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ABSTRACT 
 

Parkinson’s disease (PD) is characterized by the progressive loss of dopaminergic 

nigral neurons resulting in motor and non-motor deficits. Deep brain stimulation (DBS) 

of the subthalamic nucleus (STN) has emerged as an effective neurosurgical treatment for 

the patients with PD where their motor symptoms cannot be controlled with medications. 

Accurate localization of STN is an important factor defining the efficacy of DBS. The 

most common targeting method in DBS surgery is the microelectrode single unit activity 

recording, which is performed by listening to bursting firing patterns of individual 

neurons to identify the basal ganglia structures. However, it requires significant expertise 

and is fraught by potential technical difficulties. On the other hand, local field potentials 

(LFPs), owing to their oscillatory and robust nature, can overcome these technical issues. 

In this regard, we recorded LFPs from multitrack microelectrodes and macroelectrode in 

PD patients who underwent DBS surgery. We demonstrated for the first time that 

combination of different subband features derived from beta and high frequency 

oscillations of LFPs can be used to estimate the optimal track for DBS implantation and 

to identify the dorsal STN border with high accuracy. These results establish the initial 

evidence that LFPs can be strategically fused with computational intelligence in the 

operating room to increase the chance of optimal placement of the DBS electrode within 

the motor sub-territory of the STN, without an appreciable downside.  

We also investigated the spatio-spectral patterns of LFPs in the most commonly 

accepted subtypes of PD, tremor dominant (TD) and postural instability and gait 

difficulty (PIGD). As of today, no underlying neural correlates have been identified. Here 

we show that activity in the subbands of LFPs recorded with microelectrodes from sub-
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territories of the STN provide distinguishing neurophysiological information about these 

phenotypes. We found distinct patterns between TD and PIGD groups in HFOs and their 

interaction with the beta band in the dorsal and ventral regions of the STN. Our results 

indicate that the spatio-spectral dynamics of LFPs can be used as an objective method to 

distinguish the two major subtypes of PD. This observation provides support for distinct 

pathophysiologic mechanisms underlying these subtypes. 
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1. CHAPTER 1: General Introduction 

The main focus of the present study is the functional utility of local field 

potentials (LFPs) intraoperatively recorded from multiple microelectrodes and a 

macroelectrode implanted into the subthalamic nucleus (STN) in Parkinson’s disease 

(PD) for the improvement of deep brain stimulation (DBS). As of today, LFP techniques 

used for physiological confirmation of anatomical target in DBS surgery is the least 

common approach (1%) compared to the microelectode-single unit activity (MER-SUA) 

setup (83%) (Abosch et al., 2013). Considering the more robust nature of LFPs and 

sensitivity to oscillatory firing patterns of neural population, we believe that neural 

patterns embedded in LFPs can be extracted to further our understanding of the 

electrophysiological characteristics of PD. With the application of signal processing, 

intraoperative LFPs can serve as a strategic tool for localization of pathological territories 

and/or sub-territories in the STN that can improve the efficacy of DBS and facilitate the 

development of a personalized, closed-loop therapy. 

The first chapter serves as a general introduction to literature overview of PD, the 

functional circuitry of basal ganglia in PD, and general information about the therapeutic 

strategies used in PD, followed by a background information on electrophysiological 

findings in PD. The general surgical methods and intraoperative recording techniques are 

provided in the next chapter. The following chapters consist of 3 major sections: (i) 

localization of STN in PD by using microelectrode LFPs, (ii) localization of STN in PD 

by using macroelectrode LFPs, and (iii) investigation of electrophysiological features of 

PD motor subtypes by using intraoperative LFPs. The specific aims of the studies 
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presented in the thesis will be described in each chapter in detail. A general summary and 

the significance of the study are given in the last chapter.  

1.1. Parkinson’s disease  

Parkinson’s disease is a complex neurodegenerative movement disorder with a 

progressive nature. PD was first described in 1817 by Dr. James Parkinson as a shaking 

palsy and then refined by Jean-Martin Charcot (Goetz, 2017). Today, PD is the second 

most common neurodegenerative disorder after Alzheimer’s dementia and the incidence 

of the disease, according to the 2005 report of World Health Organization, has been 

arising day by day along with the increasing life expectancy (Bezard & Przedborski, 

2011). Although PD can be observed at any age, it is most commonly seen in older 

adults. The mean age onset of the disease is estimated as 60 years, while age of 21-40 

years is considered as young onset (Samii, Nutt, & Ransom, 2004). PD affects an 

estimated 1 million people in the U.S., with an annual incidence of 50,000 new cases per 

year (National Parkinson's Foundation. About Parkinson's disease. 2010 Jan).  

PD includes broad spectrum of motor and non-motor features (Thenganatt & 

Jankovic, 2014). The main motor features include resting tremor, rigidity, bradykinesia 

(or akinesia), and postural instability with freezing while the non-motor symptoms 

include cognitive impairment, mood disorders and other psychiatric features, sleep 

disorders, and a variety of autonomic symptoms (Jankovic, 2008). The clinical criteria for 

PD determined by the United Kingdom Parkinson Disease Society Brain Bank are the 

presence of bradykinesia and at least one of the rest of the cardinal symptoms in addition 

to 3 supportive features (Jankovic, 2008; Thenganatt & Jankovic, 2014).  
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Bradykinesia is the most characteristic clinical feature of PD and it refers to 

slowness of planning, initiating, and executing of movement (Jankovic, 2008; Rodriguez-

Oroz et al., 2009). The long reaction time, slower and smaller handwriting, or decreased 

arm swing when walking can be exemplified (Fahn, 2003). Akinesia refers to lack of 

movement. However, hypokinesia, one of the types of akinesia, corresponds to reduced 

frequency and amplitude of spontaneous movement (Rodriguez-Oroz et al., 2009). 

Bradykinesia/hypokinesia affects all voluntary and involuntary movements. Based on 

“kinesia paradoxia”, it was proposed that PD patients with bradykinesia have intact motor 

programs but have difficulties accessing them without an external trigger such as a loud 

noise or visual cue (Jankovic, 2008).  

Rigidity in PD refers to increased resistance to passive movement and it is 

constant throughout the range of movement (Klockgether, 2004). This so-called lead-pipe 

rigidity is observed in both flexor and extensor muscles. When patients have both resting 

tremor and muscular rigidity, “cogwheel” phenomenon which is a characteristic type of 

rigidity with a jerky, ratchet-like movements of joints can be observed (Jankovic, 2008; 

Klockgether, 2004). 

 The parkinsonian tremor is seen when the patient is at rest and it has typically 4-6 

Hz frequency unlike the typical frequency seen in Essential tremor with 8-12 Hz 

(Schneider & Deuschl, 2015). Resting tremor typically starts in one finger and it stops 

with the voluntary movement. At the beginning of the disease, it can be seen only with 

stress, however its amplitude might get enhanced with stress or excitement in time (Fahn, 

2003). PD patients might have additional tremor on posture or action tremor occurring 
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with movement (Schneider & Deuschl, 2015). Patients can have resting and action tremor 

together or postural and kinetic tremor with no resting tremor at all (Camara et al., 2015).   

Postural instability is characterized by a stooped posture, decreased arm swing, 

and shuffling gait. Postural instability along with freezing of gait is a severe problem in 

PD patients since they are the main cause of falls and injuries (Maurer et al., 2003). 

Manifestation of postural instability and gait difficulty (PIGD) by reason of loss of 

postural reflexes occurs with the progression of the disease (Jankovic, 2008). For 

example, Hoehn et al. reported that only 37% (n = 70) of PD patients with a disease 

duration of 5 years or less had reached to stage III of Hoehn and Yahr scale meaning that 

severity of the disease is mild to moderate with some postural instability (Hoehn, Yahr, 

Hoehn, & Yahr, 1967). It is important to note that diagnostic specificity of postural 

instability is limited due to various problems in afferent pathways, efferent pathways, 

central processing, and even musculoskeletal mechanical function (Gelb et al., 1999). 

1.2. Functional circuitry of basal ganglia in Parkinson’s disease  

The basal ganglia (BG) are a group of sub-cortical nuclei and linked to various 

functions like voluntary motor control and cognitive functions. Figure 1.1 shows the 

major anatomical components of BG which are the striatum, pallidum, subthalamic 

nucleus (STN), and substantia nigra (SN) (Nambu, 2011). The striatum is divided into 

caudate and putamen while the pallidum is divided into external (GPe) and internal (GPi) 

segments of the globus pallidus and ventral pallidum (VP). Additionally, SN is composed 

of substantia nigra pars reticulata (SNr) and substantia nigra pars compacta (SNc) 

(DeLong & Wichmann, 2007; Nambu, 2011). The striatum which is the major input 

structure of BG receives inputs from the entire cerebral cortex except the primary visual 
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cortex (Gerfen & Bolam, 2010). The 

STN forms the other input structure of 

BG which receives inputs mainly 

from the frontal cortex. On the other 

hand, GPi and SNr serve as the output 

structures from BG to thalamus and 

brainstem (DeLong & Wichmann, 

2007). Even though BG innervate 

only the thalamus, the superior 

colliculus, and the pedunculopontine 

nucleus (PPN) in brainstem, BG has 

more functional roles in brain (Utter & Basso, 2008). BG is functionally sub-divided into 

three circuits: (i) motor circuit, (ii) associative circuit, and (iii) limbic circuit (Obeso et 

al., 2008). Each of these circuit originates from a specific area of the cerebral cortex and 

processed along the different components of BG through thalamus (Fig.1.2). The most 

commonly studied cortico-basal ganglia circuit is the motor circuit due to its important 

role in movement disorders (DeLong & Wichmann, 2007).  

 STN is a crucial structure in these circuits and has a critical role of controlling 

motor functions, cognition, emotion, and thalamocortical excitability (Benarroch, 2008). 

That is one of the reasons why STN is selected target for stimulation not only in PD but 

also disorders like epilepsy or psychiatric disorders (Benarroch, 2008) (stimulation of 

STN will be discussed in the following chapters in detail). The STN is a small and ovoid-

shaped structure surrounded by various structures such that fibers of internal capsule on 

 

Fig.1.1. Anatomical components of basal ganglia 

from cross-sectional view with its 

connections (Adopted from J. S. Brittain 

& Brown, 2014). 
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Fig.1.2. Functional organization of basal ganglia. (Adopted from Obeso et al., 2008). 
 

anterior and lateral sides, anteromedially Fields of Forel (FF), posteromedially red 

nucleus (RN). Zona incerta (ZI) stands as a barrier in between STN and ventral thalamus 

while the SN situated in just below the ventral border of the STN  (Hamani, 2004; Patel 

et al., 2008) (Fig.1.3.A). As in BG circuits, STN is also sub-divided into 3 different 

territories: (i) motor, (ii) associative, and (iii) limbic territory (Hamani, 2004; Parent & 

Hazrati, 1995). The large portion of the STN at dorsolateral direction corresponds to 

motor territory and it is further divided into somatosensory sub-territory on the medial 

side. Dorsolateral motor region of STN receives inputs from primary motor cortex (M1) 

while sensorimotor region from supplementary motor area (SMA), premotor cortex (PM), 

pre-SMA, and cingulate motor areas (CMA) in the cingulate sulcus (Nambu, 2011). The 

motor territory projects to GPe and GPi and play the crucial role in motor control. Ventral 
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to motor territory, there exits the oculomotor and prefrontal territories along with the 

associative territory. These regions received inputs from dorsolateral prefrontal cortex 

and frontal eye fields. By projecting to SNr, associative territory involves in oculomotor 

control and cognitive aspects of motor behavior. The limbic territory which is located at 

the most medial part of the STN controls the motivational and emotional aspects of motor 

behavior by receiving inputs from the medial prefrontal and anterior cingulate cortices 

and projecting to the ventral and medial pallidum (Benarroch, 2008).  

 Specifically, the basal ganglia motor circuit with the excitatory and inhibitory 

inputs and outputs functions through 3 pathways: (i) direct pathway, (ii) indirect pathway, 

and (iii) hyperdirect pathway (Fig.1.4) (Nambu, 2011). In the direct pathway, striatum 

receives excitatory inputs (glutamate) from cortex and secretes inhibitory 

              
 

Fig.1.3. Representation of the anatomical structures associated with STN and functional 

territories of STN. (A) STN is in close proximity to BG structures and surrounded by 

dense bundles of myelinated fibers (Adopted from Hamani, 2004). (B) Functional 

subdivision of STN (Adopted from Mathai & Smith, 2011). CP = cerebral peduncle; IC 

= internal capsule; Put = putamen; Thal = thalamus. 

A B A 
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neurotransmitter gamma-amino butyric acid (GABA) into GPi/SNr. Since GPi/SNr gets 

inhibited, their inhibitory effect on thalamus is canceled out (dis-inhibition) resulting 

increase in firing rate 

of motor thalamus and 

brainstem. On the 

other hand, in the 

indirect pathway, 

striatal neurons project 

to GPi/SNr then to 

thalamus and PPN 

through GPe and STN. 

Indirect pathway 

results in increased 

inhibition on thalamus 

following a decreased 

motor activity. Hyperdirect pathway, as the name implies, contain a direct cortical input 

to STN which projects to the GPi/SNr. By this way, cortical excitation on GPi/SNr occurs 

faster than the direct and indirect pathways (DeLong & Wichmann, 2007; Nambu, 2011; 

Mathai & Smith, 2011).     

 In PD, the BG motor pathways does not function properly due to dopaminergic 

neuron loss in the SNc (Lewis et al., 2011). The degeneration of these neurons results 

decrease of dopamine secretion into striatum which leads to decreased activity of the 

direct pathway and inhibition of the indirect pathway (Przedborski, 2017). The dopamine 

 
 

Fig.1.4. Basal ganglia motor circuitry in normal conditions. 

GABA = gamma-amino butyric acid; Enk = enkephalin; 

SP = substance P (Adopted from Cambridge University 

Press, 2003). 
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depletion consequently increases the STN-mediated activation and decreases GPe-

mediated inhibition. This alteration increases the inhibitory effect of thalamus on motor 

cortex resulting a decrease in motor activity (Przedborski, 2017; Meredith & Kang, 

2006).  

Three cardinal features of PD - bradykinesia/akinesia, rigidity, and resting tremor- 

are considered to be correlated to dopaminergic cell death in nigrostriatal region 

(Jellinger, 1999). However, in akinetic-rigid group, it was proposed that cell loss occurs 

in a more pronounced way and in the ventrolateral part of SNc while it is mild and more 

medial in tremor dominant (TD) group (Eggers et al., 2011). It was suggested that tremor 

might be also related to dopaminergic cell loss in retrorubral area (Jellinger, 1999). 

Unlikely, postural instability and gait disability (PIGD) in addition to non-motor features 

of the disease are associated to non-dopaminergic denervation (Fasano et al., 2012). It 

was found that combination of nigrostriatal and basal forebrain cortical cholinergic cell 

loss is related to slow gait speed in PD subjects (Bohnen et al., 2013). Lewis et al. by 

using functional magnetic resonance imaging also showed that cerebellothalamocortical 

(CTC) circuits are more active in TD patients compared to striatalthalmocortical circuits 

(STC) (Lewis et al., 2011). Helmich et al., by showing the active involvement of CTC 

circuit in PD tremor, supported that there is a differential involvement of CTC and STC 

circuits in PD subtypes (Helmich et al., 2013).  

1.3. Therapeutic strategies in Parkinson’s disease  

 The pathological hallmark of PD is the dopaminergic neuron loss resulting in 

dopamine depletion in the BG (Lewis et al., 2011). Therefore, current medical therapies 

for PD involves manipulation of striatal dopamine levels through medication such as 
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levodopa (L-DOPA), which is a precursor to the dopamine, norepinephrine, and 

epinephrine, in order to improve the cardinal motor symptoms of the disease (Strauss et 

al., 2014). However, in the long term, this treatment is complicated by the development 

of motor complications, including wearing off effects (fluctuations in efficacy) and 

dyskinesia (involuntary movements) (Jenner, 2013).  

In addition to medical treatment, PD includes surgical and supportive treatment as 

well (Desouza et al., 2013). Surgical treatments for PD started to be used before levodopa 

treatment and, as of today, they evolved to deep brain stimulation (DBS) to overcome the 

medication induced complications in advance PD subjects  (Fasano et al., 2012; Hariz et 

al., 2010). The first surgical applications starting in 1950s were including stereotaxic 

lesioning of BG structures or using stimulation to determine the lesioning area (Benabid 

et al., 1991; Albe-Fessard, 1973). The structures used for ablation for treatment of PD 

were the ventralis intermedius nucleus (Vim) of thalamus (thalamotomy), the globus 

pallidus (pallidotomy), ansa lenticularis (ansotomy), Forel’s fields (campotomy), and the 

STN (subthalamotomy) (Spiegel et al., 1947, 1954, 1963; Meyers et al., 1951; Murata et 

al., 2003). 

In 1987, Benabid et al. reported a reversible and adjustable approach for tremor, 

high frequency stimulation of Vim, in contrary to the ablative techniques (Benabid et al., 

1987). It was followed by the high frequency stimulation of GPi (Spiegel et al., 1963) and 

then STN (Benabid et al., 1994). By this way, a new era for the treatment of advance PD 

has started. Over the past decade, electrical stimulation of deep brain structures has 

largely replaced ablative techniques in the surgical treatment of PD and ET. STN and 

GPi, which were approved by FDA in 2002, are frequently used as potential targets for 
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DBS in PD. For the PD phenotypes, it is not known whether stimulation of STN or GPi 

will lead to more optimal outcomes. STN DBS is effective in improving both resting 

tremor and action tremors (Diamond et al., 2007), and many groups favor targeting this 

nucleus over GPi when tremor is a prominent feature (Williams et al., 2014). Later, Vim 

stimulation is also reserved for tremor predominant PD. The primary limitation of this 

target is that it has little effect on other symptoms such as bradykinesia and rigidity. The 

STN as the most commonly used target will be the scope of the current studies mentioned 

throughout the thesis. 

1.3.1. Patient selection for DBS 

DBS has recently been proven to be an effective therapy for PD (Benabid, 2003) 

and it is offered to patients who have medication-refractory symptoms of PD, dyskinesia, 

or tremor (Okun & Foote, 2010). Patient selection for DBS is the first and a crucial step 

for optimal benefits. There are several factors to be considered for candidate selection: 

 Diagnosis of PD should be re-confirmed due to the chances of misdiagnosis with 

other neurological disorders having the similar symptoms with PD. 

 The symptoms with the best response to levodopa should be determined by 

checking the percentage of improvement in the Unified Parkinson’s Disease 

Rating Scale (UPDRS) part-III (motor section). It should be noted that tremor 

may not be responsive to dopaminergic therapy, yet it may improve with STN 

DBS (Charles et al., 2002; Lang et al., 2002).   

 Cognitive/psychiatric profile should be evaluated. Because, patients with 

cognitive decline might get worse after surgery (Morrison et al., 2004). As an 
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important factor related to cognitive decline, age should be considered as well 

(Saint-Cyr et al., 2000).   

 Comorbidities without any risk or limit to DBS should be taken into account 

(Okun et al., 2007).   

1.3.2. Targeting modalities in DBS 

Accurate localization of DBS electrode is another crucial step for an optimal 

therapy in PD. There are several anatomical and physiological targeting methods used in 

DBS surgery for localization of STN. Anatomical targeting approach consists of direct 

and indirect methods. Direct method is defined as using radiological images of the target 

under stereotaxic conditions to determine the x-y-z coordinates of the target (Machado et 

al., 2006; Patel et al., 2008). Basically, direct targeting is based on magnetic resonance 

imaging (MRI) visualization of the structures. Today, advanced MRI technology allows 

us to directly visualize the structures (Strauss et al., 2014). Even though MRI-based 

approach provides advantages like less complex procedure, use of general anesthesia 

which is providing more comfort to patient, and less amount of risk for intracranial 

hemorrhage, it is not possible to clinically test the patient for therapeutic effect-side effect 

profile or electrophysiologically determine the borders of target nucleus (Groiss et al., 

2009; Starr et al., 2014; Strauss et al., 2014). Plus, MRI distortion is not yet perfectly 

corrected (Benabid, 2003). Despite the visibility of STN or GPi in T2 images, any 

problem occurring at fusing MRI and computed tomography might lead to 

misinterpretation of the anatomy (Machado et al., 2006).  

In the indirect targeting method, as the name implying, location of the target is 

determined by using stereotactic brain atlases and the coordinates of visible landmarks 
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such as anterior (AC) and posterior (PC) commissures to estimate the actual target 

coordinates (Machado et al., 2006; Patel et al., 2008). However, the biggest limitation of 

the method is the anatomical variations among individuals. Plus, interpretation of the 

coordinates by clinical team and the use of average values of the coordinates for targeting 

might be suboptimal due to brain shift (Machado et al., 2006; Patel et al., 2008).      

Physiological targeting includes intraoperative microelectrode recordings (MER) 

and clinical testing with MER system or DBS lead for physiological verification of the 

target structure and therapeutic window (Abosch et al., 2013; Strauss et al., 2014). Today, 

the majority of centers with 83% use MER from individual neurons (single unit activity = 

SUA) to identify the characteristic neuronal firing patterns and to obtain physiological 

confirmation (Abosch et al., 2013; Foltynie et al., 2011). MER-SUA is performed in 

awake patients for the necessity of clinical testing. Multiple microelectrodes (typically up 

to five) are inserted in brain and cell firing patterns of structures are identified for 

selection of optimal trajectory to implant DBS electrode (Fig.1.5).  

 
Fig.1.5. Functional localization of the STN showing the distinct neurophysiological 

spiking and spike background patterns (Adopted from Camalier et al., 2014) 
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However, the MER-SUA method has several limitations in practice such as 

subjective interpretation of complex signal patterns to localize the anatomical borders of 

the STN, being less stable and more “susceptible to technical (e.g., impedance) and 

physiological (e.g., cerebrospinal fluid and blood) fluctuations” (Thompson et al., 2014). 

Localization of STN via macroelectrode/DBS without MER is only used by 8% among 

centers (Abosch et al., 2013). Despite the advantages of using this technique alone in 

STN targeting (Xiaowu et al., 2010), microlesion effect, which might limit the clinician’s 

ability to test and the therapeutic effectiveness in the operating room, and poor spatial 

resolution of the macroelectrode should be taken into consideration (Gross et al., 2006; 

Wang et al., 2014). 

In addition to delivering stimulation, DBS electrode can also be used to record 

local filed potentials (LFPs) (Ince et al., 2008). LFPs represent the electrical activity of a 

neuronal population surrounding the electrode tip and carry synchronous and oscillatory 

firing patterns  (Priori et al., 2004). They can be recorded from DBS electrodes and larger 

contacts of microelectrodes used for MER-SUA. LFP signals are more robust than SUA 

and found to be correlated with motor and non-motor symptoms of PD (Priori et al., 

2013; Thompson et al., 2014). Along with the recent studies showing that LFPs recorded 

from STN in PD can provide differential electrophysiological information about 

subcortical structures, it is gaining interest to use LFPs in operating room for target 

localization (Chen et al., 2006; Holdefer et al., 2010; Ince et al., 2010; Kolb et al., 2017; 

Michmizos et al., 2008; Telkes et al., 2016; Wang et al., 2014). Functional characteristics 

of LFP will be discussed in the next chapter.    
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1.4. Electrophysiological findings in Parkinson’s disease 

LFPs represent the sum of extracellular potentials of numerous neurons in a 

region (Fig.1.6). The volume of this region contributing to the LFP signals may vary 

according to the size of electrode and where it is implanted. For example, with a very fine 

electrode, LFP is likely to reflect sum of synaptic activity of tens or thousands of neurons 

(Buzsaki, 2006). This 

aggregated extracellular 

activity generates an 

oscillating field due to 

synchronization mechanisms 

(Buzsáki et al., 2012).  

LFPs can be divided 

into a number of frequency 

bands, as follows: 0–3 Hz 

(delta), 4–7 Hz (theta), 8–12 

Hz (alpha), 13–30 Hz (beta), 

31–200 Hz (gamma), 200-300 Hz (slow high frequency oscillations, sHFO), and >300 Hz 

(fast high frequency oscillations, fHFO). Earlier investigations have documented that 

excessive beta oscillations in certain basal ganglia structures, especially in the STN, 

represent a pathophysiological feature of PD (Oswal et al., 2013; Weinberger et al., 

2006). Excessive beta band activity is detected when the electrodes enter into the STN 

(Blomstedt et al., 2011; Brittain & Brown, 2014; Kane et al., 2009; Weinberger et al., 

2006). Studies commonly reported that DBS attenuates the pathological beta oscillations 

in the STN possibly resulting in improvement in motor symptoms (Bronte-Stewart et al., 

 

Fig.1.6. LFP recorded from a neuron population (Adopted 

from Buzsaki, 2004). 
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2009; Eusebio et al., 2011,2012; Kühn et al., 2008) which indicates a similar modulatory 

effect of levodopa medication on beta oscillations (Kühn et al., 2006). On the other hand, 

the excessive HFO ranging from 200-400 Hz are considered to represent a pro-kinetic 

state, and appear with dopaminergic medication and/or induced movement (Foffani et al., 

2003; Foffani & Priori, 2006; Özkurt et al., 2011; Trottenberg et al., 2006). More 

recently, studies showed that sHFOs are observed during resting/medication OFF state 

and they shift up to faster range (300-400Hz) by medication.  

Recently, Lopez-Azcarate et al. proposed that phase-amplitude coupling (PAC) in 

STN might be part of mechanism for motor impairment in PD. The coupling is observed 

between the phase of beta band oscillations and the amplitude of HFOs in the medication 

OFF state and is reduced by levodopa administration and movement (Lopez-Azcarate et 

al., 2010). Since the frequencies (8-35 Hz) modulated by HFO amplitude are shown to be 

related to akinesia and rigidity in PD, HFOs and their modulatory role on STN beta 

oscillations might have a crucial pathophysiologic role in aberrant basal ganglia motor 

circuits such as in PD (Kühn et al., 2009). 

1.5. Aim of the present studies 

The overall aim of the present study is to provide a better understanding of the 

functional utility of LFPs recorded from STN in PD subjects during DBS surgery. The 

exact mechanism of DBS is still unknown, but its therapeutic effect on the cardinal 

symptoms of PD by stimulating STN is well studied. Accurate localization of DBS 

electrode in STN to maximize the symptom suppression and minimize the side effects by 

preventing the current spread to surrounding structures is a crucial step. We first recorded 

LFPs from acutely implanted microelectrodes, with higher resolution compared to DBS 
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lead, in multiple trajectories. By examining spatially localized subthalamic oscillations in 

STN and their spectral dynamics during resting state, we aimed to predict the optimal 

trajectory and the dorsal border of the STN for DBS lead implantation (Chapter 3). In the 

second study, we recorded LFPs from various depths and multiple contacts of the chronic 

DBS electrode which was implanted in the STN and investigated their spatio-spectral 

characteristics. Here, we aimed to predict the superior border of STN by eliminating the 

limitations of microelectrode use and the effect of subjective interpretation of MER-SUA 

(Chapter 4). We elucidated whether the LFP activity can be used functionally in the 

operating room for the localization of abnormal neural dynamics with more detailed 

electrophysiological correlates of disease manifestations and with a certain spatial 

specificity that can guide the placement of chronic electrode into the right target or 

territory. By exploring, for the first time, the spatially localized subthalamic activities 

along with their spectral characteristics in PD subtypes, we tested the hypothesis that the 

spatio-spectral patterns of LFPs recorded with microelectrodes from STN sub-territories 

can be used to distinguish PD patients with PIGD or TD motor subtypes (Chapter 5).     

1.6. Scientific contribution 

In the first part of the thesis, for the purpose of assisting with clinical decision 

making, we aimed to develop an automated approach by processing LFPs from multiple 

tracks to localize the dorsal border of STN and predict the macroelectrode implantation 

track identified by the neurosurgeon based on SUA interpretation. This work is novel, in 

that it is the first publication that explores different sub-bands of microelectrode LFPs in 

beta (8-30Hz) and high frequency range (200-450Hz) to identify the optimal track for 

chronic DBS electrode placement into STN. This work also contributes to knowledge 
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about the neurophysiology of PD by describing and visualizing the spatio-spectral 

patterns of LFPs. Because recording LFPs simultaneous with single neurons does not 

prolong the total duration of surgery, using this technique online in the operating room 

would increase the chance of optimal placement of the DBS macroelectrode within the 

motor sub-territory of the STN, without an appreciable downside. The study was 

published in Frontiers in neuroscience in 2016 (Telkes et al., 2016). 

With the previous study we showed that LFPs along with their spectral features 

obtained from beta and HFO bands can be used to target the STN with high accuracy and 

optimize the DBS surgery. However, using of multiple electrodes and their sharp tips 

may cause intracranial hemorrhage. In this regard, with the increasing interest in using 

macroelectrode/DBS technique alone in STN targeting, we investigated functional use of 

LFPs recorded from DBS lead at various depths. By showing that the localization error of 

superior STN border between LFPs from DBS lead and microelectrode neuronal firing 

was around 1 mm with the beta and gamma band spectral features, we supported the use 

of intraoperative macroelectrode recordings, in conjunction with preoperative and/or 

intraoperative stereotactic imaging for target localization in PD. The study was published 

in 36th Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society in 2014 (Telkes et al., 2014). 

In the last part of the thesis, we investigated the functional utility of LFPs in 

clinically defined PD subtypes. To best of our knowledge, for the first time we report 

that, activity in the subbands of LFPs recorded with microelectrodes from the sub-

territories of STN provides distinguishing neurophysiological information about the most 

commonly accepted phenotypes of PD. In particular, high frequency oscillations and their 
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nonlinear interactions with beta band in dorsal and ventral sub-regions of the STN 

exclusively contain distinct patterns between TD and PIGD groups. We anticipate our 

findings will provide new possibilities for the interpretation of oscillatory dynamics of 

STN and that these well localized patterns can be used as objective neurobiomarkers to 

distinguish PD phenotypes and might lead future electrode technology and targeted 

stimulation strategies in the territories of STN for the personalization of DBS.  
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2. CHAPTER 2: General Methods 

 This chapter provides detailed description of the methods used in the studies 

presented in the thesis. Details of the patient demographics and the analysis specific to a 

study will be mentioned in the sub-sections of the relevant chapters.   

2.1. Patients  

This was a two-center study in which patients were recruited either at Baylor 

College of Medicine or Fairview Hospital of the University of Minnesota. The 

experimental protocol was approved by the Institutional Review Boards of the University 

of Minnesota, University of Houston, and Baylor College of Medicine. All patients 

provided written informed consent for study participation. All patients were diagnosed 

with idiopathic PD, and exhibited typical motor symptoms which were tremor, rigidity, 

and bradykinesia in addition to postural instability and gait difficulty. Patients were 

clinically evaluated by a movement disorder specialist and either Unified Parkinson's 

Disease Rating Scale (UPDRS) or Movement Disorder Society-Unified Parkinson's 

Disease Rating Scale (MDS-UPDRS) scores obtained in the off- and on-medication states 

were used to assess the severity of motor symptoms and signs. 

2.2. Surgical procedure 

All patients underwent functional stereotactic neurosurgery for the implantation 

of DBS electrode into the STN. Surgeries were performed in awake patients under the 

benefits of local anesthesia. Patients were asked to discontinue Parkinson’s medications 

24 hours prior to DBS surgery. As per standard clinical protocol (see Fig.2.1), target 

coordinates and trajectory to the STN, were identified by fusing preoperative stereotactic 
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Fig.2.1. Standard clinical protocol of DBS surgery. (i) Intraoperative imaging and planning. 

(ii) Implantation of microelectrodes by using Microdrive. (iii) Recording of single 

unit activity from microelectrode tip. (iv) Implantation of DBS electrode into the 

selected track and verification of the target by stimulation and testing. 

Intraoperative Imaging and Planning

Implantation of Microelectrodes via MicroDrive

Recording of Single Cell Firing from Microelectrode Tip 
(MER-SUA)

Implantation of DBS 
Electrode and Testing

# 3387 # 3389

MRI to a preoperative or an intraoperative stereotactic CT scan on a neuro-navigational 

platform (StealthStation, Medtronic Corp, MN). Then, again based on standard clinical 

protocol, 2 or 3 simultaneous tracks were performed in each subject. The multiple 

microelectrodes were advanced through brain cannulas penetrating a multi-port BenGun. 

The superior and inferior borders of STN, along with the optimal depth for positioning 

the DBS electrode, were determined by the clinical team via electrophysiological 

mapping using MER-SUA, and the DBS electrode was implanted by the neurosurgeon 

based on these spatial data, followed by macro stimulation to confirm electrode location 

based on benefit and side effect profile—i.e., location within motor territory of STN, but 

not so close to border with adjacent internal capsule or medial lemniscus, that low-

threshold stimulation- induced side effects were detected—followed by confirmatory 

intra-operative imaging modalities.  
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2.3. Intraoperative recordings 

2.3.1. Microelectrode recordings 

Following standard stereotactic techniques, and insertion of three brain cannulas 

and microelectrodes (Abosch et al., 2013), MER-SUA recording was carried out using a 

Microguide system (AlphaOmega Inc., USA) at 12 kHz. Simultaneous LFPs were 

recorded using an XLTEK-EMU128FS system (Natus, San Carlos, California) at 2 kHz 

with 16 bit A/D resolution or gHIAmp (gTec Inc, Graz, Austria) biosignal amplifier at 

1.2 kHz or 2.4 kHz with 24 bit A/D resolution or 64-channel bioamplifier (Grapevine 

Neural Interface and Processor, Ripple, LLC, Salt Lake City USA) recording system at 2 

kHz with 16 bit A/D resolution (see Fig.2.2).  

 

 

Fig.2.2. Intraoperative recording setup. (i) Recording of LFPs and SUA together with ECG, 

EMG, accelerometer signals, and video. (ii) Real-time processing of signals through a 

custom design Simulink model. (iii) Giving feedback about the optimal trajectory and 

the depth for implantation of DBS electrode. (iv) Implantation of DBS electrode.   

Neural and Behavioral Signals

g.HIamp

Grapevine NIP

Bioamplifiers Real-time Processing

Feedback
Implantation of DBS Electrode



 

23 

The LFP recordings were obtained from a 1 mm wide stainless steel (SS) contact 

which is 3 mm (NeuroProbe, AlphaOmega Inc., USA) or 1 mm (MicroTargetingTM, FHC 

Inc., USA) above the SUA recording tip and referenced to the cannula (Fig.2.3). All 

microelectrodes were advanced towards the estimated target using a NeuroDrive 

(AlphaOmega Inc., USA) with micrometer resolution. In order to synchronize the SUA 

and LFP recordings, the digital depth information of the NeuroDrive is transmitted from 

the MicroGuide system to LFP recording system using a TCP/IP connection. Initial 

recordings began maximum 25 mm above the intended final location of the electrode tip 

(“target”) as determined by direct targeting methods and proceeded until the electrode 

reached maximum 5 mm below the MER-determined target. Electrodes were lowered in 

1 mm steps until 10 mm above “target”.  Within 5 mm of the radiographic target, the step 

size was reduced to 0.5 or 0.25 mm to allow more precise identification of the borders. 

Duration of recordings at each depth was 15-30 seconds. At each depth, the subjects 

sequentially rested and after a certain depth (<10 mm) executed limb movements for 10-

15 second period. The neurosurgeon used standard clinical techniques for localizing the 

STN, via real-time auditory and visual analysis of the recorded SUA. The dorsal, ventral, 

 
 

Fig.2.3. Representation of a microelectrode with a 1-mm SS contact (top) and a DBS 

electrode with 4 platinum–iridium cylindrical surfaces (bottom; model 3389). 
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and posterior borders of the targets were identified by noting increased background noise 

and cell firing rate. The STN neurons were examined for movement-responsive receptive 

fields (Molnar et al., 2005). In particular, the superior border of the targets was 

determined when the background activity increased and border cells were first observed 

among one of the tracks in MER-SUA. This position was used as the target value in the 

border identification. Among three tracks, the track with the longest span of bursting cell 

firing and movement responsive fields was selected for the chronic DBS electrode 

implantation.  

During microelectrode trajectory to the specified targets, LFPs, high-definition 

video, upper and lower extremity electromyography (EMG), accelerometer signals, and 

electrocardiography (ECG) were recorded in order to capture and categorize patient 

movement, and to identify and remove any artifacts from recordings. The neurosurgeons 

were blinded to the LFP recordings in the operating room and the identification of the 

borders or the trajectories of the STN were not influenced by the LFP recordings.  

2.3.2. Macroelectrode recordings 

When the optimal trajectory and the optimal depth were identified for the 

estimated target based on electrophysiological methods as describes above, patients 

underwent bilateral/unilateral implantation of DBS electrode (model 3389 or 3387, 

Medtronic Corp, Fridley, MN) into STN in PD. These DBS electrodes contain four 

platinum–iridium cylindrical surfaces from deepest contact 0 to most superficial contact 3 

(1.27 mm diameter and 1.5 mm length) and a spacing of 0.5 mm (see Fig.2.3) and 1.5 

mm, respectively.  
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Similar to microelectrode recordings, DBS electrode was advanced towards the 

determined target using a NeuroDrive (AlphaOmega Inc., USA) starting from 20 mm 

above this target and continued until the electrode reached 3 mm below it. DBS electrode 

was moved down with 1 mm steps until 10 mm above estimated target and then the step 

size was reduced to 0.5 mm. LFPs were recorded from 4 contacts of the DBS electrode 

along with the sensor signals mentioned previously. Recordings were obtained for at least 

30 seconds at each depth. When the electrode was determined at the optimal depth inside 

the target, an additional 2-minutes recording was obtained during resting period before 

target validation by stimulating DBS electrode. Signals were sampled at 2 kHz with 16 

bit A/D resolution. Signals were transferred into a PC for off-line analysis.  

2.4. Analysis 

2.4.1. Preprocessing 

All data were visualized and analyzed offline with custom in-house developed 

software in MATLAB 2014a (Mathworks, Natick, Massachusetts). Based on video, EMG 

and accelerometer signals, the data were annotated and resting state segments were 

extracted at each depth for further analysis.  

2.4.2. Spectral analysis 

 In order to explore the frequency content of the LFP data at each depth, we 

generated a depth-frequency analysis similar to a time-frequency analysis. We observed 

that the LFP data were corrupted by many factors including tremor and/or environmental 

factors in the operating room setting. Therefore, we computed the LFP spectrum with a 

modified Welch periodogram method, including robust statistics. A fast Fourier 
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transform (FFT) was computed with a 1-second Hanning window and the window was 

shifted with 50% overlap. Simply, rather than using a mean operator, the median of the 

spectra of all sliding windows was calculated to eliminate localized artifacts in the 

spectrum. The method was repeated for each depth and individual spectra across depths 

were combined to generate a 2-D depth-frequency map (DFM) showing the depth-

varying power spectrum of the LFPs. Each map was resampled with a 0.25 mm depth 

resolution and cubic interpolation to obtain equidistant depth values. A Gaussian kernel 

filter was used to smooth the maps in order to suppress noise and to reveal oscillations at 

bands of interest. 

2.4.3. Phase-amplitude coupling 

Phase-amplitude coupling for non-linear interactions between the phase of beta 

and amplitude of HFO bands was investigated by using a phase locking value (PLV) 

approach (Lachaux et al., 1999). We investigated the 150-450 Hz range as amplitude 

frequencies. The frequency band ranging from 4 Hz to 40 Hz was investigated as phase 

frequencies. LFP data were bandpass filtered with a 3rd-order Butterworth filter from 4 to 

40 Hz with a 2-Hz bandwidth and 1-Hz shift. The same LFPs were filtered between 150 

and 450 Hz in the HFO range with a 50-Hz bandwidth and 12.5-Hz shift using a 3rd-order 

Butterworth filter. The envelope of HFOs was computed by using the Hilbert transform 

and PLV was calculated for all combinations for each depth in the STN (Fig.2.4). 

Comodulograms were computed and the maximum PAC strength (values between 0 and 

1) was extracted in each subject. 

An analysis for statistical significance was performed over every single CFC 

calculated in order to check if the observed value differed from what would be expected 
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due to chance alone. To achieve this, a surrogate analysis was performed by calculating 

the coupling between randomly selected blocks of both amplitude and phase envelopes. 

The chance occurrence of coupling between phase and amplitude was estimated by using 

200 surrogates, and a z-score was computed for each individual PAC. In order to account 

for multiple comparisons, Bonferroni’s correction was applied (the significance level of 

the test a = 0.05/925, where the number of tests = 37 × 25, or 925).  

 

 

 

 

 

 

 

Fig.2.4. Simplified representation of phase-amplitude coupling.  
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3. CHAPTER 3: Prediction of the Dorsal Border of Subthalamic 

Nucleus and the Optimal Trajectory by Using Microelectrode Local 

Field Potentials 

The work described in this chapter was published by Telkes et al. in Frontiers in 

Neuroscience in 2016 and used with permission from the journal.  

3.1. Introduction 

DBS of the STN is an effective therapy for the treatment of the motor symptoms 

of PD (Hariz, 2012; Herzog et al., 2004). However, STN stimulation can result in side 

effects arising from the spread of stimulation to structures surrounding the STN 

(Richardson et al., 2009). Moreover, sub-optimal positioning of DBS electrodes accounts 

for up to 40% of cases of inadequate efficacy of stimulation postoperatively (Okun et al., 

2005). Thus, developing quantitative electrophysiological methods to define the optimal 

site of stimulation may help optimize DBS outcomes. 

The task of the neurosurgeon is to place the DBS electrode within the motor 

territory of the STN, and well within the STN borders such that current does not spread to 

the surrounding structures, thereby resulting in stimulation-limiting side effects 

(Richardson et al., 2009). Although the surgical procedure varies somewhat between 

medical centers, targeting of the STN during DBS surgery generally includes 

preoperative stereotactic imaging (MRI), used in conjunction with stereotactic atlases. 

This step is followed by intraoperative electrophysiological techniques consisting of the 

conversion of neural activity, in the form of SUA recorded at the microelectrode tip, into 

audio and visual signals. This procedure is experience-based and depends critically on the 

neurosurgeon’s and neurophysiologist’s ability to recognize entry into the STN, based on 

a variety of cues.  
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In order to obtain a three-dimensional map of the STN and surrounding structures, 

multiple microelectrode recording tracks (typically up to five) (Benabid et al., 2009) are 

carried out, either sequentially or simultaneously. Determination of the optimal track for 

DBS implantation is a key component to successful therapeutic outcome. Optimal track 

selection is primarily based on MER-SUA, which is used to identify cells with firing 

characteristics consistent with STN neurons and response characteristics confirming the 

motor sub-territory of the STN (Falkenberg et al., 2006). Despite the common usage of 

MER-SUA during stereotactic surgery for PD, limitations of this technique include 

difficulties interpreting complex signal patterns to localize the anatomical borders of the 

STN, highly overlapping spiking characteristics of single neurons around the target 

structure, recording SUA from a very small region, sensitivity of SUA to noise, 

susceptibility of SUA to small amounts of blood or edema within the microelectrode 

track, and the binary nature of SUA (unlike LFP), all of which may affect the accuracy of 

STN localization in PD (Chen et al., 2006; Gross et al., 2006; Novak et al., 2011). The 

caliber of single-unit recordings can be easily diminished due to drift of the recorded unit 

away from the electrode tip, as a consequence of transmitted pulsations of the brain and 

other environmental conditions. 

Interpretation of SUA recordings with computational intelligence was proposed as 

a new approach to help clinical decision making in the operating room (Wong et al., 

2009). However, such approaches are still susceptible to the challenges of isolating single 

neurons in the operating room. LFPs represent the aggregate activity of neuronal 

populations, and are particularly sensitive to synchronous and oscillatory firing patterns 

(Gross et al., 2006; Priori et al.,  2013). Recent studies indicate that LFPs in PD correlate 
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with both motor and non-motor symptoms of the disease, and their signals are more 

robust than SUA (Priori et al., 2013; Thompson et al., 2014). Importantly, LFPs are an 

objective and quantitative metric while MER-SUA is more qualitative and subject to 

inter-practitioner variability.  

Although, the functional role of LFPs during DBS surgery is not fully established, 

we propose that they can be used to contribute to target localization in PD. In the present 

study, for the purpose of assisting with clinical decision making, we aimed to develop an 

automated approach by processing LFPs from multiple tracks to localize the dorsal 

border of STN and predict the macroelectrode implantation track identified by the 

neurosurgeon based on SUA interpretation.  

3.2. Methods  

3.2.1. Patients  

 Intraoperative LFPs were recorded from 22 patients (14 men, 8 women), who 

were diagnosed with idiopathic PD. Disease duration ranged between 1 to 20 years, with 

a mean of 10.55 years (standard deviation of 4.7 years). Clinical characteristics of the 

patients are given in Table 3.1. Details of the surgical procedure and electrophysiological 

recordings were mentioned in Chapters 2.2 and 2.3.1. In 3 of 22 patients, microelectrode 

mapping of right and left STN occurred on different surgical dates, as the surgical 

procedures were staged for clinical reasons. Therefore, these recordings were counted as 

separate, enabling 25 individual STN microelectrode recordings for LFP-based optimal 

track prediction.  
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Table 3.1. Clinical characteristics of the PD patients included in this study  

Number of patients 22 

Gender (women/men) 8/14 

Age (mean ± std in years) 57 ± 11 

Disease duration (mean ± std in years) 10.5 ± 4.7 

Phenotypes: 
 

Typical 12 

Tremor Dominant 5 

Bradykinetic/Rigid 5 

OFF/ON UPDRS
†
 Scores (mean)

 ǂ
 45.6 % 

Number of microelectrodes recording (total) 75 in total 

† UPDRS = Unified Parkinson’s Disease Rating Scale  

ǂ  Pre-Operative Medication OFF-to-ON UPDRS Scores: 

Total Improvement 
 

  

3.2.2. Data analysis  

 A schematic diagram of our signal processing pipeline is given in Fig.3.1. As an 

initial step the raw signals were visualized and it was observed that tracks were difficult 

to distinguish, due to a high amount of common activity masking spatially localized 

activity and/or artifacts resulting from abrupt movements of the patient and other 

environmental factors. In order to eliminate the common activity among tracks, but still 

preserve the track-specific neural activity, the LFP data on each track were de-correlated 

using a least mean square (LMS) algorithm with a steepest descent update. The general 

formula for the de-correlation method is as follows: 

𝑦(𝑛) =  𝑤𝑇(𝑛)𝑥(𝑛),                                                              (3.1) 

𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛),                                                             (3.2) 
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�̂�(𝑛) = {
𝑠𝑖𝑔𝑛(𝑒(𝑛)) ∗ 20     𝑖𝑓 |𝑒(𝑛)| > 20 

  𝑒(𝑛)                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
, and       (3.3) 

𝑤(𝑛 + 1) =  𝑤(𝑛) + 𝜇�̂�(𝑛)𝑥(𝑛),                                               (3.4) 

 

where 𝑦(𝑛) is the filter output, �̂�(𝑛) is the residual which is the de-correlated signal, 

𝑑(𝑛) is the desired signal, µ is the step size, and  𝑤(𝑛)  is time varying filter coefficient 

(M. Hayes, 1996). In the current method, each channel, 𝑑(𝑛), was predicted by using a 

linear weighted combination of other two channels,  𝑥(𝑛). LFP activity from 3 tracks 

were recorded continuously during the entire surgery while the microelectrodes were 

traveling to the estimated target. Consequently, the signal characteristic varied over 

depths. Since in each depth the signal was recorded for 15-30s, temporal variability exists 

in the signal. Therefore, the filter coefficients,  𝑤𝑇(𝑛), were updated on a sample by 

sample basis recursively to make the system to adapt to depth and time varying signal 

properties. At each iteration, the error, e(n), was calculated and this residual was used as 

the de-correlated LFP data in future steps for feature extraction and visualization. At 20 

mm above the estimated target, all three tracks showed very similar signal characteristics 

indicating that they were in the white matter. Therefore, the initial filter coefficients were 

selected as the average of two channels with equal weights with the initialization of the 

filter coefficients 𝑤(𝑛) = 0.5. By using this adaptive approach, we aimed to eliminate the 

common activity across tracks and suppress localized artifacts caused by patient 

movements and environmental factors. In order to prevent the system from being affected 

by high amplitude artifacts and to preserve the robustness, the error was saturated by 

using a 20 µV threshold (Eq.3.3). This threshold was determined experimentally and we 
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observed that the system recovered from localized artifacts pretty fast even if the artifact 

amplitude was too large.  

 Due to differences in spatial correlation of low and high frequency bands, the 

monopolar data were, first, decomposed into two frequency bands which were 8-200 Hz 

and 200-450 Hz by using a 2nd-order Butterworth IIR filter (Fig.3.1). The LMS algorithm 

was individually applied to these 

subbands with step size of 𝜇 = 0.0002. 

Each track was de-correlated by using 

LFPs on the other two tracks. The 

algorithm was applied to each depth by 

transferring filter coefficients to the 

next depth. In this way, filter 

coefficients were not required to start 

from 0.5 at each new depth so that the 

algorithm would adapt faster and can 

use both temporal and spatial 

information of the past. Decomposed 

and de-correlated data were re-merged 

and spectral analysis was performed. 

In this regard, DFMs were generated 

as previously described in Chapter 

2.4.2. Then, DFMs were normalized 

with the average baseline of three 

 
 

Fig.3.1. Schematic of the work flow.  
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tracks and transformed into log scale using the Eq.3.5 and Eq.3.6. The tracks were not 

normalized by their own baseline but by the mean of all three tracks in order to compare 

the signal power between them. The baseline used for normalization was selected as the 

highest depths which assumed to be in the white matter. Therefore the baseline was 

determined as top 5 depths (20 mm to 15 mm above the estimated target) in 22 

recordings. However, in rest of the three recordings, since the analysis started from lower 

than 20 mm (such that 18 mm) due to artifacts, the baseline segment was kept shorter and 

selected as top 3 depths. The purpose of using higher depths was to avoid from including 

any thalamic activity in normalization segment. The baseline normalization formula is 

noted below: 

𝑏𝑎𝑣𝑔 =  
(�̅�1 + �̅�2 + �̅�3)

3
   and                                                 (3.5) 

𝑛𝑑𝑓𝑚 = 20 × log10 (
𝑟𝑑𝑓𝑚

𝑏𝑎𝑣𝑔 + Φ(𝑓)
) ,                                   (3.6) 

where �̅�1, �̅�2, �̅�3 are the baseline spectrum of each 3 tracks, 𝑏𝑎𝑣𝑔 is the average baseline 

power,  𝑟𝑑𝑓𝑚 indicates the depth-frequency map, Φ(𝑓) is a small regularization 

parameter which is applied for each frequency 𝑓and 𝑛𝑑𝑓𝑚 is the normalized depth-

frequency map.  

 In order to observe the depth-varying frequency content of LFPs, DFMs of the 

patients were visualized. We noted that when the electrodes reached the STN border 

identified by the neurosurgeon, generally there was also an excessive activity in the beta 

and HFO range. In order to identify the most beneficial track along with the dorsal border 

of the STN, the sub-band power was extracted from all tracks and normalized by using a 

subject-specific average baseline. Based on the distribution of neural activity on the 



 

35 

tracks, the sub-band frequencies were designated 11-32 Hz for beta band and 200-450 Hz 

for HFOs. The distribution of power in the STN among all tracks and the distribution of 

power only on the selected track inside and outside of STN (above the dorsal border of 

STN) were investigated by box and whisker plots. Student’s t-test with two-sample was 

used to check if the distributions were significantly different or not.  

3.2.3. Classification 

After sub-band power features were normalized between zero and one with a 

Max-Min normalization method for inter-subject comparison, a linear discriminant 

analysis (LDA) was used for classification. The principle of LDA is to maximize the 

separation of classes while keeping the within class densities small by using linear 

combination of features, �⃗� ∙  𝑧 (Alpaydin, 2010). The linear discriminant function: 

𝑔𝑖(𝑧|𝑣𝑖 , 𝑣𝑖0) =  𝑣𝑖
𝑇𝑧 + 𝑣𝑖0  and                                                        

                              =  ∑ 𝑣𝑖𝑗𝑧𝑗 + 𝑣𝑖0   ,                                           (3.7)

𝑑

𝑗=1

 

where 𝑔𝑖(𝑧) is the discriminant function for the input features 𝑧𝑗 with sum of the weights 

𝑣𝑗  and threshold values 𝑣𝑖0.  

3.2.3.1. Localization of the dorsal border of STN 

 In the present study, the dorsal border of STN identified by clinical team is 

predicted from the depth varying LFP data by using the decision distance of a linear 

classifier as shown in Fig.3.2.A. First an LDA classifier was trained by contrasting the 

LFP sub-band features coming from inside and outside of STN (above the dorsal border 

of STN). This classifier was evaluated at each depth and the returned decision distance 



 

36 

was used as a measure of confidence. The depth with the highest confidence for IN-STN 

decisions was marked. Then we traced the decision distances above this depth and found 

the location where the LDA classifier voted for OUT-STN. This point where the 

classifier made IN vs. OUT decision transition was finally chosen as the predicted dorsal 

border of STN. The difference between prediction and the STN border identified by 

MER-SUA was calculated in each patient and the root mean square (RMS) of the 

prediction errors was used to quantify the performance of the classifier. Further, 

statistical analysis by using Student’s t-test and F test was conducted in order to compare 

the mean and the variance of predictions obtained by different subband features, 

respectively.  

 
 

Fig.3.2. Prediction of the dorsal border of STN and prediction of optimal track. (A) Decision 

strategy in the prediction of dorsal border of STN. (B) Decision strategy in the optimal 

track prediction.  

 



 

37 

3.2.3.2. Prediction of the optimal track  

 The optimal track selection among three tracks is done by the neurosurgeons 

through interpreting the excessive single cell firings within the STN. Consequently, for 

the prediction of the optimal track using LFP data, an LDA classifier was trained by 

contrasting the LFP subband features of selected track vs. un-selected tracks below the 

dorsal border of STN. This classifier was evaluated at all depths as in the STN border 

prediction and the returned decision distance was used as a measure of confidence. The 

distance returned by the linear classifier was used in three different scenarios for final 

decision making (Fig.3.2.B). In the first scenario, the optimal track was predicted below 

the STN border provided by the neurosurgeon for that specific test subject based on the 

SUA interpretation. This represents the setup in which we fuse SUA- and LFP-based 

information. In the second scenario, no SUA information about the STN border of the test 

subject was used, and the decisions were given below the one standard deviation from the 

average of STN border estimated from all training subjects. In the third scenario, the 

optimal track decisions were made below the STN border which was derived solely from 

the LFP data. Specifically, here we explored whether or not the LFP could predict the 

optimal track without any SUA-based interpretation. We studied the classification 

performance below and above the STN border in these three different scenarios. A 

schematic diagram related to this process is given in Fig.3.2.B. Depth-varying LFP 

subband features of each track were classified using the trained LDA and a label and 

related decision distance were generated by the classifier for each depth. We classified 

one the tracks as the optimal one based on the longest span of decision distances voting 

for optimal track within the STN. Note that the longest span is a common approach used 

intraoperatively by neurosurgeons for MER-SUA-based optimal track selection. Note 
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that, if the track selected by neurosurgeon in the operating room did not match with the 

decision of the algorithm, the decision was counted as a misclassification.  

 The prediction of optimal trajectory was investigated using individual sub-band 

powers, beta and HFO, and their combination. To explore the benefit of the LMS 

algorithm over monopolar raw signals (raw signals), the same classification procedure 

was carried out with the raw data. 

 Finally, in order to assess the efficiency and reproducibility of the classification, a 

leave-one-subject-out method was used. In each step, one subject was used for testing, 

whereas the other subjects were used training the LDA classifiers for STN dorsal border 

and optimal track prediction. The procedure was repeated until the whole sample was 

classified. In addition, this procedure was performed separately for individual beta and 

HFO sub-bands of LFP and their combinations to examine their efficacy in classification 

performance.  

 In order to explore a relationship between classification results and post-operative 

simulation parameters used for the initial programming 6 months after the surgery were 

compared in correctly classified and misclassified groups. The distribution of stimulation 

amplitude, was investigated by box and whisker plots. Student’s t-test with two-sample 

was used to check if the distribution of simulation amplitude, frequency, and, pulse width 

were significantly different or not. 

3.3. Results 

3.3.1. De-correlation of LFP data from multiple tracks 

We analyzed LFP data derived from 75 MER tracks in patients with PD who were 

undergoing STN DBS electrode placement. Typical raw SUA and LFP data coming from 



 

39 

various depths were shown in Fig.3.3. The red dashed line indicates the dorsal border of 

STN. The correlation between the two modalities is clearly seen. When the electrode 

enters the STN, both single cell firing and oscillatory activity increase.  

In Fig.3.4.A-B, the mean correlation matrices of raw LFP data filtered in beta 

band (11-32 Hz) and HFO band (200-450 Hz) were shown. The correlation matrix in the 

beta band (Fig.3.4.A) explicitly shows that the spatial correlation between tracks is high 

whereas the correlation between tracks in HFO range is small (Fig.3.4.B). The small 

amount of correlation at HFO band in raw data also shows that oscillations at higher 

frequencies are more localized than the oscillations at lower frequencies. For these 

 

Fig. 3.3. The plots of raw SUA and LFP signals. The graphic on the left shows the single neuron 

activity lasting 2 seconds while the graphic on the right indicates the aggregate activity 

of neuron populations at the same depths with the same duration. The dorsal border of 

STN shown as red dashed lines is 3 mm for this representative subject. 

 
Fig. 3.4. Correlation matrices of raw and de-correlated data. (A)The correlation matrix of raw 

data in beta band (11-32 Hz). (B)The correlation matrix of raw data in HFO band 

(200-450 Hz). (C)The correlation matrix of subband-decorrelated data.  
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reasons, the LFP data were de-correlated with LMS separately in these frequency bands. 

It was found that the correlation between tracks is reduced after the LMS-based 

preprocessing step (Fig.3.4.C) which helped more to distinguish the tracks.  

Fig. 3.5 demonstrates the effect of LMS algorithm by comparing it to the raw LFP 

signals. As it can be seen in Fig. 3.5.A-B-C, the raw LFP data have a high amount of 

common activity across all tracks at various depths which masks the spatially and 

temporally distinguishing patterns during targeting. In Fig.3.5.B, DFMs indicate that the 

high-energy low band activity among tracks masks other oscillations. The common 

 
 

Fig.3.5. Effect of LMS algorithm. (A) Raw LFP distribution. (B) DFM generated from raw 

LFPs. (C) Power spectrum of raw LFPs. (D) De-correlated LFP distribution. (E) DFM 

of de-correlated LFPs. (F) Power spectrum of de-correlated LFPs. Red and white 

dashed line indicate the dorsal border of STN. 
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activity across three tracks and the high energy low band oscillations can be also seen in 

the power spectrum shown in Fig.3.5.C which was generated from the LFP data below 

the dorsal border of STN. On the other hand, target specific oscillations are clearly seen 

on de-correlated LFP data (Fig.3.5.D). In particular, the energy in the first track is much 

higher than the other two tracks and it is easier to observe the track differences and the 

estimated STN border depth for the target localization. The DFMs of these tracks shown 

in Fig.3.5.E demonstrate that the first track contains LFPs with higher energy in and high 

frequency bands below the dorsal border of the STN which is marked with a white 

dashed line. Furthermore, the power spectrum shown in Fig.3.5.F demonstrates that not 

all three tracks show excessive beta activity. There is an increase in the gamma band (35-

55 Hz) and great enhancement in HFO range (200-400 Hz) in the first track compared to 

other tracks. The LMS algorithm not only reveals the pathological beta oscillations but 

also the HFOs having lower energy.  

3.3.2. Spatio-spectral patterns of multitrack LFP 

In order to provide a sense of the depth-varying frequency content of multitrack 

LFPs, we demonstrated representative normalized DFMs of de-correlated LFP data of all  

3 tracks from four patients in Fig.3.6. In each map, the dorsal STN border is marked with 

a white dashed line. The excessive beta oscillations can be clearly seen in the first subject 

dominantly in the center track and localized to certain depths (Fig.3.6.A). The power of 

beta oscillations in the posterior and medial track is weak, yet it can be still observed. 

Furthermore, there is a strong and track-specific HFO around 350 Hz which is well 

aligned with the low band activity. On the other hand, in the subject presented in 

Fig.3.6.B, beta oscillations are observed in all tracks along with HFOs. Although the 
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Fig.3.6. Normalized depth-frequency maps. Normalized DFMs of de-correlated LFP data of 

all three tracks from four representative patients are shown. The white dashed line 

indicates the dorsal STN border. In this subject, the selected track is anterior.  

 

excessive LFP activity occurs below the STN dorsal border as for the patient presented in 

the Fig.3.6.A, the excessive depth varying spectral patterns are pretty track and region 

specific. The HFO on the center track sits at 350 Hz while it is located at 250 Hz on the 

posterior track. The lateral track shows wider but weaker oscillations. DFMs in Fig.3.6.C 

demonstrate a similar LFP characteristics to the first subject (Fig.3.6.A) with dominant 

beta oscillations and HFOs in the center track. Similarly, these oscillations are well 

aligned below the dorsal border and highly stronger than the beta oscillations in the other 

two tracks. Distinctly, strong oscillations at higher depths are observed above the dorsal 

border in the posterior track which might be related to thalamic activity. Note that we 

observed high frequency activity localized at higher depths above the dorsal border of 

STN in at least one of the un-selected tracks in 56% of recordings. The number of the un-

selected tracks with the observed oscillations were: 8 posterior, 5 center, and 1 medial. 
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Similar to the HFO activity seen in Fig.3.6.C, these oscillations were noted from 11.5 

mm ± 2.6 mm to 5.7 mm ± 2.4 mm (average values) above the estimated final location of 

the electrode tip. The tracks having higher-depth HFOs do not include strong beta 

activity. These oscillations have a longer spatial span with lower power. It is likely that 

these oscillations rise from thalamic structures (Falkenberg et al., 2006; Hutchison et al., 

1998), and given their spatial distribution in relation to the beta band activity, they might 

be used as markers for STN localization. The fourth representative subject shown in 

Fig.3.6.D introduces a different LFP characteristic compared to others. None of the tracks 

are associated with strong, long span of beta oscillations. Specified border is not aligned 

with weak beta oscillations but the short lasting excessive one in the lateral track. All 

tracks demonstrate spatially different weak-to-minor HFOs. The overlap in the LFP 

activity between tracks, the weak activity across tracks and thalamic oscillations are some 

of the factors contributing to the challenges to the prediction of dorsal border of STN and 

selection of optimal track. 

3.3.2.1. Intra-track and inter-track differences of LFP spectra   

 For the neurosurgeon selected track, the distribution of beta and HFO subband 

powers above and below the dorsal border of STN are given in Fig.3.7.A. The analysis 

shows that there is a significant difference between the power inside and outside the STN 

region (above the STN dorsal border) (t=44.72, p<0.001; t=34.89, p<0.001) in the 

selected track. As seen from the box-plot in Fig.3.7.A, the sub-band power is much 

higher inside the STN. When the subband power was compared between the optimal and 

other tracks (Fig.3.7.B), the distributions were found significant as well (t=16.47, 

p<0.001; t=15.17, p<0.001). The significance is consistent at the beta band and HFO 
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band in both distributions. The variance of HFO power in the un-selected tracks is higher 

than the variance in the selected track. Based on our previously mentioned findings, we 

postulate that thalamic activity in un-selected tracks might contribute to increased 

variance of HFO power when the distribution includes entire track.  

3.3.3. Localization of the dorsal border of STN   

 The progression of prediction of STN dorsal border for representative subjects 

and the average results estimated from the entire patient population is shown in Fig.3.8. 

In Fig.3.8.A-B, decision distances returned by the classifier voting either for IN-STN or 

OUT-STN are shown for two representative subjects. The decision distance curves were 

obtained from the fused beta and HFO features. Note that the predicted STN border is 

shown with an arrow corresponds to the position where we find the maximum confidence 

point associated with IN-STN and trace back to the depth crossing zero. The dorsal 

border of STN provided by the neurosurgeon based on SUA interpretation is shown with 

a dashed vertical line. Fig.3.8.A shows a late prediction of the dorsal border (e = -0.75 

mm) while Fig.3.8.B indicates an early border prediction (e = +1 mm). Fig.3.8.C 

 
Fig.3.7. Intra-track and inter-track differences of LFP spectra. (A) IN and OUT of STN power 

distribution in the selected track in beta and HFO bands. (B) IN-STN power in the 

selected vs. un-selected tracks. ***statistically significant difference between 

distributions (α=0.01). 
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demonstrates the average border decisions with the standard deviation coming from all 

test subjects by using individual sub-band powers, beta and HFO, and fused features. The 

overall localization error of the dorsal border of STN was quantified by calculating root 

mean square (RMS) of the error between target values and LFP predictions across all 

subjects. The red and blue lines show the decisions obtained with beta and HFO band 

features indicating an RMS error of 1.98 mm and 1.18 mm, respectively. The mean value 

of prediction error for beta band features was 0.83 mm ± 1.84 mm while the mean of 

error for HFO band features was -0.23 mm ± 1.18 mm. The decisions obtained through 

the fused beta band and HFO features had an RMS error of 1.22 mm with mean of 0.24 

mm ± 1.22 mm. In Fig.3.8.D, the distribution of prediction errors are shown for each 

studied subband and their fusion. Student’s two sample t-test analysis indicated that the 

difference between mean values of beta-based prediction error and HFO-based prediction 

 
 

Fig.3.8. Localization of dorsal border of STN. (A-B) The decision distances returned by the 

classifier voting either for IN-STN or OUT-STN for two representative subjects. (C) 

The average border decisions with the standard deviation by using beta (red). HFO 

(blue), and fused features (green). (D) Comparison of prediction errors (RMS).  
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error was significantly different (t=2.22, p= 0.0322) while no statistically significant 

difference was found neither between beta-based prediction error and the error of fused 

features (t=1.23, p=0.2244) nor HFO-based prediction error and the error of fused 

features (t=-1.25, p=0.2185). When the variances of these distributions were compared by 

using an F test, the analysis showed that the difference between beta-based and HFO-

based border prediction was only marginally significant (F1,2=2.42, p=0.054) while there 

was no statistically significant difference between the variance of individual sub-band 

powers (beta and HFO) and fused power (F1,3=2.26, p=0.075; F2,3=0.94, p=0.88, 

respectively). 

3.3.4. Prediction of the optimal track 

We studied the optimal track classification in three different scenarios using the 

LFP data: i) below the SUA-based STN border, ii) below one standard deviation from the 

average STN border obtained from training data, and iii) the LFP-based STN border. We 

trained the LDA classifier using individual subband powers and their combination. Our 

results towards the prediction of optimal track from LFP data is given in Table 3.2. We 

note that the best results were obtained 

from the combined subband power features 

and consistently in all these scenarios, the 

optimal track prediction accuracy was 80% 

(shown in bold type) indicating that the 

classifier can predict the track targeted to 

the STN in 20/25 recordings. These results 

show that prediction of optimal track can be performed independently from single unit 
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recordings. When the beta and HFO subband features were used individually, the 

classification accuracy dropped to 72% and 68% respectively. When the procedure was 

repeated with the raw data, the prediction rate was poor. In particular, the classification 

accuracy was 64% for beta band power and 68% for the HFO and fused features which 

supports the observation that HFOs obtained in monopolar configuration are already 

highly de-correlated among different tracks. 

Despite the spatially localized thalamic oscillations, the classification results 

obtained above the STN border were quite poor. The prediction accuracy was found to be 

40% when the classification was computed above SUA-based or LFP-based STN border. 

Decision accuracy with average STN border was even lower at 36% by using fused sub-

band power. The results indicate that the LDA classifier trained with the LFP features 

above the STN cannot predict the optimal track with a reasonable accuracy and was close 

to chance level.  

The progression of classification over depths for three representative subjects are 

shown in Fig.3.9.A-C. In each plot, the STN border location provided by the 

neurosurgeon based on the SUA interpretation is also represented with a vertical dashed 

line. The decision distances in both selected and un-selected tracks returned by the 

classifier are close to each other down to the dorsal border of STN. Since the spectral 

characteristics of LFPs change inside the STN compared to higher depths, we observe a 

sudden change between the decision distances as well. If only one of the tracks deviates 

from the others and reaching the highest confidence level, it is easily determined as the 

optimal track by classifier. If more than one track are voted for the optimal track (below 

the zero line in Fig.3.9) with high confidence levels, algorithm gives the optimal track 
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decision by computing the longest span of the selected track votes. The progression of the 

classification for a misclassified subject is given in Fig.3.9.C. The average decisions for 

the optimal track of all subjects with the associated standard deviation are given in 

Fig.3.9.D. A clear separation is observed in decision distances between selected and un-

selected tracks indicating a high percentage of correct prediction among the subjects. 

3.3.4.1. Distribution of selected tracks  

Table 3.3 shows the frequency of selected tracks based on MER-SUA 

interpretation and LFP processing. As per standard clinical protocol, the initial trajectory 

to target STN is determined by preoperative stereotactic imaging. Three tracks are 

selected by the neurosurgeon based on the initial planning for microelectrode recordings. 

 
 

Fig.3.9. Progression of classification in optimal track prediction. (A-C) The progression of 

classification over depths for three representative subjects. The black dashed lines show 

the MER-SUA based STN border. (D) The average optimal track decisions with the 

standard deviation. 
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The initial expectation is that the center track will hit the STN while other tracks account 

for possible targeting error. Then based on the MER-SUA recordings the optimal track is 

selected among these three trajectories. Although the image based planning aims to hit 

the STN with the center track, Table 3.3 demonstrates that intraoperative MER-SUA-

based decisions among 25 recordings is not biased toward the center track. We note that 

the selection frequency is higher in anterior track based on MER-SUA mapping. In 

addition, the posterior track is not selected at all. When the selection frequency based on 

LFPs is studied, it can be seen that both MER-SUA and LFP decisions match with a high 

percentage but LFP based prediction was more in favor of the center track. Overall, our 

results indicate that 

stereotactic planning does 

not perfectly correlate 

with intraoperative 

electrophysiology based 

track selection and 

highlight the variance in 

track selection. 

3.3.4.2. Post-operative programming parameters  

 We explored whether there exist any difference in programming parameters 

between the correctly and misclassified patients. In particular we investigated the post-

operative simulation parameters such as voltage, frequency and pulse width which were 

selected during the programming 6 months after the surgery. The distribution of selected 

stimulation voltages are presented in Fig.3.10. We note that the average stimulation 
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voltage used in correctly classified group is 1.72 ± 0.63 V while it is 2.12 ± 0.69 V in 

misclassified group. Student’s two sample t-test analysis indicates that the difference in 

voltages between two groups is not statistically significant (t= -1.16, p= 0.2595). 

However, one of the misclassified subjects we observed has high level beta and HFO 

activity in both selected and un-selected track and this patient is stimulated with 1 V. This 

indicates that both tracks could be viable. When this subject is removed from the 

misclassified group, we note that the mean post-operative stimulation voltage increases to 

2.4V ± -0.46 for the 

misclassified population. The 

difference in post-operative 

stimulation voltages between 

correctly classified and 

misclassified groups without 

this outlier becomes 

marginally significant (t= -

1.92 p= 0.0685). No 

significant difference is found either in the frequency (183.1±5.8 Hz) or in the pulse 

width (90±26.5 µs) between groups (t= -0.74, p= 0.4692 and t= 0.96, p= 0.3477, 

respectively). 

3.4. Discussion 

Significant variability exists in the axial and coronal orientation of the STN in 

humans (Patel et al., 2008), and the motor territory of the STN is small, measuring 

approximately 4-6 mm extent from dorsal to ventral. These factors combined with brain 

 
 

Fig.3.10. Distribution of post-operative stimulation 

voltages in correctly classified and misclassified 

groups.  
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shift between preoperative stereotactic imaging and intraoperative electrode brain 

penetration can lead to targeting errors in the operating room. Pre- and intra-operative 

clinical imaging methods alone are suboptimal for accurate placement of a DBS 

electrode; they are subject to distortion, and visualization of a clear differentiation 

between the STN and surrounding structures can be difficult. In this regard, our study 

also indicates a considerable amount of variance in track selection. Under the assumption 

of hitting the STN through center track by image based planning, track selection was not 

found to be biased toward the center track in the intraoperative MER-SUA-based 

decisions indicating that stereotactic planning does not perfectly correlate with 

intraoperative electrophysiology based track selection. 

Accurate localization of STN motor territory through intraoperative 

electrophysiology is a crucial step for DBS electrode implantation (Gross et al., 2006; 

Zonenshayn et al., 2000). As recently as 2013, an international survey of high-volume 

DBS implanting sites revealed that 83% of centers use microelectrode recording 

indicating that the most commonly used electrophysiological mapping method remains 

MER-SUA recordings (Abosch et al., 2013). However, the method has several limitations 

in practice as subjective interpretation of complex signal patterns to localize the 

anatomical borders of the STN, being less stable and more “susceptible to technical (e.g. 

impedance) and physiological (e.g. cerebrospinal fluid and blood) fluctuations” 

(Thompson et al., 2014). As Gross et al. indicated, the number of groups using solely 

macroelectrode/DBS mapping to target the STN without any microelectrode recording is 

high (Chen et al., 2006; Gross et al., 2006; Telkes et al., 2014). Although there are 

advantages of using macroelectrode/DBS technique alone in STN targeting like carrying 



 

52 

less amount of risk for intracranial hemorrhage since there is no multiple trajectories and 

due to the blunt-tip of the macroelectrode (Xiaowu et al., 2010), the drawbacks like 

microlesion effect which might limit the clinician's ability to test or therapeutic 

effectiveness in the operating room and poor spatial resolution should be taken into 

consideration (Gross et al., 2006; Rezai et al., 2006; Wang et al., 2014). Although asleep, 

MRI-based non-MER-guided surgery is gaining sway (Starr et al., 2014), the possibility 

of clinically testing a DBS electrode prior to permanent implantation does not exist as yet 

in the context of such a procedure. 

Earlier investigations have documented that excessive beta oscillations in certain 

basal ganglia structures, especially the STN, represent a pathophysiological feature of PD 

(Kane et al., 2009; Lopez-Azcarate et al., 2010; Oswal et al., 2013; Weinberger et al., 

2006). Excessive beta band (8-30 Hz) activity is detected when the electrodes enter into 

the STN (Brittain & Brown, 2014; Kühn et al., 2008; Levy et al., 2002). Similarly, 

excessive oscillations at very high frequency ranging from 200-400 Hz are also observed 

(Lopez-Azcarate et al., 2010; Özkurt et al., 2011; Priori et al., 2004). Even though these 

high frequency oscillations are considered to represent a pro-kinetic state, and appear 

with dopaminergic medication and/or induced movement (Foffani et al., 2003, 2006; 

Trottenberg et al., 2006), others have demonstrated that HFOs (>200Hz) can still be 

observed in the STN during the medication OFF state or at rest (Lopez-Azcarate et al., 

2010). In our study, all patients discontinued with their short and long acting medication 

before the surgery and were in OFF state. As others, we observed HFOs in the resting 

state and increased band power along with entry into the STN. Existence of excessive 

beta band and high frequency band oscillations within the STN in PD can be used in 
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target localization. However, the variability and patient-specific characteristics of spatial 

distribution of excessive beta and HFOs should be taken into consideration (Chen et al., 

2006; Wang et al., 2014; Weinberger et al., 2006).  

Despite a few publications using intraoperative microelectrode LFPs for STN 

localization (Holdefer et al., 2010; Michmizos et al., 2008; Wang et al., 2014), to our 

knowledge, no studies exist on the functional use of LFPs recorded from multiple 

microelectrodes for the selection of the optimal trajectory targeting the STN in PD. The 

present study demonstrates that using spectral features of LFP to identify the optimal 

track without any decorrelation technique provide sub-optimal results due to widely 

distributed neural signals and/or artifacts masking the spatially and temporally 

distinguishing patterns during targeting. Therefore, the LMS algorithm is used as an 

efficient technique to decorrelate the tracks by keeping localized activities in each. The 

adaptive LMS algorithm is widely used in the biosignal processing field since early 80s 

for signal enhancement due to its efficiency and low complexity (Chen et al., 1990; 

Ferrara & Widrow, 1982; Widrow et al., 1975). Since the decorrelation is being done 

recursively without violating the causality constraint, where each channel is predicted by 

the current samples of other data channels, the algorithm can be easily executed on 

standard PC architectures in real-time. Since it is an adaptive technique, the time and 

depth varying parameters allows tracking time and depth varying LFP activity and does 

not suffer from the cross talk as much as in the common average based derivation. It 

should be noted since it estimates current signal by using a linear combination of other 

signals the LMS algorithm cannot fully eliminate the high amplitude artifacts if they are 

not distributed among the tracks, which constitutes a major drawback of the algorithm. 
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One way of reducing the effect of large artifacts and keep the system stable is to use an 

error threshold with upper and lower boundaries. Another important factor influencing 

the benefit of the algorithm is the learning parameter, μ. It should be investigated by 

considering signal properties such that adaptation of the system should be neither very 

slow nor very fast.    

Spectral analysis showed that beta oscillations are getting stronger as the 

electrodes approach the STN. Not only beta oscillations but also strong HFOs can be 

observed in the STN area well aligned with beta oscillations. This strong relation is noted 

in the tracks selected by neurosurgeons in 17 recordings out of 25. In rest of the 8 

recordings, HFO was either weak or fully absent or they were noted only in one of the 

un-selected tracks. The energy changes above and in the STN were used to localize the 

dorsal border. The RMS error of prediction for the dorsal border of STN is obtained from 

1.18 mm to 1.98 mm when the different features are used. The minimum prediction error 

is found with the power of HFOs (1.18 mm) indicating that, despite the unknown 

functional role of these high frequency components, they can still be eligible in STN 

targeting. The LFP is a continuous process and does not suffer from SUA isolation 

challenge while the target variable is a SUA driven information which is also prone to 

interpretation error and SUA isolation challenge. Considering the dorsa-ventral size of 

STN, 1.22 mm prediction error in depth with the fused features may represent 11% in 

DBS electrode 3387 or 16% in 3389 difference which can be easily compensated with the 

multiple contacts of the DBS electrode.   

The features computed above the STN border provided poor results in prediction 

of optimal track. We note that the optimal track can be predicted with higher accuracy 
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with the features obtained below the dorsal border of STN. Analysis manifest that 14 

recordings out of 25 (56% of entire dataset) indicate spatially distinct HFOs together with 

beta activity above the dorsal border of STN (see Fig.3.6.C-D) in at least one of the un-

selected tracks. It can be assumed that these relatively weak oscillations located away 

from the dorsal border of STN are recorded from thalamic structures. To our knowledge, 

this considerable amount of thalamic oscillations in PD are not well studied phenomena. 

These findings presented here might be used as spatial markers in STN localization and 

might form the basis of further investigation into PD pathophysiology from a spatio-

spectral perspective. 

It should be noted that our classification technique could not predict the selected 

track in 20% of the subjects. We did not observe a gender difference between these five 

misclassified subjects. Specifically, three of them were men and two of them were 

women. None of the misclassified patients were tremor dominant. Three of these patients 

were typical PD and the other two were bradykinetic/rigid. The mean age and disease 

duration were 62.2 ± 13.6 and 12 ± 4.6, respectively and were not significantly different 

from other correctly classified patients (62.1 ± 8.3 and 10.1 ± 4.6, respectively).  The 

misclassification in the 20% of the patients occurred due to many different factors in LFP 

signal including weak activity or similar activity between tracks. During these recordings, 

we did not use any sedation. Therefore, weak activity cannot be related to anesthesia. In 

one patient with typical PD phenotype, the LFP signal was weak across all tracks. We 

noted that the beta and HFO activity started to develop towards the bottom border of the 

planned target deeper than the other patients. We believe that in this particular patient the 

weak activity across all tracks can be described with the electrode positions. Our 
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observations indicate that the three tracks just started to enter the STN and did not fully 

went through it. In another misclassified case, the LFP activity was quite strong and 

similar in two out of three tracks. Therefore, the classifier output was very close for these 

two tracks. In the other three patients, the HFO activity in the SUA selected track was 

weak compared to LFP selected track. Studies hypothesize that maximum beta band (13-

32 Hz) and gamma band (48-220 Hz) power is highly correlated with stimulation 

programming parameters in DBS chronic electrode (Ince et al., 2010). When a particular 

contact pair on the electrode shows strong beta and gamma oscillations, it’s assumed that 

the electrode is closer to the source so that lower stimulation would provide better 

symptom improvement and less side effects. The present study supports these results. We 

observed higher stimulation voltages in those patients where the LFPs did not correlate 

with MER-SUA selected tracks. Despite the lack of statistical significance, the 

stimulation voltages in the 6-month-programming of implantable pulse generator (IPG) 

indicate lower values in the patient group having stronger LFPs in beta and/or HFO 

bands. A study with larger sample size would be needed to test the validity of this 

observation. 

 

 

 

 

 



 

57 

4. CHAPTER 4: Localization of Subthalamic Nucleus Borders by 

Using Macroelectrode Local Field Potentials  

The work described in this chapter was published by Telkes et al. in 36th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society in 

2014, and used with permission from the IEEE Society. 

4.1. Introduction 

An important factor contributing to the efficacy of DBS is the accurate 

localization of STN in the brain. The small volume of STN motor territory, its depth from 

the cortical surface, and its proximity to other critical neural structures, make precise 

targeting crucial as well as challenging (Obeso et al., 2010). Together with stereotactic 

imaging, MER is the most commonly used physiological technique to determine STN 

location for chronic implantation of DBS macroelectrode (Zaidel et al., 2009). In MER-

SUA, i.e., the electrical activity resulting from individual neurons, is recorded by 

microelectrodes characterized by small diameter and high impedance. The resulting 

signal patterns are interpreted in order to localize the anatomical borders of STN 

(Taghva, 2010). The number of MER trajectories being used in localization can vary 

based on technical factors and institutional preference from one to five or more (Cagnan 

et al., 2011). Following MER target localization, microelectrodes are withdrawn and 

replaced by the quadripolar DBS macroelectrode. Although MER provides useful 

information for guiding surgery, the procedure carries a risk of intracranial hemorrhage 

due to usage of multiple electrodes and sharp tip of these microelectrodes (Xiaowu et al., 

2010). Moreover, the interpretation of signal characteristics by neurophysiologists or 

neurosurgeons makes the procedure more open to human error with the increased surgical 
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time, especially in the multi-target cases requiring MER interpretation that is more 

complex (Taghva, 2010).  

     Unlike MER-SUA, macro electrode recordings are based on LFPs which 

represent the aggregate activity of neuronal populations in the region of the electrode 

contact (Chen et al., 2006). In PD, LFP recordings from STN are an important indicator 

of neural rhythms (Ince et al., 2010). Studies have demonstrated an excessive synchrony 

in beta band (13-30 Hz) activity in STN (Jenkinson & Brown, 2011).  

     The aim of the present study was to explore the informational content of LFPs 

recorded from macro DBS electrodes, in order to identify the anatomical borders of STN. 

Since LFPs can easily be recorded from macro contacts, their use in the operating room 

can reduce surgery time and serve as a useful tool for target validation. 

4.2. Methods 

4.2.1. Patients 

Intraoperative LFPs by DBS electrode were recorded from 6 patients (5 men, 1 

women), who were diagnosed with idiopathic PD. Disease duration ranged between 3 to 

11 years, with a mean of 8.5 years (standard deviation of 2.9 years). Details of the 

surgical procedure and electrophysiological recordings were mentioned in Chapters 2.2 

and 2.3.2. All patients underwent unilateral implantation of a DBS electrode into STN 

(only used model # 3389: Medtronic Corp, Fridley, MN). 

4.2.2. Data analysis 

Recorded LFP data were annotated and visualized in the XLTEK system and then 

exported into MATLAB (Mathworks, Natick, Massachusetts) for processing. LFP data 

from all four contacts were low-pass filtered using an FIR filter with a 450-Hz cutoff 
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frequency, and then down-sampled to 1000 Hz for analysis (Ince et al., 2010). During 

preprocessing of LFP data, monopolar signals were converted into bipolar derivation (0-

1, 1-2, 2-3). It should be noted that each bipolar contact represents the LFP activity at 

different depths with 2 mm spacing. Consequently, LFP data derived from all bipolar 

contacts (which sample different depths) were combined and processed together.  

In order to explore the frequency content of the LFP data at each depth, we 

generated a depth-frequency analysis similar to a time-frequency analysis. Details of the 

approach was mentioned in Chapter 2.4.2.  

We investigated the depth-frequency maps and extracted the energy of LFP sub-

bands at each depth to identify the superior STN border. The sub-band energy values at 

each depth were first filtered by zero-phase filtering in both forward and reverse 

directions to smooth the data. Then, output was interpolated with 0.5 mm resolution. 

Instead of joining data points by straight line segments using a linear interpolation, a 

cubic interpolation method was chosen. Finally, the interpolated signal was normalized 

between zero and one with a Max-Min method.  

In order to identify the superior STN border using normalized sub-band energy 

features, we first determined a 10% threshold to find noticeable energy increase with 

respect to higher depth values. Then, we computed the first derivative of the data to 

inspect the change in energy of consecutive data points. We identified the superior STN 

border using the following criteria:   

 energy value exceeds the 10% threshold  

 the slope of the signal is positive for the three consecutive points  

 the slope was taken into account after 7 mm and below 
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In order to compare the borders identified by MER-SUA and LFP, a paired 

student t-test was conducted. Moreover, the root mean square (RMS) of these differences 

was calculated. 

4.3. Results 

 The raw LFP data of a representative subject is shown in Fig. 4.1.A. Typical 

artifacts which resulted from abrupt movements of the patient and other environmental 

factors can be seen at the higher depths. After the electrode reached a certain depth, high 

amplitude LFP activity was observed. This amplitude change occurred consistently in all 

subjects between the superior and inferior border of STN as identified by MER-SUA. To 

give a flavor about the frequency content of LFP activity at various depths, the depth-

frequency map of the same subject is shown in Fig. 4.1.B. We observed a clear increase 

in beta-band energy within the STN borders (as defined by MER-SUA).  

 Surprisingly, excessive LFP activity was not limited to the beta-band but was also 

observed at higher bands, ranging up to 450 Hz. Based on these observations, we decided 

to use beta (13-30 Hz) and gamma frequency bands (48-450 Hz) for localization of STN 

border. Similarly, filtered LFP signals indicate an increasing trend inside the STN in 

these bands (Fig.4.1.C-D) that may provide an alternative approach to localize the 

borders.    

In Fig.4.2, the sub-band energy plots for all subjects in the beta (A) and gamma 

bands (B) are demonstrated. The sub-band data of all subjects were normalized to its 

maximum value and aligned with respect to the average superior border of the STN (red 

dashed line). Except one subject, (data in orange color) in all cases the beta band energy 

is well correlated with the STN superior border.   

B 
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 Figure 4.3 shows the variance values of representative subject with the differences 

of consecutive data points at each depth at beta band. In order to select the superior 

border of STN, a 10% threshold was applied and the first data point below 7 mm passing 

the threshold and having a positive slope (increasing energy trend) was selected as the 

superior border. Up to 7 mm, all subjects were having a consistent variance and 7 mm 

was the first point having an increased standard deviation (pink shaded area) from the 

average and the unlikely possibility of above depths being top border (10 mm is 

 
Fig.4.1. LFP dynamics for a representative subject. (A) The raw LFP data. (B) Spectral 

analysis. (C-D) Bipolar LFPs band passed filtered at 13-30 Hz and 48-500 Hz, 

respectively. White and red dashed lines show the upper and bottom borders of STN. 

 

B 
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Fig.4.2. Variance-vs-depth plots. The red lines show the 

mean variance along the depths and the pink 

shaded areas show ± standard deviation around 

the mean.  

  

 

A 

B 

corresponding 7 mm above 

the average superior 

border), 7 mm was chosen 

as threshold depth value.   

The mean value of 

superior STN border 

estimated with MERs was 

3.61 ± 0.92 mm while the 

mean value of superior 

border derived from macro 

electrode LFP recordings 

was 4.67 ± 1.03 mm and 

4.08 ± 1.56 mm in beta and 

gamma bands, respectively.  

The root mean square 

(RMS) of the difference 

between MER and LFP was 1.26 mm in beta and 1.06 mm at gamma band. The mean ± 

standard deviation of distance was -1.00 ± 0.84 mm and -0.42 ± 1.07 mm in beta and 

gamma bands, respectively. Student t-test analysis pointed that the differences between 

macroelectrode recordings and MERs were statistically significant for beta band (p=0.03, 

α=0.05), however non-significant for gamma band (p=0.38, α=0.05). 

B 
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4.4. Discussion 

 Previous studies suggested that the excessive beta-band activity of LFP can be 

used to localize STN. In the present study, during a DBS electrode implantation surgery, 

we recorded LFPs from four contacts of DBS macro electrodes in six patients. We 

observed increased LFP activity between the superior and inferior STN borders. After 

computing the LFP spectrum at each depth, we observed that excessive activity occurs 

not only in the beta-band, but also in the higher bands, ranging from 40 up to 450 Hz. 

Subsequent data analysis has shown that the localization error of superior STN border 

between macro electrode recordings and MER-SUA was around 1 mm in both beta and 

gamma band. These results support the use of intraoperative macro-electrode recordings, 

in conjunction with preoperative stereotactic imaging for target localization in PD. Due to 

the more robust nature of the LFP signal- derived from populations of neurons, instead of 

single neurons, LFP signal based confirmation of DBS location might be more 

advantageous than MER-SUA. LFP-based DBS surgery might also lend itself to a more 

automated approach to interpreting complex intraoperative neurophysiology rather than 

 

Fig.4.3. Variance vs depth plot with the differences between each consecutive data 

points for a representative patient. 
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the current scenario that requires significant expertise in auditory MER-SUA 

interpretation. It should be also noted that due its comparatively large contact size and 

between contact spacing, the DBS macro electrode has poor spatial resolution than the 

MER. For instance, for a bipolar contact derivation, at least a 3.5 mm displacement is 

required for both contacts to pass through a structure. In contrast, MER is characterized 

by superior spatial resolution as the SUA activity is recorded from the tip of the 

microelectrode, which has a length of several microns in length. Another drawback of the 

study is regarding only the superior border of the STN. In DBS surgery, the target depth 

is primarily the inferior border of STN rather than the superior border. However, because 

of the risk of serious side effects in case of further insertion of electrode, it is difficult to 

record data from lower depths. 
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5. CHAPTER 5: Electrophysiological Footprints of Motor Subtypes of 

Parkinson’s Disease 

5.1. Introduction  

The great variability in clinical manifestations of Parkinson’s disease such as 

motor and/or cognitive features or age at onset of the disease along with its prognosis 

allow different subtype classifications (Marras & Lang, 2013; Stebbins et al., 2013). 

Despite the various subgroups determined by data-driven approaches (Graham & Sagar, 

1999; Lewis, 2005; Selikhova et al., 2009), the most commonly accepted and studied 

phenotypically defined subtypes of PD are: (i) tremor dominant (TD), (ii) postural 

instability and gait difficulty (PIGD), and (iii) a mixed type which includes balanced 

distribution of the symptoms of PIGD and TD (Jankovic, McDermott, et al., 1990; Nutt, 

2016). This categorization is based on the clinical observations evaluated often by using 

the Unified Parkinson’s Disease Rating Scale (UPDRS) or the revised version of it 

released by the Movement Disorder Society (MDS-UPDRS) (Stebbins et al., 2013). 

Studies have shown that patients with TD-PD have a relatively slow disease progression 

and the annual increase in symptom severity in PIGD is larger (Jankovic & Kapadia, 

2001). In particular, severe cognitive dysfunction is consistently seen in PD patients with 

late-onset or in PIGD patients while TD-PD patients or those with young-onset show 

either no cognitive impairment or less (Marras et al., 2014; Halliday & McCann, 2010; 

Rajput et al., 2009). One study showed that the signs of dementia appeared in TD patients 

only after PIGD symptoms developed (Alves et al., 2006). Evaluation of motor subtypes 

over time indicated an instability such that most of the TD subtype at the onset of the 

disease switched to MIX subtype by emerging more akinetic/rigid symptoms with the 



 

66 

disease’s progression and years of therapy (Schiess et al., 2000). The distinction between 

these subtypes are further shown with different modalities in which different 

morphology, neurochemistry and/or circuitry were demonstrated in parkinsonian basal 

ganglia (Eggers et al., 2011; Lewis et al., 2011; Rossi et al., 2010; Schiess et al., 

2000).Yet, absence of a reliable diagnostic marker and changing nature of symptoms in 

time might lead to suboptimal treatment.  

A meta-analysis study by reviewing literature from 1988 to 2014 for clinical 

diagnosis of PD via a Bayesian approach indicated that the pooled diagnostic accuracy, 

with respect to specificity, performed by movement disorder experts was initially 76.4% 

and increased to 84.9% after follow-ups (Rizzo et al., 2015). Several studies also reported 

that accuracy of clinical diagnosis of PD was not very high and even less than 80% (Gelb 

et al., 1999; Hughes et al., 1992; Rajput et al., 1991). Even if the accuracy of diagnosis 

was increased to 93% by using detailed diagnostic criteria, cases of atypical parkinsonism 

could be still missed by being misdiagnosed with the common atypical parkinsonian 

disorders like progressive supranuclear palsy, multiple system atrophy, dementia with 

Lewy bodies or vascular parkinsonism (Hughes et al., 1992; Lewis, 2005; Poewe & 

Wenning, 2002). Considering that PD is the most common misdiagnosis for ET (Jain et 

al., 2006), differentiation of PD from non-degenerative tremor disorder like ET, is also 

crucial to provide a beneficial therapy to the patient (Newman et al., 2009). 

DBS of the STN is an effective therapy for the treatment of motor symptoms of 

PD. STN is a small and ovoid-shaped structure surrounded by various structures such that 

fibers of internal capsule on anterior and lateral sides, anteromedially Fields of Forel 

(FF), posteromedially red nucleus (RN). Zona incerta (ZI) stands as a barrier in between 
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STN and ventral thalamus while the substantia nigra (SN) situated in just below the 

ventral border of the STN (Hamani, 2004; Patel et al., 2008). It has been well accepted 

that sensorimotor region of STN which is located at the dorsolateral side is an effective 

target for alleviation of cardinal symptoms of PD (Herzog et al., 2004; Saint-Cyr et al., 

2002). Further, it was found that stimulation of dorsal region of STN including FF and/or 

ZI might provide a better efficacy and symptom improvement (Voges et al., 2002; Yelnik 

et al., 2003). Plaha and his colleagues showed that the highest improvement in UPDRS 

scores was noted in the ZI-stimulation group (Plaha et al., 2006). More importantly, the 

most remarkable improvement in this group was seen in tremor scores compared to 

rigidity and bradykinesia. 

It has been proposed that different morphology, neurochemistry and/or basal 

ganglia circuitry underlie the PD subtypes, especially between TD and PIGD. Yet, to our 

knowledge, no electrophysiological pattern linked to the two subtypes has been identified 

in the basal ganglia. Absence of a reliable biomarker might lead to suboptimal treatment 

using DBS. Here, we tested the hypothesis that the spatio-spectral patterns of LFPs 

recorded with microelectrodes from STN sub-territories can be used to distinguish PD 

patients with PIGD or TD motor subtypes. 

5.2. Methods  

5.2.1. Patients  

 Intraoperative LFPs were recorded from 27 patients (10 women, 17 men) who 

were diagnosed with idiopathic PD (see Chapter 2.2 for surgical details). Patients 

included in this study exhibited typical motor symptoms, including tremor, rigidity, 

bradykinesia, and postural instability and gait difficulty. Patients were clinically 
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evaluated by a movement disorder specialist and either UPDRS or MDS-UPDRS scores 

obtained in the off- and on-medication states were used to assess the severity of motor 

symptoms and signs. In order to designate the motor phenotypes of the patients, tremor 

scores and postural instability-gait scores of UPDRS or MDS-UPDRS were calculated 

using the formula suggested by Jankovic et al. (Jankovic, McDermott, et al., 1990; 

Stebbins et al., 2013). The tremor scores were calculated from UPDRS part-II question 

16, part-III questions 20 and 21 or MDS-UPDRS part-II question 2.10 and part-III 

questions 3.15-3.18. In order to obtain PIGD scores, UPDRS part-II questions 13-15, 

part-III questions 29 and 30 or MDS-UPDRS part-II questions 2.12, 2.13 and part-III 

questions 3.10-3.12 were used7. If the ratio of average tremor score and average PIGD 

score was greater than or equal to 1.5, or the PIGD score was zero, patients were grouped 

as TD. If the ratio is less than or equal to 1, patients were categorized as PIGD. Patients 

with a ratio of TD to PIGD between 1 and 1.5 were excluded from the analysis. Clinical 

characteristics of included subjects are provided in Table 5.1. For 3 patients (1 TD and 2 

PIGD) the phenotyping was documented but the UPDRS data was not available at the 

time of data analysis. 

5.2.2. Data analysis  

Spatial projection: When microelectrodes enter the STN, an excessive oscillatory activity 

is observed. In order to fuse information from multiple electrode tracks and increase the 

signal-to-noise ratio as compared to the original signals in each individual trajectory, a 

spatial projection based on the weighted linear combination of LFPs from 3 tracks was 

utilized (Fig.5.1.A). First, artifact-free LFP data in each trajectory were divided into two 

groups: (i) LFP data recorded from those depths at which the electrodes were determined 
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to be in STN, and (ii) LFP data recorded between dorsal border of STN and 5 mm above 

it, which were used as baseline. LFP signals at these depths were filtered between 4 Hz 

and 450 Hz cutoff frequencies by using a 2nd-order Butterworth filter. Then, 3x3 spatial 
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𝜆 =
𝜔𝑇 ∑ 𝜔𝑆𝑇𝑁

𝜔𝑇 ∑ 𝜔𝐵𝑎𝑠𝑒
                                                                  (5.1)                                                       

(1) 

 

covariance matrices, ∑STN
 and ∑Base, were calculated using the LFP data from 3 tracks. 

Using objective function (5.1)  

we searched for a spatial projection vector, w, in order to maximize the variance ratio 𝞴. 

This is a generalized eigenvalue decomposition (GED) problem and the eigenvector 

corresponding to the largest eigenvalue was chosen to maximize 𝞴. Ultimately, 3-track 

LFP data at each depth were projected into a single virtual channel using this eigenvector 

w which combines the recordings in a linear weighted fashion (Fig.5.1.A). This 

projection simply fused information of multiple tracks and maximized the variance of 

LFP data recorded in STN while minimizing the variance of recordings obtained out of 

STN. The projected data were used in further analysis for feature extraction and to 

investigate the spatio-spectral dynamics of the LFPs.  

Spectral analysis: A modified Welch periodogram method with robust statistics as 

described in Chapter 2.4.2 was used to investigate the LFP data in the frequency domain 

at each depth. DFMs generated for each patient were aligned according to the dorsal 

border of the STN, which was identified in each case based on MER-SUA. By this 

method, depth equals to 0 mm was used to signify the dorsal border of the STN in all 

subjects. In addition to individual maps, all DFMs were averaged independent of the 

patient’s phenotypic designation, and a global baseline spectrum with minimum power 

was calculated above the dorsal border. Then, individual DFMs of TD and PIGD subjects 

were separated, and a single map was generated for each phenotype by intra-group 

averaging. These two maps were normalized according to equation (5.2) by previously 

extracted baseline spectrum and are shown in dB scale,  
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𝑛𝑑𝑓𝑚 = 20 × 𝑙𝑜𝑔10  (
𝑟𝑑𝑓𝑚

𝑏𝑎𝑠𝑒
),                                          (5.2)                                  

  

where  ndfm is the normalized DFM in dB scale, rdfm is the raw DFM and the base is the 

baseline spectrum. 

 Visualization of DFMs revealed localized slow and fast high frequency 

oscillations (HFOs, 150-450 Hz) in the STN. In order to further characterize these focal 

activities, from the average DFM, the peak frequency between 150 and 450 Hz at each 

depth was obtained starting from the dorsal border until the final depth. Then, STN was 

divided into dorsal and ventral regions based on the shift in peak frequency of HFOs. 

This segmentation was applied to all subjects. The rest of the analyses were then 

individually computed in these defined segments to explore the spectral dynamics of 

LFPs in the dorsal and ventral regions of the STN (Fig.5.1.B).  

Subband Features. An average LFP power spectrum was computed within the dorsal and 

ventral regions in each subject. Additionally, a baseline power spectrum was computed 

from the LFP data recorded between dorsal border of STN and 5 mm above it. In total, 

three spectra representing baseline (out of STN), dorsal STN, and ventral STN segments 

were derived per subject (Fig.5.1.C). The beta band range was used as 8-35 Hz. The 

lower and upper frequency limits for subband features in HFO range were determined 

according to visual inspection of the average spectra in groups without any 

normalization. Slow HFO (sHFO) range was defined from 200 to 260 Hz (due to a sharp 

peak in the dorsal STN region in the TD group), and a fast HFO (fHFO) range was 

defined from 260 to 400 Hz. Subband powers in the beta, slow and fast HFO frequency 

bands were computed in the dorsal and ventral STN regions and normalized to the 
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Fig.5.1. Schematic diagram representing the workflow. (A) Raw LFPs with calculated spatial 

projection vectors. The dorsal MER-SUA based STN border marked with red dashed 

line. (B) A typical example of DFM of a TD subject. (C) Average power spectrum 

obtained from each segment shown in B. (D) PAC of the same TD subject.  
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corresponding baseline power and converted to dB scale, representing the relative in-STN 

power change in different sub-territories.    

Phase-amplitude coupling. Phase-amplitude coupling for non-linear interactions between 

the phase of beta and amplitude of HFO bands was investigated by using a phase locking 

value (PLV) approach which was described in Chapter 2.4.3. We investigated the 150-

450 Hz range as amplitude frequencies. The frequency band ranging from 4 Hz to 40 Hz 

was investigated as phase frequencies. Comodulograms in the dorsal and ventral sub-

territories were computed and the maximum PAC strength (values between 0 and 1) was 

extracted in each subject (Fig.5.1.D).  
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Statistical analysis. Statistical analyses were also performed in Matlab 2014a. In order to 

assess the normality and the homogeneity assumptions of the Student’s t-test for the 

feature distribution, the Shapiro-Wilk test and Levene's test were used, respectively. 

However, assumptions were not held for most of the variables. Therefore, the non-

parametric Mann-Whitney U-test for unpaired samples and the Wilcoxon signed-rank test 

for paired samples were used. The Mann-Whitney U-test was applied to compare the 

spectral features and the maximum PAC strength between phenotypes. For the intra-

group comparisons of the spectral features obtained from the same region, the Wilcoxon 

signed-rank test was used. The significance threshold was set to 0.05 in all the statistical 

analyses.  

 Receiver operating characteristic (ROC) curves were generated for extracted 

features and the area under the ROC curve (AUC) was used to quantify the 

discrimination power of features between phenotypes. To quantify the correlation 

between LFP features and the tremor and PIGD scores, a Spearman’s correlation analysis 

was used.  

5.2.3. Results  

LFPs from the STN obtained with 3 simultaneous microelectrodes were recorded 

in 27 PD patients (Fig.5.2.A). Based on UPDRS or MDS-UPDRS scores of these 

patients, 14 of them were identified as TD and 13 as PIGD. Visual inspection of the raw 

LFPs indicated an increased oscillatory activity in both PIGD and TD patient populations 

upon the electrode entry into the STN. The wideband LFP power difference between in 

and out STN was found statistically significant (in STN vs out STN, p<0.001, 

Wilcoxon’s test) without any distinction between groups (Z=0.024, p=0.981, Mann-
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Whitney U test) (Fig.5.2.B-D). However, depth frequency maps (DFMs) revealed distinct 

spatio-spectral patterns of LFPs between the TD and PIGD groups of PD patients.  

Fig. 5.3.A shows the average DFMs of TD and PIGD groups by being aligned to 

0 mm. In the TD group, a strong and quite localized 200-to-260 Hz activity was observed 

beginning at the dorsal STN border (0 mm) and extending 2 mm below it. These sHFOs 

were well aligned both with beta oscillations (8-35 Hz) and with the dorsal STN border. 

No clear sHFO peak could be observed in the average DFM of PIGD subjects. The beta 

oscillations and HFOs in the PIGD group appeared slightly inferior to the dorsal border. 

Spatio-spectral patterns of LFP oscillations in STN were investigated in detail by 

dividing STN into (i) dorsal and (ii) ventral regions (Fig.5.3.A, panels with zoomed in 

view). The panels next to DFMs indicating the zoomed in view of the spatial distribution 

of peak frequencies between 150 and 450 Hz calculated from average DFMs in TD and 

PIGD groups. The left panel shows the 2mm-span of the shift from sHFO to fHFO in TD 

group (mean ± s.d. of depths of shift, 1.93 ± 1.46 mm). Since there is no clear shift in 

 

  
 

Fig.5.2. LFPs recorded from multiple microelectrodes. (A) 3-D representation of 

microelectrode implantation into STN. (B) The trajectory of an optimally placed 

microelectrode from coronal view. (C) Projected LFPs in each depth. (D) Power ratio 

of STN to baseline in TD and PIGD groups.  
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PIGD group, DFMs in all subjects were divided into dorsal and ventral regions based on 

the observations in TD group. Once the electrodes advanced ventrally, it was noted that 

both groups demonstrated fHFO with wider bandwidth ranging from 260 to 400 Hz 

(mean ± s.d. of TD, 290 ± 26 Hz; PIGD, 322 ± 32 Hz) and with a significant difference 

between the peak frequencies of two groups (Z=-2.479, p=0.013, Mann–Whitney U test).  

The averaged LFP spectra in dorsal and ventral subregions for each group are 

shown in Fig.5.3.B. Top row represents the dorsal average power spectra and bottom row 

represents the ventral average spectra in frequencies below 100 Hz and above 100 Hz. 

Gray shaded areas represent the beta band (8-35 Hz), sHFO (200-260 Hz), and fHFO 

bands (260-400 Hz), respectively. Statistical analysis showed that band power of beta, 

sHFO, and fHFO were all significantly larger in ventral region compared to values in 

dorsal region in both groups (Wilcoxon’s test, TD-beta: Z=2.323, p=0.010; TD-sHFO: 

Z=2.260, p=0.012; TD-fHFO: Z=3.264, p<0.001; PIGD-beta: Z=3.075, p=0.001; PIGD-

sHFO: Z=3.145, p=0.001; PIGD-fHFO: Z=3.075, p=0.001).  

The sFHO power in the dorsal subregion of the STN was significantly higher in 

the TD group compared to the PIGD group (Z=2.402, p=0.016, Mann–Whitney U test). 

However, no significant difference in sHFO power was found in the ventral subregion 

(Ventral-sHFO: Z=0.849, p=0.396). Similarly, there was no significant difference noted 

in the beta or fHFO power in the dorsal or ventral subregions between groups (Fig.5.3.C) 

(Mann–Whitney U test, Dorsal-beta: Z=0.704, p=0.482; Dorsal-fHFO: Z=1.480, 

p=0.139; Ventral-beta: Z=0.024, p=0.981; Ventral-fHFO: Z=0.898, p=0.369.  
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Fig.5.3. Spatio-spectral and PAC dynamics of LFPs in TD and PIGD groups. (A) Average 

DFMs of TD and PIGD groups. (B) Average power spectra generated from dorsal and 

ventral regions. (C) Subband power distributions. (D) PAC computed depth-by-depth 

for a representative TD (left) and a PIGD (right) subject. (E) Average PAC in each 

group. (F) Maximum PAC strength distribution across phenotypes.  
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Fig. 5.3.D shows the comodulograms representing the PAC estimated from 

individual depths in dorsal and ventral subregions for a representative TD and a PIGD 

subject. The PAC analysis executed in each depth indicated a strong interaction between 

the phase of beta oscillations and the amplitude of HFOs. However, the spatial 

localization of PAC was distinct. While PAC in TD subject was observed in the dorsal 

subregion, PIGD subject demonstrated a PAC in the ventral subregion. Moreover, while 

the amplitude frequency of the dorsal couplings was centered in the sHFO band, the 

ventral PAC occurred at fHFO range.  

The average coupling in each group further supported our finding of spatially 

isolated PAC along with the distinct amplitude frequency components (Fig.5.3.E). The 

maximum PAC values obtained from the dorsal subregion were significantly higher in 

the TD group (Z=2.000, p=0.023, Mann–Whitney U test). Although both phenotypic 

groups exhibited fHFOs in the ventral subregion with significantly different peak 

frequencies, PAC analysis indicated a significantly higher coupling in the PIGD group 

(Z=1.877, p=0.030; Fig.5.3.F). In addition to the significantly higher PAC strength found 

in the dorsal subregion for TD and the ventral subregion for PIGD, the corresponding 

HFO (amplitude) frequencies were also significantly different (Z=-2.857, p=0.004) 

indicating that amplitude modulation occurs at distinct frequencies in the TD and PIGD 

patients.  

The ROC curves obtained from the sHFO and fHFO powers together with power 

ratio of sHFO to fHFO computed in the dorsal and ventral subregions are shown in 

Fig.5.4.A. A statistically significant difference in sHFO to fHFO power ratio was 

observed between phenotypes only in the dorsal subregion (Dorsal, Z=3.373, p=0.001; 
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Ventral, Z=1.674, p=0.094, Mann–Whitney U test; Fig.5.4.B). This feature also provided 

the highest discrimination between phenotypes (area under curve, AUC, ratio of sHFO 

power to fHFO power in dorsal sub-region, 0.89; ratio of sHFO power to fHFO power in 

ventral sub-region, 0.69; dorsal sHFO power, 0.77; ventral fHFO power, 0.60). 

To assess whether the spatio-spectral features of LFPs were related to UPDRS 

and/or MDS-UPDRS scores for tremor or gait-related scores, a correlation analysis was 

performed. Figure 5.4.C shows the distribution of mean tremor scores vs mean gait-

related (PIGD) scores across all subjects, highlighting the presence of PD subjects with 

considerable tremor and gait problems in the study. Correlation analysis showed that 

sHFO to fHFO power ratio was positively correlated with the difference of mean tremor 

A 

    
 

 
 

Fig.5.4. Discrimination and correlation. (A) ROC curves discriminating TD from PIGD by 

using spatio-spectral features (B) sHFO/fHFO power ratio distribution between TD 

and PIGD. (C) Distribution of mean tremor and mean gait scores across subjects. (D) 

Correlation between dorsal sHFO/fHFO power ratio and the tremor and gait scores.  
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and mean PIGD scores (Spearman correlation, r=0.529, p=0.008; Fig.5.4.D-left panel) as 

well as with the mean tremor scores only (r=0.388, p=0.061; Fig.5.4.D-middle panel). 

Comparison to PIGD scores showed a negative but stronger correlation with the power 

ratio (r=-0.587, p=0.003; Fig.5.4.D-right panel). Even though the HFO power ratio 

worked well for distinguishing between phenotypes, the ratio did not reflect a direct 

correlation to the level of severity of tremor or gait within groups.  

5.3. Discussion  

Microelectrode LFPs recorded from the sub-territories of STN provided 

distinguishing information about the most commonly accepted TD and PIGD phenotypes 

of PD.  We observed that both groups showed beta band activity with similar energy 

while the most striking difference was found at the higher frequencies. In particular, 

compared to PIGD group, the LFPs of TD group included significantly strong sHFO in 

the dorsal region of STN. Both groups exhibited fHFOs in the ventral region with slightly 

higher peak frequency in PIGD group but without any significant difference between 

their powers. Other studies have reported sHFO in OFF medication state (Lopez-Azcarate 

et al., 2010; Özkurt et al., 2011) and a shift from sHFO to fHFO range in those PD 

patients who were administered with L-DOPA (Foffani et al., 2003; Lopez-Azcarate et 

al., 2010; Özkurt et al., 2011). Here we show that even though recordings were obtained 

during medication OFF state, the fHFOs can also be observed in the STN. The peak 

frequency of HFOs were distinct in the sub-territories of STN and phenotype specific.  

We also show a significantly stronger coupling between the phase of beta and 

amplitude of sHFO in the dorsal region of STN in TD group. Although similar signal 

power was observed in fHFO range in the ventral sub-territory of the STN in both groups, 
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PAC between beta band and fHFO were found significantly higher in PIGD group. The 

PAC patterns reported in STN and cortex were linked to the pathophysiology of PD   (de 

Hemptinne et al., 2015; Özkurt et al., 2011) as L-DOPA administration resulted in 

symptom improvement and absence of PAC between beta band and HFOs range in STN-

LFPs (de Hemptinne et al., 2015; Lopez-Azcarate et al., 2010; Özkurt et al., 2011). Given 

the known somatotopic organization of the STN, the existence of the PAC in the ventral 

region might explain the severe cognitive dysfunction in PIGD patients. Although 

previous electrophysiological studies have identified cells firing at tremor frequencies in 

the STN (Levy et al., 2002), yet still, it is not known whether or not there exists a 

particular cell firing specific to motor subtypes of PD in the STN. In patients with TD-

PD, intraoperative recording of LFPs in the STN revealed clusters of tremor-associated 

coupling between STN and tremor EMG that were spatially distinct for different muscles 

(Reck et al., 2009). In our study, no concurrent single cell activity to LFP was recorded in 

the operating room. At this point it is not clear if the dorsal sHFO and its coupling with 

beta band are results of clusters of tremor cells.  Never the less, our observations show 

that not only the peak frequencies of HFOs but also their nonlinear interaction with the 

phase of beta band seems to have an important role in distinguishing between 

phenotypes.  

In the present study, patients were evaluated by a movement disorder specialist in 

the clinic and either UPDRS or MDS-UPDRS scores were obtained. Even though the 

number of items in the MDS-UPDRS were used as suggested by Stebbins (Stebbins et al., 

2013), phenotype designation was performed for both tests by using formula suggested 

by Jankovic (Jankovic et al., 1990). Even if the threshold values suggested by Stebbins et 
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al. were used for categorization, phenotype designation would not be different except for 

one PIGD patient with considerable tremor. Therefore, to be consistent, we used the 

former formula. Although the LFP patterns could distinguish both groups, we were 

unable to find a relationship between them and the UPDRS scores within each group 

(only a weak correlation). The weak correlation between LFP patterns and UPDRS 

values could be due to the measurement of neural and behavioral data at distinct time 

points. Moreover, subjective assessment of UPDRS by human experts might be another 

co-founding factor. 

In summary, we showed that activity in the subbands of LFPs recorded with 

microelectrodes from sub-territories of the STN provide distinguishing 

neurophysiological information about the most commonly accepted subtypes of PD. We 

studied 27 patients with PD and found distinct patterns between TD and PIGD groups in 

high frequency oscillations and their interaction with the beta band in the dorsal and 

ventral regions of the STN. Our results indicated that the spatio-spectral dynamics of 

LFPs can be used as an objective method to distinguish the two major subtypes of PD. 

These observations might lead the development of novel stimulation strategies and 

electrode technology targeting the territories of STN for the optimization and 

personalization of deep brain stimulation. 
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6. CHAPTER 6: General Summary and Significance 

The first part of the present study describes an automated approach for 

electrophysiological localization of STN, using microelectrode-recorded LFPs acquired 

during DBS surgery simultaneous to MER. This work is novel, in that it is the first study 

to combine different sub-band features derived from beta (11– 32 Hz) and HFOs (150–

450 Hz) of LFPs in order to (1) estimate the optimal track for DBS implantation, and (2) 

identify the dorsal STN border, with high accuracy. This work also contributes to 

knowledge about the neurophysiology of PD by describing the spatial localization of 

HFOs. Because recording LFPs simultaneous with MER-SUA does not prolong the total 

duration of surgery, using this technique online in the operating room would increase the 

chance of optimal placement of the DBS macroelectrode within the motor sub-territory of 

the STN, without an appreciable downside. Fused with existing mapping techniques, 

automated online LFP analysis may increase the accuracy of the DBS macroelectrode 

placement. This might contribute to the efficacy of DBS by reducing the stimulation 

voltage and associated side effects. Since the electrode placement is guided by LFP 

activity, the current technique could also be useful to monitor the LFP events which are 

capable to fine tune the future DBS settings in a closed loop paradigm (Ince et al., 2010; 

Priori & Foffani, et al., 2013; Rouse et al., 2011).  

In addition to the use of LFPs recorded from microelectrodes in order to provide a 

supplementary tool for target localization in operating room, in the second part of the 

thesis, we have shown that LFPs recorded from chronic DBS electrode can also serve as a 

tool for STN localization in PD patients. Instead of implantation of DBS lead directly 

into the STN as in MRI-based targeting approach, insertion of the lead as in the 
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microelectrode implantation technique and recording signals depth-by-depth might 

provide electrophysiological mapping of the trajectory by using oscillatory nature of 

LFPs. By reducing the risk of intracranial hemorrhage which might be caused by using 

multiple trajectories or the sharp tips of the microelectrodes and by predicting the STN 

superior border with a small localization error (approximately 1 mm) which can be 

compensated with the large contacts of DBS electrode (> 1.5 mm), this study supports the 

use of spatio-spectral features of LFPs, which were intraoperatively recorded from 

chronic DBS electrodes, in conjunction with preoperative and/or intraoperative 

stereotactic imaging for target localization in PD.  

In the last part, we have shown that spatio-spectral patterns and cross frequency 

interactions of LFPs carry substantial information that can distinguish between PD 

subtypes. Considering the more rapid progression, poorer prognosis, and the faster rate of 

cognitive decline in the PIGD subtype in addition to the major clinical and pathological 

differences compared to the TD subtype, the identified localized patterns further support 

the differentiation of these two subtypes from neural perspective and may provide insight 

into their pathophysiologic mechanisms. As recently as 2013, an international survey of 

high volume DBS implanting sites revealed that 83% of centers use microelectrode 

recording indicating that the most commonly used electrophysiological mapping method 

remains MER-SUA recordings (Abosch et al., 2013). LFPs are more robust signals than 

single cell activity recorded from high impedance microelectrode tip and particularly 

sensitive to synchronous and oscillatory firing patterns (Priori et al., 2004; Gross et al., 

2006). It was also shown that LFPs are better correlated to motor and non-motor 

symptoms of PD (Priori et al., 2004; Thompson et al., 2014). In our recent study we have 
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shown that microelectrode LFPs can also be used for the localization of STN for DBS 

electrode implantation (Telkes et al., 2016). In this regards, our findings also demonstrate 

the feasibility of using LFPs for identification of physiological signatures of PD subtypes, 

and can provide a rationale for individualized DBS targeting within the sub-territories of 

STN using novel lead designs and/or stimulation strategies. 
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