

c© Copyright by Erte Pan 2016

All Rights Reserved

BIG DATA ANALYSIS OF COMPLEX NETWORKS

USING MACHINE LEARNING METHODS

A Dissertation

Presented to

the Faculty of the Department of Electrical and Computer Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in Electrical Engineering

by

Erte Pan

May 2016

BIG DATA ANALYSIS OF COMPLEX NETWORKS

USING MACHINE LEARNING METHODS

Erte Pan

Approved:

Chair of the Committee
Zhu Han, Professor,
Electrical and Computer Engineering

Committee Members:

Haluk Ogmen, Professor,
Electrical and Computer Engineering

Saurabh Prasad, Assistant Professor,
Electrical and Computer Engineering

Miao Pan, Assistant Professor,
Electrical and Computer Engineering

Husheng Li, Associate Professor,
Electrical Engineering &
Computer Science
University of Tennessee

Lijun Qian, Professor,
Electrical and Computer Engineering
Prairie View A&M University

Suresh K. Khator, Associate Dean
Cullen College of Engineering

Badri Roysam, Professor and Chair
Electrical and Computer Engineering

Acknowledgements

I would like to thank my family who supported me whenever and whatever hap-

pened. I am so appreciative for everyone that came across my life during my Ph.D.

study, bringing me lots of memorial moments to cherish in the future.

First of all, I would like to express my appreciation to my advisor, Professor Zhu

Han, for his esteemed guidance, valuable advice, constant encouragement, and con-

tinuous support during my graduate studies. His profound academic background and

keen insights has helped me achieve significantly improvement in my Ph.D. research

and well prepared for future professional development, which will be an invaluable

assets for my future career.

Furthermore, I would like to express my sincere gratitude to Professor Kirill Larin,

Professor Badri Roysam, Professor Ben Jansen, Professor Saurabh Prasad, Professor

David Jackson, Professor Haluk Ogmen, Professor Miao Pan, and Professor Robert

Azencott. From whom I learn not only the profound knowledge and skills but also the

professional ways to be involved in big projects. I would also like to thank the rest of

my dissertation committee, Professor Husheng Li, and Professor Lijun Qian for their

precious time and support on this dissertation.

My appreciation also goes to my dear colleagues Xunsheng Du, Huaqing Zhang,

Yunan Gu, Yanru Zhang, Hung Ngyuen, Yong Xiao, Ali Arab, Nam Ngyuen, Moham-

mad Esmalifalak, Lanchao Liu, Najmeh Forouzandehmehr, Yi Huang, Jingyi Wang,

and Mounika Sai, whom I always had a great time with in both on and off work times.

I am also grateful to my academic introducers and friends: YanKai Tu, Ravi Kiran

Manapuram, Narendran Sudheendran, Jiasong Li, Shang Wang, Maleeha Mashiat-

ulla, Raghav K. Padmanabhan, Kedar Grama, Amin Merouane, Prashamesh Kulka-

rni, Nicolas Rey Villamizar, Murad Megjhani, Yanbin Lv, Yan Xu, Karthik Uppuluri,

and Prithvi B. S.. I am grateful to all my friends who give me support during my

v

PhD life. They are Yin Shu, Zhaolong Han, Chen Wu, Peter Liu, Yu Zhang, Guoyan

Cao, Jing Wang, Danni Li, Yingyu Li, Yun Hu, and Jia You.

Last but by no means least, I want to thank my old friends who grew up with me

together and supported me always. They are Chufei Ouyang, Ming Lei, Weisheng Xie,

Feipeng Jing, Kun Zhu, Lian Li, Yuan Zhan, Shiyue Huang, Ruoming Peng, Daiqian

Zhang, Wei Qin, and Biao Tang.

vi

BIG DATA ANALYSIS OF COMPLEX NETWORKS

USING MACHINE LEARNING METHODS

An Abstract

of a

Dissertation

Presented to

the Faculty of the Department of Electrical and Computer Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in Electrical Engineering

by

Erte Pan

May 2016

Abstract

With the tremendous development of the modern complex networks such as smart

grid and wireless communication domains, the data analysis tasks are significantly

involved. In smart grid systems, there are emerging concerns on recognizing energy

users’ behavior patterns so that the energy trading companies are able to provide

customized services. To understand users’ usage patterns, efficient grouping methods

are required such as clustering or nonparametric Bayesian models in machine learn-

ing field. In wireless communication field, a heat topic of locating personal devices

and trajectory analysis is drawing more and more attention with the development of

advanced personal devices such as the smart phones.

Given this background, this dissertation provides a theoretical research in smart

grid systems and wireless communications networks with emphases on probabilistic

clustering analysis, pricing scheme design, sublinear sampling, tensor voting theory

and trajectory pattern recognition. The main contributions of this dissertation in-

clude: a comprehensive overview of basic concepts, models and state-of-the-art tech-

niques used in smart grid and trajectory analysis is provided; a novel distance mea-

surement for clustering analysis is proposed from the probabilistic point of view. More-

over, the stopping rules and clustering quality problems have been investigated with

proposed novel metrics; the pricing schemes design has been formulated into an op-

timization problem. The novel sublinear sampling algorithm has been developed to

address the computation efficiency in the context of big data; the tensor voting theory

has been introduced to the trajectory inference problem and is implemented in the

sparse sense to facilitate the computation. The fractal analysis has been employed as

a novel method to extract trajectory features for trajectory pattern recognition tasks.

viii

Table of Contents

Acknowledgements v

Abstract viii

Table of Contents ix

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Complex Networks . 1

1.2 Smart Grid Networks . 2

1.3 Communication Networks . 6

1.4 Big Data Challenges . 9

1.5 Thesis Organization . 9

2 Hierarchical Clustering Analysis of Load Profiling for Big Smart Me-
ter Data 11

2.1 Motivation . 12

2.2 Data Preprocessing . 14

2.3 Clustering Analysis . 15

2.3.1 Modified Mahalanobis Distance and Clustering Algorithm . . . 17

2.3.2 Stopping Rules and Clustering Quality 19

2.3.3 Data Compression by Key Pragmatic Features 21

2.3.4 Summary of Overall Algorithmic Flow 22

2.4 Numerical Results and Discussions . 22

2.5 Summary . 29

ix

3 Analyzing Big Smart Metering Data Towards Differentiating User
Services: A Sublinear Approach 30

3.1 The User Electricity Usage Behavior and a Data Trace Study 31

3.2 Differentiating User Services: The Model and Big Data Challenge . . . 34

3.2.1 An Overview . 34

3.2.2 The Differentiating User Service Model 35

3.2.3 Model Analysis and The Big Data Challenge 38

3.3 The Problem and Sublinear Algorithms 40

3.3.1 The Problem and Algorithm Sketch 40

3.3.2 Sublinear on Percentage . 41

3.3.3 Sublinear on Distribution . 42

3.3.4 The Overall Algorithm . 51

3.4 Evaluation . 53

3.5 Summary . 60

4 Tensor Voting Framework with Its Applications in Human Mobile
Trace Inference 62

4.1 Background . 63

4.2 Tensor Voting Model . 65

4.2.1 Encode Normal Space with Tensor 66

4.2.2 Inferring Structure . 67

4.2.3 Token Refinement . 71

4.2.4 Token Decomposition . 72

4.3 Inference Algorithm . 72

4.4 Trace Analysis . 73

4.5 Example and Analysis . 77

4.6 Summary . 84

5 Conclusions and Future Work 86

x

5.1 Conclusions . 86

5.2 Future Work . 88

5.2.1 Future Improvements on the Theory Side 88

5.2.2 Future Improvements on the Application Side 90

5.2.3 Future Improvements on Alternative Models 91

References 92

xi

List of Figures

1.1 Advanced metering infrastructure (AMI) system in smart grid. 3

1.2 Key dimensions of big data. 10

2.1 Examples of prototype user load profiles. These profiles are computed
by averaging all users’ profiles in distinguished user groups by our clus-
tering analysis. 13

2.2 Empirical distribution of ln(TOT) which we model by a mixture of two
Gaussian densities in order to split the set of users into two disjoint
clusters B1 and B2. 16

2.3 Standard deviation plots of DT , ET , NT and TOT vs. index of sub-set. 24

2.4 Gap statistic as shown in the curve of residual values Res(m) versus
the number of clusters m. The optimal m is indicated around 3. 25

2.5 Clustering shift ξ(k) vs iteration number k for the 3 terminal clusters
generated in feature space V by probabilistic clustering. 25

2.6 Scatter plot to visualize the 3 terminal clusters generated in feature
space V by probabilistic clustering. The visualization is generated in
<3 by PCA projection from V onto the main 3 PCA coordinates 26

2.7 Load profiles of the terminal 3 clusters generated by iterative proba-
bilistic clustering algorithm in feature space. 27

2.8 Clustering shift ξ(k) vs iteration number k for sub-clustering CLU2. . . 28

2.9 Load profiles of the three clusters CLU2, CLU21 and CLU22, generated
by splitting of cluster CLU2 using iterative probabilistic clustering. . . 28

3.1 Illustrative example of different average daily usage patterns of two
benchmark distributions. 33

3.2 Illustration of the underlying philosophy of designing Algorithm 3. . . . 45

3.3 Estimation errors |α̂− α| vs. sub-sampling number m2 from the entire
distribution. 55

3.4 Estimated α values vs. simulated true α values. 56

3.5 Net profits from the differentiating user services vs. net profits from
non-differentiating user services with varying proportion of user types. . 57

3.6 Reduced data amount (GB) vs. overall confidence parameter δ. 58

xii

3.7 Reduced data amount (DB) vs. overall error bound parameter ε. 60

4.1 Illustration of the fundamental stick vote 68

4.2 Illustration of the token refinement procedure: each point is initialized
with a ball tensor; points nearby with each other form stick tensors
while points far away from others remain ball tensors. 71

4.3 One instance of complete human mobility trace converted from the GPS
data. 79

4.4 Corresponding sampled human mobility trace with missing segments. . 79

4.5 Inferred result employing tensor voting with voting scale σ=1. 80

4.6 Inferred result employing tensor voting with voting scale σ=2. 80

4.7 Corresponding True Positive, False Positive and False Negative curves. 81

4.8 Corresponding True Positive ratio curve. 81

4.9 Fractal dimension computation via ln(L(ε)) vs ln ε plot, corresponding
to the same trace used in Fig. 4.3. 85

5.1 Possible generative model of infinite layers for the future work. 90

xiii

List of Tables

2.1 Strong separation indices between clusters : SEPij = SEP (CLUi, CLUj). 27

2.2 Strong separation indices between sub-clusters. 29

3.1 Examples of the amount of data need to be processed in GB unit. . . . 39

3.2 Comparison of the amount of data (GB unit) needed to be processed
between direct computation and proposed sublinear algorithm with dif-
ferent parameter settings of (m,m2). 60

3.3 Minimum amount of data (GB unit) involved in the computation of
proposed sublinear methods as a function of (ε1, δ1, δ2) 61

4.1 Performance comparison between the proposed tensor voting algorithm
and victim method. 83

4.2 Trace analysis via logistic regression. 84

xiv

Chapter 1

Introduction

1.1 Complex Networks

World nowadays has witnessed the blooming of communication and information

era. With the rapid development of advanced communication technology, social media

and smart personal devices, various kinds of networks have evolved into more complex

forms. Old fashioned electricity grid/networks have no functionalities of user-end to

supplier-end communications. The information flow in the traditional energy grid

system is only one directional, i.e., from users’ usage data to the suppliers. Modern

smart grid system has enabled the mutual communication for the both ends and

brought new opportunities and challenges at the same time. With the information

from the supplier’s side, it is now possible for the energy users to understand their

usage patterns and make their own choices towards several services to optimize their

own benefits. On the other hand, the suppliers are now able to regulate the users’

behavior and make the smart grid system more efficient. However, none of these

aforementioned achievements can be realized without a deep analysis of the huge

volume of smart meter data. The challenges come from multiple factors, such as the

amount of data, various data sources, complexity of the networks and modelization.

Similar challenges and opportunities lie in the field of communication networks with

the revolution of personal smart devices such as smart phones. Locating devices is a

key issue in many communication scenarios such as GPS tracking, residential security

and so forth. Such kinds of trajectory analysis face the challenges including incomplete

data, trajectory pattern recognition and so forth, which require advanced models and

techniques.

1

In this thesis, we mainly focus our research on how to extract meaningful patterns

of electricity users’ usage and how to build an efficient pricing model for a smart

grid system with fast computing speed and less computation burden based on the

sublinear algorithm, which makes our model suitable in big data settings. We are

going to present the methods on pragmatic feature extraction of smart meter data

and propose our probabilistic clustering method with a novel monitoring criterion.

We will address the pricing model based on the proposed sublinear algorithms that

facilitate the computation and give guaranteed confidence. For the communication

networking research, we will address the tracking problem, as an example to illustrate

tensor methods, of inferring human mobility trace under the circumstance that the

recorded location information exhibits missing and noisy data.

1.2 Smart Grid Networks

Smart grid introduces novel concepts on energy efficiency and conservation with the

benefit of smart meters. Smart grid has enjoyed prevailing hype and gained worldwide

recognition in the past few years. The interpretation of “smart” reflects the noticeable

change in the way energy is generated, distributed, delivered, and consumed. Inte-

grated of advanced electrical and communications infrastructures incorporated with

modern process automation techniques, smart grid system is constructed such that

two-way communication between electricity suppliers and residential electricity con-

sumers is efficiently implemented. With these powerful characteristics brought by

modern electrical technologies, smart grid significantly alters the way utility compa-

nies, governments, customers and business participants view about electricity trans-

mission and its associated services.

The widely applied smart meters have shown their powerful capability in instant

power usage recording and information communicating [1, 2]. The advanced metering

2

Figure 1.1: Advanced metering infrastructure (AMI) system in smart grid.

infrastructure (AMI) systems serve as the core of smart meter technique. The AMI

systems are the composition of various components such as communications, consumer

energy displays and controllers, and supplier business systems. Within the network,

the collection and distribution of information have been effectively implemented, for

instance, the time-of-use pricing information to customers, utility companies, and

service providers. The employment of smart meters significantly alleviates the growing

concern on energy conservation nowadays. With the benefit brought by smart meters,

it is possible to record fine-grained power usages of electricity consumers and analyze

their individual behaviors [3]. To this end, the pattern analysis based on the usage

information is crucial to utility companies to offer user-oriented services which can

achieve better power usage efficiency and economy benefits [4]. As a consequence, the

dynamic pricing implemented based on the smart meter technique is able to regulate

user behaviors, which can promisingly reduce the peak loads and accomplish the goal

of energy conservation.

Facing the increasing concern on energy conservation all over the world, the power

grids are currently undergoing substantial changes and upgrades. One important

objective of the future grids is to provide a more customized electricity supply and

3

pricing approach that is suitable for different types of users. In many current markets,

electricity is charged only by the amount of electricity used; without considering the

time pattern a user consumes electricity or discriminating the peak or off-peak hours.

We call this current pricing a fixed-price service. Such a fixed-price service has been

adopted for decades. The development of smart meters makes it possible for the utility

company to analyze users’ behaviors, and therefore has the chance to offer load shape

based pricing, referred as differentiating user services, i.e., pricing approaches that

differ based upon when and how users consume electricity. With differentiating user

services, the users can benefit from more choices to control their energy consumption

and manage its cost. The utility company can also achieve better demand side man-

agement brought by these user behavior-oriented services and enjoy cost reduction

when purchasing power in the peak hour from independent power providers in the

wholesale power market. To this end, a methodology is presented on differentiating

user services based on extracted characteristic consumer load shapes (usage profiles as

a function of time) from a large smart meter data set. The distinct user subgroups are

identified based upon their actual historic usage patterns, which are represented by

the proposed electricity usage distributions. Since the big electricity user data cover

millions of users and for each user the data are multi-dimensional and in fine-time

granularity, we thus propose a sublinear algorithm to make the computation of the

differentiating user service model efficient. The algorithm requests an input of only

a small portion of users, and a sublinear amount of the electricity data from each

of these selected users. We prove that the algorithm provides performance guaran-

tees. Our simulated evaluation demonstrates the effectiveness of our algorithm and

the differentiating user service model.

Being a heated topic ever since being proposed, smart grid research attracts many

efforts year by year. Work in [1] gives a thorough summary on development, problems,

4

and applications of smart grid. Authors in [5] discuss the modern power delivery

technologies. Work in [6] focuses on the privacy and security issues come along with

smart grid. Work in [7] investigates smart grid technologies with an emphasis on

communication components and the related standards.

Viewing from data analysis and model construction perspectives, many studies are

dedicated to the topics of user behaviors classification and pricing strategies. Authors

in [8] employ the fuzzy c-means clustering to disaggregate and learn energy consump-

tion patterns in smart meter data. In [9], researchers propose a day-ahead pricing

scheme taking user reactions and dynamic adjustment of price into account. Work

in [10] provides a sophisticated model to address the evolution of energy supply, user

demand, and market prices under real-time pricing in a dynamic fashion. There are

also works involving game theory in smart grid applications such as [11], where the

case of only one supplier and multiple users is studied. It is worthwhile to point

out that previous studies commonly devise dynamic pricing from the perspective of

time intervals, i.e., different hours/seasons are treated differently in the pricing model.

However, different behaviors of users are rarely discussed in the previous studies. In

this chapter, we will take a close look at the problem of designing a pricing scheme

that differentiates users.

Various research efforts have been dedicated to the data classification and cluster-

ing analysis in the smart meter field [12]. Authors in [8] employed the fuzzy c-means

clustering to disaggregate and learn energy consumption patterns in smart meter data.

Authors in [13] present an efficient and practical hybrid supervised self-organizing

map/Bayesian identifier for plugged-in electric loads (PELs). The proposed identifier

can classify PELs into clusters by inherent similarities and provide the probability of

the unknown load belonging to a specific type of load. Authors in [14] investigate how

temporal resolution of power demand profiles affects the quality of the clustering pro-

5

cess, the consistency of cluster membership, and the efficiency of the clustering process.

The authors select three types of clustering algorithms, including k-means, agglomer-

ative hierarchical algorithms and Bayesian non-parametric statistics. Authors in [15]

address the important issue of clustering regarding the quality assessment of the clus-

tering results. Authors in [16] propose a modern approach based on multiple linear

regression and hourly information to create accurate and defensible forecasts. Their

work consists of three key components: predictive modeling, scenario analysis, and

weather normalization.

Sublinear algorithms enjoy many studies from the theoretical point of view [17].

Given a big data trace, sublinear algorithms have been developed to check the quantile

of the data [18], whether the data stream is periodic [19], etc. One study related to

our thesis is [20], where sublinear algorithms are developed to check whether two dis-

tributions are close with certain confidence parameters. However, the algorithm is not

suitable for our user classification task due to its inherent nature that the confidence

parameters remain undetermined under some conditions. Hence, we propose our novel

sublinear algorithm to overcome this drawback and apply it to the pricing problem in

smart grid systems, where sublinear serves as an efficient tool to differentiate energy

users based on their behavior and reduce the computation load.

1.3 Communication Networks

Communication network is used extensively throughout the world to connect in-

dividuals and organizations. With massive information flow, security issue has drawn

significant attention. For instance, in flight security situation, the control base station

would like to know the position or trajectory of the aircraft via the GPS commu-

nication. As for residential security scenarios, the users wish to track their personal

devices or travel histories for private purposes. All these newly emerging requirements

6

demand a profound understanding of trajectory data and trajectory pattern analysis.

Tensor theories nowadays have been widely applied to engineering problems and

big data applications. From the numerical point of view, tensors are the extension

concept of scalar, vector and matrix. In addition to the mathematical formation, ten-

sors can be employed with specific physical meanings under different contexts. For

instance, a tensor can be used to represent a geometric object whose geometric prop-

erty is invariant to the coordinate systems. Also, a tensor can be utilized to describe

linear relation between vectors, scalars and other multidimensional arrays. The rela-

tion can be mathematically expressed as a multi-linear mapping. Initially appearing

as an abstract object frequently used in math and physics, tensors have been attract-

ing increasing interest in a broad range of research fields such as engineering and data

science. However, few studies have addressed their application in networking scenar-

ios. In this thesis, we investigate the wide applications of tensor techniques with an

emphasis on the tensor voting method, which serves as an artificial intelligence ap-

proach for automatic inference and perceptual grouping. To illustrate the efficiency

of the tensor voting approach, we tackle the tracking problem of inferring human

mobility traces, which can provide key location information of networking objects.

The trace inferring problem is considered under the circumstance that the recorded

location information exhibits missing data and noise. Based on the tensor voting the-

ory, we propose a sparse tensor voting algorithm and an implementation scheme with

computational efficiency. The model is constructed based on the geometric connec-

tions between the input signals and encodes the structure information in the tensor

matrix. The missing location information and noise can be distinguished via tensor

decomposition. Once the trace information has been completed, further analysis of

the inferred trace can be performed based on feature extraction to differentiate differ-

ent objects. Moreover, we propose several feature extraction methods to characterize

7

the inferred trace, including the scale invariant feature obtained from fractal analysis.

The proposed methods for trace completion and pattern analysis are applied to real

human mobility traces. The results show that our proposed approach effectively re-

covers human mobility trace from the incomplete and noisy data input, and discovers

meaningful patterns of inferred traces from various objects.

As a powerful and popular tool, tensor theories have been employed in various

research and pragmatic fields. In mechanics, the stresses are presented by tensors,

which brings about concise modelization and efficient computation [21]. In data sci-

ence, tensors are utilized to model the data cube in which the inherent property of

data is encoded and can be revealed through tensor decomposition [22]. In image

processing [23], tensors can be used to model the geometric objects such as the nor-

mal space, which contributes to the inference of grouping points. As one of tensor

theories, tensor voting [24] is the artificial intelligence technique widely used for au-

tomatic perceptual grouping where the tensor voting algorithm estimates and infers

geometric objects based on the principles derived from human psychology. In this

paper, we focus on the tensor voting algorithm and study the tracking problem as

an illustration for the sake of rapid development of networking, machine learning and

signal processing which bring up many tracking issues of constant interests.

Significant research efforts nowadays have been devoted to the challenges and prob-

lems in mobile networks as a result of fast growth of wireless networks [25, 26]. As

the innovative development of personal devices such as smart phones, a prominent

amount of location services are emerging to serve individual user for various purposes.

For example, LTE-Direct and device-to-device require location information so as to

enable discovering nearby devices and their services. However, the location informa-

tion might be missing for indoor applications due to loss of signals or incomplete even

for the outdoor GPS data. It is therefore important and challenging to retrieve the

8

complete device tracking information to realize various location-based functions of

wireless networks. Intensive research efforts have been focused on the tracking prob-

lem from diverse aspects, ranging from mobility trace study to the image processing

field. Work in [27] investigates the patterns of human walk traces from the statisti-

cal point of view. The synthetic features of human walk trace are captured by the

proposed mobility model. [28] employs the random walks model called Levy-walk,

to emulate the characteristics reflected in the walking patterns. It proves that the

statistical similarity does exist between the random walk model and human walks.

1.4 Big Data Challenges

Big data is a popular studied topic recently [29]. The challenge comes from vol-

ume of the data and the variety of the data. Among many approaches, the sublinear

algorithm [30] is a new paradigm to solve various big data problems. The essence of

sublinear algorithm is to use a small portion of the data to compute results with guar-

antees. More specifically, the output of the sublinear algorithm is an approximation

to the optimal result. As compared to approximation algorithms, which implicitly in-

dicates that the approximation succeeds for 100% times, sublinear algorithms output

an approximation with a (1− δ)% (e.g., 95%) confidence to succeed. Such sacrifice in

confidence makes sublinear possible.

1.5 Thesis Organization

In Chapter 2, we address the electricity user load profiling problem by developing a

nonparametric clustering approach to differentiate various types of energy users based

on efficient pragmatic feature extraction. We propose a novel distance metric referred

to as the modified Mahalanobis distance for the clustering approach to extract the

9

Figure 1.2: Key dimensions of big data.

prototype of user groups. In addition, we prosed several stopping rules and clustering

quality measurements to assess the clustering performance.

In Chapter 3, The pricing model is constructed as an optimization problem which

takes the consideration of different user behavior patterns and the cost for buying

energy from the plants. The sublinear algorithms are proposed to deal with big data

issues and enable the on-line differentiation of users.

The tensor voting method is illustrated in Chapter 4 with applications in the

inference of human mobile traces. The proposed sparse tensor voting scheme auto-

matically discovers the missing parts of the trajectory and completes the trace based

on its geometric properties. Several trajectory features such as the fractal dimensions

are proposed to be used in recognizing the trajectory patterns via supervised learning

based on logistic regression.

Finally, conclusions and some possible future works are mentioned in Chapter 5.

10

Chapter 2

Hierarchical Clustering Analysis of Load

Profiling for Big Smart Meter Data

Wide deployment of smart meters has incorporated efficiency into power systems,

providing energy companies and grid operators with significant amounts of data.

Specifically for Advanced Metering Infrastructure (AMI), we are faced with the chal-

lenges of big data analysis for user pattern recognition of smart meter data. One

important objective is to identify coherent groups of users power consumption pat-

terns. To achieve the objective, we address several major issues in this chapter. First,

data preprocessing is enhanced by extraction of efficient and explicit pragmatic fea-

tures by a multiscale analysis of load profiles and statistical regrouping of coarse grain

outliers. Second, we introduce several key innovative techniques based on probabilistic

algorithmics utilizing the modified Mahalanobis distance to efficiently implement au-

tomatic clustering of load profiles. The number of clusters is determined by applying

gap statistic. Third, we propose a novel monitoring criterion referred to as the strong

separation index to precisely evaluate the quality of automatic clustering results. Fi-

nally, through simulation of real data, our benchmark validated results should provide

efficient methods to help utility and energy trading companies with insights on what

types of consumers they have, a point which can be efficiently used for smart pricing

based on consumer types. Our major contributions are:

1. We deal with the feature extraction problem by generating five explicit new

features based on pragmatic coarse grain evaluations of power consumption pat-

terns. This concrete feature extraction generates pragmatic coordinates for each

user profile.

11

2. These pragmatic profile coordinates are analyzed by our proposed probabilis-

tic clustering methods based on the modified Mahalanobis distance to discover

efficient prototypes for user power usage profiles. The clustering problem is for-

mulated as an optimization problem and the optimal solution is approximated

by the Lloyd’s algorithm. Moreover, the number of clusters is determined in a

non-parametric fashion by utilizing the gap statistic. The corresponding clus-

ters of user profiles should enable electricity business companies to efficiently

implement dynamic pricing, customized offers, and so forth.

3. The performance of clustering results is quantified by a new probabilistic clusters

separability criterion, namely the strong separation index, derived from precise

statistical analysis of cluster data, and which replaces the cruder Euclidean

distance metrics.

4. Our innovative approach is tested on a big real set of smart meter data. The nu-

merical results show that our proposed methods achieve fast convergence speed

with convincingly separation quality of different user groups. The experimen-

tal results also validate our proposed hierarchical clustering strategy which can

produce more refined clustering analysis.

This chapter is organized as follows: Section 2.1 presents the motivation of our

approach. Data preprocessing is addressed in Section 2.2. In Section 2.3, we present

and discuss our stochastic clustering technique for smart meter big data. Experimental

results are given in Section 2.4. In Section 2.5, we draw conclusions.

2.1 Motivation

In our benchmark smart meter data set, which involves hundreds of thousands of

users and more than 12 months of data, the power consumption of each household

12

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

24 hours in one day, h

P
ow

er
 u

sa
ge

, k
w

h

Household 1
Household 2
Household 3
Household 4

Figure 2.1: Examples of prototype user load profiles. These profiles are computed by
averaging all users’ profiles in distinguished user groups by our clustering
analysis.

is recorded every 15 minutes, and we combine every successive four records into one

hourly record. Each user user daily consumption profile is then a 24-dimensional

vector, called the daily load profile. Several examples of profiles are presented in

Fig. 2.1. Note that each household is representative of the group of users who share a

similar behavior. In our benchmark data set, the proportion of smart meter recordings

with partially missing information is less than 1% and we systematically clean away

all corrupted data.

Users’ behaviors differ significantly between weekdays and weekends. So we apply

similar but separate analyses to weekday and weekend data separately. For brevity,

we here focus our presentation only on weekday data. As is well known, total daily

consumption is a key feature to differentiate users profiles. Thus for each user we

compute the mean hourly consumption averaged over 5 weekdays. This is also a key

quantifying factor for electricity business companies.

The shapes of daily users profiles are also of high practical interests for efficient

regrouping of users. We point out that in our data set, the real dimensionality of users

daily consumption profiles is 5 which is much smaller than the original 24 dimensions

13

as will be seen later on by PCA of the daily profiles.

In the next two Sections, we propose a multi-scale clustering strategy, which is

summarized as:

1. Data preprocessing at coarse level: for each user compute TOT = average total

daily consumption. Eliminate outliers having extreme TOT values. Perform 1

dimensional crude clustering at the TOT level.

2. Clustering at finer grain: the hierarchical stochastic clustering is implemented

at successively finer scales. To efficiently cluster the data set in a stochastic

way, the modified Mahalanobis distance is proposed from a probabilistic point

of view. The proposed clustering technique is formulated as an optimization

problem which is then solved based on the Lloyd’s algorithm. To efficiently

implement the Lloyd’s algorithm, the gap statistic is employed to infer the pre-

determination of the number of clusters. The stopping rules are proposed to

terminate the clustering algorithm based on the stability of clustering structure.

To monitor the quality of clustering procedure, a novel strong separation index

is proposed which is derived from a probabilistic manner and is not dependent

on the actual implementation of clustering algorithm.

2.2 Data Preprocessing

Denote by xi the consumption profile of the i-th user, which is a vector in <24.

The average total daily consumption of user i is then toti =
∑24

j=1 x
i
j. Normalize

this feature by TOT i = toti/mtot, where mtot is the mean of toti over all users.

Let dev(TOT) be the standard deviation of TOT . Let a and b be the 1% and 99%

quantiles of the TOT values. Eliminate as outliers all users for which TOT i is not

within [a, b].

14

We then implement a rough 1 dimensional clustering on the basis of the ln(TOT)i

values cluster via the Gaussian Mixture Model (GMM) [31], which models the distribu-

tion of ln(TOT)i values as a mixture of M gaussian densities f1, . . . , fM . The number

M is determined by a quick analysis of the number of strong peaks observable on the

histogram of all ln(TOT)i values. Fig. 2.2 shows the histogram of ln(TOT) values.

Classical variants of EM algorithms then provide the means m1 < m2 < . . . < mM and

standard deviations σ1, σ2, . . . , σM of f1, . . . , fM . The best threshold Tj separating

fj from fj+1 is computed by solving in T the equation fj(T) = fj+1(T). This defines

M disjoint basic clusters Bj with ln(TOT) values lying between Tj and Tj+1. In our

data set the histogram of ln(TOT) values gave us M = 2, and we thus generated two

basic clusters B1 and B2. The algorithm for obtaining B1 and B2 is summarized as in

Algorithm 1.

Algorithm 1: Algorithm for subgroups splitting via Gaussian fitting on
ln(TOT).

for Each possible value of Tj ∈ [min(ln(TOT)), max(ln(TOT))] do
1) Given the value of Tj for thresholding, all users are temporarily divided
into group B1 or group B2 by testing his/her ln(TOT)i against Tj.
2) Within each group, the Gaussian densities f1(·) and f2(·) are fitted and
the parameters (µ1, σ1) and (µ2, σ2) are obtained by Maximum likelihood
Estimation (MLE).
3) The optimal T ∗ is obtained by solving the equation f1(T

∗) = f2(T
∗).

4) Keep iterating until Tj = T ∗.

2.3 Clustering Analysis

Once the previous basic subgroup Bj has been obtained, further clustering can be

applied. Clustering analysis is implementable by multiple methods, involving two core

concepts, namely the representative prototype of each cluster and the quantification

of similarity between pairs of load profiles. Classical prototypes are defined as the

15

−7 −6 −5 −4 −3 −2 −1 0 1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Histogram of TOT in log scale, kwh

P
e
re

n
ta

g
e
 o

f
e
le

c
tr

ic
it
y
 u

s
e
rs

Figure 2.2: Empirical distribution of ln(TOT) which we model by a mixture of two
Gaussian densities in order to split the set of users into two disjoint clusters
B1 and B2.

mean vectors of each cluster. Similarity between a daily load profile and a prototype

profile is often quantified by their Euclidean distance. Clustering methods such as K-

means essentially minimize the adequate sums of squared Euclidean distances in the

input data space. However, one drawback of several classical data-space clustering

techniques is that separation boundaries are linear, which can often fail to fit the true

boundaries of real data clusters. Sum-of-squares criteria that assign equal importance

to each dimension of the input data are not well adapted to smart meter applications.

To implement nonlinear separation of profile data, we propose a probabilistic extension

of K-means clustering.

In order to efficiently employ our proposed probabilistic clustering technique based

on modified Mahalanobis distance, the input data must first be de-correlated by PCA

to linearly project the input data into a lower feature space. The linear mapping φ

obtained by PCA transforms each given profile x into a mapped “feature space” point

denoted φ(x) , X, where x ∈ <24,X ∈ <D and D < 24. To cluster the mapped

feature space points, we apply a probabilistic clustering technique, which formulates

the clustering problem as a log-likelihood maximization problem.

16

In the following subsections, we first present our probabilistic clustering technique

based on the modified Mahalanobis distance. We then introduce the stopping rules

based on the stability of clustering structure and the strong separation index to moni-

tor the clustering quality. To make the proposed clustering method more efficient, we

describe the data compression method by key pragmatic coordinates for the clustering

algorithm input. In the end of this section, we summarize the overall algorithmic flow.

2.3.1 Modified Mahalanobis Distance and Clustering Algo-

rithm

We start with formulating the clustering problem by introducing the concept of

within-cluster scatter, which is a measure of compactness given the current partition

of clusters. Given the number of clusters M , the within-cluster scatter is defined as

S =
1

N

M∑
m=1

N∑
n=1

zm,nd(Xn,om). (2.1)

The binary scalar zm,n are defined by : zm,n = 1 if Xn is in the m-th cluster CLUm, and

zm,n = 0 otherwise. The centroid Cm of CLUm is defined by om = 1
Nm

∑N
n=1 zm,nXn

where Nm is the number of points for the m-th cluster. The distances d(Xn,om) will

be defined here by the following log-likelihood expressions as

d(Xn,om) = (Xn − om)
′
Σ−1m (Xn − om) + ln(|Σm|), (2.2)

where Σm is the covariance matrix of cluster CLUm. Transposition is denoted by ′

and |Σm| is the determinant of Σm. We can clearly consider these distances as the

modified Mahalanobis distances.

The modified Mahalanobis distance is essentially a Gaussian log-likelihood. In the

feature space <D, assume that for the cluster CLUm the data points distribution has

a multivariate Gaussian density gm with mean om and covariance matrix Σm. Hence,

17

Algorithm 2: Probabilistic clustering.

1) The initial centroid of each cluster is randomly selected.
2) Each mapped feature space point X is then assigned to i-th cluster CLUi if
the centroid of CLUi is closest to X, according to the modified Mahalanobis
distance computed by (2.2) as above.
3) Centroids are updated after all mapped feature space points have been
clustered.
4) Keep iterating until all clusters stabilize according to stopping rules given in
the next subsection.

the log-likelihood that data point Xn ∈ <D belongs to cluster CLUm is proportional

to the log-density, and hence given by

ln[gm(Xn)] =− D

2
ln(2π)− 1

2
ln(|Σm|)

− 1

2
(Xn − om)

′
Σ−1m (Xn − om).

(2.3)

Maximizing the log-likelihood of the actual assignations of all data point to current

clusters is then equivalent to selecting binary zmn minimizing the cost function given

in (2.2). To our best knowledge, the use of the modified Mahalanobis distance is novel

in smart grid research.

The clustering result is thus obtained by solving the optimization problem

Z = arg min
Z
S, (2.4)

where Z is the matrix [zm,n] and S is the within-cluster scatter as in (2.1). Since this

optimization is NP-hard, we apply the Lloyd’s algorithm to approximate the indicator

matrix Z as summarized in Algorithm 2.

The Lloyd’s algorithm requires the pre-determination of the number M of clus-

ters. To compute an initial quick estimate for M , one can apply the so called “gap

statistic” [32]. The approach is inspired by the elbow phenomenon: the compactness

measure S decreases monotonically as the number of clusters M increases, but the

decreasing speed of the compactness measure drops significantly from a certain value

of M onwards. In other words, the decreasing curve exhibits the elbow shape where

18

the corresponding M is supposed to be the optimal. The gap statistic formalizes this

heuristic hint into a statistical metric by comparing log(S) with its expectation under

an appropriate null reference distribution of the data. The gap metric is defined as

Gap(M) = E∗{log(S)} − log(S), (2.5)

where E∗ is the expectation over N mapped feature points sampled from the reference

distribution. The implementation of gap statistic is summarized as: First, the pro-

posed clustering technique based on the modified Mahalanobis distance is performed

to the observed feature points in the feature space by varying the number of clusters

from m = 1, 2, ...,M , producing the within-cluster cost S as a function of m. For

comparison, N feature points are then generated from the uniform distribution over

the range of the observed feature points. The sampling is repeated B times, producing

the B reference data sets where the same K-means approach is applied and the gap

metric is estimated as

Gap(m) =
1

B

B∑
b=1

log(S∗)− log(S). (2.6)

The standard deviation of the estimated expectation is given as

σm =

[
1

B

B∑
b=1

{log(S∗)− ȳ}2
]1/2

, (2.7)

where ȳ = 1
B

∑B
b=1 log(S∗). Denote σ̂m = [1 + 1/B]1/2σm. Considering the simulation

error contained in the estimated expectation term, the optimal number of clusters is

then determined by the smallest m which satisfies

Gap(m) ≥ Gap(m+ 1)− σ̂m+1. (2.8)

2.3.2 Stopping Rules and Clustering Quality

We now present the stopping rules monitoring our probabilistic clustering algo-

rithm, to automatically detect stabilization of iterative clustering. Define CLUm(k)

19

as the m-th cluster generated at the k-th iteration step. Let ∆m(k) be the size of the

symmetric set difference between the two sets CLUm(k) and CLUm(k + 1) . Define

the clustering shift ξ(k) at iteration k by

ξ(k) = max
m

∆m(k)

|CLUm(k)|
, (2.9)

where the cardinal of any set CLUm(k) is denoted |CLUm(k)|. In our implementation

of iterative probabilistic clustering, we stop the iterations as soon as ξ(k) < 0.1%.

Smaller thresholds can be used at higher computing cost. We also impose an a priori

maximum on the number of iterations.

To monitor the quality of a given clustering, we focus on how well the clusters

are separated from each other. To this end, we introduce a novel strong separation

index SEP (C,K) between clusters C and K. This index is defined and computed

by the Algorithm 3. Let us interpret intuitively the index SEP (C,K). When the

two clusters C and K are well separated, most of the points in cluster C must be

at “rather large” modified Mahalanobis distances of the centroid of cluster K. We

quantify “rather large” in terms of the outliers observed within the cluster K. This

notion is then symmetrized between C and K.

Once our iterative probabilistic clustering has stabilized according to the stopping

rules given above, we evaluate the quality Q of the terminal clustering CLU1, . . . , CLUM

by

Q = max
1≤i<j≤M

SEP (CLUi, CLUj). (2.12)

Typically, small values of Q such as Q less than 5% or 10% should be considered as

good clustering results in multi-dimensional data. Our strong separation index is not

dependent on the actual clustering algorithm, and hence can serve as a probabilistic

performance evaluation for any clustering technique.

20

Algorithm 3: Strong Separation Index SEP (C,K) between clusters C and K

1) Within any cluster C with centroid oC , and for all feature space data points
Xn belonging to C, use formula 2.2 to compute all the modified Mahalanobis
distances d(n,C) = d(Xn,oC).
2) For the cluster C, compute FC(·) which will be the Cumulative Distribution
Function (CDF) of all the distances d(n,C) just evaluated in step 1.
3) Within cluster C, define and extract the core cluster crC as the set of all
feature space points Xn belonging to C and verifying FC(d(n,C) < 90%}.
4) For any cluster K compute similarly the CDF FK(·) and extract its core
denoted crK .
5) Compute the two indicators s(C,K) and s(K,C) defined by

s(C,K) = max
Xn∈crK

[1− FC(d(n,C)], (2.10)

s(K,C) = max
Xn∈crC

[1− FK(d(n,K)]. (2.11)

6) The symetrized strong separation index between clusters C and K is then
SEP (C,K) = max[s(C,K), s(K,C)].

2.3.3 Data Compression by Key Pragmatic Features

Many clustering methods can directly deal with raw input data. However, clus-

tering quality and computing cost generally improve when high dimensional data are

adequately compressed.

For our application to smart meter data where each user is represented by a daily

load profile which is a 24-dim vector, it is far better to extract a few key pragmatic

coordinates rather than directly input the raw 24-dim data into the clustering algo-

rithm.

For each 24-dim load profile x, we define 4 new features by:

total daily consumption : tot(x) = x1 + ...+ x24,

night-time consumption : nit(x) = x1 + ...+ x8,

day-time consumption : day(x) = x9 + ...+ x17,

evening consumption : eve(x) = x18 + ...+ x24.

21

We then relativize the 3 variables nit, day, eve with respect to total daily consump-

tion by

rel.nit = nit/tot ; rel.day = day/tot ; rel.eve = eve/tot.

Finally we normalize each one of the 4 variables tot, rel.nit, rel.day, rel.eve by dividing

them by their respective means across all users, which generates the 4 normalized

variables TOT,NT,DT,ET . These 4 features can be considered as the coarse grain

profile features.

At finer time scales, we define several pragmatic coordinates refining NT , DT ,

ET . Define bNT and eNT as the two respective sums of the first 4 hours and of the

last four hours of NT . Let then bnt = bNT/mean(bNT) and ent = eNT/mean(eNT)

where means are computed cross users. Similarly, we derive from DT and ET the

pragmatic finer normalized coordinates bdt, edt, bet, eet.

By examining the correlation matrix of our 10 pragmatic coordinates, i.e. TOT ,

NT , DT , ET , bnt, ent, bdt, edt, bet and eet, we select 5 pragmatic coordinates

bdt, NT , bnt, ET and bet which are highly decorrelated and which provide a good

approximation of the input vector space by a 5 dimensional feature space V . Our

probabilistic clustering algorithms are then applied in the feature space V .

2.3.4 Summary of Overall Algorithmic Flow

The entire algorithmic flow is summarized as in Algorithm 4:

2.4 Numerical Results and Discussions

We have implemented the preceding algorithmic flow on a benchmark smart meter

data set gathered from a large set of hundreds of thousands of Houston area electricity

users. After elimination of all corrupted data we are confronted to daily load profiles,

22

Algorithm 4: Overall algorithmic flow for our probabilistic clustering approach.

1) Eliminate all corrupted smart meter recordings and generate all daily load
profiles in dimension 24 as stated in Section 2.2.
2) Compute the 10 pragmatic features as described above in Section 2.3.3.
3) Study the histogram of ln(TOT) values to detect outliers with either
extremely small or extremely large total daily consumption (see Section 2.2).
4) GMM analysis of the TOT values to implement subgroup splitting of data
set (see Algorithm 1).
5) Exploratory PCA of the 10 pragmatic features to determine the an explicit
feature space V in reduced dimension as illustrated at the beginning of Section
2.3.
6) Compute an exploratory gap statistic to roughly estimate the optimal
number M of clusters (see Section 2.3.1).
7) Iterative probabilistic clustering with modified Mahalanobis distance in the
feature space V (see Algorithm 2).
8) Compute quality of terminal clustering by strong separation index (see
Algorithm 3).

which are vectors in <24.

We then compute our 10 pragmatic features and first study the histogram of

ln(TOT) values to truncate away all outliers with either extremely small or extremely

large total daily consumption. Histogram analysis reveals that about 5% of users have

extremely low total daily consumption. And we truncate them away into a special

cluster of “inactive” users.

For the remaining users, we compute the standard quantiles qk of TOT values for

k = 0%, 5%, 10%, . . . , 100% and use these quantiles to split the users into 20 subsets

of equal size according to the positioning of their TOT value within the quantile

sequence.

Within each one of these 20 small subgroups, the standard deviations of TOT ,

NT , DT and ET are computed and plotted in Fig. 2.3. These plots indicate that

the two extreme subgroups TOT < q5% and TOT > q90% have prominent larger

variances than the other subgroups, and thus we also truncate away these users into

two “TOT -extreme” clusters.

23

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Segment index based on CDF of TOT

s
td

 v
a
lu

e
s

std of TOT

std of NT

std of DT

std of ET

Figure 2.3: Standard deviation plots of DT , ET , NT and TOT vs. index of sub-set.

For the pruned data set now containing only active user users, we generate a new

5-dimension data vector from each user load profile, based on the 5 key pragmatic

features defined in Section 2.3.3 as: bdt, NT , bnt, ET and bet.

To compute the “gap statistic”, we repeatedly generate B = 20 reference data

sets from the uniform distributions as described in Section 2.3.1. In order to better

interpret the results, we define the residual value Res(m) as Res(m) = Gap(m) −

Gap(m+ 1) + σ̂m+1 and plot the curve of Res(m) versus the number of clusters m as

shown in Fig. 2.4. Computation of the “gap statistic” indicates that in this pragmatic

feature space V = <5, the initial cluster number should be around 3.

We then apply our iterative probabilistic clustering algorithm in this 5-dimension

feature space to generate M = 3 clusters. The stopping rules are set at 300 for the

maximum iteration number and 0.1% for the clustering shift ξ(k) at terminal iteration

k. The fast stabilization of our probabilistic clustering algorithm is indicated by Fig.

2.5, which plots ξ(k) versus k. The fast convergence shows that our probabilistic

clustering can be scalable for big data computations.

To visually check the quality of the terminal clustering CLU1, CLU2, CLU3 just

obtained, we randomly sample 3,000 data points from each one of these 3 clusters

24

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Number of clusters, m

R
e
s
id

u
a
l
v
a
lu

e
s

Figure 2.4: Gap statistic as shown in the curve of residual values Res(m) versus the
number of clusters m. The optimal m is indicated around 3.

0 2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Number of iterations, k

C
lu

s
te

ri
n
g
 s

h
if
t,
 ξ

(k
)

CLU
1

CLU
2

CLU
3

Figure 2.5: Clustering shift ξ(k) vs iteration number k for the 3 terminal clusters
generated in feature space V by probabilistic clustering.

25

Figure 2.6: Scatter plot to visualize the 3 terminal clusters generated in feature space
V by probabilistic clustering. The visualization is generated in <3 by PCA
projection from V onto the main 3 PCA coordinates

and project them onto the first 3 eigenvectors computed by PCA. In Fig. 2.6, we

display this 3-dimension scatter plot, which shows that our terminal 3 clusters are

well separated by non-linear boundaries.

The quality of this terminal clustering is evaluated by the three strong separation

indices SEP (CLUi, CLUj) where 1 ≤ i < j ≤ 3 between our 3 pairs of clusters. These

3 separability values are all ≤ 5%, which indicates a good separation of clusters, and

are given in Table 2.1.

In Fig 2.7, we plot the mean load profile (in dimension 24) for each one of our 3

terminal clusters, as well as the mean load profile of the whole users data set. These

plots show that the main differences in the mean load profiles of our 3 clusters emerge

either during morning or between hours 13:00 to 20:00.

Our clustering strategy is essentially hierarchical. Starting with our 3 “coarse

grain” terminal clusters CLUj, we proceed to try to further split each CLUj into

smaller groups as long as further splitting is validated by the strong separation index.

For instance for cluster CLU2 which represents 33% of our whole data set, we

implement our probabilistic clustering of CLU2 into 2 terminal sub-clusters CLU21

26

0 5 10 15 20 25

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Load profiles in 24−dimension, h

P
o
w

e
r

u
s
a
g
e
,
k
w

h

Entire Average Profile

CLU
1

CLU
2

CLU
3

Figure 2.7: Load profiles of the terminal 3 clusters generated by iterative probabilistic
clustering algorithm in feature space.

Table 2.1: Strong separation indices between clusters : SEPij = SEP (CLUi, CLUj).

Cluster Index (i, j) (CLU1, CLU2) (CLU1, CLU3)

SEPij 0.03 0.05

Cluster Index (i, j) (CLU2, CLU3)

SEPij 0.05

and CLU22, of respective sizes 51% and 49% within CLU2. The stabilization of sub-

clustering CLU2 is shown in Fig. 2.8. As can be seen, the sub-clustering converges

fast and the clustering shifts ξ(k) for both sub-clusters are close to each other because

the sizes of two sub-clusters CLU21 and CLU22 are close. The pairwise separation

indices between CLU21, CLU22, CLU1, CLU3 are given in Table 2.2. Clearly CLU21

and CLU22 are very well separated with separation index close to 0, and remain also

well separated from CLU1 and CLU3. These observations from Table 2.2 indicate

strong evidence to further split CLU2. This validates the hierarchical clustering of

CLU2. The mean load profiles of CLU21 and CLU22 in dimension 24 are plotted in

Fig. 2.9 which shows significant differences between these two sub-clusters.

27

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6
x 10

−3

Number of iterations, k

C
lu

s
te

ri
n
g
 s

h
if
t,
 ξ

(k
)

CLU
21

CLU
22

Figure 2.8: Clustering shift ξ(k) vs iteration number k for sub-clustering CLU2.

0 5 10 15 20 25

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Load profiles in 24−dimension, h

P
o
w

e
r

u
s
a
g
e
,
k
w

h

CLU
21

CLU
22

CLU
2

Figure 2.9: Load profiles of the three clusters CLU2, CLU21 and CLU22, generated by
splitting of cluster CLU2 using iterative probabilistic clustering.

28

Table 2.2: Strong separation indices between sub-clusters.

Cluster Index (i, j) (CLU1, CLU21) (CLU1, CLU22)

SEPij 0.03 0.03

Cluster Index (i, j) (CLU1, CLU3) (CLU21, CLU22)

SEPij 0.05 0

Cluster Index (i, j) (CLU21, CLU3) (CLU22, CLU3)

SEPij 0.05 0.05

2.5 Summary

In this chapter, we address the electricity user load profiling problem involved in

the analysis of real big data recorded from smart meter reading. We develop a non-

parametric clustering approach to differentiate various types of energy users. Our

approach involves several key technical ideas as follows: First, an efficient pragmatic

feature extraction by multi-scale analysis of 24 dimensional daily load profiles, begin-

ning at coarse grain levels. Second, a novel iterative probabilistic clustering algorithm

based on the modified Mahalanobis distances between load profiles in feature space

and log-likelihood optimization. This algorithm converges rather fast to well separated

clusters and can be scalable for big data sets. Third, a new strong separation index

to characterize the separability of any pair of clusters by precise statistical analysis.

Fourth, a hierarchical approach to automatic clustering by starting with the gener-

ation of a small number of clusters at coarse grain scales and iteratively attempting

sub-cluster splitting at finer scales. Finally, the simulation results on our large bench-

mark data set of smart meter data indicate that our approach is easily implementable

at the computational level and performs quite convincingly on our benchmark data

set.

29

Chapter 3

Analyzing Big Smart Metering Data

Towards Differentiating User Services: A

Sublinear Approach

With the advances of the information and communications technology, and smart

meters in particular, fine grained user electricity usage of households is available for

analyzing electricity usage behaviors. The information makes it possible for utility

companies to provide differentiating user services from the time-of-use perspective,

i.e., different pricing for users based upon when and how users consume power. In this

chapter, we present a methodology on differentiating user services based on extracted

characteristic consumer load shapes (usage profiles as a function of time) from a

large smart meter data set. We identify distinct user subgroups based upon their

actual historic usage patterns, which are represented by the proposed electricity usage

distributions. Since the big electricity user data cover millions of users and for each

user the data are multi-dimensional and in fine-time granularity, we thus propose

a sublinear algorithm to make the computation of the differentiating user service

model efficient. The algorithm requests an input of only a small portion of users,

and a sublinear amount of the electricity data from each of these selected users. We

prove that the algorithm provides performance guarantees. Our simulated evaluation

demonstrates the effectiveness of our algorithm and the differentiating user service

model.

The remaining part of this chapter proceeds as follows. In Section 3.1, we present

a data trace study and clarify how we characterize the users by their electricity distri-

butions. Section 3.2 is devoted to the differentiating user service model. We also show

30

that the complexity to compute the model is non-trivial. We then develop a novel

sublinear algorithm in Section 3.3 and prove its performance bounds. In Section 3.4,

we evaluate our algorithms through simulation, and finally, we conclude our paper in

Section 3.5.

3.1 The User Electricity Usage Behavior and a Data

Trace Study

In this section, we first propose a model to characterize user electricity usage

patterns. We then use real user data to validate our model.

In this paper, we classify users according to their electricity usage distribution.

A distribution in this paper is defined as a probability density function of a continu-

ous/discrete random variable, which describes the likelihood for this random variable

to take on a given value. We admit that there are many ways to characterize a user;

for example, the total or average electricity he/she consumes in a month, the peak

hour electricity usage in week days, etc. We believe the electricity usage distribution

can more accurately characterize a user because a distribution provides a full spec-

trum of the user electricity usage. For instance, it is straightforward to see that if the

usage distributions of two user are the same, the corresponding averages/expectations

are also the same. And the peak hour usage of two users are close in the proba-

bilistic sense; yet if the averages/expectations or peak hour usage are the same, their

distributions can be different.

Formally, let set S be an element set from the set T indicating time instants. In

other words, T is the set of daily sampling frequency or sampling time mark at different

scales. In this paper, T = {t1, t2, t3} with t1 = {0min, 15min, 30min, ..., 1425min},

t2 = {0hour, 1hour, ..., 23hour} and t3 = {1day}. Let x be a multi-dimensional random

31

variable representing the daily electricity usage of a user, such that x ∈ <D(S), D(S) ∈

Z and S ∈ T , where D(S) is the dimension of x at the scale S with D(S) = Card(S).

S is called the scale indicator. Hence, we obtain three different descriptions for the

same one data vector: at the scale S = t1, x = (x1, .., x96); at the scale S = t2,

x = (x̂1, .., x̂24); at the scale S = t3, x = x̃. And there exists the relationship:

x̂i =
∑j=4×i

j=4×(i−1)+1 xj and x̃ =
∑24

j=1 x̂j. Based on the daily usage pattern x of the

user, we define the feature referred as “usage distribution” to characterize a user’s

behavior from the statistical point of view as the following:

Definition 1. The electricity usage distribution P{x} at scale S is a distribution on

the daily electricity usage x, where x ∈ <D(S).

Given the historian recordings of one-dimensional random variable x, the elec-

tricity usage distribution P{x} can be approximated using the empirical distribu-

tion/histogram. For multi-variate case where D(S) > 1, P{x} can be estimated by

assuming a certain structure (for instance Multi-variate Gaussian distribution) and

fitting the parameters based on the dataset. From our trace data, we find that though

the exact electricity usage of each household differs, many households share the same

distribution. This becomes the basis for our classification. To represent the electric-

ity usage distribution of each category, we choose to use a benchmark distribution.

Formally, a benchmark distribution is defined as:

Definition 2. A benchmark distribution is an electricity usage distribution P{x}

which corresponds to the prototype of a group of users sharing similar electricity usage

patterns. It has the expectation p = E{x} with fixed values derived from real data

statistics, satisfying p ∈ <D(S), D(S) ∈ Z and S ∈ T , such that each of pi, i =

1, ..., D(S) is a fixed value.

We now validate the electricity usage distribution, and the benchmark distribution.

In Fig. 3.1, we show an illustration of different average daily usage patterns of two

32

0 5 10 15 20 24
1

1.5

2

2.5

3

3.5

4

24 hours in one day, h

P
ow

er
 u

sa
ge

, k
w

h

Household 1
Household 2

Figure 3.1: Illustrative example of different average daily usage patterns of two bench-
mark distributions.

benchmark distributions at scale S = t2. As can be seen, there are differences in peak

hours and peak usage between the two benchmark distributions. In our real data

analysis, it is also discovered that even though some users’ average daily behaviors

are similar (i.e. similar peak hours and peak usage), their usage distributions are

quite different: for instance, some users have no power consumption at all during the

weekends, but their average daily behaviors are still similar to those who consume

power constantly throughout each day; some users mainly consume the power in the

summer and end up with the similar average daily pattern with those who frequently

go out during summer season and use power mostly in winter. At scale S = t2 =

{0hour, 1hour, ..., 23hour}, through the histogram analysis on real data variate-wisely,

it is revealed that each of the 24 variates conforms approximately to a Gaussian

distribution. The users shared with similar average daily behaviors may end up with

close Gaussian means but different variances in each dimension. All these demonstrate

that using distribution to classify users is reasonable. In order to classify users by their

electricity usage distributions, we take advantage of the benchmark distributions that

are predefined by the utility company. We will detail the method in the next section.

33

3.2 Differentiating User Services: The Model and

Big Data Challenge

3.2.1 An Overview

Many works nowadays study pricing strategies for utility companies [33, 34]. The

overall model can be abstracted as follows. For the following discussion, let us assume

that one objective of a power marketer is to maximize its potential profit from its

customer base. The profit equals its revenue minus its cost. The revenue of a utility

company depends on its pricing strategy (sometimes also called as pricing coefficient),

i.e., the unit price for electricity. For a fixed price strategy, the unit price for a unit

electricity at any time, for any household is fixed. Newly proposed pricing strategies

have dynamic unit price according to different situations. For example, the pricing

strategy in [33] is implemented as a quadratic cost function of energy usage at each

hour. This kind of increasing, convex cost function is reported by the literature to be

a suitable model for thermal generators; and the pricing strategy in [34] is expressed

as piecewise linear functions whose pricing coefficients stay as different constant values

in different time intervals within 24 hours.

In this paper, we introduce a differentiating user service model that seeks to classify

customers based upon their characteristic usage as defined by historic usage distribu-

tion. To operationalize this model, the utility must 1) classify different users (by

setting benchmark distributions); and 2) set different pricing coefficients for different

users. Clearly, both factors influence the revenue of the utility company. Here, we

try to limit the scope of our study where we assume that these two factors are given.

These two factors can be determined by certain optimization criteria [35], gaming with

other utility companies [36], or other external concerns of the utility company [7].

With these two factors, we present a differentiating user service model for the

34

utility company to compute its revenue and profit in Section 3.2.2. We observe that

such computation is itself non-trivial because it involves big data. We analyze the data

complexity of this model in Section 3.2.3. In Section 3.3, we will develop sublinear

algorithms that can efficiently conduct such computation.

3.2.2 The Differentiating User Service Model

We now formally present our differentiating user services model. Our differen-

tiating user service model has three elements: 1) A set of benchmark distributions

{P1{x}, P2{x}, ..., Pi{x}}, i = 1, ..., L with corresponding expectations {p1,p2, ...,pi}

where L is the total types of users. These expectations are used for the utility company

to specify a pricing plan; 2) pricing coefficients: the unit pricing rate (dollar/kw · h)

for different types of users; and 3) power cost coefficients: the utility company needs

to pay for buying the electricity from the power plants. We denote the user type indi-

cator as the binary scalar zm,n: zm,n = 1 if the n-th user is in the m-th category with

benchmark distribution Pm{x} and expectation pm; zm,n = 0 otherwise. The user

type indicator zm,n can be obtained via classification based on the electricity usage

distribution P{xm} of the m-th user and the given benchmark distributions, which

will be elaborated in the next subsection. Assume now the user type indicators are

known, we have the total bill gain G of the utility company as

G =
N∑
n=1

L∑
m=1

zm,nfm(pm), (3.1)

where variable N stands for the number of users and function fm(pm) stands for the

bill charge for the typical m-th category/type user. For simplicity and consistency,

we will refer to the m-th user type as type pm for the rest of this paper.

To ease the presentation, we simplify our differentiating user service model and set

L = 2, i.e., we only consider two types of users in this paper. For the L > 2 case, the

differentiating user service model can be easily extended in a similar way. The total

35

bill gain of the utility company is

G =
N∑
n=1

(z1,nf1(p
1) + z2,nf2(p

2)), (3.2)

To transform (3.2) into a concise form, we have

G = α ·N · f1(p1) + β ·N · f2(p2), (3.3)

where the coefficients α and β indicate the percentage of type p1 and type p2 users

among the total population, respectively. As can be seen, coefficients α and β are

functions of user type indicators zm,n. Hence, α and β are dependent on the classifi-

cation results based on the electricity usage distributions P{xm} of each user and the

given benchmark distributions.

Given two types of users, we accordingly model two types of pricing plans for the

individual bill, referred as the flat plan and the dynamic plan, respectively, where

flat plan: f̃F (p1) = cf

D(S)∑
i=1

p1i (3.4)

and

dynamic plan: f̃D(p2) = cp
∑
i∈P

p2i + co
∑
j∈Pc

p2j . (3.5)

Vectors p1 and p2 are the associated expectations of benchmark distributions P1{x}

and P2{x}, respectively. The fixed coefficient cf represents the pricing rate dollar/kw ·

h for the flat plan, and cp and co regulate the pricing rate for the dynamic cluster where

the peak usage and off-peak usage are charged, respectively. The set P is a set of peak-

hour time mark at the scale S (S 6= t3) and Pc is the complement of P which satisfies

Pc = S − P .

Considering the fact that some p2 type users may actually prefer the flat plan or

some p1 type users incline to accept the dynamic plan, we denote the fixed probability

factor af as the probability of p1-type choosing the flat plan, and ad as the probability

36

of p1-type choosing the dynamic plan. Also, we denote bf as the probability of p2-

type choosing the flat plan and bd as the probability of p2-type choosing the dynamic

plan. There are many other approaches to model this kind of users’ reaction or

preference towards the provided various pricing schemes: for example, authors in [37]

model the users’ reaction as binary values conditioned on some constraints; in [9], the

users’ preference is expressed in the functional form with tunable parameters. Since

modeling users’ preference is not the focus of this paper, we use the fixed-real-valued

parameters instead. Hence, the complete individual bill for a p1-type user is

f1(p
1) = af f̃F (p1) + adf̃D(p1), af + ad = 1. (3.6)

The complete individual bill for a p2-type user is

f2(p
2) = bf f̃F (p2) + bdf̃D(p2), bf + bd = 1. (3.7)

We also investigate the expense that the utility company costs on buying the power

from the power plants. Since the electricity market charges differently at peak hours

and off-peak hours, we model the expense as

E =
N∑
i=1

ap∑
j∈P

xij + ao
∑
j /∈P

xij

 . (3.8)

The fixed coefficients ap and ao represent the pricing rates in the unit of dollar/kw ·h

corresponding to the peak usage and off-peak usage, respectively. The value xij indi-

cates the electricity consumption of the i-th input user data point at time dimension

j. So far, we have fully developed the expression of the net profit Ĝ as

Ĝ = G− E =α ·N · f1(p1) + β ·N · f2(p2)

−
N∑
i=1

ap∑
j∈P

xij + ao
∑
j /∈P

xij

 .
(3.9)

As stated before in this subsection, the percentage coefficients α and β are the output

results of user classification, which will be further elaborated in the next subsection.

37

The rest parameters {p1,p2} and θ = {N, cf , cp, co, af , ad, bf , bd, ap, ao} are determined

by the utility company.

3.2.3 Model Analysis and The Big Data Challenge

We now look into the computation of the differentiating user service model. The

expected profit comes from two ends: 1) the expected number of users belonging

to each groups, and 2) within each group, the expected number of users adopting

differentiating user services and the expected number of users remaining in the fixed-

price services. In our model, the percentage of different groups of users, α and β,

is computed at the first step as an output of classifying users. The expected total

profit of a utility company is then calculated with given pricing coefficients and power

cost coefficients, the two key parameters in our model. We are particularly interested

in the percentage values because they can be utilized for quick estimation of the bill

income without bothering to calculate each user’s power consumption in the big data

setting. Moreover, the percentage values serve as the feedback indicator from users.

By comparing the percentage values of different years, the utility company can gather

the feedback information on how the users adjust their usage behaviors so that the

company may update the current pricing plans in the dynamic fashion.

To compute α and β, we need to classify users by comparing the electricity usage

distribution of each user to the benchmark distribution. To simplify the notation for

given two user types in total, we use binary variable zi as the user type indicator for

the i-th user instead of previously used zm,n. Hence, the computation is calculated as

α = 1
N

∑N
i=1 zi and β = 1

N

∑N
i=1(1−zi) = 1−α. zi is determined via user classification

as

zi =

 1, Dis(P{xi}, P1{xi}) ≤ Dis(P{xi}, P2{xi}),

0, Dis(P{xi}, P1{xi}) > Dis(P{xi}, P2{xi}).
(3.10)

38

P1{xi} and P2{xi} represent the benchmark distributions of p1-type and p2-type,

respectively. The function Dis(·) is the closeness measure between two distributions,

and we choose the function Dis(·) to be the L-2 distance1 [38] between the two given

distributions. We are particularly interested in discovering the percentage for the

reason that once the new pricing plans are offered to all the users, the utility company

may learn the feedback of user reaction by analyzing the current percentage values

and compare them to the historical ones. In this way, the percentage values provide

the utility company with the guidance on adjusting pricing.

Note that a straightforward computation of (3.9) needs to evaluate each user; and

for each user to compute the L2 distance of his/her distribution and the benchmark

distribution, the computation needs to access each data of the user. In Table 3.1, we

show a few illustrative examples of the amount of data need to be processed, given the

number of users mu, and the number of data points md of numerical discrete electricity

usage distribution each user has at scale S = t2 = {0hour, 1hour, ..., 23hour}.

Table 3.1: Examples of the amount of data need to be processed in GB unit.

(mu, md) (2× 105, 8760) (2× 106, 8760) (2× 106, 17520)

Data (GB) 14.016 140.16 280.32

We would like to remind that, as discussed in Section IV.A, such computation needs

to be executed many times if it is part of an optimization where different benchmark

distributions, and different price coefficients are evaluated. We thus develop a much

more efficient computation approach through a novel sublinear algorithm in next sec-

tion.

1Other distance measures can be chosen for the closeness measure Dis(·) as well. However, we
choose L-2 distance for fast computation reason.

39

3.3 The Problem and Sublinear Algorithms

3.3.1 The Problem and Algorithm Sketch

Our objective is to know the percentages of p1 and p2 so that we can compute

the total income of the utility company. We have shown in the previous section that

the complexity is high. We also note that the complexity comes from the big data

collecting complexity, not the computational complexity. To this end, we propose

a novel sublinear algorithm where we substantially reduce the amount of sampled

data needed in computation and obtain quality outputs. We first formally define the

algorithm quality we use in this paper.

Definition 3. Algorithm Quality: We measure accuracy in terms of the absolute

deviation of the computed answer â from the exact answer a. We assume that such

deviation is less than ε. In addition, this deviation does not exceed in most cases; for

example, only δ% such deviation exceeds ε and δ is small. More precisely, we would

like to have that Pr[|â − a| ≥ ε] ≤ δ. Here we refer to ε as the accuracy parameter

and δ as the confidence parameter.

We now present the sketch of our algorithm development. Our objective is that

given the quality parameters ε, δ, we use a subset of data to compute α, β and we

guarantee the results are within ε, δ.

In our algorithm development, we split the output quality parameters ε and δ into

ε1, δ1, and ε2, δ2. We first develop two sub algorithms AlgoPercent() and AlgoDist(),

each of which is itself a sublinear algorithm. AlgoPercent() samples a subset of users,

and for each user use his/her full electricity data. It guarantees ε1, δ1. AlgoDist()

applies to a single user and sample a subset of his/her electricity data. It guarantees

ε2, δ2. Finally we develop an overall algorithm for distributed service model computing

AlgoDSMC() that call AlgoPercent() and AlgoDist() as sub functions. AlgoDSMC()

40

guarantees ε and δ. In what follows, Section 3.3.2 develops AlgoPercent(), Section

3.3.3 develops AlgoDist(), and Section 3.3.4 develops AlgoDSMC().

3.3.2 Sublinear on Percentage

The objective is to use a small portion of users to determine the percentage of p1-

type and p2-type users. Since our proposed algorithm does not require the information

of all input users, we refer to this property as “sublinear on percentage”. Our proposed

algorithm is referred as AlgoPercent(), taking ε1 and δ1 as the parameter, and all the

user data X as the input. ε1 specifies an error bound for the output estimated â,

while δ1 means indicates the confidence/probability of success that the error bound

can be maintained. Instead of computing over the total N users, AlgoPercent() first

sub-samples m1 > − log δ1
2ε21

users. The user type classification is then performed on

each one of the m1 users to obtain the percentage of p1 and p2 users, respectively.

AlgoPercent() is summarized in the Algorithm 5.

Algorithm 5: AlgoPercent(X, ε1, δ1)

Sub-sample m1 out of N users.
Perform user classification and compute â as illustrated in (3.10).

Recall that zi is the user type indicator defined in Section 3.2.3. We assume that

zi are independent and define Y =
∑N

i=1 zi, where N is the total number of users.

Assume the percentage of p1-user among the population is α. We have α = 1
N
E[Y].

Since zi are all independent, E[zi] = α. Let Λ =
∑m1

i=1 zi, where m1 is the total number

of users we sampled. Let Λ = 1
m1

Λ. The next lemma says that the expectation of the

sampled set Λ is the same as the expectation of all set. Using these notations, we then

have the following lemma associated with AlgoPercent(). It is straightforward to see

that Λ is the unbiased estimator of α. Based on this, we show that m1 > − log δ1
2ε21

is

the constraint that is required to maintain the ε1 error bound.

41

Lemma 1. Given ε1, δ1, to guarantee that we have a probability of 1− δ1 success that

the percentage of p1-type users will not deviate from the true α for more than ε1, the

number of users we need to sample must be at least − log δ1
2ε21

.

Proof. By the Hoeffding Inequality, which provides an upper bound on the probability

that the sum of random variables deviates from its expected value, we have

Pr[Λ− E[Λ] ≤ −ε1] ≤ e−2ε
2
1m1 , (3.11)

Pr[Λ− E[Λ] ≥ ε1] ≤ e−2ε
2
1m1 , (3.12)

and

Pr[|Λ− E[Λ]| > ε1] ≤ e−2ε
2
1m1 . (3.13)

Therefore, recall that Λ is the unbiased estimator of α, we have

Pr[|Λ− α| > ε1] = Pr[|Λ− E[Λ]| > ε1] ≤ e−2ε
2
1m1 . (3.14)

To make sure that e−2ε
2
1m1 < δ1, we need to have m1 > − log δ1

2ε21
.

3.3.3 Sublinear on Distribution

In this subsection, we will introduce one existent sublinear algorithm, based on

which our proposed modified sublinear method will be elaborated afterwards. Sub-

linear algorithms can be regarded as one branch of approximation algorithms with

confidence guarantees. The term “sublinear” is traditionally interpreted as an algo-

rithm runs in sublinear time or complexity. However, in this paper, we point out that

“sublinear” can also be used to indicate the algorithm uses o(N) samples in space,

where N is the total number of input elements.

The objective is that for each user, we use a sublinear number of samples from

its electricity data distribution to determine whether the user belongs to the category

42

of p1 or p2. We call this algorithm AlgoDist(). The distribution of the user behav-

ior is denoted as P{x} which is a 24-dimensional distribution at the scale S = t2.

We provide the heuristic sublinear sampling method to deal with the 24-dimensional

distributions. In details, the user distribution is compared with the benchmark distri-

bution by AlgoDist() on one dimension at a time for totally 24 times (corresponding

to 24 hours per day). If the distribution passes the closeness test by the AlgoDist() for

at least 12 times, it is then regarded as close to the compared benchmark distribution.

As a result, the user is classified as the compared type. Since there are two defined

types of users, the proposed AlgoDist() only compares the testing user distribution

with the p1-type benchmark. If the closeness test fails, the user is automatically

classified as the other type.

The distribution of one dimensional random variable can be expressed as the his-

togram in the discretized fashion, with the bin size denoted as δ. We denote the set

SP = {1δ, ..., nδ} as the sample space of the distribution. We assume that the sepa-

rated distribution under the investigation is discrete distribution over the n elements

in the set SP . Moreover, the distribution is assumed to be represented by a vector

p = (p1, ..., pn) where pi is the probability of sampling the i-th element in the set SP .

Given a benchmark distribution in the probability vector form as q = (q1, ..., qn), we

want to test whether the distribution p is close enough to q in the L2-distance. The

traditional way is to compute the whole distribution in the L2-distance. However, it

suffers from the heavy computation which is unacceptable in the big data analysis.

Inspired by [20], we propose a novel modified sublinear algorithm based on the orig-

inal sublinear algorithm. The key idea of the original sublinear algorithm is that by

using the sublinear sampling, we can repeatedly draw a much smaller portion of all

the users. Within the smaller portion of users, each distribution of user behavior is

again repeatedly sampled in a smaller portion of the entire distribution. This kind

43

of sublinear sampling is also applied to the benchmark distribution at the same time.

Two metrics are proposed to measure the closeness between the distributions: 1) the

collision probability is defined as the probability that a sample from each of p and q

yields the same element and is equal to p ·q; 2) the self-collision of p and that of q are

defined similarly as p·p and q·q, respectively. The complete DistTest(p,q,m2, ε2, δ2)

is a realization from the original sublinear method [20] and summarized as in Algo-

rithm 6 (the related proof can be found in [20]). Note that in our application, the

error parameter ε2 serves as the classification criteria: if the L2-distance two testing

distributions are within ε2, the testing user is classified as the p1 type; otherwise, the

testing user is classified into the p2 type.

From [20], it is proved that the error and confidence factors of DistTest() are

guaranteed by the following theorem:

Theorem 1. Given ε2, δ2 and distributions p and q, the DistTest() of testing closeness

passes with the probability at least 1 − δ2 if ||p − q|| ≤ ε2/2 while it passes with

the probability less than δ2 if ||p − q|| > ε2. The running time of the DistTest() is

O(ε−42 log(1/δ2)).

Algorithm 6: DistTest(p,q,m2, ε2, δ2) based on L2-distance test

for i = 1, 2, . . . , O(log(1/δ2)) do
Let Fp = a set of m2 samples from p.
Let Fq = a set of m2 samples from q.
Let rp be the number of pairwise self-collisions in Fp.
Let rq be the number of pairwise self-collisions in Fq.
Let Qp = a set of m2 samples from p.
Let Qq = a set of m2 samples from q.
Let spq be the number of collisions between Qp and Qq.
Denote r = 2m2

m2−1(rp + rq).
Denote t = 2spq.
if r − t > m2

2ε
2
2/2 then

then reject, i.e. consider the two distributions are different.

Reject if the majority of the iterations reject, accept otherwise.

44

Figure 3.2: Illustration of the underlying philosophy of designing Algorithm 3.

The main drawback of directly employing the original sublinear algorithm in clas-

sification is that the confidence of the classification output remains undetermined

when the L2-distance of the testing distribution p and the benchmark distribution q

is truly in the interval [ε2/2, ε2] according to Theorem 1. Based on the original sublin-

ear algorithm DistTest(p,q,m2, ε2, δ2) as indicated in the Algorithm 6, we propose a

novel modified sublinear algorithm to overcome this drawback and give the complete

confidence estimates. Follow the previous assumptions, let pi be the power usage

distribution corresponding to the i-th user, ∀i = 1, 2, . . . , N . Suppose the classifica-

tion by comparing a set of user electricity usage distributions {pi} with q outputs

two labels with the label 1 indicating user type (class) 1 whose pi is close to q; the

label 2 indicating user type (class) 2 whose pi is away to q. We call the proposed

modified sublinear algorithm AlgoDist() and summarize it as in Algorithm 7. The

underlying philosophy of designing Algorithm 7 is to call DistTest() twice but with

different parameters ε2 and 2ε2, respectively, which help to get rid of the interval of

undetermined confidence. Each time we call DistTest(), the classified labels of the

output are retained partially. Both results are then merged with some treatment to

the overlapped labels, in order to obtain a complete and consistent labeled result. The

idea is illustrated in Fig. 3.2.

The algorithm accuracy of AlgoDist(), i.e., the classification accuracy, is given by

45

Algorithm 7: Modified sublinear algorithm AlgoDist(pi,q,m2, ε2, δ2) based on
DistTest()

for i = 1, 2, . . . , N do
Step1 : Employ AlgoDist(pi,q,m2, ε2, δ2) and obtain the classification
results as {LabelSet1}.
Step2 : Employ AlgoDist(pi,q,m2, 2ε2, δ2) and obtain the classification
results as {LabelSet2}.
Step3 : Keep the labeled 1 in {LabelSet1} and reject all the labeled 2.
Step4 : Keep the labeled 2 in {LabelSet2} and reject all the labeled 1.
Step5 : Combine the retained labels into {LabelSet3}; If the same user is
both labeled as 1 in {LabelSet1} and labeled as 2 in {LabelSet2}, his/her
label is randomly determined as either 1 or 2 in {LabelSet3}.
Step6 : Output {LabelSet3} as the final classification results.

the following Lemma 2:

Lemma 2. Given ε2, δ2 and distributions {pi} and q, the AlgoDist() of classifying

users is based on the L2-distance criteria: label user as 1 if ||pi − q|| ≤ ε2; label user

as 2 if ||pi − q|| > ε2. And the classification accuracy is at least 1− 2δ2. In addition,

Pr[labeled as 1|true 1] ≥ (1− 2δ2) and Pr[labeled as 2|true 2] ≥ (1− 2δ2).

Lemma 2 essentially further develops the discussion in Theorem 1. In Theorem

1, the implicit underlying user group with ε2/2 ≤ ||p − q|| ≤ ε2 is not discussed.

However, in Lemma 2, all users are taken into consideration. The proof of Lemma 2

is given as following.

Proof. Assume there are N1 users who are truly label 1 users, i.e., whose power usage

distribution satisfies ||pi − q|| ≤ ε2 and N2 users who are truly label 2 users with

||pi − q|| > ε2. The total N = N1 + N2 users’ power usage distributions {pi} are

then input to AlgoDist() for classification. Denote Pr[x ∈ ω1, x ∈ ψ1] as the joint

probability that user x is truly label 1 user (i.e. x ∈ ψ1) and has been correctly

classified as label 1 (i.e. x ∈ ω1) by AlgoDist(). Denote its power usage distribution

46

as p. According to Step 1 of Algorithm 6 and Theorem 1, we have

Pr[x ∈ ω1, x ∈ ψ1] = Pr[x ∈ ω1, ||p− q|| ≤ ε2/2]

+Pr[x ∈ ω1, ε2/2 < ||p− q|| ≤ ε2],

(3.15)

Pr[x ∈ ω1, x ∈ ψ1] ≥ 1− δ2

+Pr[x ∈ ω1, ε2/2 < ||p− q|| ≤ ε2],

(3.16)

and

Pr[x ∈ ω1, x ∈ ψ1] ≥ 1− δ2. (3.17)

Meanwhile, we have

Pr[x ∈ ω1, x ∈ ψ2] ≤ δ2. (3.18)

Therefore, in the {LabelSet1} produced by Step 3 of Algorithm 6, there are at least

N1(1 − δ2) correctly labeled users and at most N2δ2 falsely labeled users. Likewise,

considering Step 2 of Algorithm 6 and Theorem 1, we have

Pr[x ∈ ω1, ||p− q|| ≥ 2ε2] ≤ δ2, (3.19)

Pr[x ∈ ω2, ||p− q|| ≥ 2ε2] ≥ 1− δ2, (3.20)

Pr[x ∈ ω2, ||p− q|| ≥ 2ε2]

+ Pr[x ∈ ω2, ε2 ≤ ||p− q|| ≤ 2ε2] ≥ 1− δ2,
(3.21)

Pr[x ∈ ω2, ||p− q|| ≥ ε2] ≥ 1− δ2, (3.22)

and

Pr[x ∈ ω2, x ∈ ψ2] ≥ 1− δ2. (3.23)

47

Meanwhile, we have

Pr[x ∈ ω1, x ∈ ψ1] ≥ 1− δ2 (3.24)

and

Pr[x ∈ ω2, x ∈ ψ1] ≤ δ2. (3.25)

Therefore, in the {LabelSet2} produced by Step 4 of Algorithm 6, there are at least

N2(1− δ2) correctly labeled users and at most N1δ2 falsely labeled users.

Now consider situation of overlapped labeled users in Step 5 of Algorithm 6. Given

that the value of δ2 is usually very small, i.e., high confidence of the classification

results, the worst case of the overlapped labeled users are: N1(1−δ2) correctly labeled-

as-1 users in the {LabelSet1} completely contain N1δ2 falsely labeled-as-2 users in the

{LabelSet2}; and N2(1−δ2) correctly labeled-as-2 users in the {LabelSet2} completely

contain N2δ2 falsely labeled-as-1 users in the {LabelSet1}. To express this using the

set notations, we define two sets that are obtained in the {LabelSet1} produced by

Step 3 of Algorithm 6, where

Ω11 = {x|x ∈ ψ1, x ∈ ω1} (3.26)

and

Ω12 = {x|x ∈ ψ2, x ∈ ω1}. (3.27)

Then we have

{LabelSet1} = Ω11 + Ω12, (3.28)

Card(Ω11) ≥ N1(1− δ2), (3.29)

and

Card(Ω12) ≤ N2δ2. (3.30)

48

Define two sets that are obtained in the {LabelSet2} produced by Step 4 of Algo-

rithm 6 as

Ω21 = {x|x ∈ ψ1, x ∈ ω2} (3.31)

and

Ω22 = {x|x ∈ ψ2, x ∈ ω2}. (3.32)

Then, we have

{LabelSet2} = Ω21 + Ω22, (3.33)

Card(Ω21) ≤ N1δ2, (3.34)

and

Card(Ω22) ≥ N2(1− δ2). (3.35)

Define

∆Ω1 = {x|x ∈ Ω21, x ∈ Ω11} (3.36)

and

∆Ω2 = {x|x ∈ Ω22, x ∈ Ω12}. (3.37)

Define two sets that are obtained in the {LabelSet3} produced by Step 5 of Algorithm

2 as

Ω1 = {x|x ∈ ψ1, x ∈ ω1} (3.38)

and

Ω2 = {x|x ∈ ψ2, x ∈ ω2}. (3.39)

49

Then, according to the Algorithm 6, we have

Ω1 = Ω11 − Ω11

⋂
Ω21 (3.40)

and

Ω2 = Ω22 − Ω22

⋂
Ω12. (3.41)

The worst case happens when Ω21 ⊆ Ω11 and Ω12 ⊆ Ω22, and thus

Ω11

⋂
Ω21 = Ω21 (3.42)

and

Ω22

⋂
Ω12 = Ω12. (3.43)

Therefore, we have

minCard(Ω1) = minCard(Ω11 − Ω21)

= minCard(Ω11)−max(Ω21)

= N1(1− δ2)−N1δ2 = N1(1− 2δ2).

(3.44)

Similarly, we have

minCard(Ω2) = N2(1− 2δ2). (3.45)

Hence, we have

Pr[labeled as 1, true 1] ≥ (1− 2δ2) (3.46)

and

Pr[labeled as 2, true 2] ≥ (1− 2δ2). (3.47)

The worst case of correctly labeled users in the final result {LabelSet3} is

minCard(Ω1) + minCard(Ω2)

= N1(1− 2δ2) +N2(1− 2δ2).

(3.48)

50

In the worst case, the accuracy is

minCard(Ω1) + minCard(Ω2)

Card({LabelSet3})

=
(N1 +N2)(1− 2δ2)

N
= 1− 2δ2.

(3.49)

So the classification accuracy is at least 1− 2δ2.

3.3.4 The Overall Algorithm

In this subsection, we derive the overall algorithm quality ε, δ of AlgoDSMC() and

its sufficient condition. Since the overall objective is to estimate α, it is straightforward

to see that the overall algorithm quality is ε = ε1 and δ = δ1. Given the parameters,

ε1, δ1, ε2, δ2, for the sub-algorithms, ε1 and δ1 are passed to the AlgoPercent(ε1,δ1).

Within the AlgoPercent(ε1,δ1), the small number of users, m1 is sampled from the

entire input users. For each one of the m1 users, the AlgoDist(P{xi}, p1, m2, ε2,δ2) is

called where P{x} corresponds to the distribution of the testing one user out of the

m1 users.

In AlgoPercent(ε1,δ1) with given error and confidence parameters, we compute

that the sub-sampling number of users needs to be at least m1 = − log δ
2ε21

, under the

assumption that AlgoDist(P{xi}, p1, m2, ε2,δ2) gives 100% correct classifications.

However, given the error and confidence parameters ε2, δ2, the AlgoDist() again uti-

lizes the sublinear algorithm and may misclassify a p1 user into p2-type. This means

that AlgoDist() will not give 100% correct classifications, which nullifies the previous

assumption made when analyzing AlgoPercent(ε1,δ1) due to the cascading relationship

between AlgoPercent() and AlgoDist(). Then we have to modify the parameter set-

tings of AlgoPercent() by taking the property of AlgoDist() into consideration. As a

result, the subsample numberm1 has to be modified in order to maintain ε = ε1, δ = δ1.

We derive the constraint for the subsample number m, in order to make the prob-

ability of the failure of the overall algorithm, Pr[|â− a∗| ≥ ε], bounded by δ.

51

Theorem 2. Given ε, δ for the overall algorithm quality, ε2, δ2 for AlgoDist() and

suppose δ2 is small enough such that ε > 6δ2, to guarantee that we have a probability

of 1 − δ success that the percentage of p1-type users will not deviate from the true α

for more than ε, i.e., Pr[|α̂ − α| ≥ ε] = Pr[|Λ− α| ≥ ε] ≤ δ, the number of users we

need to sample must be at least m ≥ − log δ
2(ε−6δ2)2 .

Proof. Denote p11 = Pr[x ∈ ω1|x ∈ ψ1] as the probability that user x is truly label 1

user and has been classified as label 1. Similarly, define p21 = Pr[x ∈ ω1|x ∈ ψ2] as

the probability that user x is truly label 2 user and has been classified as label 1. By

Lemma 2, we have 1 − p11 ≤ 2δ2 and p21 = 1 − p22 ≤ 2δ2. Follow the discussion in

Section 3.3.2 and Lemma 2, we have

E[Λ] =
1

N
(

N1∑
i=1

p11 · 1 +

N2∑
j=1

p21 · 1) = αp11 + (1− α)p21. (3.50)

Therefore,

|Λ− E[Λ]| = |Λ− α + α(1− p11 + p21)− p21|, (3.51)

|Λ− E[Λ]| ≥ |Λ− α| − |α(1− p11 + p21)| − |p21|, (3.52)

|Λ− E[Λ]| ≥ |Λ− α| − α|1− p11| − α|p21| − |p21|, (3.53)

|Λ− E[Λ]| ≥ |Λ− α| − α · 2δ2 − α · 2δ2 − 2δ2, (3.54)

and

|Λ− E[Λ]| ≥ |Λ− α| − 6δ2. (3.55)

Hence, given |Λ−α| ≥ ε, it is sufficient to say that |Λ−E[Λ]| ≥ ε−6δ2, which implies

Pr[|Λ− α| ≥ ε] ≤ Pr[|Λ− E[Λ]| ≥ ε− 6δ2]. (3.56)

52

Denote ε̃ =≥ ε− 6δ2 > 0, by the Hoeffding Inequality, we have

Pr[|Λ− E[Λ]| ≥ ε̃] ≤ e−2ε̃
2m. (3.57)

To ensure that e−2ε̃
2m ≤ δ, we need to have

m ≥ − log δ

2ε̃2
. (3.58)

That is

m ≥ − log δ

2(ε− 6δ2)2
. (3.59)

If this holds and using Λ as the estimator of α, then

Pr[|α̂− α| ≥ ε] = Pr[|Λ− α| ≥ ε] ≤ δ. (3.60)

3.4 Evaluation

In this section, we evaluate our proposed differentiating user service model and

associated algorithms. Due to the nondisclosure agreement, all results are computed

from the simulated data that are generated according to the real data analysis. The

proposed algorithms can be directly applied to real data without modification. Note

that our sublinear algorithm has already provided a theoretical bound. We thus

primarily investigate the relationship among the number of data we need to process,

the errors and confidence interval. More specifically we evaluate:

1. The relations among the number of sub-samples m, m2 and the error ε and

confidence δ;

2. The proposed algorithm accurately estimates of α value within an acceptable

error bound;

53

3. The differentiating user services model performs better than the traditional sin-

gle rate fixed-price approach; In addition, analyzing the impact brought by the

factor α and total user number N ;

4. The proposed sublinear algorithm significantly reduces the computation load.

We evaluate the proposed differentiating user services model and the sublinear

algorithm at scale S = t2 = {0hour, 1hour, ..., 23hour}. The evaluation data set is

simulated based on the real data analysis and similar to the generation procedure of

the benchmark distributions. According to the data trace study in Section 3.1, we

simulate the dataset based on Gaussian distributions. Specifically, we first generate

the benchmark distribution of p1-type user similarly as the Household 1 plotted in

Fig. 3.1 in Section 3.1. The total number of users is set to N = 100, 000. α is

varying from 0.1 to 0.8. The usage distribution of one p1 user is generated in this

way: 1) each dimension of p1 (recall that p1 is the corresponding expectation of

the benchmark distribution of p1-type, as defined in Section 3.2.2) is added with a

random Gaussian noise drawn from Gauss(0, 0.5), resulting in a noisy vector p̃1; 2)

generate a sequence of random variables k̃1i , i = 1, ..., 24 that conforms to the Gaussian

distribution Gauss(p̃1i , 0.1) respectively; 3) form the vector ỹ = (k̃11, ..., k̃
1
24) as one

instance of daily usage that belongs to the p1-type user; 4) repeat 2) and 3) for 365

times and obtain the set of vectors {ỹ} that represents the usage distribution of the

p1 user. Finally, we repeat the procedure from 1) to 4) for α · N times and obtain

the data points of p1-type users. The p2-type users are simulated in the same fashion

except that the Gaussian noise conforms to Gauss(0, 0.1) and their user number is

β ·N .

For Objective 1), we use the data set generated with N = 100, 000 and α = 0.7.

The parameters ε1 = 0.05, δ1 = 0.05, δ2 = 0.005 and ε2 = 0.5 are fixed. Then we vary

m2 for m = 2000, 3000, 10000, 15000. We define the estimation error as the absolute

54

10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

Number of subsampled distribution points, m2

E
st

im
at

io
n

er
ro

r

epsilon1=0.05
m=2000
m=3000
m=10,000
m=15,000

Figure 3.3: Estimation errors |α̂ − α| vs. sub-sampling number m2 from the entire
distribution.

value of the difference between the estimated α̂ and the true α. By inputting the data

set and the parameters into our proposed sublinear algorithm, we obtain the results

shown in Fig. 3.3. As can be seen, as the sub-sample number m2 grows larger, the

estimation error generally becomes smaller, which is consistent with the spirit of the

sublinear methods: the more we sub-sample, the more precise results we will obtain.

However, the speed of ameliorating the result to become closer to the true value is

much slower than the increase speed of the required subsamples: if we want to further

reduce the error that is already small, we need to pay much more price, i.e., giving a

much larger step of increments for m2.

For Objective 2), the total number of users is set to N = 100, 000. α is varying from

0.1 to 0.8. We fix the parameters for the AlgoPercent() and AlgoDist() as: ε1 = 0.05,

ε2 = 0.5, δ1 = 0.05, δ2 = 0.005, m = 50, 000, m2 = 60. Notice that under this

parameter setting, the overall algorithm quality is ε = ε1 = 0.05 and δ = δ1 = 0.05.

The data sets are then input into our overall algorithm. The estimated results are

shown in Fig. 3.4. As can be seen, our algorithm estimates the α values precisely

within the error bounds throughout all the simulated values. The maximum absolute

error percentage is 1.42%, and the minimum absolute error percentage is 0.10%. And

55

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

True simulated alpha values

E
st

im
at

ed
 a

lp
ha

 v
al

ue
s

True alpha
Estimated alpha
alpha − epsilon1
alpha + epsilon1

Figure 3.4: Estimated α values vs. simulated true α values.

the subsamples used are only 50% of the total users.

For Objective 3), we first investigate how the proportion of different types of users

impact on the net profit. Using the data sets generated in the objective 1) with differ-

ent α values, we set the parameters of the proposed differentiating user services model

as: N = 100, 000, cf = 1, cp = 3, c0 = 0.8. af = 0.1, ad = 0.9, bf = 0.8, bd = 0.2,

ap = 2 and ao = 0.5. These parameters are chosen with a reference to the real electric-

ity markets and bills. According to electricity usage patterns during the past years in

Houston, the peak hour set is P = {10hour, 11hour, 12hour, 18hour, 19hour, 20hour,

21hour}. The estimated α values are input into our differentiating user services model.

To compare our model with the other two traditional pricing plans, we choose cf = 1

to be the pricing factor that applies to all the users uniformly for the pricing plan

referred as the fixed price service. We also choose cp = 3 and c0 = 0.8 for the plan

that charges users uniformly but with varying price at peak and off-peak hours, re-

ferred as the differentiated charge. The experiment results are shown in Fig. 3.5,

where 3 mechanisms of pricing are explained: (1) charging uniformly according to

usage regardless of time/hour when the usage happens (referred as fixed price ser-

vice); (2) charging according to usage but with different rates at peak vs. off-peak

56

0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

8

9

10
x 10

6

alpha values

N
et

 p
ro

fit
, d

ol
la

rs

Fixed price service

Differentiated service

Differentiated charge

Figure 3.5: Net profits from the differentiating user services vs. net profits from non-
differentiating user services with varying proportion of user types.

hours (referred as differentiated charge); (3) charging according to different types of

user (referred as our proposed differentiating user service). It can be seen that the

proposed model favors over the p1-type users who generally use more power especially

during the peak hours and bring more profits. The differentiated charge obtains the

highest profits because it forces all the users to pay much more money at the peak

hours, which is usually not suitable for the p2-type users. Fig. 3.5 indicates that:

fixed price service is inefficient in the sense of static pricing; differentiated charge is

inefficient in the sense of over charging (certain types of user would not accept this

kind of service); differentiating user service is a reasonable pricing compared with the

rest two. The profits and percentage analysis can be further utilized in the future to

evolve into an advanced dynamic model with dynamic pricing factors, from which the

reactions of users can be revealed.

For Objective 4), we compare the computation load for direct computation with

the proposed sublinear algorithm under some different parameter settings specified

in the objective 1). Taking the repeating procedure in AlgoDist() into account, the

overall amount of data needed to be processed by the proposed sublinear algorithm

is expressed as 2×m×m2 × 24× log(1
δ2

)× 8, while the direct computation of entire

57

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6

7

δ values

R
ed

uc
ed

 D
at

a
A

m
ou

nt
 (

G
B

)

ε = 0.01

ε = 0.012

ε = 0.014

ε = 0.016

ε = 0.018

ε = 0.02

Figure 3.6: Reduced data amount (GB) vs. overall confidence parameter δ.

data needs to process N × 365× 24× 8. In the objective 3), N = 100, 000, δ2 = 0.005,

m2 = 10, 15, 20, 25, 30, 35, and m varies as m = 2000, 3000, 10000, 15000. We render

the numerical computation load in Table 3.2, where the second column corresponds

to the direct computation and the 3rd to 6th columns correspond to the proposed

algorithm with some specific parameter settings of (m,m2). As can be seen from

the table, the proposed sublinear algorithm greatly reduces the computation load

at the price of acceptable estimation error on the percentage α as indicated in the

objective 3). We also investigate the numerical computation load by considering the

minimum amount of data required in the computation of proposed sublinear methods

with varying parameters and given fixed input data. Suppose we have N = 100, 000

users and therefore 7.008 GB data as input, we vary the parameters ε1, δ1, δ2 and

fix ε2 = 0.5 (ε2 is problem-oriented and data-driven. In our application, it is set

according to the distance between the two benchmark distributions) to see what is the

minimum amount of data involved in the computation of proposed sublinear methods

in order to guarantee performance. We render the numerical computation load in

Table 3.3 as a function of parameters ε1, δ1 and δ2. As can be seen in Table 3.3,

the smaller error bounds and larger confidence impose more computation load for our

58

algorithms. Moreover, the error bound parameter ε1, which is highly related to the

subsampled number of users m, is the major factor that influences the computation

load, compared with the rest two factors. Another interesting observation can be

found in the first row of Table 3.3 that even if the parameters change to have higher

confidence, i.e., smaller δ2, the required data to be processed is less. This is so because

the smaller δ2 indicates higher confidence of the success of the classification algorithm

AlgoDist(). As a consequence, we no longer need to sample as many users as before to

guarantee the overall algorithm, as indicated in Theorem 2. To further demonstrate

the computational efficiency of the proposed sublinear methods, we also investigate

the amount of data (GB) that is reduced by employing our algorithms instead of direct

computation on the original 7.008 GB input data. First, we fix the parameters ε2 = 0.5

and δ2 = 0.001, and plot the reduced data in GB unit by varying the confidence

parameter δ of overall algorithm (note that δ = δ1 as discussed before). The results

are shown as in Fig. 3.6 with different overall error bound ε. We then fix the internal

parameters ε2 = 0.5 and δ2 = 0.001, and plot the reduced data in GB unit by varying

the error bound parameter ε of overall algorithm (note that ε = ε1 as discussed before).

The results are shown as in Fig. 3.7 with different overall confidence ε. As can be seen

from both Fig. 3.6 and Fig. 3.7, if the confidence or the error bound is relaxed, our

proposed method can reduce larger amount of data involved in computation. Another

discover is that the error bound will influence the reduced data more gently while

the impact of the confidence parameter saturates fast as δ increases. This provides a

guidance in practice that if we aim to reduce the computation load, there is no need

to relax the confidence too much.

59

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

1

2

3

4

5

6

7

8

ε values

R
ed

uc
ed

 D
at

a
A

m
ou

nt
 (

G
B

)

δ = 0.01

δ = 0.02

δ = 0.04

δ = 0.06

δ = 0.08

δ = 0.1

Figure 3.7: Reduced data amount (DB) vs. overall error bound parameter ε.

Table 3.2: Comparison of the amount of data (GB unit) needed to be processed be-
tween direct computation and proposed sublinear algorithm with different
parameter settings of (m,m2).

m,m2 m = N = 105 (2000, 10) (2000, 20) (2000, 35)

Data (GB) 7.008 0.041 0.081 0.142

m,m2 (3000, 10) (3000, 20) (3000, 30) (2000, 35)

Data (GB) 0.061 0.122 0.183 0.214

m,m2 (104, 10) (104, 20) (104, 30) (104, 35)

Data (GB) 0.204 0.407 0.610 0.712

3.5 Summary

In this chapter, we investigated a differentiating user service model for electricity

usage. The model is based on an analysis of a real smart metering data trace where we

observed that there exists various usage patterns among the power energy customers.

One key problem of a differentiating user service model is that the model computation

faces a huge amount of data. There is a large number of customers, and for each

customer, his/her electricity usage pattern is represented by long period and multi-

dimensional data. As a result, the complexity for a differentiate service model is

not in the sense of computation, but in big data. We developed a novel sublinear

60

Table 3.3: Minimum amount of data (GB unit) involved in the computation of pro-
posed sublinear methods as a function of (ε1, δ1, δ2)

ε1, δ1, δ2 (0.05,0.05,0.006) (0.05, 0.05, 0.001)

Data (GB) 0.2402 0.0328

ε1, δ1, δ2 (0.05, 0.005, 0.001) (0.01, 0.05, 0.001)

Data (GB) 0.0581 3.9732

algorithm where we use a sublinear amount of data and we guarantee a small error

bounds and a given confidence. We demonstrated by both theoretical proofs and trace-

driven evaluations that our algorithm can effectively reduce the amount of data to be

processed to a range that is reasonable for the state-of-the-art computing capability.

61

Chapter 4

Tensor Voting Framework with Its

Applications in Human Mobile Trace

Inference

As an example to illustrate tensor methods, we address the tracking problem of

inferring human mobility trace under the circumstance that the recorded location

information exhibits missing and noisy data. Trace inference provides key location

information of objects such as personal devices in wireless networks, and can serve

as one of the important networking topics. Based on the tensor voting theory, we

propose an efficient tensor voting algorithm and a specified implementation scheme.

The model is constructed based on the geometric connections between the input signals

and encodes the structure information in the tensor matrix. Thus, the computation is

carried out in the form of matrix, which reduces the computation load. The proposed

method is applied to real human mobility trace. After trace completion by tensor

voting, we develop a systematic framework of feature extraction to analyze the traces.

The fractal analysis is incorporated in the feature extraction method to characterize

scale-independent features of human mobile trace. The results show that our proposed

approach effectively recovers human mobility trace from the incomplete data input and

provides comprehensive analysis of the trace. Our key contributions are:

1. Giving the detailed derivation of constructing the normal space based on the

eigenvalue problem;

2. Implementing the tensor voting algorithm efficiently in the sparse sense;

3. Applying valid evaluation criteria to quantify the performance of the proposed

62

tensor voting algorithm;

4. Applying fractal analysis to characterize the trace features for data mining tasks.

This chapter is based on our previous work [39] and organized as follows: In Section

4.1, the literature survey is presented to provide a broad view of tensor methods as

well as the fractal analysis utilized in this chapter. In Section 4.2, the mathematical

model of tensor voting is introduced to encode the data and perform the structure

inferring procedure. The inference algorithm is given in Section 4.3. In Section 4.4,

trace analysis is performed based on the efficient feature extraction including fractal

analysis. Simulation results are presented in Section 4.5. In Section 4.6, we draw

conclusions and summarize this chapter.

4.1 Background

Some tracking problems can be essentially transformed as the image processing

problems where the tensor voting technique has been widely utilized. Guy elaborated

tensor voting theory with insightful analysis in his Ph.D. thesis [40]. The theory is

then ameliorated by other researchers in the past decade [41]. In tracking applications,

as the topic of this chapter, tensor voting systematically infers hidden or incomplete

structures, for instance, gaps and broken parts in the trace curve. Tensor voting is

also referred to as perceptual grouping [42] emphasize the contribution of the Gestalt

principles on which the theory is based. In brief, the Gestalt principles state that

the presence of each input token (site, pixel, signal, etc.) implies a hypothesis that

the structure passes through it. For example, considering the 2D imaging process of

a chair, if one pixel has recorded the chair signal, it is highly likely that some of its

neighboring pixels should have captured the same structure/object signals. In other

words, it is human nature to configure simple elements into the perception of complex

63

structures. In [43] and [44], the object signals observed by fixed cameras are repre-

sented using spatiotemporal features which facilitates the application of tensor voting

theory. The advantage of applying tensor voting brings several geometric properties

including smooth continuous trajectories and bounding boxes with minimum registra-

tion error. Although there are extensive research efforts dedicated to tensor voting

study in the image processing field [45], little work involving the tensor voting theory

has been done in the communication realm according to the best of our knowledge.

Moreover, very few research handles with the missing data problem in the tracking

context.

Besides tensor voting, tensor theories have been widely applied to emerging hot

topics such as big data. Tensor decomposition has been developed to address various

data mining tasks as an extension of principal component analysis (PCA) in higher

dimensions. In [46], a scalable and distributed version of the Tucker model, MR-T,

is implemented using the Hadoop MapReduce framework. Authors in [47] propose

a new constrained tensor factorization framework, building upon the Alternating Di-

rection method of Multipliers (ADMoM). Work in [48] permeates benefits from rank

minimization to scalable imputation of missing data, via tracking low-dimensional

subspaces and unraveling latent structure from incomplete streaming data. Work in

[49] addresses the problems of computing decompositions of full tensors by using com-

pressed sensing (CS) methods working on incomplete tensors, i.e., tensors with only

a few known elements.

Another topic in tracking problems is trajectory analysis [50], which has wide appli-

cation scenarios including vehicle traffic management, vessel classification by satellites

images and so forth. In [51] a unifying framework is constructed to mine trajec-

tory patterns of various temporal tightness. The proposed framework consists of two

phases: initial pattern discovery and granularity adjustment. Authors in [52] employ

64

the fractal analysis of a fin whale’s trajectory tracked by the satellite. The imple-

mented fractal analysis provides the scale-independent measurement to summarize

interactions between an organism and its ecosystem and depends on the heterogeneity

of the whale’s environment and the whale’s ability to perceive it. In [53], several real-

world human mobility traces are employed to analyze network robustness in the time

domain. Authors in [54] propose a novel integrated framework for multiple human

trajectory detection, learning and analysis in complicated environments. In [55], a

new approach for abnormal loitering detection using trajectory analysis is described

and Inverse Perspective Mapping (IPM) is presented to resolve distortion of trajectory

direction.

4.2 Tensor Voting Model

In this section, we illustrate the tensor voting framework. In Section 4.2.1, we

present the way to encode the normal space with tensor representation. In Section

4.2.2, the fundamental stick tensor voting is addressed as the basis for inferring ge-

ometric structure via the encoded normal space. In Section 4.2.3, the initialization

procedure for tensor voting is introduced under the circumstance that no prior struc-

ture information is known. In Section 4.2.4, the inference method based on tensor

decomposition is explained.

In order to infer the hidden or missing structures, we need to model the structures

mathematically first. Generally, the structure types in the form of 2D images can

be classified into two categories: curves and regions. Curves are modeled as the

structures that have a 1-d normal space, which is referred to as a stick. Regions are

modeled as the structures that have a 2-d normal space, referred to as a ball. Normal

space represents the structure types well, but it is required to know how salient the

structures are in order to adequately model the structure. Hence, the parameter

65

defined as saliency associated with each structure type is employed to indicate the

size of structure. Both the normal space and saliency information are encoded in a

tensor via specific calculation that will be described later.

After developing the mathematical models, we can further explain the hints ob-

tained from the Gestalt principles [56]: (1) a token “communicates” its structure

information to its surrounding tokens in a certain way with respect to its normal

space, i.e., the surrounding tokens under its influence are supposed to have the same

kind of normal space; (2) in the real world, a token may contain a combination of

information of both structure types. For instance, a token that actually belongs to a

curve has a dominant saliency in the 1-d normal space while it probably has minor

saliency in the 2-d normal space.

4.2.1 Encode Normal Space with Tensor

In math, a normal space is an N -by-N matrix for objects in N -dimension, denoted

by Nd. Consider a d-dimension normal space in the N -dimension world, which is

spanned by the first d out of N orthonormal basis vectors ek, k = 1, 2, ..., N , we have

the normal space matrix expressed as

Nd =
d∑

k=1

eke
T
k . (4.1)

The projection of any vector v into this normal space is

vn = Ndv. (4.2)

It can be easily proved that vn is the projection of v into the normal space by showing

that: (1) vn can be linearly expressed by the basis vectors ek, k = 1, 2, ..., N ; (2) dot

product 〈vn − v,vn〉 = 0.

The exact tensor matrix V that encodes both normal spaces and their saliency is

assumed to be known. From the previous discussion, we know that V is a symmetric,

66

positive semi-definite N -by-N matrix. Suppose its eigenvalues are ordered as λ1 ≥

... ≥ λN ≥ 0 with corresponding eigenvectors e1, ..., eN . By the knowledge of linear

algebra, we know that the eigenvectors of V are orthogonal with each other (for the

eigenvectors that belong to 0 eigenvalue, we can generate those eigenvectors in a way

that they meet this requirement). Then if we normalize these eigenvectors into unit

vectors, we have a set of orthonormal basis ê1, ..., êN . Furthermore, we have the

following derivations as

Vêd = λdêd, (4.3)

Vêdê
T
d = λdêdê

T
d , (4.4)

V
N∑
d=1

êdê
T
d =

N∑
d=1

λdêdê
T
d , (4.5)

V =
N∑
d=1

λdêdê
T
d =

N−1∑
d=1

(λd − λd+1)
d∑

k=1

êkê
T
k + λN

N∑
k=1

êkê
T
k , (4.6)

and

V =
N−1∑
d=1

(λd − λd+1)Nd + λNNN . (4.7)

From (4.7), we define the saliency sd in the straight forward fashion: sd = λd − λd+1,

if d < N ; sd = λN , if d = N . Thus, substituting the saliency into (4.7), we have

V =
N∑
d=1

sdNd. (4.8)

4.2.2 Inferring Structure

To simplify the illustration procedure, we will assume that we already know the

structure types and saliencies for now. We will discuss how to obtain this information

later.

67

Figure 4.1: Illustration of the fundamental stick vote

We start with the simplest case that is the fundamental unit stick vote when

the normal space is 1-d. Consider a voter point p (a token that passes its structure

information to others) on a curve. Its normal is a known unit vector v̂n. We want to

know how it influences its neighboring votee point x (a token that receives structure

information from voters). Based on the previous discussion, we assume that p and x

share the same structure type when we consider p is influencing x. To approximate

the path of the same structure type that passes through p and x, we take the arc of

the osculating circle centered at o passing through p and x as the most likely smooth

path [57]. Figure 4.1 shows the geometric relationship between p and x. v̂t is the

known tangent vector at p, and v is the vector from p to x. v̂c is the normal vector

at x that we want to calculate. θ is the vote angle between v and v̂t. We take the

influence as 0 when θ is larger than π/4 for the reason that two points that have an

angle larger than 90 degrees between their normals are least likely to influence each

other. a is the arc length between p and x. k is the curvature of the osculating circle,

which is the reciprocal of the radius R = ox. To calculate θ and v̂c, we have

θ = arcsin vT v̂n (4.9)

and

v̂c = v̂n cos 2θ − v̂t sin 2θ. (4.10)

68

We also add a decay profile to the tensor to model the decaying influence of the

information going through the structure. Therefore, the complete unit stick vote

(tensor) that encodes the normal space information received by the votee is

Vp = DF (a, k, σ)v̂cv̂
T
c . (4.11)

DF (a, k, σ) is the decay profile that takes a, k and σ as parameters. σ is the free

parameter set by the user to control the scale of voting. The decay profile can be

given empirically or based on a traditional choice as

DF (a, k, σ) = e−(
a2+ck2

σ2
), (4.12)

where the parameters can be derived by the geometry as

c =
−16log(0.1)(σ − 1)

π2
, (4.13)

a =
θ||v||
sin θ

, (4.14)

and

a =
2 sin θ

||v||
. (4.15)

Usually, a voter’s stick vote is not a unit vector. If so, the unit tensor expressed in

(4.11) is multiplied with the corresponding saliency of the 1-d normal space of the

voter.

Likewise, when inferring structures for the 2-d normal space, we attempt to find

the same normal space at the votee. In that case, 2 basis vectors are required for

the 2-d normal space. The procedure is equivalent to: (1) find out the basis vectors

that span voter’s normal space; (2) vote or project these basis vectors, respectively,

in the way the fundamental stick vote does to the votee. (3) reconstruct the complete

normal space information at the votee by combining the newly generated normal space

information, i.e., adding the tensor matrices created by the stick vote, respectively.

69

To find out the basis vectors of the voter’s normal space, Mordohai proposes a

method [57] that projects the voter-to-votee vector into voter’s normal space and

then computes the orthonormal basis vectors for the voter’s normal space based on the

projection and Gram-Schmidt orthogonalization procedure. This method significantly

reduces the computation when calculating the basis vectors of the high dimensional

normal space.

Suppose the voter’s normal space is known and encoded as the tensor matrix Np
d,

where p represents the voter point and d represents the dimension of its normal space.

For any fixed votee point x that receives p’s vote, the voter-to-votee vector v is known.

Then the projected vector is

vn = Np
dv. (4.16)

Thus, the tangent vector vn is computed by

vt = (I −Np
d)v = v − vn, (4.17)

where I is the identity matrix of dimension N -by-N . Based on (4.17), these two

vectors are then normalized as v̂n and v̂t. The first constructed basis vector for

the normal space is selected as v̂n,1 = v̂n. Next, the Gram-Schmidt procedure is

employed to construct the rest d − 1 orthonormal basis vectors v̂n,i, i = 2, 3, ..., d.

As a consequence, each v̂n,i is considered as the fundamental stick vote and voted

to the votee as the voting procedure described above. Each stick vote results in a

tensor matrix Vp
i , i = 1, 2, ..., d for the d-dimension normal space. Finally, these

tensors are summed up into one matrix that represents the complete information for

the d-dimension normal space at votee x. The proposed method of generating the

basis set facilitates the computation because for i = 2, 3, ..., d, the basis vector v̂i is

orthogonal to v, which means the vote angle θ = 0. Hence, (4.10) is simplified during

the computation.

70

Figure 4.2: Illustration of the token refinement procedure: each point is initialized
with a ball tensor; points nearby with each other form stick tensors while points far
away from others remain ball tensors.

4.2.3 Token Refinement

So far, the discussions are based on the presumption that the normal space and

saliencies information are known at a given voter site. Nevertheless, in most cases, it

is impossible to obtain this kind of prior knowledge. Thus, the proper initialization

called token refinement, which estimates the prior information, is needed.

Figure 4.2 illustrates the token refinement procedure in a 2D space. In the token

refinement procedure, each input token is initialized with a unit ball tensor indicating

neither direction preference nor prior saliency information. The input tokens are then

considered one by one as the voter and voted to its neighboring input tokens. In the

end, all the tensors received by each input token are summed up and stored as the

known normal space and saliency information. If a cluster of tokens actually belong

to the same curve in the real world, and then the way they influence each other using

their initial ball tensors will put major emphasis on the stick tensor, namely the 1-d

normal space in a 2D world. As can be seen in Figure 4.2, the tokens along the curve

influence each other during token refinement, resulting in elongating their tensors

to become stick tensors in the 2D space, while the tokens that sparsely spread out

the space receive little information from others, causing the existing ball tensors to

remain..

71

4.2.4 Token Decomposition

After token refinement, the tensor voting procedure can be completed by the

method described in Section 4.2.2. The result in the 2D image case is that each

pixel is associated with a 2x2 matrix T. The ultimate objective is to decide which

structure type the candidate pixel should belong to. Hence, the tensor matrix T needs

to be decomposed by (4.7) to extract the saliencies for the 2 structure types. In 2D

case, it becomes

T = λ1ê1ê
T
1 = (λ1 − λ2)ê1ê

T
1 + λ2(ê1ê

T
1 + ê2ê

T
2). (4.18)

If λ1 − λ2 > λ2 > 0, the stick saliency is the dominant one, which indicates the

certainty of one normal orientation. Therefore, the token is inferred as the part of a

curve, with its estimated normal being ê1. If λ1 ≈ λ2 > 0, the dominant component is

the ball saliency, which means there is no preference of orientation. Thus, the token is

estimated as the part of a region or a junction where two or more curves intersect with

multiple orientations present simultaneously. Note that, if both the saliency values are

very small, the candidate token is likely an outlier. This makes tensor voting capable

of filtering noise.

4.3 Inference Algorithm

Based on the previous discussion, there are multiple choices with respect to how

to implement the tensor voting technique. One feasible way to implement the tensor

voting technique is to compute the so called voting field for each token; this method

is referred to as the per-voter scheme. After token refinement procedure is complete,

the per-voter algorithm examines every input token as a voter and computes the set

of votes it casts to all its neighbors. That set of votes is referred as the voting field.

The algorithm then integrates all the voting fields and performs tensor decomposition

72

at each site. In [58], tensor voting is implemented based on the per-voter scheme.

In addition, the algorithm is combined with the steerable filter theory [59] to rewrite

the tensor voting operation as a linear combination of complex-valued convolutions,

which significantly reduces the computation load.

In this chapter, a straightforward implementation method of tensor voting tech-

nique referred to as the per-votee scheme is proposed to infer the human mobility trace

encoded in the location data with some recordings missing. The per-voter scheme cal-

culates one vote from point to point at one time. In order to reduce the computation,

we also implement tensor voting in a sparse sense. When examining one site as a

votee, we only consider the influence it received from the neighboring pixels {Cee}

within the radius of approximately 3σ as reported in [40]. Furthermore, we define the

sparse voting region, gather all the tensors received by each votee only in that region

and decompose the result tensor matrix Mee to determine its actual structure type.

Finally, we make the voting procedure iterative so that it is able to fill the large gaps.

The implementation scheme is summarized in the Algorithm 1. In the initialization

stage, each voter matrix is initialized as the identity matrix Mer, representing the

ball tensor while each votee matrix Mee is initialized by the zero matrix. During the

voting procedure, the voter matrix Mer is firstly decomposed into two normal vectors

{Vn1,Vn2} which are then voted as the fundamental stick tensor to the votee. As

reported in [40], each voter decomposition using (4.8) is computed in O(N3) time

where N is the dimension of input data. And each stick vote indicated in (4.11) is

computed in O(N3) time.

4.4 Trace Analysis

In this section, we carry on to analyze the trace patterns in order to discover rep-

resentative behaviors or characteristics of the objects. The underlying philosophy of

73

Algorithm 8: Tensor voting based on the per-votee scheme

input 2D image with the incomplete trace points set {Pij}, set scale of voting σ.
for r = 1, 2, . . . , number of iterations do

initialize voter matrix Mer and votee matrix Mee.
for i, j = 1, 2, . . . , indexes of trace points do

for each point p lies in the neighbohood of {Pij} do
if p ∈ {Pij} then

calculate DF and θ by the coordinates of the voting pair {p, Pij};
decompose p’s Mer into 2 normal vectors {Vn1,Vn2};
multiple {Vn1,Vn2} with DF and project them respectively to
Pij;
collect all vectors received at Pij and convert them into tensor.

Mee of Pij = sum up all tensors that Pij has received;

update the Mer for {Pij} by Mer = Mee;

find out a new set of votees {Cee} that are defined by the sparse region of
{Pij};
set the votee matrix Mee for {Cee} as 2-by-2 zero matrix;
for each point in {Cee} do

repeat the similar voting procedure above using the updated voter
matrices.

for each pixel x of the image do
if x ∈ {Cee} then

decompose the Mee of x;
classify the pixel x according to its saliencies;

Skeletonize the updated trace points.

74

trace analysis is that we believe different objects’ traces reflect some hidden features

that can be differentiated. The objective of mining traces can vary in different con-

texts. For example, in our study, due to the different road layouts of distinct cities,

it is highly likely that the corresponding collected human mobile traces carry differ-

ent hidden features. Hence, by analyzing the properly extracted features of human

mobile traces, different corresponding cities can be inferred as well as the road layout

styles. Another application of trace analysis is the traffic control problem. Based on

the trace analysis of each vehicle, it is possible to identify outlier vehicles which may

cause damage and loss to the traffic.

In order to perform trace analysis, proper hidden features of the complete traces

have to be extracted first. Note that feature extraction depends on the specific ap-

plication. Here we propose three features to be used to characterize a human mobile

trace: normalized trajectory mean, Fourier descriptor and fractal dimension. These

features can be categorized into two classes: spatial features (the first two) and scale-

invariant feature (the fractal feature). It is worth to point out that the fractal feature

provides suitable descriptions of inherent nature of the object data recorded by the

GPS due to the scale-independent property brought by the fractal analysis. Hence,

regardless of any resolution of the GPS measurements or any unit (meters, kilometers,

etc.) that is taken to represent the trace, the fractal feature stays consistent.

To ease the illustration of feature extraction procedure, we assume the trace data

are in 2D. Let the set of inferred trace points be {T}, and we assume there are n

points that continuously form the inferred trace, each with two coordinates in the 2D

space: (T ix, T
i
y), i = 1, 2, ..., n. The normalized trajectory mean is defined as

m =
1

n

n∑
i=1

(T ix, T
i
y)− (min(T ix),min(T iy)). (4.19)

The normalized trajectory mean is to roughly indicate the cover range or off-set range

of the trace. Sometimes the trace might form a loop and therefore, the Fourier de-

75

scriptor is needed to characterize the trace in this case. For the coordinates of each

trace point, there is a corresponding complex value formed as

zi−1 = T ix + j · T iy, (4.20)

where j is the imaginary unit. Thus, we can obtain a sequence of {zi} and the discrete

Fourier transform of {zi} is

a(u) =
1

n

n−1∑
i=0

zie−j2πui/n, u = 0, 1, ..., n− 1. (4.21)

The complex coefficient a(u) is referred to as the Fourier descriptor and its absolute

value indicates the magnitude of corresponding frequency component. Note that the

Fourier descriptor is independent of how the first trace point is chosen. High frequency

components present rapidly varying details in the trace while low frequency compo-

nents determine the shape of trace at the coarse level. Denote the absolute value of

low frequency components and high frequency components as aL and aH , respectively.

We then define Rf to be the ratio of low vs high frequency components as

Rf = aL/aH , (4.22)

which serves as the Fourier descriptor feature for the further trace analysis.

In order to include scale-independent feature, we briefly introduce the fractal di-

mension to the feature extraction procedure. The underlying philosophy of fractal

dimension is that self-similarity and repeating patterns exist in nature objects. A

fractal is a shape made of parts similar to the whole in some way. Usually, a fractal

is a set of objects that has a fractal dimension that exceeds its topological dimension.

The fractal dimension indicates the effect of space occupation by the complex shape.

There are many ways to formulate fractal dimension, such as the Hausdorff dimension,

the Richardson Law [52] and so forth. Here we adopt the Richardson Law to define

fractal dimension as

L(ε) ∝ εD−Df , (4.23)

76

where D is the topological dimension of the trace and D = 1. Df is the fractal

dimension. ε is the imaginary unit “rule” used to measure the trace. It can be a

line segment for measuring curves, or a square/circle for measuring planar objects,

or a cube/ball for measuring solid objects. L(ε) is the number of “rulers” used to

continuously cover the entire trace. By taking the log of (4.23), we have

ln(L(ε)) = (1−Df) ln ε. (4.24)

Therefore, we can vary the unit “ruler” ε and compute the corresponding counts

(L(ε)) of the trace. The fractal dimension Df is then calculated by linear regression

via (4.24).

So far we have obtained all the features to characterize a trace: the normalized

trajectory mean m, the Fourier descriptor feature Rf , and the fractal dimension Df .

These extracted features of traces are then input into our classification model to infer

the different corresponding cities. We choose the logistic regression model for our trace

classification/city inference task. Since the classification model is not the key point

in this chapter, we refer readers to the work in [60] for further information regarding

the classification model used here.

4.5 Example and Analysis

The performance of the proposed tensor voting algorithm is verified through ex-

tensive experiments on the human mobility data collected in New York city by the

GPS [61]. Each of the 39 collected traces is firstly converted into 2D binary images of

the dimension 314 × 351. The 2D images are then randomly sampled to have missing

or broken segments of approximately 7-pixel length on average. Finally, the proposed

tensor voting algorithm is applied to the images with missing parts and outputs the

inferred complete trace of the human object. Due to the small size of missing gaps,

77

the iteration number is set fixed to 1 in this chapter for simplicity. For the cases where

there are large missing gaps, the iteration number should be set larger when the ad-

jacent iterations return sufficiently similar results. The experiments are conducted

extensively to each image with various values of σ, which is the only free parameter

that controls the scale of voting, ranging from 1 to 50. One instance of the complete

traces and corresponding sampled trace with missing parts are shown in Fig. 4.3 and

4.4, respectively. Fig. 4.5 and 4.6 are the inferred traces by setting the scale of voting

parameter σ = 1 and σ = 2, respectively. As can be seen in these two figures, the gaps

are not fully connected using too small voting scale because the structure elements

are unable to influent further points. While in the situation that σ is too large, the

gaps can be connected however there are many over-detected segments of the traces,

which make the performance inefficient. One particularly interesting point is that the

algorithm even recovers the missing arcs appropriately. During the whole procedure

of tensor voting algorithm, there is no user effort required to be input to indicate

which part of the trace is missing and should be inferred. The inference is completed

fully automatically once the only free parameter σ is fixed. This is one aspect of the

strength of tensor voting method. The key of implementing tensor voting algorithm is

the determination of data-driven parameters: the number of iterations and the scale

of voting σ. Empirically, larger values of iterations and σ will make the algorithm ca-

pable of filling larger missing gaps, while the smaller values of them are more suitable

for the traces of plenty of narrow missing gaps.

There are massive efforts contributed to the performance measure for the tracking

problems [62], [63], [64]. To validate the inferred traces and quantify the performance

of the proposed algorithm, the similarity metrics proposed in [65] is adopted due to

its practical merits. Denote the complete trace points of the ground truth as the set

{S} while the set of inferred trace points being regarded as set {T} as defined in

78

Figure 4.3: One instance of complete human mobility trace converted from the GPS
data.

Figure 4.4: Corresponding sampled human mobility trace with missing segments.

79

Figure 4.5: Inferred result employing tensor voting with voting scale σ=1.

Figure 4.6: Inferred result employing tensor voting with voting scale σ=2.

80

Figure 4.7: Corresponding True Positive, False Positive and False Negative curves.

Figure 4.8: Corresponding True Positive ratio curve.

81

previous sections. The true positive (TP) of the inference algorithm is defined as the

cardinality of the set {p}i satisfying

{p}i = {p|p ∈ {T}, p ∈ {S}}. (4.25)

The false positive (FP) and false negative (FN) of the inference algorithm are defined

in the similar fashion as

FP = Card({p}j); {p}j = {p|p /∈ {T}, p ∈ {S}} (4.26)

and

FN = Card({p}k); {p}k = {p|p ∈ {T}, p /∈ {S}}. (4.27)

Since the trace points only occupy a small portion of the entire image, it would be

irrational to take the true negative (TN) into account when evaluating the accuracy

of the algorithm. In addition, due to the specific setting of the tracking problem, most

interests have been focused on the value of TP. Furthermore, in order to compare the

performance on various traces, we compute the TP ratio by dividing the TP values

by the cardinality of the set {S}. The quantified performance of the tensor voting

algorithm with various σ values is shown in Fig. 4.7 and 4.8. The importance is placed

on the TP curve due to the specific settings of the tracking problem. And the optimal

TP ratio achieves 90.36% at σ = 2 while the numbers of FP and FN are relatively

small. Considering the average lenght of the missing segments in our experiments is

7-pixel, this result is consistent with the theory represent in [40], which states that

the points within the circle centered at a voter of a radius of approximate 3σ would

effectively receive the votes. When the σ is chosen too small, the points are under

little influence from others, leading to the failure of inferring large gaps. On the other

hand, as the σ grows larger, the points far away with each other interfere so much that

the reconstructed results are full of noise. The small fluctuations present locally in

82

the four curves are consequence of different lengths of missing segments that appear

in the input images.

To show the advantage of proposed sparse tensor voting algorithm, we also con-

struct the control group or so called victim image using other approach to accomplish

the inference task. In this study, we choose to directly connect each pair of the end

points of the missing segments, i.e. the control approach assumes the missing parts

are all linear segments, which will fail where the true trace exhibits curves. The per-

formance comparison between the proposed tensor voting (TV) algorithm and control

method is shown in the Table 4.1, where the experiments are both conducted on the

same trace. It can be seen from the Table 4.1 that the proposed algorithm outper-

forms the control one since the missing segments are not all linear segments. In the

situation where most miss segments are curves, the performance difference between

the two methods will be more significant.

Table 4.1: Performance comparison between the proposed tensor voting algorithm and
victim method.

Method TP TP ratio FP FN

TV 966 90.36% 230 103
Victim 887 82.97% 293 182

To evaluate the proposed methods for trace analysis, we first present the illus-

trations of extracting fractal dimensions for each trace. The traces are converted

into binary images which are then computed using (4.24) with the varying ε =

2, 3, 4, 6, 8, 12, 16, 32, 64 in the unit of pixels. In Fig. 4.9, we illustrate the fractal

dimension calculated by linear regression for the same trace used in Fig. 4.3-4.8. As

can be seen in Fig. 4.9, the fractal dimension of the investigating trace is larger than

1, indicating that the shape of the trace is “more complex” than a straight line in 2D.

For the Fourier descriptor feature Rf , we take the average of first 30% portion of the

frequency components in (4.21) as the low frequency components aL and the average

83

of last 30% portion of the frequency components as the high frequency components

aH . The feature Rf is then computed according to (4.22). As indicated in Section

4.4, we feed the logistic regression model with the extracted features: the normalized

trajectory mean m, the Fourier descriptor feature Rf , and the fractal dimension Df

to classify the traces into different cities. We perform the trace analysis on two data

sets with 39 traces from New York (label 0) and 41 traces from Orlando (label 1),

respectively. The training and testing data sets are formed by 4-fold cross validation,

each time with 60 traces in the training set and 20 traces in the testing set where

the traces are divided randomly. The precision of regression results are obtained by

averaging each cross validation result, and are shown as the confusion matrices in Ta-

ble 4.2 where the numerical values refer to the counts of correcly/incorrectly classified

traces. As can be seen in Table 4.2, the precision is 80% in the training set and 85%

in the testing set, which demonstrates the effectiveness of our trace analysis methods.

Table 4.2: Trace analysis via logistic regression.

Training set Estimated label 0 Estimated label 1

True label 0 26 4
True label 1 8 22

Testing set Estimated label 0 Estimated label 1

True label 0 7 2
True label 1 1 10

4.6 Summary

This chapter provides an effective approach to infer the human mobility trace as

the key object frequently utilized in networking, given that the observed location data

exist missing parts. Traditional tracking techniques seldom deal with the problem

of missing data setting. By employing the tensor voting technique as one of the

artificial intelligence methods, the trace inference is done in an automatic fashion. The

84

Figure 4.9: Fractal dimension computation via ln(L(ε)) vs ln ε plot, corresponding to
the same trace used in Fig. 4.3.

only free parameter that requires the user input is the voting scale. One advantage

of the proposed algorithm is that there is no requirement of user instructions for

identifying which part to inferred. The algorithm discovers the missing positions and

accomplishes inference. The sparse per-votee implementation scheme significantly

reduce the computation, making the algorithm suitable for potentially large-scale data

set and online analysis. By employing the similarity metrics between the inferred

trace and the ground truth, our algorithm shows its power in recover the human

mobility trace accurately. The tensor grouping method can be applied to estimate local

dimension in manifold learning or function approximation tasks. The fractal analysis

can be designed for image compression, denoising and channel estimation. Future work

may also involve with: (1) modifying decay profile to better fit specific problems; (2)

combining tensor representations with other information, for instance, combining the

second order tensor voting with the first order information as the polarity coefficient

to detect end point, which prevents over-detecting points.

85

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation, we provide conduct a theoretical research in smart grid systems

and wireless communications networks with emphases on probabilistic clustering anal-

ysis, pricing scheme design, sublinear sampling, tensor voting theory and trajectory

pattern recognition.

First, we conduct the investigation on clustering analysis in smart grid systems.

Our approach involves several key technical ideas as follows: First, an efficient prag-

matic feature extraction by multi-scale analysis of 24 dimensional daily load profiles,

beginning at coarse grain levels. Second, a novel iterative probabilistic clustering al-

gorithm based on the modified Mahalanobis distances between load profiles in feature

space and log-likelihood optimization. This algorithm converges rather fast to well

separated clusters and can be scalable for big data sets. Third, a new strong separa-

tion index to characterize the separability of any pair of clusters by precise statistical

analysis. Fourth, a hierarchical approach to automatic clustering by starting with

the generation of a small number of clusters at coarse grain scales and iteratively

attempting sub-cluster splitting at finer scales. Finally, the simulation results on our

large benchmark data set of smart meter data indicate that our approach is easily

implementable at the computational level and performs quite convincingly on our

benchmark data set.

Then, we investigate the pricing scheme based on differentiating users in smart

grid networks and develop a sublinear sampling method accordingly. The model is

based on an analysis of a real smart metering data trace where we observe that there

86

exists various usage patterns among the power energy customers. One key problem

of a differentiating user service model is that the model computation faces a huge

amount of data. There is a large number of customers, and for each customer, his/her

electricity usage pattern is represented by long period and multi-dimensional data.

We develop a novel sublinear algorithm where we use a sublinear amount of data

and we guarantee a small error bounds and a given confidence. We demonstrat by

both theoretical proofs and trace-driven evaluations that our algorithm can effectively

reduce the amount of data to be processed to a range that is reasonable for the state-

of-the-art computing capability.

Third, we research on the trajectory inference and pattern analysis problems in-

volved in the communication networks. By employing the tensor voting technique as

one of the artificial intelligence methods, the trace inference is done in an automatic

fashion. The only free parameter that requires the user input is the voting scale.

One advantage of the proposed algorithm is that there is no requirement of user in-

structions for identifying which part to inferred. The algorithm discovers the missing

positions and accomplishes inference. The sparse per-votee implementation scheme

significantly reduce the computation, making the algorithm suitable for potentially

large-scale data set and online analysis. By employing the similarity metrics between

the inferred trace and the ground truth, our algorithm shows its power in recover

the human mobility trace accurately. The tensor grouping method can be applied to

estimate local dimension in manifold learning or function approximation tasks. The

fractal analysis can be designed for image compression, denoising and channel esti-

mation. Future work may also involve with: (1) modifying decay profile to better

fit specific problems; (2) combining tensor representations with other information, for

instance, combining the second order tensor voting with the first order information as

the polarity coefficient to detect end point, which prevents over-detecting points.

87

5.2 Future Work

Even thought the clustering analysis, sublinear sampling and tensor voting theory

have been investigated in this dissertation, there are still many problems remaining

unsolved in there domains.

5.2.1 Future Improvements on the Theory Side

One improvement direction for the proposed probabilistic clustering work is to

determine the number of clusters at the beginning of the algorithm. Although in the

proposed clustering work, the clustering strategy is treated hierarchically such that

the final and optimal number of clusters can be obtained at the end of the proposed

clustering framework, there are certain cases where the globally optimal number of

clusters is in need. This prior information is critical for many clustering techniques

such as K-means. There are some existent methods dealing with this problem. One

feasible approach is introduced by Tibshirani [32]. In his pioneering work, he devel-

oped the so-called gap statistic to estimate the optimal number of clusters globally.

The brief underlying philosophy of gap statistic is to measure the within-cluster scat-

ter as a function of number of clusters. In principle, if the number of clusters is set to

1, the resulting within-cluster scatter will be the largest. However, if the number of

clusters is chosen to be equal to the number of data points, the resulting within-cluster

scatter will be 0, i.e., each data point itself forms a cluster. Hence, the within-cluster

scatter is decreasing over the number of cluster. Obviously, setting large values for the

number of clusters is over-demanded while small number of clusters will not guarantee

the compactness of the clustered structures. Work in [32] proposes a trade-off scheme.

Roughly speaking, the optimal number of clusters should be determined at the value

where the decreasing speed of within-cluster scatter starts to slow down. This method

is efficient in solving the problem of optimal number of clusters. However, further in-

88

vestigation is needed to employ it in the proposed probabilistic clustering approach

in this dissertation. Moreover, the gap statistic method requires the evaluation of

every possible number of clusters, which requires certain computation load. Further

investigation may involve how to make this procedure more efficient. Another impor-

tant topic regarding the proposed clustering technique is the initialization of cluster

centroids. Traditional treatment for centroids initialization is to randomly select some

data points out of the entire data set. This initialization strategy is, however, unable

to be proved as the optimal solution since the random initialization can lead to local

optimum. Generally speaking, it is better that the initialization chooses the data

points that are more representative. Hence, further research should focus on how to

select representative cluster centroids and avoid choosing the ones that are more like

outliers. Moreover, the convergence of many existent clustering algorithms has not

been proved theoretically even though most of the algorithms achieve convergence in

various real world applications.

Regarding the pricing scheme, the objective function of the proposed model is a lin-

ear prototype which may not fit into the complexity of other application cases. Future

research can focus on how to design a nonlinear objective function while guaranteeing

the solution of the optimization problem by proposing some efficient numerical algo-

rithms. Considering the proposed sublinear sampling method, one future improvement

may focus on how to theoretically extend the theory to allow for high dimensional data

since the original sublinear sampling is designed for one dimensional data input.

As for the proposed tensor voting methods, one key concern is how to reduce the

computation load under the situation that the input data dimension is high. If that

is the case, the proposed tensor voting methods will cope with eigen-decomposition

of high dimensional matrix, which is cumbersome in efficiency. In addition, the decay

function needs further research to make it more general for wide applications. Cur-

89

Figure 5.1: Possible generative model of infinite layers for the future work.

rently, the choice of the exponential family as the decay function is quite empirical.

Further validation and adjustment is needed in order to make the model more popular.

5.2.2 Future Improvements on the Application Side

The proposed clustering methods are tested using smart meter data. In the fu-

ture, we wish to test the methods on more data sets from other domains such as

classification of user equipment in wireless communications. The developed sublinear

sampling method can be adapted in the scenarios in computer science such as the

comparison of two string streams. In data science, tensors are utilized to model the

data cube in which the inherent property of data is encoded and can be revealed

through tensor decomposition. To broad the research field, the future research may

focus on the tensor methods with applications in data compression and representation.

With the development of big data topics, tensor methods are gaining increasing pop-

ularity nowadays. However, in networking research field, tensor methods are seldom

discussed. We wish to introduce tensor methods into networking field with new merit

and good performance.

90

5.2.3 Future Improvements on Alternative Models

Statistical models have been applied to the classification and prediction problems

in machine learning and data analysis. Some statistical methods make the hypothesis

of mathematical models that are controlled by certain parameters to fit the latent

structure of observed data. The observed data are assumed to be generated by com-

plex structures which have hierarchical layers and hidden causes. One key challenge

faced by modeling the data structure in this way is thus the determination of the

numbers of layers and hidden variables. However, it is sometimes impractical and

challenging to choose any fixed number for the model structure when making the

hypothesis. Therefore, we need flexible non-parametric models that make fewer as-

sumptions and are capable of an unlimited amount of latent structures as illustration

in the Fig. 5.1. Hierarchical nonparametric Bayesian model assumes unspecified

number of latent variables and produces rich kinds of probabilistic structures by con-

structing cascading layers. Hence, it is considered to be a powerful technique to cope

with the challenge. To continue the research in machine learning and boost our work

in smart grid systems, we will further explore several emerging techniques such as the

non-parametric Bayesian inference and deep learning to investigate their applicability

and efficiency under the smart meter context. As is known, non-parametric Bayesian

has the advantage of high automation and needs few assumptions while its hierarchi-

cal layers, however, cannot reach as many as possible. Deep learning architecture is

capable of providing deep hierarchical layers but needs some pre-determined param-

eters. One possible direction is to combine these two techniques to achieve higher

automation and accuracy.

91

References

[1] H. Farhangi, “The Path of the Smart Grid,” IEEE Power and Energy Magazine,

vol. 8, no. 1, pp. 18–28, January 2010.

[2] F. Li, W. Qiao, H. Sun, H. Wan, J. Wang, Y. Xia, Z. Xu, and P. Zhang, “Smart

Transmission Grid: Vision and Framework,” IEEE Transactions on Smart Grid,

vol. 1, no. 2, pp. 168–177, September 2010.

[3] D. Huang, H. Zareipour, W. Rosehart, and N. Amjady, “Data Mining for Elec-

tricity Price Classification and the Application to Demand-side Management,”

IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 808–817, June 2012.

[4] L. Qian, Y. Zhang, J. Huang, and Y. Wu, “Demand Response Management via

Real-time Electricity Price Control in Smart Grids,” IEEE Journal on Selected

Areas in Communications, vol. 3, no. 7, pp. 1268–1280, July 2013.

[5] S. Amin and B. Wollenberg, “Toward a Smart Grid: Power Delivery for the 21st

Century,” IEEE Power and Energy Magazine, vol. 3, no. 5, pp. 34–41, September

2005.

[6] S. Chen, K. Xu, Z. Li, F. Yin, and H. Wang, “A Privacy-aware Communication

Ccheme in Advanced Metering Infrastructure (AMI) Systems,” in IEEE Wireless

Communications and Networking Conference (WCNC), Shanghai, China, April

2013, pp. 1860–1863.

[7] V. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. Hancke,

“Smart Grid Technologies: Communication Technologies and Standards,” IEEE

Transactions on Industrial Informatics, vol. 7, no. 4, pp. 529–539, November

2011.

92

[8] V. Ford and A. Siraj, “Clustering of Smart Meter Data for Disaggregation,”

in IEEE Global Conference on Signal and Information Processing (GlobalSIP),

Austin, TX, December 2013, pp. 507–510.

[9] C. Joe-Wong, S. Sen, S. Ha, and M. Chiang, “Optimized Day-ahead Pricing

for Smart Grids with Device-specific Scheduling Flexibility,” IEEE Journal on

Selected Areas in Communications, vol. 30, no. 6, pp. 1075–1085, July 2012.

[10] M. Roozbehani, M. Dahleh, and S. Mitter, “Dynamic Pricing and Stabilization

of Supply and Demand in Modern Electric Power Grids,” in IEEE International

Conference on Smart Grid Communications (SmartGridComm), Gaithersburg,

MD, October 2010.

[11] Q. Wang, M. Liu, and R. Jain, “Dynamic Pricing of Power in Smart-grid Net-

works,” in IEEE 51st Annual Conference on Decision and Control (CDC), Maui,

HI, December 2012, pp. 1099–1104.

[12] C. Tsai, A. Pelov, M. Chiang, C. Yang, and T. Hong, “A Brief Introduction

to Classification for Smart Grid,” in IEEE International Conference on SMC,

Manchester, UK, October 2013, pp. 2905–2909.

[13] L. Du, J. Restrepo, Y. Yang, R. Harley, and T. Habetler, “Nonintrusive, Self-

organizing, and Probabilistic Classification and Identification of Plugged-in Elec-

tric Loads,” IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1371–1380,

September 2013.

[14] C. A. Ramon Granell and D. Wallom, “Impacts of Raw Data Temporal Resolu-

tion Using Selected Clustering Methods on Residential Electricity Load Profiles,”

IEEE Transactions on Power Systems, vol. 30, no. 99, pp. 1–8, December 2014.

93

[15] Y. B. Maria Halkidi and M. Vazirgiannis, “On Clustering Validation Techniques,”

J. Intell. Inf. Syst., vol. 17, no. 2-3, pp. 107–145, December 2001.

[16] T. Hong, J. Wilson, and J. Xie, “Long Term Probabilistic Load Forecasting and

Normalization With Hourly Information,” IEEE Transactions on Smart Grid,

vol. 5, no. 1, pp. 456–462, January 2014.

[17] A. Czumaj, F. Ergün, L. Fortnow, A. Magen, I. Newman, R. Rubinfeld, and

C. Sohler, “Sublinear-time Approximation of Euclidean Minimum Spanning

Tree,” in Proc. 14th Symp. Discrete Algorithms, January 2003, pp. 813–822.

[18] D. Wang, Y. Long, and F. Ergun, “A Layered Architecture for Delay Sensitive

Sensor Networks,” in IEEE Communications Society Conference on Sensor and

Ad Hoc Communications and Networks, Santa Clara, CA, September 2005, pp.

24–34.

[19] F. Ergun, H. Jowhari, and M. Saǧlam, “Periodicity in Streams,” in Proceedings

of the 13th International Conference on Approximation, and 14 the International

Conference on Randomization, and Combinatorial Optimization: Algorithms and

Techniques, Berlin, Heidelberg, April 2010, pp. 545–559.

[20] T. Batu, L. Fortnow, R. Rubinfeld, W. Smith, and P. White, “Testing that

Distributions Are Close,” in 41st Annual Symposium on Foundations of Computer

Science, Redondo Beach, CA, November 2000, pp. 259–269.

[21] R. Sanchez Grandia, V. Aucejo Galindo, A. Usieto Galve, and R. Vives Fos, “Gen-

eral Formulation for Magnetic Forces in Linear Materials and Permanent Mag-

nets,” IEEE Transactions on Magnetics, vol. 44, no. 9, pp. 2134–2140, September

2008.

94

[22] Q. Li and D. Schonfeld, “Multilinear Discriminant Analysis for Higher-order Ten-

sor Data Classification,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 36, no. 12, pp. 2524–2537, December 2014.

[23] F. Arslan and A. Grigoryan, “Fast Splitting α-rooting Method of Image Enhance-

ment: Tensor Representation,” IEEE Transactions on Image Processing, vol. 15,

no. 11, pp. 3375–3384, November 2006.

[24] R. Moreno, M. Garcia, D. Puig, L. Pizarro, B. Burgeth, and J. Weickert, “On Im-

proving the Efficiency of Tensor Voting,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 33, no. 11, pp. 2215–2228, November 2011.

[25] M. Zayani, V. Gauthier, I. Slama, and D. Zeghlache, “Tensor-based Link Pre-

diction in Intermittently Connected Wireless Networks,” Computing Research

Repository, 2011.

[26] L. Liu, Z. Han, Z. Wu, and L. Qian, “Collaborative Compressive Sensing Based

Dynamic Spectrum Sensing and Mobile Primary User Localization in Cognitive

Radio Networks,” in IEEE Globe Communication Conference (Globecom), Hous-

ton, TX, December 2011.

[27] K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong, “SLAW: A New Mobility

Model for Human Walks,” in INFOCOM, Rio de Janeiro, Brazil, April 2009, pp.

855–863.

[28] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On the Levy-walk

Nature of Human Mobility,” IEEE Transactions on Networking, vol. 19, no. 3,

pp. 630–643, June 2011.

[29] W. Fan and A. Bifet, “Mining Big Data: Current Status, and Forecast to the

Future,” SIGKDD Explor. Newsl., vol. 14, no. 2, pp. 1–5, April 2013.

95

[30] R. Rubinfeld and A. Shapira, “Sublinear Time Algorithms,” SIAM Journal on

Discrete Mathematics, vol. 25, no. 4, pp. 1562–1588, Februrary 2011.

[31] M. Figueiredo and A. Jain, “Unsupervised Learning of Finite Mixture Models,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 3,

pp. 381–396, March 2002.

[32] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the Number of Clusters in

a Dataset via the Gap Statistic,” Journal of the Royal Statistical Society: Series

B, vol. 63, pp. 411–423, November 2000.

[33] A. Mohsenian, V. Wong, J. Jatskevich, R. Schober, and A. Leon, “Au-

tonomous Demand-side Management Based on Game-theoretic Energy Consump-

tion Scheduling for the Future Smart Grid,” IEEE Transactions on Smart Grid,

vol. 1, no. 3, pp. 320–331, December 2010.

[34] S. Shao, T. Zhang, M. Pipattanasomporn, and S. Rahman, “Impact of TOU

Rates on Distribution Load Shapes in a Smart Grid with PHEV Penetration,”

in IEEE PES Transmission and Distribution Conference and Exposition, New

Orleans, LA, April 2010, pp. 1–6.

[35] L. P. Qian, Y. Zhang, J. Huang, and Y. Wu, “Demand Response Management via

Real-time Electricity Price Control in Smart Grids,” IEEE Journal on Selected

Areas in Communications, vol. 31, no. 7, pp. 1268–1280, July 2013.

[36] S. Bu, F. Yu, and P. Liu, “Dynamic Pricing for Demand-side Management in

the Smart Grid,” in IEEE Online Conference on Green Communications (Green-

Com), New York, NY, September 2011, pp. 47–51.

[37] T. Kim and H. Poor, “Scheduling Power Consumption With Price Uncertainty,”

IEEE Transactions on Smart Grid, vol. 2, no. 3, pp. 519–527, September 2011.

96

[38] F. Carvalho, P. Brito, and H. Bock, “Dynamic Clustering for Interval Data Based

on L2 Distance,” Computational Statistics, vol. 21, no. 2, pp. 231–250, 2006.

[39] E. Pan, M. Pan, Z. Han, and V. Wright, “Mobile Trace Inference Based on

Tensor Voting,” in IEEE Global Communications Conference (GLOBECOM),

Austin, TX, December 2014, pp. 4891–4897.

[40] B. J. King, “Range Data Analysis by Free-space Modeling and Tensor Voting,”

Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, NY, 2008.

[41] M. Reisert and H. Burkhardt, “Efficient Tensor Voting with 3D Tensorial Har-

monics,” in IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, Anchorage, AK, June 2008.

[42] G. Guy and G. Medioni, “Inferring Global Perceptual Contours from Local Fea-

tures,” in IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, New York, NY, June 1993, pp. 786–787.

[43] J. Kang, I. Cohen, and G. Medioni, “Continuous Multi-views Tracking Using Ten-

sor Voting,” in Proceedings Workshop on Motion and Video Computing, Orlando,

FL, December 2002, pp. 181–186.

[44] P. Kornprobst and G. Medioni, “Tracking Segmented Objects Using Tensor Vot-

ing,” in IEEE Conference on Computer Vision and Pattern Recognition, Proceed-

ings, vol. 2, Hilton Head Island, SC, June 2000, pp. 118–125.

[45] A. Narayanaswamy, Y. Wang, and B. Roysam, “3-D Image Pre-processing Algo-

rithms for Improved Automated Tracing of Neuronal Arbors.” Neuroinformatics,

vol. 9, no. 2-3, pp. 219–231, September 2011.

97

[46] L. Li and D. Boulware, “High-order Tensor Decomposition for Large-scale Data

Analysis,” in IEEE International Congress on Big Data, New York City, NY,

June 2015, pp. 665–668.

[47] A. Liavas and N. Sidiropoulos, “Parallel Algorithms for Large Scale Constrained

Tensor Decomposition,” in IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), South Brisbane, Australia, April 2015, pp.

2459–2463.

[48] M. Mardani, G. Mateos, and G. Giannakis, “Subspace Learning and Imputation

for Streaming Big Data Matrices and Tensors,” IEEE Transactions on Signal

Processing, vol. 63, no. 10, pp. 2663–2677, May 2015.

[49] N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer, “Breaking the Curse

of Dimensionality Using Decompositions of Incomplete Tensors: Tensor-based

Scientific Computing in Big Data Analysis,” IEEE Signal Processing Magazine,

vol. 31, no. 5, pp. 71–79, September 2014.

[50] N. Anjum and A. Cavallaro, “Multifeature Object Trajectory Clustering for Video

Analysis,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 18, no. 11, pp. 1555–1564, November 2008.

[51] J. Lee, J. Han, and X. Li, “A Unifying Framework of Mining Trajectory Patterns

of Various Temporal Tightness,” IEEE Transactions on Knowledge and Data

Engineering, vol. 27, no. 6, pp. 1478–1490, June 2015.

[52] D. Mouillot and D. Viale, “Satellite Tracking of a Fin Whale (Balaenoptera

Physalus) in the North-western Mediterranean Sea and Fractal Analysis of Its

Trajectory,” Hydrobiologia, vol. 452, no. 1-3, pp. 163–171, March 2001.

98

[53] D. Zhang and J. Sterbenz, “Robustness Analysis of Mobile Ad Hoc Networks

Using Human Mobility Traces,” in 11th International Conference on Design of

Reliable Communication Networks (DRCN), Kansas City, MO, March 2015, pp.

125–132.

[54] H. Liu and J. Li, “Unsupervised Multi-target Trajectory Detection, Learning

and Analysis in Complicated Environments,” in 21st International Conference on

Pattern Recognition (ICPR), Tsukuba, Japan, November 2012, pp. 3716–3720.

[55] J. Ko and J. Yoo, “Rectified Trajectory Analysis Based Abnormal Loitering De-

tection for Video Surveillance,” in 1st International Conference on Artificial Intel-

ligence, Modelling and Simulation (AIMS), Kota Kinabalu, Malaysia, December

2013, pp. 289–293.

[56] C. Zahn, “Graph-theoretical Methods for Detecting and Describing Gestalt Clus-

ters,” IEEE Transactions on Computers, vol. 20, no. 1, pp. 68–86, January 1971.

[57] P. Mordohai and G. G. Medioni, Tensor Voting: A Perceptual Organization

Approach to Computer Vision and Machine Learning, ser. Synthesis Lectures

on Image, Video, and Multimedia Processing. Morgan & Claypool Publishers,

November 2006.

[58] E. Franken, M. van Almsick, P. Rongen, L. Florack, and B. ter Haar Romeny,

“An Efficient Method for Tensor Voting Using Steerable Filters,” in Proceedings

of the 9th European Conference on Computer Vision, Berlin, Germany, 2006, pp.

228–240.

[59] W. Freeman and E. Adelson, “The Design and Use of Steerable Filters,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 9, pp.

891–906, September 1991.

99

[60] B. Krishnapuram, L. Carin, M. Figueiredo, and A. Hartemink, “Sparse Multi-

nomial Logistic Regression: Fast Algorithms and Generalization Bounds,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 6, pp.

957–968, June 2005.

[61] I. Rhee, M. Shin, S. Hong, K. Lee, S. Kim, and S. Chong, “CRAW-

DAD Data Set ncsu/mobilitymodels (v. 2009-07-23),” Downloaded from

http://crawdad.org/ncsu/mobilitymodels/, July 2009.

[62] A. Gorji, R. Tharmarasa, and T. Kirubarajan, “Performance Measures for Mul-

tiple Target Tracking Problems,” in Proceedings of the 14th International Con-

ference on Information Fusion (FUSION), Chicago, IL, July 2011.

[63] C. J. Needham and R. D. Boyle, “Performance Evaluation Metrics and Statis-

tics for Positional Tracker Evaluation,” in Proceedings of the 3rd International

Conference on Computer Vision Systems, Berlin, Germany, 2003, pp. 278–289.

[64] F. Yin, D. Makris, and S. A. Velastin, “Performance Evaluation of Object Track-

ing Algorithms,” in IEEE International Workshop on Performance Evaluation of

Tracking and Surveillance (PETS), Rio de Janeiro, Brazil, October 2007.

[65] L. M. Brown, A. W. Senior, Y. li Tian, J. Connell, A. Hampapur, C. fe Shu,

H. Merkl, and M. Lu, “Performance Evaluation of Surveillance Systems Under

Varying Conditions,” in IEEE PETS Workshop, Breckenridge, Colorado, January

2005.

100

