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Abstract

An immersed boundary method combined with an elastic spring model is applied

to simulate the red blood cell (RBC) motion and deformation in bounded Poiseuille

flows. As a benchmarking test, the dynamical behavior of a RBC in shear flow is

presented. The combined effects of the deformability, the degree of confinement, and

the shear gradient of the Poiseuille flow make the RBCs migrate toward a certain

cross-sectional equilibrium position, which lies at or off the center line. Two motions

of oscillation and swing of RBCs are observed in the narrow channel. Parachute shape

and bullet-like shape, depending on the initial angle, coexist for the elliptic shape

cell with a low fluid velocity in a narrower channel. The details of the equilibrium

shape and position versus the Reynolds number are investigated. Interactions of

many cells in Poiseuille flows are studied to examine the size of the cell-free layer

and Fahraeus-Lindqvist effect.
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Chapter 1

Introduction

1.1 Motivation

The human blood is a complex non-homogeneous fluid which is composed of

blood cells suspended in a liquid called blood plasma. The blood cells are mainly

red blood cells (RBCs or erythrocytes), white blood cells (leukocytes), and platelets.

The rheological property of the RBCs is a key factor of the blood flow characteristics

in microvessels due to their large volume fraction (40%−45%), so-called hematocrit

(Hct), in the whole blood. The normal RBC has a biconcave disk with a major

diameter about 8 µm and thickness about 2 µm as its rest shape as shown in Figure

1.1. The mean volume is about 94 µm3 and the average surface area of RBC is

about 135 µm2, a value greater than the surface area (97.12 µm2) of a sphere with

the same volume [12]. This excess area also contributes to RBC deformation. The

RBC membrane composing of a lipid bilayer underlined by a spectrin network of
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Figure 1.1: Healthy RBCs with its usual biconcave disk shape [30] (left) and the
typical dimensions of the average RBC [26] (right).

Figure 1.2: Artist’s view of a RBC membrane. The cytoskeletal triangle mesh is
embedded in the plasma phospholipid bilayer by the transmembrane proteins. The
plasma layer (bilayer of amphifilic molecules) is believed to be responsible for the
constraints of constant area and resistance to buckling. It can rearrange itself very
easily, and is often referred to as a fluid membrane. The network of proteins attached
underneath the plasma layer is responsible for the shear resistance (through molecular
links between the proteins) and bending. The whole membrane also contains ionic
pumps maintaining the inner volume of the RBC constant. ([24])
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cytoskeletal proteins (see Figure 1.2) is highly deformable so that RBC can change its

shape when an external force is acting on it and return to the biconcave resting shape

after the removal of the force [29]. This deformability of the RBC membrane makes

it can traverse 3 µm in diameter capillaries of the microcirculation. The motion and

deformation of RBC have an important effect on both its physicological function in

oxygen transport [92] and the hydrodynamical properties of normal human blood.

Some diseases such as sickle cell anemia [23, 37, 59] and diabetes mellitus [90] are

related to the RBCs with less deformability.

Starting from the pioneering work of Fahraeus and Lindqvist, the behavior of

soft entities, such as capsules, vesicles and red blood cells under shear flow has been

studied theoretically [28, 50, 53], experimentally [35], and numerically [8, 11, 20, 27,

39, 41, 42, 51, 56, 58, 61, 68, 85, 86, 94]. Three different types of motions have

been observed for the vesicles and cells in shear flow: tank-treading (TT, the fluid

membrane rotates as a tank tread while the orientation angle of the RBC remains

fixed in time) [8, 25, 20, 27, 42, 50, 68], tumbling (TB, flipping motion like a rigid body

behavior) [9, 39, 46, 58, 85], and vacillating-breathing (VB, the long axis undergoes

oscillation about the flow while the shape shows breathing, called alternatively swing)

[58, 61]. Motivated by the complex and interesting behavior of the vesicles and cells

in shear flow, we focus more on exploring the complex dynamics of a single RBC and

collective RBCs in Poiseuille flows in this dissertation.

Studying the dynamical behaviors (such as deformability, motion, equilibrium

shape, equilibrium position, etc.) of RBCs suspended in Poiseuille flow is an essential

and important problem in biomedical and biochemical industries. These studies may

3



serve as a useful and practical method in designing the cells separating microfluidic

devices based on their mechanical properties such as size and deformability [63].

Many researchers in mathematics, physics and mechanics, biology, and medicine

have studied this problem by using various entities, such as particles, drops, capsules,

vesicles and RBCs theoretically [38, 40], experimentally [15, 34, 47, 48, 77, 78, 79],

and numerically [15, 17, 22, 49, 53, 60, 74, 44, 45, 81, 82, 83, 93]. But most studies

have been limited to the Stokes flow, or the cells are restricted to the sphere or ellipse.

In this dissertation, we examine the deformable cell behavior in the flow with inertial

effect, and the biconcave shape cell is also included.

Several numerical methods have been developed to study the cross-stream mi-

gration and the deformation of these entities in Poiseuille flows. Mortazavi et al.

studied the cross-stream migration of a deformable drop in a Poiseuille flow at fi-

nite Reynolds numbers by using the finite difference and front tracking method and

reported that the motion of the drop strongly depends on the viscosity ratio of the

inside and outside fluids; For the viscosity ratio 1.0 it moves away from the the center

until halted by the wall repulsion [60]. Pozrikidis studied the motion of spherical,

oblate ellipsoidal, and biconcave capsules in tube flow by using the boundary ele-

ment method and observed that spherical capsules slowly migrate to the tube center

line, while oblate and biconcave capsules develop parachute and slipper shapes, re-

spectively [74]. Kaoui et al. [44] studied the cross-stream noninertial migration of a

suspended vesicle in an unbounded (Coupier et al. [15] studied the bounded case)

Poiseuille flow at low Reynolds numbers by using the boundary integral method, and

found that the vesicle deforms and migrates toward the center of the flow. Yoshino
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et al. applied the lattice Boltzmann method to study the motion of a viscoelastic

body in a Poiseuille flow and observed that the equilibrium position is very close

to the center line for a low elasticity and it is at a certain position between the

center line and the wall for a larger elasticity [93]. Danker et al. investigated the

effect of viscosity ratio on the migration of vesicles in a Poiseuille flow by theoretical

analysis, and predicted coexistence of two types of shapes: a bullet-like shape and

a parachute-like shape [17]. Li et al. investigated the shape change and motion of

the vesicle by using the lattice-Boltzmann method [53]. The asymmetric shape of

the vesicle in an unbounded Poiseuille flow at zero Reynolds number was studied by

Kaoui et al. [40].

In most of the above studies, the deformability of these entities was included,

but no inertial effect on the cross-stream migration was considered. The effect of the

inertia on the lateral motion of particles in a Poiseuille flow was first documented

experimentally by Segré and Silberberg [78, 79]. They observed that rigid neutrally

buoyant particles migrate away from both the wall and the center line, forming a

concentrated layer at about half the distance between the wall and the center line.

By using spherical particles and drops, Karnis et al. further studied this effect and

found that the deformable drops migrate to the center line if their viscosity is low

[47, 48]. The oscillatory motion for drops in pressure-driven channel flow at a finite

Reynolds number by using the boundary integral method was examined by Mortazavi

et al. [60]. Ko et al. investigated the migration and multiple equilibrium positions

of a single particle in Poiseuille flows, and observed that the equilibrium height of a

neutrally buoyant particle between the wall and the channel center line depends on
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the Reynolds number [49]. Some theoretical studies of the effect of the inertia have

been limited to spherical particles [38]. Recently, the inertial migration of an elastic

capsule in a bounded Poiseuille flow at a finite Reynolds number was investigated by

Shin [83]. But the initial shape of the capsule is limited to either a circle or an ellipse.

For the circular initial shape, the equilibrium position can be either at the center

of the channel or between the center and the wall (known as the Segré-Silberberg

effect) depending on the Reynolds number and the ratio of the capsule size and the

channel height. Noguchi et al. studied the shape transition of vesicles and RBCs

in capillary flows by employing a three-dimensional mesoscopic simulation method

and obtained the slipper shape of a RBC [62]. Doddi et al. studied the lateral

migration of a three-dimensional deformable capsule in a Poiseuille flow based on a

mixed finite-difference and Fourier transform method for the flow solver and a front-

capsule method for the deformable interface and reported that the capsules without

bending migrate toward the center line [22].

In this dissertation, inertial migration and equilibrium position and shape of a

cell with different initial shape (convex and biconcave) in bounded two-dimensional

Poiseuille flows have been studied by numerical simulation.

1.2 Research objective

The purpose of this dissertation is to investigate the rheological properties of

RBCs in microvessels. To achieve this goal, an elastic spring model [89] is chosen to

model the skeleton structure of a RBC membrane. An immersed boundary method

6



[69, 70, 71] combined with the elastic spring model is used to simulate the interaction

between the cell and the fluid flow. An operator splitting technique [18, 32] is adopted

to solve the fluid-cell system equations governed by the Navier-Stokes equations.

The no-slip condition on the RBC membrane surface is enforced. Here are the main

objectives of this dissertation:

(i) Validate the model and method by the comparison of the dynamical behavior

of a single RBC in shear flow [81].

(ii) Investigate the lateral migration, deformation, and the equilibrium shape and

position of a single RBC in bounded two-dimensional Poiseuille flows [81, 82].

(iii) Study the motion of many cells in Poiseuille flows, including the interaction

of two kinds of cells, analyze the size of the cell-free layer, and the Fahraeus-Lindqvist

effect [67, 80]. The motion of RBCs in a curved channel has been involved by using a

fictitious domain method with distributed Lagrange multipliers (DLM/FD) [32, 65].

The effect of the boundary (straight or curve) on the size of the cell-free lay has been

explored.

(iv) Perform the stretching force test for three-dimensional RBC membrane to

tune the elastic parameters based on the comparison with the optical tweezers ex-

perimental data [57]. A coarse-grained model [72] is adopted to study the dynamics

of a single RBC in three-dimensional microvessels and microfluidics.
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1.3 Dissertation outline

This dissertation is devoted to investigating the motion and deformation of a

single RBC and collective RBCs in microvessels and microfluidics by using numerical

simulations.

In Chapter 2, we introduce the methodology used in this dissertation. An elastic

spring model is chosen to model the skeleton structure of a RBC membrane. An

immersed boundary method combined with the elastic spring model is applied to

study the interaction between RBC and the fluid. An operator splitting technique

is adopted to solve the fluid-cell system equations governed by the Navier-Stokes

equations.

In Chapter 3, we validate the model and method by the comparisons of the steady

inclination angles of the tank treading of a single RBC in a shear flow and analyze the

effect of the viscosity ratio and the degree of confinement on the dynamical behavior

of RBC in a shear flow.

In Chapter 4, we investigate the lateral migration and deformation of a single

RBC in bounded two-dimensional Poiseuille flows. The combined effects of the de-

formability, the degree of confinement, and the shear gradient of the Poiseuille flow

make the RBCs migrate toward a certain cross-sectional equilibrium position, which

lies either on the center line of the channel or off the center line. Two motions of

oscillation and vacillating breathing (swing) of RBCs are observed. Parachute shape

and bullet-like shape, depending on the initial angle between the long axis of the cell

and the horizontal direction, coexist for the elliptic shape cell with lower maximum
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velocity of the fluid flow in a narrower channel. Many cells in Poiseuille flows, includ-

ing the interaction of two kinds of cells, are performed for studying the size of the

cell-free layer and the Fahraeus-Lindqvist effect. The circular shape cells have less

deformability under the given bending property, they move to the region next to the

walls and stay there just like neutrally buoyant particle. Rouleaux, red blood cells

stack like coins, are observed in a very narrower channel when the force obtained

from Morse potential function is adapted. The motion of RBCs in a curved channel

has been investigated by combining the above methodology with a fictitious domain

method with distributed Lagrange multipliers (DLM/FD). The boundary (straight

or curve) has no effect on the size of the cell-free layer. Rouleaux, red blood cells

stack like coins, are observed in a very narrower channel considered here.

In Chapter 5, we perform the stretching force test for three-dimensional RBC

membrane to tune the elastic parameters based on the comparison with the optical

tweezers experimental data and adopt a coarse-grained model to study the motion

and deformability of a single RBC in three-dimensional microvessels and microflu-

ids. A typical parachute shape is obtained in a narrow tube Poiseuille flow. Also

the lateral migration and equilibrium shape and position of a single RBC in a slit

Poiseuille flow has been studied. For the same cell parameters, the equilibrium shape

depends on Re, and for the same Re, the change in the morphology depends on the

membrane bending constant. The cell sets its equilibrium position between 0.5H

and 0.6H . The mass center of the equilibrium shape cell deviates away from the

center line of the channel due to its asymmetric slipper shape.

In Chapter 6, we summarize our research and suggest future work.
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Chapter 2

Methodology

An elastic spring network model is chosen to model the skeleton structure of

RBC membrane. Such model combined with an immersed boundary method and

finite element method is applied to study the RBC rheology in two-dimensional

microchannels. The governing equations for the fluid-cell system are the Navier-

Stokes equations

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p+∇ · [µ(x, t)2D(u)] + f in Ω× (0, T ), (2.1)

∇ · u = 0 in Ω× (0, T ). (2.2)

Here the domain Ω is a bounded region filled with blood plasma which is incom-

pressible, Newtonian, and contains RBC(s) (see Figure 2.1).

Equations (2.1) and (2.2) are completed by the following boundary and initial
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x
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Figure 2.1: An example of computational domain with one RBC.

conditions:

u = g on the top and bottom of Ω

and u is periodic in the x1 direction, (2.3)

u(x, 0) = u0(x) in Ω. (2.4)

where u and p are the fluid velocity and pressure, respectively, anywhere in the flow,

ρ is the fluid density, and µ is the fluid viscosity. In equation (2.1), we have that

2D(u) = ∇u+(∇u)t, f is a body force which is the sum of fp and fB, where fp is the

pressure gradient pointing in the x1 direction and fB accounts for the force acting

on the fluid-cell interface which will be discussed in Section (2.2). In equation (2.4),

u0(x) is the initial fluid velocity. For the cases of shear flow, fp is set to be zero.

When considering Poiseuille flow, we set g = 0.
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2.1 Elastic spring model for the RBC membrane

A two-dimensional elastic spring model developed in [89] is adopted to describe

the deformable behavior of the RBCs. Based on this model, the RBC membrane

can be viewed as a network of particles connecting with the neighboring membrane

particles by springs, as shown in Figure 2.2. Energy stores in the spring network due

to the change of the length l of the spring with respect to its reference length l0 and

the change in angle θ between two neighboring springs. The total energy of the RBC

membrane, E = El + Eb, is the sum of the total energy for stretch and compression

and the total energy for the bending which, in particular, are

El =
kl
2

N
∑

i=1

(
li − l0
l0

)2 (2.5)

and

Eb =
kb
2

N
∑

i=1

tan2(
θi
2
). (2.6)

In equations (2.5) and (2.6), N is the total number of the spring elements, and kl

and kb are spring constants for changes in length and bending angle, respectively.

In the process of creating the initial shape of RBCs described in [89], the RBC

is assumed to be a circle of radius R0 = 2.8 µm initially. The circle is discretized

into N = 76 membrane particles so that 76 springs are formed by connecting the

neighboring particles. The shape change is stimulated by reducing the total area of

the circle through a penalty function

Γs =
ks
2
(
s− se
se

)2, (2.7)
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θ
l

Figure 2.2: The elastic spring model of the two-dimensional RBC membrane.

where s and se are the time dependent area of the RBC and the equilibrium area

of the RBC, respectively, and ks is the penalty coefficient. Thus the total energy is

modified as E + Γs. Based on the principle of virtual work the force acting on the

ith membrane particle now is

Fi = −∂(E + Γs)

∂ri
, (2.8)

where ri is the position of the ith membrane particle. When the area is reduced,

each RBC membrane particle moves on the basis of the following equation of motion:

mr̈i + γṙi = Fi. (2.9)

Here, ˙( ) denotes the time derivative, and m and γ represent the membrane particle

mass and the membrane viscosity of the RBC. The position ri of the ith membrane

particle is solved by discretizing equation (2.9) via a second order finite difference

method. The total energy stored in the membrane decreases as the time elapses. The

final shape of the RBC is obtained as the total energy is minimized [68]. The area

of the final shape has less than 0.001% difference from the given equilibrium area se

and the length of the perimeter of the final shape has less than 0.005% difference
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from the circumference of the initial circle. The value of the swelling ratio of a RBC

in this work is defined by s∗ = se/(πR
2
0).

2.2 Immersed boundary method

The immersed boundary method developed by Peskin, e.g., [69, 70, 71], is em-

ployed in this work because of its distinguishing features in dealing with the prob-

lem of fluid flow interacting with a flexible fluid-structure interface. Based on the

method, the boundary of the deformable structure is discretized spatially into a set

of boundary nodes. The force located at the immersed boundary node X = (X1, X2)

affects the nearby fluid mesh nodes x = (x1, x2) through a two-dimensional discrete

δ function Dh(X− x):

fB(x) =
∑

FiDh(Xi − x) for |Xi − x| ≤ 2h, (2.10)

where h is the uniform finite element mesh size and

Dh(X− x) = δh(X1 − x1)δh(X2 − x2) (2.11)

with the one-dimensional discrete δ functions being

δh(z) =































1
8h

[

3− 2|z|/h+
√

1 + 4|z|/h− 4(|z|/h)2
]

, |z| ≤ h,

1
8h

[

5− 2|z|/h−
√

−7 + 12|z|/h− 4(|z|/h)2
]

, h ≤ |z| ≤ 2h,

0, otherwise.

(2.12)

The movement of the immersed boundary node X is also affected by the sur-

rounding fluid and therefore is enforced by summing the velocities at the nearby
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fluid mesh nodes x weighted by the same discrete δ function:

U(X) =
∑

h2u(xj)Dh(X− xj) for |X− xj| ≤ 2h. (2.13)

After each time step, the position of the immersed boundary node is updated by

Xt+∆t = Xt +∆tU(Xt). (2.14)

2.3 Intercellular interaction model

At lower shear rate, RBCs can aggregate and tend to obstruct the capillary

entrance. With weak aggregation, RBCs form rouleaux, which look like stacks of

coins. As the strength of aggregation is increased, RBCs clumps are formed which

are more difficult to disrupt at the entrance to capillaries. In severe cases, these

structures can increase the flow resistance and sometimes lead the formation of blood

sludging [36]. To implement the simulation of rouleaux formation, we model the

intercellular interaction energy by a Morse potential:

φ(r) = De[e
2β(r0−r) − 2eβ(r0−r)], (2.15)

where r is the surface separation, r0 and De are the zero force separation and sur-

face energy, respectively, and β is a scaling factor controlling the interaction decay

behavior ([55]). Then the interaction force from the Morse potential can be obtained:

f(r) = −∂φ(r)

∂r
= 2Deβ[e

2β(r0−r) − eβ(r0−r)]. (2.16)

The non-dimensionalized Morse potential and force are plotted in Figure 2.3.
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Figure 2.3: Non-dimensionalized Morse potential and force.

2.4 Viscosity function across the cell membrane

The fluids separated by the cell membrane can have different properties, such as

viscosity and density. In the system considered in this dissertation, the densities of

cytoplasm of RBC and plasma are same. But in some simulations, the viscosities of

the cytoplasm of RBC and that of the suspending plasma are different. To describe

this property, the viscosity is treated as a smoothing function instead of a piecewise

constant function across the cell membrane [52, 96]. In this dissertation, we treat

different viscosities when crossing the cell membrane via a Heaviside function [96]
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defined as

θ(d) =































0, d < −2h,

1
2
(1 + d

2h
+ 1

π
sin πd

2h
), −2h ≤ d ≤ 2h,

1, d > −2h,

(2.17)

where d denotes the index of a fluid node as the shortest distance to the cell mem-

brane. If the node is close to two or more membrane segments, the index taken is

that to the closest one. Then the viscosity function can be defined as:

µ(x) = µout − (µout − µin)θ[d(x)], (2.18)

where µout and µin are the viscosities outside and inside of the cell, respectively.

2.5 Operator splitting technique

We have applied the Lie’s Scheme [14, 32] to equations (2.1) and (2.2) with the

IBM and the backward Euler method in time for some subproblems and obtain the

following fractional step subproblems:

u0 = u0 is given. For n ≥ 0,un being known, we obtain un+1 via:

(1) Solve














































ρ
un+1/4 − un

△t
+∇pn+1/4 = 0 in Ω× (tn, tn+1),

∇ · un+1/4 = 0 in Ω× (tn, tn+1),

un+1/4 = gn+1 on the top and bottom of Ω

and is periodic in the x1 direction.

(2.19)
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Figure 2.4: Schematic representation of a FEM triangulation and its subtriangula-
tion.

(2) Update the position of the membrane based on un+1/4 by (2.13) and (2.14)

and then compute the force fB on the fluid-cell interface by (2.8) and (2.10). Find

the Heaviside function θ(d) (2.17) to define the viscosity function µ(x) (2.18).

(3) Solve































∂u(t)

∂t
+ (un+1/4 · ∇)u(t) = 0 in Ω× (tn, tn+1),

u(tn) = un+1/4 in Ω× (tn, tn+1),

u(t) = gn+1 on Γn+1
−

× (tn, tn+1),

(2.20)

here Γn+1
−

= {x|x ∈ ∂Ω, gn+1 · n(x) < 0}, and set un+3/4 = u(tn+1).

(4) Finally, solve































ρ
un+1 − un+3/4

△t
−∇ · [µ(x)2D(un+1)] = fn+1 in Ω× (tn, tn+1),

un+1 = gn+1 on the top and bottom of Ω

and is periodic in the x1 direction.

(2.21)
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2.6 Finite element approximation

Concerning the finite element based space approximation of {u, p} in problem

(2.19)-(2.21), we have used the P1-iso-P2 and P1 finite element approximation (e.g.,

see [32] (Chapter 5)). Suppose that a rectangular computational domain Ω ⊂ R2

is chosen with length L, h is a space discretization step, Th is a finite element

triangulation of Ω for velocity, and T2h is a twice coarser triangulation for pressure

(see Figure 2.4). Let P1 be the space of polynomials in two variables of degree ≤ 1,

we introduce the finite dimensional spaces:

W0,h = {vh|vh ∈ C0(Ω)2,vh|T ∈ P1×P1, ∀T ∈ Th,vh = 0 on the top and bottom

of Ω and is periodic in the x1 direction with period L },

Wgh,h = {vh|vh ∈ C0(Ω)2,vh|T ∈ P1×P1, ∀T ∈ Th,vh = gh(t) on the top and bottom

of Ω and is periodic in the x1 direction with period L },

Wh = {vh|vh ∈ C0(Ω)2,vh|T ∈ P1×P1, ∀T ∈ Th,vh is periodic in the x1 direction

with period L },

L2
h = {qh|qh ∈ C0(Ω), qh|T ∈ P1, ∀T ∈ T2h, qh is periodic in the x1 direction with

period L },

L2
h,0 = {qh|qh ∈ L2

h,
´

qhdx = 0}.

Then we obtain the following subproblems (some of the subscripts h have been

dropped):

u0 = u0 is given. For n ≥ 0,un being known, we compute the approximation

solution via the following fractional steps:
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(1) Solve































ρ
´

Ω

un+1/4 − un

△t
· vdx−

´

Ω
pn+1/4(∇ · v)dx = 0 ∀v ∈ W0,h,

´

Ω
q∇ · un+1/4dx = 0 ∀q ∈ L2

h,

un+1/4 ∈ W n+1
gh,h

, pn+1/4 ∈ L2
h,0.

(2.22)

(2) Update the position of the membrane based on un+1/4 by (2.13) and (2.14)

and then compute the force fB on the fluid-cell interface by (2.8) and (2.10). Find

the Heaviside function θ(d) (2.17) to define the viscosity function µ(x) (2.18).

(3) Solve































´

Ω

∂u(t)

∂t
· vdx+

´

Ω
(un+1/4 · ∇)u(t) · vdx = 0 on (tn, tn+1),

∀v ∈ W0,h,u(t
n) = un+1/4,

u(t) ∈ Wh,u(t) = gh(t
n+1) on Γn+1

−
× (tn, tn+1),

(2.23)

and set un+3/4 = u(tn+1).

(4) Finally, solve















ρ
´

Ω

un+1 − un+3/4

△t
· vdx+ 2

´

Ω
µ(x)D(un+1) : D(v)dx =

´

Ω
fn+1 · vdx

∀v ∈ W0,h,u
n+1 ∈ W n+1

gh,h
,

(2.24)

here W n+1
gh,h

= Wgh(tn+1),h.

Remark 2.1. The degenerated quasi-Stokes problem (2.22) is solved by a precondi-

tioned conjugate gradient method (e.g., see [32]), in which discrete elliptic problems

from the preconditioning are solved by a matrix-free fast solver from FISHPAK by
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Adams et al. in [3]. The advection problem (2.23) for the velocity field is solved by

a wave-like equation method as in [18] and [19].

Remark 2.2. General speaking, when the viscosities µout and µin are different, the

problem (2.24) is solved by the method of successive over-relaxation (SOR).

Remark 2.3. When µ(x) is a constant (i.e. µout = µin = µ ), the term 2
´

Ω
µ(x)D(u) :

D(v)dx in (2.24) can be replaced by µ
´

Ω
∇u : ∇vdx since u is divergence free. Then

the problem (2.24) is a classical discrete elliptic problem which can be solved by the

matrix-free fast solver. In this case, also we can skip the second part of step (2) in

algorithm (2.22)−(2.24) and obtain the one in [68].

2.7 Fictitious domain method

In equation (2.1), if the domain Ω is shown in Figure 2.5, i.e., Ω is replaced

by Ω \ ω, and µ(x, t) = µ (a costant), then the fictitious domain formulation with

distributed Lagrange multipliers (DLM/FD formulation) of the problems (2.1)−(2.4)

in a curved boundary channel reads as follows:

For a.e. t > 0, find u(t) ∈ W0,P , p(t) ∈ L2
0, λ ∈ Λ such that















ρ
´

Ω

[

∂u

∂t
+ (u · ∇)u

]

· vdx+ µ
´

Ω
∇u : ∇vdx−

´

Ω
p∇ · vdx

=
´

Ω
f · vdx+ < λ,v > ∀v ∈ W0,P ,

(2.25)

ˆ

Ω

q∇ · u(t)dx = 0 ∀q ∈ L2(Ω), (2.26)

< µ,u(t) > = 0 ∀µ ∈ Λ, (2.27)
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ω

ω Ω

x
1

x 2

Figure 2.5: An example of computational domain with a curved boundary.

u(x, 0) = u0(x). (2.28)

with

W0,P = {v|v ∈ (H1(Ω))2,v = 0 on the top and bottom of Ω and is periodic

in the x1 direction with period L },

L2
0 = {q|q ∈ L2(Ω),

´

Ω
qdx = 0},

Λ = (H1(ω))2.

In equations (2.25)−(2.28), λ is a Lagrange multiplier associated with relation (2.27)

and < ·, · > is an inner product on Λ (see [66] for more information).

A finite dimensional space approximation Λ is defined as follows: let {xi}Mi=1 be
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a set of points from ω which cover ω (uniformly, for example); we define then

Λh = {µh|µh =
M
∑

i=1

µiδ(x − xi), µi ∈ R2, ∀i = 1, · · · , N}, where δ(·) is the Dirac

measure at x = 0. Then we shall use < ·, · > defined by

< µh,vh > =
M
∑

i=1

µi · vh(xi) ∀µh ∈ Λh,vh ∈ W0,h.

Then we apply the Lie’s Scheme to equations (2.25)−(2.28) with the IBM and

the backward Euler method in time for some subproblems and obtain the following

subproblems (some of the subscripts h have been dropped):

u0 = u0 is given. For n ≥ 0,un being known, we compute the approximation

solution via the following fractional steps:

(1) Solve






























ρ
´

Ω

un+1/4 − un

△t
· vdx−

´

Ω
pn+1/4(∇ · v)dx = 0 ∀v ∈ W0,h,

´

Ω
q∇ · un+1/4dx = 0 ∀q ∈ L2

h,

un+1/4 ∈ W n+1
0,h , pn+1/4 ∈ L2

h,0.

(2.29)

(2) Update the position of the membrane based on un+1/4 by (2.13) and (2.14)

and then compute the force fB on the fluid-cell interface by (2.8) and (2.10).

(3) Solve






























´

Ω

∂u(t)

∂t
· vdx+

´

Ω
(un+1/4 · ∇)u(t) · vdx = 0 on (tn, tn+1) ∀v ∈ W0,h,

u(tn) = un+1/4,

u(t) ∈ W0,h on (tn, tn+1),

(2.30)

and set un+3/4 = u(tn+1).
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(4) Finally, solve































ρ
´

Ω

un+1 − un+3/4

△t
· vdx+ µ

´

Ω
∇un+1 : ∇vdx =

´

Ω
fn+1 · vdx+ < λ,v > ∀v ∈ W0,h,

< µ,un+1 > = 0 ∀µ ∈ Λh,

un+1 ∈ W0,h, λ ∈ Λh.

(2.31)

The degenerated quasi-Stokes problem (2.29) is solved by a preconditioned con-

jugate gradient method (e.g., see [32]), in which discrete elliptic problems from the

preconditioning are solved by a matrix-free fast solver from FISHPAK by Adams et

al. in [3]. The advection problem (2.30) for the velocity field is solved by a wave-like

equation method as in [18] and [19]. Problem (2.31) can be solved by a conjugate

gradient method ([66]).
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Chapter 3

A single RBC in shear flows

In this chapter, as a validation test of the model and the method, the steady

inclination angles of the tank treading of two different degrees of confinement for five

values s∗ in shear flow [81] are compared with the simulation results in [42], then the

effect of the viscosity ratio λ = ηin
ηout

, and the degree of confinement R0/w (here w

is the half channel height) are studied. The values of parameters for modeling cells

are the same with [67, 80] as follows: The bending constant is kb = 5 × 10−10 Nm,

the spring constant is kl = 5 × 10−8 Nm, and the penalty coefficient is ks = 10−5

Nm. The cells are suspended in blood plasma which has a density ρ = 1.00 g/cm3

and a dynamical viscosity µ = 0.012 g/(cms). The computational domain is a two-

dimensional horizontal channel. A simple shear flow is produced by two walls at the

top and bottom which have the same speed but move in directions opposite to each

other. Different shear rate can be obtained by adjusting the wall speed. In addition,

periodic conditions are imposed at the left and right boundaries of the domain. The
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R0/w Re Ca

0.8 0.01 0.455
0.4 0.041 0.455
0.28 0.084 0.455
0.187 0.188 0.455
0.14 0.333 0.455
0.112 0.52 0.455

Table 3.1: Reynolds number Re and capillary number Ca for different degrees of
confinement R0/w.

Reynolds number is defined by Re = ρUH/µ, where U is the average velocity in the

channel. The capillary number is defined by Ca = µGrR0
3/B, where µ, Gr, R0, and

B represent the plasma viscosity, the shear rate of fluid flow, the effective radius of

the cell, and the bending coefficient, respectively.

3.1 Tank treading in shear flows

First, we present the results on simulation of a single RBC suspended in a linear

shear flow with shear rate γ = 500 s−1. The dimensions of the computational domain

are 112 × 7 µm2 and 112 × 14 µm2. The two degrees of confinement are 0.8 for the

narrower domain and 0.4 for the wider domain, respectively. The associated Reynolds

number and the capillary number are shown in Table 3.1. The grid resolution for

the computational domain is 80 grid points per 10 µm. The time step ∆t is 10−5 ms.

The viscosity ratio λ = 1. The initial velocity of the fluid flow is zero everywhere

and the initial positions of the mass center of the cell are (56,3.5) and (56,7) for

the narrower domain and the wider domain, respectively. Figures 3.1 and 3.2 show

the pressures and the velocity fields in the region next to the cells for two different
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degrees of confinement. The blue solid lines in the left figures and the black solid

lines in the right figures represent the cell membrane. In the left figures, the regions

with darker color correspond to higher pressure and the lighter regions correspond

to lower pressure. The figures of velocity fields indicate that the cells perform tank-

treading motion in confined channels and the inner fluid of the cell undergoes a

rotational flow, which is induced by the cell membrane tank treading. The outer

fluid of the cell exhibits recirculations at the right side of the figure and at the

left side of the figure of the cell. Such recirculations are also observed for confined

rotating rigid particles in a simple shear flow [21, 39, 95] with period conditions in

the shear direction.

The steady inclination angles of the tank treading as shown in Figure 3.3 and the

associated frequency of two different degrees of confinement for five values s∗=0.6,

0.7, 0.8, 0.9, and 1.0 are presented in Figure 3.4, which show very good agreement

with the lattice-Boltzmann simulation results of Kaoui et al. [42]. The inclination

angle increases monotonically for both two degrees of confinement with increasing

the value of the swelling ratio s∗. For the same swelling ratio, the bigger the degree of

confinement, the smaller the steady inclination angle. The same qualitative tendency

is reported in [7, 28, 42, 50, 53, 68]. The frequency is an increasing function of s∗

for R0/w = 0.4, but for R0/w = 0.8, it increases first as increasing s∗ then reaches

a peak, and decreases when s∗ increases further. Similar trend for the frequency

was reported in [42]. We also keep track of the area and the perimeter of the cell

during the simulations. The variation is less than ±0.1% in the area and ±0.5% in

the perimeter.
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Figure 3.1: The pressure (left) and the velocity field (right) in the region next to
the cell with the swelling ratio s∗ = 0.481 (top), 0.7 (middle), and 0.9 (bottom),
respectively. R0/w = 0.8. The units for both axes are µm.
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Figure 3.2: The pressure (left) and the velocity field (right) in the region next to
the cell with the swelling ratio s∗ = 0.481 (top), 0.7 (middle), and 0.9 (bottom),
respectively. R0/w = 0.4. The units for both axes are µm.
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Figure 3.3: A schematic representation of tank-treading of RBC in shear flow. θ is
the inclination angle.
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Figure 3.4: Steady inclination angle θ and the associated frequency as a function of
the cell swelling ratio s∗ for two degrees of confinement R0/w = 0.4 and 0.8. (* from
[42])
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3.2 Effect of the viscosity ratio and the degree of

confinement

As the first part of this section, the effect of the viscosity ratio λ on the dynamics

of a single RBC in a shear flow is considered. The computational domain is a rectan-

gular region with dimensions 112 × 50 µm2 and the associated degree of confinement

is 0.112. The effect of the wall is weak. The grid resolution for the computational

domain is 80 grid points per 10 µm. The time step ∆t is 10−5 ms. The initial velocity

of the fluid flow is zero everywhere and the initial position of the mass center of the

cell is (56,25). The shear rate is set as γ = 500 s−1 and the associated Re is about

0.52.

It is well known that either the vesicle or the RBC in a shear flow undergoes a

tank-treading motion at its equilibrium position [8, 20, 25, 27, 42, 50, 68, 81] when

the viscosity ratio λ is small. This also can be observed in the simulation results

in Figure 3.5, which shows the simulation results of the tank-trading motion with a

steady inclination angle for the values of the swelling ratio s∗ = 0.481 and 0.9 with

different λ = 1 and 2. The inclination angle θ between the long axis of the cell and

the horizontal direction decreases as increasing the value of λ.

Over the past decades, the dependence of the inclination angle θ on the swelling

ratio s∗ and the viscosity ratio of λ has been studied by many researchers. For the

ellipsoidal shape particle (i.e. the membrane deformation is not considered), Keller

et al. [50] has given an evolutional equation for the inclination angle θ as shown in

31



Figure 3.3:

dθ

dt
= A+Bcos(2θ) (3.1)

where A and B are functions of the viscosity ratio λ, the shear rate γ, and the shape

of the ellipsoid (see [50] for more information about A and B). There are two motions

determined by the equation (3.1) namely, (1) tank-treading motion if A/B < 1, in

this case the inclination angle θ can be calculated by

θ =
arccos(−A/B)

2
, (3.2)

(2) tumbling motion if A/B > 1, in this case, the general solution of the equation

(3.1) can be expressed as

θ(t) = arctan(
A +B√
A2 − B2

tan(
√
A2 − B2(t− t0))) (3.3)

The snapshots of tumbling motion of RBC for the swelling ratio s∗ = 0.481 and the

associated inclination angle θ as a function of the time are shown in Figure 3.6.

The simulation results of the inclination angles θ as a function of the viscosity

ratio λ for six different values of the swelling ratio s∗ = 0.481, 0.6, 0.7, 0.8, 0.9, and

0.95 are displayed in Figure 3.7. In the tank-treading regime, the inclination angle

θ is a decreasing function of the viscosity ratio λ for the same swelling ratio s∗ , but

for the same viscosity ratio λ, the inclination angle θ increases as the swelling ratio

s∗ increases. Our simulation results show good agreement with the numerical results

reported in [52] by Kim et al.. The small deviation of our results from Keller et

al. [50] is due to the fact that they assumed the cell has a fixed elliptical boundary

and no deformability. A transition from tank-treading motion to tumbling motion
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Figure 3.5: The velocity field in the region next to the cell with the swelling ratio s∗

= 0.481 (top) and 0.9 (bottom), respectively. R0/w = 0.112. λ = 1 (left) and λ = 2
(right).
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happens as the viscosity ratio λ reaches a critical value λc for a given swelling ratio

s∗ and λc increases as s∗ increases (see Figure 3.8). According the KS theory, the

viscosity ratio λ reaches its critical value λc when A = −B, and the inclination angle

θ depends on λ with a square root law. The value of the critical ratio λc in Figure 3.8

is obtained by interpolate at θ = 0 with a square root law for the numerical results in

Figure 3.7. Similar trend of the viscosity ratio versus the swelling ratio was reported

in [7, 52].

But for the narrower channel with dimensions 112 × 1.4 µm2 (R0/w = 0.8), other

parameters are kept same as those at the beginning of Section (3.2). All of cells con-

sidered here undergoes the tank-treading motion. The steady inclination angle and

the associated frequency as a function of λ are shown in Figure 3.9. For the same

viscosity ratio λ (such as 5), the behavior of cell (such as the cell of s∗ < 0.9) is dif-

ferent for these two different degrees of confinement R0/w, and the inclination angles

are also different even for the tank treading regim (as shown in Figures 3.9 (left) and

3.7). These results inspire us to explore the further dependence of inclination angle

θ on the degree of confinement R0/w. For the tank treading regim, the simulation

results show that for λ = 1, the inclination angle θ is a decreasing function of R0/w,

but for λ = 5, θ increases as the increasing value of R0/w and reaches a peak , then

decreases as R0/w increases (see Figure 3.10). The associated frequency is displayed

in Figure 3.11 which shows that the frequency is a decreasing function of R0/w for λ

= 1, however, it decreases as the increasing value of R0/w and reaches a peak , then

increases as R0/w increases further for λ = 5. The similar tendency was reported in

[43].
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Figure 3.6: The snapshots of RBC with the swelling ratio s∗ = 0.481 at different time
(top and middle) and the associated time-dependent orientation angle θ (bottom).
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Figure 3.11: Frequency as a function of as a function of the degree of confinement
R0/w for s∗ = 0.481 and 0.9 with λ = 1 ( left) and 5 (right).

For the case of λ = 5, we have studied four more degrees of confinement R0/w

= 0.112, 0.14, 0.187, and 0.28. The other parameters are kept same as those at the

beginning of Section (3.2). The associated Re and Ca are shown in Table 3.1. For a

given swelling ratio s∗, a transition from tank-treading motion to tumbling motion

occurs when the degree of confinement R0/w decreases. The dependence of the cell

motion on the degree of confinement for different swelling ratio is shown in Figure

3.12, which indicates that under the condition of the existence of the transition from

TT to TB, the smaller s∗, the bigger the critical value of R0/w. For the tank-treading

regime, the steady inclination angle and the associated frequency as a function of s∗

for the different degrees of confinement are shown in Figure 3.13. The inclination

angle θ is an increasing function of the swelling ratio s∗ for the same R0/w, and it

decreases as decreasing R0/w for the same s∗. The frequency is also an increasing

function of the swelling ratio for the same R0/w. But for a given s∗, the frequencies

are almost same since the shear rates of the flow are same.
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As the ending of this section, the effect of the shear rate is examined. A transition

from TB to TT occurs as the shear rate γ > 15000 s−1 (the associated Re is about

5) for λ = 5 and R0/w = 0.28. i.e. A tank-treading motion is a favorable one at a

higher Reynolds number in a shear flow. The similar behavior of vesicle was reported

in [52].
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Chapter 4

RBC in bounded Poiseuille flows

In this chapter, the deformation and lateral migration of a single cell in two-

dimensional Poiseuille flows have been investigated. Then the results of simulations

involving many RBCs in Poiseuille flows are presented and validated by comparing

the size of the cell-free layer next to the walls. Finally, the simulation results of the

interaction of two kinds of cells in Poiseuille flow are included.

The values of parameters for modeling cells are the same with [67, 80] as follows:

The bending constant is kb = 5×10−10 Nm, the spring constant is kl = 5×10−8 Nm,

and the penalty coefficient is ks = 10−5 Nm. The cells are suspended in blood plasma

which has a density ρ = 1.00 g/cm3 and a dynamical viscosity µ = 0.012 g/(cms).

The viscosity ratio λ = 1. The computational domain is a two-dimensional horizontal

channel. To obtain a Poiseuille flow, a constant pressure gradient is prescribed as

a body force. In addition, periodic conditions are imposed at the left and right

boundaries of the domain. The Reynolds number is defined by Re = ρUH/µ, where
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U is the average velocity in the channel. The capillary number is defined by Ca =

µGrR0
3/B, where µ, Gr, R0, and B represent the plasma viscosity, the shear rate of

fluid flow based on the gradient of the velocity at the wall, the effective radius of the

cell, and the bending coefficient, respectively.

4.1 Deformation of a single cell in Poiseuille flows

In this section, the deformation of a single RBC in bounded two-dimensional

Poiseuille flows is studied by numerical simulation. Several factors have been found

to be important in determining the deformation of a single RBC in Poiseuille flows:

the swelling ratio (s∗), the initial angle of the long axis of the cell at the center line

(ϕ), the maximum velocity at the center line of fluid flow (umax), the membrane

bending stiffness of a RBC (kb), and the height of the microchannel (H). Two

motions of oscillation and vacillating breathing (also called swing; the long axis

undergoes oscillation while the cell shape displays breathing) of the RBC are observed

in both narrow and wide channels. The strength of the vacillating-breathing motion

depends on the degree of confinement and the value of umax. An RBC exhibits a

strong vacillating-breathing motion as the degree of confinement is larger or the value

umax is higher. For the same degree of confinement, the vacillating-breathing motion

appears to be relatively weaker but persists longer as the value of umax is lower. For

the different bending constants, the RBC obtains the same equilibrium shape for the

same capillary number Ca. The continuation of shape change from the slipper to

the parachute shape by varying the value of umax is obtained for the biconcave shape
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cell in a narrower channel. In particular, parachute shape and bullet-like shape,

depending on the initial angle ϕ, coexist for the elliptic shape cell with lower umax

in a narrower channel.

4.1.1 Effect of the swelling ratio

We first present the simulation results of a single RBC in a Poiseuille flow with

the fluid domain 100 × 10 µm2. The pressure gradient is set to as a constant for

this study so that the Reynolds number of the Poiseuille flow without the cell is

about 0.4167. The initial velocity is zero everywhere. The grid resolution for the

computational domain is 64 grid points per 10 µm. Three different shapes (s∗ =

0.481, 0.7, and 0.9) have been studied and the results are shown in Figure 4.1. The

initial position of the mass center of the single cell is located at (5,3). The initial

angle of the long axis of the cell at the center line is ϕ = 0. In Figure 4.1, the

cells deform and migrate to the center line of the microchannel and the well-known

parachute shape has been observed for the case of s∗ = 0.481, 0.7 and 0.9. The red

asterisk denotes the same point on the cell membrane for the entire simulation. The

similar results of capsules in tube flow using the boundary element method have been

reported by Pozrikidis in [74].

Given the same initial angle ϕ = 0, the effect of different initial positions has been

investigated. Migrations of RBCs with s∗ = 0.481 and 0.9 for three different initial

positions (5,3), (5,5), and (5,7.7) are shown in Figure 4.2. The cells with the initial

positions (5,3) and (5,7.7) deform and migrate to the center line of the microchannel
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where steady axisymmetric states are reached. The cell with the initial position (5,5)

parallels to the direction of the flow after it is released, then deforms owing to the

hydrodynamic stress imposed symmetrically by the Poiseuille flow, until it reaches

a parachute shape as its equilibrium shape. The final position and shape are not

related with the initial positions of the RBC.

4.1.2 Effect of the initial angle

The initial angle ϕ has an important effect on the equilibrium position and shape

for the elliptic shape cell with s∗ = 0.9. Two equilibrium shapes, parachute shape

and bullet-like shape, coexist at the center line as equilibrium shapes for umax = 1.0

cm/s with different initial inclination angles ϕ (see Figure 4.3). When ϕ is bigger

than 37◦, a parachute shape is obtained, otherwise a bullet-like shape is obtained.

The similar qualitative results of the cell in an unbounded Stokes flow have been

reported in [17]. The averaged velocities of the fluid with the cell are 0.653 cm/s

for the cell type I (bullet-like shape) and 0.642 cm/s for the cell type II (parachute

shape), respectively, and the energy stored in the membrane of the cell type I is

lower than that of the cell type II. That is because the resistance force acted on

the fluid by the cell type I is less than the force by the cell type II. This resistance

force depends on the cell cross section perpendicular to the direction of fluid flow in

a narrow channel and the velocity of quadratic flow without cell. Then the inverse

force acted on the cell type I by the fluid is less than the inverse force acted on the

cell type I by the fluid. This interplay between the fluid and the cell is the main

source of the energy stored in the membrane.

44



0
5

10
0 0.05 0.2 0.5 0.8 1 1.25

Y
 (

µm
)

0
5

10
1.5 2 2.25 2.5 3 3.5 7.5

Y
 (

µm
)

(a)

0
5

10
0 0.05 0.2 0.5 0.8 1 1.25

Y
 (

µm
)

0
5

10 1.6 2 2.25 2.5 3 3.5 7.5

Y
 (

µm
)

(b)

0
5

10
0 0.05 0.2 0.5 0.8 1 1.25

Y
 (

µm
)

0
5

10 1.6 2 2.25 2.5 3 3.5 7.5

Y
 (

µm
)

(c)

Figure 4.1: The snapshots of the cell migration at different time (ms): (a) s∗ = 0.481,
(b) s∗ = 0.7, and (c) s∗ = 0.9. The red asterisk denotes the same node point on the
cell membrane.
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Figure 4.2: The snapshots of the cell migration with s∗ = 0.481 (top) and 0.9 (bot-
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Figure 4.3: Two shapes: bullet-like shape with umax = 1 cm/s and ϕ = 0◦, 10◦,
30◦, and 37◦ (left) and parachute shape with umax = 1 cm/s and ϕ = 38◦, 45◦, and
90◦ (middle). The histories of cell membrane energy for different initial inclination
angles ϕ (right).
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Figure 4.4: The equilibrium shapes for different initial angles:(a) ϕ = 0, (b) ϕ = 45◦,
and (c) ϕ = 90◦ (left). The shapes after shifting and reflecting with respect to the
center line of the channel (right). s∗ = 0.481 and umax = 1 cm/s.

However, for the biconcave shape cell s∗ = 0.481, only a slipper shape has been

obtained at the center line as its equilibrium shape for umax = 1.0 cm/s with the

initial inclination angles of 0◦, 45◦, and 90◦ as shown in Figure 4.4. It indicates that

the slipper shape could be the only equilibrium shape for the low umax.

4.1.3 Effect of the maximum velocity

The effect of umax on the deformation of a single cell has been investigated. In the

simulations, we have kept other parameters the same as in Section 4.1.1. We observed

that umax plays a critical role on the equilibrium shapes of a single RBC migration in

a narrow channel. Both slipper shape and parachute shape are obtained by varying

the value of umax. The slipper shape is obtained when umax is lower than a critical

value uc = 3 cm/s (resp., 2.8 cm/s) for s∗ = 0.481 (resp., 0.7), and the parachute

shape is obtained when umax is higher than uc. The asymmetric shape (slipper
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Figure 4.5: The equilibrium shapes of a single cell in a Poiseuille flow for s∗ = 0.481
(top) and 0.7 (bottom) with umax from 0.5 to 7.5 cm/s.

shape) of the vesicle in an unbounded Poiseuille flow at zero Reynolds number has

been studied by Kaoui et al. [40], and the similar results of vesicle also mentioned

in [75, 76, 84]. Figure 4.5 shows that the equilibrium shapes for s∗ = 0.481 and

0.7 with nine different values of umax = 0.5, 1.0, 1.5, 2.0, 2.5, 2.8, 3.0, 4.0, and 7.5

cm/s, and the corresponding Reynolds numbers of the Poiseuille flow without cell

are about 0.0278, 0.0556, 0.0833, 0.1111, 0.1389, 0.1556, 0.1667, 0.2222, and 0.4167,

respectively. The histories of the cell membrane energy for s∗ = 0.481 and 0.7 are

shown in Figure 4.6. When the cell reaches the equilibrium position and shape, the

cell membrane energy of the parachute shape is higher than that of the slipper shape

and the flow with higher umax can provide enough energy to sustain the shape of

a parachute. The distance Yd between the mass center of equilibrium cell and the

center line is zero for the parachute shape, but Yd is nonzero for the slipper shape.

These results are reported in Figure 4.7. Our present simulation results are in good

agreement with the results in [40].
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For the above nine different values of umax, the equilibrium shapes of the elliptic

shape cell for s∗ = 0.9 with two different initial angles ϕ = π/4 and 0 are shown

in Figure 4.8. For ϕ = 0, the cell deforms and reaches a bullet-like shape as its

equilibrium shape when umax is lower than uc = 3 cm/s, otherwise it attains a

parachute shape. But for ϕ = π/4, the cell deforms and reaches a bullet-like shape

as its equilibrium shape when umax is between 1.0 cm/s and 3.0 cm/s, otherwise it

attains a parachute shape. Both bullet-like and parachute shapes coexist for umax

= 0.5, 1.0, and 3.0 cm/s. These results indicate that when umax is high enough, the

flow can provide enough energy to sustain two different shapes, parachute shape and

bullet-like shape, and the final equilibrium shape is determined by other factors such

as the initial inclination angle, etc.

We have also applied the method of the numerical continuation to study the

change of the equilibrium shape of the cell for s∗ = 0.481 and 0.7. After obtaining an

equilibrium shape for a given value of umax, we have used it as the initial shape in the

simulation for the next larger value of umax. The equilibrium shapes for s∗ = 0.481

and 0.7 are exactly the same as those given in Figure 4.5.

4.1.4 Effect of the membrane bending stiffness of the RBC

and the height of the microchannel

To study the effect of the bending constant, we have kept the same values of

kl and ks and considered three different values of the bending constants, which are

0.1kb, 1kb, and 10kb. umax = 1.0 cm/s and other conditions are the same as in Section
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Figure 4.6: The histories of the cell membrane energy in a Poiseuille flow for s∗ =
0.481 (left) and 0.7 (right) with umax from 0.5 to 7.5 cm/s.
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Figure 4.8: The equilibrium shapes of a single cell of s∗ = 0.9 in a Poiseuille flow with
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4.1.1. The snapshots of the cell migration in Poiseuille flows for s∗ = 0.481 and 0.9

with these bending constants are shown in Figure 4.9 and the histories of the cell

membrane energy are reported in Figure 4.10. In Figure 4.9, the red asterisk denotes

the same point on the cell membrane during the entire simulation. For the lower

bending constant 0.1kb, a parachute shape is obtained for both the biconcave shape

cell s∗ = 0.481 and the elliptic shape cell s∗ = 0.9. For the bending constant 1kb,

both cells exhibit damped vacillating breathing after they are released in the fluid

flow as indicated in Figure 4.10. The histories of the cell membrane energy show

the vacillating-breathing motion of the elliptic shape cell s∗ = 0.9 damps out faster

than that of the biconcave shape cell of s∗ = 0.481. The positions and shapes of the

vacillating-breathing motion for the biconcave shape cell of s∗ = 0.481 are shown

in Figure 4.11. For the higher bending constant 10kb, both cells exhibit damped

oscillation until they attain the equilibrium states aligning themselves at an angle

with the direction of the flow, and the damping rate of the elliptical shape cell is
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bigger than that of the biconcave shape cell. The history of the angle of the long

axis of cell at the center line as a function of time is shown in Figure 4.21 (left). The

vacillating-breathing motion also takes place for the bending constants 0.1kb with

the value of umax lower than 1.0 cm/s and 10kb with the value of umax higher than

1.0 cm/s for the biconcave shape cell of s∗ = 0.481. Figure 4.12 shows the simulation

results of the capillary number Ca = 3.58 (i.e., 0.1kb with the value of umax = 0.1

cm/s, 1kb with the value of umax = 1 cm/s, and 10kb with the value of umax = 10

cm/s). For the different bending constants, the RBC reaches the same equilibrium

shape for the same capillary number in the middle part of Figure 4.12.

The shear rate at the center of the Poiseuille flow is zero, and any deviation of

the cell from the center line would be penalized by higher dissipation as a result of

the higher shear rate. Thus for a parachute shape cell, no membrane tank treading is

present for its symmetric shape and the relative velocity of fluid inside the parachute

shape cell also vanishes. However, for a slipper shape cell, its membrane undergoes

tank treading and the flow enclosed by the slipper shape cell rotates as shown in

Figure 4.13 (a) and 4.13 (c) where the red asterisk denotes the same point on the cell

membrane. The similar results of the vesicle and elliptical capsule are also obtained

by Kaoui et al. [40] and Shin et al. [83], respectively.

Finally, the effect of the height of the channel H on the deformation of a single

cell is also investigated. We set umax = 7.5 cm/s and vary H . All the other physical

and numerical parameters are kept same to those in the Section 4.1.1. Simulations

in Figure 4.14 and Figure 4.20 are performed for H = 10 and 50 µm, respectively.

The corresponding initial positions of the mass center of the single cell are located
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at (5,5) and (5,25), respectively. Both of the initial angles are ϕ = π/4. For the

narrower channel with H = 10 µm, a parachute shape as its equilibrium shape

is obtained for both two bending constants 0.1kb and 1kb (see Figure 4.14 (a) −

(d)). For the bending constant 10kb, the cell of swelling ratio s∗ = 0.481 exhibits a

damped vacillating-breathing motion accompanied by membrane tank-treading until

it attains the equilibrium state (a slipper shape as its equilibrium shape) aligning

itself at an angle with the direction of the flow as shown in Figures 4.14 (e) and 4.15.

But the other one of swelling ratio s∗ = 0.9 only exhibits oscillation for shorter period

of time (see Figure 4.14 (f)) and the cell gradually deforms into a parachute shape.

When the bending constant is 100kb, both two cells exhibit damped oscillation with

the shapes of long body and align themselves with a fixed inclination angle with

respect to the flow direction as in Figures 4.14 (g), (h) and 4.15. The damped rate

of the elliptic shape cell is also faster than that of the biconcave shape cell. The

histories of the height of the cell mass center in Figure 4.16 do show the correlation

with the oscillation motion. There is no tank treading for both parachute shape and

bullet-like shape since they are symmetric (see Figures 4.13 (b) and (d)).

When placing the initial position of the cell mass center off the center line, we

have obtained almost similar behaviors for both two cells in Poiseuille flow as shown

in Figures 4.17, 4.18, and 4.19. The vacillating-breathing behavior for the case of

the bending constant 10kb and the oscillation for the case of the bending constant

100kb are stronger for the cell of s∗ = 0.481. But more interesting results are the

motions of the cell of s∗ = 0.9 for the bending constants 10kb and 100kb as shown in

Figure 4.17 (f) and (h). A similar motion called snaking motion in Poiseuille flow
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has been studied in the Stokes regime in [45]. Actually, the cell of s∗ = 0.9 exhibits

a snaking motion when the equilibrium shape is a bullet-like shape which depends

on the initial angle ϕ (see [81]).

Unlike in a narrower channel, the cell in a wider channel exhibits vacillating-

breathing motion after it is released in the fluid flow for the lower bending constant

0.1kb, and as this motion becomes weak, the cell reaches a slipper shape as its

equilibrium state and aligns itself at an angle with the direction of the flow. For

the bending constants 1kb and 10kb, both two cells exhibit oscillation. The similar

simulation results of vesicles by using the boundary integral method are given by

Kaoui et al. in [45]. The history of the position of the cell mass center, the energy

of the cell membrane, and the equilibrium shape are presented in Figure 4.20. The

histories of the angle of the long axis of the biconcave cell s∗ = 0.481 at the center

line for the bending constants 1kb and 10kb are shown in Figure 4.21 (right).

The RBC exhibits slipper shape accompanied with (damped) vacillating-breathing

motion when the capillary number Ca is less than a critical value such as 10.74 for

the biconcave shape cell s∗ = 0.481 in the narrower channel. For the elliptic shape

cell of s∗ = 0.9, the vacillating-breathing motion damps out quickly. So we focus our

attention on investigating the vacillating-breathing motion of the biconcave shape

cell for s∗ = 0.481. Figure 4.22 displays the histories of the energy of the cell mem-

brane of the different values of umax = 0.5, 1.0, 1.5, 2.0, and 2.8 cm/s. The strength

of the vacillating-breathing motion depends on the degree of confinement, the max-

imum velocity at the center line of fluid flow umax and the capillary number Ca.
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The RBC exhibits a stronger vacillating-breathing motion as the degree of confine-

ment is larger or the value umax is higher. For the same degree of confinement, the

vacillating-breathing motion appears to be relatively weaker but persists longer as

the value of umax is lower. For the different bending constants, the RBC obtains the

same equilibrium shape for the same capillary number.

4.1.5 Conclusions

The steady shape of the cell under flow depends on the swelling ratio (s∗), the

initial angle of the long axis of the cell at the center line (ϕ), the maximum velocity

at the center line of fluid flow (umax), the membrane bending stiffness of the RBC (kb)

and the height of the microchannel (H). Two motions of oscillation and vacillating

breathing of the RBC are observed in narrow and wide channels. The strength of the

vacillating-breathing motion depends on the degree of confinement and the value of

umax. The RBC exhibits a strong vacillating-breathing motion as the degree of con-

finement is larger or the value of umax is higher. For the same degree of confinement,

the vacillating-breathing motion appears to be relatively weak but persists longer as

the value of umax is lower. For the different bending constants, the RBC obtains the

same equilibrium shape for the same capillary number. The continuation of shape

change from the slipper to the parachute by varying the value of umax is obtained for

the biconcave shape cell in a narrower channel. In particular, parachute shape and

bullet-like shape, depending on the angle ϕ, coexist for the elliptic shape cell with

lower umax in a narrower channel.
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Figure 4.9: The snapshots of the cell migration at different time (ms) for s∗ = 0.481
and 0.9 with different bending constants: (a) s∗ = 0.481 and 0.1kb, (b) s

∗ = 0.9 and
0.1kb, (c) s∗ = 0.481 and 1kb, (d) s∗ = 0.9 and 1kb, (e) s∗ = 0.481 and 10kb, and
(f) s∗ = 0.9 and 10kb. The red asterisk denotes the same node point on the cell
membrane.
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Figure 4.10: The cell membrane energy for s∗ = 0.481 and 0.9 with different bending
constants (left) and the enlarged part (right).
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Figure 4.11: The positions and shapes of a single cell for s∗ = 0.481(1kb) at t = 22.5,
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Figure 4.12: The histories of the cell membrane energy for s∗ = 0.481 with the capil-
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respect to the center line of the channel (middle right). The positions and shapes of
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Figure 4.13: Tank treading for a slipper shape cell: (a) s∗ = 0.481 with umax = 1
cm/s. No tank treading for a parachute shape cell: (b) s∗ = 0.481 with umax = 7.5
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Figure 4.14: The snapshots of the cell motion at different time (ms) for s∗ = 0.481
and 0.9 with different bending constants: (a) s∗ = 0.481 and 0.1kb, (b) s

∗ = 0.9 and
0.1kb, (c) s∗ = 0.481 and 1kb, (d) s∗ = 0.9 and 1kb, (e) s∗ = 0.481 and 10kb, (f)
s∗ = 0.9 and 10kb, (g) s

∗ = 0.481 and 100kb, and (h) s∗ = 0.9 and 100kb. The red
asterisk denotes the same node point on the cell membrane. The initial position is
(5,5) and the initial angle is π/4.
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Figure 4.17: The snapshots of the cell motion at different time (ms) for s∗ = 0.481
and 0.9 with different bending constants: (a) s∗ = 0.481 and 0.1kb, (b) s

∗ = 0.9 and
0.1kb, (c) s∗ = 0.481 and 1kb, (d) s∗ = 0.9 and 1kb, (e) s∗ = 0.481 and 10kb, (f)
s∗ = 0.9 and 10kb, (g) s

∗ = 0.481 and 100kb, and (h) s∗ = 0.9 and 100kb. The red
asterisk denotes the same node point on the cell membrane. The initial position is
(5,3) and the initial angle is 0.
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Figure 4.20: The history of the position of the cell mass center (left), the energy of
the cell membrane (middle), and the equilibrium shape (right) for various bending
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4.2 Lateral migration and equilibrium shape and

position of a single cell in bounded Poiseuille

flows

In this section, the lateral migration properties of a single RBC in Poiseuille flows

have been investigated by varying the swelling ratio (s∗), the membrane bending

constant of RBC (kb), the maximum velocity of fluid flow (umax), and the degree of

confinement R0/w. Two motions of oscillation and vacillating breathing (swing) of

the RBC are observed in both narrow (100 × 10 µm2) and wide (100 × 20 µm2)

channels considered here.

4.2.1 Initial position and angle tests

First, we consider the effect of the initial position and the initial angle ϕ of the

long axis of the cell with respect to the center line on the lateral migration and

equilibrium shape and position.

Given the same initial angle ϕ, the effect of different initial positions has been

investigated in a Poiseuille flow with the fluid domain 100 × 20 µm2. The pressure

gradient is set to as a constant so that Re of the Poiseuille flow without cell is

about 0.8333. The initial velocity is zero everywhere. The grid resolution for the

computational domain is 64 grid points per 10 µm. Migrations of the RBC with s∗

= 0.481, 0.9, and 1.0 for three different initial positions (5,3), (5,10), and (5,17) are

shown in Figure 4.23. The cells with the initial positions (5,3) and (5,17) deform
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and migrate to the center line of the microchannel where steady states are reached.

The cell reaches a slipper shape for s∗ = 0.481, a parachute shape for s∗ = 0.9 and

a slightly bullet-like shape as its equilibrium shape for the circular case of s∗ = 1.0,

respectively. The deformation of the cells with the initial positions (5,3) and (5,17)

is greater than that with the initial position (5, 10) after the cells are placed in

the fluid flow. The three cells with different initial positions migrate to the same

equilibrium position and attain the same shape. The cell initial position does lead

to different initial behavior, but the final position and shape are not related with the

initial positions of the RBC.

The effect of the angle is also studied for both biconcave-shape cell with s∗ =

0.481 and elliptic-shape cell with s∗ = 0.9, respectively. Figure 4.24 presents the

snapshots of the cell migration with the initial angles ϕ = 0o, 45o, and 90o. By the

combination effects of the wall and the deformability, the cell with ϕ = 0o deforms

and rotates counterclockwise with an angle about 45o, the cell with ϕ = 90o deforms

and rotates clockwise with an angle about 45o, and the cell with ϕ = 45o deforms

and almost keeps the same angle. The deformation of the cells with the initial angles

ϕ = 0o and 90o is greater than that with the initial angle 45o after the cells are

released in the fluid flow. As shown in Figure 4.24, it takes almost the same time (5

ms) for these three cells with different initial angles to reach about the same shape

and height in the flow. Then they keep migrating in the flow with no significant

difference in shape and height. The initial angle has an influence on the cell initial

behavior, but has no significant effect on its motion after its release into the fluid

flow for a while.
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Figure 4.23: The snapshots of the cell migration with three different initial positions
of s∗ = 0.481 (top), 0.9 (middle), and 1.0 (bottom) at different time (ms).
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Figure 4.24: The snapshots of the cell migration with three different initial angles ϕ
= 0o, 45o, and 90o of s∗ = 0.481 (top) and 0.9 (bottom) at different time (ms).
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4.2.2 Effect of the swelling ratio

Here we consider the effect of the swelling ratio on the lateral migration and

equilibrium shape and position. Seven different shapes of the cells (s∗ = 0.481, 0.6,

0.7, 0.8, 0.9, 0.95, and 1.0) have been studied and the simulation results are shown

in Figure 4.25. The initial position of the mass center of the single cell is located at

(5,3) as in Figure 4.24. The initial angle is ϕ = 0. The other parameters are kept

the same as in Section 4.2.1. The cells deform after they are released close to the

bottom wall and migrate toward a higher fluid velocity field, i.e., toward the center

line of the channel, and reach their equilibrium shapes and positions, respectively.

The average velocities of the fluid flow with the cells are 4.9562, 4.9546, 4.9528,

4.9504, 4.9501, 4.9515, and 4.953 cm/s for s∗ = 0.481, 0.6, 0.7, 0.8, 0.9, 0.95, and

1.0, respectively. The associated Re are 0.826, 0.8258, 0.8255, 0.8251, 0.825, 0.8253,

and 0.8255. While migrating, the biconcave-shape cell with s∗ = 0.481, 0.6, 0.7,

and 0.8 moves to a lateral location characterized by lower shear rates accompanied

by damped vacillating-breathing (swing) motion. The damped speed is an inverse

proportion function with the swelling ratio s∗. The equilibrium shapes for various

swelling ratio are shown in Figure 4.25. The equilibrium positions are at or near

the center line, and the distance Yd is monotonic decreasing to zero with increasing

the swelling ratio from 0.481 to 1.0 since the shape is changing from the asymmetric

slipper shape to the symmetric shape. The energy stored in the cell membrane of the

equilibrium cell is also monotonic decreasing with increasing the swelling ratio from

0.481 to 1.0. The extra energy due to the cell deformation shown in Figure 4.25 also

indicates that the cell shape of s∗ = 0.8 has been changed the most. As shown in
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Figure 4.25, for s∗ > 0.8, the speed of the migration at the beginning decreases with

increasing the swelling ratio s∗. This result agrees very well qualitatively with the

experimental results reported in [15]. But for s∗ ≤ 0.8, which has not been studied

in [15], the speed of the migration at the beginning is an increasing function of the

swelling ratio s∗. The critical swelling ratio s∗ = 0.8 for having a biconcave shape

also plays a role here for the migration velocity at the beginning. For s∗ > 0.8,

the deformability is weaker for a higher value of s∗ due to the lack of the excess

circumference. But for s∗ ≤ 0.8, the excess circumference is more than enough for

the cell to deform, and the cell of larger s∗ can interact more with the faster flow

region due to the larger cell area and then migrates faster.

4.2.3 Effect of the membrane bending stiffness of RBC

To study the effect of the bending constant, we have kept the same values of kl and

ks and considered four different values of the bending constants, 0.1kb, 1kb, 10kb, and

100kb, and other parameters are the same as in Section 4.2.2. The capillary numbers

Ca are 135.337, 13.533, 1.353, and 0.135 corresponding to the bending constants

0.1kb, 1kb, 10kb, and 100kb, respectively. The snapshots of the cell migration in

Poiseuille flows for s∗ = 0.481, 0.9, and 1.0 with these bending constants are shown

in Figure 4.26. The red asterisk denotes the same point on the cell membrane during

the entire simulation. The histories of the position of the cell mass centers are

displayed in Figure 4.27. For the above four bending constants, the cells migrate

toward the equilibrium height close to the center line of the channel. Different

deformability led by the different bending constants presents different dynamical
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Figure 4.25: The history of the position of the cell mass center (top left) and the
distance Yd as a function of the swelling ratio s∗ for the degree of confinement R0/w
= 0.28 (top right). The history of the position of the cell mass center at the beginning
10 ms of s∗ = 0.481, 0.6, 0.7, and 0.8 (middle left) and s∗ = 0.8, 0.9, 0.95, and 1.0
(middle right). The initial cell membrane energy E0, the cell membrane energy of
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equilibrium shapes for various swelling ratios s∗ = 0.481, 0.6, 0.7, 0.8, 0.9, 0.95, and
1.0 (bottom right).
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properties during the cell migration. For the lower bending constant 0.1kb, the cell

with s∗ = 0.9 migrates to the equilibrium height faster than the other two as shown in

Figure 4.28. A parachute shape is obtained for both the biconcave-shape cell and the

elliptic-shape cell, and a slightly bullet-like shape is observed for the circular-shape

cell. For the bending constant 1kb, the cell with s∗ = 0.9 also migrates faster to

the equilibrium height. But both the biconcave-shape cell and the elliptic-shape cell

exhibit damped vacillating breathing after they reach the center line of the channel

as indicated in Figure 4.27. The equilibrium location of the biconcave-shape cell is

about 0.2863 µm away from the center line due to its asymmetric equilibrium shape

(slipper shape). For the bending constant 10kb, both the biconcave-shape cell and the

elliptic-shape cell exhibit damped oscillation until they attain the equilibrium states,

aligning themselves at an angle with the direction of the flow as shown in Figure 4.26

(g) and (h). The damping rate of the elliptic-shape cell is again bigger than that of

the biconcave-shape cell as shown by the history of the angle θ in Figure 4.28 (left).

For the bending constant 100kb, both two cells display damped oscillation with the

shapes of long body as shown in Figures 4.26 (i) and (j) and 4.28 (right). The

histories of the height of the cell mass center in Figure 4.27 do show the correlation

with the oscillation motion.

Concerning the vacillating-breathing behavior in a Poiseuille flow, it was first

observed without considering the lateral migration in [82]. To obtain this kind of

behavior, the bending constant needs to be large enough with respect to the velocity

umax so that the cell can not be deformed into either a symmetric parachute or a

bullet-like shape at the center line. In other words, the cell shape has to be a long
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body shape in the central region of the channel as shown in Figure 4.26 (d), (g),

(h), (i), and (j) so that when the mass center of the cell moves up and down, its

inclination angle oscillates since the portion of the membrane closer to the wall moves

slower than that in the central region does. When the mass center finally settles to

a steady height, the oscillation disappears.

And we also report the results of the distance Yd as a function of Reynolds number

(Re > 10) for various bending constants 1kb, 10kb, and 100kb in Figure 4.29. The

equilibrium position of the cell settles in the center line of the channel or between

the center line and the wall. For the biconcave shape cell, the distance Yd deceases as

the bending constant increases. But Yd increases as increasing the bending constant

for both the elliptic cell and the circular cell. There is no distinguishing difference

as it changes from 1kb to 10kb for the cell of s
∗ = 0.481 and 1.0. For both the elliptic

shape cell and the circle cell, the distance Yd increases with increasing Re, i.e., the

equilibrium position shifts to the bottom wall, reaches a peak at about Re = 40

and decreases as Re increases (i.e. the equilibrium position shifts toward the center

line). The similar results of the elliptical capsule are also obtained by Shin et al.

in [83]. These simulation results may serve a useful application in separating cells

that have same size but different bending constants via the bifurcation law, e.g. the

Zweifach-Fung effect [31].
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Figure 4.26: The snapshots of the cell migration in Poiseuille flows for s∗ = 0.481,
0.9, and 1.0 with different bending constants at different time (ms): (a) s∗ = 0.481
and 0.1kb, (b) s

∗ = 0.9 and 0.1kb, (c) s
∗ = 1.0 and 0.1kb, (d) s

∗ = 0.481 and 1kb, (e)
s∗ = 0.9 and 1kb, (f) s

∗ = 1.0 and 1kb, (g) s
∗ = 0.481 and 10kb, (h) s

∗ = 0.9 and 10kb,
(i) s∗ = 1.0 and 10kb, (j) s

∗ = 0.481 and 100kb, (k) s
∗ = 0.9 and 100kb, and (l) s∗ =

1.0 and 100kb. The red asterisk denotes the same node point on the cell membrane.
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4.2.4 Effect of the maximum velocity

The effect of umax on the lateral migration and equilibrium shape and position of

a single cell in Poiseuille flows has been investigated. In the simulations, we have kept

other parameters the same as in Section 4.2.2. We observed that umax plays a critical

role on the migration, the deformation, the equilibrium position, and the shape of

the cell. The higher the umax, the faster the cell deforms. So when the velocity

of the cell migration is higher, it reaches the equilibrium shape and position more

quickly. During the migration, both the biconcave-shape cell and the elliptic-shape

cell exhibit a damped vacillating-breathing motion after the cell reached the center

line of the channel for lower umax, and the vacillating-breathing motion damps out

quickly for the elliptic-shape cell. When the equilibrium shape is symmetric with

respect to the center line of the channel such as an ellipse, parachute shape, and

bullet-like shape, the mass center lies in the center line of the channel; Otherwise,
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Figure 4.29: The distance Yd between the cell mass center of the equilibrium position
and the center line of the channel as a function of the Reynolds number Re for
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when the equilibrium shape is asymmetric such as a slipper shape, the mass center

settles between the center line and the wall. The histories of the cell mass centers

are shown in Figure 4.30. The distance Yd as a function of Re and the corresponding

equilibrium shapes for three different swelling ratio s∗ = 0.481, 0.9, and 1.0 are

displayed in Figures 4.31 and 4.32, respectively.

For the biconcave-shape cell with s∗ = 0.481, a slipper shape as its equilibrium

shape is obtained for various umax. For the elliptic-shape cell with s∗ = 0.9, a

slipper shape as its equilibrium shape is observed for umax < 7.5 cm/s (Re < 0.83),

a parachute shape as its equilibrium shape is observed for 7.5 cm/s ≤ umax ≤ 230

cm/s (0.83 ≤ Re ≤ 25.56) and umax ≥ 410 cm/s (Re ≥ 45.56), and an asymmetric

shape as its equilibrium shape is observed for 230 cm/s < umax < 410 cm/s (25.56 <

Re < 45.56). For the circular-shape cell with s∗ = 1.0, a (slightly) bullet-like shape

as its equilibrium shape is obtained for umax < 60 cm/s (Re < 6.67) and umax ≥ 900

cm/s (Re ≥ 100), and an asymmetric shape as its equilibrium shape is observed for

60 cm/s ≤ umax < 900 cm/s (6.67 ≤ Re < 100).

The asymmetric shape (slipper shape) of a vesicle in an unbounded Poiseuille

flow at zero Re has been studied by Kaoui et al. [40], and similar results for a vesicle

are mentioned in [75, 76, 84]. But the difference is that our simulation results show

the cell of s∗ = 0.9 and 1.0 can stay away from the center line with an asymmetric

equilibrium shape with increasing value of umax and then shift back to the center line

with a symmetric parachute and bullet-like shape with enough higher umax as shown

in Figures 4.30 and 4.32. The above migration of the cell of s∗ = 0.9 and 1.0 depends

mainly on two lift forces in the narrow channel considered here: One is a positive
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force toward the channel center generated by the inertial effect of the wall, and the

other is a negative force toward the wall generated by the shear gradient of the

Poiseuille flow. The cell migrates toward the channel center when umax is very slow

since, besides the cell deformability, the effect of the wall is stronger than that of the

shear gradient of the flow, and then the positive lift force from the wall is larger than

the negative lift force when the cell is closer to the wall. As umax is larger, the effect

of wall becomes weaker when comparing the effect of velocity profile of the fluid flow,

the composite force becomes negative, and then the equilibrium position shifts away

from the center line. When umax increases further, the curvature of velocity profile of

the fluid flow becomes very small, and the negative lift force generated by the shear

gradient of the Poiseuille flow decreases. So the cell migrates to the center line of

the channel for much higher umax in a narrower channel considered here. The similar

tendency for the capsule was reported in [83]. For a neutrally buoyant particle of an

elliptic shape moving in a bounded Poiseuille flow, the mass center also moves to the

center line when umax is sufficiently higher in [13] for the same reason.

4.2.5 The effect of the degree of confinement

Finally, we compare the equilibrium position and shape of the RBC in Poiseuille

flows by varying the degree of confinement. In this section, we consider two different

degrees of confinement, R0/w = 0.56 (100 × 10 µm2) and 0.28 (100 × 20 µm2), and

six swelling ratios, s∗ = 0.481, 0.6, 0.7 , 0.8, 0.9, and 1.0. Simulation results are

reported in Figures 4.33 and 4.34 for these two degrees of confinement, respectively.

In Figure 4.33, Re is between 0 and 0.5 for the degree of confinement R0/w = 0.56.
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Figure 4.30: The history of the position of the cell mass center for various umax =
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The distance Yd increases with increasing Re and reaches a peak, then decreases

with increasing Re for s∗ = 0.481, 0.6, 0.7, and 0.8. The peak of Re (0.1389, 0.1111,

0.0833, and 0.0694) is a decreasing function of the swelling ratio s∗ (0.481, 0.6,

0.7, and 0.8). After the distance Yd reaches its peak, the cell equilibrium position

shifts back to the center line of the channel and the equilibrium shape becomes a

parachute shape for s∗ ≤ 0.9 and a bullet-like shape for s∗ = 1.0. The diagram of

the equilibrium shape in Figure 4.33 is similar to the simulation results in [40]. In

Figure 4.34, Re is between 0 and 5 for a smaller degree of confinement R0/w = 0.28.

The distance Yd increases with increasing Re and reaches a peak, then decreases with

increasing Re for s∗ = 0.481, 0.6, 0.7 , and 0.8. The peak of Re (2.222, 1.333, 0.833,

0.667, and 0.444) is a decreasing function of the swelling ratio s∗ (0.481, 0.6, 0.7, 0.8,

and 0.9). The distance Yd is almost zero for the swelling ratio s∗ = 1.0 due to its

symmetric shape. For the wider channel, it needs higher umax to obtain a symmetric

shape for the cell of smaller values of the swelling ratio s∗, especially for the one

of s∗ = 0.481. It indicates that the degree of confinement is also important for the

equilibrium shape in a bounded Poiseuille flow. In general, for the bigger degree of

confinement, the distance Yd is highly related to the equilibrium shape: Yd is zero for

the symmetric equilibrium shape such as a parachute shape and a bullet-like shape,

but Yd is nonzero for the asymmetric equilibrium shape such as a slipper shape.

Given a swelling ratio s∗, the cell membrane energy of the equilibrium position

is an increasing function as Re increases. The slipper-shape cell is more stable than

the parachute-shape one in the sense that the energy stored in the former is lower

than that in the latter. The fluid flow with higher umax can provide enough energy
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to sustain a parachute chape. This is another way to explain why the slipper shape

is a favorable shaoe in a narrow Poiseuille flow with low flow velocity besides the

explanation based on reducing the lag by assuming a slipper shape discussed in [40].

For a given Re, the bigger the swelling ratio (s∗ < 1.0), the lower the cell membrane

energy. The membrane energy of the cell of s∗ = 1.0 behaves differently from the

others for the both degrees of confinement considered here. The corresponding equi-

librium shapes of the various swelling ratios s∗ = 0.481, 0.6, 0.7 ,0.8, 0.9, and 1.0 are

shown in Figure 4.33 (bottom).

4.2.6 Conclusions

In this section, inertial migration and equilibrium position and shape of a cell with

different initial shape (convex and biconcave) in bounded two-dimensional Poiseuille

flows have been studied by numerical simulation. Several important factors have been

examined for the inertial migration of a single RBC in Poiseuille flows: the swelling

ratio (s∗), the membrane bending stiffness of RBCs (kb), the maximum velocity of

fluid flow (umax), and the degree of confinement (the ratio of the cell’s effective radius

R0 to the channel half height w). The combined effect of the deformability, the degree

of confinement, and the shear gradient of the Poiseuille flow make the RBC migrate

toward a certain cross-sectional equilibrium position, which lies either on the center

line of the channel or off center line. For s∗ > 0.8, the speed of the migration at the

beginning decreases with increasing the swelling ratio s∗. But for s∗ < 0.8, the speed

of the migration at the beginning is an increasing function of the swelling ratio s∗.

Two motions of oscillation and vacillating breathing (swing) of RBC are observed.
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Figure 4.33: The distance Yd between the cell mass center of the equilibrium position
and the center line of the channel as a function of Re (top left), the cell membrane
energy of the equilibrium position as a function of Re (top right), and the corre-
sponding equilibrium shapes of the various swelling ratios s∗ = 0.481, 0.6, 0.7 ,0.8,
0.9, and 1.0 (bottom). R0/w = 0.56.
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Figure 4.34: The distance Yd between the cell mass center of the equilibrium position
and the center line of the channel as a function of Re (top left), the cell membrane
energy of the equilibrium position as a function of Re (top right), and the corre-
sponding equilibrium shapes of the various swelling ratios s∗ = 0.481, 0.6, 0.7 ,0.8,
0.9, and 1.0 (bottom). R0/w = 0.28.
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The distance Yd between the cell mass center of the equilibrium position and the

center line of the channel increases with increasing Re and reaches a peak, then

decreases with increasing Re. The peak of Re is a decreasing function of the swelling

ratios (s∗ < 1.0). The distance Yd is almost zero for s∗=1.0. Given a swelling ratio

s∗, the cell membrane energy of the equilibrium position is an increasing function

as Re increases. The slipper-shape cell is more stable than the parachute-shape one

since the energy stored in the former is lower than that in the latter. For a given

Re, the bigger the swelling ratio (s∗ < 1.0), the lower the cell membrane energy.

The deformability of cell is harder for the bigger swelling ratio because the excess

perimeter is less.
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4.3 Four cell migration in Poiseuille flows

To study the effect of the deformability on the migration of the cell, we have

considered the case of four cells with s∗ = 1 (i.e. the radius is 2.8 µm) in a Poiseuille

flow so that we can compare their motions with the computational results of four

neutrally buoyant disks of the same area obtained by the DLM/FD method described

in [64]. Then we have compared the results with those of s∗ = 0.7 to study the effect

of the swelling ratio on the lateral migration.

In the simulations, we have kept the same values for kl and ks as in Section 4.2.2

and considered five different values of the bending constant, namely 0.1kb, 1kb, 10kb,

100kb, and 1000kb. The fluid domain is a 100 × 50 µm2 rectangle. The pressure drop

is set as a constant for this study so that the Reynolds number of the Poiseuille flow

without cells is 2.778. The initial velocity is zero everywhere. The initial shapes of

the cells we consider are circle with the swelling ratio s∗ = 1. The initial position of

the mass centers of the four cells are at (25,10), (25,40), (65,10), and (65,40). The

histories of the height of the mass centers of the cells in the channel with different

values of bending constants kb are shown in Figure 4.35. The Reynolds numbers

based on the averaged velocity of the flow with five cells are 2.7109, 2.7103, 2.7057,

2.6852, and 2.6746 for the bending constants 0.1kb, 1kb, 10kb, 100kb, and 1000kb,

respectively.

The cells with s∗ = 1 move slowly toward the central region of the bigger channel

at the beginning 100 ms, and then set their equilibrium positions between the wall

and the center line of the channel. In Figure 4.35, the averaged distances of the mass
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centers of the five cells to the central line of the channel for the finally relative steady

states are 9.06, 9.18, 9.58, 11.20, and 12.05 µm for the bending constants 0.1kb, 1kb,

10kb, 100kb, and 1000kb, respectively. Thus the migration of four cells with s∗ = 1 in

a Poiseuille flow depends on the strength of the bending property of the cells. The

shapes and the positions of the four cells at t = 500 ms are also shown in Figure 4.35.

For the case of the bending constants 0.1kb, 1kb, 10kb, and 100kb, the equilibrium

shapes of the four cells are not circular at t = 500 ms. When the bending constant

is 1000kb, the four almost circular cells behave like four neutrally buoyant disks of

radius 2.8 µm moving in a Poiseuille flow. Via the DLM/FD method described in

[64], the averaged distance of the mass centers of the four neutrally buoyant disks

to the central line is 12.73 µm, which is in good agreement with the distance for

the case of 1000kb. The results of the four neutrally buoyant disks obtained by the

DLM/FD method can be found in Figure 7 in [80]. For the case of the four cells

with s∗ = 0.7 shown in Figure 4.36, the combined effect of the deformability, the

degree of confinement, and the shear gradient of the Poiseuille flow make the cells

migrate toward the center line of the channel. The Reynolds number based on the

averaged velocity and the channel height is Re = 2.76. There is a big difference

between the results of s∗ = 1 and those of s∗ = 0.7, the cells with s∗ = 1 lack of the

deformability so that they can not migrate to the center line of the channel, and the

distance between the cell mass center of the center line of the channel depends on

the bending constant of the cell membrane. But for the cells with s∗ = 0.7, due to

their deformability and that the effect of the flow inertia is weaker, they easily move

to the central region of the channel. Hence, the interplay between the wall effect,
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Figure 4.35: Histories of the height of the mass centers (left) and shapes and positions
of four cells (right) at t = 500 ms with different bending constants 0.1kb, 1kb, 10kb,
100kb, and 1000kb (from top to bottom) .
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Figure 4.36: Histories of the height of the mass centers (left) and shape and position
of four cells (right) at t = 200 ms in a Poiseuille flow with s∗ = 0.7.

deformation, and inertia forces has strong influence on the cell lateral migration rate.

We have noticed that the four cells become staggered as shown in Figure 4.35.

One reason for having this kind of patterns is that the initial positions of the four

cells are not stable since particles do not move side by side in Newtonian fluids, the

force on each particle makes them move away from each other (see, e.g. [2]).

4.4 Migration of many cells in Poiseuille flows

4.4.1 Migration of many cells in a wide channel

To apply the methodology to many-cell cases, we have considered the cases of 50

and 100 RBCs with s∗ = 0.7 in a Poiseuille flow. We have used the same values for kb,

kl, and ks as in Section 4.2.2. The fluid domain is a 100 × 50 µm2 rectangle. Hence

the hematocrit (Hct) of the 50 cell case (resp., 10 cell case) is 17.24% (resp., 34.48%).

The pressure gradient is set as a constant for this study so that the Reynolds number
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of the Poiseuille flow without cells is 2.778. The initial velocity is zero everywhere.

The time step is 10−5 ms. The positions and shapes of cells at different times

are shown in Figures 4.37 and 4.39. We have observed that the cells move toward

the center of the channel, an effect attributed to their deformability. Similar two-

dimensional results have been observed numerically in [5, 16]. There are cell-free

layers next to the walls as shown in Figures 4.37 and 4.39. The associated velocity

fields and shapes and positions of the finally relative steady states are displayed in

Figures 4.38 and 4.40, respectively. The averaged velocity profiles of the fluid flow

with cells as shown in Figure 4.43 (left) have blunt shapes due to the aggregation of

the cells in the central region. In [10], the cell-free layer has been estimated to be

roughly 100/Hct in cylindrical tubes with diameters between 40 and 83 µm. In [16],

the numerical results of the size of the cell-free layer in two-dimensional Poiseuille

flows are in good agreement with the above estimation reported in [10]. Thus for

Hct = 17.24 %, the estimation of the cell-free layer is about 5.8 µm (2.9 µm for the

Hct = 34.48 % case). We have computed the size of the cell-free layer by averaging

the gap size between the wall and the closest cell to the wall for the last millisecond

of the simulation. Our results show the sizes of the cell-free layer are about 6.24 and

2.94 µm for the Hct = 17.24 % and Hct = 34.48 %, respectively, which are in good

agreement with the estimation in [10]. The Reynolds numbers Re and the capillary

numbers Ca for the 50 cell case and 100 cell case are displayed in Table 4.1.

Then we have considered the cases where the averaged velocity is reduced to U =

3.333 cm/s and all other parameters are kept the same as the beginning of this section.

The positions and shapes of cells are shown in Figure 4.41. The associated velocity
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Hct Re Ca

17.24 % 2.34 7.23
34.48 % 1.59 7.24

Table 4.1: The Reynolds numbers Re and the capillary numbers Ca for the 50 cell
case and 100 cell case, respectively. U = 6.67 cm/s.

Hct Re Ca

17.24 % 1.17 3.61
34.48 % 0.82 3.62

Table 4.2: The Reynolds numbers Re and the capillary numbers Ca for the 50 cell
case and 100 cell case, respectively. U = 3.33 cm/s.

fields and shapes and positions of the finally relative steady states are displayed in

Figures 4.41 and 4.42, respectively. The averaged velocity profiles of the fluid flow

with cells as shown in Figure 4.43 (right) have blunt shapes due to the aggregation

of the cells in the central region. The computational results show the averaged size

of cell-free layer is about 5.92 µm (resp., 2.97 µm ) for the Hct = 17.24% case (resp.,

the Hct = 34.48% case), which are in agreement with the estimation in [10]. The

Reynolds numbers Re and the capillary numbers Ca for the 50 cell case and 100 cell

case are displayed in Table 4.2.

In Figures 4.37, 4.39, and 4.41, the orientation of cells has shown some symmetry

with respect to the center line of the channel. Since the two channel walls are at

rest, the cell located between the center line and a wall is in a kind of “nonlinear

shear” flow. Hence the motion and inclination angles of those cells are similar to the

behavior of cell migrating in a “linear shear” flow between two parallel plates, which

is that the cell migrates to the center line with an inclination angle related to the

swelling ratio of the cell.
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Figure 4.37: Shapes and positions of 50 cells at t = 0, 50, 100, and 150 ms for
U = 6.67 cm/s.

Figure 4.38: Velocity field and shapes and positions of 50 cells at t = 150 ms for
U = 6.67 cm/s.
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Figure 4.39: Shapes and positions of 100 cells at t = 0, 100, 150, and 200 ms for
U = 6.67 cm/s.

Figure 4.40: Velocity field and shapes and positions of 100 cells at t = 200 ms for
U = 6.67 cm/s.
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Figure 4.41: Shapes and positions of 50 cells at t = 250ms (left) and those of 100
cells at t = 200ms (right) for U = 3.33 cm/s.

Figure 4.42: Velocity field and shapes and positions of 50 cells at t = 250 ms (top)
and 100 cells at t = 200 ms (bottom) for U = 3.33 cm/s.
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Figure 4.43: Distribution of the horizontal velocity of the fluid flow with cells at the
relative stable states for 50 cells (black solid line) and 100 cells (red dashed line) for
U = 6.67 cm/s (left) and U = 3.33 cm/s (right). The magenta dashdot line denotes
the associated velocity distribution of the steady state fluid flow without cells.

4.4.2 Migration of many cells in a curved boundary channel

We also study the migration of many cells in curve boundary channel and the

effect of the curve boundary on the size of the cell-free layer. In this section, the

computational domain is a 100 × 60 µm2 rectangle. The regions of the constriction

shown in Figures 4.44 and 4.46 are given by the functions ft and fb for the top curve

boundary and the bottom curve boundary, respectively (see Table 4.3). So Hct =

17.24% for both two cases. The initial velocity is zero everywhere. The time step is

10−5 ms. The positions and shapes of cells at different times are shown in Figures

4.44 and 4.46. We have observed that the cells move toward the center of the channel,

an effect attributed to their deformability. There are cell-free layers next to the walls

as shown in Figures 4.44 and 4.46. We have computed the size of the cell-free layer

by averaging the gap size between the wall and the closest cell to the wall for the

last millisecond of the simulation. Our results show the sizes of the cell-free layer are
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Case ft fb
I 2.5 cos(2xπ/5) + 55 2.5 sin(2xπ/5) + 5
II 2.5 cos(xπ/5) + 55 2.5 sin(xπ/5) + 5

Table 4.3: The functions ft and fb for the top and bottom curve boundary, respec-
tively.

Case Uavg(cm/s) Havg(µm) Re = ρUavgHavg/µ
I 1.53 50 0.638
II 1.634 50 0.681

Table 4.4: The averaged velocity of the fluid flow with cells Uavg , the averaged width
of the channel Havg, and the Reynolds number Re for Case I and Case II .

about 6.01 and 6.43 µm for the Figures 4.44 and 4.46, respectively. The Reynolds

numbers based on the averaged velocity of the fluid flow with cells and the averaged

width of the channel are displayed in Table 4.4. The averaged width of the channel

for both two case are same, the Reynolds number of the case II is bigger than that

of the case I since the averaged velocity of the fluid flow with cells of the case II

is higher than that of the case I. The computational results show that the channel

boundary (straight or curve) has no effect on the size of the free-cell layer.

4.4.3 Migration of many cells in a narrow channel

In this section, we have investigated the migration of many cells in a narrow

channel and consider the effect of the bending constant of the cell membrane kb

on the size of the cell-free layer. The computational domain is a 100 × 25 µm2

rectangle. Hence the Hct = 23.69% (resp., 34.48%) for the value of s∗ = 0.481 (resp.,

s∗ = 0.7 ). The pressure gradient is set as a constant for this study so that the
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Figure 4.44: Shapes and positions of 50 cells at t = 0 , 50, 150, and 250ms. The dash
red line denotes the shift of the curve boundary function tangential to the closed cell
to the wall.

Figure 4.45: Velocity field and shapes and positions of 50 cells at t = 250 ms.
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Figure 4.46: Shapes and positions of 50 cells at t = 0 , 50, 150, and 250ms. The dash
red line denotes the shift of the curve boundary function tangential to the closed cell
to the wall.

Figure 4.47: Velocity field and shapes and positions of 50 cells at t = 250 ms.
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Reynolds number of the Poiseuille flow without cells is 0.139. The initial velocity

is zero everywhere. The time step is 10−5 ms. Here we considered three different

bending constants, which are 0.01kb, 0.1kb, and 1kb. The positions and shapes of

cells at relative stable states are shown in Figure 4.49 and the associated average

velocity profiles are exhibited in Figure 4.50. Aggregation of cells and cell-free layers

next to the walls are observed in Figure 4.49. The smaller the bending constant, the

less the size of the cell-free layer. As observed in vivo and vitro experiments [73],

the average velocity profiles of the fluid flow with cells as shown in Figure 4.50 have

blunt shapes due to the aggregation of the cells in the central region. Comparing

with a fluid without cells under the same pressure gradient, the flow rate with cells

Q is smaller. Hence the apparent viscosity η = µQ0/Q, where Q0 is the flow rate

without cells, is larger than 1.2, implying the flow resistance increases due to the

existence of the cells. From Figure 4.50, we know that the apparent viscosity η is an

increasing function as the bending constant kb. A similar tendency was reported in

[96].

4.4.4 RBC rouleaux in a very narrow channel

As shear stress is reduced, RBCs can aggregate and tend to obstruct the capillary

entrance. With weak aggregation, RBCs form rouleaux, which look like stacks of

coins. As the end of this section, we have studied the rouleaux formation of many

cells in a very narrow channel with weak aggregation. To implement this purpose, a

Morse potential (2.15) is adopted to model the intercellular interaction energy. The

reference distance r0 is chosen to be 0.5 µm (the value of this parameter can be
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Figure 4.48: The relative stable states of the fluid flow with cells with different
bending constants 0.01kb (top), 0.1kb (middle), and 1kb (bottom) for s∗ = 0.481
(left) and 0.7 (right).

Figure 4.49: Velocity field and shapes and positions of cells with different bending
constants 0.01kb (top), 0.1kb (middle), and 1kb (bottom) for s∗ = 0.481 (left) and 0.7
(right).
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Figure 4.50: Distribution of the horizontal velocity of the fluid flow with cells at the
relative stable states for different bending constants 0.01kb (black dotted line), 0.1kb
(red solid line), and 1kb (blue dashed line) for s∗ = 0.481 (left) and 0.7 (right). The
magenta dashdot line denotes the associated velocity distribution of the steady state
fluid flow without cells.

reduced when a finer mesh grid is used). The value of the scaling factor is β = 58.2

µm−1. The surface energy De can be picked to adjust a weak or strong intercellular

interaction.

The computational domain is a 100 × 10 µm2 rectangle. Hence the Hct = 11.85%

(resp., 17.24%) for the value of s∗ = 0.481 (resp., s∗ = 0.7 ). The pressure gradient

is set as a constant for this study so that the Reynolds number of the Poiseuille flow

without cells is 0.083. The initial velocity is zero everywhere. The time step is 10−5

ms. The shapes and the position of 10 cells at relative stable status of s∗ = 0.481

and 0.7 are shown in Figure 4.52. RBCs aggregate by attaching each other side by

side (resembling stack of coins) forming rouleaux for both s∗ = 0.481 and 0.7, which

are similar to the experimental observation (see Figure 4.51). The averaged velocity

and the associated Re are shown in Table 4.5.
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Figure 4.51: Image of RBC rouleaux formation in capillaries from [54].
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Figure 4.52: Shapes and positions of 10 cells at relative stable states of s∗ = 0.481
(top) and 0.7 (bottom).

Hct (%) U∗(cm/s) U∗∗(cm/s) Re
11.85 0.1 0.056 0.0047
17.24 0.1 0.048 0.004

Table 4.5: The hematocrit (Hct), the averaged velocity of the steady state fluid flow
without cells U∗, the averaged velocity of the relative steady state fluid flow with
cells U∗∗, and the Reynolds number Re based on U∗∗ .
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4.5 Interaction of two kinds of cells in Poiseuille

flows

4.5.1 Interaction of two kinds of cells in a wide channel

In this section, we have simulated the interaction of cells of two swelling ratios,

s∗ = 0.7 and 1, in Poiseuille flow and studied the size of the cell-free layer and

the Fahraeus-Lindqvist effect. The cells of s∗ = 1 are treated as solid particles in

the simulation by adjusting its bending parameter to 1000 times of the kb given at

the beginning of this Chapter. We have considered the cases of forty eight cells of

s∗ = 0.7 and two cells of s∗ = 1 with the averaged velocity U = 3.333 cm/s. All other

parameters are kept the same as in Section 4.1.1. The hematocrit of fifty cells is Hct

= 17.536%, so the estimation of the cell-free layer is about 5.7 µm [10]. We have

considered two cases which have different initial position of the circular cells. The

positions and shapes of cells at different times are shown in Figures 4.53 and 4.55.

The associated velocity fields and shapes and positions of the finally relative steady

state are displayed in Figures 4.54 and 4.56, respectively. The averaged velocity

profiles of the fluid flow with cells as shown in Figure 4.57 have blunt shapes due to

the aggregation of the cells in the central region. The histories of the height of two

cells of s∗ = 1 are shown in Figure 4.58. Two cells of s∗ = 1, which have almost

circular shape, move to the region next to the walls and stay there, which is what

we expect for such type of cells since the cell of s∗ = 1 has less deformability and the

lowest rate of migration toward the center line of the channel. Once they are in
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Figure 4.53: Shapes and positions of cells for the case I at t = 0 , 50, 100, and 200
ms (from left to right and from top to bottom).

Figure 4.54: Velocity field and shapes and positions of cells for the case I at t = 200
ms.
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Figure 4.55: Shapes and positions of cells for the case II at t = 0 , 50, 100, and 150
ms (from left to right and from top to bottom).

Figure 4.56: Velocity field and shapes and positions of cells for the case I at t = 150
ms.
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Figure 4.57: Distribution of the horizontal velocity of the fluid flow with cells at
the relative stable state: case I (black solid line) and case II (red dashed line). The
magenta dashdot line denotes the associated velocity distribution of the steady state
fluid flow without cells.
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Figure 4.58: The histories of the height of two cells of s∗ = 1: case I (left) and case
II (right).
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the region next to the walls, the other kind of cells keep them in the same region

due to Fahraeus-Lindquis effect. Our results show the averaged sizes of cell-free

layer associated to the cells of s∗ = 0.7 are about 5.92 µm and 5.81 µm, respectively,

which are in agreement with the estimation in [10]. The Reynolds numbers based the

averaged velocity and the channel height are about Re = 1.11 and 1.08, respectively.

For the interaction of cells of two different swelling ratios, the computational results

show that the almost circular cells behave similar to the neutrally buoyant disks

when interacting with other cells (see [67]).
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4.5.2 Interaction of two kinds of cells in a narrow channel

In this section, we have simulated the interaction of forty five cells of swelling

ratio s∗ = 0.481 and five circular cells of radius 1.4 µm in Poiseuille flows. The

computational domain is a 100 × 25 µm2 rectangle. The circle cells are treated as

solid particles in the simulation by adjusting its bending parameter to 1000 times of

the kb given at the beginning of this chapter. The averaged velocity of the fluid flow

without the cells is 3.33 cm/s. We keep all other parameters the same as those in

Section 4.1.1. The hematocrit of 50 cells is Hct = 22.56 %. The positions and shapes

of cells at different times are shown in Figure 4.59. The velocity field and positions

and shapes at the last moment is shown in Figure 4.60. The averaged size of cell-free

layer is about 3.03 µm. Five circular cells, which have almost circular shape, move

to the region next to the walls and stay there, which is what we expect for such type

of cells since the cell of s∗ = 1 has less deformability and the lowest rate of migration

toward the center line of the channel. Once they are in the region next to the walls,

the other cells keep them in the same region. The histories of the height of five cells

of s∗ = 1 are shown in Figure 4.64. Such simulation results imply that the small

solid particle in blood flow will accumulate in the cell-free layer regions, as has been

observed in experiments with platelets in [1].

When we reduced the bending constant of the five circular cells of radius 1.4 µm

back to 1kb and keep all other parameters the same as those above. The circular cells

also move to the region close to the wall and stay there. But it takes much time to

reach the relative steady state (see Figure 4.64). The positions and shapes of cells at

different times are shown in Figure 4.61. The velocity field and positions and shapes
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at the last moment is shown in Figure 4.62. The averaged size of cell-free layer is

about 3.03 µm. The histories of the height of two cells of s∗ = 1 are shown in Figure

4.64. The distribution of the horizontal velocity of the fluid flow with cells at the

relative stable states for both 1000kb and 1kb as shown in Figure 4.63. The averaged

velocities of the relative steady state fluid flow with the cells are about 2.45 cm/s for

1000kb and 2.38 cm/s for 1kb, respectively.

For this narrow channel, we also have studied the relation between the size of

the cell-free layer and Hct (see Figure 4.65), and found that the averaged size of the

cell-free layer ε is satisfactory:

ε ≈ 200

3Hct
. (4.1)
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Figure 4.59: Shapes and positions of cells at t = 0 , 50, 100, and 230 ms (from left
to right and from top to bottom).

Figure 4.60: The velocity field and shapes and positions of cells at t = 230 ms.

111



0 20 40 60 80 100
0

10

20

X (µm)

Y
 (

µm
)

t=0ms

0 20 40 60 80 100
0

10

20

X (µm)

Y
 (

µm
)

t=150ms                                                        

0 20 40 60 80 100
0

10

20

X (µm)

Y
 (

µm
)

t=250ms                                                        

0 20 40 60 80 100
0

10

20

X (µm)
Y

 (
µm

)

t=500ms                                                         

Figure 4.61: Shapes and positions of cells at t = 0 , 150, 250, and 500 ms (from left
to right and from top to bottom).

Figure 4.62: The velocity field and shapes and positions of cells at t = 500 ms.
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Figure 4.63: Distribution of the horizontal velocity of the fluid flow with cells at
the relative stable state for 1000kb (black solid line) and 1kb (red dashed line). The
magenta dashdot line denotes the associated velocity distribution of the steady state
fluid flow without cells.
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Figure 4.64: The histories of the height of five cells of radius 1.4 µm for 1000kb (left)
and 1kb (right).
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Chapter 5

RBC in three dimensional flows

Like in the two-dimensional case, an elastic spring network model is chosen to

model the skeleton structure of RBC membrane. Such model combined with an

immersed boundary method and finite element method is applied to simulate the

RBC rheology in three-dimensional microchannels.

5.1 Model and method

The governing equations for the fluid-cell system are the Navier-Stokes equations

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p + µ∆u+ f in Ω× (0, T ), (5.1)

∇ · u = 0 in Ω× (0, T ). (5.2)

Here the domain Ω is a bounded region filled with blood plasma which is incom-

pressible, Newtonian, and contains RBC(s) (see Figure 5.1).
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Figure 5.1: An example of computational domain with one RBC.

Equations (5.1) and (5.2) are completed by the following boundary and initial

conditions:

u = g on the top and bottom of Ω and

u is periodic in x direction, (5.3)

u(x, 0) = u0(x) in Ω. (5.4)

where u and p are the fluid velocity and pressure, respectively, anywhere in the flow,

ρ is the fluid density, and µ is the fluid viscosity. f is a body force which is the sum

of fp and fB, where fp is the pressure gradient pointing in the horizontal direction

and fB accounts for the force acting on the fluid-cell interface. In equation (5.4),

u0(x) is the initial fluid velocity. For the cases of shear flow, fp is set to be zero.

When considering the slit Poiseuille flow, we set g = 0. For both shear flow and slit
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Figure 5.2: Image of RBCs and the spectrin cytoskeleton from [87] (top). The elastic
spring model of the three-dimensional RBC membrane: The membrane is divided
into small triangular elements (bottom left) and the associated spring parameters
between two neighboring triangular elements (bottom right).

Poiseuille flow, u is periodic in both x and y directions.

5.1.1 Elastic spring model for the RBC membrane

The deformability and the elasticity of the RBC are due to the skeleton architec-

ture of the membrane. A three-dimensional elastic spring network developed in [91]

is chosen here to model the deformable behavior of the RBCs. Based on this model,

the RBC membrane can be viewed as small triangular elements and the neighboring

vertices of these elements are connected by springs, as shown in Figure 5.2. Energy
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stores in the spring due to the change of the length Ll of the spring with respect

to its reference length Ll0 , the change in angle θ between two neighboring springs,

the local areal conversation , and the global areal conversation with respect to its

reference area A0. The total energy of the RBC membrane, E = Es +Eb+Ea+EA,

is the sum of the total energy for stretch and compression, the total energy for the

bending, the total local areal conversation, and the total global areal conversation

which, in particular, are

Es =
ks
2

Nl
∑

l=1

(Ll − Ll0)
2, (5.5)

Eb =
kb
2

Nl
∑

l=1

Lltan
2(
θl
2
), (5.6)

Ea =
ka
2

Ne
∑

e=1

(
Ae − Ae0

Ae0
)2Ae0, (5.7)

and

EA =
kA
2
(
A− A0

A0
)2A0. (5.8)

In equations (5.5)−(5.8), Nl is the total number of the springs, ks and kb are spring

constants for changes in length and bending angle, respectively, θl is the angle be-

tween the normal outer vectors of the two neighboring triangular elements which

have the side l as their boundary, Ae is the area of triangular element e, Ae0 is the

reference area of e, Ne is the total number of the triangular elements, ka is the the

area expansion modulus for the local triangular element, A is the area of the en-

tire membrane, A0 is the reference global area and kA is the global area expansion

modulus.
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In the process of creating the initial biconcave shape of RBCs described in [91],

the RBC is assumed to be a sphere of radius R0 = ( S
4π
)2 (here S = 135 µm2)

initially. The sphere is discretized into Ne triangular elements with N nodes so that

Nl springs are formed by connecting the neighboring vertices of these elements. The

shape change is stimulated by reducing the total volume of the sphere through a

penalty function

ΓV =
kV
2
(
V − Ve

Ve
)2Ve, (5.9)

where V and Ve are the time dependent volume of the RBC and the equilibrium

volume of the RBC, respectively, and kV is the penalty coefficient. Thus the total

energy is modified as E+ΓV . Based on the principle of virtual work the force acting

on the ith membrane node now is

Fi = −∂(E + ΓV )

∂ri
, (5.10)

where ri is the position of the ith membrane node. When the volume is reduced,

each RBC membrane node moves on the basis of the following equation of motion:

mr̈i + γṙi = Fi. (5.11)

Here, ˙( ) denotes the time derivative, and m and γ represent the membrane node

mass and the membrane viscosity of the RBC. The position ri of the ith membrane

node is solved by discretizing equation (5.11) via a second order finite difference

method. Figure 5.3 shows an example of a sequence of the shapes when reducing the

volume of a sphere with surface area S = 135 µm2 to 63.7% (i.e. V = 94 µm3) of

its initial volume to form the biconcave RBC shape with N = 770, Ne = 1536, and
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Figure 5.3: Snapshots of changing a sphere with surface area S = 135 µm2 to 63.7%
(i.e. V = 94 µm3) of its initial volume to form the biconcave RBC shape (N = 770)
at different time: 0, 1, 12, 200, 835, and 15000 ms (from left to right and from top
to bottom).

Nl = 2304. The total energy stored in the membrane decreases as the time elapses

as shown in Figure 5.4. The final shape of the RBC is obtained as the total energy is

minimized. The volume of the final shape has less than 0.001% difference from the

given equilibrium area Ve and the global area of the final shape has less than 0.002%

difference from the reference area A0 of the initial sphere. The value of the swelling

ratio of a RBC in this work is defined by V ∗ = 3V
4πR3

0

.

5.1.2 Immersed boundary method

The immersed boundary method developed by Peskin, e.g., [69, 70, 71], is em-

ployed in our study because of its distinguishing features in dealing with the problem
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Figure 5.4: The history of the total energy of RBC membrane.

of fluid flow interacting with a flexible fluid-structure interface. Based on the method,

the boundary of the deformable structure is discretized spatially into a set of bound-

ary nodes. The force located at the immersed boundary node X = (X1, X2, X3)

affects the nearby fluid mesh nodes x = (x1, x2, x3) through a three-dimensional

discrete δ function Dh(X− x):

fB(x) =
∑

FiDh(Xi − x) for |Xi − x| ≤ 2h, (5.12)

where h is the uniform finite element mesh size and

Dh(X− x) = δh(X1 − x1)δh(X2 − x2)δh(X3 − x3) (5.13)
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with the one-dimensional discrete δ functions being

δh(z) =































1
8h

[

3− 2|z|/h+
√

1 + 4|z|/h− 4(|z|/h)2
]

, |z| ≤ h,

1
8h

[

5− 2|z|/h−
√

−7 + 12|z|/h− 4(|z|/h)2
]

, h ≤ |z| ≤ 2h,

0, otherwise.

(5.14)

The movement of the immersed boundary node X is also affected by the sur-

rounding fluid and therefore is enforced by summing the velocities at the nearby

fluid mesh nodes x weighted by the same discrete δ function:

U(X) =
∑

h3u(xj)Dh(X− xj) for |X− xj| ≤ 2h. (5.15)

After each time step, the position of the immersed boundary node is updated by

Xt+∆t = Xt +∆tU(Xt). (5.16)

Remark 5.1. Similar to the two-dimensional cases, at each time step, via opera-

tor splitting technique, we solve a sequence of subproblems, namely, a degenerated

quasi-Stokes problem, the membrane motion, the advection problem, and the diffu-

sion problem as in [81, 82]. We keep the conversation of volume given in equation

(5.9) when computing membrane force in equation (5.10) since the divergence-free

condition is enforced in a weak sense through the finite element method used in the

computations.
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5.2 Simulation results and discussions

5.2.1 Stretching force test

A very important advantage of the coarse-grained model discussed in [72] is that

it allows us to use a smaller number of nodes to represent the RBC membrane and

then speed up the computations, especially for the cases of the flow with thousands

of deformable RBCs. But the average equilibrium length of the springs depending

on the number of nodes will be larger than the observed data in experiment. Thus

it is necessary to do stretching force test on RBC membrane to tune the elastic

parameters such that the spring network model with less nodes can still be used to

simulate the RBC membrane as well as possible.

When performing the cell stretching force test, RBC (N = 194) is suspended in

the fluid flow with computational domain 2H × H × 2H µm3 (here H = 5R0) as

shown in Figure 5.5. The initial position of RBC is located in the center of the domain

with its large diameters placed in the xy-plane. We choose 5% of vertices that have

the largest x coordinates. In our present simulations, we apply the time-dependent

force f extn = f ext/(0.05N) to each of these points. Correspondingly, a force f extn =

−f ext/(0.05N) is applied to each of those vertices with the smallest x coordinates at

the beginning of the simulation. The transverse and axial diameters are computed

as 2 × max
n=1,2,··· ,N

√

yn2 + zn2 and | max
n=1,2,··· ,N

xn − min
n=1,2,··· ,N

xn|, respectively. Figure 5.6

shows our simulation results are in good agreement with experimental data in [57].

In Figure 5.6, the simulations are carried out with two groups of parameters as shown

in Table 5.1. The RBC shapes with parameters (II) at different stretching forces are
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Parameter Group I Group II
ks (N/m) 5.5×10−6 7.5×10−6

kb (N) 5.0 ×10−12 7.0 ×10−12

kA (N/m) 5.0 ×10−3 5.0 ×10−3

ka (N/m) 0.01 0.01
kV (N/m2) 50 50

Table 5.1: Two groups of the cell membrane parameters.

shown in Figure 5.7.

5.2.2 A single RBC in a narrow tube

First, we apply the coarse-grained model (N = 194) to simulate deformation

and motion of a single RBC in a horizontal tube with 10 µm in diameter and 50

µm in length. The periodic condition is imposed in the horizontal x direction. The

velocity of the fluid flow is zero everywhere initially. Then we apply a body force

to drive the tube flow such that the maximun velocity of the fluid flow is 0.5 cm/s.

The RBC deforms and a typical parachute shape is obtained, which is commonly

observed in experiments [88]. The RBC can restore to the biconcave resting disk

after the removal of the force as in [29, 72]. The snapshots at different time and the

associated history of the energy stored in the RBC membrane are shown in Figures

5.8 and 5.9, respectively. The total cell membrane energy increases when the cell

shape changes from a biconcave shape to a parachute shape under the flow and the

total energy reaches a plateau when a parachute shape as its equilibrium shape is

obtained, and the total energy decreases back to the minimum as the cell quickly

returns back to its initial biconcave shape after cessation of the flow at t = 732 ms..
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Figure 5.5: The initial state of RBC (N = 194) at the beginning of the stretching
force test. The blue asterisks denote the vertices the stretching force applied.
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Figure 5.6: Axis and transverse diameters of the RBC versus stretching force. The
symbols represent the optical tweezers experimental data from [57]. Red line with
circle and black line with triangular denote the parameters (I) and (II), respectively.

Figure 5.7: RBC shapes with parameter (II) at different forces 0, 88, and 172 pN
(from left to right).
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t= 0ms t = 1ms t = 25ms t = 400ms t = 1250ms

Figure 5.8: The snapshots of the cell deformation at different time. From left to
right: (a) The biconcave disk RBC is placed in the narrow tube with the fluid at
rest. (b) and (c) The deformation of RBC after the body force driving the fluid is
applied 1 and 5 ms, respectively. (d) The parachute shape of RBC at steady flow. (e)
The RBC returns to its equilibrium biconcave shape after the removal of the body
force driving the fluid flow.

0 500 1000 1500
1.615

1.62

1.625

1.63
x 10

−3

C
el

l m
em

br
an

e 
en

er
gy

 (
10

−
11

J)

T (ms)

Figure 5.9: The history of the energy stored in the RBC membrane. The body force
is removed at t = 732 ms.
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5.2.3 Lateral migration of a single RBC in a slit Poiseuille

flow

In this section, we have investigated the lateral migration and shape and position

of a single RBC in a slit Poiseuille flow. The computational domain is 2H × 2H × H

µm3 (here H = 5R0). Here, x is the direction of the flow, z is the direction of velocity

gradient, and y is the direction of vorticity of the undisturbed flow. The periodic

conditions are imposed in the x direction and y direction. The initial velocity of

the flow is zero everywhere. The initial position of RBC is (H,H, 0.825H) with the

initial angle ϕ = 0. Six different constants for pressure gradient are set for this

study so that the Reynolds numbers of the Poiseuille flow without the cell are about

0.0137, 0.03, 0.06, 0.12, 0.164, and 0.205. The Reynolds number is defined by Re

= ρHUmax/µ. The combined effect of the deformability, the degree of confinement,

and the shear gradient of the Poiseuille flow make the RBC migrate toward a certain

cross-sectional equilibrium position, which lies close to the center line (here it settles

between 0.5H and 0.6H). The beginning velocity of the migration toward the center

line of the channel is an increasing function of Re. The histories of the cell mass

center at different Re are shown in Figure 5.10 and the corresponding equilibrium

shapes and the associated left side view, front view, and the top view for Re = 0.12

are displayed in Figures 5.11 and 5.12, respectively. From Figures 5.10 and 5.11,

we know that the equilibrium position and shape depends on the Reynolds number

Re for the same group of cell parameters. The cell rotates accompanied with less

deformability for the lowest Re = 0.0137. For Re = 0.03, 0.06, 0.12, 0.164, and 0.205,

a slipper shape is obtained for both two groups of cell parameters. The change in
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Figure 5.10: The histories of the cell mass center at different Re: parameter (I) (left)
and parameter (II) (right).

the morphology is directly proportional to Re for the same group of cell parameters.

For the same Re, the change in the morphology of parameter I is bigger than that of

parameter II. The mass center of the equilibrium shape cell deviates away from the

center line of the channel due to its asymmetric slipper shape.

5.3 Conclusions

In this chapter, an elastic spring network model combined with an immersed

boundary method and finite element is used to study the RBC rheology in three-

dimensional microchannels. A stretching force test has been performed to tune the

RBC membrane parameters by comparing our simulation results with the optical

tweezers experimental data from [57]. A coarse-grained model is adopted to investi-

gate the motion of a single RBC in a narrow tube Poiseuille flow. In a narrow tube

Poiseuille flow, a typical parachute shape is obtained as its equilibrium shape when
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Figure 5.11: The equilibrium shapes of the cell at different Re: 0.0137, 0.03, 0.06,
0.12, 0.164, and 0.205 (from top to bottom). Parameter (I) (left) and parameter (II)
(right), respectively.
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Figure 5.12: The left view (left two), the front view (middle two), and the top view
(right two) with Re = 0.12 for parameter (I) (top) and parameter (II) (bottom),
respectively.

the fluid is driven by a body force, and it can return to the biconcave resting disk

after the removal of the force. Also the lateral migration and shape and position of

a single RBC in slit Poiseuille flow has been studied. The cell rotates accompanied

with less deformability for the lowest Re = 0.0137. For Re = 0.03, 0.06, 0.12, 0.164,

and 0.205, a slipper shape is obtained for both two groups of cell parameters. The

change in the morphology is directly proportional to Re for the same group of cell

parameters. For the same Re, the change in the morphology of parameter I is bigger

than that of parameter II. The mass center of the equilibrium shape cell deviates

away from the center line of the channel due to its asymmetric slipper shape.
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Chapter 6

Summary

6.1 Conclusions

An elastic spring model combined with an immersed boundary method and finite

element method is validated in this dissertation by the comparison of the steady

inclination angles of the tank treading of a single RBC in a shear flow. The effect of

the viscosity ratio λ and the degree of confinement R0/w on the dynamical behavior

of RBC in shear flow are also studied. In the tank-treading regime, the inclination

angle θ is a decreasing function of the viscosity ratio λ for the same swelling ratio

s∗ , but for the same λ, θ increases as s∗ increases. A transition from tank-treading

motion to tumbling motion happens as λ reaches a critical value λc for a given s∗

and λc increases as s∗ increases. For λ = 1, the inclination angle θ is a decreasing

function of R0/w, but for λ = 5, θ increases as the increasing value of R0/w and

reaches a peak, then decreases as R0/w increases.
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Lateral migration and equilibrium shape and position of a single RBC in two

dimensional bounded Poiseuille flows are investigated by varying the initial position,

the initial angle of the long axis of the cell at the center line, the swelling ratio,

the membrane bending stiffness of the RBC, the maximum velocity of the flow, and

the degree of confinement. The combined effects of the deformability, the degree

of confinement and the shear gradient of the Poiseuille flow make the RBC migrate

toward a certain cross-sectional equilibrium position, which lies either on the center

line of the channel or off the center line. For s∗ > 0.8, the speed of the migration

at the beginning decreases with increasing s∗. But for s∗ < 0.8, the speed of the

migration at the beginning is an increasing function of s∗. The distance Yd between

the cell mass center of the equilibrium position and the center line of the channel

increases with increasing Re and reaches a peak, then decreases with increasing Re.

The peak of Re is a decreasing function of the swelling ratio (s∗ < 1.0). The distance

Yd is almost zero for s∗ = 1.0. Given a swelling ratio s∗, the cell membrane energy of

the equilibrium position is an increasing function as Re increases. The slipper-shape

cell is more stable than the parachute-shape one since the energy stored in the former

is lower than that in the latter. For a given Re, the bigger the swelling ratio (s∗ <

1.0), the lower the cell membrane energy. The deformability of cell is harder for the

bigger swelling ratio because the excess perimeter is less. Two motions of oscillation

and vacillating breathing of the RBC are observed in narrow and wide channels. The

strength of the vacillating-breathing motion depends on the degree of confinement

and the value of umax. The RBC exhibits a strong vacillating-breathing motion as

the degree of confinement is larger or the value of umax is higher. For the same degree

133



of confinement, the vacillating-breathing motion appears to be relatively weak but

persists longer as the value of umax is lower. For the different bending constants,

the RBC obtains the same equilibrium shape for the same capillary number. The

continuation of shape change from the slipper to the parachute by varying the value

of umax is obtained for the biconcave shape cell in a narrower channel. In particular,

parachute shape and bullet-like shape, depending on the initial angle ϕ, coexist for

the elliptic shape cell with lower umax in a narrower channel.

Interactions of many cells in Poiseuille flows are examed for studying the size

of the cell-free layer and the Fahraeus-Lindqvist effect. For the cases of many cells

in a wider channel, our results show that the channel boundary (straight or curve)

has no effect on the size of the cell-free layer, which is in good agreement with

the estimation based on the experimental results in [10] for the different values of

Hct and the averaged velocity. Also the circular cells with radius 2.8 µm like to

move the region next to the wall which is similar to the behavior of white blood

cells in microvessels. For the interaction of cells of two different swelling ratios,

the computational results show that the almost circular cells behave similar to the

neutrally buoyant disks when interacting with other cells (see [67]). For the narrower

channel with height 25 µm, we have found an approximated law for the estimation of

the size of the cell-free layer for the different values of Hct and the averaged velocity.

Rouleaux, red blood cells stack like coins, are observed in a very narrower channel

considered here when the force obtained from Morse potential function is adapted.

Finally, a stretching force test for three-dimensional RBC membrane is performed

to tune the elastic parameters based on the comparison with the optical tweezers
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experimental data and a coarse-grained model is adopted to study the motion and

deformability of a single RBC in three-dimensional microvessels. In a narrow tube

Poiseuille flow, a typical parachute shape is obtained as its equilibrium shape when

the fluid is driven by a body force, and it can restore to the biconcave resting disk

after the removal of the force. Also the lateral migration and equilibrium shape

and position of a single RBC in slit Poiseuille flow are studied. For the same cell

parameters, the equilibrium shape depends on Re, whereas for the same Re, the

change in the morphology depends on the membrane bending constant. The cell sets

its equilibrium position between 0.5H and 0.6H . The mass center of the equilibrium

shape cell deviates away from the center line of the channel due to its asymmetric

slipper shape.

6.2 Future work

Future work would be on the dynamics of a single RBC and many RBCs in

three-dimensional blood fluid flow and the interaction of RBCs and particles in

three-dimensional blood fluid flow. It is expected that the mathematical model-

ing and computational simulations can help understand more about the blood flow

in microcirculation and facilitate the drug delivery study.
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