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The nonlinear oscillations of a spherical gas bubble in an incompressible, viscous liquid subject to the 
action of a sound field are investigated by means of an asymptotic method. Approximate analytical 
solutions for the steady-state oscillations are presented for the fundamental mode, for the first and 
second subharmonies, and for the first a•d second harmonics to second order in the expansion. 
These results are compared with some numerical ones and a very good agreement is found. 
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INTRODUCTION 

Because of the highly nonlinear nature of the govern- 
ing equations, the osciUations of a gas bubble in a liquid 
present a difficult mathematical problem. Many of the 
existing studies are based either on linearized ana- 
lysas x-s (for a recent review see Ref. 5) or on numer- 
ical I compu•tions. 6-•a A first analytical attempt at the 
full nonlinear problem was made in 1956 by G•ith who, 
neglecting damping and surface tension, gave approxi- 
mate results for the resonant and subharmonic oscilla- 

tions. •'• More recently, Eller and Flynn •4 obtained an 
expression for the subharmonic threshold in an investio 
gation motivated by the experimentally observed sub- 
harmonic signal from an acoustically carlisting liq- 
uid. •s-•7 

I• the present study, the steady-state, nonlinear os- 
citlations are analyzed by means of an asymptotic ex- 
pansion. The bubble is assumed to remain sphericat 
and to be immersed in an incompressible, viscous liq- 
uid subject to steady sinusoidal ambient pressure oscil- 
lations. The effects of surface tension and of viscous 

dom'ping are included; thermal and acoustic damping can 
be accounted for by the suitable redefinition of the vis- 
cosity parameter. Analytical, second-order results for 
the steady-state oscillations are presented for the funda- 
mental mode, as well as for the first and second sub- 
harmonics and for the first and second harmonics. The 

response curves are compared with others obtained by 
numerical integration of the Rayleigh equation TM and a 
very good agreement is found. 

I. STATEMENT OF THE PROBLEM 

We study the nonlinear oscillations of a gas bubble as- 
suming that the motion is spherically symmetric and 
that the effects of compressibility may be neglected. 
Under these hypotheses, Rayleigh's equation of motion 
for the bubble wall can be written as t6 

j. daR 3/dR\ a lip 2(r R R ' 
where R is the instantaneous radius of the bubble, p• is 
its internal pressure, and p(t), the ambient pressure, 
osni][lates with angular frequency • about its average 
value p•: 

•(t) =p.•(1 - •/cos•t) 
This expression is a close approximation to the pres- 
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sure distribution in a liquid subject to a sound field the 
wavelength of which is large compared with the bubble 
radius. The nature of the liquid is described by its 
density p, surface tension % and viscosity g. It will 
be assumed that the amount of vapor present in the bub- 
ble is negligible, and that p• can be written in the form 

, (2) 

where • is a polytropic exponent and P0 the internal 
pressure corresponding to the equilibrium radius R o . 

It should be noted that a relation Iike Eq. 2 is accept- 
able only insofar as thermal damping can be neglected, 
since this effect produces a phase difference between 
pressure and volume variations. 3'• As can be deduced 
from Fig. 1 of Ref. 4, in water this will be the case for 
bubbles smaller than about 10 '• cm. Even if Eq. 2 is not 
strictly applicable to bubbles of larger radii, the results 
obtained for these will nevertheless be approximately 
valid if referred to the average, steady-state behavior 
of the bubbles, rather than to the instantaneous one. 
For such relatively large bubbles, however, thermal 
dissipation should be taken into account. To the same 
approximation of the computations presented below, this 
can be easily obtained by letting the parameter • in Eq. 
1 be the sum of the viscosity of the liquid plus a "ther- 
mal viscosity" defined according to the expressions given 
by Devin 2 or Chapman and Piesset • for the thermal loga- 
rithmic decrement. As an example we give here the ex- 
pression that can be deduced from Eq. 27 of the latter 
authors: 

_ • a Ira(G) 
gtt•'ma• - • P•Rø Re(G)- 2ar/R o ' 

where G is a function defined in Eq. 24 of Ref. 4. In a 
similar way, the acoustic damping can be introduced 
through an effective "acoustic viscosity" given bya'4: 

•a•oustic - 4 c ' 

where ½ is the velocity of sound in the liquid. 

The equilibrium radius of the bubble is determined by 
Po-P-=2a/Ro- The physical mechanisms that may al- 
ter the value of R0, such as rectified diffusion, m,•-0 will 
be disregarded. From Table I of Ref. 19, it can be 
seen that the time scale for this process is by many or- 
ders of magnitude larger than the period of oscillation 
of a bubble. The only effect of rectified diffusion will 
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therefore be an exceedingly slow parametric variation 
of the value of R 0 in the equations presented below. 
This conclusion is also substantiated by the finds of Ref. 
20, where it is shown that the growth by rectified dif- 
fusion can essentially be decoupled from the oscillation 
of the bubble. 

II. PRELIMINARY CONSIDERATIONS 

Since we are interested in the oscillations of the bub- 

ble about its equilibrium radius R 0 , in Eq. 1 we let 

/{ :/{0(1 +x) , (3) 

and perform a power series expansion in x. If the fol- 
1ow'• change in the time scale is made: 

ß = (P0/P)•/• tR; • , 
and terms o• gourth aad higher order •re negiected, • 
we obtain 

+[•x- a•x 3 +•x • cosw•+4bxk] , (4) 

where dots denote d•erentiation with reject • the di- 
mensioffiess time ß and the following def•itions Mve 
been used: 

w = 2•/•0 Po , 

• =2•/•0(•0) •/• , 

• = (• - w) n , 

w =a0•(P/P0) •/• , 

• = 3•- w . 

When the e•ression for w o • the reson•t frequency of 
the bubble, is converted back into dimensional form, it 
re•s 

a• = (3r•0 - 2•;•)/• , 
a well-•own result. •'4 It should also be obse•ed t•t 
in Eq. 4 the combustion • = (1 - w)• enters, rather than 
• alone; • appears therefore as an "effective pressure 
amplitude" for the oscillations. 

In the following, the appro•mate equation, Eq. 4, is 
studied. Offiy the results are presented here; for more 
det•ls •d the computational a•ects, see •f. 22 and 
Sec. VII below. 

To third order, Eq. 4 possesses •o harmonic •d 
•o sub•rmonic re•nces, respectively, for w • w 0 / 
2, W•Wo/3a•w•2Wo, w•3w o. The •lutionx(t) is 
found • have a similar form in all four of these fre- 

quency regions; •mely, 

•(t) = c cos0 + •[(• - • +4• •]'•/• cos(•r + •) 

+ (c• + X• c• cos2•r)• • + (cs + c• cos2O) • 

+ [c• cos(wt + 0) + • co cos(•r - 0)] •C . (5) 

In this equation• 

• = ran-' [25•/(• •- •)] , 

0 =•tco? + • 0 , 

and the c!'s, 0 •< i •< 5, are functions of co given by Eqs. 
A1-A? of the Appendix A. Expressions for the quanti- 
ties C and •, the ampiRude and phase of the resonant 
component, are given in the following sections for each 
resonance region. The other symbols, X[, •, n, are 
explained in Table I. The solution in the intermediate 
regions (i.e., far from resonances) is given by Eq. 5 
with C = 0. 

III. SUBHARMONiCS 

In the first subharmonic'region co -• 2co 0 , the amplitude 
C can have one of the following values: 

c(co)=o, 

C(co) =[co•o-(1/4)cog+•ggl(w)+A(co)] •/2 go(w) , (6) 
where 

•(•) ={•(•)- •},•, 
and the quatitles •, •0, E[ are f•ctions of • given 
in •qs. AS, A10, All of the Ap• A. The 
p•se • is undetermined for C = 0, w•le in the other •o 
cases its value is given by 

sin2• = b • •E• • 

cos2• =• • • - b• 
The function C(w) is shown in Fig. 1 for a represen- 

ttire c•e. A s•b•ity a•ysis s•ws that, of the •o 
branches of Eq. 6, the one corres•nd•g to the lower 
si• is unstable. The value C = 0 is s•ble eve•here 
except in the frequency in•rval comprised be•een w,, 
the s•rting points of the •o br•ches •d de[e•[ned 
by the equations 2• 

•[-([/4) • + • g•(•,) ß •(•,) = 0 . '(•) 

Therefore, there e•sts an interval of frequencies where 
the solution x(•) m ay or may not e•ibit a sub•rmo•c 
component, depending on the i•tial conditions of the os- 
cillations (Figs. 1 and 2). H w. is real, t•s interval is 
located at the left of w. on the frequency •s (Fig. 1). 

The requirement •at the quanti• •(w) appearing • 
the a•ve e•ressio• be real, determines the (frequen- 
cy-dependent) threshold • for the subharmo•c excitation 
•s 

TABLE I. Values of the constants appear- 
ing in Eq. 5 in the different frequency re- 
gions. 

First subharmonic region 1/2 1 0 
Second subharmonic region 1/3 1 1 
First harmonic region 2 0 1 
Second harmonic region 3 1 1 
Intermediate regions -- 1 -- 
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If surface tension is unimportant, this equation is 
similar (although in a somewhat more manageable malh- 
ematicai form) to a result obtained by Eller and Fl¾itn. 14 
There is, however, an important difference. Elter and 

Flynn's expression was derived by an investigation of 
the onset of instability for a solution of the Rayleigh 
equation similar to Eq. 5 with C = 0. Because of its in- 
direct nature, this technique cannot handle correctly a 
case like that shown in Fig. 2, where the C = 0 solution 
is stable in the entire frequency range, but a subhar- 
monic component may nevertheless set in if appropriate 
initial conditions are chosen for the motion. 

If in Eq. 8 we set •0 = 20•o, we get, in dimensional 
variables, - 

Ro(PP0)'/•' ' 

The llnea• increase with viscosity predicted by this re- 
lation appears te have been experimentally verified. ]? 

For the second subha.rmonic resonance c• -• 3c% / one 
gets similar results. Agdn, C: 0 is a possibility for 
the amplitude, which ca• also, however, have nonv•m- 
ishing values, the (positive) solutions of 

4- =o , 

where g2, •6 are functions of • given by Eqs. A12 and 
A16 of the Appendix A. The condition that the discrimi- 
rm•t of this quadratic equation be positive, determines 
a threshold condition ar•o•ous to Eq. 8. Of the two 
branches of the curve C(c•), the lower one turns out to 

I I 

0.8 l STABLE UNSTABLE 

b O.05 

_%,,. w =0.3 
0.6 • 

• •/ (14 

0.2 

o I__l 

I _7 1.8 1.9 2.0 

FIG. 1. Amplitude of the steady-state subharmonio component 
as a function of the ratio between the impressed frequency co 
and the natural frequency of the bubble •o 0. 

c 

I [ 

Q8 l STABLE UNSTABLE 

• b=o.i 

__ 
O.2 

I I 
1.7 I.B 1.9 2.0 

co/we 

FIG. 2. Amplitude of the steady-state subharmonic component 
as a function of the ratio between the impressed frequenoy co 
ßnd the natural frequency of the bubble w 0. 

be unstable, just as in the preceding case. The phase 
is determined by 

2a)b 
sin3• = --- 

3g• •C ' 

(•/o) •,•- 4- •(g•-g•) +go c • 
cos3•o =- g6/•C 

There appears to be experimental evidence for the oc- 
currence of this mode. •s 

IV. HARMONICS 

For the first harmonic resonance • --- (1/2) o•o, the 
amplitude C and phase q are determined by 

• c• + 2g0 q,. c• + (qi+ 16ha o•) c •- •=o, 
ß bC g• (Qe +go c•) - 

s•o =• • , (9) 
c •(q•oc •) eos• =-• • , 

where 

•d •, gs are functions oi • given by Eqs. A9 •d A13 
of the A•end• A. 

Because of the characteristic d•erence in the co•ling 
with the sub•monic case, Eq. 9 
quadratic, in •. This has the consequence that C=0 
no loner a possibility, a• t•t (as is physic•ly clear) 
there is no thres•ld for •e •rmonic oscillations. 

It is easily vetfiled that Eq. 9 has either one or--for 
high enough f or low e•u• b--tree re•, posi•ve 
lu•ons. In the latter case, the pe• is bent over • •e 
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left, with an unstable section comprised between the 
points of vertical tangency. 2z The situation is qualita- 
tively similar to the one depicted in Fig. 3. In the fre- 
quency interval where the function C(co) is two-valued, 
the initial conditions determine the steady-stale value 
of the amplitude. 

In the second harmonic region co -• (1/3) coo we have 

gõ CS + 2Q3 go C4 + (Q• + 36c0z b•) CS -K• • =0 , 
6cobC 

sinq• =- g•-•j- , 

gs•- ' 

with 

Q3 --9 co•'- •0- d(gl 
and the function g$(co) given by Eq. A15 of the Appendix 
A. The possibilities for the solutions of Eq. 10 axe as 
for the first harmonic. Two typical examples of the 
curves C(co) obtained in this case are shown in Fig. 3. 

As co gets fax from the resonance region, the values 
of C determined by Eqs. 9 and 10 get exceedingly small, 
thus justifying the last remark at the end of Sec. n on 
the solution in the.intermediate (nonresonant) regions. 
In the case of the subharmonics, C equals 0 exactly far 
from resonance. 

(lO) 

V. RESONANCE 

Near the main resonance at co -• coo, the approximate 
solution of Eq. 4 is, in place of Eq. 5, 

x(?) = Ccos(co•+w) + • • [(4 -- 0•.0)'1 

x cos(2cor- q•) - o• a cos•o]•C 

• a a -; • ]t ztu• -- 01 

x cos(2o• + 2•)} c • 

The amplitude C and p•se • axe •tutio• of the iollow- 
•g system: 

2•bC + f(1 - • •) sin• + • a •.,• it •o s•2•=0 , 

c[•- • + • f•(2• - •) •;•(4•- 

- d• + f(1 - •CS) cos• + • fe C•; e cos2• = 0 , 

and can be obtained with the aid of a digital computer. 
The quantities dt's , 1 •< i •< 3, are functions of co given 
by Eqs. A17-A19 of the Appendix A. 

From the qualitative point of view, the situation here 
is identical with the one described in the previous sec- 
tion and shown in Fig. 3. Obviously, the quantitative 
difference lies mainly in the height'of the response. 

Vl. COMPARISON WITH NUMERICAL RESULTS 

Lauterborn bas performed an extensive series of com- 
putations of the response-frequency relation of an oscil- 
lating bubble, integrating numerically an equation prac- 
tically equal to Eq. 1 above. Figures 4-9 present a 

4 

W 

• sloble 
.... unsfoble 

I I 

0.1 

0 
0.25 0.30 0.35 

FIG. 3. Amplitude of the steady-state, second harmonic com- 
ponent as it function of the ratio between the impressed fre- 
quency itnd the natural frequency of the bubble. The parameter 
b, labeling the curves, is the damping parameter. 

comparison of Lauterborn's results •2 with the analytical 
ones in a few cases. The figures are plots of 
- R0)/R 0 versus co/w0, where R,•a, is the maximum value 
of/he radius during a steady-state oscillation at fre- 
quency co. The cases considered are the following: 

casel: b=0.128, w=0.592; 

ease 2: b=0.019, w=0.127; 

for several values of the pressure amplitude U. If the 
liquid is water at 20 øC, the two cases would correspond 
to a bubble of radius 10 '* cm and 10 '• cm, respectively; 
for beth the polytropic exponent is 7 = 1.33, which is the 
value used by Lauterborn. 

Figures 4 and 5 refer to case 1 for U = 0.5. Because 
of the large value of w, however, the effective pressure 
amplitude • is much lower, • = 0.204. The agreement 
is seen [o be extremely good, even near resonance 
where x,, is large (Fig. 4). In the following figure, cor- 
responding to a higher value of • (Fig. 6, case 2, U = 0.3, 
f = 0.262), the agreement is not as good, but still very 
satisfactory. Figure 7 refers to case 1 for a large value 
of the effective pressure amplitude, f = 0.367. The pro- 
gressive worsening of the agreement between numerical 
and analytical results is evident, but nevertheless the 
fact that the latter still are not completely off at-such a 
high value of the perturbation parameter should be noted. 

Figures 8 and 9 present a detailed comparison in the 
region of the first subharmonic. Figure 9 (case 2, 
U=0.7, f=0.611) is included to show the accuracy of 
Eq. 7 for the interval of instability of the purely hat- 
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xx. ] ,.o.o,,, / 
0.4 X ; ' '• ß o.• 

•, -- ANALYTICAL ! M , • - 0.262 

i . 

J 0.4 

0.3 0.5 • .0 2.0 
0. G 0•8 1.0 1.2 1,4 

• •/•- 

• •[G. 6. Com•ison •een the numerics[ •nd •l•c•l •e- 
•G. &. Com•son •een the nmerical •nd •i•c•t •e- suit8 •o• ß m•e•ly high •lue of the pe•tio• •m•e• 
suits in the f•uency •e•on o[ the •i• •eso•e, • • •e (c•e 2) 
(ca•e 1). 

monic C: 0 solution even for such a large value of •. 

In Figures4, 6, and 7 the dotted vertical segments on 
the curves of Lauterborn's results reflect the discon- 

tinuities that appear in the numerical solution as it 
passes from the left (lower) branch to the right (higher) 
one at the points at which the former becomes unstable; 
these are the points at which the tangent to the curve 
x,•(•o/o• o) becomes vertical (cf. Fig. 3 and Sec. IV). 
Both the stable and the unstable branches are indicated 

for the analytical curves. The stable ones continue 
above the corresponding numerical results. The reason 
for this is that Lauterborn has apparently integrated in the 
direction of increasing values of •0/•o 0, so that he was 
unable to compute the response curve in the region in 
which it has two stable branches. For the same reason 

his results do not show the typical hysteresis of nonlin- 
ear oscillations. • In the case of the subharmonic re- 

gions, the point of vertical tangency is not recognizable 
as such for the numerical curve, but is very evident in 
the analytical one (Figs. 8 • 9). 

X M 

I I 

NUMERICAL w - 0.59;' • ' 0.204 

0.1 , I , I , I • I 
0.44 0.46 0.48 • 0.50 0.SZ 

o.• -_-•-- _•-•- .... .. •• _ 
b -O.l•R •=O. 5 

I W , 0.592 • = 0.204 / 

X M 

o 
0.28 0.30 0.32 0.34 0.56 

FIG. 5. Comparison between the numerical and analytical 're- 
sults in the frequency regions of the first (upper) and second 
(lower) harmonies, •o • 0/2) o• 0 and •o-- (1/3) •v0, respectively 
(case 1). 

As a test of the threshold equation, Eq. 8, we men- 
tion that, for case 1, Lauterborn obtains 1.5 < •, < 1.6 
and, for case 2, Vt-•0.12. The analytical results are 
•/t = 1.54 and •/t =0.123, respectively. 24 

Finally, Fig. 10 presents two examples of radius-ver- 
sus-time curves for subharmonic oscillations (case 2, 
• = 0.262, o•/•o 0 = 1.955). Both curves have been com- 
puted from Eq. 5, curve a, with C(•o) given by Eq. 6, 
curve b, with C = 0. 

VII. NOTE ON THE ASYMPTOTIC METHOD 

The steady-state solutions presented in this study have 
been derived from the transient solutions computed with 
the aid of the Bogolyubov-Krylov asymptotic method. zs 
This method is very well known, so that a very brief out- 
line will be sufficient here. 

Consider a weakly nonlinear differential equation of 
the form 

2 + 2eB• + •o•0 X = Pcoso•t + ½hx(X, •; o•t) + • I•(X, •f; o•t) 

X M 

0-6 

0.4 

0.e 

ANALYTICAL 

- NUMERICAL 

w - 0.592: 

,• -0.9 
• ß 0.367 

0.5 0.5 

FIG. 7. Comparison between the numerical and analytical re- 
sults for a high value of the perturbation parameter (ease 1). 
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O.3 

0.2 

0.1 

' L ' ' ' ' I ' • • ' 
TI A r stable - - 

ANALY C L •. unstable - - 
UMERICAL .... 

b - 0.0187 

• • w - 0.,266 
• • •-o.• 

•, ••- 0.262 

L_ 

1.95 Z.• 2.• 

FIG. 8. Comparison between the numerical and analytical re- 
suits in the sublmrmonie region. This figure is an enlarge- 
ment of the subh•rmonic peak of Fig. 6 (ease 2). 

where ht(X,•; wt) are functions co.nsisting of linear com- 
binations of terms of the form xn ', with coefficients 
periodic of period 2•r in the variable wt. We suppose for 
the moment that the driving frequency co is far from the 
resonant frequency coo, but that there is a rational num- 
ber n such that nee ~ coo- We seek a selution of the di/fer- 
ential equation in the form of the asymptotic expansion 

x: P[(coõ,- co•)• + 4•e%•] '• cos(cot + 

+•x•+... , 

with e :ncot + •(t), •: tan'•[•-•Bco/(co • - •)]. I• this ex- 
pression is substituted into the differen[ial equation, an 
expansion in powers of ½ carried out, and the coefficients 
of like powers equated, a hierarchy of equations is ob- 
tained: 

- nco• sin0 - ncoA• cos0 

a [5 cose-•0 sine]: •- •o)• cose +• , 

• ß cogx• -- s•Ca, •o;r• cot, s•e) *fliA, •0) cose +g•L4, •o) sine, 

2• + coõxz: •,(•, •o;x•;r, cot, 

+f•.(A, •o) cos0 +gzCA, •0) sin0, 

and so on, where rt, st are rational numbers different 
from n and 1, respectively. Note first that this system 
is underdetermined as far as A and •o are concerned, 
so that any other relation between them can be imposed. 
It is convenient to choose 

5 cose- A• sine: 0 , 
so that the first equation remains of first order. Now, 
since by hypothesis rico ~ coo, the terms proportional to 
cos0 and sin0 in the RI-I• of the equations for X t will give 

X M 

0.8 

0.6 

G4 

O.2 

O__ 
1.8 

% 

ANALYTICAL { stable unstable .... 

NUMERICAL -- 

b - 0.0167 
w - 0.1266 

( - 

1.9 2.0 2. I 

FIG. 9. Comparison between the numerical and analytical re- 
sults in the suharmonie region for an extremely high value of 
the perturbation parameter (ease 2). 

rise to very large amplitudes, so that the validity of the 
asymptotic expansion breaks down. To avoid this diffi- 
culty, the functions A(t) and •(l) must be defined in such 
a way that at any time the term A(l)cos8 contains the en- 
tire component of frequency •co present in X. To obtain 
this, all terms proportional to cos8 and sine must be 
subtracted from the RHS of the equations for Xt and put 
back into the first equation. One then obtains the follow- 
ing systems: 

-nco,• sine - ncoA•o cose: (,• •- •)A cose + (•/• + J/,. +... ) 
x cose + (½g• + •ga +' ' ß ) sine , 

nco,• cose - ncoA• sine = 0 , 

1.6 

1.4 

1.2 

0.8 

0.6 

i i 

b - 0_0167 
W= 0.1266 

'"x- -- ',. -q = o.• /• \ ,.= i.a'.'. 
- / \ x __•, 

/ X x 

,' 

0.4 I I 
0 

FIG. 10. Steady-state oscillations in the subh•rmonie region. 
Curve a, subh•rmontc oscillations; curve b, purely h•rmonie, 
½ = 0, oscillations. The pressure amplitude curve (- - -) is 
drawn to indicate the phase rehtionships. 
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JJ•. +coõx,: F•(•, •;x•;• •, s•) , 
•d so on. 

The first •o equations •e independent of the rem•- 
•g ones •d c• be solved sepzrately. In order to facil- 
itate t•s, one m•es use of the fact that A and • are 
slowly varying functions of time, i.e., that • =o(1), 
• = o(1), so t•t they can be cons•ered const•t over a 
time leng• T = 2g/n•. The t• equations can then be 
combined •d averaged over T • ob• 

- • = •, •) * •z•, •) ,... 
The asymptotic values of A and • are obt•ned by setting 
A =0, • =0, •d •lving the rem•ning system of ordi- 
•ry (not d•erenti•) equations. •ter this step, •e 
equations for Xz, X•, ... c• be •lved and the asymp- 
•tic e•sion of the ste•y-state solution determined. 
Eq•tion 4 of the present study c• • reduced to the 
form considered here by letting • = •, b = (B, •d 
• = eP, where • is • •t•ic•l p•ameter selected in 
such a way t•t X is of order 1. The f•al results 
h•ever, independent of the p•ticular choice of the 
artffici• par•eter, as is obvious. 

In tb• case • - w 0 , the first term • the asymptotic 
e•sion must be omitted, but o•e•ise the •ve 

procedure •es through unchanged. However, in t•s 
case A • • are •pro•mately of order P, • •t it 
is necessa• to limit oneseg to l•er v•ues of the ex- 
citation amp•tude to get accurate results. 
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APPENDIX A 

The form of the various functions of co which appear 
in the text are given below. The auxiliary quantity D 

(A1) 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 
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d,(co)=•o,,_,,,,[co•'(o,,_ s • , ß •co )+•(a, +•co )(coõ- 4coa) '•] 

-• t•-- 

•(•) =• (•- •) (• - 4•) -• +•(• - •) _ • , 

d•(•):•(•_•)(•]_4•)-•+,-• • • •o (a• - • • )- •. 
(A1O) 

Fi•ly, we •ve •pro•ma• e•ressio• for the 
functions appearing in the sub•rmo•c re•on. Letting 
• =2• o (with •=3•-w) • Eqs. AS, A10, •d All, one 
gets 

z0(•.co0) = • co;' [• (u4• - •.7r- 18) 

+w•(27• - Zlr + 18) - •w •] , 

g•(2coo) = «•;" [?(• +9¾+ 1)- • (• ? +• 7 +9) +•,•]. 
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