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ABSTRACT 

The choice of the right analysis window size in spectral analysis helps to capture the best 

thickness variability associated with tuning effects in thin layers. This research is a 

fidelity comparison to resolve thin stratigraphic features in the Stratton field, between 

spectral decomposition methods such as Discrete Fourier Transform (DFT), Continuous 

Wavelet Transform (CWT) and Constrained Least Squares Spectral Analysis (CLSSA), 

which is an inversion-based algorithm that computes spectral decomposition. 

Resolution of a ‘D’ sand series channel in-fill sandstone with splay deposits of the middle 

Frio Formation is superior using the inversion method at different analysis windows. 

Integration of the attributes is done in a synergistic manner to go beyond the limit of 

spectral decomposition using multivariate analysis to visualize subtle features. At 

smaller spectral decomposition analysis window and larger Principal Component 

analysis (PCA) windows respectively, results shows that the Fourier method, though 

having a fluctuating Heisenberg Uncertainty product at peak spectral frequencies, 

produces an enhancement beyond the spectral decomposition bandwidth limit due to 

stronger correlation of the attribute frequencies after axis rotation in its principal 

components. Finally, the multiplicity observed in the energetic trends of the frequency 

spectra is combined to enhance the stratigraphic features using primary colors. 
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CHAPTER ONE 

INTRODUCTION 

    1.1 General Introduction 

The goal of most seismic interpretation is to extract qualitative or quantitative 

information from each basin as much as possible. This is achievable by searching 

through the data looking for anomalous seismic response even in minute details. 

Interference patterns and tuning effects from thin beds hinder these objectives. 

            The seismic data contain dispersive information resulting from the band limited 

nature of the source wavelet. Subsurface reflectors filters the long wavelength (low 

frequency) allowing the information to spread over a large part as it propagates. Due to 

the size of the wavelet, beds smaller than the width of the wavelet are impossible to be 

resolved on the seismic. Bed thickness and acoustic contrasts are significant properties 

that makes them visible seismically. Hence, thick beds with low acoustic contrasts may 

be invisible depending on the amount of signal- to- noise ratio in the data. Conversely, 

thin beds may be visible seismically depending on the acoustic contrasts of the 

embedding medium (Brown, 2011). 

             Constructive interference occurs at tuning thickness between the top and 

bottom of thin layers. That point where the bed thickness reflection from the top and 

bottom are inseparable is known as tuning thickness. Two phenomena that explain the 

concept of tuning in thin layers are amplitude and frequency tuning. Amplitude tuning 

occurs at maximum amplitude for a bed thickness at 1/4th the dominant wavelength, or 
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½ period of the dominant energy. For beds thinner than this, thickness depends on the 

shape of the composite wavelet and the frequency content. At this point, the shape of 

the wavelet remains the same but the amplitude decreases and higher frequencies are 

required to image thinner beds. Frequency tuning on the other hand occurs for layer 

thicknesses at 1/4th period of the dominant energy or less (Brown, 2011). However, 

beyond 1/4th of the dominant wavelength, that is at 1/8th the dominant wavelength, 

destructive interference takes place.  Resolution and detection of a bed is achieved in 

this scenario by removing the effect of the source wavelet. 

                Spectral decomposition reveals spatially the reservoir heterogeneity occurring 

within the bandwidth of a seismic signal in response to interference patterns. This 

method provides greater resolution of thickness variation and spatial extent of geologic 

features using their tuning frequencies as the beds tune in and out. Different spectral 

decomposition techniques have been used over time in an attempt to improve the 

vertical resolution of the seismic. Fourier methods such as Fast Fourier Transform (FFT), 

Discrete Fourier Transform (DFT) were the first to be used. Improvements in extracting 

more qualitative resolution saw the introduction of the wavelet transforms such as the 

Discrete Continuous Transform (DCT), Continuous Wavelet Transform (CWT). Other 

methods are being introduced to the industry including an inversion-based algorithm 

that is an improvement on the Fourier transform that can compute spectral 

decomposition, which is Constrained Least Squares Spectral Analysis (CLSSA). Partyka et 

al., 1999 used the Fourier transforms with a short window to determine thickness of 
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thin layers, Castagna et al., 2003 used the Wavelet Transforms in Instantaneous Spectral 

Analysis to detect gas shadows in reservoirs. 

             A significant characteristic of an attribute is that they are unique and must not be 

independent from each other. Similarity in the output volumes from spectral 

decomposition creates a lot of data redundancy. Multiattributes analysis techniques 

were introduced to reduce the overwhelming information from different attributes to 

only the most significant representing the feature of interest. Principal Component 

Analysis (PCA )is a nonlinear multiattribute technique that rotates the axes of the data 

coordinates unto a new dimension such that the new coordinates are representative of 

the original data but provide higher degree of variance. Spectral attributes volumes 

each highlight an aspect of a feature on a horizon that is ‘’in-tune’’ with that frequency, 

which may be on the high or low end of the frequency spectrum. Rotating the 

coordinates will preserve all the smaller aspects as the image is in the subsurface 

without interference effect. Principal Component analysis even though a statistical tool 

that was first used by Pearson (1901) and Hotelling (1933), it has been utilized in 

geophysical pattern recognition studies. Guo et al., 2008, used Match Pursuit 

decomposition to interpret features on the Atoka Unconformity. Puryear et al., 2008 

compare the results from PCA using continuous wavelet transform and Match Pursuit 

decomposition, to sharpen lateral resolution of stratigraphic features in a complex 

turbidite model. 

                  Thin geological features are better resolved with a running window. Using the 

entire length of the seismic trace will be defective in recognizing thickness variability 
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associated with tuning effects in thin layers. Windowing the data has the potential to 

mask or enhance the spectra of the data depending on the spectral decomposition 

method in use. In this thesis, I will use different analysis windows to get the best 

variability in resolution that best describes the stratigraphy within my area of interest. 

Generally increasing the window size in spectral decomposition forfeits the temporal 

resolution as the spectral resolution is enhanced. However, wavelets with long taper 

windows decrease the spectral resolution.  

 1.2 Motivation/Statement of the Problem 

The Stratton field, especially the Middle Frio formation has a lot of thin beds as 

stratigraphic traps which may be as thin as 5 feet in some areas. Resolutions of the 

reservoir units fall below seismic resolution therefore bypassing some of the prospects 

during exploration. Layer interference patterns obscure subtle stratigraphic features 

that are probable prospects. The absence of a P-wave sonic log in the suite of well logs 

adds in part to the problem encountered to characterize this field. Generation of a 

pseudo velocity log using a popular rock physics transform to make up for the absence 

of sonic log in the suite of logs in the data set, creates lot of uncertainties because the 

transit time of the seismic wave is simulated from a nearby log. Signature of the 

reservoir zones on the well logs during well tie may not be accurate as they are only 

derivative of another log response to the physical characteristics of the earth. The use of 

frequency multiattributes in the midst of these challenges will help us to characterize 

this field better. 
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1.3 Objectives  

Reviewing geophysical publications reveals that there are different spectral 

decomposition algorithms are out there each having its pros and cons depending on 

your needs at the instant. In this work, I will compare and integrate three popular 

algorithms to determine which has a better capability to visualize subtle features in this 

prolific basin. Integration of the algorithm with the best fidelity into principal 

component analysis will be carried out with the objective to go beyond the bandwidth 

limit of spectral decomposition to view subtleties. Having stated that, would it be 

possible to go beyond the practical limit of spectral decomposition attributes to 

visualize subtle features? That remains for us to find out as we go on. This is the basis 

for this research.   

 1.4 Research Scope     

This thesis will compare different spectral decomposition attributes to identify which of 

them has a better resolution potential to visualize the subtle stratigraphy of the Middle 

Frio formation. Spectral decomposition dissociates the frequency bandwidth of the 

seismic data into individual frequencies, such that each frequency is a representation of 

the subsurface architecture. This technique helps interpreters to unravel features below 

seismic resolution. 

               In this research work, chapter one is dedicated to the introduction. Chapter two 

is on the theoretical background of the algorithms used in this work. I started off with 

the Fourier Transform and discussed about the Discrete Fourier Transform which is the 
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most popular type of Fourier Transform readily used in the field of Geophysics. Next I 

talked about the Wavelet transform by focusing on the continuous wavelet transform. 

Lastly I talked about inversion and spectral inversion briefly. I went on further to discuss 

about CLSSA, the algorithm that can compute spectral inversion as well spectral 

decomposition. Finally in that chapter, I wrote about the geology of the Stratton Field 

and analyzed a well tie that forms the basis for this research work. In Chapter Three I 

made a comparison between the frequency maps of the three algorithms analyzing their 

resolving potentials on the stratigraphic features on a horizon. Chapter Four is on the 

theory and applications of Principal component analysis. Later on in that chapter, I 

wrote about spectral color blending. Chapter Five is on summary and conclusions. This is 

the scope of this work in a concise manner. 
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                                           CHAPTER TWO 

THEORY OF SPECTRAL DECOMPOSITION AND GEOLOGY OF THE STRATTON 

FIELD 

2.1 Introduction 

Vibrations of energy propagating through the earth are recorded to understand the 

varying characteristics of the subsurface geology. The signals acquired in time are 

combinations of subsurface reflections, backscattered surface waves and interference 

patterns. A seismic trace is a single wave field recorded in time at a particular receiver 

location. Transforming the seismic trace from the time domain to another domain aids 

an interpreter to unravel subtleties, making this tool to be unparalleled in qualitative 

seismic pattern recognition. In this chapter I will take a look at the theory defining the 

most popular spectral decomposition transforms. In addition, the geology of the 

Stratton field and well calibration information will be emphasized in this section.  

             Understanding the complex seismic trace over the past couple of decades has 

translated into a huge number of generated seismic attributes. Attributes are quantities 

that are derivatives from the seismic data to give us information about the nature, 

structure and fluid characteristics in the different lithological layers. Over time authors 

have classified attributes in different ways. Brown (2011), classified attributes into four 

major classes that are each subdivided into pre-stack and post-stack attributes. The 

main classes are: Time, amplitude, attenuation and frequency. The first three has been 

studied extensively to provide information about structure, fluid saturation and 
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permeability. Frequency has not been fully studied but there are speculations that it can 

provide us with information about fluid saturation and nature of stratigraphy. 

                 The non-stationary nature of seismic signals makes it possible to create a 

varying time-frequency signatures of the subsurface geology. Transforming the signal 

from time to frequency reveals subsurface details that are obscured by interference 

patterns in the frequency spectrum. Spectral decomposition is computed using 

mathematical methods such as Fourier transforms and Wavelet transforms to change a 

signal from the time domain to its frequency equivalence. Inception of this method 

revolutionized the world of seismic interpretation by providing high fidelity spectral 

maps of amplitude and phase components, in delineation of stratigraphy and structural 

orientation. This technique has been exploited to reduce uncertainties in drilling of dry 

holes, and facilitates the integration of geology and seismic in reservoir simulation.  

                Partyka et al., in 1999 introduced this concept and demonstrated how a 

windowed Discrete Fourier Transform (DFT) can be administered in thin bed thickness 

estimation. Peyton et al., 1998, used spectral decomposition along with coherency to 

interpret incised valley stratigraphy. Castagna et al., 2003, used Match Pursuit 

Decomposition (MPD) for Instantaneous Spectral Analysis (ISA) to detect low frequency 

shadows beneath reservoirs. 

                  Spectral decomposition creates amplitude and phase from each frequency 

value to detect the tuning frequency that highlights the best thickness from a tuned 

seismic response. In explaining the concept of spectral decomposition, Partyka et al., 

1999, built on the Widess (1973) concept of thin layer reflectivity model of reflections 
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from a porous layer that is sandwiched between hard matrix materials. Variation in the 

spectral content is due to acoustic properties of the thin layers to interference and bed 

thickness. They based their concept on the illustration as shown in figure 1.  Assuming 

that the magnitudes of the reflections from the thin layer are equal and opposite, a 

composite reflection will appear as a tuned response on the seismic. When Fourier 

transformed, a series of spectral notches seen as sharp edges in the frequency spectrum 

will be observed. Reciprocal of a frequency notch value gives the bed thickness of the 

thin layer which is significant in reservoir volumetric. 

                                            

 

 

 

   Figure 1 Illustration of Thin layer reflectivity in layer thickness estimation (Partyka et al., 1999) 

 2.2      Spectral Decomposition Methods 

Different spectral decomposition methods have been developed with particular 

objectives in mind. The most popular are the Fourier Transforms and the Wavelet 

Transforms. Another method that will be an integral part of this thesis is the 

Constrained Least Squares Spectral Analysis (CLSSA), which is an inversion algorithm 

that can compute spectral decomposition, a modification upon the Fourier Transforms.  

This subsection shall be about dissecting the different transforms. 
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2.2.1 Fourier Transform 

In the field of Science and Engineering, vibrations or waves of energy are studied by the 

nature of the signal and shape of its associated spectrum. The waveform of these signals 

contains multiple frequencies with variations in amplitude and phase depending on the 

signal strength. Signal of this nature embodies a series of functions that are sinusoidal 

variations in time but also representative in the frequency domain. 

                   Fourier transform is a mathematical concept that transforms a signal or 

continuous time series from the time domain into the frequency domain. This 

transformation is advantageous due to the flexibility of the operation to be looped back 

and forth in the frequency domain, an action that facilitates noise suppression, which is 

inconceivable in the time domain. Fourier transforms deals with summations of 

symmetric functions at different frequencies. If we have a continuous function variable 

t, the forward Fourier transform of t is: 

 

                     F(w)= ∫           
 

  
………………………i 

Where      is the kernel function, angular frequency w, is related to the linear 

frequency by w=2πf, g(t) is the time function and g(w) is the complex function  that can 

be expressed in the polar form as g(w)=A   . A (w) gives the amplitude spectrum and 

 θ (w) the phase spectrum. Information about time is absent in the amplitude spectrum 

but encoded in the phase spectrum.  This makes time localization in Fourier transform a 

challenge. 
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                    Fourier analysis gives a summation of sines and cosines to give a weighed 

sum known as sinusoidal basis functions. In seismic data applications or analysis, cross 

correlation of the sinusoidal basis functions with the seismic data gives a spectral 

function. A condition that must be met when dealing with basis functions is that they 

must be orthogonal. Extraction of amplitudes from a signal in time is accomplished with 

the orthogonality property of the Fourier transforms which states that ‘if you take a sine 

and cosine, or two cosines, each a multiple frequency of the fundamental frequency, 

multiply them together and integrate the product over one period of the frequency, the 

result is always zero, except in special cases. 

                   Fourier transform is a fundamental tool used in mathematical topics such as 

linear algebra for vector representation as orthonormal basis or in linear combination of 

eigenvector matrix. Historically, the theory was formulated by a French mathematician 

and Physicist Jean Baptist Joseph Fourier (1768-1830), in one of his popular works that 

was initially rejected. He postulated that the heat distribution can be represented by a 

series of sinusoids, and a continuous signal is a summation of sinusoidal waveforms. 

Lagrange and Laplace were the foremost scientists alive at that time but they took 

different sides to the credibility of his claim. Laplace agreed with Fourier on his theorem, 

but Lagrange objects to it as he said the hypothesis will not hold for discontinuous 

signals such as square waves. It was after the death of Lagrange that the theory saw the 

light of the day. It was discovered later that the theory holds for summation of sinusoids 

where the difference is near zero. This scenario later became to be known as the Gibb’s 

phenomenon. 
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    Properties of the Fourier Transform 

Similar to other mathematical techniques, the Fourier transform has properties that 

make it suitable for applications in many fields. The Fourier transform has the 

characteristics of linearity and convolution which makes it one of the most useful 

properties. Convolution is a mathematical operation that multiplies one time series 

against another. A signal that is convolved in time domain corresponds to multiplication 

in the frequency domain and vice versa. Application of this concept is ingrained in 

discrete Fourier transform, filter analysis etc. Shifting is another property that is 

observable either in the time or frequency domain by utilizing the phase component of 

the signal.  

2.2.1.1 Discrete Fourier Transform 

Discrete Fourier Transform is a mathematical technique that transforms a signal or data 

sampled as periodic summation at discrete intervals, into series of complex sinusoids 

having ordered frequencies. When a real sequence of number is discretely transformed, 

the output will be a sequence of numbers having similar length. The output frequencies 

are usually multiple integer of fundamental frequency. DFT has found applications 

across various disciplines. It is used in image compression; signal processing, partial 

differential equations etc. 

                   In non-stationary signal applications such as seismic signal analysis, DFT 

performs a cross correlation between the seismic trace and the sinusoidal time series 

within a moving window. Transformation from the time to frequency makes it 

multidimensional, as there is a truncation of the time series within the small analysis 
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window leading to amplitude smearing. This windowing problem is one basic limitation 

of DFT. Utilization of this transformation in geological interpretation of anomalies or 

structure gives poor spectral resolution at small intervals and high spectral resolution at 

high time intervals respectively. A concept of windowing in Fourier analysis called Short 

Time Fourier Transform (STFT) was introduced by Gabor (1946) to analyze a portion 

within a signal instead of the entire signal. The portion within a segment of the signal is 

assumed to be stationary, or rather treated as stationary signals. In seismic analysis, the 

time series of the windowed data must be long and orthogonal.  

              Mathematically the DFT as applied to seismic data is expressed thus: 

                        S (r∆f) =∑    ∆     
   ℯ

    

 
r∆fn∆t     r=0,…………N-1 

Where N is the number of time samples, n is the time sample index, ∆t is the time 

increment, r is the frequency sample index, ∆f is the frequency increment, g(n∆t) is the 

discretely sampled time signal, and S(r∆f) is the discretely sampled complex spectrum. 

                     In spectral decomposition application, the Short Window Discrete Fourier 

Transform (SWDFT) has been demonstrated in bed thickness estimation and in 

validation of prospects. The underlying principle of SWDFT is from the convolution 

theory that states that a seismic data is a product of the convolution of the reflectivity 

series with the source wavelet added with noise. For a small window, a portion of the 

seismic trace is chosen as the zone of interest. This is the analysis window that may 

contain a few significant reflectors with amplitude at a particular location. The spectrum 

will be colored in the frequency domain. As shown in figure 2, when the small windowed 

trace is convolved with a band limited source wavelet such as a zero phase, in the 
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presence of noise the overall reflectivity is a band limited colored spectrum with 

wavelet overprint. This gives detailed information within that area and not random 

geological information. 

           

                         Short Analysis Window spectral decomposition                  

 

 

 

 

 

 

                                       

                       Figure 2. Short Window Discrete Fourier Transform (Partyka et al., 1999) 

 

 

2.2.2 Wavelet Transform 

Wavelet transform was introduced to analyze non-stationary signals with characteristic 

abrupt changes. An improvement that was made to curtail the limitation of the Fourier 

transforms. Jean Morlet, a French geophysicist in the 70’s, worked in conjunction with 
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A. Grossman, a theoretical physicist who used an inversion based formula, to formulate 

this transform. They both felt that wavelets would provide a better time-frequency 

localization of signals. A wavelet is a small wave with short time impulse that tapers off 

quickly. Morlet considered the wavelet as a family of wavelet constructed from 

translation and dilation of a single function called the mother wavelet. The mother 

wavelet is defined here as: 

 

                         𝜓p,q(t)=
 

√ 
𝜓(

   

 
  

                 Where p= scaling parameter (i.e. measures the degree of compression) 

                                                Q= Translation parameter which determines location. 

Unlike the Fourier Transform that has sines and cosines as the basis functions, the 

wavelet transform uses the mother wavelet as the basis function, which is localized in 

frequency similar to sines and cosines. The localization which is also in time sharply 

contrasts to the Fourier transform. This dual localization of the wavelet renders most of 

the functions to be sparse-like favoring high level of accuracy when transformed into 

the wavelet domain. The basis functions of the mother wavelet are translated and 

shifted variations of the mother wavelet by varying the mother wavelet integers 𝜓p,q(t), 

which results in multi resolution both in temporal and frequency domain. Contraction 

gives better temporal resolution, while dilation gives poor frequency resolution. 

Multiresolution implies that gross outline of the feature can be observed with a large 

window, while sparse details are discerned with small window length. A major setback 
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for wavelet transform is that a wrong choice of wavelet in the analysis can give poor 

result compared to the Fourier transform. Therefore, prior understanding of the signal 

must be known in order to tweak the parameters to optimize the most suitable signal 

output. 

2.2.2.1 Continuous Wavelet Transform 

Like I noted earlier, the Fourier Transform is not suitable to analyze non-stationary 

signals. The signals are divided into segments before Fourier Transformed. This 

limitation is the basis for the formulation of the STFT. The physical phenomenon of 

Heisenberg Uncertainty principle affects virtually all transforms especially Fourier 

Transforms. The principle applied to signal analysis states that it is not possible to have 

both time and frequency information at a particular instant. One of them has to be 

forfeited for the other. 

             Continuous wavelet Transform (CWT) divides a signal into wavelets, and was 

introduced to curtail the limitation of the STFT by providing better resolution 

capabilities through the concept of multiresolution analysis. Multiresolution analysis 

(MRA), are designed to give better time resolution and poor frequencies at high 

frequencies and better frequency and poor time resolution at low frequencies (Polikar, 

1996). CWT is computed in a similar way like STFT; the only difference is that the signal 

is multiplied by a wavelet instead of the window function in Fourier Transform. 

                             

               Mathematically, signal analysis using CWT is expressed as: 

                                  CWT (τ,s)=
 

√ 
∫     
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CWT (τ-s) is the CWT scale decomposition, τ is the translation parameter, S is the scaling 

parameter, 𝟁 is the mother wavelet and x(t) is the signal. In geophysical applications, 

CWT has been demonstrated to be a powerful tool in decomposition of broad band 

wave field data using complex Morlet analyzing wavelet (Liner, 2010). Sinha et al., 

(2003) used Time-Frequency continuous wavelet transform to achieve optimum 

frequency resolution at varying frequencies. This circumvents the choice of a window 

length and provides high resolution at both low and high frequencies respectively. 

Chakraborty and Okaya (1995), show that CWT proffers solution to the resolution 

limitation of STFT. 

2.2.3    Inversion 

Reflecting energy recorded by receivers preserves earth models that educate us about 

the subsurface architecture. The motive for acquiring these models vary as many may 

want to study the whole earth structure from depths more than 100km. Others are 

more drawn to study contrasts in velocity as they could be viable indices to oil and gas 

accumulations. Either way, getting a true model of the subsurface is a significant step in 

knowing the earth accurately. This is known as forward modeling. Reconstructing the 

initial signal from the earth model is of itself the major role most geophysicists play to 

better know more about the earth structure. This concept is known as seismic inversion.  

Seismic inversion is a technique of perturbing the earth physical parameters from some 

set of observed seismic data. The perturbation is constrained to fit a set of parameters 

from a known model. Significant development has been made in seismic inversion in the 

past couple of decades. First we had the velocity inversion or what is known to some 
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people as travel time inversion or P-wave Tomography. This type of inversion generates 

a velocity depth earth model from the arrival times on the seismic traces at each 

receiver location. The travel time inversion is readily applied in earthquake studies and 

other areas of solid earth geophysics, but it has found applications in most processing 

suites for stacking and migration for better imaging purposes.  Next is the inversion of 

amplitude or what is popularly known as acoustic impedance inversion. This inversion 

extracts amplitudes and arrival times from a seismic trace as a function of reflecting 

surfaces to model the geology for porosity and lithological prediction. Many kinds of 

acoustic impedance inversion have been developed among them are, band limited 

inversion, generalized linear inversion, simultaneous inversion and a host of others. 

Acoustic rock properties such as P-wave, S-wave, and density are usually the input 

parameters. Furthermore, another new dimension has taken to the series of inversion 

types. The inversion type is computed utilizing the frequency information mainly as a 

major input parameter, giving birth to spectral inversion. This term was coined to refer 

to inverting the frequency estimates derived from well data in an attempt to deconvolve 

the wavelet overprint on the reflectivity. This outputs a seismic data with high fidelity. 

2.2.3. 1   Spectral Inversion 

Spectral inversion is a sparse spike reflectivity series that is built on making geological 

rather than mathematical assumptions (Castagna et al., 2006). This concept reveals 

masked stratigraphy as well as thin beds that may be hydrocarbon bearing during 

production. The sparse spike reflectivity series produce high spikes in the vicinity of 

smaller spikes which are commensurate to the reflectivity of the earth. Spectral 
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inversion tries to enhance the resolution of the seismic data by removing details of 

wavelet overprint while boosting higher frequencies in the presence of noise. The 

Widess (1973) theory about thin bed proposes that the character of a seismic wave 

(peak/trough) doesn’t change much in amplitude as a function of thickness but changes 

significantly with frequency. Below tuning, it becomes increasingly difficult to separate 

reflection coefficient from thickness. Hence, this gives the limit of visibility of that bed. 

However, this concept of Widess tuning model has its limitations as it is not applicable in 

practical cases. As observed by Tirado (2004), when he analyzed the odd and even pair 

reflection coefficient proposed by Widess’s model, he observed that the amplitude 

increases then decreases. In actual sense, the magnitude of reflection coefficient should 

be a composite effect of the two reflections where the even part constructively 

interferes as thickness approaches zero, and destructively interferes for the odd part. 

According to Castagna (2004), that having a full understanding of the wavelet 

contribution from the even part produces a better resolution than the Widess’s odd 

part. Partyka (1999) opined that the distance between the peaks and troughs of the 

spikes of a windowed seismic trace in the time domain gives us the bed thickness 

details. In general, spectral inversion is a conventional method that outputs a better 

image than the input seismic information. However, this method produces less reliable 

result as the level of noise increases. 

   2.2.3.1.1 Constrained Least Squares Spectral Attributes (CLSSA) 

CLSSA is a spectral inversion algorithm that computes spectra decomposition. CLSSA inverts 

the Fourier series by inverting the sinusoidal kernels for a moving window. It would be 
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imperative to point out here that in Fourier transform, resolution is controlled by the 

window used, and the window used is its kernel function that runs from negative infinity to 

positive infinity. Inversion of the kernels produces the spectrum of the data within a 

window. The spectrum of the windowed data arises from the general rule of thumb that the 

sinusoidal basis functions must be orthogonal for a successful transformation. This has an 

effect of forfeiting the spectral resolution for time resolution. A way to correct for this is to 

solve directly for the Fourier series using the least squares solution within a window. This 

generates the spectrum of the data within a window. The inversion occurs where the 

window is centered on each time sample as the process is looped iteratively over the entire 

seismic trace. Samples that were not sampled can be properly sampled by this iterative 

process. Since spectral decomposition is a non-unique process, the sinusoidal kernel 

inversion may not be feasible as this depends on the constraints used, parameters chosen 

and assumptions made. CLSSA uses model and data to invert for the normal equations in 

time-frequency analysis (Puryear et al., 2012) 

                    Part of the limitations of Fourier transforms and wavelet transform is that 

there is a tradeoff between spectral and temporal resolution in hydrocarbon detection 

and bed thickness estimation. The windowed DFT does not give the spectrum of the 

data within the window but the spectra of the windowed time series that has data 

within the window. By Fourier transform convolution theorem, this results in a spectrum 

that is the convolution of the true spectrum with the spectrum of the window. This 

spectral smoothing causes loss of frequency resolution and increase in bandwidth of the 

spectrum (Puryear et al., 2011). 
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Puryear et al, 2011, explained the concept of CLSSA forward problem as thus: 

                                 Fm=d………………………………..equation 1 

Where F= the kernel matrix with real or complex sinusoidal basis 

m is the model parameter otherwise referred to as unknown frequency coefficients in 

this case, d is the windowed seismic data. According to the algorithm, d is a segment of 

the complex seismic trace which has a real and an imaginary part. 

d=dr +di…………………………………………… equation 2 

Where dr is the windowed segment of the real trace and di is the Hilbert transform of 

the seismic trace within a window. The number of columns in the kernel matrix F is 

chosen to complex sinusoids that truncate the window limit in the time domain. 

F (t, f) = cos (2πk∆fm∆t) +isin (2πk∆fm∆t)………….equation 3 

Here the number of columns and rows represents frequencies and the number of 

samples in the time window respectively. Usually the sinusoids are constrained to be 

correlated when they are not, the least mean square equation F=md  above reduces to    

m=F*d. This is equivalent to the trace segment. Windowing the data correlates the 

elements of the kernel matrix, and the diagonals of the matrix are constrained by model 

weights, Wm and data weights Wd, to obtain a unique solution. Model weights changes 

iteratively while the data weight remains constant in all iterations. This generates an ill-

posed inverse problem to equation F=md from the weighted diagonal matrices 

Fwmw=Wdd. This equation is solved by applying the Tikhonov regularization to replace 

the equation with a well posed minimization problem. The Tikhonov regularization 
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parameter was reformulated by Portniaguine and Zhdanov (1998), which controls the 

stability and sparsity of the solution. 

                    Heisenberg Uncertainty principle formulated as a fundamental theory in 

quantum physics, has also found applications in other areas of science. In its original 

form it is expressed in terms of observations and measurements. Gabor (1946) however 

relates this phenomenon to the area of signal processing and information theory. 

Uncertainty principle in mathematics is expressed as the standard deviation of position 

to the standard deviation of momentum and the Planck’s constant. This has been 

reformulated in what is now accepted as Gabor’s uncertainty principle, which states 

that deviations in frequency 𝛔f and deviation in time 𝛔t must be at least 80 millicylces. 

                                                                         𝛔f𝛔t ≥
 

  
=0.08 cycles 

In practical terms, the uncertainty principle says that it is not possible to represent a 

signal in time and frequency on the same plot. There is a tradeoff between frequency 

and time resolution. This brings an important issue in geophysics which is resolution. 

Two important concepts that apply to time and frequency resolution are localization 

and sampling. Localization in the time domain is based on the bandwidth and the tuning 

effects. It depends on how accurately we can interpret a reflectivity spike in the seismic. 

Localization in the frequency domain constitutes spectral leakage especially when the 

reflectivity is not a spike. For example the window length in Fourier analysis plays a 

significant role in the frequency resolution. On the hand, spectral side lobe and peak 

energy width controls leakage in the frequency domain during localization (Matt Hall, 

2006). DFT and CWT are affected by resolution limitations in line with Heisenberg 
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uncertainty. CLSSA however has better frequency and time resolution, and hence good 

uncertainty product (Puryear et al., 2012).  

      2.3 Geology of the Stratton field 

     The complex reservoir heterogeneity in the Stratton field creates serious 

complications where lack of in depth understanding of the geologic variation may lead 

to incompletely drained or bypassed reservoir.  Lateral variation in the geological 

complexity calls for the need to re-explore using modern technology for better precision 

drilling. 

           The Stratton field is among the most prolific gas field deposit in thin bed 

reservoirs, located in the Agua Dulce field in the Southeastern part of Texas (Hardage et 

al., 1994). Stratigraphically, the Stratton field is divided into two important formations. 

The Frio formation and the Vicksburg fault. The Vicksburg fault is a decollement surface 

characterized by antithetic faulting. The deformation that occurred during its deposition 

affected the Lower Frio Formation overlying it. The Oligocene Frio Formation is divided 

into three portions: The Upper, Middle and Lower formations. The Frio Formation is 

among the most prolific gas producing zones among the stratigraphic lithologies of the 

Cenozoic Gulf coast basin (Hardage et al., 1994). Frio Formation deposited via rapid 

sedimentation, has a thickness variation of 2000 ft near the Vicksburg fault, and greater 

than 9000 ft towards the Rio Grande embayment. The Rio Grande embayment is a 

discontinuous package of shale ridges, massifs and parallel strike slip growth faults 

(Galloway et al., 1982). The depositional setting below shows that the Frio Formation 

was formed from progradational deposits mainly siliclastics such as sand and shale. 
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Figure 3 Vertical section through the depositional setting of the Stratton field (modified from Bebout 

et al., 1977) 

                                                  

The Frio Formation is subdivided into 10 gas plays based on regional and structural 

settings (Kosters et al, 1989). The gas plays in this field corresponds to the gas play FR-4 

from Kosters et al, 1989, which is Fluvio/deltaic sandstones, ranked the third among the 

gas plays in Texas. Figure 4 shows the orientation of the gas play FR-4 in the 

Southeastern part of Texas. Among the nonassociated gas play in Texas, FR-4 is the 

largest with a cumulative production that exceeded 15 TCF in the past couple of 

decades. 
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    Figure 4 Regional setting of the FR-4 gas play with the location of the Stratton field (Hardage et al., 

1994) 

 

                Structural and stratigraphic features that favored entrapment in this region 

include, faulted anticlinal closures, facies change and pinch outs (Koster et al., 1989). 

Majority of the reservoirs in the Stratton field are of fluviatile deposits located up dip of 

the Novias delta system (Figure 3). The Middle Frio Formation in this section of the field 

is characterized by flat lying geology, and the likely trapping mechanism would be more 

stratigraphic than structural. 

   2.3.1    Stratigraphy of the Frio Formation 

 The middle Oligocene Frio formation was formed during the Catahoula depositional 

episode (Galloway, 1977). The Frio deltaic sandstone play FR-4 is among the most 

prolific gas plays in Texas, and the trapping mechanisms are reservoir pinch out, facies 

change and anticlinal closures (Kosters et al., 1989). The 3D seismic data used in this 
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work is obtained from the Stratton field, which is at the northern limit of the FR-4 gas 

play. Analysis of well logs from the field reveals that the Frio formation consists of 

multiple stacked pay sandstones within a vertically stacked reservoir system labeled as: 

B, C, D, E, F series (Hardage et al., 1994). Borehole analysis from well logs reveals that 

the sandstones are amalgamated channel infill deposits ranging from 10-30 feet in 

thickness, with some splay sandstone. The channel fill have either a blocky or upward 

fining SP log profile, while the splay deposit shows a classical upward coarsening 

textural profile. 

               The Upper Frio (3,800 to 4,500 ft.) consists of laterally-continuous sandstone 

interbedded with mudstones which are about 40-80 ft thick. This portion of the Frio 

Formation witnessed retrogradational wave dominated deltaic system and 

progradational phase of stradplain system (Kerr, 1990). The middle Frio Formation (4500 

to 7000 ft) consists of channel fill and crevasse splay and well-developed levee 

sandstones that are slightly sinuous and form part of a fluvial system (Jirk, 1990). From 

Jirk (1990) and Kerr and others (1992), both stated that the depositional environment of 

the middle Frio consist of the following facies: channel fill facies that are laterally 

accreted point bar deposits which are about 15 to 45 ft. thick and moderately straight 

with a width between 2,000 to 2,500 ft wide. Splay sandstone facies are fan shaped and 

coarsen upward. They are about 10-30 ft thick next to the channel and extend to about 

2-3 miles before pinching out. The porosity of the splay is between 5-30%. The last 

facies type is made up of levee and flood-plain mudstone. The levee facies are lateral to 

channel fills and consists of mudstones, siltstones, and are about 100-500 ft. wide. The 



27 
 

flood plain mudstone consists of intercalations of clay, silt and sand having low 

porosity, and not well developed parallel laminations.  

 2.4 Well Tie 

The BEG Stratton field data set consists of 21 wells with no check-shot survey or sonic 

log. There is however a VSP survey for well 9, which was the well I used for the seismic 

calibration. 3D seismic interpretation begins with calibration of wells to surface seismic 

data. The sole objective is to match the well logs measured in depth to surface seismic 

measured in time, to simulate the subsurface geology by relating the seismic reflections 

to the stratigraphy. By far, sonic log gives us a hint about the transit time of a wave in a 

lithology carrying with it signatures of fluid saturation or other rock properties. 

However, when this is absent, it becomes imperative to generate a pseudo-sonic log 

from a suite of nearby logs using any of the popular rock physics transforms such as 

Gardner or Faust’s equation. The velocity information may not be perfect like a real 

sonic but having a little of something is better than not having anything at all. The suite 

of well logs in the BEG Stratton data set has no sonic log, so generating a pseudo log 

from density using the Gardner’s relation gave me something unreliable to work with, as 

there was huge disparity in the depth values. However, using the Faust relationship to 

generate the pseudo-sonic log from resistivity log produced a more reliable result as the 

depth values were accurately placed. Having two important logs of density and pseudo 

sonic, I modeled the subsurface reflectivity by convolving them with a Ricker wavelet to 

generate a synthetic seismogram. The Ricker wavelet is notable for its preference in 

modeling as it provides superior vertical resolution. I generated the Ricker for this well 



28 
 

tie using the dominant frequency from the data, which also filters off the low frequency 

reflections below the dominant frequency.  Figure 5 shows the well tie and the wavelet 

used for modeling the reflectivity. To place accurately where each reflection is on the 

subsurface, I had to match and shift the reflectors on the synthetic to match the well 

logs until the peaks and troughs are aligned, or the energy in the main lobes appear to 

be so, even though the energy sometimes are in conflict on the synthetic from what’s 

on the seismic. This is part of the limitations of modeling using a pseudo sonic logic. An 

anomalous region of increase in impedance was observed on the resistivity, induction 

and sonic log from 1440 ms to 1430 ms in a coarsening upward sequence manner. 

Correlation coefficient of the simulation of seismic to real geology is at 64.5%, which is 

more than fair. This zone corresponds to a trough on the seismic. Guided by this, I 

tracked the anomaly to display a splay channel-like stratigraphic sand body which is gas 

charged. This is a channel in-fill sandstone deposits with splay deposits. I will use the 

term ‘D’ sand series interchangeably, with channel in-fill sandstone with splay deposits 

in this work. The term adaptation is because this area of interest falls within the ‘D’ sand 

series identified by Hardage et al, 1994, to be among the prolific sandstones reservoirs 

of the middle Frio formation. 
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    Figure 5.  Well tie with zone of interest indicating a coarsening upward sand sequence 

 

 

                                                           

 

                         Figure 6. Ricker wavelet created and its associated amplitude spectrum 
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                                               CHAPTER THREE 

                       SPECTRAL DECOMPOSITION INTERPRETATION 

          In the previous chapter, I gave a glimpse about the theory underlying the two 

most popular transforms that computes time-frequency analysis. I also brought to the 

fore the concept behind a new technology which is an improvement upon the classical 

Fourier transforms. Nevertheless in this chapter, I am going to talk about the method I 

adopted to make a comparison between the three algorithms as they apply to real 

seismic data in delineation of subtle stratigraphic features. 

             Spectral decomposition is time-frequency localization in interference patterns 

from thin layers, having information in the frequency domain about bed thickness. 

Seismic interference can be categorized into two (Jakosky and Jakosky, 1951). The first 

category of interference is that observed from a reflector that has a frequency located 

in the frequency spectrum but the reflection is outside the desired reflecting band. The 

reflections are lower than the reflections of interest and enhancement is achieved by 

using a high-pass filter. The second type of interference is between closely spaced 

reflectors, or between a reflection and interference within the reflecting band spectrum. 

A geological scenario that gives rise to this kind of inference is in stratified layers with 

reflection coefficients of similar amplitudes occupying a narrow portion in the frequency 

spectrum. The contributing effect of interference patterns not only to the resolution of 

the seismic, but also the reservoir economics of a basin cannot be overemphasized. Thin 
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layers of porous sandstones encased in a hard material which are significant to overall 

reservoir volumetric, are usually bypassed during reservoir characterization as their 

amplitudes are masked by stronger reflections. 

3.1 Method 

Horizon maps are by far the most effective way to display a 3D architecture of the 

subsurface in a 2D map view. The maps are obtained from tracking an event 

corresponding to amplitudes or structure of interests. In my work, I mapped an 

amplitude event representing coarsening upward channel in-fill sandstones with splay 

deposit at a level as indicated from my well tie. I tracked this event at an inline and 

crosslines spacing of 1 interval. The reason for this is to create a closely spaced cell grid 

to get a detailed geological interpretation. To achieve part of my objective, I had to 

transform this horizon information at a particular time to the frequency equivalence 

using different spectral decomposition algorithms as described above. I import the 

original seismic data into the program specifying a window length for each computation. 

Running windows of 20 ms and 40 ms are used here respectively. The term running 

windows and analysis windows will be used interchangeably in this write up to mean the 

same thing, that is the size of the of the spectral decomposition window that’s believed 

will aid to capture features below resolution. Thin layers smaller than a given window 

size may not be captured. The products from this horizon transformation are amplitude 

and phase volumes ranging from 1-80 Hz. The amplitude spectrum of the data is from 3-

120 Hz, beyond 80 Hz the amplitude spectrum begins to taper off into the background. 

Since this work is focused on stratigraphic visualization, I chose to concentrate on the 
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amplitude volumes associated with each frequency, as they are commensurate to the 

frequency phenomena of ‘’tuning in and tuning out’’, characteristic of sand bodies 

above or below seismic resolution. 

3.2 Results 

Seismic data is broad bandwidth information of the subsurface that contains obscured 

geologic details which remains hidden to many interpretation methods. There is a 

proliferation of different attributes today in the quest to better image and characterize 

a reservoir. These varieties of attributes are built to be sensitive to a particular reservoir 

feature. Spectral decomposition utilizes the frequency component when the bandwidth 

of the seismic data is dissociated into discrete components to reveal subtle features 

obscured by interference patterns. Here I will compare the fidelity capabilities between 

DFT, CWT and CLSSA.  

              Figure 7a shows instantaneous amplitude highlighting a channel in-fill with splay 

stratigraphic package that is gas charged. The bright spot at the northern most part 

signifies a gas charged channel in-fill sandstone that is relatively thicker than the other 

areas. Figure 7b shows a vertical well section showing a similar lateral stratigraphic 

orientation like the ‘D’ sand series. This is from F37 reservoir after Hardage et al, 1994.   

Using running windows at 20ms and 40ms, I transformed the horizon into a series of 

spectral maps. This is so because different beds require a particular frequency that will 

excite the waveforms to reveal subtleties.  

                 Figure 8 shows a comparison between the seismic amplitude and a series of 

frequency maps for CLSSA. Figure 8a shows the amplitude map, white arrows in figure 
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8b highlights enhanced subtle sand bodies absent from the seismic amplitude map. 10 

Hz is where the dominant energy is as later frequencies reveals less of the high 

amplitude sand bodies on the map. This implies that as the frequency increases, the 

resolution decreases for the CLSSA as observed in this case. The black arrows in figure 

8a, points to sandy features on the amplitude map that were suppressed in the 

frequency maps. These features could be noise or sand bodies with frequencies on the 

high end of the frequency spectrum. 

            In figure 9, I made a comparison between amplitude map and the DFT frequency 

maps. Here, there is a stark similarity between the amplitude map and the features on 

the frequency maps. Among the obvious difference between this attribute and the 

previous one is that at 10 Hz, which is where the dominant energy is, there is a tuning 

out of the stratigraphic amplitude. As the frequency increases, the features tune in as 

observed in figure 9c and figure 9d. This implies that as frequency increases, resolution 

increases. The frequency increase did not enhance the interpretation as the best 

spectral map looks like the amplitude map. This takes us back to the behavior of DFT 

within a spectrum of a windowed data. The spectrum displayed by DFT in this case will 

be that of window containing the data, hence forfeiting spectral resolution for temporal 

resolution. 

             Figure 10 presents another attribute comparison between seismic map and the 

CWT attributes. At dominant frequency, the CWT does poorly as there is smearing of 

amplitude of the reflections. At higher frequencies the features completely disappears 

leaving only the low amplitude features. The reason for the poor performance of CWT in 
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this case could be that the Morlet wavelet used as window function may not be the best 

wavelet in this case. More confidence could be ascertained if other wavelets are used. 

            Figure 11 shows comparison between the three attributes at dominant 

frequency. CLSSA in figure 11b shows an enhanced display of the feature than the rest 

at this window length. A likely reason for this could be the iterative nature of the data 

within a given window during its computation. There is tuning out of the gas charged 

sand bodies on the frequency map for DFT, while there is complete amplitude smearing, 

obliterating the feature on the CWT. To revisit the phenomenon of Uncertainty principle 

here, CLSSA has better uncertainty product than DFT and CWT. A logical reason could be 

hinged on the behavior of the methods to the spectrum of the windowed data. CLSSA 

gives the spectrum of the data within the window, while DFT gives the spectrum of the 

window containing the data. CWT is not window dependent, as the cross correlation 

between the seismic trace and the wavelet requires no window length.  

             Figure 12a shows a line spectrum at a time value extracted from the bright spot 

at the middle of the channel in-fill on the seismic section. A trace is extracted, 

decomposed and plotted as a function of time and frequency (T-F panel) to ascertain 

their vertical resolving capabilities. The three attributes are placed side by side as 

shown. In the T-F panel of the CWT, there is a poor time resolution at high and low 

frequencies. At high frequencies, there is a loss of signals as the events are smeared 

towards the low frequency trend of the spectrum. At 1464 ms, the bright spot event is 

smeared appearing low in magnitude. In the DFT panel, the event at 1464 ms appears as 

a weak superimposed doublet of a peak over trough events notched out at 40 Hz. The 
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notches in time on the DFT panel occur approximately at 40 Hz and 70 Hz. If the notch 

periods are correct, then the time thickness of the channel in-fill will be about 12.5 ms. 

DFT smears the energy across the spectrum and treats the channel in-fill as a thin layer 

with superimposed doublets impressions on the frequency panels, making the time and 

frequency resolution to be very poor. On the CLSSA panel at 1464 ms, the event is well 

resolved in time and frequency that terminates beyond 40 Hz. CLSSA did not resolve the 

channel in-fill as a doublet; rather it resolves it better as sharp features. Apparently the 

notch frequency observed on the DFT at 40 Hz appears beyond that on the CLSSA panel. 

DFT gives erroneous notch frequency. Notch patterns absent on CWT are present on 

both the CLSSA and DFT panels. 

       A time slice extracted at 1464 ms passing through the bright spot in 1D creates a 2D 

relationship between the frequency range of the data and the normalized amplitude 

spectrum. In figure 12b, the spectrum of the CLSSA concentrates all its energy between 

10-50 Hz with a steep slope. Concentration of the energy in this range of frequency 

explains why the spectral resolution decreases as frequencies increases. Also the notch 

frequency is at 50 Hz which shows that the bed must be thinner than what the spectrum 

of DFT shows.  DFT spectrum on the other hand, experiences a drop in amplitude as 

frequency approaches the dominant frequency. At 11 Hz and above, the spectrum picks 

up energy until it is notched out at 40 Hz and 70 Hz respectively. The frequency range is 

narrow and less steep compared to CLSSA. CWT amplitude spectrum is smeared at the 

low frequency end of the spectrum. 
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Figure 7(a) Instantaneous amplitude showing channel in-fill sandstone and splay deposits. Dots on the 

map are wells located in the area (b) Reservoir F37 from vertical well section having similar lateral 

stratigraphic orientation as the ‘D’ sand series (from Hardage et al, 1994). 
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Figure 8. Comparison between seismic and frequency attributes display. (a) Seismic amplitude map 

showing channel in-fill deposits. (b) CLSSA at 10 Hz. White arrows pointing to enhanced features absent 

on the seismic amplitude. Black arrows showing features present on the seismic but absent on the 

frequency attribute maps. (c) CLSSA 15 Hz (d) CLSSA 20 Hz.  Frequency volumes were generated at 40 ms 

analysis window. Notice as amplitude decreases as the frequency increases.  

 

                                                                                                    

 

 

                                                                            

 

(a) SEISMIC INSTANTANEOUS AMPLITUDE  (b) CLSSA 10 Hz 

     (c) CLSSA 15 Hz  (d) CLSSA 20 Hz 
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Figure 9.  Comparison between Seismic amplitude map and DFT attributes. (a) Seismic Amplitude map (b) 

DFT 10 Hz (c) DFT 15 Hz (d) DFT 20 Hz. DFT  analysis window length is 40 ms. Notice  how there is 

obliteration of the feature at peak frequency of 10 Hz.   

        

 

                                                                  

 

                                                                                    

 

(a) Seismic Amplitude       (b) DFT 10 Hz 

      DFT 15 Hz       DFT 20 Hz 
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(a) Seismic Amplitude (b) CWT 10 Hz 

(c) CWT 15 Hz   (d)  CWT 20 Hz 

Figure 10. Comparison between Seismic amplitude and CWT frequency attributes. (a) Seismic 

amplitude map (b) CWT 10 Hz (c) CWT 15 Hz (d) CWT 20 Hz. CWT is not window dependent. 
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Figure 11. Comparison between seismic amplitude and peak frequencies for the three attribute 

volumes highlighting the ‘D’ Sand series. (a) Seismic amplitude map (b) CLSSA 10 Hz 

(c) DFT 10 Hz (d) CWT 10 Hz.  

                                                                                                  

 

  

                                                                                   

(a) Seismic amplitude (b) CLSSA 10 Hz 

      (c) DFT 10 Hz (d) CWT 10 Hz 
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(a) 

(b) 

Figure 12. (a) Time-frequency panel of a trace extracted from the channel in-fill deposit at 1464 ms. See 

how the three methods try to resolve the trough event at 1464 ms on the trace. Analysis window for the 

trace decomposition is 40 ms (b) Line spectrum sliced at 1464 ms to show the shape of the frequency 

spectrum relative to normalized amplitude at that event 

(a) 
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 Figure 13 shows the time-frequency panel of a trace extracted at the same channel in-

fill deposits at 1464 ms. CWT smears the energy across its spectrum exhibiting poor time 

and frequency resolution. DFT gives a notch pattern at 20 Hz and there appears some 

energy appearing on the low frequency reflectors. This could be noise or interference 

energy outside the spectrum, giving a poor frequency resolution. In the time domain, 

the superimposed doublets observed in the 40 ms window are now resolved into three 

thin layer reflectors. DFT sees the channel in-fill deposits as thin layers separated in 

time. On the CLSSA panel, the feature exhibits sharper frequency and improved 

temporal resolution. The feature is notched out at 50 Hz. Thus it becomes important to 

conclude that CLSSA will produce better spectral resolution maps of the stratigraphic 

feature than DFT and CWT.              
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When I halved the window size to 20 ms, the spectral map of CLSSA at 10 Hz shows the 

white arrows indicating enhanced stratigraphic bodies absent on the seismic. Figure 14c 

shows that at 15 Hz and above, there is gradual tuning out of the features on CLSSA. 

This means that the peak frequency at this window size falls rapidly to almost that of the 

seismic than at 40 ms window size. Figure 15b-d, shows the spectral maps of DFT at 20 

ms window. The phenomenon of tuning in at the peak frequency is antithetical to what 

is observed at 40 ms analysis window. Here the peak frequency decrease from low 

frequency, and becomes completely obliterated at high frequency of 20 Hz. CWT will 

Figure 13. Time-frequency panel of CWT, DFT and CLSSA from a decomposed trace extracted 

from the channel in fill deposit at 1464 ms. 

SEISMIC TRACE CWT DFT 20ms CLSSA 2Oms 
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not be displayed here because it is not window dependent. It wouldn’t change the 

spectral map interpretation whether at small or large windows; it will always be plagued 

with interference patterns irrespective of the frequency. Figure 16 shows a comparison 

between all the attribute volumes. Notice how the CLSSA resolves subtle features 

absent on the seismic than DFT and CWT.  

             From the above results, it would be appropriate to conclude that irrespective of 

the thickness of the bed here and the analysis window, CLSSA resolves the beds better. 

CLSSA exhibits better Heisenberg uncertainty product both at 40 ms and 20 ms than DFT 

that shows inconsistencies in locating the peak frequency and notch location. CWT adds 

nothing to the interpretation as lots of amplitude smearing in both time and frequency 

domain. 
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   Seismic Amplitude   CLSSA 10 Hz 

  CLSSA 15 Hz      CLSSA 20 Hz 

    Figure 14. Comparison between seismic Amplitude and CLSSA spectral maps at 20 ms 

analysis window.(a) seismic amplitude map (b) CLSSA 10 Hz. White arrows show enhanced 

features on CLSSA that is absent on the seismic amplitude map. (c) CLSSA 15 Hz (d) CLSSA 20 

Hz.  At this analysis window, spectral amplitude of the feature decreases with increase in 

frequency. 
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Seismic Amplitude          DFT 10 Hz 

         DFT 15 Hz       DFT 20 Hz 

Figure 15. Comparison between DFT spectral maps at 20 ms window and Seismic amplitude. (a) 

Seismic amplitude map (b) DFT 10 Hz (c) DFT 15 Hz (d) DFT 20 Hz. Notice the similarity between DFT 

at peak frequency of 10 Hz and the seismic amplitude. 
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Seismic Amplitude      CLSSA 10 Hz 

        DFT 10 Hz        CWT 10 Hz 

Figure 16. Comparison between seismic amplitude map and CLSSA, DFT and CWT spectral maps at 

peak frequency (20 ms analysis window). CWT is not dependent on window, so it is the same for 20 

ms and 40 ms window. (a) Seismic amplitude map (b) CLSSA 10 Hz (c) DFT 10 Hz (d) CWT 10 Hz. 
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CHAPTER FOUR 

PRINCIPAL COMPONENT ANALYSIS 

Multidimensional variables are difficult to visualize in a meaningful manner. Reducing 

the dimensionality into clusters or indices eliminates unwanted variables, while 

preserving the most fundamental data values. In this chapter, I will discuss Principal 

component Analysis: theory and interpretation as it applies to the spectral attributes, 

then conclude the chapter by discussing about spectral blending of frequencies. 

                Principal component analysis is a type of factor analysis that uses linear 

mathematical concepts of eigenvalue and eigenvectors to rotate a data to a new 

coordinate system, such that the new correlation of the new set of values is different 

from the initial values. Principal Component Analysis or PCA for short is a statistical 

procedure used in multivariate analysis that uses an orthogonal transformation to 

convert a set of correlated variables or data points into linear uncorrelated values called 

principal components. This technique is a dimensionality reduction tool that truncates 

the number of dimensions to be retained within a data set. Eigenvalues usually decides 

the number of variables to be retained with the greatest variance in the data lying on an 

orthogonal direction called principal components. The transformation occurs in such a 

manner that the first PC or principal component has the largest variance in the data 

with the condition that it is orthogonal to later components. 
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In a set of real data variables making up a symmetric square matrix, the product of the 

data variables and the eigenvector from the matrix gives a scalar product multiplied by 

the eigenvector. The relationship below illustrates this point. The scalar quantity 

signifies the highest variance in the data, hence earned the name eigenvalue. 

                                                                                      

   is a real and symmetric square matrix having the eigenvector    (a non-zero square 

vector matrix).   is the eigenvalue, which when scaled with the eigenvector gives back 

the matrix of   . This illustrates that the relationship between eigenvalue and 

eigenvector is that of a scalar multiplier, where the scalar multiplier represents the 

highest variance in the original square matrix. To further put this in the context of PCA, 

the eigenvector corresponding to the largest eigenvalue gives the first PC, and the 

second largest variance gives the second PC, and so on, with the condition that all the 

PC’s must be orthogonal to each other. Figure 17a illustrates in a simplistic manner how 

the PC’s are generated. From the figure, two variables X and Y of different dimensions 

are related on a plot. The orientation of the points establishing the relation between 

them is ellipsoidal in shape, such that two vectors passing through the points can be 

used to determine the plane of best correlation between the two variables. The data 

space of the points could be said to be representative of smaller dimensions of the 

larger sets, duly represented by x’ and y’ vectors respectively. The longer vector line has 

better line of fit to the points than the shorter vector line. A point to note is that the two 

vectors are orthogonal to each. However when the two axes are rotated as shown in 

fig17b below, we have a new set of correlation and orientation of the data points. The 
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PC1

PC2
Y’

X’

new axes now form the PC’s. From the figure, two points lie on the PC2 while four 

points lie on PC1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Illustration of the concept dimensionality reduction and axes 

rotation in principal component analysis (modified after, Holland.M.S.(2008)  
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There are basically two types of matrix systems used in PCA computation: covariance 

matrix and correlation matrix. Covariance matrix measures the dimensionality 

relationship between two or three variables with respect to each other (their mean 

value). Usually this type of matrix is used when the data variables are in different units. 

Correlation matrix on the other hand, standardizes the variables to zero mean and unit 

standard deviations. This type of matrix is generated using a square matrix containing 

the correlation coefficients between every pair of the values. The calculated mean is 

subtracted from each value to generate the covariance and variance between each pair 

of the values. Final correlation matrix is attained after the values are normalized by the 

covariance with the square root of the values, or standard deviation of the values. Data 

points that do not correlate well with other data points are not preserved, hence 

reduces the size of the data.   

              Principal components are independent only when the data is said to be normally 

distributed. PCA is sensitive to the scaling of the original variables depending on the 

purpose of the applications. The reliability of this method has found applications across 

various disciplines from pattern recognition in the area of geophysics to image 

compression, meteorology, agriculture, remote sensing, to mention but a few. 

              Historically speaking, PCA as it is used today in statistics was first introduced by 

Pearson (1901) and Hotelling (1933). Though earlier inception of this method in data 

analysis can be traced back to the 19th century to Beltrami (1873) and Jordan (1874), 

where they worked independently using Singular Value Decomposition (SVD) in a 
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manner akin to PCA. Pearson (1901) used geometrical optimization problems to 

determine the best point, lines and planes can fit in a dimensional space. Hotelling 

however was spurred to work on PCA when he noticed outlier points existing 

independently from a cluster of data points. He tagged them ‘’fundamental 

independent variables’’. The variables he noted, contributed to the overall variance in 

the data which he later christened Principal components. He used the Lagrange 

multipliers in his computation and ended up with an eigenvalue/eigenvector problem. 

His methods differ from the typical Lagrange multiplier solution in that he used a 

correlative matrix than a covariance matrix, and the matrix notation is expressed as 

components in a linear functions manner (Joliffe, 2001) 

4.1 Intrinsic Components of the Seismic Data 

In Statistics, using a subset of a sample is advantageous as we have something more 

convenient to work with, while retaining the most intrinsic properties of the main data 

(Figure 17). The seismic data can be described in terms of continuity, redundancy and 

noise. Continuity here refers to the lateral nature of the geology that is expressed as 

interpolated seismic traces representing subsurface amplitude reflections. Qualitative 

structural and stratigraphic interpretation is achieved here after seismic processing. 

Redundancy is created by the spreading of seismic information from the reflectors in 

vertical and lateral directions as the waveform propagates. Majority are recorded as 

part of the data while some may be lost due to other seismic effects. Lateral redundancy 

is caused by the survey geometry and binning sizes, while the vertical redundancy is 

under the influence of bandwidth of the source wavelet that is less than the Nyquist 
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frequency for a seismic data with a sampling rate of standard 4 ms. Correlation is 

strongest between traces as the true dimensionality of the data is simpler than the 

number of traces in the samples. Noise such as ground rolls and surface air waves are 

integral part of the seismic data, creating a tradeoff between resolution and noise 

suppression during the processing. (Coleou et al., 2003) 

   4.2 Method 

To compute the principal component representative of the variability in the data, the 

program (matlab code) adopts a method similar to Brito’s (2010), where a PCA window 

operator is defined (Figure 18) corresponding to a small analysis window. Unlike her 

approach, the program creates a matrix system from the inlines and crosslines spanned 

by the window operator. Note that the black circle in the figure represents the PC 

sample in the PC operator .In this computation, the window spans 3 Inlines and 3 

crosslines at each point. It then moves across the entire time window length of interest 

at that moment. When I used smaller windows such as 100 ms, the program generates a 

3×3 matrix using the inlines, crosslines and the size of the window to generate the total 

number of samples to be used in the computation. With a 100 ms window for example, 

we have 3×3×100=900 samples. This procedure works through the 15 frequency 

volumes for the separate spectral decomposition volumes for both CLSSA and DFT as 

the input attribute variables. The attribute volumes used are from 10-80 Hz, at 5 Hz 

interval. A starting frequency of 5 Hz was initiated but the program generates a complex 

number. This may be indicative of the sensitivity of the program to input variables that 

have data only, as the 5 Hz could have less data points and be noisy. Inlines and 
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crosslines of the PC operator are taken in as an ordered set of vectors, taken from the 

entire seismic volume covering the analysis window to represent a statistical mass of 

samples for the correlation matrix. Amplitudes were first normalized in all the 15 

frequency cubes for the different algorithms, as some volumes have higher amplitudes 

than others. Normalization of this type in qualitative studies is not detrimental. Cross 

correlation of the frequency volumes with itself and the number of samples from the 

analysis window, creates a correlation matrix coefficient. The next stage was to 

decompose the correlation coefficient into scalar eigengenvalue   , and   ×1 eigenvector,  

using the relation above to generate the eigenvectors. The eigenvector with the highest 

eigenvalue becomes the 1st PC, the next in variance, which must be orthogonal to the 

first gives the second PC. The final output cube is not in segy, so the program reshaped 

it back into segy format. In this work, I interpreted only the first three PC’s as they seem 

to contain valuable information. 

             The technique employed in this PCA is data driven and image features beyond 

the bandwidth of the spectral decomposition attributes. Integration of multiattributes 

analysis fortifies our confidence in understanding reservoir stratigraphy obscured by 

interference pattern. My approach here was to use the most-relevant-attributes volume 

that highlights an aspect of the feature and discard those that don’t. The most 

meaningful attributes information was projected unto a series of new coordinates 

preserving the most distinctive outline of the feature. This transformation optimizes the 

stratigraphic feature, hence subduing redundancy in the data. 
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Principal component analysis utilizes all the data available. When the data points 

however are less than the number of input variables, then the use of a covariance 

matrix would be suitable to generate the PC’s. On the other hand when the number of 

input variables are less than the data points, then there is need to standardize the input 

parameters using the relationship: 

                                                                             A=BT.C 

Where A is the number of data points, B transpose is the matrix of the principal 

components and C is the input variable matrix. Standardization subtracts the mean 

value from the each observation points and divides by the standard deviation. The 

division limits the deviation value to range from -1 to +1. PCA generated in this way is by 

correlation matrix. 

 

                                           

 

 

 

 

 

 Figure 18. Schematic illustration of the PCA operator within the PCA window (Modified from Brito, 2010) 
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4.3 Interpretation 

In this work I applied the spectral decomposition attributes directly to visualize subtle 

features, while I used the frequency volumes as input variables in the PCA computation. 

I utilize the frequency volumes that were generated at 20 ms and 40 ms analysis 

window respectively, but the results for the 40 ms were very noisy as the PC has nothing 

tangible in them. I concentrated on the 20 ms analysis window as it enhanced my 

interpretation. On the PCA window size, I tried 20 ms and 40 ms window during 

computation but I got nothing but noise. I tried smaller windows at 100 ms and 52 ms, 

which gave me something to look at. The program couldn’t generate the PC’s at 50 ms 

window, because it can only sample the volumes at multiples of 4 ms interval, which 

makes 52 ms closer to 50 ms. Results for CLSSA and DFT at 52 ms will be attached in the 

appendix section of this work. 

                   Figure 19 b-d shows the PCA at 100 ms for CLSSA at 20 ms analysis window. 

PC1 did not highlight the splay deposits as they fall below tuning. The only prominent 

feature on this PC is the channel in fill sandstone. AS the number of PC’s increases, the 

output gets noisier. A possible explanation for this is that the PC’s are uncorrelated after 

the axes rotation. Another reason could be that the amplitude normalization could be 

detrimental to the CLSSA to have suppressed all the valuable amplitude of significance. 

As shown in the figure, CLSSA does poorly than the seismic in the PC domain. On the 

other hand, PC1 for DFT at 20 ms analysis window shows a better feature than the 
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seismic (Figure 20b-d).  Even PC2 does somewhat better than the seismic. Figure 21 b-d 

shows a comparison between the seismic, PC1 DFT, spectral maps for CLSSA at 40 ms 

window, and DFT at 20 ms window respectively. I used these windows because they are 

the best spectral frequencies that show the features better. From the figure, PC1 DFT 

shows an enhanced channel in-fill deposits, and the splay deposits geometry appears 

more delineated compared to the spectral maps of CLSSA 10 Hz at 40 ms analysis 

window, and DFT 10 Hz at 20 ms window. Figure 22 a and b, show plots of the five PC’s 

eigenvectors for CLSSA and DFT. In figure 22 a, the variation of the spectral energy are 

more concentrated on the high frequency end than the low frequency. This could 

indicate that there is more concentration of the high frequency features in the PC’s than 

the features are at low frequency. For the DFT, the spectral energy is somehow evenly 

distributed on the low and high frequency end for the entire PC band. A likely reason for 

better correlation of the DFT PC’s over CLSSA could be that the PC1 spectrum is more 

relaxed and undulating creating a smoother match of variables than the CLSSA that has 

a taut curve. 
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(a) Seismic Amplitude       (b)  CLSSA PC1 

(c) CLSSA PC2 (d) CLSSA PC3 

Figure 19. Comparison between  seismic amplitude and the PC’s for CLSSA. PC  analysis  

window  is 100 ms. (a) Amplitude map (b) CLSSA 1st PC (c) CLSSA 2nd PC ( d) CLSSA 3rd PC.  

CLSSA PC’s get noisier after axis rotation of the input attributes, leading to obliteration of 

the feature as PC value increases. 
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(a) Seismic Amplitude 
     (b)   DFT PC1 

     (c)  DFT PC2   (d) DFT PC3 

Figure 20.  Comparison between seismic amplitude and PC’s for DFT. The PCA analysis window is 

100 ms. (a) Seismic amplitude map (b) DFT 1st PC (c) DFT 2nd PC (c) DFT 3rd PC. There is a strong 

correlation of the DFT attributes after axis rotation, leading to superior delineation of the ‘D’ 

Sand series reservoir. 
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(a) Seismic Amplitude  (b)   DFT PC1 at 100ms 

(c) CLSSA 10 Hz     (d)  DFT 10 Hz 

Figure 21 Comparison between DFT PC1 at 100 ms widow and spectral maps at 10 Hz 

dominant frequency for CLSSA at 40 ms window, and DFT at 20 ms window. (a) Seismic 

amplitude (b) DFT 1st PC (c) DFT 10 Hz (d) CLSSA 10 Hz. DFT 1st PC goes beyond the 

bandwidth limit of the spectral attributes.. 
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        Figure 22 First five principal spectral components computed from the eigenvectors for 

(a) CLSSA 100 ms PC window (b) DFT 100 ms  PC window 
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   4.4 Color Blending (RGB) display. 

The amount of information that a time slice or horizon conveys to an interpreter is 

enormous. The level of details depends on how he can intuitively separate the features 

of interest from that which is not. Colors were first introduced by Taner and Sheriff 

(1977), and Lindseth (1979) to convey information in a logical way during interpretation. 

Different color schemes have been used over time. HLS (Hue, Light, Saturation), CMYK 

(Cyan, Magenta, Yellow, Black), Red, Green, Blue (RGB) etc. The color schemes show 

gradation and contrast on a horizon in a lateral manner, which has a link to thickness 

and reflection coefficient. Colors are an essential part of interpretation as a reflection 

from a given lithology is easily discerned from the background reflection, e.g. sand that 

is gas charged will exhibit a different color from a sand body that is not. Similarly, high 

amplitude channel sand will show up differently from low amplitude channel sand. 

Gradation in color added to amplitude will help to locate channels, streams and 

depositional environment in a wide range of densities (Brown, 2011). 

                  RGB is a powerful tool that appends the amplitude of frequency into a single 

map display. Frequency blending exhibits the potential to enhance subtle lithological 

changes using the dominant color bands sensitive to thickness and acoustic impedance 

variation. Multiattributes RGB display assigns a color to each frequency volume. RGB 

works very well where the input variables are highly correlated and the final blend will 

append the three primary colors into a composite display that contain mixtures or specs 

(b) 
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of red, green or blue colors relative to the sensitivity of the features to the color band. 

This color blending can be said to be a noise suppressor as systematic variation in the 

different volumes are only represented in the color trends on display.  

                    Subtle stratigraphic features limited from seismic resolution by interference 

patterns can reveal startling features when different colors are combined. RGB bands 

are sensitive to bed thickness and acoustic contrast of geologic features, and are 

strongly correlated to the tuning frequency of the features. Color blending is used here 

to show the geometry and extent of the stratigraphic feature by blending different 

frequency volumes.  

               RGB depends upon the dominance of the individual color assigned to a 

frequency value. Combination of the three colors in equal proportions yields white light. 

The dominance of one over the other however, will exhibit that color on the feature. 

When two colors dominate, the color on display will be an admixture of the two colors. 

                   There exist an inverse relationship between frequency and the thickness of a 

bed. Low frequencies highlight thick portions of a layer while high frequencies highlights 

thin layers depending on the tuning frequencies. Here, I blended 10-15-20 Hz frequency 

volumes of the CLSSA at 40 ms window into a single map. I made that decision because 

the preceding result shows that it has the best display of the features. Figure 23 shows 

the RGB display compared with the original seismic. The stratigraphic feature appears 

magenta because the dominant colors that highlight the features were red and blue, 

meaning that the 10 Hz and 15 Hz frequencies contributed in equal amount. Similarly 

the background appears green with specs of black. Notice how the feature is more 
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extensive than the broadband amplitude. Figure 24 shows the spatial extent of the true 

geometry without interference effects. From the figure and all the preceding analysis, 

we can deduce the geological history of the thin layer here to be of a channel axis that is 

filled to the brim with sandstone deposits. The deposits overflew its banks to form splay 

away from the in-fill.  

 

 

 

 

 

 

 

 

 

 

 

  

(a) RGB composite display of 10 Hz-15 Hz-20 Hz          (b)  Seismic Amplitude 

Figure 23. Comparison between (a) Red-Green-Blue (RGB) display using the best tuning frequencies of 10-15-

20 Hz and the (b) Seismic amplitude. Notice the spatial extent of the feature from the frequency blend. The 

magenta color result from the dominance of the red and blue colors i.e. 10 Hz and 20 Hz, while the green 

color assigned to 15 Hz highlights the outer layer of the stratigraphic feature 
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Figure 24 RGB display showing the spatial extent of the stratigraphic 

feature using the best tuning frequencies of 10-15-20 Hz. The 

magenta color corresponding to the feature shows the dominance of 

the 10 Hz and 20 Hz frequencies. 
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                                      CHAPTER FIVE 

                               SUMMARY AND CONCLUSIONS 

This work has shown that we can image subtle features beyond the bandwidth limit 

resolvable by the spectral decomposition attribute method, when the coordinates of the 

frequency attributes are rotated in a manner that creates   a synergy between spectral 

decomposition and principal component analysis. A ‘D’ sand series of the middle Frio 

Formation Stratton field, was further enhanced to show channel in-fill deposits that was 

deposited laterally with splay sand bodies. The stratigraphic geometry on the seismic 

amplitude map was enhanced by spectral attributes but a better enhancement was 

obtained using principal component analysis. 

                The advantages of using a windowed data within a spectrum translate to a 

better Heisenberg uncertainty product, where the spectral resolution is superior over 

using the spectrum of the windowed data. This is observable for both the long and short 

windows of spectral decomposition. Discrete frequencies reveal that CWT has poor 

frequency resolution due to amplitude smearing at low frequencies and cannot resolve 

high frequency events. DFT at short windows resolves the events in the same magnitude 

like the seismic amplitude at low frequencies. As the window size doubles, the bed 

thickness is better resolved at higher frequencies, and poorly at lower frequencies. This 

is an indication that the Heisenberg uncertainty product is inconsistent for the DFT. 

CLSSA on the other hand resolves the features at low frequencies beyond the seismic 
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resolution. Shorter windows see CLSSA losing the peak frequencies as less of the feature 

is captured. Therefore in this basin, CWT is not a recommended method to administer, 

though it may work greatly in other basins. DFT using running windows shows a lot of 

inconsistencies with fluctuating Heisenberg Uncertainty product as the peak frequencies 

differ. CLSSA at larger windows highlights the subtle features better as the tuning 

frequencies tends to be more sensitive at this window length. Smaller windows might 

be appropriate for spectral inversion purposes as the spectrum of the data is very taut. 

                  Preserving the direction of maximum variance at smaller windows goes 

beyond the spectral decomposition limit to enhance subtle features that are absent on 

the spectral maps. DFT produce higher fidelity than the CLSSA at 40ms windows. A 

possible reason might be that the attributes volumes may be well correlated during the 

axis rotation. Another likely reason might be Heisenberg Uncertainty product, though 

better in the CLSSA at different windows, it may be distorted after axis rotation. 

Surprisingly, at lager windows DFT loses the correlation of the attributes as the PC’s 

perform poorly compared to CLSSA. Smaller PC windows forfeit the spectral resolution 

for both DFT and CLSSA, even though CLSSA show aspects of the feature better. At 

larger windows, PC’s of CLSSA are uncorrelated as the DFT performs better than the 

best CLSSA spectral map peak frequency. 

                 Larger spectral decomposition windows delineate the stratigraphy better than 

shorter windows. Interleaving the frequency volumes at lower frequencies by assigning 

a component of the primary color spectrum , shows the entire outline of the features, 

assuming that the acoustic contrast are relatively uniform and the tuning frequencies of 
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the bed resonate at a single frequency. The geological history I could deduce from the 

above analysis is that, there was deposition of siliclastics sediments into the channel 

axis. The axis was filled to its brim and then overflew to form splay deposits far away 

from the channel axis. Finally, a point to note here is that the results obtained here is 

restricted to this field. Using this method in another basin may produce different results.  
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                                                  APPENDIX 

         Comparison of PC’s at 52 ms window for CLSSA AND DFT 20 ms analysis window 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                

 

                                                                                  

       

Seismic Amplitude    PC1 CLSSA 

PC2 CLSSA   PC3 CLSSA 

A1 Comparison between the seismic amplitude and PC’s at smaller analysis 

windows. (a) Seismic amplitude (b) CLSSA 1ST PC (b) CLSSA 2ND PC (d) CLSSA 

3RD PC. As the window size decreases CLSSA PC’s become noisier and 

obliterated. 
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Seismic Amplitude             DFT PC1 

                DFT PC2          DFT PC3 

   A2 Comparison between the Seismic amplitude and PC’S at smaller analysis window (a) 

Seismic amplitude (b) DFT 1st PC  (c) DFT 2nd PC (d) DFT 3rd PC. At smaller analysis windows, DFT 

PC’S become noisier.  
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