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Abstract

An immersed boundary method combined with an elastic spring model is applied
to simulate the red blood cell (RBC) motion and deformation in bounded Poiseuille
flows. As a benchmarking test, the dynamical behavior of a RBC in shear flow is
presented. The combined effects of the deformability, the degree of confinement, and
the shear gradient of the Poiseuille flow make the RBCs migrate toward a certain
cross-sectional equilibrium position, which lies at or off the center line. Two motions
of oscillation and swing of RBCs are observed in the narrow channel. Parachute shape
and bullet-like shape, depending on the initial angle, coexist for the elliptic shape
cell with a low fluid velocity in a narrower channel. The details of the equilibrium
shape and position versus the Reynolds number are investigated. Interactions of
many cells in Poiseuille flows are studied to examine the size of the cell-free layer

and Fahraeus-Lindqvist effect.
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Chapter 1

Introduction

1.1 Motivation

The human blood is a complex non-homogeneous fluid which is composed of
blood cells suspended in a liquid called blood plasma. The blood cells are mainly
red blood cells (RBCs or erythrocytes), white blood cells (leukocytes), and platelets.
The rheological property of the RBCs is a key factor of the blood flow characteristics
in microvessels due to their large volume fraction (40%—45%), so-called hematocrit
(Het), in the whole blood. The normal RBC has a biconcave disk with a major
diameter about 8 ym and thickness about 2 ym as its rest shape as shown in Figure
1.1. The mean volume is about 94 um? and the average surface area of RBC is

2. a value greater than the surface area (97.12 um?) of a sphere with

about 135 pum
the same volume [12]. This excess area also contributes to RBC deformation. The

RBC membrane composing of a lipid bilayer underlined by a spectrin network of
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Figure 1.1: Healthy RBCs with its usual biconcave disk shape [30] (left) and the
typical dimensions of the average RBC [26] (right).

inner cell
spectrin network

transmembrane proteins (cytoskeleton

Plasma
phospholipidic
bilayer

Figure 1.2: Artist’s view of a RBC membrane. The cytoskeletal triangle mesh is
embedded in the plasma phospholipid bilayer by the transmembrane proteins. The
plasma layer (bilayer of amphifilic molecules) is believed to be responsible for the
constraints of constant area and resistance to buckling. It can rearrange itself very
easily, and is often referred to as a fluid membrane. The network of proteins attached
underneath the plasma layer is responsible for the shear resistance (through molecular
links between the proteins) and bending. The whole membrane also contains ionic
pumps maintaining the inner volume of the RBC constant. ([24])



cytoskeletal proteins (see Figure 1.2) is highly deformable so that RBC can change its
shape when an external force is acting on it and return to the biconcave resting shape
after the removal of the force [29]. This deformability of the RBC membrane makes
it can traverse 3 um in diameter capillaries of the microcirculation. The motion and
deformation of RBC have an important effect on both its physicological function in
oxygen transport [92] and the hydrodynamical properties of normal human blood.
Some diseases such as sickle cell anemia [23, 37, 59] and diabetes mellitus [90] are

related to the RBCs with less deformability.

Starting from the pioneering work of Fahraeus and Lindqvist, the behavior of
soft, entities, such as capsules, vesicles and red blood cells under shear flow has been
studied theoretically [28, 50, 53], experimentally [35], and numerically [8, 11, 20, 27,
39, 41, 42, 51, 56, 58, 61, 68, 85, 86, 94]. Three different types of motions have
been observed for the vesicles and cells in shear flow: tank-treading (TT, the fluid
membrane rotates as a tank tread while the orientation angle of the RBC remains
fixed in time) [8, 25, 20, 27, 42, 50, 68], tumbling (TB, flipping motion like a rigid body
behavior) [9, 39, 46, 58, 85|, and vacillating-breathing (VB, the long axis undergoes
oscillation about the flow while the shape shows breathing, called alternatively swing)
[58, 61]. Motivated by the complex and interesting behavior of the vesicles and cells
in shear flow, we focus more on exploring the complex dynamics of a single RBC and

collective RBCs in Poiseuille flows in this dissertation.

Studying the dynamical behaviors (such as deformability, motion, equilibrium
shape, equilibrium position, etc.) of RBCs suspended in Poiseuille flow is an essential

and important problem in biomedical and biochemical industries. These studies may



serve as a useful and practical method in designing the cells separating microfluidic
devices based on their mechanical properties such as size and deformability [63].
Many researchers in mathematics, physics and mechanics, biology, and medicine
have studied this problem by using various entities, such as particles, drops, capsules,
vesicles and RBCs theoretically [38, 40|, experimentally [15, 34, 47, 48, 77, 78, 79],
and numerically [15, 17, 22, 49, 53, 60, 74, 44, 45, 81, 82, 83, 93]. But most studies
have been limited to the Stokes flow, or the cells are restricted to the sphere or ellipse.
In this dissertation, we examine the deformable cell behavior in the flow with inertial

effect, and the biconcave shape cell is also included.

Several numerical methods have been developed to study the cross-stream mi-
gration and the deformation of these entities in Poiseuille flows. Mortazavi et al.
studied the cross-stream migration of a deformable drop in a Poiseuille flow at fi-
nite Reynolds numbers by using the finite difference and front tracking method and
reported that the motion of the drop strongly depends on the viscosity ratio of the
inside and outside fluids; For the viscosity ratio 1.0 it moves away from the the center
until halted by the wall repulsion [60]. Pozrikidis studied the motion of spherical,
oblate ellipsoidal, and biconcave capsules in tube flow by using the boundary ele-
ment method and observed that spherical capsules slowly migrate to the tube center
line, while oblate and biconcave capsules develop parachute and slipper shapes, re-
spectively [74]. Kaoui et al. [44] studied the cross-stream noninertial migration of a
suspended vesicle in an unbounded (Coupier et al. [15] studied the bounded case)
Poiseuille flow at low Reynolds numbers by using the boundary integral method, and

found that the vesicle deforms and migrates toward the center of the flow. Yoshino



et al. applied the lattice Boltzmann method to study the motion of a viscoelastic
body in a Poiseuille flow and observed that the equilibrium position is very close
to the center line for a low elasticity and it is at a certain position between the
center line and the wall for a larger elasticity [93]. Danker et al. investigated the
effect of viscosity ratio on the migration of vesicles in a Poiseuille flow by theoretical
analysis, and predicted coexistence of two types of shapes: a bullet-like shape and
a parachute-like shape [17]. Li et al. investigated the shape change and motion of
the vesicle by using the lattice-Boltzmann method [53]. The asymmetric shape of
the vesicle in an unbounded Poiseuille flow at zero Reynolds number was studied by

Kaoui et al. [40].

In most of the above studies, the deformability of these entities was included,
but no inertial effect on the cross-stream migration was considered. The effect of the
inertia on the lateral motion of particles in a Poiseuille flow was first documented
experimentally by Segré and Silberberg [78, 79]. They observed that rigid neutrally
buoyant particles migrate away from both the wall and the center line, forming a
concentrated layer at about half the distance between the wall and the center line.
By using spherical particles and drops, Karnis et al. further studied this effect and
found that the deformable drops migrate to the center line if their viscosity is low
[47, 48]. The oscillatory motion for drops in pressure-driven channel flow at a finite
Reynolds number by using the boundary integral method was examined by Mortazavi
et al. [60]. Ko et al. investigated the migration and multiple equilibrium positions
of a single particle in Poiseuille flows, and observed that the equilibrium height of a

neutrally buoyant particle between the wall and the channel center line depends on



the Reynolds number [49]. Some theoretical studies of the effect of the inertia have
been limited to spherical particles [38]. Recently, the inertial migration of an elastic
capsule in a bounded Poiseuille flow at a finite Reynolds number was investigated by
Shin [83]. But the initial shape of the capsule is limited to either a circle or an ellipse.
For the circular initial shape, the equilibrium position can be either at the center
of the channel or between the center and the wall (known as the Segré-Silberberg
effect) depending on the Reynolds number and the ratio of the capsule size and the
channel height. Noguchi et al. studied the shape transition of vesicles and RBCs
in capillary flows by employing a three-dimensional mesoscopic simulation method
and obtained the slipper shape of a RBC [62]. Doddi et al. studied the lateral
migration of a three-dimensional deformable capsule in a Poiseuille flow based on a
mixed finite-difference and Fourier transform method for the flow solver and a front-
capsule method for the deformable interface and reported that the capsules without

bending migrate toward the center line [22].

In this dissertation, inertial migration and equilibrium position and shape of a
cell with different initial shape (convex and biconcave) in bounded two-dimensional

Poiseuille flows have been studied by numerical simulation.

1.2 Research objective

The purpose of this dissertation is to investigate the rheological properties of
RBCs in microvessels. To achieve this goal, an elastic spring model [89] is chosen to

model the skeleton structure of a RBC membrane. An immersed boundary method



(69, 70, 71] combined with the elastic spring model is used to simulate the interaction
between the cell and the fluid flow. An operator splitting technique [18, 32] is adopted
to solve the fluid-cell system equations governed by the Navier-Stokes equations.
The no-slip condition on the RBC membrane surface is enforced. Here are the main

objectives of this dissertation:

(i) Validate the model and method by the comparison of the dynamical behavior

of a single RBC in shear flow [81].

(ii) Investigate the lateral migration, deformation, and the equilibrium shape and

position of a single RBC in bounded two-dimensional Poiseuille flows [81, 82].

(iii) Study the motion of many cells in Poiseuille flows, including the interaction
of two kinds of cells, analyze the size of the cell-free layer, and the Fahraeus-Lindqvist
effect [67, 80]. The motion of RBCs in a curved channel has been involved by using a
fictitious domain method with distributed Lagrange multipliers (DLM/FD) [32, 65].
The effect of the boundary (straight or curve) on the size of the cell-free lay has been

explored.

(iv) Perform the stretching force test for three-dimensional RBC membrane to
tune the elastic parameters based on the comparison with the optical tweezers ex-
perimental data [57]. A coarse-grained model [72] is adopted to study the dynamics

of a single RBC in three-dimensional microvessels and microfluidics.



1.3 Dissertation outline

This dissertation is devoted to investigating the motion and deformation of a
single RBC and collective RBCs in microvessels and microfluidics by using numerical

simulations.

In Chapter 2, we introduce the methodology used in this dissertation. An elastic
spring model is chosen to model the skeleton structure of a RBC membrane. An
immersed boundary method combined with the elastic spring model is applied to
study the interaction between RBC and the fluid. An operator splitting technique
is adopted to solve the fluid-cell system equations governed by the Navier-Stokes

equations.

In Chapter 3, we validate the model and method by the comparisons of the steady
inclination angles of the tank treading of a single RBC in a shear flow and analyze the

effect of the viscosity ratio and the degree of confinement on the dynamical behavior

of RBC in a shear flow.

In Chapter 4, we investigate the lateral migration and deformation of a single
RBC in bounded two-dimensional Poiseuille flows. The combined effects of the de-
formability, the degree of confinement, and the shear gradient of the Poiseuille flow
make the RBCs migrate toward a certain cross-sectional equilibrium position, which
lies either on the center line of the channel or off the center line. Two motions of
oscillation and vacillating breathing (swing) of RBCs are observed. Parachute shape
and bullet-like shape, depending on the initial angle between the long axis of the cell

and the horizontal direction, coexist for the elliptic shape cell with lower maximum



velocity of the fluid flow in a narrower channel. Many cells in Poiseuille flows, includ-
ing the interaction of two kinds of cells, are performed for studying the size of the
cell-free layer and the Fahraeus-Lindqvist effect. The circular shape cells have less
deformability under the given bending property, they move to the region next to the
walls and stay there just like neutrally buoyant particle. Rouleaux, red blood cells
stack like coins, are observed in a very narrower channel when the force obtained
from Morse potential function is adapted. The motion of RBCs in a curved channel
has been investigated by combining the above methodology with a fictitious domain
method with distributed Lagrange multipliers (DLM/FD). The boundary (straight
or curve) has no effect on the size of the cell-free layer. Rouleaux, red blood cells

stack like coins, are observed in a very narrower channel considered here.

In Chapter 5, we perform the stretching force test for three-dimensional RBC
membrane to tune the elastic parameters based on the comparison with the optical
tweezers experimental data and adopt a coarse-grained model to study the motion
and deformability of a single RBC in three-dimensional microvessels and microflu-
ids. A typical parachute shape is obtained in a narrow tube Poiseuille flow. Also
the lateral migration and equilibrium shape and position of a single RBC in a slit
Poiseuille flow has been studied. For the same cell parameters, the equilibrium shape
depends on Re, and for the same Re, the change in the morphology depends on the
membrane bending constant. The cell sets its equilibrium position between 0.5H
and 0.6H. The mass center of the equilibrium shape cell deviates away from the

center line of the channel due to its asymmetric slipper shape.

In Chapter 6, we summarize our research and suggest future work.



Chapter 2

Methodology

An elastic spring network model is chosen to model the skeleton structure of
RBC membrane. Such model combined with an immersed boundary method and
finite element method is applied to study the RBC rheology in two-dimensional
microchannels. The governing equations for the fluid-cell system are the Navier-

Stokes equations

p (%—ltl +u- Vu) =—-Vp+ V- |uxt)2D(u)]+fin Qx (0,7), (2.1)

V-u=0inQx (0,7). (2.2)

Here the domain 2 is a bounded region filled with blood plasma which is incom-

pressible, Newtonian, and contains RBC(s) (see Figure 2.1).

Equations (2.1) and (2.2) are completed by the following boundary and initial
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Figure 2.1: An example of computational domain with one RBC.

conditions:

u = g on the top and bottom of (2
and u is periodic in the x; direction, (2.3)

u(x,0) = up(x) in Q. (2.4)

where u and p are the fluid velocity and pressure, respectively, anywhere in the flow,
p is the fluid density, and p is the fluid viscosity. In equation (2.1), we have that
2D(u) = Vu+ (Vu)', f is a body force which is the sum of f, and fz, where f, is the
pressure gradient pointing in the z; direction and fg accounts for the force acting
on the fluid-cell interface which will be discussed in Section (2.2). In equation (2.4),
up(x) is the initial fluid velocity. For the cases of shear flow, f, is set to be zero.

When considering Poiseuille flow, we set g = 0.
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2.1 Elastic spring model for the RBC membrane

A two-dimensional elastic spring model developed in [89] is adopted to describe
the deformable behavior of the RBCs. Based on this model, the RBC membrane
can be viewed as a network of particles connecting with the neighboring membrane
particles by springs, as shown in Figure 2.2. Energy stores in the spring network due
to the change of the length [ of the spring with respect to its reference length [y and
the change in angle # between two neighboring springs. The total energy of the RBC
membrane, £ = E; + Ej, is the sum of the total energy for stretch and compression

and the total energy for the bending which, in particular, are

b o 1 —
B=2Y () 2.
! 2;( I ) (2.5)
and
_kb al 2‘91'
By =5 ;tan (5)- (2.6)

In equations (2.5) and (2.6), NNV is the total number of the spring elements, and k;

and k; are spring constants for changes in length and bending angle, respectively.

In the process of creating the initial shape of RBCs described in [89], the RBC
is assumed to be a circle of radius Ry = 2.8 pum initially. The circle is discretized
into N = 76 membrane particles so that 76 springs are formed by connecting the
neighboring particles. The shape change is stimulated by reducing the total area of

the circle through a penalty function




I
Figure 2.2: The elastic spring model of the two-dimensional RBC membrane.

where s and s, are the time dependent area of the RBC and the equilibrium area
of the RBC, respectively, and k; is the penalty coefficient. Thus the total energy is
modified as F + I';. Based on the principle of virtual work the force acting on the

1th membrane particle now is

OB+
F, = B (2.8)

where r; is the position of the 7th membrane particle. When the area is reduced,

each RBC membrane particle moves on the basis of the following equation of motion:

Here, () denotes the time derivative, and m and =y represent the membrane particle
mass and the membrane viscosity of the RBC. The position r; of the ¢th membrane
particle is solved by discretizing equation (2.9) via a second order finite difference
method. The total energy stored in the membrane decreases as the time elapses. The
final shape of the RBC is obtained as the total energy is minimized [68]. The area
of the final shape has less than 0.001% difference from the given equilibrium area s,

and the length of the perimeter of the final shape has less than 0.005% difference
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from the circumference of the initial circle. The value of the swelling ratio of a RBC

in this work is defined by s* = s./(7R?).

2.2 Immersed boundary method

The immersed boundary method developed by Peskin, e.g., [69, 70, 71], is em-
ployed in this work because of its distinguishing features in dealing with the prob-
lem of fluid flow interacting with a flexible fluid-structure interface. Based on the
method, the boundary of the deformable structure is discretized spatially into a set
of boundary nodes. The force located at the immersed boundary node X = (X, X»)
affects the nearby fluid mesh nodes x = (x1, z3) through a two-dimensional discrete

d function Dy(X — x):
fp(x) = > FDy(X;—x) for [X;—x|<2h, (2.10)
where h is the uniform finite element mesh size and
Dyp(X = x) = 6p(X7 — 21)0p (X2 — 22) (2.11)

with the one-dimensional discrete ¢ functions being

4

& [3 - 20al/n+ VIR AR =AERY], <,

on(z) = 8Lh[5—2\z|/h—¢—7+12|z\/h—4(\z|/h)2}, h< |2l <2h (212)

0, otherwise.
\

The movement of the immersed boundary node X is also affected by the sur-

rounding fluid and therefore is enforced by summing the velocities at the nearby
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fluid mesh nodes x weighted by the same discrete ¢ function:
U(X) =Y hu(x)Dp(X —x;) for [X —x| < 2h. (2.13)
After each time step, the position of the immersed boundary node is updated by

Xt-i—At — Xt + AtU(Xt) (214)

2.3 Intercellular interaction model

At lower shear rate, RBCs can aggregate and tend to obstruct the capillary
entrance. With weak aggregation, RBCs form rouleaux, which look like stacks of
coins. As the strength of aggregation is increased, RBCs clumps are formed which
are more difficult to disrupt at the entrance to capillaries. In severe cases, these
structures can increase the flow resistance and sometimes lead the formation of blood
sludging [36]. To implement the simulation of rouleaux formation, we model the

intercellular interaction energy by a Morse potential:
¢(T) _ De[625(7“0—7’) _ 2€B(TO_T)], (215)

where r is the surface separation, ry and D, are the zero force separation and sur-
face energy, respectively, and [ is a scaling factor controlling the interaction decay

behavior ([55]). Then the interaction force from the Morse potential can be obtained:

_0¢(r)
or

flr) = = 2D, fle* o) — flromr], (2.16)

The non-dimensionalized Morse potential and force are plotted in Figure 2.3.
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Figure 2.3: Non-dimensionalized Morse potential and force.

2.4 Viscosity function across the cell membrane

The fluids separated by the cell membrane can have different properties, such as
viscosity and density. In the system considered in this dissertation, the densities of
cytoplasm of RBC and plasma are same. But in some simulations, the viscosities of
the cytoplasm of RBC and that of the suspending plasma are different. To describe
this property, the viscosity is treated as a smoothing function instead of a piecewise
constant function across the cell membrane [52, 96]. In this dissertation, we treat

different viscosities when crossing the cell membrane via a Heaviside function [96]
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defined as

/

0, d < —2h,
0(d) =11+ 2 + Lsintd), —2n<d<2h, (2.17)
1, d > —2h,

\

where d denotes the index of a fluid node as the shortest distance to the cell mem-

brane. If the node is close to two or more membrane segments, the index taken is

that to the closest one. Then the viscosity function can be defined as:

M(X) = Mout — (:uout - ,uin)e[d(x)L (218)

where i,y and u;, are the viscosities outside and inside of the cell, respectively.

2.5 Operator splitting technique

We have applied the Lie’s Scheme [14, 32] to equations (2.1) and (2.2) with the

IBM and the backward Euler method in time for some subproblems and obtain the

following fractional step subproblems:

0

(1) Solve

(

\

u’ = uy is given. For n > 0, u” being known, we obtain u"*! via:

n+1/4 _
At

Vw4 =0in Q x (7, "),

n

= + Vp"t/A =0 in Q x (¢, "),

p

u

(2.19)

u"t/* = g"*1 on the top and bottom of

and is periodic in the x; direction.
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Figure 2.4: Schematic representation of a FEM triangulation and its subtriangula-
tion.

(2) Update the position of the membrane based on u"*'/4 by (2.13) and (2.14)
and then compute the force fz on the fluid-cell interface by (2.8) and (2.10). Find

the Heaviside function 0(d) (2.17) to define the viscosity function u(x) (2.18).

(3) Solve
agit) + (WA V)u(t) = 0in Q x (¢, 1),
u(t") _ un—|—1/4 in O % (tn’tn+1)’ (220)

u(t) = g™ on I x (7, 1"+,
\

here T = {x|x € 0Q, g - n(x) < 0}, and set u"3/* = u(t"*).

(4) Finally, solve

.
un+1 _

p

n+3/4

V. [u(x)2D(u™Y)] = £+ in Q x (7, ),

At
u"t! = g"*! on the top and bottom of € (2.:21)

and is periodic in the x; direction.
\
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2.6 Finite element approximation

Concerning the finite element based space approximation of {u,p} in problem
(2.19)-(2.21), we have used the Pj-iso-P, and P; finite element approximation (e.g.,
see [32] (Chapter 5)). Suppose that a rectangular computational domain Q C R?
is chosen with length L, h is a space discretization step, T} is a finite element
triangulation of € for velocity, and T4, is a twice coarser triangulation for pressure
(see Figure 2.4). Let P; be the space of polynomials in two variables of degree < 1,

we introduce the finite dimensional spaces:

Won = {vn|vi € CO(Q)%, vi|r € Pix P,,NT € Ty, v, = 0 on the top and bottom

of 2 and is periodic in the x; direction with period L },

Wy, 1w = {vi|vn € CO(Q)2, vp|r € Pyx Py, YT € Ty, vy, = gi(t) on the top and bottom

of © and is periodic in the z; direction with period L },

Wi, = {vu|vi, € C°(Q)2, vy|r € Px Py, YT € Ty, vy, is periodic in the x; direction

with period L },

L? = {qulgn € C°(Q), qn|r € P1,VT € Ty, qp, is periodic in the z; direction with

period L },

L; o = {anlan € L, [ qudx = 0}.

Then we obtain the following subproblems (some of the subscripts h have been

dropped):

u’ = ug is given. For n > 0,u” being known, we compute the approximation

solution via the following fractional steps:
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(1) Solve

4
un+1/4 —u

JoaV -u"tdx =0 Vg € L2, (2.22)

n

vdx — [, p" TV - v)dx =0 Vv € Wy,

nt1/4 ntl ntl/d o 72
lu /GWg}“h,p /Etho.

(2) Update the position of the membrane based on u"*/4 by (2.13) and (2.14)
and then compute the force f5 on the fluid-cell interface by (2.8) and (2.10). Find

the Heaviside function 6(d) (2.17) to define the viscosity function u(x) (2.18).

(3) Solve

)
Ja al(‘l)it) - vdx + fQ(un+l/4 - V)u(t) - vdx = 0 on (", ¢"+1),

Vv € Wy, u(t") = u"t1/4 (2.23)

u(t) € Wiy, u(t) = gu(t") on T x (¢, ¢+,

\

and set u"*¥/4 = u(¢" ).

(4) Finally, solve
n+l _ un+3/4

0 Jo B0 vax+2 Jo 1(x)D(u™t) : D(v)dx = [, " vdx
At (2.24)

+1 n+1
Vv € WO,h; u'rtt e ngh,

n+l __
hel"e Wg;“h — Wgh(thrl)’h.

Remark 2.1. The degenerated quasi-Stokes problem (2.22) is solved by a precondi-
tioned conjugate gradient method (e.g., see [32]), in which discrete elliptic problems

from the preconditioning are solved by a matrix-free fast solver from FISHPAK by
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Adams et al. in [3]. The advection problem (2.23) for the velocity field is solved by
a wave-like equation method as in [18] and [19].

Remark 2.2. General speaking, when the viscosities jioy and py, are different, the
problem (2.24) is solved by the method of successive over-relaxation (SOR).
Remark 2.3. When p(x) is a constant (i.e. plou = ftin = pt ), the term 2 [, u(x)D(u) :
D(v)dx in (2.24) can be replaced by p [, Vu : Vvdx since u is divergence free. Then
the problem (2.24) is a classical discrete elliptic problem which can be solved by the

matrix-free fast solver. In this case, also we can skip the second part of step (2) in

algorithm (2.22)—(2.24) and obtain the one in [68].

2.7 Fictitious domain method

In equation (2.1), if the domain  is shown in Figure 2.5, i.e., Q is replaced
by Q\ @, and p(x,t) = p (a costant), then the fictitious domain formulation with
distributed Lagrange multipliers (DLM /FD formulation) of the problems (2.1)—(2.4)

in a curved boundary channel reads as follows:
For a.e. t > 0, find u(t) € Wy p, p(t) € L3, A € A such that

pr [%—?+(u-V)u} -vdx+,quVu:Vde—prV-de

(2.25)
= fo-de+ <A v> VveWp,
/ qV -u(t)dx = 0 Vq € L*(Q), (2.26)
Q
< pu(t) > =0Vu €A, (2.27)
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Y

x

Figure 2.5: An example of computational domain with a curved boundary.
u(x,0) = uy(x). (2.28)

with

Wo.p = {v|v e (H'(R2))? v =0 on the top and bottom of  and is periodic

in the z; direction with period L },
L ={alqg € L*(Q), [, gdx = 0},
A= (H'(w))>.

In equations (2.25)—(2.28), A is a Lagrange multiplier associated with relation (2.27)

and < -,- > is an inner product on A (see [66] for more information).

A finite dimensional space approximation A is defined as follows: let {x;}}, be
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a set of points from @ which cover @ (uniformly, for example); we define then

M
Ap = {pnlpn = > pid(x — x;), s € R%,Vi = 1,--+ | N}, where 6(+) is the Dirac
i=1

measure at x = 0. Then we shall use < -, - > defined by

M

< s Vi > = 3 i V(%) Y € Ap, vi € Wo .
i=1

Then we apply the Lie’s Scheme to equations (2.25)—(2.28) with the IBM and
the backward Euler method in time for some subproblems and obtain the following

subproblems (some of the subscripts h have been dropped):

u’ = uy is given. For n > 0,u” being known, we compute the approximation

solution via the following fractional steps:

(1) Solve

4
un+1/4 —u

JoaV -u"tdx =0 Vg € L}, (2.29)

n

vdx — [, p" TV - v)dx =0 Vv € Wy,

nt1/4 ntl  ntl/d o 72
lu / e Wgy »p / € Lj o-

pdate the position of the membrane based on u vy (2. an .
2) Update th ition of th b based n+1/4 by (2.13) and (2.14

and then compute the force f5 on the fluid-cell interface by (2.8) and (2.10).

(3) Solve

Jo —&;:t) vdx + [y V)u(t) - vdx = 0 on (17,171 WV € Wop,

u(t") = unt/4, (2.30)

u(t) € Wo, on (¢, "1,

\

and set u"t¥4 = u(¢" ).
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(4) Finally, solve

( a3/
P, — vdx + p [, Vu't!: Vvdx = [ "7 vdx+ < X\, v > Vv e Wy,

< p,u™t > =0Vu e Ay,

klln—i_l S W(],h, AE Ah.

(2.31)

The degenerated quasi-Stokes problem (2.29) is solved by a preconditioned con-
jugate gradient method (e.g., see [32]), in which discrete elliptic problems from the
preconditioning are solved by a matrix-free fast solver from FISHPAK by Adams et
al. in [3]. The advection problem (2.30) for the velocity field is solved by a wave-like
equation method as in [18] and [19]. Problem (2.31) can be solved by a conjugate

gradient method ([66]).
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Chapter 3

A single RBC in shear flows

In this chapter, as a validation test of the model and the method, the steady
inclination angles of the tank treading of two different degrees of confinement for five
values s* in shear flow [81] are compared with the simulation results in [42], then the
effect of the viscosity ratio A = I and the degree of confinement Ro/w (here w
is the half channel height) are studied. The values of parameters for modeling cells
are the same with [67, 80] as follows: The bending constant is k, = 5 x 1071 Nm,
the spring constant is &, = 5 x 1078 Nm, and the penalty coefficient is k, = 107°
Nm. The cells are suspended in blood plasma which has a density p = 1.00 g/cm?
and a dynamical viscosity pu = 0.012 g/(cms). The computational domain is a two-
dimensional horizontal channel. A simple shear flow is produced by two walls at the
top and bottom which have the same speed but move in directions opposite to each
other. Different shear rate can be obtained by adjusting the wall speed. In addition,

periodic conditions are imposed at the left and right boundaries of the domain. The
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Ro/w Re Ca

0.8 0.01 0.455
0.4 0.041 0.455
0.28 0.084 0.455
0.187 0.188 0.455
0.14  0.333 0.455
0.112  0.52 0.455

Table 3.1: Reynolds number Re and capillary number C, for different degrees of
confinement Ry/w.

Reynolds number is defined by Re = pU H /1, where U is the average velocity in the
channel. The capillary number is defined by C, = uG,Ro*/B, where p, G,, Ry, and
B represent the plasma viscosity, the shear rate of fluid flow, the effective radius of

the cell, and the bending coefficient, respectively.

3.1 Tank treading in shear flows

First, we present the results on simulation of a single RBC suspended in a linear
shear flow with shear rate v = 500 s~!. The dimensions of the computational domain
are 112 x 7 pm? and 112 x 14 pum?. The two degrees of confinement are 0.8 for the
narrower domain and 0.4 for the wider domain, respectively. The associated Reynolds
number and the capillary number are shown in Table 3.1. The grid resolution for
the computational domain is 80 grid points per 10 ym. The time step At is 107° ms.
The viscosity ratio A = 1. The initial velocity of the fluid flow is zero everywhere
and the initial positions of the mass center of the cell are (56,3.5) and (56,7) for
the narrower domain and the wider domain, respectively. Figures 3.1 and 3.2 show

the pressures and the velocity fields in the region next to the cells for two different
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degrees of confinement. The blue solid lines in the left figures and the black solid
lines in the right figures represent the cell membrane. In the left figures, the regions
with darker color correspond to higher pressure and the lighter regions correspond
to lower pressure. The figures of velocity fields indicate that the cells perform tank-
treading motion in confined channels and the inner fluid of the cell undergoes a
rotational flow, which is induced by the cell membrane tank treading. The outer
fluid of the cell exhibits recirculations at the right side of the figure and at the
left side of the figure of the cell. Such recirculations are also observed for confined
rotating rigid particles in a simple shear flow [21, 39, 95] with period conditions in

the shear direction.

The steady inclination angles of the tank treading as shown in Figure 3.3 and the
associated frequency of two different degrees of confinement for five values s*=0.6,
0.7, 0.8, 0.9, and 1.0 are presented in Figure 3.4, which show very good agreement
with the lattice-Boltzmann simulation results of Kaoui et al. [42]. The inclination
angle increases monotonically for both two degrees of confinement with increasing
the value of the swelling ratio s*. For the same swelling ratio, the bigger the degree of
confinement, the smaller the steady inclination angle. The same qualitative tendency
is reported in [7, 28, 42, 50, 53, 68]. The frequency is an increasing function of s*
for Ry/w = 0.4, but for Ry/w = 0.8, it increases first as increasing s* then reaches
a peak, and decreases when s* increases further. Similar trend for the frequency
was reported in [42]. We also keep track of the area and the perimeter of the cell
during the simulations. The variation is less than +0.1% in the area and +0.5% in

the perimeter.
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Figure 3.1: The pressure (left) and the velocity field (right) in the region next to
the cell with the swelling ratio s* = 0.481 (top), 0.7 (middle), and 0.9 (bottom),
respectively. Ry/w = 0.8. The units for both axes are pm.
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Figure 3.2: The pressure (left) and the velocity field (right) in the region next to
the cell with the swelling ratio s* = 0.481 (top), 0.7 (middle), and 0.9 (bottom),
respectively. Ry/w = 0.4. The units for both axes are pm.
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Figure 3.3: A schematic representation of tank-treading of RBC in shear flow. 6 is
the inclination angle.
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Figure 3.4: Steady inclination angle  and the associated frequency as a function of
the cell swelling ratio s* for two degrees of confinement Ry/w = 0.4 and 0.8. (* from
[42])
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3.2 Effect of the viscosity ratio and the degree of

confinement

As the first part of this section, the effect of the viscosity ratio A on the dynamics
of a single RBC in a shear flow is considered. The computational domain is a rectan-
gular region with dimensions 112 x 50 um? and the associated degree of confinement
is 0.112. The effect of the wall is weak. The grid resolution for the computational
domain is 80 grid points per 10 gum. The time step At is 1075 ms. The initial velocity
of the fluid flow is zero everywhere and the initial position of the mass center of the
cell is (56,25). The shear rate is set as v = 500 s~! and the associated Re is about

0.52.

It is well known that either the vesicle or the RBC in a shear flow undergoes a
tank-treading motion at its equilibrium position [8, 20, 25, 27, 42, 50, 68, 81| when
the viscosity ratio A is small. This also can be observed in the simulation results
in Figure 3.5, which shows the simulation results of the tank-trading motion with a
steady inclination angle for the values of the swelling ratio s* = 0.481 and 0.9 with
different A = 1 and 2. The inclination angle # between the long axis of the cell and

the horizontal direction decreases as increasing the value of .

Over the past decades, the dependence of the inclination angle # on the swelling
ratio s* and the viscosity ratio of A has been studied by many researchers. For the
ellipsoidal shape particle (i.e. the membrane deformation is not considered), Keller

et al. [50] has given an evolutional equation for the inclination angle € as shown in
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Figure 3.3:

% = A + Bcos(26) (3.1)

where A and B are functions of the viscosity ratio A, the shear rate v, and the shape
of the ellipsoid (see [50] for more information about A and B). There are two motions
determined by the equation (3.1) namely, (1) tank-treading motion if A/B < 1, in

this case the inclination angle 6 can be calculated by

arccos(—A/B)

0 —
2 )

(3.2)

(2) tumbling motion if A/B > 1, in this case, the general solution of the equation

(3.1) can be expressed as

A+ DB

H(t) = arctan(ﬂ

tan(v A% — B2(t — ty))) (3.3)

The snapshots of tumbling motion of RBC for the swelling ratio s* = 0.481 and the

associated inclination angle 6 as a function of the time are shown in Figure 3.6.

The simulation results of the inclination angles 6 as a function of the viscosity
ratio A for six different values of the swelling ratio s* = 0.481, 0.6, 0.7, 0.8, 0.9, and
0.95 are displayed in Figure 3.7. In the tank-treading regime, the inclination angle
0 is a decreasing function of the viscosity ratio A for the same swelling ratio s* , but
for the same viscosity ratio A, the inclination angle 6 increases as the swelling ratio
s* increases. Our simulation results show good agreement with the numerical results
reported in [52] by Kim et al.. The small deviation of our results from Keller et
al. [50] is due to the fact that they assumed the cell has a fixed elliptical boundary

and no deformability. A transition from tank-treading motion to tumbling motion
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Figure 3.5: The velocity field in the region next to the cell with the swelling ratio s*
= 0.481 (top) and 0.9 (bottom), respectively. Ry/w = 0.112. A =1 (left) and A\ = 2
(right).
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happens as the viscosity ratio A reaches a critical value \. for a given swelling ratio
s* and )\, increases as s* increases (see Figure 3.8). According the KS theory, the
viscosity ratio A reaches its critical value A\, when A = — B, and the inclination angle
0 depends on A with a square root law. The value of the critical ratio A\, in Figure 3.8
is obtained by interpolate at § = 0 with a square root law for the numerical results in
Figure 3.7. Similar trend of the viscosity ratio versus the swelling ratio was reported

in [7, 52].

But for the narrower channel with dimensions 112 x 1.4 uym? (Ry/w = 0.8), other
parameters are kept same as those at the beginning of Section (3.2). All of cells con-
sidered here undergoes the tank-treading motion. The steady inclination angle and
the associated frequency as a function of A are shown in Figure 3.9. For the same
viscosity ratio A (such as 5), the behavior of cell (such as the cell of s* < 0.9) is dif-
ferent for these two different degrees of confinement Ry/w, and the inclination angles
are also different even for the tank treading regim (as shown in Figures 3.9 (left) and
3.7). These results inspire us to explore the further dependence of inclination angle
0 on the degree of confinement Ry/w. For the tank treading regim, the simulation
results show that for A = 1, the inclination angle 6 is a decreasing function of Ry /w,
but for A = 5, 0 increases as the increasing value of Ry/w and reaches a peak , then
decreases as Ry/w increases (see Figure 3.10). The associated frequency is displayed
in Figure 3.11 which shows that the frequency is a decreasing function of Ry/w for A
= 1, however, it decreases as the increasing value of Ry/w and reaches a peak , then
increases as Ry/w increases further for A = 5. The similar tendency was reported in

[43].

34



t=0ms

t=10ms t=17.5ms t =20.25ms
30 30 30 30
5| Cor | 5| G| = % - 8
20 20 20 20
51 56 61 51 56 61 1 56 61 51 56 61
t=24ms t=32.5ms t=42.5ms t =50ms
30 30 30 30
25 y 25 Cib 25 % 25 %
20 20 20
51 56 61 51 56 61

20
51 56 61 51 56

61
100
50t
)
Q
2 o
)
D
-50
-100 : : : :
0 20 40 60 80 100
T (ms)

A=5.

Figure 3.6: The snapshots of RBC with the swelling ratio s* = 0.481 at different time
(top and middle) and the associated time-dependent orientation angle  (bottom).
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Figure 3.7: Steady inclination angle 6 as a function of the viscosity ratio A for
different values of the swelling ratio s*. The degree of confinement Ry/w = 0.112.
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Figure 3.8: The critical viscosity ratio A. as a function of the swelling ratio s*. (*
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Figure 3.10: Steady inclination angle 6 as a function of the degree of confinement
Ry/w for s* = 0.481 and 0.9 with A = 1 ( left) and 5 (right).
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Figure 3.11: Frequency as a function of as a function of the degree of confinement
Ry/w for s* = 0.481 and 0.9 with A = 1 ( left) and 5 (right).

For the case of A\ = 5, we have studied four more degrees of confinement Ry/w
= 0.112, 0.14, 0.187, and 0.28. The other parameters are kept same as those at the
beginning of Section (3.2). The associated Re and C, are shown in Table 3.1. For a
given swelling ratio s*, a transition from tank-treading motion to tumbling motion
occurs when the degree of confinement Ry/w decreases. The dependence of the cell
motion on the degree of confinement for different swelling ratio is shown in Figure
3.12, which indicates that under the condition of the existence of the transition from
TT to TB, the smaller s*, the bigger the critical value of Ry/w. For the tank-treading
regime, the steady inclination angle and the associated frequency as a function of s*
for the different degrees of confinement are shown in Figure 3.13. The inclination
angle 6 is an increasing function of the swelling ratio s* for the same Ry/w, and it
decreases as decreasing Ry/w for the same s*. The frequency is also an increasing
function of the swelling ratio for the same Ry/w. But for a given s*, the frequencies

are almost same since the shear rates of the flow are same.
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Figure 3.12: Relation between the behavior of cell in shear flow and the degree of
confinement Ry/w for different swelling ratios s* with A = 5. TT and TB denote
tank-treading motion and tumbling motion, respectively.
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As the ending of this section, the effect of the shear rate is examined. A transition
from TB to TT occurs as the shear rate v > 15000 s~ (the associated Re is about
5) for A =5 and Ry/w = 0.28. i.e. A tank-treading motion is a favorable one at a
higher Reynolds number in a shear flow. The similar behavior of vesicle was reported

in [52].
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Chapter 4

RBC in bounded Poiseuille flows

In this chapter, the deformation and lateral migration of a single cell in two-
dimensional Poiseuille flows have been investigated. Then the results of simulations
involving many RBCs in Poiseuille flows are presented and validated by comparing
the size of the cell-free layer next to the walls. Finally, the simulation results of the

interaction of two kinds of cells in Poiseuille flow are included.

The values of parameters for modeling cells are the same with [67, 80] as follows:
The bending constant is k; = 5 x 10719 Nm, the spring constant is k; = 5 x 1078 Nm,
and the penalty coefficient is k, = 107° Nm. The cells are suspended in blood plasma,
which has a density p = 1.00 g/cm?® and a dynamical viscosity u = 0.012 g/(cms).
The viscosity ratio A = 1. The computational domain is a two-dimensional horizontal
channel. To obtain a Poiseuille flow, a constant pressure gradient is prescribed as
a body force. In addition, periodic conditions are imposed at the left and right

boundaries of the domain. The Reynolds number is defined by Re = pU H/ 1, where
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U is the average velocity in the channel. The capillary number is defined by C, =
1G,Ro*/B, where p, G, Ry, and B represent the plasma viscosity, the shear rate of
fluid flow based on the gradient of the velocity at the wall, the effective radius of the

cell, and the bending coefficient, respectively.

4.1 Deformation of a single cell in Poiseuille flows

In this section, the deformation of a single RBC in bounded two-dimensional
Poiseuille flows is studied by numerical simulation. Several factors have been found
to be important in determining the deformation of a single RBC in Poiseuille flows:
the swelling ratio (s*), the initial angle of the long axis of the cell at the center line
(), the maximum velocity at the center line of fluid flow (upax), the membrane
bending stiffness of a RBC (k3), and the height of the microchannel (H). Two
motions of oscillation and vacillating breathing (also called swing; the long axis
undergoes oscillation while the cell shape displays breathing) of the RBC are observed
in both narrow and wide channels. The strength of the vacillating-breathing motion
depends on the degree of confinement and the value of uy,.,. An RBC exhibits a
strong vacillating-breathing motion as the degree of confinement is larger or the value
Umay 18 higher. For the same degree of confinement, the vacillating-breathing motion
appears to be relatively weaker but persists longer as the value of .y is lower. For
the different bending constants, the RBC obtains the same equilibrium shape for the
same capillary number C,. The continuation of shape change from the slipper to

the parachute shape by varying the value of uy,,y is obtained for the biconcave shape
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cell in a narrower channel. In pa