

SNR for Male Participant 7 to 13. . . . . . . . . . . . . . . . . . . . . 137
39 Deconvolution Results From the Simulated SC Signals with 35 dB

SNR Female Participant 1 to 6. . . . . . . . . . . . . . . . . . . . . . . 138
40 Deconvolution Results From the Simulated SC Signals with 35 dB

SNR for Female Participant 7 to 13. . . . . . . . . . . . . . . . . . . . 139
41 Deconvolution Results From the Simulated SC Signals with 35 dB

SNR for Male Participants 1 to 6. . . . . . . . . . . . . . . . . . . . . . 140
42 Deconvolution Results From the Simulated SC Signals with 35 dB

SNR for Male Participant 7 to 13. . . . . . . . . . . . . . . . . . . . . 141
43 Noise Levels vs. Estimation Accuracy of The Model Parameters. . 142
44 Average Amplitude Error of Estimated ANS Activation in Differ-

ent Noise Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
45 Root Mean Square Error (RMSE) of the Reconstruction for SC

signal and Corresponding Components with Respect to the Ground
Truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

46 Run-time vs Signal Length. . . . . . . . . . . . . . . . . . . . . . . . . . 143
47 An Overview of the Experimental Setup. . . . . . . . . . . . . . . . . 150
48 An overview of Proposed Adaptive Filtering Scheme for Motion

Artifact Reduction from SC Recording with Accelerometer Read-
ings as the Noise Source Reference. . . . . . . . . . . . . . . . . . . . . 155

49 Examples of Artifact Reduction Results using Simulated Noise
Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

50 Inference Performance of ANS Activation After Deconvolution Al-
gorithm After Artifact Removal with Different Filters. . . . . . . . 162

xiv



51 Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 1, Trial 5
During In-Place Jogging. . . . . . . . . . . . . . . . . . . . . . . . . . . 165

52 Closer View of Different Segments of the Motion Reduced Results
for All Trials from Both Participants. . . . . . . . . . . . . . . . . . . 166

53 Deep Breath Detection Results for Five Trials of Participant 1. . . 167
54 Separation of Respiration Induced Electrodermal Activity from the

Inferred ANS Activation for Five Trials from Participant 1. . . . . 168
55 Estimated Decomposition of the Experimental SC Signals for Thir-

teen Female Participants from Dataset 1. . . . . . . . . . . . . . . . . 205
56 Estimated Decomposition of the Experimental SC Signals for Thir-

teen Male Participants from Dataset 1. . . . . . . . . . . . . . . . . . 206
57 Estimated Decomposition of the Experimental SC Signals for Thir-

teen Female from Dataset 2. . . . . . . . . . . . . . . . . . . . . . . . . 207
58 Estimated Decomposition of the Experimental SC Signals for Thir-

teen Male from Dataset 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 208
59 Estimated Decomposition of the Experimental SC Signals for Thir-

teen Female from Dataset 3. . . . . . . . . . . . . . . . . . . . . . . . . 209
60 Estimated Decomposition of the Experimental SC Signals for Thir-

teen Male from Dataset 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 210
61 Estimated Decomposition of the Experimental SC Signals for Eleven

Female from Dataset 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
62 Estimated Decomposition of the Experimental SC Signals for Eleven

Male from Dataset 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
63 Estimated Decomposition of the Experimental SC Signals for Eleven

Female from Dataset 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
64 Estimated Decomposition of the Experimental SC Signals for Eleven

Male from Dataset 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
65 White Gaussian Structure in the Model Residual Errors for SC

Data Collected From Thirteen Female Participants. . . . . . . . . . 215
66 White Gaussian Structure in the Model Residual Errors for SC

Data Collected From Thirteen Male Participants. . . . . . . . . . . . 216
67 Estimated Decomposition of the Simulated SC Signals with 25 dB

SNR for Thirteen Female Participants from Dataset 1. . . . . . . . 217
68 Estimated Decomposition of the Simulated SC Signals with 25 dB

SNR for Thirteen Male Dataset 1. . . . . . . . . . . . . . . . . . . . . 218
69 White Gaussian Structure in the Model Residual Errors of SC Data

for the Simulated with the Corresponding Results for Thirteen
Female from Dataset 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

70 White Gaussian Structure in the Model Residual Errors of SC Data
for the Simulated with the Corresponding Results for Thirteen
Male from Dataset 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

71 ROC curves for the sensitivity of Our Approach For Distinguishing
Between Event-Related vs Non-Event-Related SCRs. . . . . . . . . 221

xv



72 Performance Comparison of Proposed Approach with Existing Ap-
proaches for Noisy Experimental Data from Female Participant 1-1.222

73 Performance Comparison of Proposed Approach with Existing Ap-
proaches for Noisy Experimental Data from Male Participant 1-1. 223

74 Performance Comparison of Proposed Approach with Existing Ap-
proaches for Noisy Experimental Data from Female Participant 1-2.224

75 Performance Comparison of Proposed Approach with Existing Ap-
proaches for Noisy Experimental Data from Male Participant 1-2. 225

76 Performance Comparison of Proposed Approach with Existing Ap-
proaches for Noisy Experimental Data from Female Participant 1-2.226

77 Performance Comparison of Proposed Approach with Existing Ap-
proaches for Noisy Experimental Data from Male Participant 1-6. 227

78 Estimated Deconvolution of the Experimental Phasic SC Signals
Six Female Participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

79 Estimated Deconvolution of the Experimental Phasic SC Signals
Six Male Participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

80 White Gaussian Structure in the Model Residual Errors of Phasic
SC Data of Six Female Participants and Six Male Participants for
the Recordings Corresponding to Hand. . . . . . . . . . . . . . . . . . 232

81 White Gaussian Structure in the Model Residual Errors of Phasic
SC Data of Six Female Participants and Six Male Participants for
the Recordings Corresponding to Foot. . . . . . . . . . . . . . . . . . 233

82 Estimated Deconvolution of the Simulated Phasic SC Signal. . . . 234
83 Estimated Deconvolution of the Simulated Phasic SC Signal. . . . 235
84 White Gaussian Structure in the Model Residual Errors of Phasic

SC data of 6 Participants. . . . . . . . . . . . . . . . . . . . . . . . . . . 236
85 Estimated Neural Stimuli and Reconstructed Signals of the Exper-

imental SC Data in 6 Participants. . . . . . . . . . . . . . . . . . . . . 237
86 Example Artifact Reduction Result with Multi-resolution RLS Adap-

tive Filter from Experimental SC recording Participant 1, Trial 1
During Hand Waving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

87 Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 1, Trial 2
During Hand Waving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

88 Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 1, Trial 3
During Hand Waving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

89 Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 1, Trial 4
During Hand Waving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

90 Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 1, Trial 5
During Hand Waving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

xvi



91 Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 1, Trial 6
During Hand Waving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

92 Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 2, Trial 1
During Hand Waving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

93 Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 2, Trial 2
During Hand Waving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

94 Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 2, Trial 3
During Hand Waving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

95 Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 2, Trial 4
During Hand Waving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

96 Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 2, Trial 5
During Hand Waving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

97 Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 2, Trial 6
During Hand Waving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

xvii



1 Introduction

1.1 Motivation and Objective

The human race underwent many difficulties due to epidemics of bacteria-transmitted

diseases such as tuberculosis, plague, cholera, etc. [1, 2, 3] until recent times. These diseases

have been studied extensively, and treatments have been made available [4]. The present

challenges we face are diseases such as heart disease, major depression, anxiety, obesity, and

chronic illness. The number of patients diagnosed with such conditions is increasing day by

day [5, 6]. Among them, the term ‘stress’ is considered as the twenty-first century epidemic

[7]. Regular tracking of mental health in an unobtrusive way requires systematic and reliable

analysis of physiological signals to identify the underlying brain-related variables. In this

thesis, we investigate novel methodologies for obtaining the underlying brain activity related

to different types of stress from electrodermal activity (EDA).

The phrase EDA was first introduced in 1966 as a common term for variation in electrical

properties of the skin [8, 9]. EDA has been widely used in psychophysiology since its

discovery as it correlates with autonomic nervous system (ANS) activation. ANS is the

part of our body that generally dictates the body’s fight-or-flight response mechanism.

EDA can be exosomatically recorded by measuring skin conductance (SC). Some authors

use the term “galvanic skin response” (GSR) to refer to the SC. In response to emotional

stress, the ANS stimulates sweat glands depending on the psychological and physiological

demands. Consequently, salty secretions from sweat glands increase the SC. This elevation

in SC then gradually decreases in an exponential manner. This is known as SC response

(SCR). SC measurements can be analyzed to investigate the corresponding ANS activation,

which contains a great deal of information about human emotional arousal [10].

There are a few vital signals in the human body similar to EDA that have the potential

to be measured continuously and unobtrusively using very simple instrumentation. The un-

obtrusive nature of the measuring techniques has led to a new era of wearable technology for
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continuous health monitoring. Such signals include cardiac signals (e.g., electrocardiogram

(ECG) and photoplethysmogram (PPG)), skin temperature (SKT), EDA, muscle activity

(e.g. electromyogram (EMG)), etc. [11, 12]. Among them, PPG and SKT have been

widely integrated in consumer wearable technologies along with reliable techniques for de-

coding useful information. In the past few decades, extensive research has been performed,

mainly on PPG signal analysis for wearable implementation, with the goal of continuous

health monitoring. The next candidate with the most potential for revolutionizing wear-

able health monitoring is the EDA [13]. However, the amount of research performed on

EDA signals is relatively limited compared to cardiac signals. Although researchers have

published many studies to systematically model EDA in the last two decades, there are still

many fundamental characteristics of EDA being discovered today. For example, in 2020,

Subramaniam et al. [14] have shown that the point process characterizes EDA in normal

healthy participants. Therefore, further study is required to identify the more accurate

system dynamics of EDA so that critical information related to health monitoring can be

obtained.

1.2 Prior Studies and Existing Challenges

Macefield et al. [15] have shown that areas of the brain related to sympathetic ner-

vous activity can be identified by using functional magnetic resonance imaging (fMRI) of

the brain and by recording concurrent microelectrodes readings generated by sympathetic

outflow to muscle and skin. They have proposed to extend this idea to examine specific

disorders of emotional expression to comprehend underlying neural processes. To collect

fMRI data, a clinical setup is necessary which will be convenient for clinical diagnosis. Un-

fortunately, it is not convenient for daily tracking of neural process related to emotional

states. Bomba et al. [16] used heart rate variability (HRV) from the ECG signal as a mea-

sure of ANS imbalance. However, Soh et al. [17] illustrated the underlying challenges and

complexity of acquiring ECG data using wearable technology. In another study, Faghih et
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al. [18] were able to recover the amplitude and timing of ANS activation related to different

fear states employing EDA signals with a deconvolution scheme [19, 20]. Utilizing recovered

timings and amplitudes, emotional states can be estimated to analyze emotional disorders.

EDA is related to a system that is representative of a class of systems having sparse

dynamics. The observations of such systems, such as SC signal, can be deconvolved to

obtain hidden variables to gain insight. Many deconvolution schemes have been proposed

for such signals including SC data. Benedek et al. [21] proposed a non-negative approach

to decompose SC data into discrete compact responses and at the same time assessed

deviations from the standard SCR shape. However, this decomposition approach detects

noise as SCRs. In a later work, Bach et al. [22] have implemented a low-pass filter to

separate the slow varying tonic components and then utilized a third-order differential

equation to model the fast varying component, i.e., phasic component in SC. Nevertheless,

the FIR filter-based separation of the slow and fast varying components has limitations

as both phasic and tonic component has concentrated energies in overlapping frequency

components. Therefore, use of an ordinary FIR low-pass filter to extract tonic component

will give rise distorted phasic component with negative values. Greco et al. [23] proposed

decomposing SC data into tonic and phasic components. They formulated a quadratic

programming problem to find sparse solutions for the input stimuli. However, the use of

fixed SCR shape parameters and regularization parameters makes it challenging to find

an optimal sparse solution. In another work, Gallego et al. [24] proposed an approach to

obtain a more sparse solution; however, this approach seems to oversparsify the solution.

Furthermore, the cubic spline basis function-based model may overfit the data and provide

a solution that is not physiologically plausible. In the deconvolution scheme proposed

by Faghih et al. [25, 18, 19, 20, 26], a two-step coordinate descent approach has been

incorporated. In the first step, they used the FOCal Under-determined System Solver

(FOCUSS) algorithm [27] to find a sparse solution of the ANS activation. This step is a

convex optimization problem to which a global solution can be achieved. In the following
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step, their algorithm employs another optimization problem to find the physiological system

parameters, which are not convex. Therefore, the solution can stagnate at a local minimum.

The authors overcome this utilizing multiple random initializations.

In addition to a non-convexity formulation for parameter estimation, the methods uti-

lized in [23, 24] suggested to use the cubic B-spline and linear trend-based modeling of the

tonic part of SC to achieve a reasonable fit to the data. However, the cubic spline basis func-

tion based model may overfit to the data and provide a solution that is not physiologically

plausible. Especially, the decay time of the physiological parameter has a coupling with the

cubic spline coefficient as both jointly define the smoothness of the EDA variation. As a

result, there is a potential chance that the solution of the decay component might be out

of the physiological boundary while solving for both of them at the same time. Therefore,

proper physiological priors should be considered to obtain a tracktable solution. Further-

more, what weight should someone put on the smoothness level of the tonic component has

not been explored yet. An automatic scheme that balances between the smoothness level of

the tonic component, the sparsity level of the ANS activation, and the model fit is required.

Although the model proposed in [23, 24] can achieve a reasonable fit to the data, it lacks

reasonable physiological justification and the corresponding coefficients of the obtained cubic

spline functions have no interpretation. There are several hypothesises regarding sweat

generation, sweat secretion, evaporation, and re-absorption [28]. All these physiological

understanding has not been fully explored to design a comprehensive mathematical model.

Lack of a physiology-motivated comprehensive model prevents us from designing scalable

approaches. In addition, the lack of a complete state-space model makes it difficult to design

scalable fixed interval smoother based inference approaches for recovery of ANS activation.

Furthermore, all previous approaches [29, 21, 23, 22, 30, 24, 18] utilized only single

channel information during the inference of ANS activation. Nevertheless, the use of only

a single channel can be very unreliable as the data can be corrupted with noise and mo-

tion artifacts. As SC recordings from multiple channels are highly correlated and share
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common ANS information, utilizing multichannel information for ANS activation inference

scheme could lead to more reliable and accurate information. Finally, none of the previous

approaches consider a scheme to effectively reduce the amount of noise with the utilization

of a reference motion information.

1.3 Thesis Outline

This thesis investigates new methodologies to account for five previous challenges re-

lated to sparse deconvolution with applications in EDA. The first part investigates a unified

inference scheme utilizing physiological measurements and physiological priors with gener-

alized cross-validation for balancing between the priors and the model fit. In the second

part, this thesis provides a combined system modeling and robust optimization formula-

tion for the multichannel deconvolution approach. In the third part, it discusses a convex

optimization formulation for the parameter estimation part of the deconvolution problem

using continuous system identification techniques. The fourth part of the thesis provides a

physiologically motivated comprehensive model for obtaining a scalable and real-time brain

activity inference framework from EDA recordings. The last part of the thesis provides an

evaluation of multiresolution linear/nonlinear adaptive filters for motion artifact reduction

with motion reference.

1.3.1 Identification of Sympathetic Nervous System Activation from Skin Con-

ductance: A Sparse Decomposition Approach with Physiological Priors

Sweat secretions lead to variations in SC signal. The relatively fast variation of SC,

called the phasic component, reflects sympathetic nervous system activity. The slow vari-

ation related to thermoregulation and general arousal is known as the tonic component.

It is challenging to decompose the SC signal into its constituents to decipher the encoded

neural information related to emotional arousal. Therefore, in this part we model the phasic
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component using a second-order differential equation representing the diffusion and evap-

oration processes of sweating. We include a sparse impulsive neural signal that stimulates

the sweat glands for sweat production. We model the tonic component with several cubic

B-spline functions. We formulate an optimization problem with physiological priors on sys-

tem parameters, a sparsity prior on the neural stimuli, and a smoothness prior on the tonic

component. Finally, we employ a generalized cross-validation-based coordinate descent ap-

proach to balance among the smoothness of the tonic component, the sparsity of the neural

stimuli, and the residual. Furthermore, we illustrate that we can successfully recover the

unknowns separating both tonic and phasic components from both experimental and simu-

lated data. Furthermore, we successfully demonstrate our ability to automatically identify

the sparsity level for the neural stimuli and the smoothness level for the tonic component.

1.3.2 Robust Inference of Autonomic Nervous System Activation using Skin

Conductance Measurements: A Multi-Channel Sparse System Identifi-

cation Approach

The ANS stimulates various sweat glands for maintaining body temperature as well as

in response to various psychological events. Variations in SC measurements due to salty

sweat secretion can be used to infer the underlying ANS activity. Recovering both ANS

activity and the underlying system from noisy single-channel recordings is challenging. As

the same ANS activity drives all sweat glands throughout the skin, the same information

is encoded in different SC recordings. We perform system identification and develop a

physiological model for multichannel SC recordings relating them to ANS activation events.

Using a multirate formulation, we estimate the number, timings, and amplitudes of ANS

activity and the unknown model parameters from multichannel SC data. We incorporate a

generalized cross-validation-based sparse recovery approach to balance between the sparsity

level of the inferred ANS activity and the goodness of fit to the multichannel SC data. In this

part, we show our results of successfully deconvolving multichannel experimental auditory
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stimulation SC data from human participants. We analyze experimental and simulated

data to validate the performance of our concurrent deconvolution algorithm; we illustrate

that we can recover the ANS activity due to the underlying auditory stimuli. Furthermore,

we estimate the stress using inferred ANS activity based on multichannel deconvolution of

SC data collected during different driving conditions and at rest.

1.3.3 Sparse Deconvolution of Electrodermal Activity via Continuous-Time

System Identification

One of the challenges with the existing SC deconvolution methods is the non-convexity

of the optimization formulations for estimating the parameters given the stimuli. We solve

this parameter estimation problem using a continuous-time system identification framework:

i) we specifically use the Hartley modulating function (HMF) for parameter estimation so

that the optimization formulation for estimating the parameters given the stimuli is convex;

ii) we use Kaiser windows with different shape parameters to put more emphasis on the

significant spectral components so that there is a balance between filtering out the noise

and capturing the data. We apply this algorithm to SC data, a measure of EDA, collected

during cognitive stress experiments. Under a sparsity constraint, in the HMF domain, we

successfully deconvolve the SC signal. We obtain the number, timings, and amplitude of

the underlying neural stimuli along with the system parameters. Moreover, using simulated

data, we illustrate that our approach outperforms existing EDA data analysis methods in

recovering underlying stimuli.

1.3.4 Physiological Characterization of Electrodermal Activity Enables Scal-

able Near Real-Time Autonomic Nervous System Activation Inference

The current state-of-the-art lacks a physiologically motivated approach for real-time in-

ference of ANS activation from EDA. Therefore, in this part, we propose a comprehensive

model for the SC dynamics. The proposed model is a 3D state-space representation of the
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direct secretion of sweat via pore opening and diffusion followed by corresponding evapora-

tion and reabsorption. As the input to the model, we consider a sparse signal representing

the ANS activation that causes the sweat glands to produce sweat. In addition to the pro-

posed model, we derive a scalable fixed interval smoother-based sparse recovery approach

utilizing the proposed comprehensive model to infer the ANS activation enabling edge com-

putation. We incorporate a generalized cross-validation-based approach to tune the sparsity

level. Finally, we propose an expectation-maximization based deconvolution approach for

learning the model parameters during the ANS activation inference. For evaluation, we

utilize an experimental dataset, and the results show that our comprehensive state-space

model can successfully describe the SC variations with high scalability, showing the feasi-

bility of real-time applications. Results validate that our physiology-motivated state-space

model can comprehensively explain EDA and outperforms all previous approaches. Our

findings introduce a whole new perspective and have a broader impact on the standard

practices of EDA analysis.

1.3.5 Evaluation of Adaptive and Bayesian Filters for Artifact Removal from

Electrodermal Activity Leveraging Noise Source Reference

EDA shows a significant correlation with ANS activation. Accurate EDA analysis along

with the ANS activation inference has a wide range of applications in mental health moni-

toring. However, the presence of motion artifacts in the SC data collected in ambulatory set-

tings makes the analysis unreliable. In this study, we propose a multirate adaptive filtering

scheme to remove motion artifacts from the SC data that utilizes three-axis accelerometer

data. We evaluated four types of linear/nonlinear adaptive filters. We utilize the simulated

as well as experimental data to evaluate the performance of the adaptive filters. Further-

more, we utilize the respiration signal to identify the probability of respiration-induced

SC artifacts. Next, we utilize a Bayesian filter-based expetation-maximization approach

to identify the activation that is comprised of respiration induced and ANS induced ones.
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Finally, we propose a method to isolate two types of activation based on the respiration

analysis. Our result shows that linear FIR recursive least-squares filters are performing

best compared to other types of adaptive filters. We draw this conclusion by obtaining the

receiver operating characteristics of detectability of the event-related SCRs after artifact

reduction with different adaptive filters. Moreover, we saw that the recursive least-squares

filter has always provided stable results for both simulated and experimental datasets. Fi-

nally, our results also show our ability to detect the respiration-induced SC responses and

corresponding ANS activation. The evaluation of the adaptive filters shows the potential of

utilizing reference signals with effective artifact modeling for successful reduction. Effective

artifact reduction will lead to practical implementations of closed-loop wearable machine

interface architectures to regulate emotions for mental and physical well-being.

An illustration of the summary of the proposed method is provided in Figure 1. Figure

1-(A) illustrates the objective of the proposal, i.e., to accurately infer brain activation from

multi-channel recording. Figure 1-(B) shows a general overview of the proposed deconvo-

lution approach. Figure 1-(C) shows a snippet of the results and comparison with other

approaches.

1.4 Scientific Significance

Appropriate EDA analysis has applications in a wide range of fields such as mental

disorders, pain, cognitive stress tracking, wakefulness, etc. As different physiological signals,

including EDA, contain information about human emotional arousal, they have potential

applications in the field of mental health. For example, preventing death from mental

disorders with regular tracking could be one potential application as Walker et al. [31]

reported that a large portion of deaths worldwide are attributable to mental health-related

disorders. A meta-analysis shows that mental disorders are a major risk factor for suicide

[32]. Suicide is one of the leading causes of death in the United States in the year 2017

[33] and the cost related to suicide alone in the United States were more than $90 billion in
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Figure 1: An General Overview of the Proposed Multi-channel Deconvolution
Scheme for Inferring Brain Acrivity from SC.

2013 [34]. Studies have recommended [34] community-based immediate psychiatric services,

including telepsychiatric support for reducing suicide-related costs which require continuous

monitoring. Augmenting EDA with other physiological signals for time-to-time monitoring

of critical patterns of emotional regulation could potentially help preventing psychiatric

disorders [35].

Another possible potential application could be detecting diabetic neuropathy and track-

ing the efficacy of the treatment in the patient population. Diabetic neuropathy refers to

small nerve damage caused by prolonged exposure to high levels of blood glucose concen-

tration [36]. As a result, small nerves along with the sudomotor nerves in the legs, feet, and

hands that are responsible for transmitting ANS activation are prone to neuropathy [36].

As confirmed by numerous studies in [37, 38, 39], damages in small nerves including the

sudomotor nerves may lead to abnormal EDA variations. Furthermore, it is well known in

clinical diagnostics that the development of anomalies in sweat secretions may be attributed

to forms of disorders, such as hypohidrosis and anhidrosis [40]. Moreover, such disorders
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may indicate diseases like diabetes mellitus [40]. Clinical investigations of abnormalities in

the SC recordings can be pivotal for the early detection of such diseases.
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2 Identification of Sympathetic Nervous System Activation

from Skin Conductance: A Sparse Decomposition Approach

with Physiological Priors

2.1 An Overview of Sympathetic Nervous System Activation and Corre-

sponding Skin Conductance Response

Although the skin’s electrical activity was first observed in the 1880s, the term “elec-

trodermal activity” (EDA) was first introduced in 1966 as a common phrase for electrical

phenomena in the skin [8, 9]. Since its discovery, EDA has been very popular in psychophys-

iology research as variations in the skin’s electrical conductivity correlate with the sympa-

thetic nervous system (SNS) activation. SNS is a part of our body’s autonomic nervous

system (ANS), which is primarily responsible for the fight-or-flight response mechanism.

EDA can be exosomatically recorded by measuring skin conductance (SC). Some authors

use the term “galvanic skin response” (GSR) to refer to the SC. In response to emotional

stress, ANS stimulates sweat glands depending on the psychological and physiological de-

mands. Consequently, salty secretions from sweat glands increase the SC. SC measurements

can be analyzed to investigate the corresponding ANS activation, which contains a great

deal of information about human emotional arousal [10].

SC is considered as a composition of two components [9, 42, 29, 21, 23]. The relatively

slow varying component, called the tonic component, is generally related to the thermoreg-

ulation of the body, ambient temperature, humidity, and the general arousal of a person

[9, 43]. Wickramasuriya et al. [44] showed that the tonic component can be incorporated

Chapter two was first presented in part at 2019 41st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC) [8]. Chapter two has been mainly adopted from
Amin, Md Rafiul, and Rose T. Faghih. “Identification of Sympathetic Nervous System Activation From
Skin Conductance: A Sparse Decomposition Approach With Physiological Priors.” IEEE Transactions on
Biomedical Engineering 68.5 (2020): 1726-1736 [41].
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in an arousal state estimation scheme assuming it contains the general arousal informa-

tion of a person. Some authors have measured it as SC level (SCL) [9]. On the contrary,

the comparatively fast varying component is a reflection of neural stimulation from the

SNS. The fast varying component is called the phasic component which is comprised of

discrete SC responses (SCRs). Discrete SCRs can be related to various SNS activation

events. In summary, SC can be represented as the sum of two convolution operations: (1)

between a sparse neural stimuli from SNS and a fast physiological smoothing kernel and (2)

between some arbitrary unknown activation function and a slow physiological smoothing

kernel. There is a growing interest in identifying such systems as well as the underlying

neural stimuli representation SNS activation for a better understanding of physiological

phenomena [45, 46].

Appropriate EDA analysis along with SNS activation identification technique has ap-

plications in a wide range of fields such as mental disorders, pain, cognitive stress tracking,

wakefulness, etc. As different physiological signals, including SC, contain information about

someone’s emotional arousal, they have potential applications in the field of mental health.

For example, preventing deaths from mental disorders with regular tracking could be one

potential application as Walker et al. [31] reported that a large portion of the deaths world-

wide is attributable to mental health-related disorders. A meta-analysis shows that mental

disorders are a major risk factor for suicide [32]. Suicide is one of the leading causes of

death in the United States in the year 2017, and it has increased by 3.7% from the previ-

ous year [33]. Suicide related costs for the United States were $93.5 billion in 2013 alone

[34]. Shepard et al. [34] emphasized the community based immediate psychiatric services,

including telepsychiatric support for reducing suicide-related costs. Regular tracking of

problematic patterns of emotional regulation could potentially help prevent psychiatric dis-

orders [35]. Electroencephalogram, electrocardiogram, respiration, functional near-infrared

spectroscopy [47], and EDA, could be investigated to identify abnormal patterns of emo-

tional regulation [48]. Day to day tracking and analysis of emotional regulation requires
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reliable wearable implementations for suicide-prone patients.

In a different context, studies have also shown that abnormal SC recordings can be

attributed to diabetic neuropathy and other diabetic diseases [37, 38, 39]. Diabetic neu-

ropathy refers to the small nerve damages caused by prolonged exposure to high levels of

blood glucose concentration [36]. Small nerves in the legs, feet, and hands are more prone

to neuropathy [36]. The small nerve fibers also include the sudomotor nerves that are pri-

marily responsible for delivering the SNS activation to the sweat glands for sweat secretion.

Abnormal SC variation or asymmetry of SC recordings from different skin regions might be

an indication of diabetic neuropathy. According to clinical diagnostics, the development of

early stages of sweat formation disorders is related to various forms of illnesses, including

hypohidrosis or anhidrosis, which accompany diseases like diabetes mellitus [40]. System-

atic analysis of SC recording to identify these asymmetries can be crucial for the early

prevention of such illness.

In the early days, most of the SC studies in psychophysiology were performed with only

basic statistics. In the last two decades, researchers have come up with systematic analysis

tools with a goal of understanding SNS activation patterns [49]. Several popular methods

have been widely used for decomposing SC recording into its constituents. Benedek et

al. [29, 21] proposed two methods within a toolbox named LedaLab to decompose SC

signal into several discrete SCRs. However, their methods lead to non-sparse solutions for

neural stimuli which may over-fit to the noise. Bach et al. [22] have proposed the dynamic

causal modeling (DCM) approach for inferring the neural stimuli. They have considered a

linear time-invariant system for modeling SCRs. They optimize the model parameters for a

large dataset. They later also proposed a matching pursuit (MP) approach for alternative

and faster implementation [50]. However, as a pre-processing step, they perform band-

pass filtering (between 0.015 and 5 Hz) to remove the tonic component [51]. As both

phasic and tonic components are SC measures, they are non-negative and both should

have a spectral overlap in the low-frequency region. Therefore, simple band-pass filtering
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introduces physiologically impossible negative values in the filtered signal and hence can

distort the actual underlying components. Greco et al. [23] proposed a decomposition

algorithm based on quadratic programming named cvxEDA where they have considered

two different dictionaries for modeling tonic and phasic components. They considered the

sparsity condition in neural stimuli. Nonetheless, the manual selection of the SCR shape

parameters as well as the hyperparameters for imposing the sparsity prior on SNS activity

and smoothness prior on the tonic component makes it challenging to find an appropriate

solution. Hernando-Gallego et al. [24] proposed a fast and sparse decomposition algorithm

named sparsEDA, however, it seems to provide an overly sparse solution leading to missing

significant SCRs. Studies in [18, 52, 53, 54] proposed coordinate descent deconvolution

approaches to account for the individual differences in the SCR shape parameters, but

these do not solve for the tonic component.

In the present study, we propose an algorithm to recover the SNS neural stimuli, the

underlying SCR shape parameters, and the tonic component from observed SC sampled

data. Inspired by the works in [23, 18, 25, 19, 20, 26, 55, 56], we use a second-order

differential equation model based on diffusion and evaporation process of sweat to relate

SC to the internal unobserved neural stimuli and model the tonic component with a set of

cubic basis-spline (B-spline) functions. We formulate an optimization problem based on the

proposed model including: 1) Gaussian prior on SCR shape parameters, 2) sparsity prior

on neural stimuli (l1-norm penalization), and 3) smoothness prior on the tonic component

(energy penalization, i.e. l2-norm penalization on the cubic B-spline coefficients). We

propose a block coordinate descent approach to recover the unknowns by incorporating

sparse recovery for the neural stimuli and the interior-point method for the SCR shape

parameters and the tonic component estimation. Moreover, we implement generalized-

cross-validation (GCV) to obtain regularization parameters for both the l1-norm and l2-

norm penalization terms, respectively for the neural stimuli and cubic B-spline coefficients.

Finally, we analyze both experimental and simulated SC datasets to show the performance
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of our proposed approach.

2.2 Method

2.2.1 Dataset Description

In this study, we analyse the SCRs to loud sounds [57], auditory oddballs [58], pain by

electric shocks [59], white noise bursts [60], visual detection tasks [61]. The experiments

were designed to investigate and model event-related SCRs [30]. The number of participants,

gender, and age information is provided in Table 1. Dataset 1 contains three-channel SC

data (SC measurement from the thenar/hypothenar of the non-dominant hand, the middle

phalanx of the dominant second and third finger, and the medial plantar surface of the

non-dominant foot) of each of the 26 participants. The rest of the datasets collect data

only from the thenar/hypothenar of the non-dominant hand. Therefore, we use the SC

recordings from the thenar/hypothenar of the non-dominant hand for all the datasets in

this study. The experimental details are given in [30]. The total number of participants is

110 based on the experimental details in [30]. However, data for one participant is missing

in Dataset 3 in the online repository. Therefore, we performed our analysis on the rest of the

109 available participants. The reported information in Table 1 is based on the downloaded

datasets.

Table 1: Summary of Datasets Used In the Study.

Dataset
No.

Experiment
Type

Number of
Participants

Age (years)

1 Loud Sound Stimulation 26 (13 M, 13 F) 24.4+/-4.9

2 Auditory Oddball Task 20 (9 M, 11 F) 21.8+/-3.3

3 Pain by Electric Shocks 19 (9 M, 10 F) 21.8+/-3.3

4 White Noise Stimulation 22 (11 M, 11 F) 24.7+/-4.5

5 Visual Detection Task 22 (11 M, 11 F) 24.7+/-4.5

Here ‘M’ corresponds to male and ‘F’ corresponds to female.
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2.2.2 Model Formulation

As previously mentioned, the SC signal can be thought of as the summation of two

different components, i.e. the tonic component and the phasic component. We consider

a third component in the formulation representing the measurement noise. The SC signal

can be represented combining these three components as follows,

y(t) = yp(t) + ys(t) + ν(t), (1)

where y(t), yp(t), ys(t), and ν(t) represent the SC signal, phasic component, tonic compo-

nent, and noise, respectively.

Phasic Component. The phasic component can be thought of as the smoothed version

of the neural activity from the SNS. The smoothing is performed by the physiological system

composed of a collection of sweat glands, epidermis, and other related skin components. We

model the physiological system responsible for smoothing operation using the first-order

kinetics of diffusion of sweat from the sweat ducts to the strata cornea and the subsequent

first-order kinetics of evaporation from the strata cornea [42, 21, 9]. We combine both

diffusion and evaporation kinetics to form the following second-order differential equation,

and we relate it to the neural stimuli u(t) generated by SNS,

τrτd
d2yp(t)

dt2
+ (τr + τd)

dyp(t)

dt
+ yp(t) = u(t), (2)

where τr and τd represent the rise and decay times for each SCR, respectively. We assume

that τr and τd stay constant during the experiment, however, they can be different from

person to person. Let SCR shape parameter vector τ = [τr τd]
⊤. Similar to [18, 25, 19,

20, 52, 53], we define an abstract definition of u(t) as the summation of N weighted and

shifted impulse functions, i.e. u(t) =
∑N−1

i=0 uiδ(t−∆i), where ui represents the amplitude

of the neural stimulus from SNS at time ∆i. In this study, we define ∆i = iTu, where Tu is
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the sampling interval of u(t) in discrete model described in 2.2.3. We define N to represent

the number of samples in the discrete form of u(t), and we write it as a function of the SC

signal duration Td (N = Td
Tu

); ui is zero if there is no neural impulse and is a positive value

if there exists an impulse at time instance iTu. Since the number of impulses in the neural

stimuli is very small compared to the number of samples in the recorded SC signal, we can

represent the neural stimuli as a sparse vector in discrete domain for our analysis similar to

[52].

We solve the differential equation in (2) assuming the sweat duct is empty at time t = 0,

similar to [9, 18, 52, 53]. Hence, the solution to the differential equation becomes,

yp(t) = yp(0)e
− t

τd + hτ (t) ∗ u(t), (3)

where hτ (t) refers to the system impulse response representing an SCR shape and can be

represented as a scaled version of the Bateman function. Here, the operator ‘∗’ represents

the convolution operation. hτ (t) can be written as follows,

hτ (t) =


1

τr−τd
(e−

t
τr − e

− t
τd ) ; if t ≥ 0

0 ; otherwise.

(4)

Tonic Component. We utilize a summation of several shifted and weighted cubic B-

spline functions to model the tonic component as in [62] and represent it with the following

convolution operation,

ys(t) = ψ(t) ∗ q(t), (5)

where ψ(t) is the cubic B-spline function and q(t) =
∑P−1

j=0 qjδ(t− (j−1)Λs) is an alternate

representation of the cubic B-spline functions coefficients denoting the scaling and shifting

operations. Here, P is the number of different shifted and scaled cubic B-spline waves used.
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Λs is the knot size of the cubic B-spline function, which is an indicator of the smoothness

of the tonic component. In this study, we select Λs = 6 seconds, the same as the maximum

value of the decay time that we allow. We choose this value assuming a small increase in

the tonic component during an SCR [9].

A cubic spline is a piecewise quadratic polynomial function of its dependent variable.

A basis function of a cubic spline ψ̃i(t) represents the piece wise function within a certain

time duration ti < t < ti+1. The set of cubic basis function can be defined by SP,3 =

{ψ̃i,l(t)|l = 3, i ∈ {0, 1, 2, · · · , P −1}} where i denotes the knot number or the time location

and l denotes these are cubic B-spline functions. P is the total number of basis functions

in the set. For a given sequence of ti, ∀i ∈ {0, 1, 2, · · · , P}, ψ̃i,l(t) can be calculated using

the following recursive definition,

ψ̃i,l(t) =



1 if l = 1 & ti < t < ti+1

t−ti
ti+l−ti

ψ̃i,l−1(t) +

ti+l+1−t
ti+l+1−ti+1

ψ̃i+1,l(t)

if l > 1 & ti < t < ti+1

0 otherwise.

In this study we set a fixed knot to knot distance, i.e. knot size, Λs = ti+1 − ti, ∀i ∈

{0, 1, 2, · · · , P − 1}. Therefore we have ti = iΛs. As our optimization problem is non-

convex, it is important that the dictionary function is scaled properly before estimation.

Again it is necessary to shift the basis function such that it can appropriately define the

tonic components at the start and end of the SC recordings. Therefore, we re-define our

tonic component basis functions by adding an extra scaling factor and a time shift, ψ(t −

iΛs) = αψ̃i,l(t − β). In this study, we searched for a reasonable scaling factor α and

time shifts β with trial and error. Finally, we chose α = 102 and β = 6Λs which gives us

reasonable initialization while running the proposed approach on the five datasets. The tonic

component is very slow, the tonic component for a time instance is dependent on coefficients
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qj of the several other neighboring cubic B-spline functions. Therefore, to model the tonic

component at the beginning and the end of the SC recording, we consider an additional five

basis functions in the model, i.e. P =
⌈
Td
Λs

⌉
+ 5. Figure 2 shows how a smooth tonic SC is

modeled with several Cubic B-spline Functions. In Figure 2 the black curve correspond to

the modelled tonic component. The colored curves denotes the weighted and shifted tonic

basis functions. The back rectangle denotes the signal duration. A few basis functions

outside the signal facilitates smooth transition to zero. Figure 2 also shows that the smooth

transition from a non zero value to zero at the start and end of the signal is facilitated by

a few extra cubic functions outside the signal region. As mentioned earlier, we considered

five extra basis functions which are higher than the required number of basis functions to

provide a bit of extra flexibility. The l2-norm regularized penalization on the cubic B-spline

coefficients will lead to unnecessary coefficients set to zero or very close to zero. This way

the algorithm can decide the necessary number of cubic B-spline functions necessary to

approximate a tonic component. We decided to include extra 5 basis functions to allow two

or more basis functions before and after the signal measurement duration. However, the

method should perform well as long as there is at least one extra basis function use outside

the signal duration. The l2-norm penalization will set any unnecessary coefficients to zero

even someone decides to use more than the number of extra coefficients required and the

result will not be affected significantly.
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Figure 2: Tonic Component Modeling with Cubic B-spline Functions.
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Figure 3: Model Block Diagram.

The whole model is illustrated in Figure 3. Figure 3 shows that a single neural stimuli

signal u(t) generated by the SNS is responsible for the SCR in a particular skin region of

the body. The block diagram in Figure 3 shows the neural stimuli u(t) convolving with

sweat glands in a particular region of the skin having a phasic response function hτ (t) to

generate phasic component. The tonic component is represented as a convolution between

a signal representing the weights in different time instances for the q(t) and a function ψ(t)

denoting the smooth variation. ν(t) represents the measurement error.

2.2.3 Discrete Model

If SC is periodically sampled with a period of Ty for M measurements, we can write the

discrete observation equation as follows,

yk = yp(kTy) + ys(kTy) + νk, (6)

where k ∈ {1, 2, · · · ,M} and νk represents the discrete measurement errors. We model νk

as a zero mean Gaussian random variable. As we are interested in estimating the model

unknowns, we write the discrete model for yk as follows based on (3) and (5),

yk = akyp0 + bku︸ ︷︷ ︸
phasic

+ ckq︸︷︷︸
tonic

+νk, (7)
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where ak = e
− kTy

τd , bk =
[
hτ (kTy) hτ (kTy − Tu) · · · hτ (Tu) 0 · · · 0︸ ︷︷ ︸

N− kTy
Tu

]⊤
, ck =

[
ψ(kTy +

Λs) ψ(kTy) ψ(kTy −Λs) · · · ψ(kTy − (P − 1)Λs)
]⊤

; u = [u1 u2 · · · uN ]⊤ represents

a sparse vector containing all the input neural stimuli amplitudes over the entire signal

duration and q = [q1 q2 · · · qN ]⊤ represents all the coefficients of the cubic B-spline

basis functions and yp0 = yp(0). Let y = [y1 y2 · · · yM ]⊤, Aτ = [a1 a2 · · · aM ]⊤,

Bτ = [b1 b2 · · · bM ]⊤, C = [c1 c2 · · · cM ]⊤, and ˚ = [ν1 ν2 · · · νM ]⊤. As

yp0 is unknown, we also consider it as an unknown parameter. Therefore, we define a new

parameter vector θ = [ τ⊤ yp0 ]⊤, which we plan to estimate. We assume, Ty = LTu,

where L is an integer. Now the sampled data vector y is related to the sparse vector u

representing the neural stimuli through the following equation,

y = Aτyp0 +Bτu︸ ︷︷ ︸
phasic

+ Cq︸︷︷︸
tonic

+ν. (8)
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Figure 4: Histograms of the Estimated SCR Shape Parameters.

2.2.4 Priors on SCR Shape Parameters

Different SCR shape parameters have been explored for deconvolution in several studies

[21, 23]. Previously, prior knowledge on the SCR shapes helped the development of fixed-

parameter based approaches [21, 23]. However, the use of fixed SCR shape parameters makes

it very difficult to obtain accurate estimation. On the contrary, the manual selection of the
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SCR shape parameters can be very cumbersome and time-consuming. Recent advancements

of the sparse system identification based approaches iterate between sparse neural stimuli

estimation and SCR shape parameters estimation step in a coordinate descent manner

[18, 52, 53, 54]. In our previous study in [8], we incorporate tonic component separation

along with the estimation of the SCR shape parameters. The approach showed promising

results in separating the tonic component along with finding a solution for the neural stimuli

and SCR shape parameters. However, this might not hold in a worst-case scenario. In some

cases, the minimum might not be achieved inside the physiologically feasible set when

the problem has many degrees of freedom, and it might be achieved on the boundaries.

Moreover, additional flexibility of estimation SCR shape parameters in the optimization

formulation may lead to over-fitting [63]. To avoid such scenarios, we include physiological

priors while solving the optimization problem similar to [64]. We assume that the individual

SCR shape parameters are Gaussian distributed with some mean and variance. Figure 4

shows the distribution of the estimated parameters in our previous work [54]. In Figure 4,

the red and green bar plots correspond to the histogram plots of the estimated rise time τr

and decay time τd in [54], respectively. Furthermore, the red and green curve correspond

to the corresponding fitted normal distribution probability distribution function. Finally,

the red and green vertical lines correspond to the locations of the means µr and µd of

the corresponding distributions, respectively. σr and σd denote the stand deviations of

the respective distributions. Later, we use this information as a prior in the optimization

formulation.

2.2.5 Pre-processing

The SC is recorded with a sampling frequency of 100 Hz. We use the same approach

to remove the large discontinuities as in our previous work [54]. As the very first step of

the pre-processing, we detect the large discontinuities in the recorded SC data by detecting

peaks on the absolute difference of the raw SC signal. We chose a prominence value of 0.1
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for peak detection. As the large discontinuities are usually due to the noise and artifacts, we

choose the prominence parameter such that it does not capture any SCR as a discontinuity.

After detecting a discontinuity, we discard a small patch of 0.5 seconds while keeping the

discontinuity in the middle of the patch. We use a cubic B-spline interpolation to fill in

the empty space after discarding the patch. We then filter the signal using a low pass filter

with a cut-off frequency of 0.5 Hz to discard the high-frequency noise as the SC signal is

known to be band-limited to 0.5 Hz [65, 53, 52]. Next, we down-sample the filtered signal

to achieve 2 Hz sampling frequency (i.e. Ty = 0.5 seconds). We would like to recover u

with 4 Hz sampling frequency (i.e. Tu = 0.25 seconds).

2.2.6 Estimation

Optimization Problem Formulation. We use the same approach as in our previous

work [54] for pre-processing step which is provided in Section A.1. After pre-processing, we

obtain y with 2 Hz sampling frequency (i.e. Ty = 0.5 seconds). We would like to recover u

with 4 Hz sampling frequency (i.e. Tu = 0.25 seconds). In order to estimate u, θ, and q,

using discrete representation in (8), we formulate the following optimization problem while

assuming the sparsity constraint on u and constraining tonic component as always less than

or equal to the SC signal (i.e., Cq ≼ y):

minimize
θ,u,q

J(θ,u, q) =
1

2
||y −Aτyp0 −Bτu−Cq||22 + λ1||q||22 (9)

subject to τmin ≼ τ ≼ τmax, 0 ≤ yp0 ≤ y1,

u ≽ 0, ||u||0 ≪ N,Cq ≼ y,

where τmax and τmin are the upper and lower bound of the SCR shape parameters. Here, we

include the l2-norm penalization term with regularization parameter λ1 to avoid over-fitting

while solving for the tonic component coefficients q. The above optimization formulation

is a sparse recovery problem as ||u||0 ≪ M < N , where M is the number of samples in y.
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We encourage the sparsity for u with lp-norm (0 < p ≤ 2) regularization as a relaxation to

the l0-norm. We re-write the optimization problem as follows,

minimize
θ,u,q

J(θ,u, q) =
1

2
||y −Aτyp0 −Bτu−Cq||22

+ λ1||q||22 + λ2||u||pp (10)

subject to τmin ≼ τ ≼ τmax, 0 ≤ yp0 ≤ y1,

u ≽ 0, Cq ≼ y,

where λ2 is a regularization parameter which determines the sparsity level for u. We can

solve the inverse problem of finding a non-negative u in (10) with a specific sparsity level

using the iterative least squares (IRLS) approach Focal Underdetermined System Solver

(FOCUSS+) algorithm [66].

Finally, inspired by the work in [64], we also consider the priors on SCR shape parameters

based on the estimations in [54]. We assume that among different individual the rise times

τr and decay times τd are Gaussian distributed with means µr and µd with corresponding

standard deviations σr and σd, respectively. The optimization formulation with the priors

on the SCR shape parameters becomes as follows:

minimize
θ,u,q

J(θ,u, q) =
1

2
||y −Aτyp0 −Bτu−Cq||22

+ λ1||q||22 + λ2||u||pp

+
λ3
2σ2r

||τr − µr||22 +
λ4
2σ2d

||τd − µd||22 (11)

subject to τmin ≼ τ ≼ τmax, 0 ≤ yp0 ≤ y1,u ≽ 0, Cq ≼ y,

where λ3 and λ4 are the regularization parameters. In this work, we use λ3 = λ4 = 1×10−1.

We select µr = 0.650571, µd = 2.77325, σr = 0.212443 and σd = 0.521739 based on the

results in [54].
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Generalized Cross-Validation for λ1 and λ2. We used the following GCV function

to have a valid definition for tall matrix C for estimating λ1 [67],

minimize
λ1

G1(λ1) =
M ||(I−Hλ1)ŷs||22
(Trace(I−Hλ1))

2
(12)

subject to 0 ≤ λ1 ≤ 1× 10−4,

where ŷs = (y − Aτyp0 − Bτu) and Hλ1 is the influence matrix. For this case, Hλ1 =

C(C⊤C+ λ1I)C
⊤.

FOCUSS+ allows us to obtain a solution for u such that the number of non-zero elements

is predefined. We use FOCUSS+ for the initialization step. Once a reasonable initialization

has been obtained, in each iteration of the IRLS algorithm, we use GCV for estimating an

appropriate regularization parameter λ2 similar to [20, 19, 18, 52]. This combination of

GCV and FOCUSS+ algorithm is known as GCV-FOCUSS+ [68]. Zdunek et al. [68] used

the following optimization formulation with singular value decomposition (SVD) for GCV:

minimize
λ2

G2(λ2) =

[
M
∑M

i=1 γ
2
i

(
λ2

σ2
i +λ2

)2]
[∑M

i=1

(
λ2

σ2
i +λ2

)2] (13)

subject to 0 ≤ λ2 ≤ 1× 10−4,

where γ = R⊤yτ =

[
γ1 γ2 · · · γM

]⊤
with yτ = y−Aτyp0−Cq, andBτP

1
2
u = RΣQ⊤

with Pu = diag(|ui|2−p) and Σ = diag{σi}; R and Q are unitary matrices and σi’s are the

singular values of BτP
1
2
u . The details of FOCUSS+ and GCV-FOCUSS+ is given below.
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2.2.7 FOCUSS+ Algorithm

FOCUSS+ [66] solve for a non-negative u with nu non-zero elements while minimizing

the following optimization problem,

minimize
u≽0

1

2
||y−Aτyp0 −Bτu−Cq||22 + λ2||u||pp.

For r = 0, 1, 2, · · · , FOCUSS+ works as follows:

1. P
(r)
u = diag(|u(r)

i |2−p)

2. λ
(r)
2 =

(
1− ||y−Aτ y0−Bτu−Cq||2

||y−Aτ y0−Cq||2

)
λmax
2 , λ2 > 0

3. u(r+1) = PuB
⊤
τ (BτPuB

⊤
τ + λI)−1(y−Aτy0 −Cq)

4. u
(r+1)
i ≤ 0 → u

(r+1)
i = 0

5. After iterating for half of the total number of iteration:

• Detect the impulses having time distances less than the selected minimum peak to

peak distance ∆p. Retain only the largest impulses among the adjacent impulses

within ∆p window.

• If ||u(r+1)||0 > nu, select nu largest values of elements of u(r+1) and set all other

elements to zero.

6. Iterate

In this study, we used ∆p = 1 second. We select nu = (number of peaks in y) + 20.
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2.2.8 GCV-FOCUSS+ Algorithm

Similar to the FOCUSS+, GCV-FOCUSS+ also solve for a non-negative u minimizing

the following optimization problem,

minimize
u≽0

1

2
||y−Aτyp0 −Bτu−Cq||22 + λ2||u||pp.

However, unlike FOCUSS+, GCV-FOCUSS+ does not solve for u with a fixed number of

non-zero elements. Instead, it utilizes the GCV technique in order to identify a reasonable

number of non-zero elements u, i.e., sparsity level. We use the GCV technique for choosing

the regularization parameter λ2 to balance between capturing the noise and the sparsity

level of u. Zdunek et al. [68] utilized the GCV technique for estimating the value of λ for

the FOCUSS+ [66] algorithm with the singular value decomposition as follows:

minimize
λ2

G2(λ2) =

[
M
∑M

i=1 γ
2
i

(
λ2

σ2
i +λ2

)2]
[∑M

i=1

(
λ2

σ2
i +λ2

)2] (14)

subject to 0 ≤ λ2 ≤ 1× 10−4,

where γ = R⊤(y − Aτyp0 − Cq) =

[
γ1 γ2 · · · γM

]⊤
with BτP

1
2
u = RΣQ⊤ with

Pu = diag(|ui|2−p) and Σ = diag{σi}; R and Q are unitary matrices and the σi’s are the

singular values of BτP
1
2
u ; M is the total number of data points in y. For r = 0, 1, 2, · · · ,

GCV-FOCUSS+ works as follows [19]:

1. P
(r)
u = diag(|u(r)

i |2−p)

2. u(r+1) = PuB
⊤
τ (BτPuB

⊤
τ + λ2I)

−1yθ

3. u
(r+1)
i ≤ 0 → u

(r+1)
i = 0

4. λ
(r+1)
2 = argmin

0≤λ2≤1×10−4

G2(λ2)
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5. Iterate until convergence

We use a coordinate descent algorithm similar to our previous work in [8] to solve the

optimization problem in (11). The detailed algorithm is provided in Section A.1. We run

the algorithm for several random initializations of θ and take the result that minimizes the

least square error between the observed and reconstructed signal.

2.2.9 Coordinate Descent Approach

The optimization formulation for the proposed deconvolution approach is follows:

minimize
θ,u,q

J(θ,u, q) =
1

2
||y −Aτyp0 −Bτu−Cq||22

+ λ1||q||22 + λ2||u||pp

+
λ3
2σ2r

||τr − µr||22 +
λ4
2σ2d

||τd − µd||22 (15)

subject to τmin ≼ τ ≼ τmax, 0 ≤ yp0 ≤ y1,u ≽ 0, Cq ≼ y,

We solve the optimization problem using the following coordinate descent algorithm:

We run the algorithm for several random initial values of system parameters. Finally, we

choose the estimated values that minimize the least square error 1
2 ||y−Aτyp0−Bτu−Cq||22.
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Figure 5: Estimated Decomposition of the Experimental SC Signals for One Fe-
male Participant and One Male Participant.
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Algorithm: Generalized-Cross-Validation-Based Block
Coordinate Descent

(a) Let j = 0. Initialize θ̃0 by sampling a uniform random variable on [0.10, 1.5] for

τ̃
(0)
r , on [1.5, 6] for τ̃

(0)
d , and on [0, y1] for yp0 ; also initizalize q̃0 by sampling P number of

Gaussian random variables with mean 0.1 and standard deviation of 0.02.

(b) Set j = j + 1.

(c) Set θ = θ̃(j−1) and q = q̃(j−1); use FOCUSS+ [66] to solve the inverse problem in
(11) to find the stimuli ũ(j) by initializing ũ(j−1) at a vector of all ones.

(d) Set u = ũ(j) and q = q̃(j−1); use the interior point method to minimize the optimiza-
tion problem in (11) to solve for θ̃(j) by initializing the optimization problem at θ̃(j−1).

(e) Set θ = θ̃(j) and u = ũ(j); use the interior point method and minimize the optimization
problem in (11) to solve for q̃(j) by initializing the optimization problem at q̃(j−1).

(f) Repeat between steps (b)-(e) until j = 30.

(g) Let i = 0. Set θ̂0 = θ̃(j), û0 = ũ(j), and q̂0 = q̃(j).

(h) Set i = i+ 1.

(i) Set θ = θ̂(i−1) and q = q̂(i−1); use GCV-FOCUSS+ [68] to solve the inverse problem
in (11) to find the stimuli û(i) by initializing at û(i−1).

(j) Set u = û(i) and q = q̂(i−1); use the interior point method to minimize the optimization
problem in (11) to solve for θ̂(i) by initializing at θ̂(i−1).

(k) Set θ = θ̂(i−1) and u = û(i−1); solve (12) to obtain λ1, and use the interior point
method to minimize the optimization problem in (11) to solve for q̂(i) by initializing at
q̂(i−1) .

(l) Iterate between (h)-(k) until convergence.
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Figure 6: Estimated Decomposition of the Simulated SC Signals with 25 dB SNR
for One Female Participant and One Male Participant.

.

2.3 Results

2.3.1 Experimental Study

We have applied our approach and decompose the SC measurements recorded from 109

participants from five datasets provided in Table 1 and separate the tonic components ys(t)
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Figure 9: Average Amplitude Error of Estimated Neural Stimuli in Different
Noise Levels.

and phasic components yp(t). During each decomposition, we have recovered the underlying

neural stimuli u(t), rise time (τr), decay time (τd), and the initial condition of the phasic

component yp0 . We have considered the signal segment from 200 seconds to 400 seconds
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Figure 10: Root Mean Square Error (RMSE) of the Reconstruction for SC signal
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Figure 11: R2 SC signal reconstruction.

for our analysis for Dataset 1, 2, 4, and 5. For Dataset 3, we have considered the signal

segment from 100 seconds to 300 seconds for our analysis as the experimental duration

for some of the participants is shorter than 400 seconds. Figure 5 shows example results

for one female participant and one male participant. In each of the panels in Figure 5:

i) the top sub-panel shows the experimental SC signal (blue stars), the reconstructed SC

signal (red curve), the estimated tonic component (green curve), and the timings of the

auditory stimulations (gray vertical lines); ii) the bottom sub-panel shows the estimated

phasic component (blue curve), estimated neural stimuli timings and amplitudes (black

vertical lines) due to SNS activation and the timings of the auditory stimuli (gray vertical

lines). The number before the hyphen in the participant ID represents the dataset ID based

on Table 1. Figure 5 shows that we are successfully able to detect the SNS activation after
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Figure 12: Performance Comparison of Proposed Approach with Existing Ap-
proaches for Simulated Data.

each auditory stimulation. The rest of the results from experimental data are provided in

Section A.1. The estimated rise time (τr), decay time, number of pulses (||u||0), multiple

correlation coefficient (R2), regularization parameters (λ1 and λ2), deconvolution run-times

are provided in Section A.1 for all 26 participants from Dataset 1.
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Figure 7 shows the histogram of the estimated SCR shape parameters from 109 partic-

ipants. In Figure 7, the red and green bar plots correspond to the histogram plots of the

estimated rise time τr and decay time τd, respectively. Red and green vertical line corre-

spond to the locations of the means µr and µd of the corresponding histograms, respectively.

σr and σd denote the corresponding standard deviations, respectively. Means of the his-

tograms are estimated to be µr = 0.7274 and µd = 2.8629 seconds for rise times and decay

times, respectively. Corresponding standard deviations are σr = 0.1146 and σd = 0.1491

seconds, respectively. The R2 values are greater than 0.95 for all participants. The high

values of R2 SC data suggest that our proposed algorithm can successfully decompose the

SC recording in its constituent components and separate the tonic and phasic components.

The corresponding quantile-quantile plots for the model residuals are also given in Section

A.1. The quantile-quantile plots approximately follow a straight line denoting the Gaussian

structure in the residuals. Slight deviations from the straight line also suggest that there is

a scope of improvement in the system model.

To perform an efficacy analysis of how our algorithm performs in distinguishing between

event-related and non-event-related SCRs in Dataset 1, we have derived receiver operating

characteristics (ROC) curves [69]. We label all the SCRs that have been detected within

5 seconds after auditory stimuli as the event-related SCRs (positive class). The rest of the

detected SCRs are labeled as the non-event-related SCRs (negative class). We consider the

amplitudes of the SCRs as the classification scores within the subjects for obtaining the

ROC curves [69, 70]. The results show that the ROC curves have the area under the curve

(AUC) ranging from 0.5611 to 1 with a median of 0.8636 and a mean of 0.9130. Moreover,

we normalized the estimated u for each participant and combine them to obtain an overall

ROC curve. The corresponding overall AUC is 0.864 for Dataset 1. All the ROC curves

are provided in Section A.1.
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2.3.2 Simulated Study

We simulate data with noise to investigate the efficacy of our approach. We use the

results obtained from Dataset 1 to simulate data for 26 participants. In this case, we

have ground truths to compare with the estimated unknowns. Our deconvolution approach

successfully estimates neural stimuli along with the SCR shape parameters, i.e. the phys-

iological system parameters. Figure 6 shows example deconvolution from simulated data

for one female and one male participants with 25 dB SNR with respect to phasic compo-

nent. In each of the panels in Figure 6, i) the top sub-panel shows the ground truth for

SC signal (blue stars), the reconstructed SC signal (red curve), the ground truth for tonic

component (red stars), the estimated tonic component (red curve), and ground truth for

the neural stimuli (pink vertical lines); ii) the bottom sub-panel shows the estimated phasic

component (blue curve), estimated neural stimuli timings and amplitudes (black vertical

lines) due to SNS activation and the ground truth for the neural stimuli (gray vertical lines).

The number before the hyphen in the participant ID represents the dataset ID based on

Table 1.The minimum R2 for the simulated data with 25 dB noise level is 0.9872. Figures,

estimated system parameters (τ̂r and τ̂d), estimated number of pulses (||û||0), estimation

errors, and the multiple correlation coefficients (R2) for the results for all the simulated

data with 25 dB SNR are provided in Section A.1.

We also simulate data with different noise levels to see how our approach performs in

terms of estimating the unknowns and reconstructed signal. We have used the results ob-

tained from the experimental recordings for all 26 participants to generate 26 signals for each

level of noise. We have performed deconvolution to estimate the SCR shape parameters.

Afterwards, we have calculated the percentage error for each of the participants. Figure

8 and 9 show how the average estimation error increase as the noise level is increased. In

Figure 8, the red and green solid lines denotes the mean percentage error for rise times and

decay times from simulated data with different noise levels. The dashed lines corresponds
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to the 95% confidence interval. In Figure 9, The blue solid line denotes the average ampli-

tude error of the neural stimuli from estimated data with different noise levels. We have

defined the average amplitude error as |||ũ||1 − ||u||1|/||u||0, where ũ and u represent the

estimated and the ground truth neural stimuli, respectively. The data is simulated using

the obtained results from the all experimental data in Dataset 1. As noise is added to the

phasic component prior to addition of tonic component, the SNR is given with respect to

the phasic component. Similarly, Figure 10 shows how the reconstruction error decreases

and Figure 11 shows how the R2 value decreases with the increase in the noise level. In

Figure 10, the green, blue and red dashed lines denote the RMSE for the reconstructed

tonic component, phasic component and overall SC data in different noise levels. The data

is simulated using the obtained results from the all experimental data in Dataset 1. As noise

is added to the phasic component prior to addition of tonic component, the SNR is given

with respect to the phasic component. In Figure 11, the blue solid line denotes the mean

R2 values for the reconstructed SC data with different noise levels. The data is simulated

using the obtained results from the all experimental data in Dataset 1. As noise is added to

the phasic component prior to addition of tonic component, the SNR is given with respect

to the phasic component.

To compare our method with the other existing approaches, we have used synthetic

simulated data. We have used the neural stimuli, the SCR shape parameters, and the

cubic-spline coefficients obtained from the deconvolution of the experimental recordings of

male subject six to simulate the data. We have added Gaussian random noise with 25 dB

SNR with respect to the phasic component. We have simulated the data with two different

sampling frequencies. We simulated data with 2 Hz sampling frequency for performing

deconvolution with our approach. For other methods, we chose a 4 Hz sampling frequency.

We specifically do this to show that even with lower sampling frequency, our algorithm

performs reasonably well and able to obtain u with 4Hz resolution while performing in a
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compressed sensing regime (M < N). Figure 12 shows the decomposition of tonic, pha-

sic component, and recovered neural stimuli using CDA - LedaLab [29], DDA - LedaLab

[21], DCM - PsPM [22], MP - PsPM [50], cvxEDA with three different configurations [23],

sparsEDA [24], and our proposed approach. Each panel in Figure 12 shows the decompo-

sition performance based on simulated SC signal with 25 dB noise. The panels from top to

bottom show the results obtained using CDA - LedaLab [29], DDA - LedaLab [21], DCM

- PsPM [22], MP - PsPM [50], cvxEDA with three different configurations [23], sparsEDA

[24], and our proposed approach, respectively. In each panel, blue stars represent the simu-

lated data, pink vertical lines represent the ground truth neural stimuli, black vertical lines

represent the recovered neural stimuli, the green curve represents the tonic component, the

black dotted curve represents the ground truth for the tonic component, and the red curve

represents the reconstructed signal. The estimated neural stimuli for all the panels except

for the last one are normalized from zero to one to avoid any amplitude scaling originating

from different methods and to have a fair comparison. We have used default settings for

the parameters for all the approaches except for cvxEDA and sparsEDA. For cvxEDA, we

have used the knot size for cubic B-spline functions to be the same as our approach for a

fair comparison. Further, we have considered three different configurations for τr and τd

including optimized parameters from our approach for cvxEDA.We perform the compari-

son with different physiological parameters only with cvxEDA because it considers similar

system modeling and optimization formulation as ours. Therefore, this comparison will be

fair if carried out against cvxEDA. The results show there are differences in the solution

for different selected parameters. In the case of sparsEDA, we have selected the minimum

separation between two neural impulses and the threshold for the neural impulse ampli-

tudes to be zero to have the most less sparse solution. DCM - PsPM and MP - PsPM

perform linear band-pass filtering for removing the tonic component followed by a DC shift

to avoid all the negative value in the phasic. We have performed the adjustments to the

obtained results accordingly so that the visual comparison is fair. Qualitatively, the results
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show that our algorithm is performing well in terms of capturing the neural stimuli related

to the SCRs and discarding small spikes which are comparable to noise spikes. DCM -

PsPM and MP - PsPM detects large pulses where there are no pulses mainly because the

signal is distorted in the pre-processing step. As observed in Figure 12, other approaches

except sparsEDA are providing less sparse solutions compared to the ground truth. Some

of the pulses detected by these algorithms are capturing noise. In this case, our proposed

approach is performing well in balancing between the sparsity level and discarding noise.

On the other hand, sparsEDA is providing an overly sparse solution leading to missing some

of the obvious neural impulses captured by all the other algorithms.

In order to perform further comparison between the deconvolution results from different

algorithms, we have added noise noise to the raw experimental data. The noise level is

selected in a way that the signal SNR is 25 dB for corresponding phasic component estimated

during deconvolution. We performed deconvolution on six participants as example. The

results are shown in Section A.1.

2.4 Discussions

Decomposition of SC signals into its constituents along with the estimation of the neural

stimuli, the rise and decay times of the SCRs is challenging. The challenges includes iden-

tification of the sparsity level for the neural stimuli as well as the smoothness of the tonic

component. An inaccurate estimation for the smoothness of the tonic component can make

the estimation of rise times and decay times inaccurate. As least square formulation has

many degrees of freedom, optimization without appropriate physiological constraints may

lead to a problem that is not identifiable. The problem becomes much more challenging

in the case of under-determined systems, i.e. when the M < N . Presence of the smallest

amount of noise can lead the system response to a physiologically infeasible solution. We in-

corporate necessary physiologically plausible constraints to make the optimization problem

tractable. Firstly, we consider the sparsity constraint on the neural stimuli. In our previous
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works in [8, 53, 54, 52], we constrained the SCR shape parameters within physiologically

feasible bounds (τmin = [0.10 1.5]⊤ and τmax = [1.5 6]⊤). In addition to that, we impose

Gaussian priors on τr and τd. Further, we have chosen the regularization parameters λ3

and λ4 such that the solution for τr and τd do not converge to the boundary. To achieve

that, we have first started with a very small value of λ3 and λ4 such 1 × 10−5 and ran

deconvolution on random selected twelve participants from Dataset 1. However, for some of

the participants, the solution for τr and τd converges to the boundary. Therefore, we grad-

ually increase λ3 and λ4 by a factor of 10 until all the stagnation to boundary is avoided.

Afterward, we fix the λ3 and λ4 for the rest of the 97 participants from all the five datasets.

Figure 7 show that none of the estimated parameters are near the boundary constraint. We

also impose constraints on the smoothness of the cubic B-spline basis function by including

l2-norm penalization. Finally, we incorporate the GCV technique [67] to have appropriate

estimates of λ1 and λ2 to achieve a balance between capturing the data and residual error.

As we previously mentioned in [52], although the optimization problem in (11) is convex

in terms of u and q [23, 8], it is non-convex for τ . During the iterations of coordinate

descent, the solution may stagnate at local minima. The stagnation of solution at a local

minima leads to an inaccurate separation of tonic and phasic components, some part of

the tonic component might be captured in the phasic component. Therefore, we initialize

the optimization problem with several random initializations for SCR shape parameters

τ . Among all the deconvolution results using these random initializations, we choose the

one that minimizes the least square error. The larger number of random initializations

means a greater probability of obtaining global minima, i.e. there is a trade-off between the

probability of obtaining the optimal solution and the number of random initializations. In

this study, we have considered eight random initializations for the system parameters and

we ran in the eight CPU cores in parallel. This way we reduce the probability of convergence

to a local minimum. Although it is still possible to converge a sub-optimal solution, we

have empirically demonstrated on experimental data collected from 109 participants shown
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that our algorithm is performing well in terms of modeling the SCR shapes and reducing

the number of the unwanted pulse due to incorrect shape parameters. Moreover, based on

the simulated study, Figure 8 shows that our approach can reliably estimate the SCR shape

parameters with only eight initializations for moderate noise levels.

In this study, we obtain u with a higher resolution than the recorded signal. For instance,

in our study, the sparse vector u has a length of 800 with 4 Hz sampling frequency while

the sampled signal has 400 samples with 2 Hz sampling frequency. We are specifically

interested in the accurate timing and amplitude of the SNS activation rather than the

phasic component. In contrast, we are more interested in the tonic component itself rather

than its cubic B-spline coefficients as the exact cause and appropriate system theoretic

modeling of tonic component is unknown. Further, as the body tries to regulate its skin

moisture, i.e. the tonic component depending on the cooling demand in the body. Tonic

component itself is an indication of the factor related to the thermoregulation rather than

its coefficients. Therefore, we use much less number of coefficients in vector q in order to

model the tonic components compared to u. In this study, we have used 39 coefficients to

model 200 seconds of SC signal.

Noise can corrupt SC signal, and sometimes small noise spikes can be comparable to

the small insignificant SCRs. To avoid such cases, we used an internal threshold in each

iteration of GCV-FOCUSS+ part while estimating u. If an estimated non-zero element

in u is smaller than the threshold, that particular value is set to be zero. In this study,

we used 3 as the threshold. This threshold works well for almost all the experimental and

simulated data. However, our algorithm has detected some small noise spikes as SCRs in

simulated data for a few participants. The reason of detecting more spike for these signals

is that there are more noise added to these signals compared to the other signals. Although

we mentioned we have added noise so that SNR is 25 dB, the SNR value of the simulated

data is with respect to phasic component. For these particular simulated signals, the phasic

components have more energy compared to the other simulated signals. Because of this
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corresponding noise power is also higher. Some noise peak amplitudes are comparable to

noise and in few places they have been detected as SCRs. Furthermore, the estimation of

tonic component is also slightly inaccurate in places where there is a noise spike that has

been detected as an SCR. However, this only happens for a few badly condition cases where

noise level is comparable to SCRs.

From our results, we can see the R2 values are close to 1, denoting that model fits are

very good in case of reasonable noise level. Quantile-quantile plots in Section A.1 also follow

approximately a straight line. However, there are still slight deviations from the straight

line in the quantile-quantile plots for a few experimental data although for simulated data

there no such case. This indicates there is a scope of improvement in the system modeling.

Specially modeling tonic component with arbitrary cubic B-spline function might not be the

most effective way to model the tonic component. Therefore, there is a need for development

of tonic component with systematic way based on physiology.

As three unknowns (i.e. u, q, and θ) have been solved in a coordinate descent manner

along with the GCV technique to minimize the optimization problem in (11) with appro-

priate physiologically plausible solution, it takes more time to complete the deconvolution

compared to some of the previous methods. The time elapsed for the deconvolution with

our approach for Dataset 1 is provided in Section A.1. The deconvolution time required

for LedaLab (CDA), LedaLab (DDA), PsPM (DCM), PsPM (MP), cvxEDA, sparsEDA,

and our approach for the deconvolution comparison shown in Figure 12 is respectively 1.45

seconds, 8.05 seconds, 153.23 seconds, 0.3162 seconds, 0.211 seconds, 0.1563 seconds, and

89.95 seconds. The other approaches do not concurrently optimize the problem for the

SCR shape parameters, the sparsity neural stimuli, and the smoothness level of the tonic

component. Although our approach takes more time to deconvolve, our approach outper-

forms previous approaches in terms of balancing between discarding the noise and capturing

significant SCRs.

Perhaps, the most appropriate way of evaluating a method would be to use a dataset that
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contains the recording from the nerve endings to the sweat glands and the corresponding

SC recording similar to the study in [71]. However, we could not perform such a comparison

because of the unavailability of such datasets. Bach et al. [72] have suggested evaluating

metrics by an algorithm’s ability to separating the experimental event vs the non-events

or the ability to separate a high-arousal condition. We have performed a similar analysis

to show our algorithm’s ability to be able to distinguish between separating the experi-

mental event-related vs the non-event-related SCRs obtained corresponding ROC curves.

Nevertheless, our algorithm is designed to capture the SCRs for emotional events as well

as the spontaneous SCRs which might not be related to an emotional event but originating

from the natural physiological control of the body. For example, visually it can be seen

that for some participants, there are a lot more spontaneous pulses than the number of

auditory stimuli, for some other participants the numbers of SCRs are a lot less than the

numbers of provided stimuli. Therefore, there is a limitation in such an evaluation. Dis-

tinguishing between event-related and non-event-related SCRs will also heavily depend on

how a detection scheme is devised for a specific algorithm and the scheme can be different

for different algorithms to obtain the best performance. For example, some algorithms use

some sort of thresholding as post-processing before performing the classification [22]. On

the other hand, our evaluation does not involve any post-processing. Therefore, we did not

perform any comparison based on such evaluation with other algorithms to avoid any unfair

comparisons. The objective of the current study is not to show its ability to separate the

event-related response but to perform a plausibility assessment with a large dataset of 109

participants and show its ability to capture any phasic response regardless of its reason for

the occurrence. We have further demonstrated the performance evaluation of our approach

in terms of estimating neural stimuli and the physiological system parameters in simulated

data at different noise levels. Further, we qualitatively demonstrate how results from our

approach compare with other approaches. The qualitative comparison shows that results

are correlated, and our approach is performing better in terms of balancing between noise
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reduction and capturing the underlying physiological phenomenon. Apart from the visual

demonstration for comparisons with different previous algorithms, we have also included a

list of estimated R2 values and the estimated numbers of neural impulses from the noisy

experimental data in Section A.1. The results show that almost the same R2 is obtained by

detecting a greater number of pulses which could be an indication of potential over-fitting

for the other algorithms except for sparsEDA, where our algorithm has estimated fewer

numbers of impulses but had the same level of model fit. However, the lack of comparative

metrics between different algorithms can be considered as a limitation of the study.
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3 Robust Inference of Autonomic Nervous System Activa-

tion using Skin Conductance Measurements: A Multi-

Channel Sparse System Identification Approach

3.1 An Overview of Autonomic Nervous System Inference from Multi-

channel Skin Conductance Measurement

Electrodermal activity (EDA) refers to any alteration in the electrical characteristics

of the skin caused by salty sweat secretion. Hypothalamic control of sweating is primarily

intended for thermoregulation of the human body. Apart from thermoregulation, sweat-

ing can also occur due to other physiological events including emotional arousal [53, 73].

Moreover, variations in skin conductance (SC), a measure of EDA, are highly correlated

with emotions and can be used for interpreting emotional dysregulation and disturbances

[74, 75]. Alterations in SC throughout the different skin regions are regulated by the auto-

nomic nervous system (ANS) [76]. The analysis of SC time series assumed to be modulated

by the ANS can potentially be used to track the mental health of an individual in order to

prevent mental stress-related problems [77].

Walker et al. [31] reported that a large portion of deaths worldwide are attributable

to mental health-related disorders. Regular tracking of problematic patterns of emotional

regulation could potentially help prevent psychiatric disorders [35]. Physiological signals in-

cluding electroencephalogram, electrocardiogram, respiration, functional near-infrared spec-

troscopy [47], and EDA, could be investigated to identify abnormal patterns of emotional

regulation [48]. Day-to-day monitoring and tracking of emotional regulation require wear-

able implementations. However, a reliable, noise-robust monitoring system is challenging

This chapter was first presented in part at the 52nd Asilomar Conference on Signals, Systems, and
Computers [53]. Chapter is mainly adopted from Amin, Md Rafiul, and Rose T. Faghih. “Robust inference
of autonomic nervous system activation using skin conductance measurements: A multi-channel sparse
system identification approach.” IEEE Access 7 (2019): 173419-173437. [54].
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and yet to be developed. A noise-robust personalized wearable mental health monitoring

system could eventually lead to effective monitoring of mental health-related problems [78].

In another context, several recent studies have shown correlations between abnormal SC

recordings due to diabetic neuropathy and other different diabetic diseases in different races

[37, 38, 39]. Diabetic neuropathy is a type of nerve injury caused by diabetes [36]. Nerves in

the legs, feet, and hands are more prone to this type of damages [36]. These nerves include

the sudomotor nerves that are responsible for delivering the ANS stimulation to the sweat

glands. Diabetic neuropathy may cause abnormal SC in different regions of the body due

to nerve damage. Appropriate systematic analysis of SC recordings from different regions

may lead to early diagnosis and prevention of diabetes-related complications.

As the SC measurement can be thought of as the convolution of ANS activity with phys-

iological smoothing kernels that consist of sweat glands, sweat secretion, and evaporation

dynamics [42], identification of ANS activity is a deconvolution problem. Many research

works have been carried out with different methods for the deconvolution of SC record-

ings to recover the timings and amplitudes of stimulation and to estimate the underlying

physiological parameters with the goal of uncovering emotional states using single channel

SC data. Benedek et al. [29, 21] presented a scheme where a nonnegative deconvolution

method is utilized to separate a single SC time series into discrete compact responses. They

have also analyzed SC responses to assess the deviations from the standard SC response

shape. Nevertheless, their scheme does not consider the sparsity constraint to prevent cap-

turing noise as SC responses. Moreover, they do not consider the individual differences in

the modeling of the rise and decay times. They perform their deconvolution for multiple

predefined sets of parameters and choose the one that provides the most reasonable fit.

Greco et al. [23] proposed a convex optimization formulation to decompose SC time

series into tonic and phasic components. Unlike in [21], they considered a the sparsity

condition in neural stimuli from the ANS. They use a fixed regularization parameter for im-

posing the sparsity constraint. However, finding an accurate sparse solution that can handle

45



inter- and intra-subject variability is challenging with a fixed regularization parameter for

automatic processing. In a similar work, Gallego et al. [24] proposed a faster decomposi-

tion approach to obtain a sparser solution; however, this approach leads to overly sparse

solutions compared to the underlying neural stimuli. Faghih et al. [25, 19, 26, 18] proposed

a two-step coordinate descent deconvolution approach to account for individual differences

in the physiological system parameters for SC signals and similar physiological systems.

These approaches have been successfully utilized to characterize hormonal dysfunction in

fibromyalgia patients [56] as well as a potential neurobiologic substrate for chronic insom-

nia [79]. However, inference of ANS stimulation along with physiological system parameters

using single channel SC recording is challenging in the presence of noise.

A substantial amount of research has been carried out with wearable EDA sensors that

can provide better insight into how affect and stress interact with daily life [65, 80, 81].

However, wearable sensors often suffer from poor signal quality as well as motion artifacts.

Furthermore, developing algorithms for analyzing EDA data in the presence of artifacts

and noise is yet to be undertaken. Fusing multichannel recording with wearable devices to

account for the poor signal quality could potentially improve the deconvolution performance.

Faghih et al. [20] proposed an approach to include multichannel hormone time series using

a combined state-space model, and then developed a concurrent deconvolution scheme.

Inspired by the work by Faghih et al. [20] for concurrent deconvolution of the multi-

channel hormone time series, we utilize concurrently collected multichannel SC measure-

ments to robustly infer ANS stimulation. We hypothesize that the changes in SC in different

regions of the skin are due to the same ANS stimulation. We implement system identifi-

cation and propose a state-space model that includes the SC recordings from multiple skin

regions. Furthermore, we introduce a multichannel concurrent deconvolution algorithm and

analyze SC data using auditory stimulation experimental data. Finally, we use a Bayesian

approach [82, 83, 84] to track a cognitive stress level based on the concurrent deconvolution

of SC data collected during different stressful driving conditions.

46



Autonomic 
Nervous 
System

Sweat 
Glands 

in Area 1

2ωβje−

Sweat 
Glands 

in Area 2

3ωβje−

Sweat 
Glands 

in Area 3

χωβje−

Sweat 
Glands 

in Area 𝜒𝜒
. . .

⊗⊗ ⊗

⊕ ⊕ ⊕⊕

)(tu

)( 2β−tu )( 3β−tu )( χβ−tu

2α

)(1 tν )(2 tν )(3 tν )(tχν

)(1 ts )(2 ts )(3 ts )(tsχ

Delay

Smoothing Filter

Attenuation

Noise

Tonic Component

)(
1

tysc )(
2

tysc )(
3

tysc )(tyscχ

3α χα

Figure 13: Model Block Diagram.

3.2 Methods

3.2.1 Dataset Description

Dataset 1 - Auditory Stimulation. We analyzed the SC responses to loud sounds,

simultaneously recorded from palm, fingers and foot data [57]. The experiment was con-

ducted for modeling event-related SC responses. The dataset contains SC data recorded

from 26 healthy participants from three different skin locations: the hypothenar of the

non-dominant hand, the middle phalanx of second and third finger of the dominant hand,

and the medial plantar surface of the non-dominant foot. Each participant was provided

20 auditory stimuli. Each stimulus is single white noise burst of 1s duration. Participants

were asked to press a foot operated pedal upon hearing the stimuli. A detailed description

of the auditory stimulation experiment is given in [30]. We discard the data contaminated

with heavy motion artifacts and the data having very small SC responses from our study.

Dataset 2 - Driver Stress. To assess the performance in tracking stress using decon-

volution result, we also analyzed the stress recognition in the automobile drivers dataset

[85]. This dataset includes recordings for 17 separate driving sessions on a predefined route

with highways, toll roads, and city driving. The driving sessions were all conducted during

the mid-morning or mid-afternoon with light traffic. Rest periods were included during
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which the drivers sat in the car with their eyes shut. Since annotations of each portion

are not publicly available for all the subjects, we could only use one recording whose ap-

proximate timings had to be matched with a figure in [85]. We apply the stress tracking

algorithm by Wickramasuriya et al. [82] on the deconvolution result from the current work

and compare the result with the heuristic approach in [82].

3.2.2 Model Formulation for Phasic SC Deconvolution

The variations in SC, caused by salty sweat secretion, are regulated by sudomotor nerve

activity (SMNA) in the ANS. SC data can be interpreted as the summation of a fast-

varying component and a slow-varying component. The slow-varying component, known as

the tonic component, is mainly intended for thermoregulation of the body. The compara-

tively fast-varying component is termed as the phasic component. The phasic component

represents the activity of ANS, which is a reflection of emotional events. The SC signal can

be represented as the summation of tonic and phasic components as follows,

yscn(t) = pn(t) + sn(t),

where yscn(t), pn(t), and sn(t) represent the SC signal and its phasic and tonic compo-

nents for the nth channel, respectively. In the pre-processing stage, we extract the phasic

components pn(t) from the SC data yscn(t) using cvxEDA [23]. In this case, we use the

default value of the regularization parameter for l1-norm minimization in cvxEDA [23]. We

assume that the extracted phasic components have some Gaussian noise added to them.

We consider this as measurement noise. We hypothesize that the same ANS stimulation

is responsible for modulating the phasic component of SC data related to different eccrine

sweat glands in different regions of skin. We propose a state-space model with n-channel

phasic SC data and the single ANS input. Figure 13 shows the complete block diagram

of the proposed system model. Figure 13 depicts that a single neural stimuli signal u(t)
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generated by the ANS is responsible for the phasic response in different regions of the skin

throughout the body; the block diagram shows the same neural stimuli u(t) stimulating χ

different regions with delay parameters βn, ∀n ∈ {1, 2, 3, · · · , χ}; the attenuation term αn

reflects the ratio of the number of sweat glands in the nth region to that of the reference

region. We model pn(t) as a scaled version of a representative internal state ζn(t), which

refers to the average amount of sweat in the epidermis associated with the nearest sweat

gland. We introduce a scaling factor αn to account for the number of sweat glands present

per unit area where the nth sensor is placed. Relation between pn(t) and ζn(t) is as,

pn(t) = αnζn(t). (16)

We describe the system dynamics using the following set of differential equations each

denoting the kinetics of sweat secretion and evaporation process in sweat glands [42, 18, 52],

τrτd
d2ζ1(t)
dt2

+ (τr + τd)
dζ1(t)
dt + ζ1(t) = u(t),

τrτd
d2ζ2(t)
dt2

+ (τr + τd)
dζ2(t)
dt + ζ2(t) = u(t− β2),

...

and τrτd
d2ζχ (t)

dt + (τr + τd)
dζχ (t)

dt + ζχ(t) = u(t− βχ),

(17)

where ζn(t) is the internal state which is reflected into yn(t) from the nth channel, ∀n ∈

{1, 2, · · · , χ}. The term βn refers to the delay in the stimuli input for the nth channel. The

terms τr and τd correspond to the rise and decay times of the SC responses, respectively;

these parameters are fixed for all channels. βn can be calculated by taking the cross-

correlation of the yscn and ysc1 before deconvolution. The location of the maximum value

of the cross-correlation is used to calculate the time lag βn. We assume β1 = 0 and α1 = 1

for the reference channel. Under the assumption that the ANS stimuli are sparse as in [18],

we represent the input as u(t) =
∑N

i=1 qiδ(t−∆i) where qi is the amplitude of the impulse

in the neural stimuli at time ∆i.
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Let x2n−1(t) and x2n(t) = ζn(t + βn) be the internal states for ∀n. Similar to [52, 18],

the differential equation in (17) for the nth channel can be re-written in state-space form

as follows,

ẋ2n−1(t) = − 1

τr
x2n−1(t) +

1

τr
u(t) (18)

and ẋ2n(t) =
1

τd
x2n−1(t)−

1

τd
x2n(t). (19)

The corresponding continuous observation equation can be written as follows,

yn(t) = αnx2n(t) + νn(t), (20)

where yn(t) is the continuous observation variable and νn(t) refers to the noise process. In

matrix form the state-space model can be written as follows,

 ẋ2n−1(t)

ẋ2n(t)

 =

 − 1
τr

0

1
τd

− 1
τd


 x2n−1(t)

x2n(t)

+

 1
τr

0

u(t) (21)

and yn(t) =

[
0 αn

] x2n−1(t)

x2n(t)

+ νn(t). (22)

We can write the equations in (21)-(22) in a state-space form, for all channels, as follows,

ẋ(t) = Acx(t) +Bcu(t) (23)

and y(t) = Ccx(t) + ν(t), (24)
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where x(t) =



x1(t)

x2(t)

...

x2χ(t)


2χ×1

, y(t) =



y1(t)

y2(t)

...

yχ(t)


χ×1

, ν(t) =



ν1(t)

ν2(t)

...

νχ(t)


χ×1

,

Ac =



ϕ 0 · · · 0

0 ϕ · · · 0

...
...

. . .
...

0 0 · · · ϕ


2χ×2χ

with ϕ =

 − 1
τr

0

1
τd

− 1
τd

,

Bc =

[
1/τr 0 1/τr 0 · · · 1/τr 0

]⊤
2χ×1

,

and Cc =



0 1 0 0 · · · 0 0

0 0 0 α2 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 0 αχ


2χ×2χ

. We define α =

[
α2 α3 · · · αn

]⊤
.

Discretization: Let Tu be the sampling frequency of the neural stimuli and Ty be the

sampling frequency of the phasic SC data for each channel. The timings of the neural

impulses can be written as ∆i = iTu; qi is zero if there is no impulse at the ith instance.

Let yn, k be the observed phasic SC for the nth channel at time instance tk = kTy. We can

write

yn, k = αnx2n(tk) + νn, k, (25)

where νn, k is the noise associated with the nth channel; νn, k is modelled as a zero-mean

Gaussian random variable. We derive the discrete equivalent of the system, assuming that

the input and the states are constant over Tu. The discrete version of the neural stimuli

can be written as a vector u = [q1 q2 · · · qN ]⊤ that represents the entire neural stimuli

over the duration of SC data. Let Φ = eAcTu , and Γ =
∫ Tu

0 eAc(Tu−ρ)Bcdρ to write the
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discrete state-space form of (23)-(24) as,

x [k + 1] = Φx [k] + Γu[k] (26)

and y [k] = Ccx [k] + ν [k] . (27)

As neural stimuli and SC measurement have different sampling frequencies, i.e., Ty = LTu

where L is a positive integer, we let Ad = ΦL, Bd =

[
ΦL−1Γ ΦL−2Γ · · · Γ

]
, ud [k] =[

u [Lk] u [Lk + 1] · · · u [Lk + L− 1]

]⊤
, νd [k] = ν[Lk] and z [k] = x [Lk]; the multi-

rate system can be represented as follows,

z [k + 1] = Adz [k] +Bdud [k] (28)

and y[k] = Ccz [k] + νd [k] , (29)

where Ad and Bd are functions of τ =

[
τr τd

]⊤
, α, Tu, and Ty. Let θ =

[
τ⊤ α⊤

]⊤
.

As the system is causal, we use (28)-(29) to obtain the observation equation for the kth

sample,

y [k] = F [k] z [0] +D [k]u+ νd [k] ,

where F [k] = CcA
k
d,

D [k] = Cc

[
Ak−1

d Bd Ak−2
d Bd · · · Bd 0 · · · 0︸ ︷︷ ︸

N−kL

]
, and u =

[
ud [0] ud [1] · · · ud [k − 1] · · · ud [M − 1]

]⊤
N×1

.

For the initial condition, we can let zθ0 = z [0] =

[
0 y1(0) 0 y2(0)

α2
· · · 0

yχ(0)
αχ

]⊤
similar to the work in [18].

Then, let y =
[
y [1]⊤ y [2]⊤ · · · y [M ]⊤

]⊤
χM×1

where y[k] =
[
y1, k y2, k · · · yχ, k

]⊤
, ∀k ∈ {1, 2, · · · ,M}.

Similarly, ν =
[
νd [1] νd [2] · · · νd [M ]

]⊤
χM×1

where νd[k] =
[
ν1, k ν2, k · · · νχ, k

]⊤
, ∀k ∈ {1, 2, · · · ,M}.

Moreover, let Fθ =
[
F [0] F [1] · · · F [M − 1]

]⊤
χM×2χ

and Dθ =

[
D [0] D [1] · · · D [M − 1]

]⊤
χM×N

. There-

fore, we can write the solution for the observation equation for all the sampled data as
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follows,

y = Fθzθ0 +Dθu+ ν.

Equivalently, we can separately represent the solution for each channel as follows,

y1 = Fθ1zθ0 +Dθ1u+ ν1,

y2 = Fθ2zθ0 +Dθ2u+ ν2,

...

and yχ = Fθχzθ0 +Dθχu+ ν2.

(30)

Here yn, Fθn , Dθn , and νn correspond to the vector and matrices taking the (χ(k−1)+n)th

rows from y, Fθ, Dθ, and ν, respectively, ∀k ∈ {1, 2, 3, · · · ,M}.

Noise Variance Estimation. We assume that the noise term νn,k is Gaussian random

variable with zero-mean and σ2n variance. Therefore, the energy of the noise is distributed

over the whole spectral range of 0 to half of the sampling frequency. To obtain noise

variances ∀n, we filter the phasic components of the experimental SC signals with a 0.5 Hz

high pass filter to remove all the signal components assuming the signals are band-limited

to 0.5 Hz. Then, we calculate the variances of the filtered signals to obtain the estimates of

the noise variances in the high-frequency region. We interpolate these estimated variances

for the whole spectral bandwidth considering the low-frequency region. This enables us to

obtain an assessment of the noise variances σ2n, ∀n.

Model Formulation for Stress Tracking. We assume that the ANS stimulation u

for SC responses in SC data is dependent on an internal stress state in the brain. Wick-

ramasuriya et al. [82] modeled the evolution of the stress state as a random walk. SC

data is modulated by stress and thus the probability pj of occurrence of a neural stimuli

is dependent on the stress state wj . Given the state process wj , the observation model

defines the probability of observing a neural stimulus. Let the observation variable sj be a
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binary variable where sj = 0 denotes no neural stimulus and sj = 1 denotes a single neural

stimulus observed at jth time instance. The probability distribution of sj can be described

using the Bernoulli distribution. State-space model is as follows,

wj = wj−1 + ϵj , (state equation) (31)

pj =
1

1 + e−(η+wj)
, (link function) (32)

and P (sj |qj) = p
sj
j (1− pj)

1−sj , (observation equation) (33)

where pj is defined by a logistic equation. The observation model in (33) is defined using

the Bernoulli distribution. The parameter η represents the probability of observing a neural

stimulus by random chance in a bin at the start of the experiment. We calculate η similarly

as in [82]. We use a bin size of 1 second in u to generate S1:J . Here J denotes the total num-

ber of bins. As the signal sample frequency is also 1 second, number of observation is equal to

the number of samples per channel, i.e., J =M . With the observation S1:J = {s1, s2, ..., sJ}

indicating the presence or absence of neural stimuli, we estimate W = {w0, w1, w2, ..., wJ}

and σ2ϵ for in turn estimating pj , ∀j using the Expectation Maximization (EM) algorithm

in [82].

3.2.3 Estimation

Preprocessing. We discard all the participants having very heavy motion artifacts in

their data for our analysis. The original recorded signal has a sampling frequency of 100

Hz for dataset 1 and 15.5 Hz for dataset 2. We perform all the preprocessing in the original

sampling frequency. In the beginning preprocessing step, we find the large discontinuities

in the recorded SC data. We take the difference and the negative of the difference of the

raw SC data and detect peaks having a prominence of 0.1. We assume these discontinuities

are due to the artifacts, and we choose the prominence parameter to detect the artifacts

that are much larger than the phasic responses. For a detected discontinuity, we discard
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a small patch of 0.5 seconds, while keeping the discontinuity in the middle of the patch.

We interpolate the region of the discarded patch in the signal with a spline curve. Then,

we perform lowpass filtering on the signal with a 64 order FIR lowpass filter of 3 Hz cut

off frequency. As the FIR lowpass filter has linear phase, we also corrected the group

delay generated by the FIR filter. Afterward, we apply cvxEDA [23] to separate the tonic

component and the phasic component, taking time between knots of the tonic spline function

as 6 seconds. All other parameters are kept unchanged from their default value. Next, we

calculate the delay parameter β taking cross-correlation between the two phasic components

from the first channel and the nth channel for different lags. We take the lag for foot phasic

SC data with the maximum correlation. Finally, we resample the signal to 1 Hz sampling

frequency.

Deconvolution. The sampling period for phasic SC signal and neural stimuli are

Ty = 1 seconds and Tu = 0.25 seconds, respectively. To estimate the system parameters

and the neural stimuli, we use solutions in (30), and formulate the following optimization

problem imposing the sparsity constraint on u,

minimize
θ,u,λ

J(θ,u, λ) =
1

2

χ∑
n=1

1

σ2n
||yn − Fθnzθ0 −Dθnu||22 + λ||u||pp

s. t. Cθ ≤ b, u ≥ 0, (34)

where C =



1 −1 0 0 · · · 0 0

0 0 1 −1 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 1 −1



⊤

and b =

[
1.4 −0.1 6 −1.5 100 −0.01 · · · 100 −0.01

]⊤
. Here θ ∈ R(χ+1), C ∈

R2(χ+1),(χ+1), and b ∈ R2(χ+1). The lp-norm is an approximation of the l0-norm (0 < p ≤ 2)

[19]. The lp-norm regularization parameter λ is chosen to maintain a balance between fil-

tering out the noise and the sparsity level of u [19, 20, 52]. We solve the inverse problem of
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finding a non-negative u with a specific sparsity level using the Focal Underdetermined Sys-

tem Solver (FOCUSS+) algorithm [66]. Afterwards, we use the generalized cross-validation

(GCV) technique to calculate an appropriate value of the lp-norm regularization parameter

λ adaptively similar to the approaches in [20, 19, 18]. In order to estimate λ, we use the

singular value decomposition based GCV technique in [68] by minimizing,

argmin
0≤λ≤0.1

G(λ|θ,u) =

[
L
∑L

i=1 γ
2
i

(
λ

κ2
i+λ

)2]
[∑L

i=1

(
λ

κ2
i+λ

)2] , (35)

where γ = R⊤yθ =

[
γ1 γ2 · · · γL

]⊤
with yθ = y − Fθzθ0 , and DθP

1
2
u = RΣQ⊤

with Pu = diag(|ui|2−p) and Σ = diag{κi}; R and Q are unitary matrices and the κi’s are

the singular values of DθP
1
2
u ; L is the total number of data points, i.e., L = χM [68]. In

this study, we minimize G(λ) for λ within the range of zero to 0.1. For r = 0, 1, 2, · · · ,

GCV-FOCUSS+ works as follows [19]:

1. P
(r)
u = diag(|u(r)

i |2−p)

2. u(r+1) = PuD
⊤
θ (DθPuD

⊤
θ + λI)−1yθ

3. u
(r+1)
i ≤ 0 → u

(r+1)
i = 0

4. λ(r+1) = argmin
0≤λ≤0.1

G(λ)

5. Iterate until convergence

We solve the problem in (34) using the following algorithm:

We run the algorithm with several random initializations of the system parameters τr,

τd and αn∀n. Finally, we choose the estimate that has the minimum value for the cost

function in (34).

Stress Estimation. We follow the Expectation Maximization (EM) approach in [82] to

estimate the stress state wj . In the E-step of their proposed algorithm, a nonlinear recursive
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Algorithm: Concurrent Deconvolution

(a) Let i = 0.

Initialization:

(b) Initialize θ̃0 by sampling a uniform random variable on [0.10, 1.4] for τ̃
(0)
r , on

[1.5, 6] for τ̃
(0)
d , and on [0.01, 1] for α̃0

n, ∀n ∈ {2, 3, · · · , χ}; let j = 1.

(c) Set θ = θ̃(j−1); use FOCUSS+ to solve the inverse problem in (34) to find the
stimuli ũ(j) by initializing ũ(0) at a vector with all ones.

(d) Set u = ũ(j); use the interior point method and minimize the optimization problem
in (34) to solve for θ̃(j). Let j = j + 1.

(e) Repeat between steps (c)-(d) until j = 30.

(f) Set θ̂0 = θ̃(j) and û0 = ũ(j).

Outer Optimization Problem:
(g) Set i = i+ 1.

(h) Set θ = θ̂(i−1) ; obtain û(i) solving the following steps:

i. Set m = 0 and û(i)(0) = û(i) and λ̂(i)
(0)

= 2 × 10−3.
Inner Optimization Problem:

ii. Set m = m+ 1.

iii. Set λ = λ̂(i)
(m−1)

and θ = θ̂(i−1); solve for û(i)(m)
by initializing the optimization

problem in (34) at u = û(i)(m−1)
.

iv. Set u = û(i)(m−1)
and θ = θ̂(i−1); solve for λ(i)

(m)
by initializing the optimization

problem in (35) at λ = λ̂(i)
(m−1)

.

v. repeat (ii)-(iv) until convergence and set û(i) = û(i)(m)
.

(i) Set u equal to û(i); solve for θ̂(i) using interior-point method by initializing the
optimization problem in (34) at θ̂(i−1).

(j) Iterate between (g)-(i) until convergence.

point process forward filter followed by a backward smoother has been implemented to

estimate the stress state of the subject. The forward filter estimates the stress state wj|j in

the jth bin, given S1:j , i. e., the observations up to the jth bin. The backward smoother

estimates the stress state wj|J in the jth bin, given S1:J , i. e., all the observations (up to the

Jth bin). pj|j denotes the probability of a neural stimuli impulse occurring within the jth

bin given the observation S1:j , and pj|J the probability of a neural stimuli impulse at jth bin
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given all of the data S1:J . In this case, the value of parameter σ2ϵ has been determined by

maximizing the complete data log-likelihood likelihood estimate at the previous iteration.

3.2.4 Expectation Step

At the (l+1)th iteration, the expectation of all the data log likelihood has been calculated

in the E-step given S1:J , the stress state, σ
2(l)
ϵ , and w

(l)
0 . The superscript l represents that

the values are calculated from the lth iteration. The forward and backward filter methods

for E-step are given as follows:

Forward Filter. Given σ
2(l)
ϵ and w

(l)
0 , the estimation of wj|j and σ2j|j has been carried

out using a recursive nonlinear filter algorithm [82, 86] as follows,

wj|j−1 = wj−1|j−1, (36)

σ2j|j−1 = σ2j−1|j−1 + σ2(l)ϵ , (37)

wj|j = wj|j−1 + σ2j|j−1

[
sj −

1

1 + e−(α+wj|j)

]
, (38)

and σ2j|j =

{
1

σ2j|j−1

+
e(η+wj|j)

[1 + e(η+wj|j)]2

}−1

, (39)

for w0 = w
(l)
0 , σ20|0 = σ

2(l)
ϵ and j = 1, 2, ..., J . As wj|j appears on both sides of Equation

(38), it can be solved using Newton’s method.

Backward Filter. From Equations (38) and (39), the posterior mode estimate wj|j

and its variance σ2j|j can be obtained. Given these estimations, the fixed-interval smoothing

algorithm can be applied to compute wj|J and σ2j|J . The algorithm is as follows [86],

Aj =
σ2j|j

σ2j+1|j
, (40)

wj|J = wj|j +Aj

(
wj+1|J − wj+1|j

)
, (41)
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and σ2j|J = σ2j|j +A2
j

(
σ2j+1|J − σ2j+1|j

)
, (42)

for j = J − 1, ..., 1 with initial conditions wJ |J and σ2J |J .

3.2.5 Maximization Step

At the maximization step, the expected value of the complete data log-likelihood is used

to select the model parameters for the next iteration as follows [86],

σ2(l+1)
ϵ =

2

J + 1

[
J∑

j=2

(σ2j|J + w2
j|J)

−
J∑

j=2

(Ajσj|J + wj|Jwj−1|J)

]

+
1

J + 1

[
(2σ21|J +

3

2
w2
1|J)− (σ2J |J + w2

J |J)

]
(43)

and w
(l+1)
0 =

1

2
w1|J . (44)

The EM algorithm repeatedly iterates between the E-step and the M-step until conver-

gence. The estimated state wj at each time instance is assumed to be Gaussian distributed

wj ∼ N(wj|J , σj|J) and we define high arousal index (HAI) as Pr(wj > wT ) similar to [83].

The threshold wT is set to subject’s mean stress state value across the whole experiment.
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Figure 14: Estimated Deconvolution of the Experimental Phasic SC Signals Two
Female and Two Male Particiapants.

3.3 Results

3.3.1 Dataset 1

We use the proposed algorithm and concurrently deconvolve SC measurements from the

middle phalanx of the hand and the medial plantar surface of the foot collected during an

auditory stimulation experiment and recover the underlying stimuli u(t), the corresponding

rise time (τr) and decay times (τd) of SC responses, and the attenuation (α2) at the medial

plantar surface of foot with respect to the middle phalanx of hand. Results in Figure 14

show that the proposed algorithm successfully recovers the timing and amplitudes of neural

stimuli and the underlying system parameters, i.e., the rise and decay times for two female

participants and two male participants. In each of the panels in Figure 14, i) the top sub-

panel shows the experimental (red stars) and the estimated (green curve) phasic component
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Figure 15: Three Channel Deconvolution on Experimental Data.

corresponding to the middle phalanx of hand; ii) middle subpanel shows the experimental

(blue stars) and estimated (green curve) phasic component corresponding to the the medial

planar surface of foot; and iii) bottom sub-panel shows the timings of the auditory stim-

uli (gray vertical lines) and the estimated ANS activation timings and amplitudes (green

vertical lines). The figures for the deconvolution results for all 12 participants are given

in the Appendix. We considered the signal segment from 200 seconds to 400 seconds for

our analysis. The multiple correlation coefficient (R2) has been calculated for all twelve

reconstructed signals. The high values of R2 (found to be greater than 0.95 except for

male participant 3 and the explanation is given in Section 3.4) for hand phasic SC data

suggest that our proposed algorithm can successfully recover the underlying physiologically

plausible ANS stimulation. For foot data, the R2 values are greater than 0.80 except for

the male participant 4 and it is also explained in Section 3.4. In general, the R2 values

from reconstructed foot data are lower compared to the R2 values from the reconstructed

61



0 20 40 60 80 100 120 140 160 180 200

Time (second)

0

2

4

6

S
C

 (
S

)

(i) Female Participant 1 (Phasic SC from Hand)

0 20 40 60 80 100 120 140 160 180 200

Time (second)

0

2

4

6

S
C

 (
S

)

(ii) Female Participant 1 (Phasic SC from Foot)

0 20 40 60 80 100 120 140 160 180 200

Time (second)

0

50

100

150

A
m

p
lit

u
d
e
 (

S
) (iii) Stimuli

0 20 40 60 80 100 120 140 160 180 200

Time (second)

0

2

4

6

S
C

 (
S

)

(i) Female Participant 2 (Phasic SC from Hand)

0 20 40 60 80 100 120 140 160 180 200

Time (second)

0

2

4

6

S
C

 (
S

)

(ii) Female Participant 2 (Phasic SC from Foot)

0 20 40 60 80 100 120 140 160 180 200

Time (second)

0

50

100

150

A
m

p
lit

u
d
e
 (

S
) (iii) Stimuli

0 20 40 60 80 100 120 140 160 180 200

Time (second)

0

2

4

6

S
C

 (
S

)

(i) Male Participant 1 (Phasic SC from Hand)

0 20 40 60 80 100 120 140 160 180 200

Time (second)

0

2

4

6

S
C

 (
S

)

(ii) Male Participant 1 (Phasic SC from Foot)

0 20 40 60 80 100 120 140 160 180 200

Time (second)

0

50

100

150

A
m

p
lit

u
d
e
 (

S
) (iii) Stimuli

0 20 40 60 80 100 120 140 160 180 200

Time (second)

0

2

4

6

S
C

 (
S

)

(i) Male Participant 2 (Phasic SC from Hand)

0 20 40 60 80 100 120 140 160 180 200

Time (second)

0

2

4

6

S
C

 (
S

)

(ii) Male Participant 2 (Phasic SC from Foot)

0 20 40 60 80 100 120 140 160 180 200

Time (second)

0

50

100

150

A
m

p
lit

u
d
e
 (

S
) (iii) Stimuli

Figure 16: Estimated Deconvolution of the Simulated Phasic SC Signal.

hand data. Lower R2 values for foot data suggest that foot signals are noisier than the

hand signals. Table 2 shows all the estimated parameters as well as the R2 values for all 12

participants. In Table 2, τr, τd, and α2 denote the rise time, decay time and the attenuation

parameter for the foot SC data; and R2
h and R2

f correspond to the R2 for the fits of the

hand and foot SC data, respectively. The quantile-quantile plot of the model residuals after

deconvolution follows a straight line, suggesting that the residuals are Gaussian distributed.

All quantile-quantile plots for 12 are provided in the Appendix.

Figure 15 shows an example of three-channel deconvolution. Here, in each of the panels

in Figure 15, i) the first subpanel shows the experimental (red stars) and the estimated

(green curve) phasic component corresponding to the middle phalanx of the hand; ii) the

next subpanel shows the experimental (black stars) and estimated (green curve) phasic com-

ponent corresponding to the thenar/hypothenar of hand; iii) the next sub-panel shows the
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Figure 17: Performance Comparison of Proposed Concurrent Deconvolution Ap-
proach with Existing Approaches.

experimental (blue stars) and estimated (green curve) phasic component corresponding to

the medial planar surface of foot; and iv) bottom sub-panel shows the timings of the audi-

tory stimuli (gray vertical lines) and the estimated ANS activation timings and amplitudes

(green vertical lines). Here we include the third recording from the thenar/hypothenar of

the hand in the concurrent deconvolution scheme. We are able to successfully deconvolve
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Figure 18: Noise vs Accuracy Plot for Rise Time and Decay Time.

Figure 19: Stress State Estimation from Drivers Stress Dataset.

the three-channel SC data and obtain all unknown parameters. The R2 obtained for all

three channels are 0.985, 0.937 and 0.965.

To validate our approach, we simulate data using the results from the deconvolution and

the parameters obtained are given in Table 2. To simulate the noisy data, we added zero-

mean Gaussian noise with 30 dB and 20 dB signal-to-noise ratio (SNR) to the reconstructed

phasic SC data corresponding to both hand and foot channels, respectively. These SNR

values are chosen to obtain comparable noise levels as in the experimental data. Thereafter,
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Table 2: The Estimated Model Parameters and the Squares of the Multiple Correlation
Coefficients (R2 ) for the Fits of the Experimental Skin Conductance Time Series.

Female Participant Subject ID τr (second) τd (second) α2 β (second) λ R2
h R2

f

1 15 0.562 3.021 0.074 1.470 0.0020 0.989 0.914

2 12 0.794 2.886 0.403 1.120 0.0725 0.986 0.954

3 7 0.499 3.125 0.148 1.010 0.0584 0.984 0.812

4 18 1.026 2.102 0.129 0.720 0.105 0.982 0.931

5 21 0.695 2.909 0.373 1.150 0.0384 0.985 0.947

6 25 0.341 2.684 0.621 0.940 0.1068 0.954 0.894

Male Participant Subject ID τr (second) τd (second) α2 β (second) λ R2
h R2

f

1 11 0.772 3.104 0.411 1.150 0.0357 0.994 0.969

2 26 0.519 3.200 0.364 1.430 0.0505 0.980 0.922

3 8 0.715 1.815 0.030 1.710 0.0267 0.787 0.807

4 10 0.310 3.587 0.630 0.760 0.0542 0.955 0.734

5 20 0.640 2.741 0.224 0.970 0.0784 0.968 0.812

6 23 1.001 2.105 0.422 0.860 0.0251 0.984 0.921

Table 3: The Estimated Model Parameters and the Squares of the Multiple Correlation
Coefficients (R2 ) for the Fits of the Simulated Skin Conductance Time Series.

Female Participant τ̂r τ̂d α̂2
|τr−τ̂r|

τr
× 100% |τd−τ̂d|

τd
× 100% |α2−α̂2|

α2
× 100% λ̂ R2

h R2
f

1 0.562 3.013 0.074 0.050 0.262 0.553 0.0058 0.999 0.987

2 0.820 2.823 0.401 3.276 2.182 0.483 0.0357 0.998 0.985

3 0.501 3.108 0.150 0.391 0.539 1.312 0.0197 0.998 0.986

4 0.853 2.655 0.129 16.914 26.329 0.230 0.0366 0.994 0.982

5 0.694 2.908 0.373 0.081 0.076 0.119 0.0138 0.999 0.987

6 0.339 2.691 0.628 0.923 1.626 1.327 0.0299 0.998 0.987

Male Participant τ̂1 τ̂2 α̂2
|τ1−τ̂1|

τ1
× 100% |τ2−τ̂2|

τ2
× 100% |α−α̂2|

α2
× 100% λ̂ R2

h R2
f

1 0.734 3.115 0.413 4.893 0.408 0.148 0.0290 0.994 0.985

2 0.527 3.111 0.368 1.674 2.765 1.268 0.0266 0.998 0.984

3 0.851 1.500 0.032 19.078 17.369 5.527 0.0168 0.866 0.860

4 0.322 3.492 0.643 3.759 2.649 2.012 0.0128 0.997 0.983

5 0.654 2.727 0.2272 2.122 0.510 1.420 0.0391 0.991 0.975

6 0.940 2.479 0.430 2.235 4.193 0.164 0.0323 0.998 0.986

we again deconvolve the noisy simulated data to compare the results with the ground truth

used to simulate the data. Figure 16 shows results from four simulated data. In Figure

16, the panels show the deconvolution results on the simulated data for two female and

two male participants, respectively. In each panel, i) the top subpanel shows the simulated

(blue stars) and the estimated (red curve) phasic components corresponding to the middle

phalanx of hand; ii) middle panel shows the simulated (blue stars) and estimated (red curve)

phasic components corresponding to the the medial planar surface of foot; and iii) bottom

sub-panel shows the timings of the simulated ANS activation timings and amplitudes (gray
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Table 4: Deconvolution Errors with Our Single Channel and Concurrent Deconvolution
using Simulated Data.

Approaches
∑

|∆i−∆̂i|
||û||0

||u−û||
||u||0

|τr−τ̂r|
τr

× 100% |τd−τ̂d|
τd

× 100%

Only Hand 0.26 0.61 5.80 8.25

Only Foot 0.28 1.22 21.57 6.83

Concurrent 0.18 0.46 1.23 3.26

line) and the estimated ANS activation timings and amplitudes (red dashed line). The

deconvolution results for all twelve participants are given in the Appendix A.2. Table 3

shows the estimated parameters, the corresponding estimated errors, and R2 values. In

Table 3, τr, τd, and α2 denote the rise time, decay time and the attenuation parameter for

the foot SC data; symbols with hat and without hat denote the estimated and the true

values of the parameters, respectively; and R2
h and R2

f correspond to the R2 for the fits of

the hand and foot SC data, respectively.

To further validate our approach, we simulated noisy data using a synthetic input and

the model parameters τr = 0.75, τd = 4, and α2 = 0.3. In this case, we have the ground

truth for comparison. To simulate the noisy data, we added zero-mean Gaussian noise with

20 dB and 15 dB SNR to the hand and foot phasic SC data, respectively. These two levels

of noise are chosen because of the higher levels of noise in the foot data. Figure 17 shows the

simulated data for both channels. In Figure 17, the panels (i) and (ii), respectively, depict

the synthetic simulated data with 20 dB and 15 dB noise for the hand and foot. Panels

(iii) and (iv) show results with LedaLab [21]. The panels (v) and (vi) show the results

with cvxEDA [23]. The panels (vii) and (viii) show the recovered neural stimuli with our

single channel deconvolution. Panel (vii) shows the recovered results with our concurrent

deconvolution on simulated hand and foot SC data. Gray vertical lines correspond to

the ground truth, and the red, blue, and green vertical lines correspond to recovered neural

stimuli with hand data, foot data, and concurrent deconvolution. We perform deconvolution

on the simulated noisy data. Figure 17 also shows the deconvolution performance of other

existing algorithms for comparison, as well as our single channel deconvolution approach.
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Results using simulated data show that our concurrent deconvolution scheme outperforms

the existing methods. The last three panels in Figure 17 and the corresponding estimation

errors in Table 4 also show how our concurrent deconvolution scheme performs better than

our single channel deconvolution approach. Moreover, Figure 18 shows how noise effects

the estimation accuracy for τr and τd. In Figure 18, Left and right subpanels show how

the percentage error increases with low SNR; each data point corresponds to the average

percentage error of eight simulated trials; the model parameters for the simulated data used

are τr = 0.75 seconds, τd = 4 seconds, α2 = 0.5 and α3 = 0.3. Neural stimulus used for the

simulation is the same as in Figure 17.

3.3.2 Dataset 2

Figure 19 shows the stress estimates for the estimated neural stimuli using the heuristic

peak detection [82], our single channel deconvolution [83], and our concurrent deconvolution.

In Figure 19, all three panels from left to right show the estimated stress from the driver

stress dataset with heuristic peak detection [82], our single channel deconvolution [83], and

our concurrent deconvolution, respectively; the subpanels respectively depict the recorded

SC signal from hand, SC signal from foot, inferred autonomic nervous activity u, stress state

wj|J and probability of pj|J with their confidence intervals. The color-coded backgrounds

green, light violet, light red, and yellow correspond to rest period, city driving, toll road,

and highway, respectively. Figure 19a shows the stress estimation result using the approach

proposed in [82] for the driver using heuristic peak detection scheme for detecting neural

stimuli u. We perform both multi-channel and single channel deconvolution on a small

segment from 1500 seconds to 1700 seconds of the recorded signal. After deconvolving

phasic SC segment, we solve the inverse problem of estimating u for entire phasic SC signal

using FOCUSS+ and GCV-FOCUSS+ with the θ estimated from the deconvolution step.

Then, we bin the estimated u with a bin size of 1 seconds. We use the same stress estimation

approach in [82] with the results obtained using our concurrent deconvolution algorithm.
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3.4 Discussion

Figure 13 shows the overall system block diagram, where the system parameters for

different regions are assumed to be same and the attenuation terms 0.01 ≤ α2, α3, · · · , αχ ≤

100. However, we have also considered other configurations for the system and tried to

formulate optimization problems. We investigate different possibilities with two-channel

recordings. We have considered the configuration by taking τ the same for both hand

(middle phalanx) and foot (medial plantar surface) regions. In this case, the attenuation

α2 = 1 which corresponds to the recording from foot. The R2 squared fit for the foot is very

low and a clear attenuation factor other than α2 = 1 is observed. Then, we formulate the

problem with the configuration, which has two different sets of system response parameters

(rise time and decay) τ for both channels while keeping α2 = 1. This time, the solutions

for τ for both hand and foot stagnated at extreme bounds and fit after reconstructions

were not good for at least one channel. Next, we have analyzed the data taking τ different

and 0.01 ≤ α2 ≤ 100. In this case, the fits after reconstruction were good for most of the

channels but all the solutions for τ for both hand foot regions stagnated in the upper/lower

bounds. This is because the optimization formulation has too many degrees of freedom.

Therefore, we remove some degrees of freedom by taking τ same for both hand and foot

regions. In addition to that, we introduced a delay in the input from the foot sweat glands

causing a delayed phasic response and successfully concurrently deconvolved phasic SC

signals from the hand and foot, and recovered neural stimuli and underlying physiological

system parameters.

It is somewhat counterintuitive that the skin conductance system responses (i.e., the

corresponding rise times and decay times) in different regions are similar in shape, although

there can be dissimilarities in the sweat glands. This is because different rise times and

decay times for different skin locations will lead to too many degrees of freedom. It is

possible to have many solutions to the system for a given set of observed data. In this work,

we assumed the system response does not have much variance in different skin regions.
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Moreover, the variability in different skin regions is captured by the tonic component. We

remove the tonic component before proceeding with the deconvolution steps. In one of

our works [8], we have developed a deconvolution scheme to separate the tonic and phasic

components iteratively in a coordinate descent manner. It is possible to develop a similar

approach for the multichannel case. In this way, the variability of the phasic SC response

in different skin locations can be captured. It might also require additional physiological

constraints on the phasic SC response parameters as the assumption of different phasic SC

response parameters will result in too many degrees of freedom in the optimization problem

leading to infinitely many solutions.

Deconvolution of SC signals is a challenging problem as multiple sets of physiological

parameters and neural stimuli exist which closely approximate the observed signal. Be-

sides, the smallest level of noise can perturb the solution to a physiologically infeasible

point because of the sensitive nature of the system impulse response with respect to the

physiological parameters. The proposed formulation is a nonconvex problem and we solve

it using a coordinate descent deconvolution approach until convergence to a local minimum.

To account for non-convexity, we use multiple initializations and choose the solution that

minimizes the cost function compared to all other solutions that the algorithm finds. To en-

sure an identifiable solution, we use appropriate physiologically plausible constraints similar

to [52, 53] on the unknowns. Figure 17 shows the results from the previous two algorithms:

LedaLab [29] and cvxEDA [23]. These two existing methods can solve the inverse problem

of finding u using single channel data assuming known physiological parameters. In con-

trast, the proposed approach can solve for both the physiological system parameters and

the inverse problem of finding neural stimuli using multichannel recording.

From our analysis of the auditory stimulation data, we observe a very large phasic re-

sponse right after a stimulation has been given to the participant. For example, female

participant 1, male participant 2, and male participant 3 have significantly distinct phasic

SC responses right after the auditory stimuli. Although the phasic SC data from female
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participant 2 shows multiple responses after one auditory stimulation, the very first response

right after an auditory stimulation is usually very prominent. Other comparatively smaller

responses indicate that the participant requires more perspiration to reduce the body tem-

perature increase due to increased metabolism. Our algorithm successfully detected these

small responses as well. In general, the distance between two consecutive phasic responses

is more than a few seconds. Therefore, we chose a minimum separation of 1 second between

two adjacent peaks in the deconvolution algorithm to obtain a physiologically feasible so-

lution.

SC data can be noisy and small noisy peaks are comparable to the small insignificant

phasic SC responses. To avoid detecting noise peaks as SC phasic response, we used an

internal threshold in each iteration GCV-FOCUSS+. Any detected estimated nonzero ele-

ment of u that is smaller than the threshold is set to zero. In this study, we used 5 as the

threshold. This threshold works well for almost all participants. However, there are cases

where participants have very small phasic SC responses that are very comparable to noise

and our algorithm might discard them. For instance, male participant 3 has very small

phasic SC responses during auditory stimulation for the hand and foot. In this case, the

phasic SC responses that are comparable to the noise are discarded. Figure 83 in Appendix

A.2 shows that the simulation results from the simulation corresponding to male participant

3 discards one detected pulse that is very close to 5. This is because the addition of noise

to the simulated data made the smallest phasic SC response comparable to noise. This also

explains the low R2 values in male participant 3. In our future work, we plan to include

participant-dependent threshold selection to enable us to detect phasic SC responses for

cases where the participants have very small ANS activation. In the case of male partic-

ipant 4, one small peak present between 260 seconds and 280 seconds of foot data is not

visible in the hand data. This denotes that the peak is due to noise. Our algorithm discards

this peak and prevents overfitting to the noise. This is the reason the R2 value in male

participant 4 foot data is small.
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Figure 18 shows how noise can deteriorate the estimation accuracy. Figure 18 also shows

that with the addition of more channels, the estimation accuracy of decay time τd increases.

However, the same is not visible for τr. This might be because τr is smaller than 1 second,

which is less than the sampling frequency. It is hard to capture the information of about τr

with 1 Hz sampling frequency. Nevertheless, with higher sampling frequency, the estimation

accuracy for τr should also improve with addition to more channels similar to τd.

The stress results obtained in Figure 19 for all the cases are consistent. The result

in Figure 19c shows much smoother estimation compared to the result in 19b and 19a.

Although stress estimation using the results from single-channel deconvolution obtains a

smoother estimate compared to the peak detection one, it is not as good as the concurrent

deconvolution. In the first rest period, there is an unwanted peak in the estimated stress

state in the heuristic approach. The stress estimation using the result from single-channel

deconvolution also detected the unwanted stress state spike. In contrast, the result in Figure

19c shows much-improved stress tracking with no significant stress state spike in the first

rest period. A similar spike in the HAI can also be seen in the first rest period for 19b

and 19a which is very small in 19c. Simple peak detection algorithm might not provide the

accurate timings and amplitudes of the neural stimuli. Moreover, small noise peaks can be

captured with the peak detection algorithm where they might not represent actual neural

stimuli.
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4 Sparse Deconvolution of Electrodermal Activity via Continuous-

Time System Identification

4.1 An Overview of Continuous-Time System Identification-Based Elec-

trodermal Activity Deconvolution

In general, electrodermal activity (EDA) refers to any changes in the electrical char-

acteristics of the skin due to different physiological activities. Skin conductance response

(SCR), which is one of the measures of EDA for physiological analysis, indicates different

eccrine sweat gland activities caused by the stimulation of the autonomic nervous system

(ANS), mainly by the sudomotor nerve [76]. When sweat secretions occur in response to

stimulations from the autonomic nervous system, there is an alteration in the ionic per-

meability of the cell membranes. This change in permeability increases conductance in

skin tissue. Although sweating, controlled by hypothalamic areas, is mostly intended for

thermoregulation, it also depends on other physiological events including emotional arousal

[73]. Many works attest to the high correlation between sympathetic nervous activity and

EDA [74, 75].

Physiological signals like EDA that have a high correlation with sympathetic nervous

activity can help to interpret emotional dysfunctions or abnormalities. Emotional dysfunc-

tions influence psychiatric disorders like depression [87]. Many studies have shown the risks

of suicidal behavior in patients having psychiatric disorders including depression and post-

traumatic stress disorder [88, 89, 90]. Mortality due to mental disorders has been identified

as one of the major causes of death worldwide [31]. Moreover, dysregulation in arousal

can cause symptoms including insomnia and irritability [91]. Patients with posttraumatic

This chapter has been adopted from Amin, Md Rafiul, and Rose T. Faghih. “Sparse deconvolution of
electrodermal activity via continuous-time system identification.” IEEE Transactions on Biomedical Engi-
neering 66.9 (2019): 2585-2595 [52].
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stress disorder show symptoms of difficulty in falling asleep and excessive irritability [92].

In psychopathology, identifying problematic patterns of emotion and emotional regulation

can characterize psychiatric disorders [35, 93]. Several studies have been carried out to de-

tect mental disorders using emotional tracking [15] and from disturbed arousal conditions

[94]. Mental disorder-related issues could be significantly reduced if a personalized health

monitoring system [78] with a user-friendly daily psychological condition tracking could be

devised.

Macefield et al. [15] have shown that areas of the brain related to sympathetic ner-

vous activity can be identified by using functional magnetic resonance imaging (fMRI) of

the brain and by recording concurrent microelectrodes readings generated by sympathetic

outflow to muscle and skin. They have proposed to extend this idea to examine specific

disorders of emotional expression to comprehend underlying neural processes. To collect

fMRI data, a clinical setup is necessary which will be convenient for clinical diagnosis. Un-

fortunately, it is not convenient for daily tracking of neural process related to emotional

states. Bomba et al. [16] used heart rate variability (HRV) from the ECG signal as a mea-

sure of ANS imbalance. However, Soh et al. [17] illustrated the underlying challenges and

complexity of acquiring ECG data using wearable technology. In another study, Faghih et

al. [18] were able to recover the amplitude and timing of neural stimuli related to different

fear states employing EDA signals with a deconvolution scheme [19, 20]. Utilizing recovered

timings and amplitudes, emotional states can be estimated to analyze emotional disorders.

Many deconvolution schemes have been proposed for physiological signals including skin

conductance (SC) data. Benedek et al. [21] proposed a non-negative approach to decompose

SC data into discrete compact responses and at the same time assessed deviations from the

standard SCR shape. However, this decomposition approach could detect noise as SCR and

does not include the individual differences in modeling the fall and rise times. Greco et al.

[23] proposed decomposing SC data into tonic and phasic components. They formulated a

quadratic programming problem to find sparse solutions for the input stimuli. However, the
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use of fixed regularization parameter makes it challenging to find an optimal sparse solution.

In another work, Gallego et al. [24] proposed an approach to obtain a more sparse solution;

however, this approach seems to oversparsify the solution. In the deconvolution scheme

proposed by Faghih et al. [25, 18, 19, 20, 26], a two-step coordinate descent approach has

been incorporated. In the first step, they used the FOCal Under-determined System Solver

(FOCUSS) algorithm [27] to find a sparse solution of the neural stimuli. This step is a

convex optimization problem to which a global solution can be achieved. In the following

step, their algorithm employs another optimization problem to find the physiological system

parameters, which is not convex. Therefore, it is possible for the solution to stagnate at a

local minimum.

In the present study, we propose an algorithm to find neural stimuli and underlying sys-

tem parameters and use this algorithm to analyze EDA data. Inspired by the work carried

out by Faghih et al. [25, 18, 19, 20, 26], we use a state-space model to relate SC to the

internal unobserved neural stimuli. However, in this work, we re-formulate the optimization

problem for model parameter estimation in [25, 18, 19, 20, 26] as a convex problem to avoid

the stagnation of the solutions at local minima. In contrast to the model proposed in [18], we

only model the phasic component of SC as a state variable in our state-space equations. We

separate the phasic component from the SC using the cvxEDA algorithm proposed in [23].

Then, we take a coordinate descent approach to recover the neural stimuli and estimate the

system parameters. We use a modified version of FOCUSS [19] to solve the inverse problem

of finding neural stimuli from SC data. For system parameters estimation, we employ a

continuous-time system identification approach using Hartley Modulating function. This

allows for formulating this problem as a convex optimization problem in terms of neural

stimuli and physiological system parameters. We also incorporate a data-dependent band-

width selection approach for more accurate estimation of physiological system parameters.

Then, we apply our method to analyze SC data collected during cognitive stress tasks. We

successfully recover the underlying stimuli and the physiological parameters.
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4.2 Methods

4.2.1 Experiment

Dataset 1. In this study, we analyze a publicly available dataset collected by Quality

of Life Laboratory at the University of Texas at Dallas [95]. The data was collected from

20 college students. Fourteen of them were male and six of them were female. Information

on subject ID, age, gender, and body mass index (BMI) of each subject are provided in

Section A.3. The experiment was carried out to distinguish between physiological signals

during different types of stresses (‘cognitive stress’, ‘emotional stress’, ‘physical stress’, and

‘relaxing’). A detailed explanation of the experiment is given in [95]. In this study, we

analyze EDA data from 3-minute ‘counting task’ of the ‘cognitive stress’ portion of the

study. In the ‘counting task’, the subjects have to count backwards by sevens, beginning

with 2485 for three minutes. The SC signal was measured with a sampling frequency of 8

Hz. In our study, we downsample the data by a factor of 2 and obtain the 4Hz signal for

analysis. Furthermore, we discard all signals that have been corrupted by heavy artifacts.

Therefore, we only analyze 6 subjects whose SC signals are not corrupted by heavy motion

artifacts. Table 5 shows subject ID, age, gender, and BMI of each participant.

Table 5: Information of Subjects.

Participant No. Subject ID Age Gender BMI [ kg
m2 ]

1 01 30 M 30.00
2 05 30 M 24.75
3 08 27 M 19.32
4 09 25 M 21.70
5 12 32 F 20.20
6 16 24 M 16.66

Dataset 2. Skin conductance responses to loud sounds, simultaneously recorded from

the palm, fingers, and foot [57] datasets were collected for modeling event-related SC re-

sponses. Participants were asked to press a foot-operated pedal in response to 20 auditory

stimuli. Auditory stimulations are one-second long white noise bursts. The details of the
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experiment are in [30]. We use SC recordings from the middle phalanx of the dominant

second and third finger for our study. The dataset contains the timing of the auditory

stimulations to perform the comparison with the recovered stimuli. We use this dataset to

perform the comparison with existing methods. The signals in this dataset have a sampling

frequency of 100 Hz. We downsample the data to 4 Hz for our analysis.

4.2.2 Model Formulation

The SC data can be represented as a summation of two different signals [21, 42]. One is

a slowly varying signal called tonic component and another is a comparatively fast varying

signal called phasic component. We separate the phasic component from SC using the

algorithm proposed by Greco et al. [23].

The phasic component of the SC can be modeled as a second-order differential equation.

We use a second-order differential equation model similar to the models in [18, 42]. This

model describes the changes in the phasic SC as a function of the activity of the sudomotor

nerve. The model is defined in state-space form as follows,

ẋ1(t) = − 1

τ1
x1(t) +

1

τ1
u(t) (45)

and ẋ2(t) =
1

τ2
x1(t)−

1

τ2
x2(t), (46)

where x2 is the SC level of the phasic component and x1 is an internal unobserved state

variable. τ1 and τ2 are SC time constants in the model corresponding to the rise time

and fall time, respectively. This time-invariant system representation can model the phasic

responses under the assumption that the time constants τ1 and τ2 do not change over the

duration of the experiment. We know that a single neural impulse from ANS is responsible

for a single phasic SC response [45, 24, 18]. The length of the experimental signals and

the average separation of the consecutive phasic SC responses are very high compared to

the number of neural stimuli impulses generated by ANS; hence, we can include a sparsity
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constraint on the neural stimuli. In contrast to the model proposed in [42], we consider a

finite number of stimuli as the model input (similar to [45, 24, 18]). This definition makes

it suitable to take the timings and amplitude of the stimuli to quantify emotional states.

We define the sparse abstraction of the input stimulation as u(t) =
∑N

i=1 qiδ(t−∆i), where

qi represents the level of stimulation at time ∆i. qi of zero implies no stimulation at time

∆i. N refers to the length of the input; N is a function of the duration of the experiment

and the input sampling interval Tu. In this case, we can write ∆i = iTu.

Discrete-Time System Identification. Let’s say the signal has been sampled with

a sampling interval of Ty for M samples. We can define the observed phasic SC data ytk as

follows,

ytk = x2(tk) + νtk , (47)

where k = 1, 2, · · · ,M ; tk = kTy and νtk represents signal noise. We model νtk as a

Gaussian random variable and use this assumption to implement a least squares approach

in our estimation algorithm. Using the phasic SC data ytk , we would like to estimate τ1

and τ2, and also recover the input u(t), i.e., the amplitudes and timings of the stimuli.

Assuming that x1(0) = 0, solution for ytk would be as follows,

ytk = atky0 + btku+ νtk , (48)

where atk = e
− tk

τ2 , btk =
[

1
(τ1−τ2)

(e
− tk

τ1 − e
− tk

τ2 ) 1
(τ1−τ2)

(e
− tk−Tu

τ1 − e
− tk−Tu

τ2 ) 1
(τ1−τ2)

(e
− tk−2Tu

τ1 − e
− tk−2Tu

τ2 ) · · · 1
(τ1−τ2)

(e
−Tu

τ1 − e
−Tu

τ2 ) 0 · · · 0︸ ︷︷ ︸
N− tk

Tu

]
and vector u = [q1

q2 · · · qN ]⊤ represents the entire input over the entire experiment. Let y = [yt1 yt2

· · · ytM ]⊤, τ = [τ1 τ2]
⊤, Aτ = [at1 at2 · · · atM ]⊤, Bτ = [bt1 bt2 · · · btM ]⊤,

ν = [νt1 νt2 · · · νtM ]⊤ and y0 is the initial condition of the phasic SC level. Here, Ty
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is always an integer multiple of Tu. Now we can represent the system as,

y = Aτy0 +Bτu+ ν. (49)

Equation (49) shows the representation of the sampled phasic SC data. In this study, we

simulate the data using a state-space approach. A detailed description is given in Section

A.3. In this study, we are considering Tu = Ty and N = M , i.e., we take the resolution of

input vector u as same as y.

Multi-Rate State-Space Formulation. We show another way of discretization in this

section. We put Equations (45)-(47) into a state space form and derive the discrete analog

of the system. In this formulation, the unknowns include τ1 and τ2, qi and ∆i (for i =

1, 2, · · · , N).

Let, x(t) =

[
x1 x2

]⊤
, Ac =

 − 1
τ1

0

1
τ1

− 1
τ2

, Bc =

 1
τ1

0

 and Cc =

[
0 1

]
. Hence,

the state space model can be written as,

ẋ(t) = Acx(t) +Bcu(t)

and y(t) = Ccx(t) + ν(t),

where y(t) is the observed skin conductance (SC) and ν(t) is the measurement noise at time

t. Assuming that the input and the states are constant over Tu, by letting Λ = eATu , and

Γ =
∫ Tu

0 eA(Tu−ρ)dρ, we can write the discrete state space form as,

x [k + 1] = Λx [k] + Γu[k]

and y [k] = Ccx [k] + ν [k] .

This can be extended to a multirate formulation, i.e., for the cases where neural stimuli

and SC measurements have different sampling frequencies. We let the SC measurement
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sampling frequency Ty = LTu, where L is an integer. We can also represent L as the

ratio of number of samples in neural stimuli and SC signal, i.e. L = N
M where M is the

number of available data points. By letting Ad = ΛL, Bd =

[
ΛL−1Γ ΛL−2Γ · · · Γ

]
,

ud [k] =

[
u [Lk] u [Lk + 1] · · · u [Lk + L− 1]

]⊤
, νd [k] = ν[Lk] and xd [k] = xd [Lk],

we can represent the multi-rate system as,

xd [k + 1] = Adxd [k] +Bdud [k]

andy[k] = Ccxd [k] + νd [k] ,

where Ad and Bd are functions of τ =

[
τ1 τ2

]
. Then, using the state transition matrix,

and considering that the system is causal, we can write the system equation as,

y [k] = F [k]xd [0] +D [k]u+ νd [k] ,

where F [k] = CcA
k
d, D [k] = Cc

[
Ak−1

d Bd Ak−2
d Bd · · · Bd 0 · · · 0︸ ︷︷ ︸

N−kL

]
, and u =[

ud [0] ud [1] · · · ud [k − 1] · · · ud [M − 1]

]⊤
. u represents the entire input over the

duration of the study. Considering the initial condition x1(0) = 0 and y(0) = x2(0) = y0,

we can let xd [0] =

[
0 y0

]⊤
. Then, let y =

[
y [1] y [2] · · · y [M ]

]⊤
M×1

, where y

represents all the data points. Moreover, let Fτ =

[
F [0] F [1] · · · F [M − 1]

]⊤
M×2

,

Dτ =

[
D [0] D [1] · · · D [M − 1]

]⊤
M×N

, and ν =

[
ν [1] ν [2] · · · ν [M ]

]⊤
M×1

.

Hence, we can represent this system as,

y = Fτxd[0] +Dτu+ ν.

This solution is equivalent to Equation 5 by considering Fτxd[0] = Aτy0 and Dτ = Bτ .

Discretization of Neural Impulse Train. As both discrete and continuous representation
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of neural stimuli has been carried out with impulse functions, a careful conversion between

these representations is necessary. u(t) is defined as a summation of weighted delta func-

tions, i.e., u(t) =
∑N

i=1 qiδ(t−∆i) where ∆i = iTu is the arrival time of the corresponding

impulse. Each delta function has an area of 1 under the curve. For discretization, we first

take an approximation of the Dirac delta function with a rectangular function of width Tu

and height 1
Tu

to have the area of the rectangle 1 where Tu is the sampling interval of neural

stimuli. Then, we sample the neural stimuli with the sampling interval Tu. For example,

a continuous time neural stimuli ui(t) = qiδ(t − ∆i) with only one weighted impulse can

be written as a scaled and shifted rectangular ũi(t) =
qi
Tu

Π( t−∆i−Tu/2
Tu

). In Figure 20, each

Figure 20: Discretization of Neural Stimuli.

panel shows the steps for discretization of the neural stimuli represented with a weighted

impulse train: (a) an example of continuous-time neural stimuli ui(t), represented with with

an weighted and shifted Dirac delta function, (b) the approximation to the ui(t) function

with a rectangular function, and (c) the equivalent discrete neural stimuli represented with

Kronecker delta function. It has been time scaled to have a bin size equal to the sampling

frequency. Amplitude has been scaled with the reciprocal of the sampling frequency to keep

the area under the curve same as in ui(t). Finally, the approximation can be sampled to

obtain the discrete sequence ui[k] (Figure 20 (c)).

Continuous-Time System Identification. In continuous-time system identification

technique, we transform the signal into a new domain according to the system model so

that the optimization problem for finding system parameters τ1 and τ2 becomes convex.
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We first write the two first-order coupled differential equations ((45)-(46)) as a second-

order differential equation,

α2
d2y(t)

dt2
+ α1

dy(t)

dt
+ y(t) = u(t), (50)

where y(t) is the continuous equivalent of ytk , α1 = τ1 + τ2, and α2 = τ1τ2. If we find α1

and α2, then we can solve for τ1 and τ2. Let Θ =

[
α1 α2

]⊤
, g0(Θ) = (α2

2−4α1). Hence,

τ = g(Θ) =

 g1(Θ)

g2(Θ)

 =

 1
2

(
α1 −

√
g0(Θ)

)
1
2

(
α1 +

√
(g0(Θ)

)
 . (51)

The modulating function method for identifying the model parameters begins with mul-

tiplying both sides of (50) by the modulating function and integrating over Td, which is

the duration of the sampled signal. The modulating function is given by ϕm(t) where the

integer m refers to the mth spectral component. The length of the modulating function is

chosen as same as the sampling duration of the signal. The integration results in

α2

∫ Td

0
ϕm(t)

d2y(t)

dt2
dt+ α1

∫ Td

0
ϕm(t)

dy(t)

dt
dt+

∫ Td

0
ϕm(t)y(t)dt =

∫ Td

0
ϕm(t)u(t)dt.

(52)

4.2.3 Estimation

To accomplish our goal, we break down the problem into two subproblems. One is to

find the model parameters τ and another is the inverse problem, i.e., to find the stimuli

u. Inspired by the coordinate descent deconvolution scheme by Faghih et al. [19], we

follow a similar approach. Unlike [19], we use a continuous system identification approach

for the parameter estimation. Then, we solve the inverse problem using the FOCUSS

algorithm [27]. Using a coordinate descent approach, we iterate between these two steps

until convergence. These two steps are described in detail in Sections 4.2.4 and 4.2.6. Then,
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the coordinate descent approach is discussed in Section 4.2.10.

4.2.4 System Identification using Hartley Modulating Functions

There are different modulating functions that could be used for continuous-time sys-

tem identification. One can use any modulating function according to their convenience

[96, 97]. Among the two most widely used modulating functions, one option is the Fourier

modulating function [97]; however, it involves complex values and is not the best choice for

this study. Another one is the Hartley modulating function (HMF) which does not involve

complex numbers in spectral components. Apart from having real coefficients, this modu-

lating function also does not depend on the boundary conditions and the computation of

all spectral components can be made using fast algorithms for the discrete Hartley trans-

formation [98]. We use the HMF approach as this function and its corresponding spectral

components are always real-valued and yet contain all the information that is also contained

in the Fourier modulating function [96, 97]. For a κth order system, the κth order HMF

spectral component has to be calculated. The properties of a κth order HMF allows us to

formulate a convex optimization formulation for model parameter estimation.

Properties of HMF

The κth order HMF [98] with fixed time interval [0, Td] is as follows,

ϕm(t) =

κ∑
j=0

(−1)j
(
κ

j

)
cas((κ+m− j)ω0t), (53)

where for a variable s, cas(s) = cos (s) + sin (s) and dcas(s)
ds = cas(−s). HMF ϕm(t) has the

following properties:
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ϕm(t) is zero beyond the interval [0, Td] ,

the lth derivative ϕ(l)m (t) exists for all l = 0, 1, · · · , κ− 1 and

ϕ(m)
m = 0 for t = 0 and t = Td (54)

where ω0 =
2π

Td
. In this study, the model order is 2. Since we are given the sampled signal,

we repeatedly apply integration-by-parts in (52) until all derivatives of the input (or output)

signal vanish.

For any signal ζ(t), the κth order spectral component of lth derivative of the signal can

be modified as below [99, 100],

H̄
(l)
ζ (mω0)

=

∫ Td

0
ϕm(t)

dlζ(t)

dtl
dt

= (−1)l
∫ Td

0
ζ(t)

dlϕm(t)

dtl
dt

= (−1)l
κ∑

j=0

(−1)j
(
κ

j

)
(κ+m− j)lωl

0(−1)lcas(− lπ
2
) ·
∫ Td

0
ζ(t)cas((−1)l(κ+m− j)ω0t)dt

=

k∑
j=0

(−1)j
(
κ

j

)
(κ+m− j)lωl

0cas(−
lπ

2
) ·Hζ((−1)l(κ+m− j)ω0). (55)

where H̄
(l)
ζ (mω0) is the m

th HMF spectral component of lth derivative of the continuous

signal ζ(t), and Hζ(ω) is the Hartley Transform (HT) [101] of ζ(t) defined by,

Hζ(ω) =

∫ ∞

−∞
ζ(t)cas(ωt)dt. (56)

Its corresponding transformation of a discrete sequence with Nζ samples and duration Td
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is given by,

Ĥζ(m) =
1

Nζ

M−1∑
η=0

ζ

(
ηTd
Nζ

)
cas

(
2πmη

Nζ

)
dt. (57)

Estimation of HMF spectral components can be carried out using the continuous Hartley

transform with numeric integration using (56) or direct estimation of Hartley transform

using (57). In this study, we use (56) and trapezoidal rule for the numeric integration of

Hartley transform. The number of samples Nζ for signal y(t) and u(t) is equal to M and

N , respectively.

Convex Cost Function Formulation with Linear Regression

Using (55), we can rewrite (52) as,

α2H̄
(2)
y (mω0) + α1H̄

(1)
y (mω0) = −H̄(0)

y (mω0) + H̄(0)
u (mω0). (58)

Here,

H̄(0)
u (mω0) =

∫ Td

0
ϕm(t)u(t)dt =

∫ Td

0
ϕm(t)

N∑
i=1

qiδ(t−∆i)dt

=

N∑
i=1

ϕm(∆i)qi

=

[
ϕm(Tu) ϕm(2Tu) · · · ϕm(NTu)

]
︸ ︷︷ ︸

b⊤ϕ (mω0)



q1

q2
...

qN


= b⊤ϕ (mω0)u.
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We can rewrite (58) as follows,

H̄(0)
y (mω0) = −α2H̄

(2)
y (mω0)− α1H̄

(1)
y (mω0) + b⊤ϕ (mω0)u. (59)

Let Z(mω0) = H̄
(0)
y (mω0) and let ε(mω0) model the error in the new domain. Rearranging

the (58), it can be rewritten as a linear regression,

Z(mω0) = Φ⊤(mω0)Θ + b⊤ϕ (mω0)u+ ε(mω0), (60)

where

Φ⊤(mω0) = −
[
H̄

(2)
y (mω0) H̄

(1)
y (mω0)

]
.

Taking a sequence of observations for m = 0,±1,±2, · · · ,±M where M is the maximum fre-

quency component. Then, (60) can be rewritten as a vector equation. Hence, the following

optimization problem can be formulated to find the parameter vector Θ, β and u,

minimize
Θ,u,β

J(Θ,u, β) =
1

2
ε⊤(Mω0)W(β)ε(Mω0)

subject to

G(Θ) ≤ 0

||u||0 ≪ N

u ≥ 0

(61)

85



where, G(Θ) =



−g0(Θ)

τmin
1 − g1(Θ)

g1(Θ)− τmax
1

τmin
2 − g2(Θ)

g2(Θ)− τmax
2


, W(β) is positive-definite symmetric frequency depen-

dent weighting matrix with the shape parameter β, ε(Mω0) = Z(Mω0) − Φ(Mω0)Θ −

B⊤
ϕ (Mω0)u,

Φ⊤(Mω0) = [Φ(−Mω0) · · · Φ(−ω0)

Φ(0) Φ(ω0) · · · Φ(Mω0)]
,

B⊤
ϕ (Mω0) = [bϕ(−Mω0) · · · bϕ(−ω0)

bϕ(0) bϕ(ω0) · · · bϕ(Mω0)]
,

and

Z⊤(Mω0) = [Z(−Mω0) · · · Z(−ω0)

Z(0) Z(ω0) · · · Z(Mω0)].

(61) is convex in terms of u and Θ.Given β and u, we can find Θ̂ by minimizing the cost

function defined in (61) considering physiological constraints on time constants τ1 and τ2

given by G(Θ) ≤ 0. The first constraint restricts the solution of τ1 and τ2 to be real

valued. In the second and third constraints, we assume rise time τ1 is within physiological

lower and upper bounds τmin
1 and τmax

1 , respectively. In the fourth and fifth constraints,

We also assume fall time τ2 is within physiological lower and upper bounds τmin
2 and τmax

2 ,

respectively. We assume u is sparse and hence contains a very small number of nonzero

elements out of N possibilities (||u||0 ≪ N). As u refers to the neural stimuli from the

brain, all the elements of u are nonnegative (u ≥ 0). We solve this constrained optimization
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problem using the interior point method.

Parameter M Selection for Maximum Frequency Component Inclusion

The Parameter M has to be selected such that it captures the signal and yet cancels

out the noise. Garnier et al. [102] recommend choosing Mω0 close to the bandwidth of

the system to be identified. We calculate the maximum bandwidth max by plugging in

the extreme values τmax
1 and τmax

2 in α1 and α2 parameters of (50) to get the transfer

function and calculate the corresponding bandwidth. Then, we let M = 2max
ω0

. This choice

of M allows for including all the required frequency components. In order to take the

appropriate spectral components of any given data, we propose an adaptive procedure for

choosing the weighting matrix W automatically.

Choosing Weighting Matrix W Many authors have suggested taking all spectral com-

ponents into account to include the maximum possible frequency component of the system

[100, 103]. However, according to our investigation, that does not work well for our deconvo-

lution scheme. Sometimes, it captures noise from the high-frequency region. For successful

continuous-time system identification, selecting appropriate weights on the different spec-

tral components is essential [100, 103]. To automate the spectral component selection, we

introduce a weighting matrix in which only diagonal elements are non-zero. This weighting

matrix W is chosen such that there is an emphasis on the significant spectral components.

Hence, there is a balance between filtering out the noise and capturing the signal. We take

all the off-diagonal elements of the weighting matrix as zeros and set all diagonal elements

of the matrix using Kaiser windows of appropriate shapes. We specifically use this window

function as the shape of the window can be changed only by changing the parameter β.

This way, we can select the significant spectral components by optimizing over only one
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parameter β. A P point Kaiser window function wβ[j] can be defined as follows,

wβ[j] =


I0

(
β
√

1−( 2j
P−1

−1)
2
)

I0(β)
, 0 ≤ j ≤ P − 1,

0, otherwise.

(62)

where I0 is the zeroth-order modified Bessel function of the first kind β determines the shape

of the Kaiser window. In this study, we take P = 2M + 1. The optimization formulation

(61) can be minimized using β values that set matrix W(β) to zero or values close to zero;

however, this is not desired. To avoid such situations in estimating β, we write the time

domain equivalent of the optimization formulation (61). Let Θ̂ = argmin
Θ

J(Θ,u, β) ≜

fu(β). Using (51), τ = g(Θ̂) = g(fu(β)) ≜ h(β). Hence, Aτ ≜ Ah(β) and Bτ ≜ Bh(β).

Using (49), the time domain equivalent of the optimization formulation (61) becomes,

minimize
Θ,u,β

1

2
||y−Ah(β)y0 −Bh(β)u||22

subject to (63)

G(Θ) ≤ 0,

||u||0 ≪ N,

u ≥ 0.

Given Θ̂ and u, we can find β by the optimization problem in (63).

4.2.5 Choice of HMF Dependent Time Domain Optimization for Estimating

β

We can rewrite the cost function in Equation (61) as follows,

J(Θ,u, β) =
1

2

−M∑
m=−M

wβ[m+M ]ε2(mω0).
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Each of the error terms is multiplied by a window coefficient and smaller values of window

function coefficients will lead to a smaller value of the cost function. Figure 21 shows

how the shape of the window function changes with the value of β. In Figure 21, each

curve represents different wβ[j] window functions with different shape parameters β; for

example, the narrowest window represented with red curve is wβ[j] with β = 204.8 and

the widest window represented with blue curve is wβ[j] with β = 3.2.. A higher value of

β leads to a very narrow function which minimizes the cost function. However, a higher

value of β will discard most of the information in the HMF spectral components. This way

of solving the optimization problem in the HMF domain for β tends to discard the signal

components along with the noise components. For example, the minimum value for the

HMF domain cost function can be found with all zeros in the window function. However,

the zero window function clearly discards all information of the signal. To prevent discarding

the key information in the HMF spectral components, we can instead solve the time domain

equivalent of the optimization formulation in (61), which is presented in the optimization

formulation in (63).
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Figure 21: Kaiser Windows With Different Shape Parameters.

We solve this optimization problem in (63) using the interior point method. Algorithm

1 summarizes the system identification approach using Hartley modulating functions. The

summary is provided as follows:

Algorithm 1. Hartley Modulating Function-Based Continuous System Identification
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with Adaptive Band Selection.

Part A:

(a) Calculate the maximum bandwidth ωmax of the system using (50) and the τmax
1 and

τmax
2 .

(b) M = 2ωmax
ω0

.

(c) Find all HMF spectral components form ∈ {−M,−M+1, · · · ,−2,−1, 0, 1, 2, · · · ,M−

1,M}.

(d) Initialize Θ(0) and β(0) using the initialization algorithm described in Section A.3.

Part B:

(e) Let j = 0.

(f) Set j = j + 1.

(g) Set u and Θ equal to û and Θ(j−1), respectively and solve for β(j) by initializing

optimization formulation in (63) at β(j−1).

(h) Set u and β equal to û and β(j), respectively and solve for Θ(j) by initializing opti-

mization formulation in (61) at Θ(j−1).

(i) Iterate between (f)-(h) until convergence.

4.2.6 Sparse Inverse Problem in Hartley Modulating Function Domain

The optimization problem in (61) is generally considered as NP-hard. An l1-norm

relaxation can be used to solve this problem using different techniques including basis

pursuit, greedy algorithm, iterative thresholding algorithm, or the FOCUSS algorithm and
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its extensions [66]. We can cast the optimization problem in (61) as,

minimize
Θ,u,β

J(Θ,u, β) =
1

2
ε⊤(Mω0)W(β)ε(Mω0) + λ||u||pp

subject to (64)

G(Θ) ≤ 0

u ≥ 0

where the lp-norm is an approximation to the l0-norm and λ is the regularization param-

eter which determines the sparsity level of the solution for u. FOCUSS algorithm uses a

reweighted norm minimization approach to solve the optimization problem while finding

stimuli u. By minimizing the l2-norm and refining the initial estimate to the final localized

energy solution at each iteration, the solution is obtained [27]. By updating λ and u in

every iteration until convergence, we can solve for the sparse vector u. Here, λ balances

between the sparsity of u and the weighted residual error
√
Wε. By increasing the value

of λ, u becomes more sparse. The matrix B⊤
ϕ (Mω0) is the same in every step and can be

calculated only once at the beginning of the algorithm. This makes the algorithm more

efficient.

To ensure there is a balance between filtering out the noise and capturing the sparsity

of the input, we use the Generalized Cross-Validation (GCV) technique [67] for estimating

the regularization parameter. Hence, we use a modified version of the FOCUSS algorithm

called GCV-FOCUSS+ [25] algorithm, which is based on the FOCUSS+ [66] and includes

a GCV step. Detail descriptions of FOCUSS+ and GCV-FOCUSS+ algorithms are given

below.
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4.2.7 FOCUSS+ Algorithm

FOCUSS+ [66] solves for nonnegative u such that u has a certain maximum sparsity

nu while minimizing the following optimization problem,

minimize
u≥0

1

2
||y−Aτy0 −Bτu||22 + λ||u||pp.

(a) P
(r)
u = diag(|u(r)

i |2−p)

(b) λ(r) =
(
1− ||y−Aτ y0−Bτu||2

||y−Aτ y0||2

)
λmax, λ > 0

(c) u(r+1) = PuB
⊤
τ (BτPuB

⊤
τ + λI)−1(y−Aτy0)

(d) u
(r+1)
i ≤ 0 → u

(r+1)
i = 0

(e) After half of the selected number of iterations, search for the peaks with distances

less than the minimum peak to peak distance ∆min. Keep the largest peak among

the adjacent peaks within ∆min window.

(f) After about half of the selected number of iterations, if ||u(r+1)||0 > nu, select nu the

largest values of elements of u(r+1) and set all other elements to zero.

(g) Iterate

Note that we used ∆min = 0.5 s in this study.
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4.2.8 GCV-FOCUSS+ Algorithm

The sparse identification problem in the HMF domain is as follows,

minimize
Θ,u,β

J(Θ,u, β) =
1

2
ε⊤(Mω0)W(β)ε(Mω0) + λ||u||pp

subject to

G(Θ) ≤ 0

u ≥ 0

where ε(Mω0) = Z(Mω0) − Φ(Mω0)Θ − B⊤
ϕ (Mω0)u. Let ZΘ,β =

√
W(β)(Z(Mω0) −

Φ(Mω0)Θ) and Bϕ,β =
√

W(β)B⊤
ϕ (Mω0). Given β and Θ, the optimization problem can

be solved for u using the FOCUSS+ algorithm. We use a GCV based method for choosing

a regularization parameter λ that balances between capturing noise and the sparsity level.

Zdunek et al. [68] used the GCV technique for finding the value of λ for the FOCUSS+

algorithm incorporating singular value decomposition:

G(λ) =
L
∑L

i=1 γ
2
i

(
λ

σ2
i +λ

)2
∑L

i=1

(
λ

σ2
i +λ

)2

where γ = R⊤ZΘ,β =

[
γ1 γ2 · · · γL

]⊤
and Bϕ,βP

1
2
u = RΣQ⊤ with Σ = diag{σi};

R and Q are unitary matrices and σi’s are the singular values of Bϕ,βP
1
2
u [68]. Moreover,

L is the number of data points. In this study, we use a range of zero to 0.1 for λ. For

r = 0, 1, 2, · · · , GCV-FOCUSS+ works as follows [19]:

(a) P
(r)
u = diag(|u(r)

i |2−p)

(b) u(r+1) = PuB
⊤
ϕ,β(Bϕ,βPuB

⊤
ϕ,β + λI)−1ZΘ,β

(c) u
(r+1)
i ≤ 0 → u

(r+1)
i = 0
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(d) λ(r+1) = argmin
0≤λ≤0.1

G(λ)

(e) Iterate until convergence

4.2.9 Initialization Algorithm

The initialization is performed in the time domain (similar to [19, 18, 20]). A summary

of the algorithm to obtain good initial conditions for τ , u and β is as follows:

(a) Initialize τ̃ 0 by sampling a uniform random variable on

[
0.10 1.4

]
for τ̃

(0)
1 and[

1.5 6

]
for τ̃

(0)
2 and let j = 1.

(b) Set τ equal to τ̃ (j−1) and use FOCUSS+ to solve the inverse problem to find the

stimuli ũ(j) by initializing ũ(0) at a vector with all ones.

(c) Set u equal to ũ(j); use the interior point method and minimize error ||y −Aτy0 −

Bτu||2 to solve the time domain system parameter identification problem for obtaining

τ̃ (j).

(d) Repeat between steps (b)-(c) for j = 1, 2, 3, · · · , 30.

(e) We set τ 0 = τ̃ (j) and u0 = ũ(j)

(f) We calculate Θ0 by plugging in τ 0 in Θ =

 τ1 + τ2

τ1τ2

.
(g) Using u0 and τ 0, we first take βi = 0.1× 2i for i = 0, 1, 2, 3, · · · , 10 and set β0 = βmin

such that βmin minimizes ||y−Ah(β)y0 −Bh(β)u||22.

4.2.10 Coordinate Descent Deconvolution

In the coordinate descent approach, first, we filter the signal using a 0.5 Hz 64 order

FIR lowpass filter [65]. Then, we use the cvxEDA method [23] to separate the phasic

component from the filtered SC data. By combining the methods described in Sections
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4.2.6 and 4.2.4, a coordinate descent approach can be implemented. Before performing

deconvolution, we initialize the algorithm by sampling the system parameters from uniform

distributions within the boundary conditions. The detailed description of the initialization

algorithm is provided in Section A.3. We propose the following algorithm to recover u and

Θ from the phasic component.

Algorithm 2: Coordinate Descent in Hartley Modulating Function Domain

(a) Let i = 0

(b) Run Algorithm 1-A.

(c) Set i = i + 1.

(d) Initialize û0 using the initialization algorithm described in Section A.3.

(e) Set Θ and β equal to Θ̂(i−1) and β̂(i−1); solve for ûi using GCV-FOCUSS+ by ini-

tializing the inverse problem in (64) at û(i−1).

(f) Set u equal to û(i); to solve for Θ̂(i) and β̂(i) using Algorithm 1-B by initializing Θ(0)

and β(0) at Θ̂
(i−1) and β̂(i−1), respectively.

(g) Iterate between (c)-(f) until convergence.

We run Algorithm 2 for several uniform random initializations ofΘ and take the solution

of û and Θ̂ (Setting τ = g(Θ)) that provides the smallest value of ||y−Aτy0−Bτu||22. The

recovered neural stimuli in the HMF domain can sometimes lead to lower amplitudes for

impulses that occur in the beginning or at the end of the neural stimuli vector u. Hence,

to ensure this type of behavior does not occur, using the estimated τ̂ , in the time domain

(similar to [19, 18]), we run the FOCUSS+ algorithm one last time by initializing u at a

vector of all ones and considering a maximum sparsity equal to ||û||0.
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Figure 22: Tonic Component Separation Example.
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Figure 23: Estimated Deconvolution of the Experimental Phasic SC Data in 6
Participants from Dataset 1.

4.2.11 Proof of Convexity of The HMF-based Cost Function in terms of u and

Θ

Given β, W is known and the cost function in HMF domain is as follows,
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J(Θ,u) =
1

2
ε⊤(Mω0)Wε(Mω0)

=
1

2
[Z(Mω0)−Φ(Mω0)Θ −Bϕ(Mω0)u]

⊤

·W · [Z(Mω0)−Φ(Mω0)Θ −Bϕ(Mω0)u] . (65)

Then, J(Θ,u) is convex in u and Θ. It can be shown that it satisfies the first-order and

second-order convexity conditions.

First-order convexity condition.

One should note that M and ω0 are known. Let

χi =

[
Θ⊤

i u⊤
i

]⊤
,

Aϕ =

[
Φ(Mω0) Bϕ(Mω0)

]
,

and Z = Z(Mω0). The cost function in (61) can be re-written as,

J(χi) =
1

2
[Z−Aϕχi]

⊤W [Z−Aϕχi] .

Here, J : RN+2 → R is convex if and only if J(χ2)− J(χ1)−▽J(χ1)
⊤(χ2 − χ1) ≥ 0 for

any χ1 and χ2 in dom J .

▽J(χ1) = −2A⊤
ϕW(ζ −Aϕχ1)
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Plugging in the values, it can be shown that,

J(χ2)− J(χ1)−▽J(χ1)
⊤(χ2 − χ1)

= (χ2 − χ1)
⊤AT

ϕWAϕ(χ2 − χ1)

The right hand side of the equation is always positive as W is positive semidefinite.

Therefore, J satisfies the first-order condition.

Second-order convexity condition.

Taking the second derivative of J ,

▽2J(χ) = A⊤
ϕWAϕ

As W is a positive semidefinite matrix, ▽2J(χ) ≥ 0. The cost function in HMF domain

satisfies the first and second-order conditions of convexity. Therefore, the cost function is

convex in Θ and u.

Table 6: Results from Experimental Data.

Participant τ1 (seconds) τ2 (seconds) R2 Nu λ

1 1.231 2.665 0.973 23 1.10× 10−3

2 0.512 2.958 0.966 28 1.80× 10−3

3 0.414 3.163 0.963 17 2.90× 10−3

4 0.237 4.849 0.916 15 2.60× 10−3

5 0.783 3.367 0.971 44 3.62× 10−2

6 0.362 3.362 0.927 40 1.00× 10−3

Table 7: Results from Simulated Data.

Participant τ1 (seconds) τ2 (seconds) τ̂1 τ̂2 R2 N̂u |N − N̂u| |τ1−τ̂1|
τ1

× 100 % |τ2−τ̂2|
τ2

× 100 %

1 1.231 2.665 1.167 2.726 0.989 21 2 5.20 2.29
2 0.512 2.958 0.389 3.349 0.977 24 4 24.02 13.22
3 0.414 3.163 0.456 3.074 0.974 14 3 10.14 2.81
4 0.237 4.849 0.182 4.906 0.985 14 1 23.21 1.18
5 0.783 3.367 0.727 3.352 0.987 44 0 7.15 4.09
6 0.362 3.369 0.311 3.345 0.984 36 4 14.09 0.71
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Participant 6

Figure 24: Estimated Neural Stimuli and Reconstructed Signals of the Simulated
Phasic SC Data with 25 dB SNR in 6 Participants from Dataset 1.
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Figure 25: Estimated Neural Stimuli from the Experimental Phasic SC Data in
two Participants from Dataset 2.

4.3 Results

4.3.1 Experimental Study

Figure 22 shows an example of the tonic component separation with cvxEDA algorithm

[23]. In Figure 22, i) the top panel shows the low-pass filtered SC signal (blue curve)
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Figure 26: Comparison of Different Sparse Recovery Algorithms with Simulated
Data.
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Figure 27: Comparison of Two Deconvolution Algorithms using Simulated Data.
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and the corresponding estimated tonic part (red curve) with cvxEDA algorithm [23]; ii) the

bottom panel shows the extracted phasic component from the corresponding SC signal after

subtracting the tonic part. Figure 23 shows the phasic component, recovered neural stimuli,

and the reconstructed phasic component of the SC data collected for the participants from

Dataset 1. In Figure 23, each panel shows the separated phasic component of the SC data

using cvxEDA (blue curve), the estimated reconstructed signal (red dashed), the estimated

neural stimuli timings and amplitudes (black vertical lines with the circle on top) for each

of the participants. There are several SC peaks present in the data which correspond to

the cognitive stress originating from the ‘counting task’. Figure 23 also shows the recovered

neural stimuli timings and amplitudes that correspond to cognitive stress. Reconstructed

signals in Figure 23 were generated using the model defined in (45)-(46). Table 6 shows

the corresponding estimated rise time τ1 and decay time τ2. In Table 6, the parameters

τ1 and τ2 are the estimated rise time and fall time of the phasic SC, respectively; Nu is

the estimated number of neural stimuli impulses from ANS and R2 is the square of the

multiple correlation coefficient. In Table 7, all the multiple correlation coefficients (R2) are

over 0.915. In Table 7, the parameters τ̂1 and τ̂2 are the estimated rise time and decay

time of phasic SC, respectively; N̂u is the estimated number of neural stimuli impulses from

ANS and R2 is the square of the multiple correlation coefficient. Zero mean Gaussian noise

has been added to each simulated data point compared to each of the simulated signal.

The noise SNR is 25 dB for all of the simulated data. For each participant, the variance

of noise is calculated by taking the variance of the residuals after deconvolution on real

data. The parameters τ1 and τ2 are, respectively, the rise time and decay time of phasic

SC used for simulating each dataset. The values of τ1 and τ2 are given in Table 6. Table

6 also shows the regularization parameter λ obtained using GCV. All the regularization

parameters are less than 3.7 × 10−2 with minimum value of 1 × 10−3. Quantile-quantile

plots of the residuals after reconstruction follows a straight line, which implies the residuals
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are zero-mean Gaussian distributed (as assumed in the problem formulation). The quantile-

quantile plots are provided in Section A.3. Figures of the SC reconstructed signals with

both tonic and phasic components are also provided in Section A.3. The R2 values for this

case are higher than 0.95 for all participants if calculated considering both tonic and phasic

components.

We also analyzed SC data from one male participant (subject ID 11) and one female

participant (subject ID 15) from Dataset 2. Dataset 2 has auditory stimulation timing

information to perform the comparison with the recovered neural stimuli. We expect to

see a time delay from the auditory stimulation to the neural stimuli as the neural system

should take some time to generate neural stimuli after an auditory stimulation has occurred.

Figure 25 shows our approach detects an impulse after every auditory stimulation. In

Figure 25 , i) the top subpanels show the separated phasic component of the SC data (blue

curve), ii) the second subpanels depict the estimated neural stimuli with ledaLab [21] (black

vertical lines), iii) the third subpanels show the estimated neural stimuli with cvxEDA [23]

algorithm (black vertical lines), vi) last sub-panels show the estimated neural stimuli with

the proposed approach (black vertical lines); green vertical lines represent the timings of

the auditory stimulation. The average delays are 2.02 seconds for the male participant and

2.08 seconds for the female participant. The rise time and the decay time for the male

participant are 0.34 seconds and 3.41 seconds, respectively. For the female participant,

the time constants are 0.59 seconds and 3.32 seconds, respectively. We also compare this

performance with other approaches. The LedaLab [21] and the cvxEDA [23] algorithms

detect too many pulses compared to our approach.

4.3.2 Simulated Study

We have simulated the noisy phasic SC data using results in Table 6 and Figure 23, and

then performed deconvolution on the simulated data to further validate our algorithm. For

the simulated data, both the sparse input and the model parameters are known, and we
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can compare the deconvolution results with the ground truth. To simulate the noise, we

take zero-mean Gaussian random variables with 25 dB signal to noise ratio (SNR) for each

participant. Figure 24 shows the recovered amplitudes and timings of the impulses for the

simulated phasic SC data. In Figure 24, each panel shows the simulated phasic component

of the SC data (blue curve), the estimated reconstructed signal (red dashed), the estimated

neural stimuli, timings and amplitudes (red vertical lines with the circle on top) and the

ground truth of the neural stimuli timings and amplitudes for each of the simulated data

(black lines with the dots on top). Table 7 shows results obtained from the simulated data.

The multiple correlation coefficients (R2) are above 0.97 for noisy simulated data. Blue

impulses in Figure 24 are the ground truth impulses used for simulating the data. Figure

24 illustrates that all significant impulses have been detected. However, some of the very

small impulses were missed in the presence of noise. The amplitudes and timings of the

detected neural stimuli are very close to the ground truth.

Table 7 shows the detected rise and fall times along with the percentage errors. All

percentage errors are below 25%. The maximum error in detecting the number of impulses

in the neural stimuli is 4. For the simulated data based on participants 2 and 6, the

algorithm has missed 4 of the impulses that are insignificant and comparable to the level of

added noise. However, the algorithm has detected all significant impulses.

To further compare the performance of our algorithm with the existing algorithms, we

used a synthetic u(t) to simulate data using the model in (45)-(46) with model parameters

τ =

[
0.7 4.0

]
and noise level of 20 dB signal SNR. In Figure 26, each sub-panel shows

(a) the synthetic neural stimuli (ground truth), (b) simulated data with τ1 = 0.7 seconds,

τ2 = 4 seconds and synthetic neural stimuli u(t) with added noise of 20 dB SNR, (c) the

solutions from LedaLab [21], (d) the solution from cvxEDA [23] and (e) the sparse inverse

problem solution in HMF domain [19]; blue line, red line, and red curve correspond to the

ground truth, estimated stimuli and simulated data, respectively. We then apply different

algorithms to compare the performance. Figure 26 shows the performances of different
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algorithms. In this case, we assume τ1 and τ2 are known because the existing algorithms

only solve the inverse problem and do not perform deonvolution. Figure 26 (c) shows that

LedaLab [21] detects too many impulses compared to the ground truth. Figure 26 (d)

shows that cvxEDA [23] detects a more sparse solution compared to Ledalab; however, it

still detects too many impulses compared to the ground truth. As observed, our result in

Figure 26 (e) outperforms the existing algorithms.

We also compare the performance of our algorithm with the deconvolution algorithm

proposed in [19, 18]. Figure 27 shows the results obtained from the simulated data using the

coordinate descent approach for estimating unknowns τ1, τ2 and u. Figure 27 (a) shows the

result with interior point method as in [19, 18] and Figure 27 (b) shows the result with the

proposed HMF domain method. The result is obtained from the simulated data in Figure

26 (a). The estimated rise time and fall time using the proposed method are 0.7054 seconds

and 3.9726 seconds, respectively. For both of them, the estimation error is less than 1%.

Whereas, the estimated rise time and fall time using the time domain interior point-based

coordinate algorithm are 0.5562 seconds and 4.2501 seconds, respectively. In this case, errors

are 20.5408% and 6.2514%, receptively. The proposed algorithm has outperformed the time

domain approach. In this study, we used 16 random initializations for both algorithms.

4.4 Discussions

Finding the neural stimuli and physiological system parameters related to SC is a chal-

lenging problem. Firstly, there can exist multiple sets of physiological parameters and

stimuli that closely approximate the observed signal. Secondly, the smallest level of noise

can perturb the solution to a physiologically infeasible point due to the sensitive nature

of the biexponential function. To overcome these challenges, proper boundary conditions

and constraints have to be applied in the optimization problem. Alexander et al. [42], use

the values of τ1 = 0.75 seconds and τ2 = 2 seconds for all datasets they have analyzed.

Greco et al. [23] set τ1 = 0.75 and use fixed τ2 values that vary between 2 and 4. We
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assume that the rise times lie between 0.10 to 1.40 seconds to have more flexibility to the

subject-specific variations. We also assume decay times are between 1.5 and 6 seconds,

respectively. To impose the constraints on τ during continuous system identification using

Hartley modulating function, we used 5 nonlinear physiological constraints on α1 and α2

to ensure identifiability. Table 6 shows the corresponding estimated rise time τ1 and decay

times τ2 which lie within the boundary. The boundary constraints have been chosen such

that the system is identifiable and the model parameters do not stagnate at the boundaries.

A good separation of the tonic component depends on an appropriate choice of smooth-

ness of the tonic component which is enforced by the selection of the basis for the tonic

component and the l2 -norm penalization parameter of the spline coefficients in cvxEDA [23].

In this study, we follow cvxEDA [23] for obtaining the tonic component. While cvxEDA

[23] has good performance in separating the tonic component from the signal, it can overfit

the noise in the phasic component. Moreover, instead of including the subject-specific rise

and decay times, it assumes these values are fixed. Taking the phasic component, we use

our deconvolution approach to estimate the rise and decay times as well as the stimuli while

filtering out the noise. To obtain the phasic component in this study, we used the default

parameters in cvxEDA [23]. The value of these parameters is crucial for good separation of

the tonic and phasic components.

An inappropriate choice of the input sparsity level (u) and minimum separation con-

straint between the input impulses (arrival time in u) can lead to an incorrect solution.

While the higher number of impulses can lead to overfitting (i.e., capturing the noise as im-

pulse), a higher sparsity level may fail to recover the underlying process. In the initialization

step, we choose a minimum separation of 0.5 seconds for the arrival time of the impulses

in the FOCUSS+ algorithm. In the coordinate descent step, GCV-FOCUSS+ provides a

balance in the sparsity of the stimuli such that it captures the process yet filters out most

of the noise.
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Table 6 shows the regularization parameters of the GCV-FOCUSS+ part of the algo-

rithm. We constrained λ between 0 and 0.1. The choice of the regularization parameter λ

depends on the subject-specific magnitude of the SC signal. The results from the simulated

data based on participants 3, 4, and 6 show that in some cases, if there are many small

adjacent impulses present in the stimuli in the presence of high levels of noise, some of these

small impulses in the stimuli might be missed by the proposed deconvolution algorithm. In

this case, the GCV-FOCUSS+ part of the algorithm considers these small spikes as noise.

As a consequence, the estimation of rise time could become inaccurate. The decay times

are larger in magnitude and are less affected. The deconvolution algorithm always recovers

the significant impulses in the stimuli successfully.

The optimization step for finding the stimuli in 4.2.6 is a convex problem [66]. In this

study, we formulate an optimization problem that is convex in terms of system parameters

and neural stimuli. However, one should note that in implementing the GCV-FOCUSS+

algorithm, if an impulse goes to zero, it never becomes nonzero in the subsequent iterations

of the coordinate descent approach. Hence, sometimes the algorithm might not reach the

global minimum depending on the initial condition. Moreover, the optimization problem

formulation is not convex in terms of β. As a result, it is still possible to stagnate at a local

minimum using this approach. We used several random initializations within the boundary

conditions to account for this.

Wickramasuriya et al. [82] used the dataset in [95] (discussed in 4.2.1) and recovered

the stimuli using cvxEDA [23]. Then, they used a heuristic approach to obtain more sparse

neural stimuli. Then, they used these sparse neural stimuli for tracking stress [82]. Our

proposed algorithm provides an appropriate sparsity level and can be used directly to track

stress using the approach in [82].
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5 Physiological Characterization of Electrodermal Activity

Enables Scalable Near Real-Time Autonomic Nervous Sys-

tem Activation Inference

5.1 An Overview of Physiological Characterization of Electrodermal Ac-

tivity for Scalable Autonomic Nervous System Activation Inference.

The term “electrodermal activity” (EDA) refers to any electrical phenomenon in human

skin [9]. EDA was discovered in the late 19th century, and since then, it has been widely

used in psychophysiology as the EDA fluctuations have high correlations with the autonomic

nervous system (ANS) activation. One of the most popular measures of EDA is continuous

exosomatic recording of skin conductance (SC). ANS excites sweat glands based on the

psychophysiological requirements, and the corresponding salty discharges increase the SC.

Examination of SC measurements enables us to investigate the ANS activation related to

emotional arousal. [10].

There are a few vital signals in the human body similar to EDA that have the potential

to be measured continuously and unobtrusively using very simple instrumentation. The

unobtrusive nature of the measuring techniques has led to a new era of wearable technology

for continuous health monitoring. Such signals include cardiac signals (e.g. electrocar-

diogram (ECG) and photoplethysmogram (PPG)), skin temperature (SKT), EDA, muscle

activity (e.g. electromyogram (EMG)) etc. [11, 12]. Among them, PPG and SKT have been

widely integrated in consumer wearable technologies along with reliable techniques for de-

coding useful information. In the past few decades, extensive research has been performed,

mainly on PPG signal analysis for wearable implementation, with the goal of continuous

health monitoring. The next candidate with the most potential for revolutionizing wear-

able health monitoring is the EDA [13]. However, the amount of research performed on

EDA signals is relatively limited compared to cardiac signals. Although researchers have
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published many studies to systematically model EDA in the last two decades, there are still

many fundamental characteristics of EDA being discovered today. For example, in 2020,

Subramaniam et al. [14] have shown that the point process characterizes EDA in normal

healthy participants. Therefore, further study is required to identify the more accurate

system dynamics of EDA so that critical information related to health monitoring can be

obtained.

Appropriate EDA analysis has applications in a wide range of fields such as mental

disorders, pain, cognitive stress tracking, wakefulness, etc. As different physiological signals,

including EDA, contain information about human emotional arousal, they have potential

applications in the field of mental health. For example, preventing death from mental

disorders with regular tracking could be one potential application as Walker et al. [31]

reported that a large portion of deaths worldwide are attributable to mental health-related

disorders. A meta-analysis shows that mental disorders are a major risk factor for suicide

[32]. Suicide is one of the leading causes of death in the United States in the year 2017

[33] and the cost related to suicide alone in the United States were more than $90 billion in

2013 [34]. Studies have recommended [34] community-based immediate psychiatric services,

including telepsychiatric support for reducing suicide-related costs which require continuous

monitoring. Augmenting EDA with other physiological signals for time-to-time monitoring

of critical patterns of emotional regulation could potentially help preventing psychiatric

disorders [35].

Another possible potential application is in treating diabetic neuropathy. Diabetic neu-

ropathy refers to small nerve damage caused by prolonged exposure to high levels of blood

glucose concentration [36]. As a result, small nerves along with the sudomotor nerves in

the legs, feet, and hands that are responsible for transmitting ANS activation are prone to

neuropathy [36]. As confirmed by numerous studies in [37, 38, 39], damages in small nerves

including the sudomotor nerves may lead to abnormal EDA variations. Furthermore, it

is well known in clinical diagnostics that the development of anomalies in sweat secretions
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may be attributed to forms of disorders, such as hypohidrosis and anhidrosis [40]. Moreover,

such disorders may indicate diseases like diabetes mellitus [40]. Clinical investigations of

abnormalities in the SC recordings can be pivotal for the early detection of such diseases.

Because of its wide range of applicability, accurate modeling of system theoretic under-

standing is a prerequisite. In 1997, Lim et al. [104] proposed a heuristic sigmoid-exponential

model to represent the rise and decay characteristics of the SCR shape. Instead of a general

approach, they had to consider four different configurations of the proposed model for four

different cases. Later in 2005, Alexander et al. [42] proposed a second-order differential

equation for defining the SC fluctuations, the solution of which is a bi-exponential function

representing the rise and decay of the SCR shape. They assumed that SC is single-phasic,

and more specifically, that all fluctuations can be defined with the second-order differen-

tial equation. However, eventually, researchers have realized the bi-phasic nature of EDA

fluctuations, meaning there are two different components in EDA that vary in two different

rates [29, 22, 23, 18, 52, 41]. Benedek et al. [29, 29] have suggested bi-exponential functions,

namely Bateman functions, to describe the slow varying components with large decay time

and the fast varying component with smaller decay times. However, this model cannot not

explain both components together. On the other hand, Bach et al. [22] have used a low-pass

filter to separate the slow varying components and then utilized a third-order differential

equation to model the fast varying component. Nevertheless, the FIR filter-based separa-

tion of the slow and fast varying components has limitations as pointed out in our previous

work [41].

In our previous studies [52, 53, 54, 8, 41], we have developed deconvolution approaches

where we investigated the previously known mathematical models for EDA dynamics. In

these studies, we have utilized the SC modeling approach in [23], where the authors have

modeled the slow varying component of EDA with a linear combination of a few arbitrary

cubic spline basis functions. Although such a model can provide a good fit to the data,
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it lacks reasonable physiological justification and the corresponding coefficients of the ob-

tained cubic spline functions have no interpretation. Furthermore, the cubic spline basis

function based model may overfit to the data and provide a solution that is not physio-

logically plausible. In addition, the lack of a complete state-space model makes it difficult

to design scalable fixed interval smoother (FIS) based inference approaches for recovery

of ANS activation. Although similar approaches have been developed for calcium oscilla-

tion deconvolution and EEG sleep spindle detection [105], it is difficult to develop such an

approach for EDA with the models currently available. During our development of decon-

volution approaches, we realized that there is a need for a potential improvement in the

current mathematical models for describing EDA dynamics as well as the current deconvo-

lution practices to obtain a systematic and reliable approach with the feasibility of real-time

application.

Therefore, in this study, we propose a unified and comprehensive state-space model to

describe both the slow and fast varying components of EDA. We first start with a more

general and physiologically interpretable nonlinear model and then derive a simpler linear

state-space one. Additionally, our proposed model enables us to derive an FIS based novel

scalable sparse deconvolution approach which was not previously possible because of the

absence of a comprehensive state-space model for the potential of real-time inference. For

obtaining our novel approach, we extended the scalable sparse deconvolution approach for

calcium and EEG sleep spindle deconvolution proposed by Kazemipour et al. [105], which

was developed for a subset of state-space equations considering the input matrix as an iden-

tity matrix. We generalized this for the state-space models with any input matrix and apply

it for our proposed SC model. Moreover, for estimating the state-space model parameters,

we utilize the previously known physiological priors similar to [41]. Furthermore, we employ

generalized-cross-validation for balancing between the sparsity level of the ANS activation

and the model fit for systematic reduction of the measurement noise. We compare the

performance of our approach with previous deconvolution approaches. Furthermore, we
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show the scalability of our approach, illustrating the feasibility of devising real-time edge

computation with our approach.

5.2 Materials and Methods

5.2.1 Dataset Description

In this study, we analyze the SC recordings where participants experience multiple au-

ditory stimuli (loud sounds) during the experiment [57]. The experiment was designed to

investigate event-related SC responses (SCRs) [30]. Each participants received multiple au-

ditory stimuli. Each auditory stimulus is a single white noise burst of 1s length with a 10 ms

ramp and 85 dB power. The participants were instructed to press a foot pedal upon hearing

a stimulus. The dataset contains recordings from thirteen female and thirteen male partici-

pants. For each of the 26 participants, the datasets include three channels of SC recordings

from three different locations. We use the SC recordings from the thenar/hypothenar of

the nondominant hand for all datasets in this study. The details regarding the experiment

are provided in [30]. We pre-process all recordings with an approach similar to [54] and

resample the SC recordings to 4 Hz for our analysis.

5.2.2 Proposed Physiological Model

We propose our model based on the poral valve model by Edelberg [28]. Initially, we

assume the sweat ducts are empty and in response to the received impulsive ANS activation,

secretions from the sweat glands start to fill the sweat ducts. As the amount of sweat in the

ducts increases, there is an increase in the hydraulic pressure inside. The pressure build-up

gives rise to the increasing diffusion into the corneum and the deeper corneum area. This

results in a slight rise in the SC level. If the pressure exceeds a certain threshold, the pores

of the sweat ducts open for sweat secretion. This way, a fraction of the sweat secreted

directly by the pore opening. The secreted sweat and the connected sweat content in the

ducts both contributes to the conductance. Therefore, there is a sharp rise in the SC level.
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Figure 28: An overview of the physiology and corresponding proposed model.

As the direct secretion and the diffusion reduces the hydraulic pressure and the pressure

goes below a certain threshold, the pore collapse separates the sweat contents in the ducts

and prevents them to contribute to the conductance. Consequently, a faster decay in SC

level is observed. We define it as the faster re-absorption resulting in the faster decay time

in SC. The remaining secreted fraction of the sweat in the corneum is diffused into the

deeper dermis and cleared away from the periductal area by a slow re-absorption process.

Along with re-absorption, a fraction in the reduction of SC is because of the evaporation

from the surface. These steps will lead to SC level to decay slowly decay. Figure 28

shows: (A) a step by step illustration of the poral valve model proposed by Edelberg [28];

(B) an illustration of the cross section of the skin segment and corresponding different

regions contributing to the SCR generation process based on poral valve model ; (C) a three

compartment pharmacokinetic realization of the poral valve model. With these speculations,

we propose the following nonlinear state-space model:
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ẋ1(t) = − 1

τr
x1(t) + u(t), (sweat production) (66)

ẋ2(t) =
ηp(x1(t))

τr
x1(t)−

1

τp
x2(t), (pore collapse) (67)

and ẋ3(t) =
ηd(x1(t))

τr
x1(t)−

1

τd
x3(t), (slow re-absorption) (68)

where x1(t), x2(t), and x3(t) denote the states corresponding to the amount of sweat in the

sweat ducts, in the ducts but electrically conducted to the surface due to the pore opening

(contributing to the SC level), and diffused in the corneum. The states x2(t) and x3(t)

are contributing to the rise in the SC level. τp denotes the faster decay time due to fast

re-absorption (related to the pore collapse). τd represents the slow decay time related to the

elimination from corneum partially by re-absorption, diffusion in the deeper corneum, and

evaporation. τr denotes the rise time or the clearance rate of the sweat from the ducts. The

system input u(t) represents the ANS activation. To keep the definition simple, we assume

that the ANS activation occurs during the integer multiple of the sampling period. Let Ts be

the sampling period. With sparsity assumption as in [18], we represent the ANS activation

as u(t) =
∑K

k=1 ukδ(t − kTs) where uk is the amplitude of the impulse during the ANS

activation at time kTs. uk is zero if there is no impulse in the stimuli. Moreover, ηp(x1(t))

and ηd(x1(t)) are two functions that determine the fraction of sweat that are secreted by

direct pore opening and diffusion, respectively. We assume ηp(x1(t)) and ηp(x1(t)) denote

the nonlinearity in the pore opening operation. The nonlinearity of the pore opening is

similar to the switching operation and analogous to how a neuron work, i.e., in integrate-

and-fire manner as pointed out in [14]. Therefore, we propose to model these nonlinearities
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with sigmoid functions similar to the artificial neurons as follows,

ηp(x1(t)) = S(αx1(t) + β)

and ηd(x1(t)) = 1− S(αx1(t) + β),

where S(x) = (1 + e−x)−1 represents the sigmoid function. Although we assume it as an

integrate-and-fire operation, there is a difference, i.e., even if the pores do not open, the

sweat secretion will still be carried out by the diffusion process. We assume that both the

amount of absorbed sweat in the corneum and epidermis x3(t) due to diffusion process and

the sweat content in the ducts and electrically conducted to the surface due to the pore

opening x2(t) contribute to the SC level. Therefore, the observation equation is as follows,

y(t) = x2(t) + x3(t) + ν(t),

where ν(t) represent the noise signal.

Apparently, the proposed model is highly nonlinear and it is very difficult to derive

a practical deconvolution approach that runs in edge devices with this model. For the

simplification, we assume that the fraction of sweat secretion that happens via pore opening

is always constant. Therefore, the simplified linear version of the model is obtained by the

assumption that ηp and ηd is constant w.r.t x1(t) (α = 0) s.t. ηd = 1 − ηp = η. Here, η

is a constant and it represents the fraction of sweat that is secreted by diffusion process,

i.e., η ∈ [0, 1]. This simplification makes the model linear and more suitable for scalable

edge computation. Now, the simplified model can be thought of as a three compartment

pharmacokinetic model as shown in Figure 28-(C). To represent it in vector matrix form

we define x(t) =

[
x1(t) x2(t) x3(t)

]⊤
, Ac =


− 1

τr
0 0

+
ηp
τr

− 1
τp

0

+ηd
τr

0 − 1
τd

, Bc =


1

0

0

, Cc =
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[
0 1 1

]
. Therefore, the continuous state-space model in matrix form is as follows,

ẋ(t) = Acx(t) +Bcu(t),

y(t) = Ccx(t) + ν(t).

Discretization. Let yk be the observed SC at time instance kTs. We can write,

yk = Ccy(kTs) + νk, (69)

where νk ∀k represent the noise and are modelled as independent and identically distributed

(i.i.d) zero mean Gaussian random variable, i.e., νk ∼ N(0, σ2ν). We derive the discrete

equivalent of the system, assuming that the input and the states are constant over Ts. The

discrete version of the neural stimuli can be written as a vector u = [u1 u2 · · · uK ]⊤

that represents the entire neural stimuli over the duration of SC data. Let A = eAcTs ,

B =
∫ Ts

0 eAc(Ts−ρ)Bcdρ, and C = Cc to write the discrete state-space form as,

xk = Axk−1 +Buk and yk = Cxk + νk, (70)

where xk ∈ R3, yk ∈ R, uk, νk denote the state vector, the observation, ANS activation,

and the measurement error in discrete domain.

5.2.3 Physiological Priors

The proposed model has many unknown parameters, and the number of measurements

is relatively small. Therefore, the problem has many degrees of freedom. It is customary to

enforce appropriate physiologically motivated priors on the model parameters. Otherwise,

in the worst cases scenarios, the solution may not stay within the physiological boundaries

and may lead to over-fitting [63]. Therefore, we incorporated physiologically motivated

priors on the system model similar to [64, 41]. We assume that the individual model

115



parameters are Gaussian distributed with some mean and variance similar to [41]. We

use this information as a prior in the estimation step. Further, we also consider equality

and inequality constraints on the system parameters. First of all, we constraint all the

physiological parameters are non-negative. We select a lower bound for τr of 0.2 seconds

based on the result distribution obtained in our previous study in based on the [41]. Further,

we set τp > β1τr and τd > β2τp. Later, we select the values of β1 and β2 by manually by

investigating the results by trials and errors such that the fits looks physiologically feasible.

5.2.4 Estimation

We wish to estimate the parameter vector

θ = [ θ1 θ2 θ3 θ4 θ5 ]⊤ = [ τr τp τd ηp ηd ]⊤

and unknown ANS activation uk given the SC measurements yk ∀k ∈ {0, 1, · · · ,K − 1}.

One straighforward way is solve the following optimization problem,

min
xk, ∀k, θj , ∀J

λ

K−1∑
k=0

||xk −Axk−1||1 +
K−1∑
k=0

||yk −Cxk||22
2σ2ν

+

j=J−1∑
j=0

ρj
(θj − θ̄j)

2

2σ2θj
, (71)

where (xk − Axk−1) = Buk. If we consider the first term in Equation 71, i.e., the l1-norm

of (xk−Axk−1) as the negative log-likelihood, taking the exponential of the negative of the

gives us the Laplace distribution of Buk = (xk − Axk−1) with parameter λI. The second

term in Equation 71 represents the least square error between the observation yk and the

prediction Cxk with a Gaussian observation error assumption. The final term represents the

negative loglikelihood of the Gaussian priors on the system parameters with ρj , θ̄j , and σθj

represents the regularization parameters, the mean, and variance for the Gaussian priors,

respectively ∀j ∈ {0, 1, 2, · · · , J − 1}. In this case, J = 3. Therefore, Equation 71 can be
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considered as the maximum a posterior (MAP) estimator as pointed out in [105]. In general,

the problem formulation in Equation 71 is solved for uk by taking derivative of Equation

71 with respect uk and set it zero. This is particularly done using iteratively re-weighted

least square (IRLS) approach. The sparse recovery with the direct analytical solution of the

state-space model requires a matrix inversion of a K ×K matrix as shown in our previous

works [53, 52, 41]. This step work as the bottle neck of the approach. In this study, we solve

the very same problem with iterative re-weighted lease square approach implemented using

FIS. The states xk, the ANS activation uk and the matrices describing system dynamics A

and B can be estimated in an expectation-maximization (EM) approach.

Given the probabilistic model that generates a set of observed data Y = {yk} ∀k ∈

0, 1, · · · ,K − 1 and a vector of unknown parameters θ, we can write, p(Y, θ) = p(Y |θ)p(θ).

The following maximum log-likelihood estimation problem can be solved in order to estimate

the θ,

max
θ

log p(Y ; θ).

Now lets introduce a set of hidden unknown states X = {xk, uk} ∀k having a joint prob-

ability distribution p(Y,X; θ). We can re-write the maximum likelihood estimation as the

following marginal likelihood function of p(Y,X; θ),

max
θ

log p(Y ; θ) = max
θ

log

∫
X
p(Y,X; θ)dX. (72)
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We defined the joint log-likelihood function for Y , X, and θ as follows,

log p(Y,X; θ) = log (p(Y |X,θ)p(X|θ)p(θ))

= log p(Y |X,θ) + log p(X|θ) + log(θ) (73)

=

K−1∑
k=0

log(pνk(yk −Cxk)) +

K−1∑
k=0

log(pBuk
(xk −Axk−1))

+ log(p(θ)), (74)

where the pνk and pBuk
denotes the probability density functions corresponding to νk =

yk − Cxk and Buk = xk − Axk−1, respectively. Here, only the term pBuk
(xk − Axk−1)

depends on θ.

Expectation-Maximization (EM). Obtaining the marginal likelihood by the inte-

gration operation in Equation 72 is difficult, especially with edge computation on wearable

devices or smart-phones. This problem is usually modified as follows,

max
θ

log

∫
X
p(Y,X; θ)dX = max

θ
log

(∫
X

p(Y,X; θ)

q(X)
q(X)dX

)
≥ max

θ

∫
X
q(X) log

(
p(Y,X; θ)

q(X)

)
dX [Jensen’s inequality]

= max
θ

∫
X
q(X) log (p(Y,X; θ)) dX︸ ︷︷ ︸

function of θ

−
∫
X
q(X) log (q(X)) dX︸ ︷︷ ︸

constant

,

where q(X) is any probability density function. Therefore, the original problem is defined

as the following expectation maximization (EM) approach,

max
θ

log p(Y ; θ) = max
θ

EX∼q(X){log p(Y,X; θ)}. (75)

As it is expressed in Equation 75, the unknowns can be estimated by iteratively maximizing

the expection of the joint log-likelihood in Equation 74.

E-step (Sparse Recovery). Let’s assume that we know the current estimate of model
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parameters θ(i−1) from the (i− 1)th iteration of EM. We calculate the corresponding state

matrices A(i−1) and B(i−1). At ith iteration of EM, given the sequence of observations

yk ∈ Y and given probability distribution q(X) = p(X|Y,θ(i−1)), we wish to estimate the

expectation of x
(i)
k and u

(i)
k . We choose the probability distribution for uk such that it

enforces sparsity. Kazempour et al. [105] proposed to use Laplace distributed with param-

eter for sparsity of the innovation terms in the state transition equations. In this study,

we consider a broader family of distributions, namely, generalized Gaussian distribution

for uk so that distribution parameters can be selected to obtain a range of distributions

such as Gaussian and Laplace distribution. In contrast to [105] where the input matrix

is considered as an identity one, we assume that u
(i)
k denote the scalar (or column vector)

ANS activation and B(i−1) works as a direction vector (or matrix) of innovation in the state

transition equation. We consider u
(i)
k is generalized Gaussian distributed, i.e.,

p(u
(i)
k |γ(i), p) = pγ(i)

4γ(i)(1/p)
exp

(
−γ

(i)

2
|u(i)k |p

)
,

where γ(i) and p defines the shape of the generalized Gaussian distribution. p(uk|γ(i), p)

can also be written in terms of xk with multi-variate generalized Gaussian distribution as

follows,

p(u
(i)
k |γ(i), p) = p(Bu

(i)
k |λ(i), p) = exp

(
−λ

(i)

2
||B(i−1)u

(i)
k ||pp

)

= exp

(
−λ

(i)

2
||x(i)

k −A(i−1)x
(i)
k−1||

p
p

)
,

where λ(i) represents the new parameter related to the new random variable to obtain

the equivalent pdf (λ(i)||B(i−1)||pp = γ(i)). The sparsity constrain is imposed on u
(i)
k for

0 < p < 2. However, the closed form equations for FIS do not exist for generalized Gaussian

distribution where p ̸= 2, although they are the prerequisite for scalable edge computation of

the sparse recovery. Therefore, we approximate the generalized Gaussian distribution with
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iterative re-weighted Gaussian distributions for the closed form derivation of the forward

filter and backward smoother equations. For example, if p = 1, the generalized Gaussian

distribution becomes Laplace distribution as shown in [105]. Therefore, we approximate the

Laplace distribution of u
(i)
k with iterative re-weighted Gaussian distributions, i.e., if at rth

re-weighting step the state estimation is x
(i,r)
k , the Laplace pdf can be approximated with

Gaussian pdf as follows,

pxk
=
λ(i,r)

2
exp

{(
−λ

(i,r)

2
||x(i,r)

k −A(i−1)x
(i,r)
k−1 ||1

)}

≈ λ(i,r)

2
exp

{(
−1

2
(x

(i,r)
k −A(i−1)x

(i,r)
k−1)

⊤
(
Q

(i,r−1)
k,

)−1
(x

(i,r)
k −A(i−1)x

(i,r)
k−1)

)}
,

where λ(i,r) is the regularization at rth re-weighting step. Q
(i,r)
k is the co-variance matrix at

rth re-weighting step at kth time point and we define it defined as follows,

Q
(i,r)
k = (λ(i,r))−1(E{(x(i,r)

k −A(i−1)x
(i,r)
k−1)(x

(i,r)
k −A(i−1)x

(i,r)
k−1)

⊤}+ ϵ2I)
1
2

= (λ(i,r))−1((B(i−1)(u
(i,r)
k )2B(i−1)⊤) + ϵ2I)

1
2 .

Here, ϵ is a value close to zero for the matrix perturbation to achieve numerical stability.

We select ϵ = 10−5 for the numerical stability. The perturbations enable us to obtain

feasible inverse during FIS prediction and update equations as B(i−1)(u
(i,r)
k )2

(
B(i−1)

)⊤
is

always singular. The generalized approximation is performed by implementing ℓp-norm

with Gaussian distribution approximation of generalized Gaussian family as follows where

0 < p < 2,

Q
(i,r)
k = (λ(i,r))−1((B(i−1)(u

(i,r)
k )2

(
B(i−1)

)⊤
) + ϵ2I)

2−p
2 . (76)

With this approximation, we perform Kalman filtering and backward smoothing to obtain

the expectation of the state variables E{x(i,r)
k }’s and corresponding covariance matrices.
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Constraining the corresponding innovation in the state equation to be along the direction

of the vector B, we define the expected uk is given as follows at rth re-weighting step,

u
(i,r)
k = argmin

u≥uth

1

2
||E{x(i,r)

k+1} −A
(i−1)E{x(i,r)

k } −B(i−1)u||22, (77)

where uth is the selected minimum amplitude for ANS activation. This enables us to obtain

a constrained solution of uk without implementing actual constrained Kalman filtering and

backward smoothing. As u
(i,r)
k is scalar in the above optimization formulation, the solution

can be written directly as follows,

u
(i,r)
k = max(uth, (B

(i−1)⊤B(i−1))−1(B(i−1))⊤(x
(i,r)
k+1 −A

(i−1)x
(i,r)
k )), (78)

This allows us to project the error vector along the direction of B(i−1) vector based on

least square error with a minimum threshold. In this study, we select p = 0.5 for lp-norm

similar to our previous studies in [41, 8, 54, 52, 53].

Adjust Sparsity Level by Choosing γ. In the initialization phase, we choose a

scheme for selecting λ similar to IRLS algorithm FOCUSS+ algorithm in [66]. At rth

re-weighting iteration of E-step, the heuristic estimation of λ works as follows,

γ(i,r) =

(
1−

K−1∑
k=0

||yk −Cx
(i,r−1)
k ||22/

K−1∑
k=0

||yk||22

)
γmax, γ > 0. (79)

Then, we set λ
(i,r)
n = γ

(i,r)
n /||B(i−1)||pp. Similarly, in the main EM phase, we use generalized-

cross-validation (GCV) technique similar to the GCV-FOCUSS+ technique [68]. We modi-

fied the GCV technique to obtain scalability. To achieve this, we segment our observations

with a window size of Mgcv samples and apply GCV to obtain a λ for each window. For

nth segment, the discretized vector form solution can be provided as, ỹn = Fnx̃n,0+Dnũn,

where ỹn, xn+1, ũn represents the observation vector, the first state and the ANS activation
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in the nth segment, respectively. Fn and Dn are the matrices for the complete decretized

vector solution for nth block and can be defined as, Fn =
[
Fn,0 Fn,1 · · · Fn,(Mgcv−1)

]⊤
Mgcv×3

and

Dθ =

[
Dn,0 Dn,1 · · · Dn,(Mgcv−1)

]⊤
Mgcv×Mgcv

, where Fn,k = CAk and Dn,k =

C

[
Ak−1B Ak−2B · · · B 0 · · · 0︸ ︷︷ ︸

Mgcv−k

]
. Mgcv = 100 worked well for our study.

For nth segment, we obtain λn using the following optimization formulation based on

singular value decomposition (SVD) for GCV proposed in [68],

min
λn

Gn(γn) =

[
Mgcv

∑Mgcv

n′=1 ŷ
2
n,n′

(
γn

κ2
n,n′+γn

)2
]

[∑Mgcv

n′=1

(
γn

κ2
n,n′+γn

)2
] (80)

s.t. 0 ≤ γn ≤ 1× 10−4,

where ŷ = U⊤ŷn,τ =

[
ŷn,1 ŷn,2 · · · ŷn,Mgcv

]⊤
with ŷn,τ = ỹn −Fnx̃n, and DnPũ

1
2 =

UΣV ⊤ with Pũ = diag(|ũn,n′ |2−p) and Σ = diag{κj}; U and V are unitary matrices and

κi’s are the singular values of DnP
1
2
ũ . We estimate γn ∀n and take the median. Finally,

we set λ
(i,r)
n = γ

(i,r)
n /||B(i−1)||pp.

Usually, the re-weighting in E-step converges within a very small number of iterations.

We perform the re-weighting in E-step for r = 0, 1, 2, · · · , 5. After finishing all the re-

weighting iterations in the E-step, we obtain the following estimations: x
(i)
k , u

(i)
k , P

(i)
k|k, and

P
(i)
k|k−1∀k. Here, P

(i)
k|k and P

(i)
k|k−1 represents the estimates of E{x(i)

k x
(i)
k

⊤
} and E{x(i)

k x
(i)
k−1

⊤
},

respectively. Here, we drop r to represent the final E-step estimations.

M-step (Physiological Parameter Estimation). The M-step at ith iteration can

be defined as the following simplified constrained optimization problem utilizing Equation
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71 and 75,

min
θj , ∀j

E{λ(i)
K−1∑
k=0

||x(i)
k −Ax

(i)
k−1||1 +

K−1∑
k=0

||yk −Cx
(i)
k ||22

2σ2ν

+

j=J∑
j=0

ρj
(θj − θ̄j)

2

2σ2θj
}, (81)

s.t. Rθ ≤ s, Reθ = se,

where R =



−1 0 0 0 0;

0 −1 0 0 0

0 0 −1 0 0

β1 −1 0 0 0

0 β2 −1 0 0


, s =



s1

s2

s3

0

0


,

Re =

 0 0 0 1 0

0 0 0 0 1

 , and se =

 1− η

η

 determines the constraints on θ. The

equality constraints ensures the sum of ηp and ηd are equal to 1. To incorporate estimated

u
(i)
k from the E-step, we re-write the Equation 81. The modified optimization formulation

is as follows,

min
θj , ∀j

E{
γ(i)

2

K−1∑
k=0

|u(i)k |p +
K−1∑
k=0

||yk −C(Ax
(i)
k−1 +Bu

(i)
k )||22

2σ2ν

+

j=J∑
j=0

ρj
(θj − θ̄j)

2

2σ2θj
} (82)

s.t. Rθ ≤ s, Reθ = se.

After some algebraic manipulation and assumption that x
(i)
k−1 and u

(i)
k are statistically in-

dependent ∀k, we obtain the following optimization formulation by removing the constant
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terms with respect to θ.

min
θj , ∀j

1

2
||y||2 + 1

2
Tr(A((x

(i)
k−1(x

(i)
k−1)

⊤ + P
(i)
k−1))A

⊤)

− Tr(A(
K−1∑
k=0

y⊤k Cx
(i)
k ))− Tr(B(

K−1∑
k=0

y⊤k Cu
(i)
k ))

+ Tr(B

K−1∑
k=0

((u
(i)
k )2)B⊤) + Tr(Ax

(i)
k−1(u

(i)
k−1)

⊤B⊤))

+ σ2v

j=J∑
j=0

ρj
(θj − θ̄j)

2

2σ2θj
, (83)

s.t. Rθ ≤ s, Reθ = se.

The overall approach can be divided into two phases. In the first phase, we perform ini-

tialization with a fixed u
(i,0)
k = α ∀k at each iteration and with heuristic update of λ(i,r).

α = 1 worked well for our study. In the main EM-phase, we update u
(i,0)
k = u

(i−1,5)
k , i.e.

with the values obtained in the previous re-weighting iteration. In E-steps of both phases,

we perform a heuristic refinement of uk. After finishing all re-weighting iterations in the

E-step, we obtain the following estimations: x
(i)
k , u

(i)
k , P

(i)
k|k, and P

(i)
k|k−1∀k. The expected

values are plugged into the M-step optimization formulation in 83. The constrained opti-

mization problem in 83 is solved using the interior-point method. The overall algorithm for

the initialization and the main EM-phase is provided in Algorithm 1.

5.3 Results

5.3.1 Experimental Study

We use the proposed approach to deconvolve the SC measurements from 26 participants.

The deconvolution approach provides the estimates of the underlying ANS activation u(t),

rise time (τr), faster decay time (τp), and slow decay time (τd). We have considered the signal

segment from 150 seconds to 350 seconds for the analysis on the experimental data. The

figures from the deconvolution results for all 13 female and 13 male participants are provided
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Input : yk ∀k
Output: uk ∀k and θ

1 Initialization Phase:

2 Initialize θ̃0 ∼ U(bl, bu).
3 for i = 1, 2, 3, · · · , 30 do

4 Set u
(i,0)
k = α ∀k

5 E-Step: With θ = θ̃(i−1), calculate A(i−1) and B(i−1)

6 Iterative re-weighting:
7 for r = 1, 2, 3, · · · , 10 do

8 Estimate λ(i,r) using 79

9 Perform heuristic refinement of u
(i,r−1)
k

10 Set Q(i,r−1)
k = (λ(i,r))−1((B(i−1)(u

(i,r−1)
k )2

(
B(i−1)

)⊤
) + ϵ2I)

2−p
2

11 Estimate x
(i,r)
k , P

(i,r)
k|k and P

(i,r)
k|k−1 using FIS

12 Set u(i,r)k = max(uth, (B
(i−1)⊤B(i−1))−1B(i−1)⊤(x

(i,r)
k −Ax

(i,r)
k−1)).

13 end

14 M-Step: Set x
(i)
k = x

(i,r)
k , u

(i)
k = u

(i,r)
k , P

(i)
k|k = P

(i,r)
k|k and P

(i)
k|k−1 = P

(i,r)
k|k−1, and

15 Solve the optimization problem in Eq. 83 to obtain obtain θ(i)

16 end

17 Main EM Phase: while until convergence do
18 Set i = i+ 1

19 Set uk = u
(i−1,r)
k ∀k

20 E-Step:

21 With θ = θ̃(i−1), calculate A(i−1) and B(i−1)

22 Iterative re-weighting:
23 for r = 1, 2, 3, · · · , 10 do

24 Estimate λ(i,r) using the modified GCV technique

25 Perform heuristic refinement of u
(i,r−1)
k

26 Set Q(i,r−1)
k = (λ(i,r))−1((B(i−1)(u

(i,r−1)
k )2

(
B(i−1)

)⊤
) + ϵ2I)

2−p
2

27 Estimate x
(i,r)
k , P

(i,r)
k|k and P

(i,r)
k|k−1 using FIS

28 Set u(i,r)k = max(uth, (B
(i−1)⊤B(i−1))−1B(i−1)⊤(x

(i,r)
k −Ax

(i,r)
k−1)).

29 end

30 M-Step: Set x
(i)
k = x

(i,r)
k , u

(i)
k = u

(i,r)
k , P

(i)
k|k = P

(i,r)
k|k and P

(i)
k|k−1 = P

(i,r)
k|k−1, and

31 solve the optimization problem in Eq. 83 to obtain obtain θ̃(i)

32 end

Algorithm 1: bayesianEDA

in Figure 29-32. Here in each panels, i) the top sub-panel shows the experimental SC signal

(blue stars), the reconstructed SC signal (red curve), the estimated tonic component (green

curve), and the timings of the auditory stimulations (gray vertical lines); ii) the bottom
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sub-panel shows the estimated phasic component (blue curve), estimated ANS activation

timings and amplitudes (black vertical lines) and the timings of the auditory stimuli (gray

vertical lines). These figures depict the successful estimation of the sparse ANS activation

due to auditory stimulation.

Figure 29: Estimated Decomposition of the Experimental SC Signals for Female
Participant 1 to 6.

The estimated rise time (τr), fast decay time τp, slow decay time τd, number of pulses

(||u||0), and multiple correlation coefficient (R2) are provided in Table 8. Figure 33 shows

the histogram of the estimated state-space model parameters from all 26 participants. In

126



Figure 30: Estimated Decomposition of the Experimental SC Signals for Female
Participant 8 to 13.

top sub-panel in Figure 33, the red and green bar plots correspond to the histogram plots

of the estimated rise time τr and decay time τd, respectively; the red, green and blue

vertical lines correspond to the locations of the means µr, µp and µd of the corresponding

histograms, respectively. The estimated means of the parameters among the 26 participants
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Figure 31: Estimated Decomposition of the Experimental SC Signals for Male
Participants 1 to 6.

are µr = 2.0040, µp = 5.4545, and µd = 81.8175 seconds for rise times, fast decay time,

and slow decay times, respectively. Corresponding standard deviations are σr = 0.8675,

σp = 1.9258, and σd = 28.8874 seconds, respectively. The calculated multiple correlation

coefficients (R2) are greater than 0.98 for all participants except for Male Participant 12 (R2

for Male Participant 12 is 0.8352). This suggests that the proposed model can successfully

explain the variations in SC recording.

We utilize the estimated ANS activation u(t) in distinguishing between SCRs that are

related to and not related to loud sound events. We label all the impulses in estimated u
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Figure 32: Estimated Decomposition of the Experimental SC Signals for Male
Participant 7 to 13.

that have been detected within 5 seconds after a loud sound event as the positive class and

other impulses as the negative class. We consider the amplitudes of the impulses as the

classification scores within the subjects for obtaining the receiver operating characteristic

(ROC) curves [69, 70]. The estimated area under the ROC curves (AUC) for all participants

ranges from 0.6600 to 1 with a median of 0.9380 and a mean of 0.8960. We individually

normalized the estimated u for all participant and combined all u in one vector to obtain an

overall ROC. The estimated overall AUC is 0.8196. We compare our proposed bayesianEDA

129



r p
r p

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

0

3

6

9

12

15

d
d

0 50 100 150

Time (seconds)

0

3

6

9

12

15

Figure 33: Histograms of Estimated SCR Shape Parameters using Our Approach.

approach with LedaLab-CDA [29], LedaLab-DDA [21], cvxEDA [23], sparsEDA [24], PsPM-

MP [50], and our spline based approach [41]. Figure 34 shows: (A) the overall ROC

curve related to the discrimination power between event-related vs non-event-related SCRs

combining all the normalized u from each of the individual participants; (B) corresponding

AUC of the ROC curves, and (C) total number of the undetected auditory stimulation

impulses within 26 participants.

5.3.2 Simulated Study

To further, investigate the efficacy of our approach, we use the reconstructed signal from

our experimental study and add Gaussian noise to simulate data for all 26 participants

similar to the previous works in [19, 20, 52, 54, 41]. We consider the results from the

experimental study as the ground truths to compare with the estimation from the simulated

study. The proposed approach successfully estimates the ANS activation along with the
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Table 8: The Estimated Model Parameters and the Squares of the Multiple Correlation
Coefficients (R2 ) for the Fits of the Experimental SC Data

Female
Participant

ID τr τp τd ||u||0 R2

1 12 2.4575 6.4373 96.5591 25 0.9980

2 15 2.6889 6.9542 104.3135 24 0.9936

3 7 1.9565 5.3131 79.6968 28 0.9961

4 18 2.2324 5.9467 89.2004 25 0.9944

5 21 2.2948 6.0929 91.394 24 0.9893

6 25 2.3572 6.2167 93.2508 39 0.9990

7 1 1.3424 3.9588 59.3823 6 0.9986

8 2 0.7779 2.9288 43.9323 1 0.9883

9 5 1.2355 3.7123 55.6841 16 1

10 6 1.3411 3.9759 59.6391 11 0.9997

11 14 1.2101 3.6983 55.4741 9 0.9991

12 16 3.4221 8.6496 129.7442 41 0.9871

13 19 1.5775 4.4758 67.1366 25 0.9928

Male
Participant

ID τr τp τd ||u||0 R2

1 11 1.7215 4.7976 71.9641 8 0.9991

2 26 1.6574 4.6498 69.7463 13 0.9991

3 8 2.0524 5.5199 82.7989 24 0.9987

4 10 1.9070 5.2164 78.2453 40 0.9836

5 20 4.5170 11.0786 166.1788 59 0.9909

6 23 1.5451 4.4054 66.0803 27 0.9998

7 3 3.4100 8.6018 129.0276 58 0.9986

8 4 0.8936 3.1084 46.6253 8 0.9993

9 9 1.3561 4.0062 60.0935 20 0.9963

10 13 3.1618 8.066 120.9899 75 0.9954

11 17 1.6731 4.6962 70.4425 30 0.9976

12 22 1.7625 4.8939 73.4078 16 0.8352

13 24 1.5518 4.4164 66.2467 29 0.9992

physiological model parameters. All the multiple correlation coefficients (R2) are greater

than 0.98 for simulated data with 25 dB noise level is 0.9872. Estimated system parameters

(τ̂r, τ̂p and τ̂d), estimation errors, and the multiple correlation coefficients (R2) for the

results for all the simulated data with 25 dB SNR are provided in Table 9. In Table 9, τ̂r, τ̂p

and τ̂d denote the estimated rise time, fast decay time, and slow decay time for the simulated

SC data. The SC signal is simulated with 25 dB Gaussian noise. Further, also perform

131



A 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Overall ROC

LedaLab-CDA

LedaLab-DDA

cvxEDA

sparsEDA

PsPM-MP

Our Spline Based Approach

bayesianEDA

B

Area Under the Curve of ROC

LedaLab-C
DA

LedaLab-D
DA

cvxEDA

sparsEDA

PsPM-M
P

Our S
plin

e Based Approach

bayesianEDA
0.5

0.6

0.7

0.8

0.9

1

a
re

a

C

Number of Undetected

Auditory Stimuli

LedaLab-C
DA

LedaLab-D
DA

cvxEDA

sparsEDA

PsPM-M
P

Our S
plin

e Based Approach

bayesianEDA
0

10

20

30

40

50

60

c
o
u
n
t

Figure 34: Event Related SCR Detection Performance Comparison.

the same analysis for 35 dB SNR noise level. The deconvolution result figures related to

both 25 dB abd 35 dB SNR noise level are also provided in Figure 35-42. In each of the

panels of these figures, i) the top sub-panel shows the ground truth for SC signal (red stars),
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the reconstructed SC signal (black solid curve), the estimated tonic component (green solid

curve), and ground truth for the ANS activation (gray vertical lines); ii) the bottom sub-

panel shows the estimated phasic component (blue solid curve), estimated ANS activation

timings and amplitudes (black vertical lines) and the ground truth ANS activation (gray

vertical lines).

Table 9: The Estimated Model Parameters, Estimation Errors, and the Squares of the Mul-
tiple Correlation Coefficients (R2 ) for the Fits of the Simulated SC Data

Female
Participant

ID τr τp τd
|τr−τ̂r|

τr
× 100%

|τp−τ̂p|
τp

× 100% |τd−τ̂d|
τd

× 100% R2 run time

1 12 2.4604 6.4389 96.5830 0.1210 0.0247 0.0247 0.99794 31.6575

2 15 2.6990 6.9523 104.2847 0.3778 0.0276 0.0276 0.99755 317

3 7 1.9586 5.3138 79.7069 0.1071 0.0126 0.0126 0.99755 29.5756

4 18 2.2347 5.9467 89.2011 0.1044 0.0008 0.0008 0.99688 30.5766

5 21 2.3006 6.0931 91.3963 0.2512 0.0025 0.0025 0.99363 28.2613

6 25 2.3588 6.2170 93.2545 0.0693 0.0040 0.0040 0.99789 30.4497

7 1 1.3436 3.9595 59.3931 0.0900 0.0182 0.0182 0.99970 26.1312

8 2 0.7779 2.9288 43.9316 0.0018 0.0016 0.0016 0.99830 21.3974

9 5 1.2366 3.7137 55.7056 0.0907 0.0388 0.0388 0.99888 21.5944

10 6 1.3411 3.9762 59.6431 0.0036 0.0067 0.0067 0.99985 24.9445

11 14 1.2102 3.6981 55.4716 0.0079 0.0045 0.0044 0.99976 28.5442

12 16 3.4366 8.6424 129.6358 0.4253 0.0836 0.0836 0.98704 34.1906

13 19 1.5792 4.4764 67.1456 0.1075 0.0133 0.0133 0.99814 26.3280

Male
Participant

ID τr τp τd
|τr−τ̂r|

τr
× 100%

|τp−τ̂p|
τp

× 100% |τd−τ̂d|
τd

× 100% R2 run time

1 11 1.7232 4.7982 71.9732 0.0995 0.0126 0.0126 0.99906 25.9000

2 26 1.6579 4.6494 69.7406 0.0312 0.0082 0.0082 0.99911 29.7408

3 8 2.0574 5.5219 82.8286 0.2476 0.0358 0.0358 0.99864 30.1971

4 10 1.9103 5.2170 78.2550 0.1727 0.0125 0.0125 0.98358 28.9428

5 20 4.5459 11.0648 165.9723 0.6384 0.1242 0.1242 0.99098 32.0364

6 23 1.5452 4.4053 66.0799 0.0042 0.0006 0.0006 0.99983 29.6168

7 3 3.4207 8.5952 128.9286 0.3125 0.0767 0.0767 0.99864 32.2376

8 4 0.8937 3.1084 46.6255 0.0026 0.0004 0.0004 0.99938 23.1102

9 9 1.3568 4.0064 60.0960 0.0571 0.0042 0.0042 0.99632 26.4126

10 13 3.1736 8.0676 121.0135 0.3727 0.0195 0.0195 0.99549 31.7452

11 17 1.6754 4.6976 70.4639 0.1386 0.0304 0.0304 0.99762 26.2041

12 22 1.7660 4.8959 73.4382 0.1990 0.0414 0.0414 0.83526 24.6898

13 24 1.5524 4.4157 66.2352 0.0409 0.0174 0.0174 0.99922 28.8487

We add noise with different noise power to investigate how the proposed approach per-

forms in terms of estimating the unknowns and reconstructed signal. We add the Gaussian
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Figure 35: Deconvolution Results From the Simulated SC Signals with 25 dB
SNR for Female Participant 1 to 6.

.

noise with different energy level to the reconstructed SC signals from the experimental

study for all 26 participants and perform deconvolution to estimate the unknowns with the

proposed approach. We calculate the average estimation errors of the unknowns for all

participants in different noise levels. Figure 43 and 44 show how the average estimation

error changes as the noise level is increased. In Figure 43, red squares, green pentagram,

and blue triangles connected with solid lines denote the average percentage errors for the

estimated rise times, fast decay times, and slow decay time from simulated data with SNR

levels. The SNR is provided with respect to the phasic component. In Figure 44, black

diamonds with the dashed lines denotes the average amplitude error of the neural stimuli

from estimated data with different noise levels. We have defined the average amplitude

error as |||ũ||1− ||u||1|/||u||0, where ũ and u represent the estimated and the ground truth
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Figure 36: Deconvolution Results From the Simulated SC Signals with 25 dB
SNR for Female Participant 7 to 13.

neural stimuli, respectively. The data is simulated using the obtained results from the all

experimental data in Dataset 1. The SNR is given with respect to the phasic component.

Similarly, Figure 45 shows how the reconstruction errors change in different noise levels. In

Figure 45, green, blue and red dashed lines denote the RMSE for the reconstructed tonic

component, phasic component and overall SC data in different noise levels. Here, the data

is simulated using the obtained results from the all experimental data in Dataset 1. As

noise is added to the phasic component prior to addition of tonic component, the SNR is
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Figure 37: Deconvolution Results From the Simulated SC Signals with 25 dB
SNR for Male Participant 1 to 6.

given with respect to the phasic component.

To empirically investigate the time complexity of the approach, we utilize the exper-

imental data with different duration and perform deconvolution using our approach. We

measure the run-time for each of the deconvolution. Figure 46 shows the distributions of

the run-times in different signal lengths. According to the Figure 46, the medians of the

run-times increase linearly with the increase in the signal length showing the scalability of

the approach. Figure 46 shows boxplots of the run-times of the proposed approach with

different signal lengths: the black dots with blue circle in the middle of each boxplot denote

median, the bottom and top of each blue box are the 25th and 75th percentiles of the

sample, respectively, the red markers denote a few outliers.
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Figure 38: Deconvolution Results From the Simulated SC Signals with 25 dB
SNR for Male Participant 7 to 13.

5.4 Discussion

Inference of the ANS activation from the SC recordings is challenging given that the

underlying physiological system parameters are unknown. The derived EM approach maxi-

mizes the complete data log-likelihood. The complete data log-likelihood has many degrees

of freedom, i.e., the constraints on variables to be optimized is lower than the number of
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Figure 39: Deconvolution Results From the Simulated SC Signals with 35 dB
SNR Female Participant 1 to 6.

variables. In other words, there exist many solutions for the unknowns that can closely

approximate the sampled signal. The use of a comprehensive state-space model and the re-

moval of cubic spline function based model reduces the number of unknown variables in the

optimization. For example, the number of cubic spline functions needed to model slow vary-

ing component of 200 seconds is 39, as pointed out in our previous work [41]. On the other

hand, the proposed comprehensive model requires only one parameter instead of multiple

cubic spline function parameters to model the slow varying component. Furthermore, we

consider probabilistic sparsity priors motivated by physiology on the ANS activation along

with the Gaussian priors on the physiological system parameters. Last but not the least,

we also enforce inequality and equality constrains on the state-space model parameters by

trial and error. The constrains τp > 2τr, τd > 15τp, and η = 0.5 worked best for us for the
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Figure 40: Deconvolution Results From the Simulated SC Signals with 35 dB
SNR for Female Participant 7 to 13.

dataset we have analyzed.

The complete data log-likelihood that is optimized by the EM approach might suffer

from non-convexity and there is a potential risk that the solution may end up in different

locations for different initial values. To test that, we run our EM approach for multiple

random initializations of the physiological system parameters. Based on the simulated

and the experimental datasets we have analyzed, we have observed that the solution for

a given SC signal always converge to one location no matter what initial value has been
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Figure 41: Deconvolution Results From the Simulated SC Signals with 35 dB
SNR for Male Participants 1 to 6.

selected. Therefore, we decided to only run our approach for one random initialization of

the physiological system parameters in this study, unlike our previous approaches where

we have used multiple random initializations and selected the solution that satisfies the

selection criteria [52, 54, 41].

Figure 29-32 show that the estimations of the initial states as well as the states for

about 20-30 seconds can be erroneous. After 20-30 seconds, the state-estimation visually

seems reasonable. This erroneous estimation happens because the Kalman filter in the FIS

needs a few samples to begin to follow the signal. Therefore, the estimations during the

initial few samples can be erroneous. Because of this erroneous estimation of the initial

state, the R2 estimation for male participant 12 became very low compared to other partic-

ipants.One straightforward way to deal with this is to consider 20-30 seconds of measured
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Figure 42: Deconvolution Results From the Simulated SC Signals with 35 dB
SNR for Male Participant 7 to 13.

signal padded in the beginning. After performing deconvolution in the padded signal, results

corresponding to the initial 20-30 seconds can be removed.

Figure 34-A shows that our bayesianEDA has the best ROC curve than all the previous

approaches including our previously proposed spline based approach [41]. Figure 34-B

shows that our bayesianEDA has the maximum AUC value corresponding ROC curves.

Next best ones are our spline based approach (AUC = 0.8003) and sparsEDA (AUC =

0.7783). The ROC curves and AUC values are generated based on only the classification
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Figure 46: Run-time vs Signal Length.

ability between the event related and non-event related SCRs among the ones those are

only detected by each methods. However, there is a possibility that an algorithm have over

sparsified the solution and missed many smaller but event related SCRs. Therefore, we

further calculate for how many of auditory stimulation no SCR was detected. Figure 34-C

shows, our spline previous approach is missing most of the auditory stimulation (53) and

sparsEDA [24] is missing second most number of the auditory stimulation (46). On the

other hand, LedaLab-CDA [29], LedaLab-DDA [21], and cvxEDA [23] are not missing any

of the auditory stimulation. One should note that sometimes a participant might not show

any SCR in response to an auditory stimulus. Therefore, a fraction of the number of the

undetected auditory stimulation can be attributed to the participants physiology and rest

of it can be attributed to the algorithm itself. Which means LedaLab-CDA, LedaLab-DDA,

and cvxEDA detect noise spikes as SCRs in the places where the participants does not have

an SCR response. From our visual investigation, we see that some of the participants does

not have any SCR in response to the auditory simulation. Please see experimental results

for Female participant 7, 8, 10, 11, 13 and Male participant 8 in Figure 30 and 32. Our
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approach is not detecting total of 24 auditory stimuli and most of them can be attributed

to no SCR response from the participant. On the other hand, sparsEDA and our spline

based approach have missed 46 and 53 number of stimuli, respectively, resulting in an overly

sparse solution.

The presence of noise may lead to inaccurate estimates of ANS activations. Although we

have incorporated a GCV based approach, the noise filtration also depends on the selected

observation noise variance, σ2ν . For the experimental study, we have selected σ2ν = 1×10−8.

This value is working well along with the GCV for balancing between discarding the noise

and capturing the process. We have kept the value of σ2ν for the simulated study. Our results

show that it is capturing more spikes than the ground truth for heavy noise level. As pointed

out in [105], increasing the noise variance σ2ν will lead to a much smoother estimate with

a lower number of spikes. For most of the cases, GCV could discard most of the spikes

related to noise. Because, the corresponding selected σ2ν are within the reasonable range

for GCV to obtain a balance. Therefore, for GCV to balance the noise spike, a reasonable

choice of σ2ν is required. However, for some cases it is challenging to find such a reasonable

value for GCV. Higher values of σ2ν may result in some of the SCRs undetected. Therefore,

we select a relatively small value of σ2ν such that none of the SCRs remain undetected. As

most of the detected noise spikes are relatively smaller than the spikes related to the SCRs,

application tailored post-processing (e. g. hard/soft thresholding) can remove most of the

noise spikes.

The computational complexity of the deconvolution approach is O(K) as shown in [105].

Furthermore, our empirical investigation also shows run time scales linearly with the num-

ber of sample as shown in Figure 46. These shows the feasibility of implementing such

approaches in the low power wearable medical devices for edge computation. This scalable

implementation has been possible with the proposed comprehensive state-space model. Fur-

ther optimization can be performed by obtaining the physiological system parameters for a

smaller segment and perform the E-step for the longer segments. During a day of recording,
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parameters can be updated a few times by running the EM, and these parameters can be

used to estimate the ANS activation using only E-step. A real-time implementation can be

done with only running the Kalman filter in iterative manner in the FIS after estimating

the system parameters for a shorter segment. As Kalman filters are very cheap in terms of

computation power, the proposed approach opens up the possibility of performing ANS ac-

tivity inference in the edge device instead of running it in the cloud facilitating low network

traffic and user privacy.

The obtained ANS activities from the single channel SC recording can be used to track

the cognitive arousal state of an individual [10, 44, 106]. One of the future goal is to

extend this approach for multi-channel SC recording and the nonlinearity of the model

for more robust inference in presence of noise which will lead to more reliable inference of

individual arousal level similar to our previous study in [54]. For further accurate estimation

of emotional arousal, we intend to utilize the inferred ANS activity from SC recording with

our approach and to combine with other physiological signals similar to [107, 108, 109, 110,

47, 111, 112]. The proposed new model as well as the scalable ANS inference approach has

enabled us to design a scalable control architecture to regulate the arousal level similar to

the proposed framework in [113, 114, 115, 116].
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6 Evaluation of Adaptive and Bayesian Filters for Artifact

Removal from Electrodermal Activity Leveraging Noise

Source Reference

6.1 Overview of Electrodermal Activity and Importance of Motion Arti-

fact Reduction

The phrase “electrodermal activity” (EDA) was introduced in 1966 for designating any

electrical activity that is measured from the skin electrically [41, 9]. Since its first obser-

vation in the 1880s [9], EDA has been widely used in physiology and psychophysiology

studies as the information it contains has a relationship with sympathetic nervous system

(SNS) activation. As a part of the autonomic nervous system (ANS), SNS is responsible

for the fight-or-flight response mechanism in response to a stimulus that the human brain

categorizes as a threat to survival. When such an emotional stress stimulus is perceived, the

brain stimulates sweat glands via ANS depending on the psychological and physiological

demands. Consequent secretions of salty sweat glands increase the skin conductance (SC)–a

measure of EDA–by increasing the number of electrical charge carrier ions. SC measure-

ments contain rich information regarding SNS activation. Therefore, evaluation of SC will

lead to effective monitoring of emotional arousal fluctuations [10].

Efficient EDA analysis along with SNS activation inference has a wide range of appli-

cations including major depression detection [117], pain detection [118], cognitive stress

tracking [10], tracking wakefulness [119], etc. Furthermore, abnormal regulation of EDA

seems to be a reliable feature of depression and a valid marker of suicidal risk measurement

[120]. Azgomi et al. [121] proposed a closed-loop wearable machine interface architecture to

regulate arousal utilizing electrodermal activity as the observation. The proposed method

comprises of identification of ANS activation utilizing EDA deconvolution [53, 52, 54], the

emotional stress estimation [10, 44, 83], and finally closing the loop [113, 113] to maintain
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the corresponding emotional state within a desired range. However, in ambulatory set-

tings, the recordings can have artifacts due to motion or other noise sources. For effective

implementation of such a regulation scheme, such artifact reduction is a prerequisite.

The noninvasive nature of many biomedical sensors has led to many measurement tech-

nologies for ambulatory health monitoring. The most popular modality of biomedical sen-

sors that are currently being deployed in many consumer devices along with wearable devices

includes cardiac sensors (e.g., electrocardiogram (ECG) electrodes and photoplethysmogram

(PPG) optodes), skin temperature (SKT) sensors, muscle activity sensors (e.g. electromyo-

gram (EMG) electrodes), etc. [11, 12]. Additionally, many low-power inertial sensors such

as accelerometers, gyroscopes, and magnetometers are also deployed in wearable devices

to monitor user activity [122]. In the past few decades, numerous research efforts have

led to the successful implementation of PPG signal analysis for wearable implementation,

with the goal of continuous cardiac health monitoring. This effort has led to applications

ranging from daily heart rate monitoring [123] to efficient detection of atrial fibrillation to

prevent heart stroke [124]. As motion can corrupt signal recordings by PPG, to endeavor

a successful day-to-day monitoring, many researchers worked on the prerequisite signal

processing pipelines for motion artifact removal [124]. In other contexts, there are many

studies proposing various signal processing techniques to remove motion artifacts from other

biomedical signals such as ECG [125, 126], electroencephalogram (EEG) [127], functional

near-infrared spectroscopy (fNIRS) etc. The motion artifact removal scheme is not only

important for deploying sensors in consumer devices but also it is an important preprocess-

ing step for analysis in scientific research. Among the popular approaches, inertial sensor

measurement-based motion reference has been extensively utilized to monitor activity.

Adaptive filters have been extensively studied to remove motion artifacts from various

biomedical signals, including ECG [125, 126], PPG [128, 129], EEG [130, 131], fNIRS [132],

etc. However, to the best of our knowledge, there has not been any study yet that evaluates

adaptive filters for motion artifact removal from electrodermal activity utilizing reference
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information from inertial sensors. Despite the fact that EDA is one of the most important

potential candidates for next-generation wearable health monitoring [13], the amount of

research performed on EDA signals is relatively limited compared to cardiac signals. Espe-

cially, very little research has been carried out to reduce the artifacts in electrodermal activ-

ity. There are a few works that investigate different methods for artifact detection, including

semisupervised [133] and unsupervised [134] machine learning approaches. Moreover, su-

pervised machine learning-based [135] as well as wavelet-based heuristic [136] techniques are

investigated to correct artifacts. However, the fact that the artifact can be represented as

the linear/nonlinear transformation of the accelerometer information and the possibility of

modeling such transformation with adaptive filters is yet to be investigated. Additionally,

some of the fluctuations that are present in the SC are related to respiration and may not

be directly related to ANS activation. In 2003, Schneider et al. [137] reported the evidence

of misinterpretation of experimental observations because of irregular respiration-related

SC activation. Hence, they proposed a rule-based approach to identify such cases. Later in

2019, Lee et al. [138] utilized a similar rule-based approach to detect and later remove the

respiration-related noise from SC data based on PPG derived respiration reference signal.

However, a more systematic approach is required to identify and isolate such activations,

which can be referred to as respiration-related noise.

Therefore, in this study, we evaluate linear adaptive filters as well as nonlinear Volterra

adaptive filters that take the three accelerometers as the reference signal to model the

artifacts in a multirate manner. We utilize a publicly available dataset and simulated

artifacts to evaluate four types of adaptive filters. Furthermore, we perform experiments for

inducing motion artifacts during SC data collection while recording the motion information

with a three-axis accelerometer sensor. We evaluate the adaptive filtering performance

of removing motion artifacts utilizing the experimental data. We also collect respiration

reference signals for the identification of respiration-induced noise.
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6.2 Methods

6.2.1 Experiment

In this study, we experimented to collect motion artifact corrupted SC signals with the

noise reference. This project has been reviewed and approved by the University of Houston

Institutional Review Board (IRB). We have collected data from two participants with mul-

tiple trials for each participant. Participants were familiar with all the signals and sensors

that are considered in the experiment. In the first scenario of data collection, the partic-

ipants were suggested to observe the SC signals on the monitor in real-time, those will be

collected and suggested to perform ‘hand waving’ as they want so that some motion artifact

is generated in the observed signal. In the second scenario, the participants were suggested

to do ‘in-place jogging’ while also observing the recorded signal in real-time. We perform

the data collection with the Biopac MP160 system. We measure the SC signal between

the proximal phalanx of the index finger and the ring finger of the nondominant hand. For

measuring data from the fingers, we used two Shimmer reusable SC electrodes. We have

also attached Biopac SC wet electrode to the thenar eminence and hypothenar eminence for

SC data collection. Both dry and wet electrodes are then attached to Biopac BioNomadix

wireless BN-PPGED amplifiers/transmitters with BN-EDA-LEAD2 leads. For the motion

reference collection, we placed the Biopac TSD109C3 three-axis accelerometer on the ring

finger SC electrode. Customization of the TSD109C3 accelerometer is performed to be able

to use two Biopac BN-GONIO wireless transmitters for three-axis wireless data acquisi-

tion. The customization is carried out by Biopac Inc. Furthermore, a photoplethysmogram

(PPG) sensor has been placed on the distal phalanx of the ring finger in the nondominant

hand. Additionally, we collected the three-lead electrocardiogram (ECG) signals and the

respiration signal with the Biopac BioNomadix wireless BN-RSPEC amplifier/transmitter.

We record all signals at 2 kHz sampling frequency. Figure 47 shows a brief overview of the

sensor placements. Figure 47 shows (a) a participant is wearing a respiration belt as well
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as the ECG leads connected to the electrodes; (b) and SC sensor, accelerometer, and PPG

sensor placements on the participants nondominant hand.

(b) PPG Sensor

SC Wet 
Electrodes

SC Dry
Electrodes

Accelerometer

Wireless Amplifier 
and Transmitter

Respiration Belt 
& Transducer

Wireless Amplifier 
and Transmitter

ECG Leads

(a)
Figure 47: An Overview of the Experimental Setup.

6.2.2 Additional Publicly Available Dataset

In addition to the experimental dataset, we also use the dataset including the SCRs

related to loud sounds [57] with some simulated noise. Bach et al. [30] designed this exper-

iment for modelling event-related SCRs. The dataset includes SC data measurements from

the thenar/hypothenar of the nondominant hand, the middle phalanx of the dominant sec-

ond and third finger, and the medial plantar surface of the nondominant foot for each of the

26 participants. Here we only utilize the SC recordings from the thenar/hypothenar of the

nondominant hand participants for single channel analysis. The details of the experiments

and the dataset are provided in [30].

6.2.3 Wiener Filter

We briefly discuss the basics of adaptive filters that we utilize for the evaluation of

artifact removal performance. In this study, we consider the finite impulse response (FIR)

adaptive filters. First we describe the ideal case of the filtering and then from there we will
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derive different adaptive filters with appropriate assumptions for practical implementation.

The most ideal case is known as Wiener filter (WF). A WF has two inputs, a desired signal

d[k] and noise reference signal n[k′] [139]. Here, we assume that the d[k] and n[k′] can have

different sampling frequency for multi-rate formulation and the sampling frequency of the

noise source n[k′] is higher than the desired signal d[k]. Let the sampling frequencies are

Fd and Fn, respectively. We also assume that the sampling ratio M = Fn/Fd is an integer.

If the filter at kth is defined with the vector w[k] where w[k, k′] is the k′th element in the

filter at kth time step, then the filter output z[k] can be written as follows,

z[k] = w[k]⊤x[k],

where x[k] = [n[Mk−L+1] n[Mk−L+2] · · · n[Mk− 1] n[Mk] ]⊤. Here, L is the length

of the FIR filter. The error vector can be represented as

e[k] = d[k]− z[k]. (84)

The objective function in adaptive filtering is the mean square error (MSE) is represented

as follows,

Jw = E{(e2[k])}

= E{(d[k]− z[k])⊤(d[k]− z[k])}

= E{d2[k]} − 2w[k]⊤E{d[k]x[k]}

+w[k]⊤E{x[k]x[k]⊤}w[k])

= E{d2[k]} − 2w[k]⊤p[k] +w[k]⊤R[k]w[k]. (85)

Here p[k], and R[k] represent the cross-correlation E{d[k]x[k]} and auto-correlation of

E{x[k]⊤x[k]}, respectively. For WF, w[k], p[k], and R[k] are considered as constant for

all k time points with the assumption that d[k] and x[k] are jointly wide-sense stationary
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(WSS). Therefore, the sample indexed k can be dropped for the case of WF and can be

written as w, p, and R. In order to minimize the MSE, we need to find the minima of the

function in (85). Therefore, we take the derivative with respect to w and set it to zero to

obtain the optimum filter coefficient vector wo,

∇wJw = −2p+ 2Rw = 0

⇒ wo = R−1p. (86)

However, in practical settings, R and p are not known. Therefore, some approximation or

good estimates of R and p is required. Mostly, different approximations of these lead to

different types of adaptive filters which we will discuss in later sections.

6.2.4 Least Mean Squares (LMS) Adaptive Filter

For the least mean square (LMS) filter, at kth the approximations are carried out as

follows,

R̂[k] = x[k]x[k]⊤

and p̂[k] = d[k]x[k].

We plug in these approximations in (85) to obtain the approximation of MSE for kth sample,

Jw,

Ĵw[k] = d2[k]− 2w[k]p̂[k] +w[k]⊤R̂[k]w[k]

Utilizing this, the filter update equation for kth time stamp is as follows,

w[k + 1] = w[k]− α∇wĴw[k]. (87)
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Here α corresponds to the step size. After simplification, the final equation becomes as

follows,

w[k + 1] = w[k] + αe[k]x[k]. (88)

6.2.5 Recursive Least Square (RLS) Adaptive Filter

For the recursive least squares (RLS) filter, at kth the approximations are carried out

as follows,

R̂[k] =

k∑
i=0

γ(k−i)x[i]x[i]⊤

and p̂[k] =
k∑

i=0

γ(k−i)d[k],x[k],

where γ is called forgetting factor and usually selected between 0 ≤ γ ≤ 1. If we set

γ = 0, then the corresponding RLS filter is as same as the LMS filter. We plug in these

approximations in (85) to obtain the approximation of MSE, Jw,

Ĵw[k] = d2[k]− 2w[k]p̂[k] +w[k]⊤R̂[k]w[k].

We set the derivative ∇w[k]Ĵw[k] = 0 and find the filter update equation for kth is as follows,

w[k] = R̂
−1

[k]p̂[k] (89)

However, this equation is computationally expensive. An iterative update can be done based

utilizing the weights calculated in the last step. After simplification, the update equation

can be written as follows [139],

w[k + 1] = w[k] + e[k]SD[k]x[k], (90)
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where,

ψ[k] = SD[k − 1]x[k],

ϕ[k] =
ψ[k]

λ+ψ[k]
,

and SD[k] =
1

λ

[
SD[k − 1]−ψ[k]ϕ[k]T

]
.

During the initialization, set SD(0) = δI where δ can be the inverse of an estimate of the

input signal power. x(0) = w(0) = [0 0 · · · 0], and evaluate.

6.2.6 Second Order Volterra Adaptive Filters (LMS and RLS)

For obtaining a nth order volterra LMS/RLS filter, we need to just merely need to

populate the reference signal vector with the non-linear terms for each iterations and update

the adaptive filter coefficient vector length accordingly. For example, for 2nd the reference

signal is as follows,

x[k] = [xL[k]
⊤ xNL[k]

⊤]⊤

where, xL[k] = [n[Mk − L+ 1] n[Mk − L+ 2] · · · n[Mk] ]⊤

and xNL[k] = vec(xL[k]xL[k]
⊤)

Here ‘vec’ denotes the matrix to vector conversion operation. Now the corresponding

adaptive filter length is L′ = L + L2, i.e., there are L′ number of elements in vector w[k]

for each time steps. All the other steps of adaptive filter is same as the linear cases. We

define V 2− LMS and V 2−RLS to refer to 2nd order Volterra RLS and LMS filter.
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Figure 48: An overview of Proposed Adaptive Filtering Scheme for Motion Ar-
tifact Reduction from SC Recording with Accelerometer Readings as
the Noise Source Reference.

6.2.7 Artifact Reduction from Skin Conductance Signal with Accelerometer

As Noise Reference

A part of artifact contamination on the skin conductance signal is related to the move-

ment of the sensors. The motion information can be recorded in many different forms.

One of the popular ways is to utilize a three-axis accelerometer. A three-axis accelerometer

records data for three different axes. Therefore, we have three different noise reference chan-

nels corresponding to three axes. For the discretized recordings, we combine the sample

streams from these three signals into one discretized sample stream. Now the new stream

has a frequency that is three times the sampling frequency for the single channel. We

perform adaptive filtering on the recorded SC signal while considering the accelerometer

recording as the noise reference. SC signal, denoted as ySC(t), contains a DC component

and some very low frequency components acting as a baseline. We remove these baseline

low frequency components so that the mean value of the desired signal is zero. We consider

the desired signal as the high pass version of the recorded raw SC signal. We low-pass filter

the raw SC signal to obtain the slowly varying component ySCL(t). Then we subtract the
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low-pass filtered signal from the raw signal to obtain the high-pass filtered SC signal, which

is our desired signal d[k]. The noise reference n[k] = [n1[k − L + 1] n2[k − L + 1] n3[k −

L+1] n1[k−L+2] n2[k−L+2] n3[k−L+2] · · · n1[k] n2[k] n3[k]] and set Fx = 3×Fd

to perform the multi-resolution linear/nonlinear adaptive filtering. Here Fn corresponds to

the sampling frequency of the combined noise reference, ni[k] represent the kth sample of

the accelerometer recording for the ith channel representing a spatial axis, ∀i ∈ {1, 2, 3}.

Before combining all the accelerometer data into one noise vector, we perform a third or-

der moving median filtering to remove any spike noise which has been observed in some of

the accelerometer channel data. The reasoning is unknown for this kind of impulse noise,

probable reason can be related to internal electronics of the accelerometer. We perform the

motion artifact removal on the signal at 100 Hz sampling frequency for ySC [k]. Figure 48

shows an overview of the motion artifact removal scheme.

6.2.8 BayesianEDA for Deconvolution of Skin Conductance Response

For obtaining the autonomic nervous system activation from the SC signal, we utilized

a deconvolution approach provided in [140]. We utilize the following three-dimensional

linearized state-space model to describe the SC fluctuations from [140],

ṡ1(t) = − 1

τr
s1(t) + u(t), (sweat production)

ṡ2(t) =
ηs1(t)

τr
s1(t)−

1

τp
s2(t), (pore collapse)

and ṡ3(t) =
(1− η)s1(t)

τr
s1(t)−

1

τd
s3(t), (slow re-absorption)

where s1(t), s2(t), and s3(t) states, respectively, represents the amount of sweat in the sweat

ducts, the fraction of sweat in the ducts that are electrically conducted to the surface due to

the open pore, and the fraction of sweat that is diffused in the corneum. The parameters τp

and τd represent the faster decay time due to fast reabsorption and slow decay time related
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to the slow elimination (due to the cumulative effect of reabsorption, diffusion in the deeper

corneum, and evaporation), respectively. The parameter τr denotes the SC rise time. The

system input u(t) represents the ANS activation. To keep the definition simple, we assume

that the ANS activation occurs during the integer multiple of the sampling period. Let

Ts be the sampling period. With sparsity assumption as in [18], we represent the ANS

activation as u(t) =
∑K

k=1 u[k]δ(t− kTs) where u[k] is the amplitude of the impulse during

the ANS activation at time kTs; here, u[k] is zero if there is no impulse in the stimuli. Here,

we set the parameter η = 0.5 similar to [140]. We represent the continuous state space

model as follows,

ṡ(t) = Acs(t) +Bcu(t),

and ySC(t) = Ccs(t) + ν(t),

where, s(t) =

[
s1(t) s2(t) s3(t)

]⊤
,

Ac =


− 1

τr
0 0

η
τr

− 1
τp

0

1−η
τr

0 − 1
τd

, Bc =


1

0

0

,
and Cc =

[
0 1 1

]
. The phasic and tonic components of the SC can be represented as

follows,

yp(t) = Cc,ss(t) + νs(t)

and ys(t) = Cc,ps(t) + νp(t),
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where Cc,p =

[
0 1 0

]
, and Cc,s =

[
0 0 1

]
. The discretized state-space model is

as follows,

s[k] = Ads[k − 1] +Bdu[k] (91)

and ySC [k] = Cds[k] + ν[k], (92)

where s[k], y[k] ∈ R, u[k], and ν[k] denote the state vector, the observation, ANS activation,

and the measurement error in discrete domain. The vector u = [u[1] u[2] · · · u[K]]⊤

represents the ANS activation over the duration of SC data. Here, Ad = eAcTs , Bd =∫ Ts

0 eAc(Ts−ρ)Bcdρ, and Cd = Cc. We further define the tonic and phasic component.

Here Ts represents the sampling frequency. With this discrete state-space representa-

tion, we perform deconvolution utilizing the scalable iterative re-weighted Bayesian filter-

ing based expectation-maximization (EM) approach proposed in [140] to identify u[k], ∀k ∈

{1, 2, 3, . . . ,K}, i.e., the discretized version of u(t) as well as the physiological system param-

eters. We will refer to this deconvolution algorithm as ‘bayesianEDA’. The deconvolution

is performed on a downsampled clean signal with 4 Hz sampling frequency.

6.2.9 Isolating Respiration Related Skin Conductance Activation

To isolate the respiration related activation of the SC, deep breaths are needed to be

detected as only deep breaths are responsible for such SC responses. We have considered

two aspects of respiration for the detection of a deep breath. Firstly, the deep breath

takes a bit longer time to take. Secondly, the deep breath generates higher stress on the

respiration belt, i.e., the corresponding recorded voltage from the transducer will have a

higher amplitude. We only considered the respiration signals that are not motion corrupted

based on manual eyeballing.

Firstly, we perform a continuous wavelet transform of the respiration signal. From all

wavelet coefficients, we keep the ones that relate to 0.05 − 0.25 Hz frequency components
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and perform an inverse wavelet transform to obtain the reconstructed respiration signal.

This way we remove any potential high-frequency components related to normal breathing

and noise along with any potential DC component related to the baseline shift. Then we

perform moving average filtering with a window size of 5 seconds on the absolute value of

the respiration signal. Here, the window size is selected to be around the maximum length

of a normal breath, which is about 5 seconds. The moving average of the absolute value

of the respiration signal will be higher where the respiration belt stress is higher. We use

‘movmean’ function from MATLAB [141]. Then we obtain the moving standard deviation of

the moving mean signal with a window of 30 seconds. Next, we take the sample-wise ratio of

the moving mean signal and the moving standard deviation signal. This ratio standardizes

the signal based on the 30 seconds window. The standardization accounts for different

levels of fluctuations related to variable tightness levels of the belt. Variability in the belt

tightness levels of the transducer belt may originate from changes in the participants’ pose

or changes in the belt position during the experiment. Next, we subtract the mean from

the ratio signal and multiply it by 3. Finally, we perform a sigmoid transformation to map

the signal between 0 to 1 to represent probability. We define this probability as p1[k].

Secondly, we perform peak detection on the wavelet reconstructed respiration signal and

peak detection on the negative of it. For peak detection, we use ‘findpeaks’ from MATLAB

with default settings [141]. We take both peaks from the reconstructed signal and the neg-

ative of the reconstructed signals and their locations to perform an spline interpolation.

Then we obtain a moving standard deviation of the interpolated signal with a window of

90 seconds. Finally, we take sample-wise ratio of the interpolated signal and the moving

standard deviation signal. This ratio standardizes the signal based on the 90 seconds win-

dow and accounts for the different level of fluctuations with different tightness levels of the

transducer belt because of the change in the participants pose. Finally, we multiply the

ratio signal with 10 and perform a sigmoid transformation to map the signal between 0

to 1 to represent probability. We define this probability as p2[k]. We multiply these two
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probabilities to obtain one probability signal representing the probability of a deep breath.

Lets denote this probability as p[k]. Therefore, we can write p[k] = p1[k]p2[k]. We ob-

tain the probability with 100 Hz sampling frequency and then downsample to match the

deconvolution results.

After the deconvolution with BayesianEDA algorithm to obtain the ANS activation,

we define the respiration induced activation as u[k]p[k] and the direct ANS activation as

u[k](1 − p[k]). Here the deconvolution with bayesianEDA algorithm is performed in 4 Hz.

Therefore, p[k] is downsampled at same sampling frequency as u[k]. Finally, we obtain

u[k]p[k] and u[k](1 − p[k]) to isolate the respiration induced and direct ANS induced acti-

vation, respectively.

6.3 Results

6.3.1 Simulation Study

The objective of the simulation study is to investigate the performance of four different

adaptive filters in artifact reduction from SC data. For the simulation study, we first

generate a reference noise signal and then perform a nonlinear transformation to add it to

the raw signals from the publicly available dataset in [57]. The noise reference is generated

by the summation of a sine wave and a square wave where the amplitude and frequencies are

randomly varied. For the simulation purposes, the amplitudes of the waves are sampled from

a Gaussian distribution every 1 second with the mean of 20% of the standard deviation of

the corresponding SC recording. On the other hand, the standard deviation of the random

amplitude has been selected to be 5% of the standard deviation of the corresponding SC

recording. Similarly, for the frequencies, we sampled every 0.5 seconds randomly from a

Gaussian distribution of mean 1 Hz and variance 0.25 Hz. We also generate added zero

mean Gaussain noise with 0.2 standard deviation. The sampling frequency for discretization

is selected as 100 Hz, which same as the sampling frequency of the dataset. We utilize the
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Figure 49: Examples of Artifact Reduction Results using Simulated Noise
Source.

following transformation for simulating the artifact corrupted SC signal as follows,

ySC [k] = yDSC [k] + (h ∗ n)[k] + c1(n[k])
2 + c2(n[k])

3. (93)

where h is a filter representing the transformation of the noise. We generate it by first by

drawing 50 samples from from zero mean Gaussian distributed number to create a vector

hr then normalized by dividing it by its norm to find the filter, i.e. h = |hr|
||hr||2

. Furthermore,

c1 and c2 are randomly sampled from Gaussian distributed random variables with standard
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Figure 50: Inference Performance of ANS Activation After Deconvolution Algo-
rithm After Artifact Removal with Different Filters.

deviation of 0.1 and 0.01. Here, yDSC represents the SC signals from the publicly available

datasets. k denotes the kth sample. We successfully utilized the adaptive filter for artifact

removal with parameters α = 0.02 and λ = 0.999995. These values were selected by trial and

error and eyeballing results for all 26 simulated data corresponding to the 26 participants

in [57]. Figure 49 shows results from LMS, V2-LMS, RLS, and V2-RLS filtering. Subplots

from top to bottom in Figure 49 shows the artifact removal performance with LMS filter,

V2-LMS, RLS, V2-RLS filter with a single noise reference. The visual depiction shows that

the adaptive filters are able to remove most of the simulated noise. The result also shows a

qualitative illustration that RLS and V2-RLS are performing better in terms of their ability

to follow the ground truth. From our analysis, we observed that for 5 participants, LMS
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and V2-LMS filter results became unstable and could not be used for further analysis. On

the other hand, the results from RLS and V2-RLS filters were always stable.

Utilizing the stable adaptive filtered results, we deconvolve the artifact reduced SC signal

to perform deconvolution with the bayesianEDA algorithm [140]. Figure 50-(a) shows an

example deconvolution result showing the inferred ANS activation from the artifact reduced

signal. Furthermore, we utilize the estimated ANS activation u(t) in distinguishing between

event-related SCRs and non-event-related SCRs. Here the events are hearing loud sound

events. First, we label all nonzero elements in estimated u[k] ∀k as the positive class if

they are within 5 seconds after a loud sound event was heard by the participant and other

impulses as the negative class. We consider the values of the nonzero elements in u[k] as the

score for the classification within the participants for investigating the receiver operating

characteristic (ROC) [69, 70]. Figure 50-(b) shows the ROCs obtained from the filtered

signal from FIR lowpass filter with 0.5 Hz cut-off, LMS adaptive filter, RLS adaptive filter,

and V2-RLS adaptive filter. Figure 50-(c) shows the corresponding area under the curve

(AUC) of the ROCs. The result shows that RLS filtered signals yield the highest AUC

(≈ 0.738).

6.3.2 Experimental Study

We tried all types of adaptive filters on the experimental data with different settings,

however, only RLS filter provided stable results while learning. Therefore, we only present

the results of RLS filter for the experimental study. The SC and three-axis accelerometer

signals are resampled to 100 Hz. Based on the adaptive filtering scheme shown in Figure

48, the desired signal has a sampling frequency of 100 Hz and the noise reference has a

sampling frequency of 300 Hz. The adaptive filter length is also L = 300 to consider an

1 second window. For the forgetting factor, we first tried with the value that has been

used for the simulated data. Based on the results, we relaxed the forgetting factor to allow

the filter to readjust itself for newer data. Based on trial and error, λ = 0.999 seemed to
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work well for our study. Figure 51 shows an example adaptive filtered result utilizing the

RLS adaptive filter. In this figure, the first left panel depicts raw (artifact corrupted) and

cleaned (artifact reduced) SC data. The first right panel shows the corresponding power

spectrum density. The next three panels show three accelerometer channel recordings on

the left and their corresponding power spectrum density on the right. Figure 51 also shows

that some of the peaks that are seen on the accelerometer captured motion information

power spectrum density are also shown in seen in the raw experimental SC signal power

spectrum density. RLS adaptive filter could successfully remove those peaks. Figure 51,

also depicts that there is a significant amount of energy reduction in the power spectrum

density. Additional results for all participants are provided in Section A.4. Figure 52 shows

some zoomed in segments from all trials of Participant 1 and 2, where each panel in subplots

(a) and (b) denotes the zoomed in plots with different segments from Participant 1 and 2.

Black and red lines denote the raw SC data and artifact reduced SC data. The figures

provide a qualitative illustration of RLS adaptive filter ability to reduce artifacts utilizing

accelerometer information.

Furthermore, we attempt to identify the SCR activation related to deep breath. We

only utilized the respiration signal for Trials 1-5 for Participant 1 as other respiration

signals seemed to be heavily corrupted with artifacts. First, we successfully detect the

respiration based on the method described in Section 6.2.9. Figure 53 represent the results

from the deep breath detection. In each panel in Figure 53, the top subplot denotes the

raw respiration signal recorded from the respiration belt, the bottom subplot shows the

estimated detection probability p[k] (blue lines). The light red and green shaded regions

represent the intermediate probabilities p1[k] and p2[k], respectively. Next, we deconvolve

the motion artifact reduced SC signals and identify the respiration induced SC activation

based on the estimated probability p[k]. Figure 54 shows results from the identification

of respiration induced activation of SCR generation. In each panel in Figure 54, the top

subplot denotes the artifact reduced (red stars) and the reconstructed SC (black lines),
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the bottom subplot shows the separated respiration induced activation and the pure ANS

generated activation.
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Figure 51: Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 1, Trial 5 Dur-
ing In-Place Jogging.

6.4 Discussion and Conclusion

From the simulated study with publicly available experimental SC data, we can see that

the RLS filter is performing better than other filters in terms of retaining the information

about the event-related responses such that the detection of such events is detected. More-

over, the linear RLS filter is has been the most stable one. Although we have considered

some nonlinearities in the noise reference transformation, the RLS filter was able to model

the transformation in a time-varying piecewise linear fashion. On the other hand, LMS,

V2-LMS, and V2-LMS filters suffer from instability and the high number of parameters
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(a)

(b)

Figure 52: Closer View of Different Segments of the Motion Reduced Results for
All Trials from Both Participants.
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Figure 53: Deep Breath Detection Results for Five Trials of Participant 1.

required to update each step compared to the number of observations used during the gra-

dient calculation. Further analysis with deconvolution on artifact-reduced SC data and

consequent loud sound detection confirms that the RLS filter is reasonably improving the

detection capability of event-related activations for SCR generation.

From the analysis of our experimental study, we see that only the RLS filter was able to

achieve stability in terms of reducing the motion artifact. However, none of the other filters

were able to achieve stable results. The power spectrum density change also confirms that

there is a significant reduction in the spectrum peaks that are generated by motion. We

observe some peaks in the accelerometer power spectrum. The similar which are also seen

in the power spectrum Raw SC data denoting the artifacts. After artifact removal, these

spectrum peaks are not visible anymore. In Figure 52, we also see that how different types

of artifacts are reduced. In some cases, we have seen that the RLS filter output becomes
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Figure 54: Separation of Respiration Induced Electrodermal Activity from the
Inferred ANS Activation for Five Trials from Participant 1.

more noise than the input. These scenarios suggest significant changes in the transformation

system between the accelerometer data for artifact generation. The RLS filter takes some

time to learn the new system and inaccuracy in the artifact reduction can be seen during

the learning phase.
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Furthermore, we see that the simple heuristic approach can lead to reasonably successful

identification of deep breath as well as deep breath related SCR responses. This way, direct

ANS activation can be isolated from the respiration related activation. Thus, respiration

related alterations of the SC data can be disregarded in some applications of autonomic

arousal estimation by modifying the state-space formulations in [10, 106, 44, 83]. However,

we have considered some intuition-based heuristic approaches for deep breath detection.

The heuristic approach that has been developed for these five trials is just to show the

feasibility of such approach. However, the deep breath (specifically, that are responsible

for the SCR generation in SC data) detection algorithms can be further improved utilizing

data-driven machine learning approach with a large amount of data.

In this study, we have generated simulated noise with some arbitrary settings. Therefore,

it might not be capturing the whole space of artifact corruption. However, it has allowed us

to obtain an idea of how different the adaptive filter might perform in real-world settings.

During the experimental data collection, the participants observed the recordings shown on

the screen and tried to generate artifacts by hand waving and in-place jogging on multiple

trials, which might be slightly different than the reality. However, this experimental dataset

is a stepping stone to evaluate motion artifact contaminated data and corresponding artifact

reduction algorithms. In the future, we plan to perform more experiments with different

scenarios and different activities such that the dataset approximately represents the real-

world motion artifact space. For this study, the experimental study has been beneficial to

evaluate adaptive filters in a qualitative manner. One possible future direction would be to

perform different physical activities during a loud sound event experiment similar to [57].

We plan to perform the experiment by placing SC sensors and noise reference sensors on

different skin locations such as the wrist or foot.

As mentioned in both experimental and simulated study results, there have been many

cases of unstable results. RLS filter seems to be more stable for the selected value for

both simulated and experimental data. LMS and V2-LMS have shown instability for some
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examples of simulated data (5 out of 26 participants) and have been unstable for all ex-

perimental datasets that we have analyzed. V2-RLS also show unstable results only for

the experimental dataset. For the unstable results, the coefficients of the adaptive filter

values are exploding to infinity. To handle stability, we plan to utilize techniques such as

regularization in the cost function similar to [142]. Another possible future direction for

handling instability is to use techniques such as leaky LMS/RLS algorithms [143, 144].

We have only utilized accelerometer data for the noise reference. We observe that

the accelerometer data-based noise reference is helping to reduce a significant amount of

artifacts. However, we only placed the accelerometer on one of the electrodes, while the

motion artifact could be a resultant of motion on both electrodes on both hands. Therefore,

an additional accelerometer on the other electrode can potentially improve the results.

Moreover, accelerometers are not good at capturing some types of motion information. For

example, if someone bends their finger, resulting in some pressure on the electrodes will

lead to an magnitude artifact that might not be captured in the accelerometer reading.

Moreover, orientation of the hand might also lead to a change in the sensor placement.

Therefore, more noise reference sensors such as gyroscope, magnetometer, and pressure

sensors should be investigated in a systematic manner.

From these results, we can see RLS filter has reasonably performed in terms of reducing

the motion artifact. As RLS filters are updated in each time step, the resulting filter acts as

a piecewise linear transformation of the noise reference x[k] such that the error signal e[k] is

minimized. Thus, the nonlinearity that has been introduced by the RLS filter might not be

enough. On the other hand, the Volterra-series based nonlinearity requiring a large number

of coefficients might lead to overfitting and instability during learning. One potential future

direction of this study is to investigate neural network-based [145] or functional link-based

[146] adaptive filters to better realize the nonlinear transformation with lower number of

coefficients.
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7 Conclusion and Future Directions

7.1 Conclusion

The current state-of-the-art lacks a physiology-motivated approach for scalable and ro-

bust identification of brain activation (ANS activation). In this thesis, we study physiology-

motivated state-space models and the corresponding robust and scalable methodology for

the inference of brain activation.

7.1.1 Identification of Sympathetic Nervous System Activation from Skin Con-

ductance: A Sparse Decomposition Approach with Physiological Priors

In Chapter 2, we proposed an approach to decompose SC recordings into their con-

stituents to accurately identify the SNS-generated neural stimuli to sweat glands and the

physiological system parameters. We propose a GCV and coordinate descent-based de-

convolution algorithm for simultaneously estimating the tonic component, neural stimuli,

and the physiological system parameters by automatically balancing the smoothness of the

tonic component, the sparsity of neural stimuli, and the residual error. Analyzing the exper-

imental and simulated data, we showed that our approach successfully uncovers the neural

stimuli due to the known auditory stimulation times. We have performed comparisons with

six widely used previous approaches and have qualitatively shown that our approach out-

performs previous approaches in terms of balancing between discarding noise spikes and

capturing significant neural impulses.
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7.1.2 Robust Inference of Autonomic Nervous System Activation using Skin

Conductance Measurements: A Multi-Channel Sparse System Identifi-

cation Approach

In Chapter 3, we proposed a physiological state-space model for multichannel SC record-

ings from different regions of skin. Moreover, we proposed a concurrent deconvolution al-

gorithm for simultaneously collecting multichannel SC data. Analysis on experimental and

simulated data showed that the algorithm successfully recovers the neural stimuli due to the

known auditory stimulation times. Our proposed method and algorithm results in integrat-

ing multiple simultaneously collected SC data to recover the ANS stimuli robustly in the

presence of noise and different artifacts. Moreover, we applied our approach to concurrently

deconvolve simultaneously recorded signals from multiple skin regions in real-world driving

stress conditions. Using the concurrently deconvolved driver’s stress data, we were able to

achieve a better estimate of stress states than the previous study. The state-space model

formulation and deconvolution algorithm successfully recover the stimuli.

7.1.3 Sparse Deconvolution of Electrodermal Activity via Continuous-Time

System Identification

In Chapter 4, we present a sparse deconvolution approach utilizing continuous-time

system identification to account for the challenge of nonconvex cost function for system

identification. We use cvxEDA to separate the phasic component of SC data and then

perform deconvolution to recover the underlying neural stimuli. We model the phasic com-

ponent of the signal using a state-space model similar to the models in [42, 18, 19]. [18, 19].

Then, we propose a two-step coordinate descent deconvolution scheme to identify the sys-

tem parameters and the underlying neural stimuli. We use a system identification approach

that recovers the system parameters and neural stimuli in the HMF domain. We incorpo-

rate an adaptive band selection scheme in HMF domain to have the best possible estimate.

We also use GCV-FOCUSS+ to solve the inverse problem and find the neural stimuli in
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HMF domain. We apply our algorithm to analyze the SC data collected from subjects who

were performing tasks involving ‘cognitive stress’. Finally, to validate our algorithm, we

simulate noisy data based on the results obtained from the deconvolution of experimen-

tal data. We illustrate that our algorithms successfully deconvolve noisy simulated data.

We also compare the performance of our method with cvxEDA [23] and LedaLab [21] al-

gorithms. Our algorithm outperforms both these algorithms in finding the stimuli while

balancing the sparsity and filtering out the noise. Moreover, our algorithm estimates the

system parameters while the other two algorithms assume fixed known system parameters.

7.1.4 Physiological Characterization of Electrodermal Activity Enables Scal-

able Near Real-Time Autonomic Nervous System Activation Inference

In Chapter 5, we have proposed a comprehensive physiological state-space model for

a complete understanding of the SC recording fluctuations. Our proposed comprehensive

model enables us to design a scalable autonomic nervous system activation inference lever-

aging Bayesian filters. We utilize an expectation-maximization framework for deconvolution

where the expectation step is carried out via iterative reweighted Bayesian filtering and

smoothing-based sparse recovery. Furthermore, we utilized generalized cross-validation for

tuning the sparsity level of ANS activation. With simulated and experimental studies, we

show the scalability of our approach. Comparison with other previous approaches reveals

that our approach outperforms all previous approaches in terms of the detection of event-

related SCRs. The proposed new model unlocks a whole new perspective on the analysis

of EDA. The scalable deconvolution framework will lead to real-world deployment of the

autonomic nervous system inference activation algorithm with SC measurement.
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7.1.5 Evaluation of Adaptive and Bayesian Filters for Artifact Removal from

Electrodermal Activity Leveraging Noise Source Reference

In Chapter 6, we have investigated linear and nonlinear adaptive filters in terms of arti-

fact reduction performance. We have utilized the scalable Bayesian filter-based deconvolu-

tion algorithm to deconvolve the SC data to identify the activations. We utilized simulated

data utilizing publicly available datasets to quantitatively and qualitatively investigate dif-

ferent filters. Furthermore, we perform an experimental study to qualitatively investigate

different filters in terms of reducing real-world motion artifacts. The results show that the

linear recursive least-squares filter is performing best in terms of reducing motion artifact as

well as the stability during the filter coefficient learning. We further show that deep breath

detection and scalable deconvolution can be utilized to identify the deep breath-related ac-

tivations and corresponding SCRs. The study is an important step towards deploying SC

signal-based ANS activation detection [53, 54, 52, 140], arousal estimation [10, 44, 83, 106],

and corresponding control design for an effective wearable brain-machine interfacing archi-

tecture for emotional stress management [113, 114].

7.2 Future Directions

The thesis opens up many future directions that can potentially disrupt the current

practices. The future direction ranges from further development of novel algorithms to the

implementation of these algorithms for closing the loop with appropriate control for mental

well-being.

7.2.1 Utilization of Different Sparse Recovery Algorithms

Within the proposed framework, we have only IRLS based sparse recovery algorithms.

One of the potential directions is to leverage the orthogonal matching pursuit (OMP) based

greedy approaches [147]. In some applications, OMP might provide faster results. Fur-

thermore, other sparse recovery algorithms can be explored to evaluate their performance.
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Moreover, there are many ways to impose the sparsity priors during the sparse deconvolu-

tion. Another future direction is to carry out thorough investigations of different sparsity

priors within the proposed deconvolution framework for different applications [148]. Fur-

thermore, the utilization of the recent development of deep-learning-based sparse recovery

approaches can also be carried out to remove some of the hurdles within the proposed

framework [149, 150, 151].

7.2.2 Extention of Proposed Methods for Scalable Mutli-channel Concurrent

and Nonlinear Implementation

In this thesis, we have proposed how to model both tonic and phasic components along

with the decomposition algorithms by adaptively finding the regularizing parameters for

smoothness and sparsity [8, 41]. On the other hand, we also have shown how to combine

multichannel phasic components for concurrent deconvolution [53, 54]. In the future, a com-

bination of these two approaches can be carried out to concurrently decompose the tonic

and phasic components from multichannel SC data and infer the common ANS activation.

Concurrent deconvolution with concurrent tonic-phasic decomposition will lead to a more

reliable inference of individual arousal level, similar to our previous study in [54]. Further-

more, we have proposed a new physiological model that has the ability to comprehensively

describe the SC dynamics. One of the future goals is to extend this approach for multi-

channel SC recording [53, 54]. We have proposed a nonlinear state-space model to explain

the physiology and then linearized it for a scalable implementation. A potential future

direction is to design a proper extended Kalman filter/smoother or particle filter/smoother

that can be designed to consider the nonlinearity. Finally, neural networks can be utilized

similar to the work in [152] to represent the generalized nonlinear state-transition matrix

for extending this work to learn any dynamical system with many states that have a sparse

innovation term as the input.
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7.2.3 Concurrent Artifact Removal and Deconvolution with Unified Bayesian

Filter

In this thesis, we have evaluated different adaptive filters for motion artifact removal.

One of the future directions would be to evaluate Kalman filter-based adaptive filter for

motion artifact reduction for SC data similar to [153]. On the other hand, we have proposed

a Bayesian filtering and smoothing approach for deconvolution. The ideal future direction

would be to combine the deconvolution filter and the Kalman filter-based adaptive filter for

the concurrent deconvolution and motion artifact framework.

7.2.4 Deep-Learning for Deconvolution and Artifact Reduction

As a future direction, physiology-informed deep neural net-based architecture can be

utilized for the deconvolution problem similar to physics-informed deep learning approaches

[154]. In this case, the physiological dynamics can be described with the state-space model

and can be integrated into the loss function during the training of the deep neural net. This

way, an infinite resolution of the timing of the activation can be obtained. On the other

hand, we have evaluated nonlinear Volterra series adaptive filters in our study, however,

the Volterra series suffer from a high number of parameters and they become unstable

during training. An alternative future direction to the Volterra series is to train shallow

neural networks to capture the non-linearity [155]. Furthermore, experimental data with

and without motion artifacts can be utilized to train Generative Adversarial Networks to

remove artifacts [156].

7.2.5 Experimental Design for Real-World Implementation

One of the future directions of this thesis is to design experimental studies that resemble

different real-world scenarios. Rigorous experiments with healthy and patient populations

will lead to the identification of the bottlenecks of the proposed algorithms. Studies may

include experiments with event-related stimuli [57], tasks requiring continuous cognitive or
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emotional stress [95], and data collection in real-world settings [157]. The experimental

study should consider both laboratory and ambulatory settings. An example of the experi-

ment with event-related stimuli would be to play loud sounds (e.g., 1-second long Gaussian

noise burst with 85 dB of loudness level) or provide sudden electric shocks while participants

are performing work-related or learning-related real-world tasks. Such tasks include using

computer applications to carry out office work, doing homework, taking part in sports, and

doing physical activity. Experiments with event-related stimuli can also be carried out on

patients (e.g., patients with diabetic neuropathy) to compare them with a healthy popula-

tion. Statistical analysis on the multichannel deconvolution results from such experimental

data may lead to system theoretic understandings of corresponding diseases similar to [55].

Other examples of the experiment may include participants listening to arousing or calm-

ing music while taking part in physical exercise. One of the current limitations in current

datasets is that the number of participants is very low. This potentially prevents us from

leveraging deep-learning-based generalized inference methods. Furthermore, experimental

studies with a reasonable number of participants and trials will lead to better fine-tuning

of the current algorithms and future directions for reliable estimation.

7.2.6 Close-loop Control and Other applications

The obtained ANS activities from the single/multi-channel SC recording can be used

to track the cognitive arousal state of an individual [10, 44, 106]. For further accurate

estimation of emotional arousal, one of the future directions is to utilize the inferred ANS

activity from SC recording with our approach and to combine with other physiological

signals similar to [107, 108, 109, 110, 47, 111, 112]. The proposed new model as well as the

scalable ANS inference approach has enabled us to design a scalable control architecture

to regulate the arousal level similar to the proposed framework in [113, 114, 115, 116].

Finally, the proposed sparse deconvolution approach has applicability in different fields

such as calcium deconvolution, EEG sleep spindle detection [105], hormone deconvolution
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[56, 55, 158], etc.
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Walach. Respiration-related artifacts in eda recordings: introducing a standardized

method to overcome multiple interpretations. Psychological reports, 93(3):907–920,

2003.

[138] Gaang Lee, Byungjoo Choi, Houtan Jebelli, Changbum Ryan Ahn, and SangHyun

Lee. Reference signal-based method to remove respiration noise in electrodermal

activity (EDA) collected from the field. In Computing in civil engineering 2019: Data,

199



sensing, and analytics, pages 17–25. American Society of Civil Engineers Reston, VA,

2019.

[139] Paulo SR Diniz. Adaptive filtering, volume 4. Springer, 1997.

[140] Md Rafiul Amin and Rose T Faghih. Physiological characterization of electrodermal

activity enables scalable near real-time autonomic nervous system activation inference.

Manuscript submitted for publication.

[141] The Mathworks, Inc., Natick, Massachusetts. MATLAB version 9.9.0.1467703

(R2020b), 2020.

[142] Jacob Benesty, Constantin Paleologu, and Silviu Ciochina. On regularization in

adaptive filtering. IEEE Transactions on Audio, Speech, and Language Processing,

19(6):1734–1742, 2010.

[143] Khaled A Mayyas and Tyseer Aboulnasr. Leaky lms: A detailed analysis. In Pro-

ceedings of ISCAS’95-International Symposium on Circuits and Systems, volume 2,

pages 1255–1258. IEEE, 1995.

[144] Eisuke Horita, Keitaro Sumiya, Hiroyuki Urakami, and Satoru Mitsuishi. A leaky

RLS algorithm: Its optimality and implementation. IEEE transactions on signal

processing, 52(10):2924–2936, 2004.

[145] S Selvan and R Srinivasan. Removal of ocular artifacts from EEG using an efficient

neural network based adaptive filtering technique. IEEE Signal Processing Letters,

6(12):330–332, 1999.

200



[146] Danilo Comminiello, Michele Scarpiniti, Luis A Azpicueta-Ruiz, Jerónimo Arenas-
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A Appendix

A.1 Additional Results for Chapter 2

Figure 55, 56, 57, 58, 59, 60, 61, 62, 63 and 64 shows deconvolution results from all

five datasets where in each panel, i) the top sub-panel shows the experimental SC signal

(blue stars), the reconstructed SC signal (red curve), the estimated tonic component (green

curve), and the timings of the auditory stimulations (gray vertical lines); ii) the bottom

sub-panel shows the estimated phasic component (blue curve), estimated neural stimuli

timings and amplitudes (black vertical lines) due to SNS activation and the timings of the

auditory stimuli (gray vertical lines). The number before the hyphen in the participant

ID represents the dataset ID. Table 10 shows the estimated rise times (τr), decay times

(τd), number of SCRs (||u||0), regularization parameters (λ1 and λ2), multiple correlation

coefficient (R2), and deconvolution run-times for all participants from dataset 1. Figure 65

and 66 shows the quantile-quantile plots of the SC model residual errors for all the thirteen

female participants and thirteen male participant from dataset 1. Each of the panels in

Figure 65 and 66 displays the quantile-quantile plot of the SC model residual errors; the

graph shows that the residual errors are Gaussian. Slight deviation from the straight line

suggest that there is a scope of improvement in the model. The number before the hyphen

in the participant ID represents the dataset ID. The quantile-quantile plots suggests that

the model captures the SC dynamics, and the SC residual errors have a white Gaussian

structure. However, slight deviations from the straight line also suggest that there is a scope

of improvement in the current model.

Figure 67 and 68 shows deconvolution results from simulated phasic SC data for thirteen

female and thirteen male participants simulated using the results obtained from experimen-

tal data from dataset 1. In each of the panels in Figure 67 and 68, i) the top sub-panel

shows the ground truth for SC signal (blue stars), the reconstructed SC signal (red curve),

the ground truth for tonic component (red stars), the estimated tonic component (green
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Figure 55: Estimated Decomposition of the Experimental SC Signals for Thirteen
Female Participants from Dataset 1.

curve), and ground truth for the neural stimuli (pink vertical lines); ii) the bottom sub-

panel shows the estimated phasic component (blue curve), estimated neural stimuli timings

and amplitudes (black vertical lines) due to SNS activation and the ground truth for the

neural stimuli (pink vertical lines). The number before the hyphen in the participant ID
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Figure 56: Estimated Decomposition of the Experimental SC Signals for Thirteen
Male Participants from Dataset 1.

represents the dataset ID. The quantile-quantile plots in Figure 69 and 70 also show that

the residuals error follow Gaussian structure. In this two figures, each of the panels displays

the quantile-quantile plot of the SC model residual errors; the graph shows that the residual

errors are Gaussian. The number before the hyphen in the participant ID represents the
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Figure 57: Estimated Decomposition of the Experimental SC Signals for Thirteen
Female from Dataset 2.

dataset ID. It should also be noted that we have used eight different random initialization

values for SCR shape parameters in parallel in eight different CPU cores while solving the

optimization problem in (15). The run-time reported in Table 10 only shows run time for

the result correspond to the initialization that took maximum time. Table 11, shows the

results from simulated data. In Table 11, Here τ̂r and τ̂d denote the estimated rise time

and decay time for the simulated SC data. The SC signal is simulated with 25 dB Gaussian

noise.
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Figure 58: Estimated Decomposition of the Experimental SC Signals for Thirteen
Male from Dataset 2.

To perform an efficacy analysis of how our algorithm performs in distinguishing be-

tween event-related and non-event-related SCRs, we derive receiver operating characteris-

tics (ROC) curves. We label all the SCRs that have been detected within 5 seconds after

auditory stimulations as event-related SCRs (positive class). The rest of the detected SCRs

are labeled as the non-event-related SCRs (negative class). We consider the amplitudes

of the SCRs as the classification scores within the subjects for obtaining the ROC curves

[69, 70]. Figure 71 shows the individual ROC curves with the area under the curve (AUC)

ranging from 0.5611 to 1 with a median of 0.8636 and a mean of 0.9130. In this figure, each

panel shows the ROC curve for each participants in Dataset 1 based on the estimated u

from our approach. The last panel shows the overall ROC obtained by combining all the
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Figure 59: Estimated Decomposition of the Experimental SC Signals for Thirteen
Female from Dataset 3.

normalized u from each of the individual participants. The number before the hyphen in

the participant ID represents the dataset ID. The corresponding overall AUC is 0.864 for

Dataset 1.

To perform a further comparison between the deconvolution results from different al-

gorithms, we have added noise to the raw experimental data. The noise level is selected

in a way that the signal SNR is 25 dB for the corresponding phasic component estimated

during deconvolution. In the case of, cvxEDA we have used three configurations, two with

fixed parameters within the bound mentioned in [23] and one with optimized parameters

obtained from our approach. We performed deconvolution on six participants as an exam-

ple. Figure 72-77 show the comparative results from each participants. In Figure 72-77,
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Figure 60: Estimated Decomposition of the Experimental SC Signals for Thirteen
Male from Dataset 3.

each panel shows the decomposition performance based on Experimental SC signal with 25

dB noise with respect to the corresponding phasic component based on the corresponding

deconvolution results. The top to bottom shows the result using CDA - LedaLab [29], DDA

- LedaLab [21], DCM - PsPM [22], MP - PsPM [50], cvxEDA with three different configu-

rations [23], sparsEDA [24], and our proposed approach, respectively. In each panel, blue

stars represent the simulated data, pink vertical lines represent the ground truth neural

stimuli, black vertical lines represent the recovered neural stimuli, the green curve repre-

sents the tonic component, the black dotted curve represents the tonic component result

obtain with the our previous deconvolution without any noise, and the red curve represents

the reconstructed signal. The estimated neural stimuli for all the panels except for the last
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Figure 61: Estimated Decomposition of the Experimental SC Signals for Eleven
Female from Dataset 4.

one is normalized from zero to one to avoid any amplitude scaling originating from different

methods for a fair comparison. Table 12 and 13 show the number of inferred pulses and

corresponding multiple correlation coefficients R2. As sparsEDA does not provide both

the phasic and tonic components, we did not calculate the corresponding R2. R2 values

are almost similar for all the approaches including ours. However, the results show that

except for our approach and sparsEDA, other methods detect more numbers of spikes in

neural stimuli, and therefore, there are potential chances of overfitting in the results from
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Figure 62: Estimated Decomposition of the Experimental SC Signals for Eleven
Male from Dataset 4.

other algorithms. From Figure 72-77, we further observe that sparsEDA is missing a lot of

obvious pulses. Figure 72-77 also show that with different values of τr and τd, how cvxEDA

performs. The results reveal that the different fixed physiological parameters can lead to a

different solution for the neural stimuli. For example in Figure 73 and 75, with the opti-

mized parameters from our approach, the amplitude of the detected impulses reduced after

detection of the first neural stimuli impulse after an auditory stimulation compared to the

fixed parameters. The solutions have improved when the optimized τr and τd are used. It
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Figure 63: Estimated Decomposition of the Experimental SC Signals for Eleven
Female from Dataset 5.

can be further improved, if we manually tune the regularization related to the smoothness

and sparsity penalization in their optimization formulation.

We have used the same knot size as our approach for the cubic B-spline functions in

all the comparisons with cvxEDA. On the other hand, we have kept the regularization

parameters in cvxEDA for the sparsity prior on u and energy prior on q to the default

value to show how optimizing it is improving in our approach. In the case of sparsEDA,

we have relaxed the constraints in a way that produces the least sparse solution as it tends
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Figure 64: Estimated Decomposition of the Experimental SC Signals for Eleven
Male from Dataset 5.

to provide an overly sparse solution. For all the other methods, we have considered default

parameters. Further, we have used a 4 Hz version of the signal while applying the other

algorithms and we compare it against our results obtained from the 2 Hz version signal.

This shows that our algorithm is performing better even if we have a lower number of

samples (i.e. compressed sensing regime).
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Figure 65: White Gaussian Structure in the Model Residual Errors for SC Data
Collected From Thirteen Female Participants.

A.2 Additional Results for Chapter 3

Figure 78 and 79 show deconvolution results from six female and six male participants,

respectively. In each of the panels in Figure 78 and 79, i) the top subpanel shows the experi-

mental (red stars) and the estimated (green curve) phasic components corresponding to the

middle phalanx of the hand; ii) the middle subpanel shows the experimental (blue stars) and

estimated (green curve) foot phasic component corresponding to the medial planar surface

of foot; and iii) bottom sub-panel shows the timings of the auditory stimuli (gray vertical
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Figure 66: White Gaussian Structure in the Model Residual Errors for SC Data
Collected From Thirteen Male Participants.

lines) and the estimated ANS activation timings and amplitudes (green vertical lines). Fig-

ure 80 and 81 shows the quantile-quantile plots of the phasic SC model residual errors for

the 6 female participants and 6 male participants from both channels. In both figures, each

of the panels displays the quantile-quantile plot of the Phasic SC model residual errors;

the graph shows that the residual errors are Gaussian. The quantile-quantile plot suggests

that the model captures the Phasic SC dynamics, and the phasic SC residual errors have

a white Gaussian structure. Figure 82 and 83 show deconvolution results from simulated
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Figure 67: Estimated Decomposition of the Simulated SC Signals with 25 dB
SNR for Thirteen Female Participants from Dataset 1.

phasic SC data for six female and six male participants, respectively. In both figures, the

panels show the deconvolution results on the simulated data for six female participants,

respectively. In each panel, i) the top subpanel shows the simulated (blue stars) and the

estimated (red curve) phasic component corresponding to the middle phalanx of hand; ii)
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Figure 68: Estimated Decomposition of the Simulated SC Signals with 25 dB
SNR for Thirteen Male Dataset 1.

middle panel shows the simulated (blue stars) and estimated (red curve) phasic component

corresponding to the the medial planar surface of foot; and iii) bottom sub-panel shows

the timings of the simulated ANS activation timings and amplitudes (gray line) and the

estimated ANS activation timings and amplitudes (red dashed line).
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Figure 69: White Gaussian Structure in the Model Residual Errors of SC Data
for the Simulated with the Corresponding Results for Thirteen Female
from Dataset 1.

A.3 Additional Results for Chapter 4

Figure 84 shows the quantile-quantile plots of the phasic SC model residual errors for

the six participants, suggesting that the model captures the SC dynamics, and that the

phasic SC residual errors have a Gaussian structure and are white. In Figure 84, each of

the panels displays the quantile-quantile plot of the SC model residual errors for each of

the 6 participants; the graph shows that the residual errors are Gaussian. Figure 85 shows
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Figure 70: White Gaussian Structure in the Model Residual Errors of SC Data
for the Simulated with the Corresponding Results for Thirteen Male
from Dataset 1.

the reconstructed signal that includes both tonic and phasic components. The value R2

for this case is higher than 0.95 for all participants. In Figure 85, each panel shows the

SC signal (sum of phasic and tonic components) (blue curve), the reconstructed SC signal

(sum of phasic and tonic components) (red dashed), the estimated neural stimuli timings

and amplitudes (black vertical lines with a circle on top) for each of the participants. The

estimation is done on phasic components using the proposed method; then, the previously

220



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Female Participant 1-1

AUC = 0.944

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Female Participant 1-2

AUC = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Female Participant 1-3

AUC = 0.867

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Female Participant 1-4

AUC = 0.889

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Female Participant 1-5

AUC = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Female Participant 1-6

AUC = 0.932

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Female Participant 1-7

AUC = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Female Participant 1-8

AUC = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Female Participant 1-9

AUC = 0.967

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Female Participant 1-10

AUC = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Female Participant 1-11

AUC = 0.875

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Female Participant 1-12

AUC = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Female Participant 1-13

AUC = 0.657

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Male Participant 1-1

AUC = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Male Participant 1-2

AUC = 0.925

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Male Participant 1-3

AUC = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Male Participant 1-4

AUC = 0.914

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Male Participant 1-5

AUC = 0.826

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Male Participant 1-6

AUC = 0.561

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Male Participant 1-7

AUC = 0.913

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Male Participant 1-8

AUC = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Male Participant 1-9

AUC = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Male Participant 1-10

AUC = 0.781

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Male Participant 1-11

AUC = 0.875

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Male Participant 1-12

AUC = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Male Participant 1-13

AUC = 0.862

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC: Dataset 1

AUC = 0.864

Figure 71: ROC curves for the sensitivity of Our Approach For Distinguishing
Between Event-Related vs Non-Event-Related SCRs.

separated tonic components are added to the estimated phasic components.

A.4 Additional Results for Chapter 6

Figure 86-97 shows the motion artifact reduction results from two participants for all

trials. In these figures, the first left panel depicts raw (artifact corrupted) and cleaned
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Figure 72: Performance Comparison of Proposed Approach with Existing Ap-
proaches for Noisy Experimental Data from Female Participant 1-1.

(artifact reduced) SC data; the first right panel shows the corresponding power spectrum

density; the next three panels show three accelerometer channel recordings on the left and

their corresponding power spectrum density on the right.
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Figure 73: Performance Comparison of Proposed Approach with Existing Ap-
proaches for Noisy Experimental Data from Male Participant 1-1.

223



5

10

15

S
C

 (
S

)

0

0.5

1

N
e

u
ra

l 
S

ti
m

u
li

(a
.u

.)

CDA - LedaLab

5

10

15
S

C
 (

S
)

0

0.5

1

N
e

u
ra

l 
S

ti
m

u
li

(a
.u

.)

DDA - LedaLab

5

10

15

S
C

 (
S

)

0

0.5

1

N
e

u
ra

l 
S

ti
m

u
li

(a
.u

.)

DCM - PsPM

5

10

15

S
C

 (
S

)

0

0.5

1

N
e

u
ra

l 
S

ti
m

u
li

(a
.u

.)

MP - PsPM

5

10

15

S
C

 (
S

)

0

0.5

1

N
e
u
ra

l 
S

ti
m

u
li

(a
.u

.)

cvxEDA (with 
r
 = 0.7 and 

d
 = 2)

5

10

15

S
C

 (
S

)

0

0.5

1

N
e
u
ra

l 
S

ti
m

u
li

(a
.u

.)

cvxEDA (with 
r
 = 0.7 and 

d
 = 4)

5

10

15

S
C

 (
S

)

0

0.5

1

N
e
u
ra

l 
S

ti
m

u
li

(a
.u

.)
cvxEDA (with optimized 

r
 and 

d
)

5

10

15

S
C

 (
S

)

0

0.5

1

N
e
u
ra

l 
S

ti
m

u
li

(a
.u

.)

sparseEDA

200 250 300 350 400

Time (seconds)

5

10

15

S
C

 (
S

)

0

50

N
e
u
ra

l 
S

ti
m

u
li

(
S

)

Our Approach

Figure 74: Performance Comparison of Proposed Approach with Existing Ap-
proaches for Noisy Experimental Data from Female Participant 1-2.
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Figure 75: Performance Comparison of Proposed Approach with Existing Ap-
proaches for Noisy Experimental Data from Male Participant 1-2.
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Figure 76: Performance Comparison of Proposed Approach with Existing Ap-
proaches for Noisy Experimental Data from Female Participant 1-2.

226



0

5

10

S
C

 (
S

)

0

0.5

1

N
e

u
ra

l 
S

ti
m

u
li

(a
.u

.)

CDA - LedaLab

0

5

10
S

C
 (

S
)

0

0.5

1

N
e

u
ra

l 
S

ti
m

u
li

(a
.u

.)

DDA - LedaLab

0

5

10

S
C

 (
S

)

0

0.5

1

N
e

u
ra

l 
S

ti
m

u
li

(a
.u

.)

DCM - PsPM

0

5

10

S
C

 (
S

)

0

0.5

1

N
e

u
ra

l 
S

ti
m

u
li

(a
.u

.)

MP - PsPM

0

5

10

S
C

 (
S

)

0

0.5

1

N
e
u
ra

l 
S

ti
m

u
li

(a
.u

.)

cvxEDA (with 
r
 = 0.7 and 

d
 = 2)

0

5

10

S
C

 (
S

)

0

0.5

1

N
e
u
ra

l 
S

ti
m

u
li

(a
.u

.)

cvxEDA (with 
r
 = 0.7 and 

d
 = 4)

0

5

10

S
C

 (
S

)

0

0.5

1

N
e
u
ra

l 
S

ti
m

u
li

(a
.u

.)
cvxEDA (with optimized 

r
 and 

d
)

0

5

10

S
C

 (
S

)

0

0.5

1

N
e
u
ra

l 
S

ti
m

u
li

(a
.u

.)

sparseEDA

200 250 300 350 400

Time (seconds)

2

4

6

8

S
C

 (
S

)

0

20

N
e

u
ra

l 
S

ti
m

u
li

(
S

)

Our Approach

Figure 77: Performance Comparison of Proposed Approach with Existing Ap-
proaches for Noisy Experimental Data from Male Participant 1-6.
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Table 10: The Estimated Model Parameters and the Squares of the Multiple Correlation
Coefficients (R2 ) for the Fits of the Experimental Skin Conductance Recordings

Female
Participant

Subject ID τr (seconds) τd (seconds) ||u||0 λ1 λ2 R2 Deconvolution
Time (seconds)

1-1 12 0.9617 3.1112 17 2.3694 1.03452 0.9936 529

1-2 15 0.7188 2.8759 9 1.4592 3.62286 0.9954 915

1-3 7 0.7622 2.8594 14 1.9086 3.54442 0.9913 214

1-4 18 0.708 2.835 17 1.6896 0.23258 0.9933 640

1-5 21 0.7712 2.9073 7 0.4074 2.45125 0.9894 113

1-6 25 0.8497 2.6488 25 5.0875 3.86205 0.9853 498

1-7 1 0.6506 2.7733 0 9999.9404 0.08108 0.9997 98

1-8 2 0.6506 2.7733 0 9999.9404 0.07918 0.9978 89

1-9 5 0.2927 3.6009 14 46.0459 3.99022 0.989 195

1-10 6 0.8705 3.0454 6 1.133 3.9663 0.9986 218

1-11 14 0.6512 2.7736 3 0.8912 0.47611 0.9925 129

1-12 16 0.9041 3.0213 18 2.2797 0.2407 0.9923 7525

1-13 19 0.6837 2.807 10 1.5347 3.92633 0.9936 86

Male
Participant

Subject ID τr (seconds) τd (seconds) ||u||0 λ1 λ2 R2 Deconvolution
Time (seconds)

1-1 11 0.9132 3.2105 7 0.9279 35.1903 0.9895 207

1-2 26 0.8836 3.1121 11 1.6957 38.1157 0.9877 348

1-3 8 0.6688 2.8055 5 0.5012 8.4414 0.9977 71

1-4 10 0.6647 2.8338 10 0.9592 38.5224 0.964 108

1-5 20 0.9871 2.7481 30 16.22 39.0317 0.9882 8637

1-6 23 0.6116 2.7395 19 2.1704 36.5492 0.9948 225

1-7 3 0.9402 2.8816 36 8.0795 39.0272 0.9957 8445

1-8 4 0.6506 2.7734 0 9999.9404 7.1226 0.9945 96

1-9 9 0.6587 2.8043 8 0.5945 18.4884 0.9879 99

1-10 13 0.6855 2.8838 25 2.4387 2.1094 0.997 2590

1-11 17 0.6637 2.8232 4 1.2189 39.4724 0.9846 124

1-12 22 0.6506 2.7738 0 9999.9404 20.2611 0.9902 99

1-13 24 0.8185 2.9402 21 1.9879 35.826 0.9932 324
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Table 11: The Estimated Model Parameters, Estimation Errors, and the Squares of the
Multiple Correlation Coefficients (R2) for the Fits of the Simulated Skin Conduc-
tance Data

Female
Participant

Subject ID τ̂r (seconds) τ̂d (seconds) ||û||0 |τr−τ̂r|
τr

× 100% |τd−τ̂d|
τd

× 100% |||û||0 − ||u||0| R2

1 12 0.8595 3.0526 24 11.8923 1.9218 7 0.9956

2 15 0.7042 2.9227 9 2.0797 1.5984 0 0.9988

3 7 0.7054 2.8544 14 8.0397 0.1740 0 0.9967

4 18 0.6724 2.8546 17 5.2946 0.6862 0 0.9972

5 21 0.7030 2.8636 7 9.7036 1.5271 0 0.9956

6 25 0.7320 2.9086 25 16.0842 8.9343 0 0.9915

7 1 0.6506 2.7733 0 0.0000 0.0024 0 1

8 2 0.6506 2.7733 0 0.0000 0.0025 0 1

9 5 0.1960 4.4068 23 49.3255 18.288 9 0.9989

10 6 0.6849 2.8122 7 27.1048 8.2932 1 0.9996

11 14 0.6502 2.7737 3 0.1555 0.0058 0 0.9999

12 16 0.7839 3.2262 14 15.3389 6.3601 4 0.9901

13 19 0.6440 2.7830 10 6.1551 0.8622 0 0.9988

Male
Participant

Subject ID τ̂r (seconds) τ̂d (seconds) ||û||0 |τr−τ̂r|
τr

× 100% |τd−τ̂d|
τd

× 100% |||û||0 − ||u||0| R2

1 11 0.819 3.0863 7 11.5015 4.0221 0 0.9967

2 26 0.8086 3.0400 11 9.2805 2.371 0 0.9962

3 8 0.652 2.7772 5 2.5805 1.0198 0 0.9999

4 10 0.6522 2.7798 10 1.9235 1.9396 0 0.9968

5 20 0.9448 3.4021 26 4.4785 19.2245 4 0.9853

6 23 0.5739 2.7126 19 6.562 0.991 0 0.9969

7 3 0.8983 3.1078 27 4.6655 7.2776 9 0.9971

8 4 0.6506 2.7732 0 0 0.0042 0 1

9 9 0.6517 2.7789 8 1.0875 0.9155 0 0.9993

10 13 0.7079 2.8875 20 3.1634 0.1282 5 0.9978

11 17 0.6533 2.7788 4 1.5901 1.5981 0 0.9997

12 22 0.6506 2.7733 0 0 0.0196 0 0.9999

13 24 0.7380 2.9141 20 10.9133 0.894 1 0.9957

Table 12: The Comparison between Different Algorithms with Noisy Experimental Data in
terms of Number of Estimated Pulses

Participant Our Approach sparsEDA
cvxEDA with
optimized
τr and τd

cvxEDA with
τr = 0.7
and τd = 2

cvxEDA with
τr = 0.7
and τd = 4

CDA
LedaLab

DDA
LedaLab

DCM
PSPM

MP
PSPM

Female 1-1 10 29 797 798 798 799 799 99 75

Female 1-2 23 21 798 798 798 799 799 99 74

Female 1-6 11 26 798 798 798 799 799 99 74

Male 1-1 22 30 798 798 799 799 799 99 68

Male 1-2 26 12 798 798 798 799 799 99 74

Male 1-6 11 18 798 798 798 799 799 99 80
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Table 13: The Comparison between Different Algorithms with Noisy Experimental Data in
terms of Multiple Correlation Coefficient

Participant Our Approach sparsEDA
cvxEDA with
optimized
τr and τd

cvxEDA with
τr = 0.7
and τd = 2

cvxEDA with
τr = 0.7
and τd = 4

CDA
LedaLab

DDA
LedaLab

DCM
PSPM

MP
PSPM

Female 1-1 0.9896 NA 0.9988 0.9989 0.9988 0.9988 0.9988 0.9971 0.9852

Female 1-2 0.9931 NA 0.9991 0.9991 0.9991 0.9987 0.9987 0.9952 0.9742

Female 1-6 0.9877 NA 0.9978 0.9980 0.9980 0.9976 0.9976 0.9943 0.9818

Male 1-1 0.9911 NA 0.9977 0.9978 0.9978 0.9975 0.9975 0.9878 0.9704

Male 1-2 0.9873 NA 0.9963 0.9964 0.9965 0.9960 0.9960 0.9873 0.9419

Male 1-6 0.9942 NA 0.9994 0.9994 0.9994 0.9993 0.9993 0.9970 0.9921
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Figure 78: Estimated Deconvolution of the Experimental Phasic SC Signals Six
Female Participants.
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Figure 79: Estimated Deconvolution of the Experimental Phasic SC Signals Six
Male Participants.
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Figure 80: White Gaussian Structure in the Model Residual Errors of Phasic SC
Data of Six Female Participants and Six Male Participants for the
Recordings Corresponding to Hand.
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Figure 81: White Gaussian Structure in the Model Residual Errors of Phasic SC
Data of Six Female Participants and Six Male Participants for the
Recordings Corresponding to Foot.
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Figure 82: Estimated Deconvolution of the Simulated Phasic SC Signal.
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Figure 83: Estimated Deconvolution of the Simulated Phasic SC Signal.
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Figure 84: White Gaussian Structure in the Model Residual Errors of Phasic SC
data of 6 Participants.
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Figure 85: Estimated Neural Stimuli and Reconstructed Signals of the Experi-
mental SC Data in 6 Participants.
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Figure 86: Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 1, Trial 1 Dur-
ing Hand Waving.
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Figure 87: Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 1, Trial 2 Dur-
ing Hand Waving.
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Figure 88: Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 1, Trial 3 Dur-
ing Hand Waving.
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Figure 89: Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 1, Trial 4 Dur-
ing Hand Waving.
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Figure 90: Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 1, Trial 5 Dur-
ing Hand Waving.
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Figure 91: Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 1, Trial 6 Dur-
ing Hand Waving.
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Figure 92: Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 2, Trial 1 Dur-
ing Hand Waving.
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Figure 93: Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 2, Trial 2 Dur-
ing Hand Waving.
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Figure 94: Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 2, Trial 3 Dur-
ing Hand Waving.
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Figure 95: Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 2, Trial 4 Dur-
ing Hand Waving.
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Figure 96: Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 2, Trial 5 Dur-
ing Hand Waving.
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Figure 97: Example Artifact Reduction Result with Multi-resolution RLS Adap-
tive Filter from Experimental SC recording Participant 2, Trial 6 Dur-
ing Hand Waving.
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