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Abstract
_ R Our goal is to implement a random, large, fixed recurrent neural network. We utilize 100% neuron Input scaling and spectral radius codetermine the nonlinearity of the RESERVOIR UNITS
The dynamics of physiological systems o . L . . . ..
connectivity in our hidden layer and do not employ noise injection or other hyper-parameters. reservoir dynamics. Larger amplitudes and spectral radii imply longer-

An increase in the amount of reservoir units improves the stability of
the prediction.

are significantly impacted by delay. The
time-delay caused by the transport and The reservoir is governed by the state update equation
processing of chemical components and
signals may be of significant

range interactions between neurons slower signal decay. Balancing
these two parameters is crucial to obtaining a usable prediction.
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consequence. Biological systems During state harvesting, we drive the ESN with input sequence u(l), ey u(nnmam) using our state We start by using the Mackey-Glass!* nonlinear time delay differential 0
gl a. ENElLANED W LT, ezl update equation. We obtain the extended system state by concatenating reservoir and input states equation v
SCIRIECIE z(n) = [z(n);u(n)]. The extended system states are filed row-wise into a state collection matrix I . 0
. o
The utilization of machine learning to S. dt p 1+ z» — 7z, 7,8,mn >0 0.4 R0 Reservoir tnits
buﬂ:i mat:ematlc.:jll e oFf cotr.nplex Data is generated from two models. These serve as both the teacher output and the desired output Mackey-Glass Prediction 0.2
Sysiems nas rapidly grown. rortime- d(n). The output collection matrix D is filled row-wise with our desired outputs. 0.4 I 0
dependent series, generally a recurrent 0.2 A 0.2
neura_l network (RNN), capable of The desired output weights 1/7°“ used to transform reservoir states to outputs, is computed 0 A ' - Ultradian Model = o o o o Reservoir Prediction
returning past states, is used. In most B R VAV VA
common RNN implementations, multiple Wt = (S 'D )T "pscudoinverse oAy
. : 00 SPECTRAL RADIUS
hidden layers are rebalanced during o Mackev-Gl =  oredict:
training to achieve adequate results. DATA MODEL acteyrmiass o meservon rredieron Spectral radius effectively controls the decay rate and range of
However, these implementations can be Using 500 training data points, 1024 reservoir units and a spectral iInteractions. Picking a spectral radius 7, we tune the reservoir weight
computationally expensive and may DEGRADE-AND-FIRE radius of 1.5, we establish a basis for predicting an oscillating series. ~ matrix using the ratio
require extensive training data. We utilize a constructed synthetic gene Original SAMPLING RATE & SATURATION W W r
» oscillator for our degrade-and-fire model. The 538 | - \)\iW\
Here, we utilize a typ1e of RNN called an mass-action kinetics of our de|ayed production 160 | | v The arbitrary |Ong periOdS of oscillations in the degrade-and-fire !
echo Stat? _n_et_work[ ] (ESN), a static, and degradation is expressed by the delay- e | model compared to delay time are especially difficult to predict. r=1.6
randomly initialized reservoir of nodes. differential equation 48 ] Upsampling by a small factor helps mitigate clustering points and 0 0
We study two types of physiological , 40 noise while closely tracking the underlying data. 0 0
systems exhibiting delay: degrade-and- - aCj B 7,7 (t) — Br(t) ceccaled 0 0
T escalec
firel?] circuits and the insulin-glucosel! (Co+77)  Ro+r(t) 8 Upsampling 2x Upsampling 4x -0.2 -0.2
, . . 6 0.3 0.3
cycle. Me?nlpulatlr?g only S|gna-l The degrade-and-fire model displays clustering s 0.2 | 0.2 - =1/ - (=16
propagation and input smoothing, we and excess amplitude. To compensate, we 2 0.1 0.1 | )
model both systems with generated rescale the data using In(r) 0 | | | 0 | 0 AN VW V.
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In future works, we will further tune the INSULIN-GLUCOSE --Ultradian Model -o-Resampled Data --Ultradian Model -o-Reservoir Prediction
reservoir, addressing stability and noise. We expand the Ultradian model for glucose- I T
We will also research the use of other insulin production with delta kicks for our dd_fp = fi(G)—FE (7p — Vz) e
machine learning techniques in chaotic series. t p z tp RESULTS
determining the optimal parameters for d/; _ 1y _ 1; _ ﬁ
R Our nutritional driver I () includes basal dt Vv, Vi t; Degrade-and-Fire Model
signal and pulsatile kicks dG fu(h 240
— = fa(h3) + 1a(t) — f2(G) — f3(1;)G 200
Source Code - dt (hs) +1a(t) = £2(G) = fs(1:) .
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Interactive Data We rescale the data by a factor of 10~% and dt tq (F 2) _48
https://minbin.github.io/uh-surf then shift by —1.1 to avoid neuron saturation. d_h; _ l(h2 B h3) 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
dt td
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