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ABSTRACT 

Magnetic Resonance Imaging (MRI) Radiofrequency (RF) -induced heating are 

one of the major safety concerns for patients with Passive Implantable Medical Devices 

(PIMDs) implanted inside the body. Evaluation of RF-induced heating includes 

experimental measurements and full-wave Electromagnetic (EM) simulations which will 

cost a significant amount of time and computational resources. Neural Network (NN) 

methods are introduced as a data-driven regression model which trains the parameters 

using device features to implement the predictions of RF-induced heating. While the 

previous NN models cannot predict the RF-induced heating of complex-shaped PIMDs as 

the device structure cannot be characterized by several parameters. Also, no discussions 

have been made on the strategy of training dataset selection. 

In this study, mesh-based Convolutional Neural Network (CNN) models are 

introduced to implement the heating prediction for complex-shaped PIMDs. Tibia Plating 

System and Spinal Fixation System device models are developed with variations on 

geometrical features. In-vitro and in-vivo EM simulations are performed with device mesh 

information and peak SAR values extracted. Incident Electric field information and mesh 

information are combined to form the input of the CNN models. After training and testing, 

CNN model convergence and data correlations are observed as a metric of CNN general 

prediction efficacy. The distribution of absolute errors and absolute percentage errors are 

shown to further investigate the prediction performance for different data. For the selection 

of training dataset, naïve strategy is initially introduced which uses different sizes of 

training dataset to find the training dataset with good prediction performance and least data 

possible. Principal Component Analysis (PCA) is performed on the input matrices of CNN 
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model, which provides a threshold as the best prediction performance a training dataset can 

achieve with the dataset size same with the number of top-ranking Principle Components 

(PCs). Overall, mesh-based CNN models can predict the RF-induced heating of some 

complex-shaped PIMDs with acceptable performance. With the guidance of PCA analysis, 

the optimal size of training dataset can be determined before the simulations are performed 

which can save a lot of time used by obtaining excessive simulation results. 
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1. Introduction 

Implantable medical devices are devices that are placed inside or on the surface of 

the body which has a wide variety of applications on clinical treatment [1]. Among them, 

Passive Medical Devices (PMDs) are medical devices that serves its function without 

supply of electrical energy or any source of power other than that directly generated by the 

human body or gravity. The implantable PMDs, namely Passive Implantable Medical 

Devices (PIMDs), are passive devices that are totally or partially introduced, surgically or 

medically, into the human body [2]. One of the biggest features PIMDs have is that they 

don’t have the external power supply. Commonly used PIMD types includes orthopedic 

implants which deal with the bone fractures, stents which are used for opening space in 

vessel, catheters which are used for the transmission of liquid inside the body and other 

types. 

Magnetic Resonance Imaging (MRI) is one of the most prominent medical imaging 

techniques. Generally, MRI system uses large magnets which aligns all protons when a 

patient lies into the MRI coil. Different brightness is expected when protons in different 

tissue re-align which forms the MRI image. MRI is widely used and has the advantage of 

no ionizing radiation which is the principle of computed tomography (CT) scan or X-ray.  

However, MRI is not risk-free for everyone. Patients with active or passive 

implantable medical devices inside the body will encounter safety hazards during the MRI 

examinations. Those safety hazards include the heating, torque or device malfunction 

caused by the gradient coil, RF coil or the static magnetic field (B0) of MRI system [3]. 

For patients with PIMDs implanted, Radiofrequency (RF)-induced heating is one of the 

major concerns. The RF field in MRI system generates a magnetic field which is 
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perpendicular to the main magnetic field near the Larmor Frequency to create a change in 

proton alignment. Generally, the metallic part of the PIMDs will interact with the RF fields 

which will cause the power deposition near the edge of the devices [4]. This power 

deposition will cause temperature rise and will probably cause irreversible body tissue 

damage to the patients. 

Thus, the evaluation of the RF-induced heating is a crucial work for every PIMD. 

Normally, a significant amount of experiment tests is expected in an in-vitro environment 

to obtain the temperature rise or Specific Absorption Rate (SAR) of a PIMD during a period 

under MRI RF field exposure [2]. Since PIMD has many types with different geometrical 

shapes and configurations, it is unrealistic to test every device experimentally as such is a 

great consumption of time and labor. To solve this, Electromagnetic (EM) simulations are 

performed which can obtain the SAR value without the experimental setup for various 

device configurations [5]. While EM simulations can ease the complexity of experimental 

setup, large amount of time is still expected for running all the simulations.  

Recently, with the development of High Performance Computing (HPC), deep 

learning techniques are becoming more popular and applicable for classification and 

regression applications. Among all the deep learning models, neural network is one of the 

most famous models which utilizes the analogy of human brain neuron cells [6]. The 

network is composed of many neurons that apply arithmetic operations to the input. Prior 

knowledge is needed for the update of the network parameters until low loss is achieved. 

Later, Convolutional Neural Network (CNN) is invented with backpropagations as 

network update which has the unparalleled performance on image classification [7]. For 

RF-induced heating evaluation, since a lot of PIMDs devices have similar structures, a 
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potential idea is that a neural network model can be used with part of the simulated RF-

induced heating data as training dataset to predict the rest RF-heating data.  

In this research, a convolutional neural network model is proposed to predict the 

RF-induced heating of complex-shaped PIMDs. Computational models of PIMDs are 

developed in simulation software and the geometrical shape features are kept as much as 

possible. Since CNN architecture normally has 2-D images as input, the meshes of the 

device models are extracted and sliced to multiple 2-D input images. Incident Electric field 

information is extracted as well and is combined with the device mesh information. Peak 

spatial-averaged SAR values are selected to represent the RF-induced heating and are 

treated as the output of the network. With training of network, the convergence and the 

overall error level of the proposed CNN model are evaluated. The distribution of the error 

function for training dataset and testing dataset are also investigated.  
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2. Problem Statement 

For all PIMDs, there exists possibilities that the devices may be used near the MRI 

environment. Thus, MR safety labeling is needed for every PIMDs [8]. Devices that cannot 

enter the MRI scanner room should be labelled as MR Unsafe and patients with these 

devices implanted cannot be under MRI scan. Devices that have no safety hazards under 

MRI environment should be labelled as MR Safe. The third label is MR Conditional which 

most of the PIMDs are labelled as. Multiple conditions are included for these PIMDs when 

they intend to enter the bore of the MRI system. So, the evaluation of RF-induced heating 

is one of the required procedures during the labelling of MR Conditional. During the 

evaluation of RF-induced heating of PIMDs, a comprehensive evaluation method is applied 

which includes EM simulations and experimental measurements. Multiple EM simulations 

is one of the important steps in the evaluation method which consists of in-vitro simulations 

and in-vivo simulations. In in-vitro simulations, PIMDs are placed inside an ASTM 

phantom which is defined in standard [2]. Computational human models are used instead 

in in-vivo simulations to hold the PIMDs. Due to the large variations on evaluation 

configurations including device types, landmark positions, device positions and so on, the 

amount of in-vitro and in-vivo simulations needed is large, which will cost a lot of time 

and computational resources.  

Based on the circumstance, some prediction models are needed for predicting the 

RF induced heating with the knowledge of simulated heating data to reduce the number of 

simulations performed. Neural network is one of the prominent models used for PIMD RF-

induced prediction. In some previous literatures, ANN models are firstly applied to predict 

the RF-induced heating of generic plates and stents. Besides, CNN models are applied to 
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implement the RF-induced heating prediction with the introduction of device 3-D meshes 

as the network input. 

However, there still exists some restrictions on the current neural network 

prediction methods. For ANN models, the input layer is formed by numerical parameters 

that characterize the device features. Generic PIMDs can be easily described using several 

parameters including the length, width, depth and screw related parameters. While for 

commercially available PIMDs, the shape is more complicated which cannot be described 

using merely several parameters. Besides, previous literature with CNN prediction also 

uses generic PIMD to extract the device meshes, which cannot prove the robustness of the 

CNN prediction on complex-shaped PIMDs.  

Moreover, previous literatures did not raise the discussion of how to select the 

training dataset size. This is an important consideration for Electromagnetic problems. For 

conventional CNN applications such as image classification, the acquisition of data and 

their corresponding label is easy since there a large number of online resources that can be 

easily reached and downloaded. So, the size of training dataset doesn’t need to be 

considered as large number of images can be obtained with little effort for training the 

network. While for EM problems, the situation is different. The RF-induced heating cannot 

be collected but to finish the associated EM simulation, which means that the number of 

data contained in training dataset is equal to the number of EM simulations performed. The 

optimal training dataset for RF-induced heating should contain as less data as possible 

while still receive good prediction result when used for network training.  

Based on the illustrations above, the RF-induced heating prediction of complex-

shaped PIMDs using CNN needs to be validated: 
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i. Can CNN successfully predict the RF-induced heating of the complex-shaped 

PIMDs? If so, how will the network convergence and error level be? 

ii. What will be the optimum architecture of the CNN model? What will be the 

appropriate network input and output pattern? 

iii. What is the philosophy of data selection for CNN training and testing? What is 

the appropriate data amount for the training dataset? 
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3. Preliminary Literature Review 

According to ASTM F2182-19e2 standard, the RF-induced heating of PIMD is 

measured with the PIMD placed inside the ASTM phantom under MRI environment. The 

ΔT during certain time period is captured. Either ΔT or SAR value converted from ΔT is 

considered as the RF-induced heating value.  Davis et al. investigated the RF-induced 

heating of small metallic implants using experimental measurements with an RF coil [9]. 

Later, clinical MRI system is used as the RF excitation to measure the heating of PIMDs 

[10]-[13]. With the introduction of EM simulations, numerical investigations can be 

conducted with experimental measurements to add more possibility on the RF-induced 

heating evaluation with more variations. Liu et al. investigated the RF-induced heating of 

orthopedic implants under 1.5T and 3T system [14]. Implants with different sizes are 

modelled using Finite-Difference Time-Domain (FDTD) EM simulation software. 

Experimental measurements of one implant is also performed and temperature rises are 

recorded to validate the SAR values are evaluated from the simulations.  

With EM simulations, it is possible to explore the trend of RF-induced heating 

based on variations. The RF-induced heating of PIMD is dependent on many factors, which 

is divided in two aspects: the device intrinsic geometric parameters and the device loading 

conditions, which includes the variations on the excitations, device loading positions, etc. 

Ran et al. investigate the effect of device length on RF-induced heating of different plate 

systems under 1.5T and 3T environment [15]. Other PIMD types, such as external fixation 

devices [16]-[18] and stents [19]-[20] are also addressed based on variations of device 

shape. Other literatures focus on investigating the effect of loading conditions on RF-

induced heating. Lucano et al. discussed the EM field pattern generated by different RF 
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coil types [21]. Yang et al. investigated RF-induced heating differences of multiple PIMDs 

with generic birdcage coil and TEM coil [22]-[24]. Beside the coil structure, Xia et al. 

focus on investigating the effect of in-vivo device loading conditions which including 

human model orientations, landmark positions and device locations on the RF-induced 

heating of the external fixation devices [25]. Other literatures also discussed the RF-

induced heating scenario with different PIMD types [26]-[27].  

With all the previous literature based on exhausting all the possible configurations 

with in-vitro or in-vivo simulations, Zheng et al. firstly used a fully connected artificial 

neural network (ANN) model to predict the peak spatial 1g-averaged SAR value of the 

generic plate devices [28]. Optimization algorithm is used to improve the initial network 

weights and biases to reach better network convergence [29]. For predicting RF- induced 

heating of complex-shaped PIMD models, Lan et al. propose a ANN model which takes 

20 device dimension and surface-based parameters as input [30]. The model reaches a root 

mean square of 6.21W/kg for 1-gram averaged SAR with an averaged value of 119.6W/kg, 

which is a low prediction error level. However, the number of data used is limited making 

the network easier to converge. The mesh-based CNN model was firstly designed which 

extracted the mesh of the generic plate device systems that have variations on device and 

screw sizes to predict the peak SAR values [31]. The previous literature proved that the 

meshed-based CNN model can be used to predict the RF-induced heating of the generic 

PIMDs, whereas the robustness of the model on the complex-shaped clinical-based PIMD 

models needs to be validated. 
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4. Objectives 

In this research, the ability of CNN models to predict the RF-induced heating of 

complex-shaped PIMDs are investigated. Computational models based on the Tibia Plating 

System and Spinal Fixation System are developed as the complex-shaped models. 

Variations on the device configurations are considered such as device length, screw length, 

screw positions, etc. In-vitro and in-vivo simulations with all models are performed with 

commercial FDTD simulation software. CNN models based on typical CNN architectures 

are used in this research. The mesh information and incident electric field information are 

extracted from simulations and are combined as the input of the CNN model. The 

prediction efficacy of the proposed CNN model is investigated. After that, the strategies of 

selecting optimal training dataset is compared and discussed.  
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5. Mechanism behind Neural Network, RF-induced Heating and 

Principal Component Analysis 

5.1. Mechanism behind Neural Network 

Artificial Neural Network (ANN) is one of the widely used deep learning models. 

It is invented based on the idea of human neuron cells. A neuron cell includes several key 

components: the cell body containing nucleus and other structures, many branched 

extensions called dendrites and one long extension called axon. When a neuron is activated, 

the electric impulse will be generated from the neuron cell body. The signal transmits 

through the axon to reach the edge where the dendrites of other neurons are connected. The 

biological neural network in human brain contains many layers with neurons in every layer 

connecting with other neurons with previous and next layer. Neurons in each layer receives 

signal from the previous layer, process the signal and transmit the signal to the next layer.  

In ANN models, the basic components are artificial neurons which process 

numerical values instead of electric signals. The output of the neuron is calculated using 

[32] 

 , ( ) ( )Th b= +W b X XW  (1) 

where  

  1 2, ,..., nx x x=X  (2) 

and  1 2, ,..., nw w w=W . (3) 

X is the input vector containing all the input to the neuron, W is the weight vector 

containing all the weights that are associated with each input and b is the neuron bias term. 

ϕ is the activation which provides the non-linearity to the neuron.  
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Normally, ANN models consist of fully-connected layers in which every neuron in 

two adjacent layers are connected with each other, which is shown in Figure 5.1. However, 

the fully-connected structure has some restrictions. The neurons cannot capture the 

correlation between different inputs as the connection between inputs and neurons are 

independent. Also, since every neuron weight is for every connection, there is a large 

number of weights used and those weights cannot be reused for similar features from input. 

 

Figure 5.1 Three layer ANN model example consisting of fully-connected layers 

In order to solve these restrictions, Convolutional Neural Network (CNN) is 

invented. The network architecture was initially used in image recognition applications in 

which the features are extracted based on small areas on the input images. CNN utilizes 

the advantage of shared filters through the operation of convolution which can also capture 

the geological domain features of the input image. 

The convolutional layer is the core structure in a CNN model. For 2-Dimension (2-

D) convolution, input pattern is a 3-D matrix containing multiple 2-D images representing 

different channels. For color images, there will be three channels which are red, green and 

blue channel. The small-size 3-D matrix used for extracting regional features is called filter. 

The depth of filters is the same with the number of input channels. During the convolution 

operation, each filter slides on the input along the first two dimensions. The overlapped 
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filter values and input values are multiplied and summed together. The multiplication sum 

is added with filter-specific bias value to form the corresponding value of output layer. As 

a filter is moving on the input layer, a 2-D matrix is obtained as a sublayer of output which 

is called feature map. After the convolution, the number of feature maps generated is the 

same with the number of filters used. These 2-D feature maps forms the 3-D input layer 

for the next operation. The illustration of the convolutional operation is shown in Figure 

5.2. 

 

Figure 5.2 Convolutional layer operation 

In default, the length and width of the output layer are smaller than those of input 

layer as the multiplication sum will only produce one result for all the values with the range 

of filter length and width. While in some cases, the output layer is required to keep the 

same shape with input layer in order to capture the features at edge. To solve that, paddings 

are applied which are extra columns and rows outside of the input layer. Usually, paddings 

contain only zero values. The illustration for padding is shown in Figure 5.3. 
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Figure 5.3 Padding operation 

Another core structure in CNN is max pooling layer. The principle is simple: filters 

with similar shape of convolutional filters are applied on the input layer while max pooling 

filters don’t have any weights. The filters pick and keep the maximum value of input layer 

within the filter area. With this maximum pick, it can reduce the size of the 2-D image to 

release the redundant computational resources while retain the most dominant local feature 

of the input. The illustration of the max pooling operation is shown in Figure 5.4. 

 

Figure 5.4 Max pooling layer operation 

After several convolutional layers and max pooling layers, the data size is reduced 

and significant features are obtained. After this, a flatten layer is needed. The flatten layer 

reshape the 3-D output matrix from previous layer to 1-D vector. Since the features 

extracted don’t include geological information, it is not necessary to keep the 3-D shape 

and no convolution operations are needed. Thus, after the flatten layer, fully-connected 

layers are applied to create the mapping between features extracted from image and output.  
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The CNN model is a data-driven model, which means that it needs some data to 

update the filter weights to decrease the prediction error of the model. The procedure is as 

follows: Firstly, the training data are divided into small portions which is named batches. 

A batch of data is fed to the input layer. Every layer receives its input, conducts all the 

operations, calculates the output and passes it to the next layer until reaching the output 

layer. This is called forward pass. Then, the averaged value of loss function is evaluated 

after predicted output values are obtained for the batch to find the error level of the network 

prediction. After that, the contributions of each output connection to the error are calculated 

using chain rule. The contributions of connections between layers are also evaluated 

reversely from output layer to input layer, which is called backpropagation. Lastly, the 

parameters and the filter weights are tweaked based on the contribution of each connection. 

When this full procedure is finished for one batch, all the network parameters are updated 

and same steps are repeated for a new batch to calculate the updated upper level. The time 

period that all the training data have gone through the procedure once is called an epoch.  

Among the training procedure, backpropagation is the most important step as it 

provides the right direction for weights updates to keep reduce the prediction error. After 

backpropagation, gradient descent algorithm is normally used for updating filter weights. 

Based on the algorithm, the updated weight is evaluated as 

 *
dLF

w w lr
dw

= −  (4) 

where w is the filter weight, lr is the learning rate which controls the step to update the 

weight and LF is the loss function. During the training procedure, the learning rate can be 

variant. The strategy of designing the learning rate value along training is called the 
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optimization. CNN model with different optimization algorithms will have different 

network convergence which means the error level will decrease differently through epochs. 

At the beginning of training, the initial filter weights are not zeros since it will cause 

the failure on the evaluation on gradients. In this research, the Glorot Uniform Initialization 

[33] is used to initialize all the filters. With this method, all weights are randomly picked 

from the uniform distribution of interval 
6 6

,
,in out in outfan fan fan fan

 
− 

+ 
, where fanin is 

the number of input units and fanout is the number of output units.  

The whole dataset needs to be divided as training dataset and testing dataset. The 

training dataset is for updating the filter weights to reach lower loss function values while 

the testing dataset is for evaluating the convergence and prediction performance of the 

network. Also, within training dataset, a validation dataset is needed as the behavior of 

predicting on new data during network training should be monitored. 

5.2. Mechanism behind RF-induced heating 

The RF-induced heating is associated with RF power deposition near the PIMD. To 

quantify the power deposition, temperature rise ( T ) or Specific Absorption Rate (SAR) 

is used [2] . Normally, these two parameters can convert to each other with proportional 

relationship. SAR is used to represent the RF-induced heating in this study. SAR is defined 

by the energy absorbed per unit mass, which is expressed using electric field as 

 
2( )

( ) ( )
2 ( )

SAR



=

r
r E r

r
 (5) 

where ( )E r is the local electric field, ( ) r  is the electrical conductivity of the unit mass 

and ( ) r  is the density of the unit mass. The unit of SAR is W/kg. This formula defines 

the local SAR, which is the SAR value at one single point. However, this value has little 
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significance for representing the power deposition, since it is too sensitive and may have 

drastic change along different locations. Moreover, the energy absorbed will be conducted 

to the nearby tissue, making the single point SAR unable to estimate the energy absorbed 

by surrounding tissue. To solve that, the averaged SAR value is introduced as the power 

deposition standard. The averaged SAR value inside a certain mass or certain volume is 

evaluated as 

 
( )

1
( )

M

R M

SAR SAR dm
M

=  r  (6) 

and 
( )

1
( )

V

R V

SAR SAR dv
V

=  r . (7) 

The averaged SAR is evaluated in a Region of Interest (RoI) of mass or volume. 

With different RoI used, the averaged SAR values have different significance. When the 

hole human body region is set as RoI, whole body SAR (wbSAR) is obtained which is used 

to estimate the power level of the total RF exposure. According to IEC-60601-2-33 [34] , 

the maximum limit for wbSAR is 2W/kg. This limit is also helpful for the power 

normalization for RF coil in EM simulations.  

If the Finite-Difference Time Domain (FDTD) EM simulations are used for PIMD, 

the cubic RoI is used to evaluate the averaged SAR as the cubic mesh grid is preset for the 

simulations. The RoI will be one-gram or 10-gram cube containing lossy materials whose 

edges are aligned to the mesh grid [35]. Normally, the peak value of the averaged SAR is 

the object of interest which is used to represent RF-induced heating. 

5.3. Mechanism behind Principal Component Analysis 

Principal Component Analysis (PCA) is a dimensionality reduction algorithm 

which extracts the components that contain the highest variance of the source matrix [36]. 
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It is an unsupervised algorithm with no training data needed and is applied for many 

applications such as feature selections, noise filtering, etc. For mesh-based CNN models, 

device mesh matrices are one of the crucial information to form the model input. While the 

mesh information of different configurations under same PIMD are similar geometrically, 

PCA analysis can be performed on the device mesh to obtain the Principal Components 

(PCs) which provides implications on which mesh regions contain most of the device 

geometry information. 

Assume that the 3-dimensional (3-D) device mesh matrix is reshaped to 1-D 1 p

row vector. Then, mesh information of every model is concatenated is a n p  matrix, 

where n is the number of PIMD models included in the study and p is the total number of 

pixels. The total data matrix is expressed as  

 
1 2[ , ,... ]T

nx x x=X  (8) 

where 1 2, ,... nx x x  are the 1-D mesh vectors of the device models. The PCA is conducted as 

follows [37]: Firstly, every element inside the matrix is subtracted with the column mean 

in order to every column with a mean of zero. This step ensures the effect of original value 

magnitude is eliminated. Secondly, the covariance matrix of the data matrix is evaluated. 

The covariance matrix is defined as  

 

1 1 1 2 1

2 1 2 2 2

1 2

cov( , ) cov( , ) ... cov( , )

cov( , ) cov( , ) ... cov( , )

... ... ... ...

cov( , ) cov( , ) ... cov( , )

n

n

n n n n

x x x x x x

x x x x x x
Cov

x x x x x x

 
 
 =
 
 
 

 (9) 

where cov( , )p px x  is the variance square of vector 
px  and cov( , )p qx x  is the covariance 

between vector 
px  and 

qx . After the n n  covariance matrix is obtained, the eigenvectors 
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and eigenvalues of covariance matrix are calculated. Normally, Singular Vector 

Decomposition (SVD) algorithm is used to implement the calculation. After calculation, n 

eigenvectors and eigenvalues are obtained as 

 1 2[ , ,..., ]n=V v v v  (10) 

and 1 2[ , ,..., ]n  =λ . (11) 

Assume the eigenvectors and eigenvalues are ranked in descending order based on 

the magnitude of eigenvalues, then the eigenvector with the highest eigenvalue is the first 

PC that contains the most information. The PCs obtained are linear combinations of the 

original variables and every original 1-D vector can be express as the weighted sum of the 

PCs [38]. For example, the mesh of a device model is built by the combinations of pixels, 

which is express as 

 
1 1 2( ) (pixel1) (pixel 2) ... (pixel )pimage x w w w p= + + +  (12) 

where 1x  is the first row vector containing the mesh information, which is 

 
1 1 2[ , ,..., ]px w w w= . (13) 

After the PCA, the device mesh can be reconstructed by the linear combinations of highest-

rank PCs, which is expressed as 

 1 1 2( ) mean (PC 1) (PC 2) ... (PC )mimage x w w w m   = + + + + .  (14) 

Note that, the reconstructed mesh using PCs is not exactly the same with the 

original mesh but contained most of the original information. Originally, every pixel in the 

mesh is independent which means that almost all pixels have to be included to include the 

device geometry. With PCA conducted, only a few number of PCs needed to cover the 

essential device mesh information. When top-ranked PCs are reshaped back to 3-D matrix, 

each element value is proportional to the general information this element contains about 
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the feature of this PIMD, which can be used as a guidance for the training dataset selection 

for CNN models.  
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6. RF-induced Heating Prediction of Tibia Plating System 

6.1. Model development 

In this research, the computational models are developed from the distal tibia 

plating system from the commercial PIMD manufacturer, as shown in Figure 6.1 [39]. The 

distal tibia plating system provide the treatment for the distal tibia bone fracture. When the 

devices are implanted around the tibia bone, they add the fixation to the bone. Additionally, 

locking screws will be applied at certain positions on the plate to provide extra stability 

and rigidity. The computational models of the plate system are developed directly in 

SEMCAD X (14.8.1, SPEAG, Zurich, Switzerland), which is a commercial EM FDTD 

software. The computational models are formed by primitive 3-D shapes provided in the 

software. In order to make the computational models close to the real devices, some edges 

of the models are blended and the whole models are bent with different angles on three 

axes. The front, side and top view of the computational models are shown in Figure 6.2.  

 

Figure 6.1 Four types of tibia plate system: Anterolateral, Medial, Anterior and Posterior 

 

Figure 6.2 Computational models developed in SEMCAD 
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Among all the plate types, four of them are chosen as the template to develop 

computational models in this research: Anterolateral, Medial, Anterior and Posterior, 

which is shown in Figure 6.2. Four plate types are implanted to the tibia bones at different 

sides based on the bone fracture occurrence. The top prolonged part of the plates is defined 

as top frame as it provides most fixation and the bottom part is defined as bottom frame 

which usually are anatomically contoured around the bone to decrease the soft tissue 

irritation caused by the top frame. For the Anterolateral plate, there are two plate subtypes: 

left and right, which the top frame will be along the tibia bone and lean slightly to the left 

or right. Medial plates also consist of left and right plates which will be placed on the inner 

side of left or right bones. Anterior and posterior plates are normally located at the front 

and back side of the tibia bone and do not have left and right subtypes.  

Due to different bone fracture circumstances, every tibia plate type has multiple 

length settings. Anterolateral plates have the biggest variations which ranges from 66mm 

to 244mm. Medial plates have the minimum length of 103mm and the maximum length of 

278mm which is the largest maximum through all four plate types. Anterior and posterior 

plates have smaller length, ranges from 62mm to 130mm. Different lengths correspond to 

different number of screw holes on the top frame. Since the screw hole numbers are 

predefined, the available plate lengths are also fixed, which is tabulated in Table 6-1. The 

screws that are applied on the plates have two types: Cortical screws are applied on the top 

frame screws holes which have a diameter of 3.5mm and Cancellous screws are applied on 

the bottom frame screw holes which have a diameter of 2.7mm. The location of screws 

holes, top frame and bottom frame are shown in Figure 6.3. The length of screws ranges 

from 10mm to 60mm to provide flexibility on stabilization. Clinically, the screws are 
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applied at different positions depending on the need, while some common rules still need 

to be satisfied. On top frame, one screw must be applied on the positioning hole, which is 

for determining the implantation position of the plate device. Apart from the screw on 

positioning hole, one or two more screws are applied on the top frame. On bottom frame, 

more than half of the screw holes are filled with screws in order to guarantee the stability. 

In this research, 2 screws are applied on the top frame, one is located at the positioning 

hole and the other is located at either the highest screw hole or the screw hole at the middle 

of top hole and positioning hole. The bottom screw configurations are designed while the 

number of screws ranges from N/2 to N (N is the total number of holes at bottom frame). 

Table 6-1 Lengths of tibia plates (Unit: mm) 

Number of 

Cortical 

screw holes  

Anterolateral Medial 

Number of 

Cortical 

screw holes  

Anterior Posterior 

4 66 103 
3 62 57 

6 91 128 

8 117 154 
5 84 77 

10 142 179 

12 168 204 
7 107 98 

14 193 230 

16 218 278 
9 130 118 

18 244 / 

 

Figure 6.3 Screw holes of tibia plate models 
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Technically, every screw that are applied on the plate can have different lengths. In 

this research, 4 kinds of screw lengths configurations are selected. Three of them have all 

screw lengths the same of 10mm, 30mm and 60mm which corresponds to the minimum 

length, median length and the maximum length. For the rest configuration, every screw 

randomly selects a length from 10mm, 30mm and 60mm, which is defined as “pseudo-

random” configuration, as shown in Figure 6.4. 

 

Figure 6.4 Screw length configurations: (a) 10mm, (b) 30mm, (c) 60mm, (d) pseudo-

random 

Based on all the variations on plate types, plate length and screw configurations, a 

total number of 1416 plate configurations are created, which is tabulated in Table 6-2. 

Bottom frame screw holes are indexed to be better expressed for all screw configurations 

used in this research, as shown in Figure 6.5. In next part, each plate is placed inside the 

ASTM phantom with RF coil and in-vitro EM simulations are performed. The meshes of 

the devices and the peak averaged SAR value will be extracted, which forms the dataset 

for training and testing of the CNN model.  
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Table 6-2 Total plate configurations 

Plate type 
Plate 

length(mm) 

Screw 

length(mm) 

Main frame 

screw 

configuration 

Bottom frame screw 

configuration 

Anterolateral 

[66,91,117, 

142,168,193, 

218, 244] 

[10,30,60, 

pseudo-

random] 

[[top hole, 

positioning 

hole], 

[mid hole, 

positioning 

hole]] 

[[0,1,3,4,8],[0,2,3,4,8],[0,3,4,5,

8],[0,3,4,6,8],[0,3,4,7,8], 

[0,1,2,3,4,5,6,7,8]] 

Medial 

[103,128,154, 

179, 

204,230,278] 

[[1,2,4,5],[0,2,3,5],[0,1,3,4],[0,

1,2,3,4,5]] 

Anterior 
[62,84,107, 

130] 

[[0,2,3,6],[0,1,2,3,6],[0,2,3,4,6

],[0,2,3,5,6],[0,1,2,3,4,5,6]] 

Posterior 
[57,77,98, 

118] 

[[0,2,3,6],[0,1,2,3,6],[0,2,3,4,6

],[0,2,3,5,6],[0,1,2,3,4,5,6]] 

 

Figure 6.5 Low frame indexing strategy: Anterolateral, Anterior and Posterior(a), 

Medial(b) 

6.2. Simulation Settings 

After developing all the plate configurations, in-vitro simulations are designed and 

performed for collecting the dataset. All simulations are performed in the FDTD EM full 

wave simulation software SEMCAD. A generic birdcage coil is used as the RF excitation 

in the simulation, which is generally used in the in-vitro simulations to replace the physical 

coil model. The coil consists of eight current sources that serves as eight rungs of the coil 

and sixteen lumped elements to serve as the end rings at the top and bottom. The working 

frequency of the coil is 64MHz, which corresponds to the Larmor Frequency of the 1.5T 

main field strength. An ASTM phantom that is designed following ASTM F2182 standard 

[2] is placed inside the RF coil to load the devices. The phantom is filled with standard 
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conductive gel that has a depth of 90mm with relative permittivity of 80.38 and electrical 

conductivity of 0.47 S/m. The devices are placed inside the phantom and are immersed by 

conductive gel such that they are located at the center depth of the gel. All devices will 

obey the same rule for positioning inside the phantom that the devices are located at zero 

landmark position which stands for center z axis position and the devices are close to the 

right inner wall of the phantom with a fixed distance of 20mm, where the largest E field 

exposure is expected. Devices have the orientation that all screws point to the negative x 

direction. The device position inside the phantom is shown in Figure 6.6.  

 

Figure 6.6 Device position inside phantom (a), details (b) 

An FDTD harmonic simulation at 64MHz is set for every device inside the phantom. 

Total period is set to 20 as the current source generates sinusoidal wave. The ASTM 

phantom uses the electrical property of the acrylic material (ε=3.7, σ=0) and the devices 

will be defined as Perfect Electric Conductor (PEC). At outside of the coil, Absorbing 

Boundary Condition (ABC) are set for all boundaries to prevent the significant effect of 

reflection wave. The global mesh grid setting is defined before the simulation. For 

background mesh, a padding of 100mm is added outside the coil. The phantom mesh has a 
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resolution of 10mm and the conductive gel has a resolution of 5mm. Due to the different 

length profiles of different plate types, mesh setting of the plates may cause the 

inconsistence of the global mesh size, which will cause problems during mesh extraction. 

In solution of that, a grid mask is applied to wrap outside of the devices. The grid mask has 

a size of 70mm*50mm*290mm which is large enough to cover all the devices in this 

research. The grid mask has a resolution of 0.8mm on x, y and z directions, which will 

produce the same mesh for all the devices. Totally, the global mesh has a size of 

190*108*511= 10.48M, as shown in Figure 6.7.  

 

Figure 6.7 Grid mask (a), global mesh setting (b) 

All the simulations will be performed on a computer with GPU hardware 

acceleration (NVIDIA® GeForce GTX 1080). CUDA software acceleration tool which is 

embedded into SEMCAD is also applied. With them, the time duration for one simulation 

is thirty-five minutes, which makes the total simulation duration 826 hours. 

After all the simulations are completed, postprocessing work is needed to obtain 

the mesh and the RF-induced heating data for every device in preparation of CNN model 

training. For device mesh, the mesh grid of grid mask is extracted in every simulation. The 

original grid is a 3-D matrix with a size of 89*65*364≈2.1M cells. The value of the matrix 
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elements represents the index of the material inside the grid cell. Since only two materials 

appear inside the grid mask which are conductive gel and PEC, the values of matrix are 

redefined: the value for gel is 0 and the value for PEC is 1. One of the modified mesh 

matrices is shown in Figure 6.8 as x-z slices at different y values. Overall, 1416 mesh 

matrices are extracted from all simulations.  

 

Figure 6.8 x-z slices of device mesh at y = -3.125mm(a), -2.34mm(b), -1.56mm(c), -

0.78mm(d) and 2.35mm(e) 

Meanwhile, the incident field information is extracted from one simulation as well. 

In this simulation, all the grid settings are the same with device simulations, except that 

there is no device model inside the phantom. The incident E field inside the grid mask box 

is exported. Since the largest dimension for place device models is z-direction, the incident 

E field component on z-direction is the dominating component on RF-induced heating. 

Thus, only z-direction incident E field is retained to represent the incident field. The 

simplified E field is express as 

 ( , , ) ( , , )inczinc i j k z E i j k E  (15) 

where ( , , )inc i j kE is the discrete incident E field at location (i, j, k) and ( , , )inczE i j k  is the 

z-direction component of the discrete incident E field at location (i, j, k). ( , , )inc i j kE  is also 

a 3-D matrix with a shape of (89,65,364) which is the same with material index matrix. 
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In order to combine the mesh information and incident E field information inside 

the mask box, elementwise multiplication is performed between ( , , )inc i j kE  and each 

index matrix, which is shown as 

 
( , , ),

( , , ) ( , , ) ( , , )
0,

incz

mesh inc

E i j k PEC
E i j k i j k Mesh i j k

Non PEC


=  = 

−
E  (16) 

where ( , , )Mesh i j k  is the material index matrix. After the operation, 1416 Emesh matrices 

are generated. 

To reduce the computation burden for CNN training and PCA analysis, sampling 

is conducted on each Emesh matrix on all three axes. One element of every two are picked 

and retained which makes the new shape of Emesh matrix (45,33,182). Also, since normal 

CNN model cannot deal with complex values, Emesh matrices need to be converted to real-

valued matrices so that they can be processed by the CNN model. Firstly, the real and 

imaginary part of each Emesh matrix is split into two matrices EmeshRe and EmeshIm. Then, two 

matrices are concatenated on the first dimension, which is the x direction, which is 

expressed as 

 
Re

Im

(2* , , ) ( , , ), 0,1,2,...,48

(2* 1, , ) ( , , ), 0,1,2,...,48

mesh mesh

mesh mesh

E i j k E i j k i

E i j k E i j k i

= =

+ = =
. (17) 

After that, the new Emesh matrix has a shape of (90,33,182) and it is treated as the input of 

the CNN model. 

In this research, only the peak value of the 1g-averaged SAR is picked and used as 

the RF-induced heating data, which is expressed as  

 1 1
maxg g

psSAR SAR= . (18) 
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The sole psSAR1g value is extracted for each simulation using python scripts and 

postprocessing tool in simulation software. 

When the raw psSAR1g values are extracted, the input power of the RF coil is set 

to 1W for every simulation. After that, power normalization is expected as coil in every 

simulation will have different input power. The power normalizations are performed such 

that the whole-body SAR (wbSAR) of each simulation is equal to 2W/kg.  

With all the postprocessing work being done, 1416 3-D mesh matrices and 

normalized psSAR1g values are extracted from the in-vitro simulations. Then, these data 

will be treated as the input and the output of the CNN model to implement the training and 

testing of the network. 

6.3. CNN architecture 

A sequential Convolutional Neural Network (CNN) model is used for the prediction 

of RF-induced heating for the plate devices. The sequential model is derived from AlexNet 

[40], which is a typical CNN architecture. The architecture construction, network training 

and testing and the results evaluation are all implemented in Python with Keras [41], which 

is a high-level deep learning toolbox. 

The visualization of the network structure is shown in Figure 6.9. The network 

consists of three 2-D convolutional layers, three max pooling layers, one flatten layer and 

three fully connected layers. Convolutional layers and max pooling layers operate on 2-D 

data which will be flattened to 1-D vector by flatten layer and then go through the fully 

connected layers. Since the mesh of the devices is a 3-D matrix, it is sliced along y axis to 

become multiple 2-D x-z matrix which corresponds to the multiple input channels for the 
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CNN input. The output layer only has one neuron whose output is the psSAR1g value of 

each plate device. 

 

Figure 6.9 CNN model structure used in this research 

Originally, the 3-D Emesh matrix had a shape of (90,33,182). The matrix is then 

transposed to have its shape changed to (182,90,33). When the transposed matrix is 

considered as input layer in CNN model, the 3-D matrix is treated as 33 channels of 2-D 

input images with a shape of (182,90). The filters used for the convolutional layer have a 

width of 3 and a length of 3. Both convolutional layer has 80 filters. No paddings are 

applied outside all input layers so that the size of feature maps decreases to obtain the more 

important features. After each convolutional layer, 1 max pooling layer is applied. The 

filter has a width of 2 and a length of 2 so that the maximum of 4 values covered by the 

filter is retained. 

The loss function determines which type of the error will be evaluated and how will 

the weights be updated. Mean absolute percentage error (MAPE) is selected as the loss 

function in this CNN model, which is defined by 

 
1

100% n
t t

tt

A F
MAPE

n A=

−
=   (19) 

where n is a batch of data to be pushed into the network for one-time backpropagation. At 

is the actual value and Ft is the predicted value. The metrics of the model are the measures 
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that are observed through the network training which are good reflections of the network 

convergence and the prediction performance. Beside the MAPE, mean absolute error 

(MAE) is also selected as the metrics of the model which is defined by 

 
1

1 n

t t

t

MAE A F
n =

= − . (20) 

For this CNN model, Adam optimizer is chosen to be the optimization which the learning 

rate value is decaying with the network training going [42]. 

Totally, 70% of the data, which is 991 data, is randomly selected as training data 

and the rest 30% of the data, which is 425 data, is selected as testing data. Within training 

dataset, 20% is selected as validation data whose loss function will be evaluated during 

network training. Both validation and testing data don’t participate in the backpropagation 

and the filter weight update. Overall, the ratio of the training data, validation data and 

testing data are 56%:14%:30%. In this research, the epoch number is set to 100. Within the 

training dataset, all data will be divided into multiple batches which is the smallest unit for 

a one-time backpropagation. The batch size is set to 32 in this research. 

Also, PCA analysis is performed on the complex Emesh matrix to find the optimum 

size of training set. Firstly, the 3-D Emesh matrix is reshaped to 1-D vector with length of 

540540. Then, 1416 vectors are concatenated to form the PCA matrix with the shape of 

(1416, 540540) which PCA analysis will perform on. After the analysis, the Cumulated 

Explained Variance (CEV) of the first n PCs are calculated. n- CEV(n) relationship is 

plotted afterwards and analyzed which shows the percentage of information covered by 

first n PCs. The number of PCs that have covered majority of the information will be the 

optimum size of the training set. 
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7. In-vitro RF-induced heating prediction of Spinal Fixation System 

7.1. Model development 

Spinal Fixation Systems (SFS) is a kind of PIMD that is designed to provide 

stability and rigidity to the spine that may be weaker than normal due to some diseases. 

Typical SFS consists of three components: rod, pedicle screw, and connector. In clinical 

procedure, pedicle screws are introduced at the pedicle area of different spinal levels. Rods 

are applied to connect the screws at the same side and connectors are placed between two 

rods to provide extra stability.  

In this research, computational models are developed based on clinical SFS devices. 

Two types of SFS are selected to develop the models: Single Rod System (SRS) and 

Double Rod System (DRS). The front, side and top view of two SFS systems are shown in 

Figure 7.1.  

  
(a) (b) 

Figure 7.1 Single Rod System (a), Double Rod System (b) 

SRS only has one rod and all the screws are distributed along the rod. DRS has two 

rods that are parallel each other with screws distributed on each rod with the sole 

connectors placed at the midpoint between two rods. Key parameters of SFS models are 

shown in Figure 7.2. Since clinical SFS devices have different length configurations, 

various parameter configurations are used to form SRS and DRS to ensure that more 
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clinical variations are covered. The configuration of the parameters are shown in Table 7-1. 

For connector length, 0mm means the model is a SRS device. 

Table 7-1 SFS Component Configurations 

Parameters Range (unit: mm) 

Screw Length [10, 30, 50, 70] 

Screw Diameter [3.5, 4.5] 

Rod Length [80, 100, 120, 140, 

160, 180, 200, 220] 

Rod Diameter [3.5, 5.5, 7.5] 

Screw Spacing [30, 50] 

Connector Length [0, 20, 40, 60] 

 

Figure 7.2 Parameters of SFS model 

The number of screws is determined by the available parameter settings above, 

which can be calculated as 

\ , mod 0

\ 1, mod 0

RodLength ScrewSpacing if RodLength ScrewSpacing
N

RodLength ScrewSpacing if RodLength ScrewSpacing

 
= 

− =
 (21) 

where N is the number of screws on each rod. The distance between the edge screws and 

the rod tip is also determined based on the parameters, which can be calculated as 

 ( ( 1) ) 2d RodLength N ScrewSpacing= − −   .  (22) 
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Combining all the parameters listed above, 1536 computational models are developed 

totally.  

7.2. Simulation Settings 

All simulations are performed in SEMCAD X. A generic birdcage coil is used as 

the RF excitation which is composed of 8 current sources and 16 lumped elements. All 

current sources are working on 64MHz frequency and phase delays are set between each 

source so that the coil generates EM field with circular polarization. An ASTM phantom 

is used which is filled with conductive gel. The conductive gel has a relative permittivity 

of 80.38 and an electrical conductivity of 0.47S/m. Each of 1536 SFS model is placed in 

the phantom at a fixed location. On z direction, the rod midpoint is at z=0. On y direction, 

the rod is at the center depth of the gel. Also, the model has a distance of 20mm to the right 

inner wall of the phantom. The location of the device inside phantom is shown in Figure 

7.3. 

  

(a) (b) 

Figure 7.3 Location of SFS device model inside ASTM  

FDTD simulation is set for every simulation. The simulation duration is set to 20 

periods in order to ensure the convergence. For material type, SFS model is set as PEC and 
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conductive gel is set as dielectric using the standard parameters (ε=80.38, σ=0.47). The 

phantom is also set as dielectric using the parameter of acrylic material (ε=3.7, σ=0). The 

boundary of the simulation is set to Absorbing Boundary Condition (ABC) with high 

strength to prevent the interference of probable reflection at the boundary. For grid setting, 

resolution of the conductive gel is set to 5mm and resolution of the phantom is set to 10mm. 

Since every SFS model has different size, to keep the same grid setting for every model, a 

grid mask box is applied outside of the model. The mask box has mesh resolution of 1mm 

and is not included in the simulation while its mesh resolution has higher priority than SFS 

models. Thus, All SFS models have 1mm resolution and the mesh coordinates are the same. 

Outside the RF coil, the 100mm padding is applied on x, y and z directions. The global 

mesh setting is shown in Figure 7.4. 

  
(a) (b) 

Figure 7.4 Mask box position and global mesh setting  

After all settings, the total number of mesh cells is 197*131*397 ≈ 10.2454M. The 

number of cells inside mask box is 91*78*231 ≈ 1.64M. The original SFS model and 

discretized SFS model are shown in Figure 7.5. 
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Figure 7.5 Front, side and top view of original SFS model (left) and discretized model 

(right) 

After simulations are finished, the geometrical mesh information and incident E 

field information are extracted. The geometrical mesh extracted in the 3-D material index 

matrix of the material inside mask box area. Since there are only two materials inside the 

mask box, which are the device model and the conductive gel, the material indexes are 

redefined: the value for PEC is 1 and the value for gel is 0. Overall, 1536 material index 

matrices are obtained. Meanwhile, the incident E field information is exported from one 

simulation. In this simulation, grid settings are kept the same while no device models are 

placed inside the phantom. The E field inside the mask box is exported. Since for E field 

generated by RF coil, z-directional component is the dominant component, the incident E 

field can be approximated as 

 ( , , ) ( , , )inczinc i j k z E i j k E  (23) 

where ( , , )inc i j kE is the discrete incident E field at location (i, j, k) and ( , , )inczE i j k  is the 

z-direction component of the discrete incident E field at location (i, j, k). ( , , )inc i j kE  is also 

a 3-D matrix with a shape of (91,78,231) which is the same with material index matrix. 

In order to combine the mesh information and incident E field information inside 

the mask box, elementwise multiplication is performed between ( , , )inc i j kE  and each 

index matrix, which is shown as  
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
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where ( , , )Mesh i j k  is the material index matrix. After the operation, 1536 Emesh matrices 

are generated and are treated as the input of the CNN model.  

To reduce the computation burden for CNN training and PCA analysis, sampling 

is conducted on each Emesh matrix on all three axes. One element of every two are picked 

and retained which makes the new shape of Emesh matrix (46,39,116). Also, since normal 

CNN model cannot deal with complex values, Emesh matrices need to be converted to real-

valued matrices so that they can be processed by the CNN model. Firstly, the real and 

imaginary part of each Emesh matrix is split into two matrices EmeshRe and EmeshIm. Then, two 

matrices are concatenated on the first dimension, which is the x direction, which is 

expressed as  

 
Re

Im

(2* , , ) ( , , ), 0,1,2,...,48

(2* 1, , ) ( , , ), 0,1,2,...,48

mesh mesh

mesh mesh

E i j k E i j k i

E i j k E i j k i

= =

+ = =
. (25) 

After that the new Emesh matrix has a shape of (92,39,116) and it is considered as the input 

of the CNN model. 

For RF-induced heating data, one-gram averaged peak SAR (psSAR1g) is evaluated 

from each simulation. The psSAR1g distribution of one SFS model is shown as follows in 

Figure 7.6. It can be shown that, the psSAR1g values at the tip of the rod and the tip of the 

screw are high. Also, due to the symmetry of the EM field in phantom, the psSAR1g values 

at the top and bottom of the model have small difference. Thus, it is not enough to use only 

one psSAR1g as the worst-case RF-induced heating since there might be other hotspots that 

produce high heating. Based on this circumstance, two psSAR1g values are evaluated for 

each SFS model as the RF-induced heating data. After each simulation is finished, two 
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Regions of Interest (ROIs) are set for rod tip and the outmost screw, which is shown in 

Figure 7.7. Two maximum one-gram averaged SAR values are found inside each region 

and are selected as the rod peak SAR(psSARrod) and screw peak SAR(psSARscrew). 

 

Figure 7.6 Example x-z slice of SAR1g distribution  

 

Figure 7.7 The ROI setting for rod tip and screw tip 

In order to find the optimum training dataset size, PCA analysis is performed. All 

1536 3-D complex Emesh matrices are reshaped to 1-D vectors and are concatenated together, 

forming the new 2-D matrix with a shape of (1536, 208104). PCA analysis is performed 

on this 2-D matrix. After the analysis, the Cumulated Explained Variance (CEV) of the 

first n PCs are plotted and analyzed which represents the percentage of information covered 

by first n PCs. 
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7.3. CNN Architecture 

In this research, all the Neural Network training is implemented by Python. The 

Keras toolbox, which is the high-level API to call the Tensorflow toolbox functions, is used 

for building the model architecture, training and testing of the CNN model. The CNN 

model used in this research is derived from AlexNet, which is a classical CNN architecture. 

The visualization of the model is shown in Figure 7.8. The model consists of one input 

layer, two 2-D convolutional layers, two max-pooling layers, one flatten layer, two fully 

connected layers and one output layer.  

 

Figure 7.8 CNN model architecture 

For input layer, the 1536 Emesh matrices are concatenated to a 4-D matrix with a 

shape of (1536, 92, 39, 116). Then, the matrix is transposed to adjust the order of the 

dimensions. After transposing, the shape is changed to (1536, 116, 92, 39). Since the 2-D 

convolution is applied in this model, every 3-D Emesh matrix can be considered as multi-

channel 2-D images. Based on this perspective, 1536 is the number of input samples, 116 

and 92 are the height and width of 2-D image and 39 are the number of channels. 

For two convolutional layers, the number of filters is set to 80. Each filter has a 

height of 2 and width of 4. Also, the strides of the convolution are set to 1 on height and 2 

on width. Since on the width direction, every incident E field information appears in a pair 
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of EmeshRe and EmeshIm values, the filter need to move every 2 steps on the width direction 

so that all real and imaginary values inside the filter are paired. For maxpooling layers, the 

filter shape is set to (2,2) which will extract and retain the local maximum value among 4 

values inside the filter. After convolutional layers and maxpooling layers, the feature map 

shape is changed to (28,10,80). The flatten layer reshapes the 3-D feature maps to 1-D 

vector with a length of 22400. Then, two fully-connected layers are applied with 256 

neurons and 128 neurons respectively. The output layer has two neurons, which 

corresponds to two peak SAR values extracted from simulations. 

After the architecture of the CNN model is set, the model is compiled and ready for 

training. For loss function, mean absolute percentage error (MAPE) is used for network 

refinement and backpropagating process. MAPE is defined as 

 
1

100% n
t t

tt

A F
MAPE

n A=

−
=   (26) 

where At is the true value and Ft is the predicted value. Comparing to other absolute error 

metrics, MAPE can better express the error with respect to the true values level. Apart from 

MAPE, mean absolute error (MAE) is selected as the error metric functions which is 

evaluated and monitored during every training epoch in order to check the convergence of 

the model. Adam optimization is chosen as the optimization of the model which combines 

the advantages of traditional algorithms to implement accelerated gradient descent 

procedure.  

For CNN training settings, training epochs are set to 100, which means all training 

data are repeated 100 times for the backpropagation and network parameter update. The 

batch size that represents the number of data used in each gradient update is set to 32. 

Moreover, 20% of the training data is selected as the validation data. Validation data do 
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not participate the network update and the error metrics of validation data are calculated 

after each epoch in order to monitor the performance of network model on new data. 

8. In-vivo RF-induced heating prediction of Spinal Fixation System 

8.1. Model Development 

In this research, a human computational model is used to replace the ASTM 

phantom to hold the SFS models and perform the EM simulation. The human model used 

is the Duke model which is a highly-detailed CAD model developed from a 34-year old 

adult male from Virtual Family project. The front, side and top view of the model is shown 

in Figure 8.1. The body tissue models in the Duke model are assigned with normal human 

EM parameters and thermal parameters. Thus, the in-vivo simulation with inhomogeneous 

Duke model can better mimic the real RF-induced heating scenario inside the human body. 

 

Figure 8.1 Front, side the top view of Duke model 

Normally, DRS is used for the most clinical treatment cases. Thus, no SRS models 

are developed for this research. The development of the SFS sample models in Duke model 

follows several steps. Firstly, the uniform-sized screws are placed at the pedicle area of the 
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spine levels which ranges from C1 of Cervical level to L4 of Lumbar level. Then, two rod 

models are created to run through all the screws at left side and right side. Finally, 

connector models are applied between two rods with a distance of approximately 20mm 

on z-direction. The procedure of sample model development is shown in Figure. The 

overview of the sample model is shown in Figure 8.2. 

   

(a) (b) (c) 

Figure 8.2 The procedure of developing SFS model in Duke model  

Since the SFS component used only have one geometric size, the SFS models with 

various rod length and position on the Vertebrae are generated in order to include as many 

as clinical variations. Firstly, two random numbers are created as the device center z 

coordinate z0 and the rod z coordinate length l, which is 

 
 

 
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where Zmin is the minimum z coordinate of the rod sample and Zmax is the maximum z 

coordinate of the rod sample. Then, the minimum z coordinate zmin and the maximum z 

coordinate zmax of the SFS model can be calculated as 

 

min 0

max 0

2

2

l
z z

l
z z

= −

= +

. (28) 

Once the z coordinate range of SFS model is determined, the rest part of the sample 

rods will be cut and removed. All the screws and connectors whose center’s z coordinate 

is out of the z coordinate range are also deleted. The rest components form the generated 

SFS model. All SFS components and the SFS model generated randomly are shown in 

Figure 8.3. Based on this method, 896 SFS models with different midpoint location and 

rod length are generated.  

  

(a) (b) 

Figure 8.3 The overview of sample components (a) and the randomly-generated SFS 

model (b) 
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Since the size of Duke model is too large, it is unfeasible to include mesh 

information of the whole Duke model. Thus, a fixed-size box is defined to sample the 

device and the nearby body tissue. The box has a size of 140mm*143.9mm*220mm. For 

different SFS models, the box is moving along z axis so that the center of the box has the 

same z coordinate with the center of SFS model. The box is shown in Figure 8.4. 

 

Figure 8.4 The sample box used to extract the device information 

8.2. Simulation Settings 

All in-vivo simulations are performed in SEMCAD X. For excitation, a generic 

birdcage coil is used as RF excitation. The diameter of the coil is 750mm and the length of 

the coil is 450mm. The coil is composed of 32 current sources which form two end rings 

and 16 lumped elements which form the rungs. The coil is working on 128MHz which is 

the Lamour Frequency of 3T MRI system. The z direction distance between the coil 

isocenter and the human is defined as landmark position. Zero landmark is defined by when 
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the z coordinate of the center of thalamus is zero. In this research, the landmark position is 

set to 350mm so that the middle part of Vertebrae is inside the coil with the maximum RF 

exposure, which is shown in Figure 8.5. 

 

Figure 8.5 The landmark position of Duke model used in this study 

The FDTD simulation period is set to 20 to ensure the convergence of the 

simulation. For material setting, all the human tissue models are defined as dielectric 

material and are assigned with the EM parameters of human tissue average values. The 

SFS model is defined as PEC. Absorbing Boundary Condition (ABC) is used as the 

boundary of the simulation. For the mesh setting, every tissue has a resolution setting of 

2mm. No resolution is assigned for SFS model, so the grid mesh of the model will follow 

the surrounding tissue’s grid. With this setting, The original model and the discretized 

model are shown in Figure 8.6. The total number of cells is 298*178*923 ≈ 49.96M.  
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Figure 8.6 The original Vertebrae and SFS device models and discretized models 

With the grid setting, the shape of the sample box is (71,73,110) and the number of 

cells are 71*73*110 ≈ 0.57M. In order to obtain the incident E field information inside the 

sample box, an extra simulation is conducted with the same Duke model and RF coil 

without the presence of the SFS model. After that. the incident E field inside every sample 

box is exported. For simplicity, only z-direction component of the E field is retained. The 

modified incident E field is 

 ( , , ) ( , , )inczinc i j k z E i j k E . (29) 

Thus, 896 complex-valued Einc matrices are exported for all SFS models. 

Meanwhile, the electric conductivity (σ) of body tissue and device model inside the sample 

boxes are extracted. For human tissue, σ ranges from 0 S/m to 2.14 S/m. Since the 

assumption of PEC is that it has infinite large σ, which cannot be used for CNN model 

training, the σ of PEC is assign as 5 S/m. Moreover, the material index matrix inside the 

sample box is extracted as well. The indexes of human tissue ranges from 1 to 78 and the 

index of PEC is 79. In order to highlight the feature of the PEC in input information, all 
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the indexes are redefined: PEC’s index is set to one and all the other tissues’ index is set to 

zero. After that, 896 3-D σ distribution and redefined index matrices are obtained. 

Postprocessing operations are conducted for the incident E field and sigma matrices 

to form the input format of CNN. Since normal CNN model is not able to process the 

complex-valued input, the real part and imaginary part of Einc are split to form two matrices 

with the same shape of Einc, which is denoted as EincRe and EincIm. Then, EincRe and EincIm 

and σ matrices are concatenated together on the first dimension, which is x direction. The 

new Emesh matrix will be expressed as 

 
Re

Im

(2* , , ) ( , , ), 0,1,2,...,70

(2* 1, , ) ( , , ), 0,1,2,...,70

mesh inc

mesh inc

E i j k E i j k i

E i j k E i j k i

= =

+ = =
. (30) 

The shape of three original matrices is (71,73,110), thus the shape of Emesh matrix is 

(142,73,110). The new formed matrix is considered as the input of the CNN model. 

In terms of RF-induced heating data, instead of using two peak SAR values which 

is used in in-vitro case, only one peak SAR value is extracted and used as the heating data. 

Because unlike in-vitro cases in which the high SAR values tend to appear at the tip of rod 

and outmost screw, the SAR distribution will be more complicated for in-vivo cases due to 

the inhomogeneity of body tissue surrounding the SFS model. Thus, the number and 

location of the hotspots may be uncertain. While the number of output is fixed for CNN 

model, only one worst case psSAR1g value is considered in simplicity.  

8.3. CNN architecture 

The CNN model used in this research is derived from AlexNet. For in-vivo cases, 

the electrical conductivity distribution is inhomogeneous in Duke model. Also, the 

distribution of incident E field is complex compared to in-vitro cases. Thus, the mesh 

information, incident E field information and electrical conductivity information are not 
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merged as one input matrix since the filter may not be able to capture all features from the 

input. Based on this situation, a new CNN architecture is introduced. The visualization of 

the CNN model used in this research is shown in Figure 8.7. 

 

Figure 8.7 CNN architecture 

The model consists of three parallel sub-CNN networks. Each network is derived 

from AlexNet and includes one input layer, two 2-D convolutional layers and two max-

pooling layers. After that, one flatten layer, two fully connected layers and one output layer 

are included.  

896 mesh, incident E field and electric conductivity matrices are concatenated 

separately to 4-D matrices. The mesh matrix and σ matrix have a shape of (896, 71, 73, 

110) and the incident E field matrix has a shape of (896, 142, 73, 110). Then, three matrices 

are transposed to adjust the order of the dimensions so that the second dimension and the 

fourth dimension are swapped. Three 4-D matrices are treated as input layers of three sub-

CNN networks. 

For every convolutional layer, the number of filters is set to 40. Each filter has a 

height and a width of 10. For max-pooling layers, the filter shape is set to (2,2) which will 
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extract and retain the local maximum value among 4 values inside the filter. After all 

convolutional layers and max-pooling layers, the feature map shape is changed to 

(20,11,40). The flatten layer reshapes three 3-D feature maps to three 1-D vectors with a 

length of 8800. Then, three 1-D vectors are concatenated to one 1-D vector with a length 

of 26400. By the concatenation, the features extracted from three different inputs are 

merged. Then, two fully connected layers are applied with 256 neurons and 128 neurons 

respectively. The output layer has one neuron, which corresponds to the peak SAR values 

extracted from simulations. 

After the architecture of the CNN model is set, the model is compiled and ready for 

training. mean absolute percentage error (MAPE) is used as loss function. Apart from 

MAPE, mean absolute error (MAE) is selected as the error metric function. Adam 

optimization is chosen as the optimization of the model.  

For CNN training settings, training epochs are set to 100. The batch size that 

represents the number of data used in each gradient update is set to 32. Moreover, 20% of 

the training data is selected as the validation data.  
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9. Results 

9.1. Step size for selecting training set 

When selecting the training dataset for the network, the physical knowledge cannot 

be ignored. Empirically, the device length is one of the major factors to affect the peak 

spatial SAR value. If training dataset is formed by plate device data that have large step 

size on the device length, the prediction behavior will probably be significantly affected. 

Thus, the appropriate device length step size is investigated under 1.5T and 3T environment. 

A metal cylinder rod model is used as the device model which is regulated in ASTM 

2182 standard [1] with the same birdcage coil and ASTM phantom. The rod is parallel to 

the z axis and has a distance of 20mm to the right wall of phantom. The length of the rod 

ranges between 50mm to 370mm with a step size of 10mm. Overview of all the models is 

shown in Figure 9.1. A total of thirty-three in-vitro simulations are performed, mesh of the 

rods and psSAR1g values are extracted afterwards. For training dataset, rod data with 

different step size on rod length are chosen to form different datasets. Step size of 10mm, 

20mm, 40mm and 80mm are chosen which makes training dataset consist of 33, 17, 9 and 

5 data. The testing data will include all 33 data to evaluate the performance on predicting 

correct trend of RF-induced heating changing.  
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Figure 9.1 Overview of models with ASTM rod 

The scatter plot of predicted training data, predicted validation data, predicted 

testing data and all the original data under 1.5T and 3T environment are shown in Figure 

9.2 and Figure 9.3. It can be shown that, for 1.5T environment, the network receives good 

prediction performance for step size of 10mm, 20mm and 40mm. When step size is set to 

80mm, the prediction has significant error as the training data size is too small. While for 

3T environment, the prediction already gets worse when step size is increased to 40mm. 

These results correlate with the RF field distribution features that the step size of the rod 

length for training data should be less than 1/10 of the wavelength. The wavelength formula 

inside certain medium which is expressed as 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9.2 Scatter plot of data under 1.5T. Step size =10mm(a), 20mm(b), 40mm(c) and 

80mm(d) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9.3 Scatter plot of data under 3T. Step size =10mm(a), 20mm(b), 40mm(c) and 

80mm(d) 
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The wavelength inside the conductive gel is 432.2mm for 1.5T and 243.93mm for 

3T. Thus, for 1.5T system, the step size should be less than 43.22mm and for 3T system, 

the step size should be less than 24.39mm. 

9.2. Results of RF-induced heating prediction of Tibia Plating System 

9.2.1. Convergence and Correlation 

The whole training duration is around 15 minutes to finish. During the training, the 

MAP and MAPE of training dataset and validation dataset is evaluated at the end of every 

epoch. The training and validation MAPE are shown in Figure 9.4. It can be seen that the 

error level decreases significantly in the first ten epochs. The error level has decreased to 

5% at epoch 10. After that, the error level fluctuates below the 5% mark except the 

validation MAPE where the over 5% error appear in 1 epoch. Also, the validation MAPE 

are close to the training MAPE, which means that the network is robust to the new data 

and there is no overfit for the CNN model which might cause a significantly higher error 

level for validation dataset than training dataset. 

 

Figure 9.4 The MAPE level of training dataset and validation dataset during training 

Once the training is finished, the testing dataset is used for evaluating the 

performance of predicting new data. The average peak SAR values, MAE and MAPE 
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values of training dataset (including validation data) and testing dataset are tabulated in 

Figure 9.1. It shows that, the averaged SAR value for both training and testing dataset is 

around 200W/kg. Testing dataset MAE is slightly higher than training dataset, which is 

reasonable as testing dataset consists of new data that did not participate the network 

training. Both MAPE are below 2% and testing dataset has a higher error level than training 

dataset. Overall, the absolute error and percentage error level is very low. 

Table 9-1 Averaged SAR level and error level of training and testing dataset 

 Training Testing 

Averaged SAR 

value (W/kg) 
203.90 196.82 

MAE 2.52 2.93 

MAPE 1.46% 1.80% 

The correlation between predicted peak SAR value and true peak SAR value of 

training dataset and testing dataset is also investigated. R2 score is used as the measure of 

the correlation, which is defined by 
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where yi is the true value, fi is the predicted value and 𝑦̅ is the average value of true values. 

The scatter plot of training dataset and testing dataset correlation is shown in Figure 9.5. 

Both training dataset and testing dataset have a R2 score of 0.99. It can be shown from the 

scatter plot that, majority of the data points have a very limited distance to the line x=y, 

which means that the predicted value and true value are highly correlated. Only a few of 

data points are observed in both datasets to deviate the line. Thus, the CNN model achieves 

high correlation between predicted value and true value.  
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(a) (b) 

Figure 9.5 Correlation between predicted and true value for both datasets 

9.2.2. Error Level Distribution 

After the network convergence and the total error level are investigated, the 

distribution of the error is also observed as the averaged value cannot reveal all the 

information sometimes. Firstly, the distribution of the peak SAR values for both datasets 

are investigated and the histograms of distribution are shown in Figure 9.6. It can be 

obtained from the figure that, the peak SAR values of the plate devices are concentrated 

with the range of [90W/kg, 300W/kg] while the range of [150W/kg, 200 W/kg] has the 

largest number of occurrences. There are also no outliers for peak SAR values. 

  
(a) (b) 

Figure 9.6 Distribution of peak SAR values for training dataset (a) and testing dataset (b) 
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The distribution histograms of MAE for training dataset and testing dataset are 

shown in Figure 9.7. From the figure, majority of the training and testing data has an MAE 

value of less than 10W/kg with only a limited number of large error level are observed. 

The maximum MAE value for training dataset is 50.04W/kg and the maximum MAE value 

for testing dataset is 29.03W/kg. 

  
(a) (b) 

Figure 9.7 Distribution of absolute error for training dataset (a) and testing dataset (b) 

Distribution histograms of MAPE for training dataset and testing dataset are also 

investigated and the shown in Figure 9.8. It can be observed that, majority of data has a 

MAPE level of less than 5%. For testing dataset, the portion of data that have MAPE values 

larger than 5% is more than training data. The maximum MAPE of training dataset is 31% 

and the maximum MAPE of testing data is 17.77%. 
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(a) (b) 

Figure 9.8 Distribution of absolute percentage error for training dataset (a) and testing 

dataset (b) 

Breaking down the error level distribution, the following information can be 

obtained: over 90% of the training data and testing data has small MAE and MAPE level. 

Outliers are observed as the maximum MAE is 50.04W/kg, while it is still acceptable as 

the SAR value is larger and the MAPE is 31% which is the more applicable metric to 

describe the error level, which means that the CNN model in this research can predict the 

peak SAR value for tibia plate devices with low error level in most of the circumstances. 

9.2.3. Selection of Training Dataset 

Initially in this research, 70% of the total data is used to form the training dataset, 

which is 991 data. This is an empirical choice from the general CNN applications where 

all the image data are easily acquired with little difficulty and large amount of data are 

picked to form the training dataset in order to ensure the thorough training of the CNN 

model. While in EM related problems, the philosophy is different. Since every peak SAR 

value data is obtained from a finished full-wave simulation, it means that the same amount 

of the simulations with training dataset size needs to be performed to obtain the dataset, 

which will still be time-consuming. In this case, if less training data are used for network 
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training while the network can achieve the similar acceptable performance, time and 

computational resources can be saved. Thus, it is necessary to investigate the least possible 

amount of training data that can have similar prediction performance with more training 

data. 

Based on the new philosophy, the naïve strategy for finding optimal training data 

amount is to sweep the training data size and find the smallest possible number of training 

data that has the significant prediction performance. The strategy is as follows: 20% of the 

whole data is randomly selected as testing data which will not change later. For the rest of 

the data, different portion of data are selected as training dataset, starting from 10% to 80% 

of the whole data with a step of 10%. The validation data amount is always the 20% of the 

training data. Totally, there will be eight different training data amounts. Since every time 

the network is under training, the initial weights are different, different correlation and 

error levels are expected. Training data will consequentially be randomly selected 10 times 

for each dataset amount. The network will then be trained for 10 times as well for each data 

amount to have the most comprehensive description of the network performance with 

certain training data amount.  

After training with all the datasets and evaluating all the error metrics and 

correlations, Table 9-2 shows the correlation, MAE and MAPE level with different training 

data amounts. It can be clearly shown that, for training data less than 30% of the whole 

data, although the averaged error level stays low with a maximum less than 8.2% of MAPE, 

both error levels are nearly two-fold of the rest error levels. Also, the correlation for 10% 

and 20% of training data reach less than 0.94 for both training and testing. In contrast, the 

error levels start to improve from 30% training data with training MAPE of 2.31% and 
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testing MAPE of 3.3%. The correlation also improves as the R2 score of testing dataset for 

30% training data nearly reaches 0.98. 

Table 9-2 Correlation and error levels on different training data amounts 

Training 

data 

percentage 

Training 

data 

amount 

Training Dataset Testing Dataset 

MAE 
MAPE 

(%) 
R2 MAE 

MAPE 

(%) 
R2 

10% 142 11.52 5.94 0.9174 14.64 8.19 0.8811 

20% 283 11.332 5.663 0.9356 12.437 6.796 0.9252 

30% 425 4.43 2.31 0.9885 5.78 3.30 0.9791 

40% 566 5.61 2.88 0.9841 6.26 3.52 0.9800 

50% 708 4.98 2.57 0.9874 5.70 3.19 0.9831 

60% 805 4.35 2.23 0.9894 4.89 2.70 0.9873 

70% 991 4.94 2.51 0.9875 5.18 2.84 0.9859 

80% 1133 4.87 2.42 0.9883 5.10 2.73 0.9872 

In order to further investigate the trend of error levels and correlations with training 

data amount increasing, Figure 9.9 shows the change of MAPE and R2 score with the 

increase of training data. MAE curve is not shown as it has the same trend with MAPE. It 

can be shown that, when the data amount is less than 425, the MAPE level increase and 

the R2 score decreases significantly. When the data amount surpasses 425, which is 30% 

of the total data, the error level decreases sharply and R2 score reaches over 0.98. For 

training data, the prediction performance sees a setback when training data increase to 20% 

from 10% of the total data. One probable reason is that the network is not converged yet 

with few training data. Thus, the prediction error level may be unpredictable. Also, 

including more training repetitions may be able to have more stable error levels and the 

setback may disappear. One needs to be noticed that, when the training data keep increasing 

from 425, the prediction performance does not monotonically improve. The averaged 

performance even deteriorates when data amount increases from 800 to 1000 where the 

network overfit may appear. Besides, the low threshold of training data amount that affect 
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the convergence of the network training is the data amount, rather than percentage portion 

of whole data, which is reasonable as the network will still converge with 400 data even 

the whole dataset size increases.  

  

(a) (b) 

Figure 9.9 Change of error level and correlation when training data amount increases 

The naïve strategy provides a comprehensive analysis on the CNN model prediction 

performance with different sizes of training datasets. While this strategy still needs large 

amount of simulations to be performed to obtain the training data. Also, significant CNN 

model training repetitions takes another large amount of time. Thus, PCA is brought in 

which conducts analysis on the incident E field and mesh information. Multiple PCs are 

obtained and ranked by the information each PC covers. The number of highest-valued 

PCs can be considered as the training dataset size with the assumption that the training 

dataset covers as much information as the highest-ranked PCs. 

After the analysis, 1415 PCs are obtained which are 1D vector with same length 

with 1-D vector input. These vectors are reshaped back to 3-D matrices with shape of 

(182,45,33) which is the same with complex Emesh matrix. Then, the magnitude of every 

element inside matrix is evaluated for the visualization. The center slice of the magnitude 
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matrix for the 1st, 11th, 21st, 31st, and 41st PC are shown in Figure 9.10. It can be clearly 

seen that, the plate in the device model contributes the largest variances as the vertical 

component has higher value in the 1st PC. Meanwhile, the screws contribute the smaller 

variances as the horizontal component stands out in the subsequent PCs.  

 

Figure 9.10 Center slice of magnitude of 1st, 11th, 21st, 31st and 41st PC 

Afterwards, CEV of PCs are plotted and shown in Figure 9.11. . It can be seen that, 

the first 90 PCs have covered over 90% of the total variance and the first 400 PCs have 

covered over 99% of the total variance. If these 400 PCs form the training dataset, less than 

1% of MAPE could be achieved as the input has covered the majority of the information. 

 

Figure 9.11 The relationship between CEV curve and number of PCs 

Moreover, the 1-CEV(n) curve is plotted and overlaid with the scatter plot of 
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MAPE curve with different number of training data in Figure 9.12. The 1-CEV(n) indicates 

the percentage of the total energy that is not included in the datasets for the CNN model 

development. This would be considered as an indication of the lowest level that a CNN 

model can achieve. It can the implied from the figure that both the 1–CEV(n) and the 

MAPE of the CNN model decrease as the size of the training dataset increases. However, 

as expected, the MAPE would be still higher than the 1–CEV(n). For the RF-induced 

heating for the tibia plates used in this research, based on the 1–CEV(n), it appears that the 

size of 400 datasets is a good indication that all energy that has been included in the training 

sets. However, the error levels from the CNN model are still slightly higher than the 1–

CEV(n). 

 

Figure 9.12 Comparison between information not covered by PCs and the percentage 

error level of CNN model with different training dataset size 

Based on previous results, 1–CEV(n) can be used as a reference for choosing the 

appropriate training dataset size. The percentage error calculated from the PCA can be 

considered as the lower limit of the prediction error from the CNN model. For example, to 

achieve a MAPE level of 10%, the training dataset must contain at least 100 datasets, as 

100 PCs will produce a 10% error level. Overall, the PCA can be used as an assistant tool 
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to estimate the best-fit size of the training datasets. 

9.3. Results of In-vitro RF-induced heating prediction of Spinal Fixation 

System 

9.3.1. Convergence and Correlation 

During training, the error metric functions are evaluated at the end of every epoch. 

The MAPE level of training dataset and validation dataset are shown in Figure 9.13. It can 

be shown that, MAPE level decreases significantly in the first 20 epochs to around 10%. 

After that, both MAPE level decreases slowly and MAPE of training dataset keeps lower 

than validation MAPE until at the last epoch. This is reasonable as the validation data are 

new data for the trained CNN model. No model overfit is observed since the difference 

between 2 MAPE levels are small. 

 

Figure 9.13 The MAPE level of training dataset and validation dataset during training 

After training, the averaged value of training and testing dataset, MAE and MAPE 

of rod peak SAR and screw peak SAR is tabulated in Table 9-3. It can be shown that, the 

averaged rod peak SAR value is 25% higher than averaged screw peak SAR value, which 

is reasonable as the rod tip is closer to the top and bottom of the phantom where larger EM 
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field exposure is expected. However, the peak SAR value at the screw tip is also not 

negligible. Both prediction yields low MAE with the maximum value as 5.53W/kg. MAPE 

values are small as well with the maximum value less than 10%. Both error levels of testing 

dataset are higher than that of training dataset which is acceptable and expected. 

Table 9-3 Averaged SAR level and error level of training and testing dataset 

 Rod  Screw 

 Training Testing Training Testing 

Averaged 

SAR value 

(W/kg) 

100.43 100.83 72.82 68.99 

MAE(W/kg) 4.58 5.53 3.35 4.99 

MAPE 4.99% 5.85% 5.41% 7.88% 

For the correlation between true SAR data and predicted SAR data, R2 score is used 

as the metrics of data correlation. The scatter plot of training and testing dataset between 

true value and predicted value is shown in Figure 9.14.  

From the figure, both rod and screw predictions have good performance to receive 

R2 scores over 0.98 for training dataset and R2 scores over 0.95 for testing dataset. Note 

that, although rod and screw have similar training dataset prediction performance, rod 

prediction behaves better than screw prediction. It can be observed from the figure that, 

screw prediction has more deviated data points at the high peak SAR value. Based on this 

phenomenon, one probable reason is that the screw peak SAR are mainly concentrated at 

lower values which backpropagation are mostly based on. Thus, the CNN model will 

receive mediocre prediction performance when it tries to predict the high value screw peak 

SAR.  
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(a) (b) 

  
(c) (d) 

Figure 9.14 Correlation between predicted and true value for both datasets 

9.3.2. Error Distribution 

In order to further investigate the distribution of the prediction error, histograms of 

MAE and MAPE distribution are generated. Before that, it is necessary to investigate the 

distribution of the peak SAR values of training dataset and testing dataset which is shown 

in Figure 9.15. It can be shown that, all the peak SAR values are with the range of 

[0,250W/kg] while rod peak SAR has larger minimum and maximum values than screw 

peak SAR. Majority of the rod peak SAR values are near 100W/kg while majority of the 

screw peak SAR value locate at the 75W/kg for both training dataset and testing dataset, 
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which provides the evidence for the phenomenon mentioned before that the CNN model 

has inferior prediction performance for screw peak SAR. 

  
(a) (b) 

  
(c) (d) 

Figure 9.15 Distribution of rod peak SAR values for training dataset (a) and testing 

dataset (b) and screw peak SAR values for training dataset (c) and testing 

dataset (d) 

The absolute error and absolute percentage error distribution of training dataset and 

testing dataset for rod and screw prediction are shown in Figure 9.16 and Figure 9.17. For 

absolute error, all the data are within the range of [0, 40W/kg]. While several outlier error 

levels up to 40W/kg appear, over 90% of the data have error levels that are less than 

10W/kg. 
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(a) (b) 

  
(c) (d) 

Figure 9.16 Distribution of rod absolute error for training dataset (a) and testing dataset 

(b) and screw absolute error for training dataset (c) and testing dataset (d) 

For absolute percentage error, rod prediction and screws distribution have the 

similar error distribution. Over 90% of the training data have a less than 10% level and 

over 90% of the testing data have a less than 15% level. However, outlier values exist for 

both training dataset and testing dataset where maximum percentage error of 60% appears 

in training dataset and percentage error of 80% appears in testing dataset. Screw prediction 

has more outlier error values than rod prediction as multiple percentage error values are 

located in the range of [20%,80%]. 
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(a) (b) 

  
(c) (d) 

Figure 9.17 Distribution of rod peak SAR absolute percentage error for training dataset 

(a) and testing dataset (b) and screw peak SAR absolute percentage error for 

training dataset (c) and testing dataset (d) 

9.3.3. Selection of Training Dataset 

Since PCA analysis is performed for the Tibia Plating System RF-induced 

prediction and shows good indication on the appropriate size of the training dataset, naïve 

strategy for SFS RF-induced heating prediction is omitted in order to save time and 

computer resources. For PCA analysis, 1535 1-D vector PCs are obtained which have a 

common shape of (1,208104). These PCs are reshaped to 3-D matrix with the shape of 
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(116,46,39) in order to check the geometrical features of PCs. Also, the explained variance 

of every PC is evaluated with the rank to represent the information every PC covers. 

 

Figure 9.18 Center slice of magnitude of 1st, 6th, 11th , 16th and 21st PC 

In order to visualize the variance each PC covers, the magnitude of every element 

is evaluated. The center slice of 1st, 6th, 11th, 16th and 21st PC magnitude is shown in Figure 

9.18. It can be shown that, the rod feature is covered in the highest variance PCs and the 

screw features are covered in the subsequent PCs. This result correlates with the peak SAR 

distribution as rods are the dominant components of the peak SAR values which implies 

that PCA analysis can extract the geometric feature of the SFS models. 

The Explained Variance value is evaluated for every PC and the CEV curve is 

evaluated afterwards, which is shown in Figure 9.19. From the figure, it can be observed 

that the variance at 296th PC has decreased by 100 times from 105 to 103. Also, from the 

CEV curve, the first 296 PCs accounts for 99.9% of the variance which means that only 

0.1% of the information is not covered by the first 296PCs. According to the PCA analysis 

for RF-induced heating prediction for Tibia Plating System, if choosing 296 as the training 

dataset size, the best possible performance it can achieve is MAPE level of 0.1%. Thus, 

the training dataset size chosen in this research is 296.  
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(a) (b) 

Figure 9.19 Explained Variance curve (a) and CEV curve (b) 

9.4. Results of In-vivo RF-induced heating prediction of Spinal Fixation 

System 

9.4.1. Convergence and Correlation 

The MAPE level for training dataset and validation dataset after each epoch is 

evaluated. The trend of the MAPE along epochs are shown in Figure 9.20. It can be seen 

that, the error level significantly decreases to roughly the level of 20% in the first 20 epochs. 

From the 20th epoch to the 40th epoch, the error level keeps decreasing to 10%. After the 

40th epoch, the error levels decrease slowly and reaches the level of below 10% at the end 

of training. The validation MAPE is lower than training MAPE in the first 25 epochs and 

surpasses the training MAPE level in the following epochs. No model overfit is observed 

since the difference of 2 error levels is negligible although MAPE of validation dataset is 

slightly higher than that of training dataset.  
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Figure 9.20 The MAPE level of training dataset and validation dataset during training 

After training, the averaged value for peak SAR, MAE and MAPE is tabulated in 

Table 9-4. From the table, averaged peak SAR values for training dataset and validation 

dataset are approximately 67W/kg. Both MAE level are around 5W/kg while testing MAE 

is higher than training MAE for roughly 1W/kg. For MAPE, both levels are around 5% 

level while testing MAPE has a slight higher level over 5%. 

Table 9-4 Averaged SAR level and error level of training and testing dataset 

 Training Testing 

Averaged SAR value (W/kg) 67.61 66.28 

MAE (W/kg) 4.58 5.53 

MAPE 4.99% 5.85% 

For training and testing data correlation, R2 score is used as the metric. R2 scores 

of training dataset and testing dataset are evaluated. The scatter plot of training and testing 

true and predicted value is shown in Figure 9.21. The R2 score of training dataset is 0.968 

and the R2 score of training dataset is 0.904. It can be seen from the figure that, for training 

dataset, majority of the data points are near the x=y reference line with only small 

deviations. For testing dataset, the data points are more spread around the reference line. 

For both dataset, there exists some outliers that have significant distance to the line. Data 
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points that have higher peak SAR values in testing dataset have more outliers, which may 

be due to the lack of high peak SAR data in training dataset.  

  

(a) (b) 

Figure 9.21 Correlation between predicted and true value for training and testing dataset 

9.4.2. Error distribution 

In order to better investigate the details of the error levels, distribution of the 

absolute error and absolute percentage error are evaluated. Before that, the distribution of 

peak SAR values of training and testing dataset are shown in Figure 9.22 in order to have 

a better understanding of data range. From the figure, it can be shown that, all the peak 

SAR values have a range of [20W/kg, 140W/kg]. For training datasets, majority of the data 

concentrate in the range of [60W/kg,80W/kg] while for testing dataset majority of data 

concentrate in the range of [40W/kg,80W/kg].  
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(a) (b) 

Figure 9.22 Distribution of peak SAR values for training dataset (a) and testing dataset 

(b) 

The distribution of absolute error are shown in Figure 9.23. For training dataset, 

90% of the data have an absolute error level of less than 5W/kg and 68% of the testing data 

have an absolute error level of less than 5W/kg. The number of occurrences decreases 

sequentially for both datasets when the error level is increasing except few outliers at 

approximately 20W/kg for testing dataset.  

  

(a) (b) 

Figure 9.23 Distribution of absolute error for training dataset (a) and testing dataset (b) 
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The distribution of absolute percentage error are shown in Figure 9.24. For training 

dataset, 93% of the data have an absolute error level of less than 10% and 78% of the 

testing data have an absolute error level of less than 10%. A few outliers whose error level 

is as high as 40% are observed for testing dataset while all the percentage error are less 

than 25% for training dataset.  

  

(a) (b) 

Figure 9.24 Distribution of absolute percentage error for training dataset (a) and testing 

dataset (b) 
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10. Discussions 

10.1. Prediction Performance 

In this research, three CNN models are established for predicting in-vitro and in-

vivo RF-induced heating for different PIMDs. All three CNN models receive good 

convergence with error level decreasing rapidly within the first five or ten epochs. Firstly, 

it proves the robustness of Adam optimizer. Different from the traditional gradient descent 

method such as Stochastic Gradient Descent (SGD), Adam optimizer will adjust the 

learning rate quickly after a quantity of backpropagation procedures. Thus, after several 

epochs, all training data have participated in the backpropagation procedures for multiple 

times. The learning rate is adjusted to the “smartest” value. Secondly, the error level has 

some oscillation after it has decreased to a low level, which is very reasonable since after 

every backpropagation procedure, the filter weights are slightly changed even if the 

network has converged. Thus, the output will have small changes while these changes will 

not bring significant change on the error level. Lastly, the error level of validation data is 

higher than training dataset, which is also reasonable as the data in validation dataset are 

not introduced into the backpropagation. So, these new data will have higher error level. It 

can be observed in some epoch that the validation error level is lower than training error 

level, which is reasonable as the model is not converged with the filter weights changing 

significantly. Some coincidence may appear that validation error is lower than training 

error and this phenomenon will disappear as more epochs are experienced during training.  

In this research, the data correlation is all acceptable with all R2 score larger than 

0.90. It means that the proposed CNN models have captured the mapping between incident 

EM field information, device geometrical information and RF-induced heating. The 
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training dataset always have higher R2 score, which correlates with the previous 

phenomenon that training dataset has lower error level than testing dataset. One needs to 

be noted that, the R2 score can only depict the correlation of an ensemble data, which means 

that the bad correlation caused by outliers that have larger error on prediction result may 

be hidden by the majority of the data. Thus, the distribution of error levels needs to be 

further investigated to evaluate the amount of outlier data. This is important since if the 

CNN model is applied for RF-induced prediction as clinical reference, the possibility of 

significant overestimation and underestimation needs to be investigated to prevent the 

incorrect MR safety labeling. 

The distribution of MAE and MAPE is investigated. Generally, majority of the 

training and testing data has low error level while several outliers with large error are 

observed. The outliers appear in both training dataset and testing dataset, which implies 

that the RF-induced heating pattern in complicated. Even if training dataset has always 

received high data correlation and low error level, there are still some device models whose 

RF-induced heating cannot be predicted by the CNN model with limited error, which 

shows the restriction of the CNN network that one model can only work in specific domain 

rather than implement the general prediction. 

10.2. Training Dataset Selection 

For the selection of training data, the naïve strategy is proposed firstly. This strategy 

sweeps the number of training data from as few as 10% of the total data to 80% of the total 

data. The result from the training data amount sweeping for Tibia Plating System heating 

prediction shows that, using large percentage of total data as training data may not be 

mandatory as 30% of the total data can achieve an R2 score of 0.98. This illustrates that the 
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CNN applications in RF-induced heating prediction are different from traditional CNN 

applications. For image classification using CNN, large amount of labelled images can be 

obtained through online resources. Based on that, training dataset always contains large 

amount of data which are over 50% of total data, like 70%. Features on incident EM field 

and device geometric information can be extracted using 30% of the total data for Tibia 

Plating System. Note that, 30% may not be a universal threshold as different incident field 

and device profiles are expected for different PIMD types. For those PIMDs who have 

complicated shapes, 30% of total data may not suffice for CNN model to learn all the 

features. Also, this strategy requires the largest percentage of total data to be obtained, 

which means that the same number of simulations being performed. For Tibia Plating 

System application, at least 80% of the EM simulations needs to be finished which are 

1133 simulations, which will still cost a significant amount of time. Only the time of 20% 

of total simulations are saved, which shows the low efficiency of the naïve strategy.  

PCA analysis is introduced which will only be performed on the 3-D input matrices 

and doesn’t need any peak SAR data, which means that it can be performed before the 

batch simulations to provide a guidance on choosing the optimum size of training dataset. 

Note that, PCA analysis only provides a “lower bound” which means the lowest error level 

a CNN model can achieve with a training dataset that has the same number of data with 

the number of PCs. This is based on the assumption that the training data have covered the 

same variances as what the highest-ranked PCs cover. In reality, the training data always 

cover less variances. Thus, the error level of selected training dataset is always higher than 

uncovered variances by highest-ranked PCs with the same size. Currently, there is no 

method to determine the worst error level a training dataset can achieve. In summary, to 
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secure a limited error level, the optimum size selection needs to be slightly aggressive while 

keeping within the smallest possible size. 

Moreover, the PCA analysis is not applied on the in-vivo heating prediction. 

Different from two in-vitro heating prediction study where the mesh information and 

incident field information are multiplied together, input matrices for in-vivo case 

concatenates the real and imaginary part of incident E field and conductivity of the local 

material. So, both information types are not merged together. So, PCA analysis cannot 

provide the information covered by input when matrices with independent input are used 

for the analysis. In the future, the appropriate input pattern for PCA analysis that could 

provide the variances of incident field and mesh information needs to be further 

investigated. 

10.3. Sensitivity Analysis of CNN 

In this study, CNN models are proved to be able to predict the RF-induced heating 

of complex-shaped PIMDs with limited error level. However, the robustness of the CNN 

models is not discussed. Thus, sensitivity analysis is conducted to investigate how sensitive 

the CNN model is to changes in the input configurations [43]. In this analysis, perturbation 

method is used [44] on the CNN model of the tibia plate system heating prediction. 

According to the method, small changes are applied on the input of the CNN model as 

perturbations and the output is observed to evaluate the error level which measures the 

sensitivity of the CNN model.  

For the CNN model used, input is a combination of device mesh and incident E 

field. Adding perturbations on the incident E field is inappropriate since it is difficult to 

change the incident E field pattern in the phantom. Thus, perturbations can be added on the 
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device mesh which means that slight changes can be applied on the device structure. This 

is more realistic as the clinical devices made from different manufacturers may have slight 

difference on the device shape. Three kinds of perturbations are used on four tibia plate 

types in this analysis: the shape of plate tip, the shape of screw tip and the existence of the 

top screw.  

Firstly, the width of plate tip of all tibia plate devices used for training CNN model 

is half of the plate width. To create the perturbation, several plate device models are created 

so that the width of plate tip ranges from 20% of the plate width to 100% of the plate width. 

The shortest plate tip and the longest plate tip pattern are shown in Figure 10.1. Then, the 

tip length of the top screw is redesigned. Original plate device models used for CNN 

training have the tip length of 1mm. New models are designed so that the tip length of top 

screw ranges from 2mm to 8mm, which is shown in Figure 10.2. For new generated models, 

only one perturbation appears on each model. Screws with length of 10mm, 30mm and 

60mm are used at fixed positions.  

  

(a) (b) 

Figure 10.1 Shape of plate tip: 20% of plate width (a) and 100% of plate width (b) 
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(a) (b) 

Figure 10.2 Shape of top screw tip: 2mm (a) and 8mm (b) 

Totally, 162 new models are developed and 162 EM simulations are performed 

using the same simulation configuration. Mesh information, incident E field and peak SAR 

values are extracted after simulation and postprocessing is conducted to form the input of 

CNN model. The input of perturbated model data is passed to the pre-trained CNN model 

to obtain the predicted SAR values. The sensitivities of SAR with respect to the 

perturbation size are investigated first. Two quantities are defined as the measure of the 

SAR sensitivity. The first quantity is defined as 

 1

SAR SARoriginalTrue newPredicted
s

l

−
=


 (35) 

and the second quantity is defined as 

 2

SAR SARnewTrue newPredicted
s

l

−
=


, (36) 

where SARoriginalTrue is the true SAR value of the original device model with no perturbation, 

SARnewPredicted is the predicted SAR value of perturbated device model, SARnewTrue is the 

true SAR value of perturbated device model and Δl is the length difference between the 
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original model size and the perturbated model size. The first quantity measures how 

sensitive the predicted SAR values are comparing to the original training data and the 

second quantity measures how sensitive the predicted values are comparing to their own 

true values. Besides, the MAPE levels are evaluated between predicted values and true 

values of the perturbation models to measure the robustness of the CNN model with the 

effect of each perturbation. 

s1 and s2 with different plate tip width is tabulated in Table 10-1 and Table 10-2. It 

can be observed that, the sensitivity value is higher for the models with 40% and 60% of 

plate width as tip width. The reason is very straightforward: the original model’s plate tip 

width is 50% of the plate width so the Δl is smaller comparing to other widths. With the 

predicted SAR values have small differences between models, a sub-millimeter Δl will 

cause significant change on the sensitivity values. The maximum sensitivity reaches to over 

9 W/kg/mm, which is an acceptable amount since the averaged peak SAR value is around 

200 W/kg. 

Table 10-1 s1 with plate tip width perturbation (unit: W/kg/mm) 

Screw 

Length 

(mm) 

Plate Tip Width (% of plate width) 

 20% 30% 40% 60% 70% 80% 90% 100% 

10 0.81 1.39 3.98 3.52 2.56 1.79 1.29 1.17 

30 2.21 3.29 6.87 6.34 2.95 1.75 1.34 2.07 

60 2.45 3.69 7.65 7.25 3.80 2.62 1.98 2.08 
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Table 10-2 s2 with plate tip width perturbation (unit: W/kg/mm) 

Screw 

Length 

(mm) 

Plate Tip Width (% of plate width) 

 20% 30% 40% 60% 70% 80% 90% 100% 

10 1.30 1.51 6.72 5.21 2.83 2.77 2.64 2.33 

30 3.24 4.47 8.54 6.66 3.00 1.64 1.17 1.88 

60 3.11 4.53 9.21 9.07 4.77 3.30 2.51 2.14 

s1 and s2 with different screw tip length is tabulated in Table 10-3 and Table 10-4. 

It can be observed that, the sensitivity value decreases when the screw tip length is 

increasing. The reason is similar with the plate width perturbation that the original model 

has a screw tip length of 1mm and Δl is larger for longer screw tip. Also, the sensitivity 

value is larger for models with longer screws. The peak SAR location is around the screw 

tip according to observations. Thus, the change of screw tip will have more significant 

sensitivity. The maximum sensitivity value reaches over 8.500 W/kg/mm. 

Table 10-3 s2 with screw tip length perturbation (unit: W/kg/mm) 

Screw 

Length 

(mm) 

Screw Tip Length (mm) 

 2 3 4 5 6 7 8 

10 3.77 1.71 1.55 1.29 1.08 0.88 3.77 

30 3.10 3.13 2.61 2.63 2.64 3.37 3.10 

60 6.29 3.21 2.13 1.66 1.36 1.11 6.29 
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Table 10-4 s2 with screw tip length perturbation (unit: W/kg/mm) 

Screw 

Length 

(mm) 

Screw Tip Length (mm) 

 2 3 4 5 6 7 8 

10 3.46 2.83 2.60 2.75 2.68 2.37 3.46 

30 6.46 2.77 2.05 2.46 2.24 1.87 6.46 

60 8.55 3.99 2.53 2.21 1.45 0.91 8.55 

In summary, the CNN model used in this study is robust and stable and is immune 

to the perturbation on slight changes on the device shape. 

10.4. Stability Analysis of CNN 

Beside the sensitivity, the stability of a CNN model is an important measure of a 

good model. The stability of a CNN model is defined by the convergence of the testing 

dataset error level when more testing data are introduced for a pre-trained model. If the 

prediction error stays at certain level when the testing data keep increasing, it means that 

the pre-trained CNN model is stable.  

In this analysis, the CNN model of the tibia plate system heating prediction is used 

for error level investigation. It is obtained from previous study that the training dataset can 

have training result with 30% of the total data. Thus, in this analysis, a pre-trained CNN 

model using 30% of the total data as training data is selected, which is 425 data. The rest 

70% data are used as testing data, which is 991 data. All data are shuffled so that the models 

with all geometrical variations are included in both training and testing dataset. After 

training, the testing data are applied to the CNN model one by one. Every time a predicted 

value is obtained, the mean, standard deviation and the maximum error are evaluated 

iteratively for all the previous-tested data.  
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The mean, standard deviation and the max value of the absolute error with respect 

to testing data amount are shown in Figure 10.3. It can be seen that, the mean and the 

standard deviation have fluctuation for the first 200 testing data. Then both value converge 

to certain level with the MAE reaches 4W/kg and standard deviation reaches 5W/kg. The 

maximum error stays stable during the introduction of 200th data to 800th data while finally 

increases to 45W/kg with more testing data are introduced. 

  
(a) (b) 

 
(c) 

Figure 10.3 Mean (a), standard deviation (b) and max value (c) of testing data 

From the figure, the mean and standard deviation are stable with the introduction 

of more testing data which can prove that the pre-trained CNN model are stable for tibia 
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plate models with geometrical variations. The maximum error keeps increasing since the 

order of testing data is tightly related to the appearance of maximum error. If the data with 

higher error is used for testing in early phase, the maximum error will stay stable for all the 

following testing. Also, if more testing data are introduced, the maximum error will 

eventually converge as the prediction loss is bounded. 

Noted that, the geometrical variations of the device models used for training and 

testing CNN model are not boundless but have a range, which will ensure that the models 

with similar structures are used for training and testing. If device models whose 

geometrical configuration are totally random and are out of the training data range are used 

for testing, the error level may not converge as the CNN model are seeing new structures 

and the prediction may be unpredictable. 
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11. Conclusions 

In this research, the problem of RF-induced heating of PIMDs are addressed and 

the possibility of predicting RF-induced heating of PIMDs are investigated. Computational 

models of Tibia Plating System and Spinal Fixation System are developed with geometrical 

variations. ASTM phantom is used for in-vitro scenario and Duke model from Virtual 

Family is used for in-vivo scenario. After that, the incident E field information is exported 

and device geometrical information is extracted as the pattern of material indexes or 

electrical conductivity. Both information types are merged through element multiplication 

or concatenation to form the input of CNN model. CNN models derived from AlexNet with 

different architectures are applied as the regression model. After training, network 

convergence, data correlation and error distribution are further investigated. PCA analysis 

is performed on the input matrices for assisting the selection of training dataset. 

From the results, it can be summarized that the CNN model has the ability to capture 

the feature of the training data quickly as the network model receives rapid convergence. 

No overfit is observed as the difference between training dataset error and validation 

dataset error can be neglected. All data have acceptable correlations which shows that the 

overall prediction performance is acceptable. Although one can be seen from the error 

distribution analysis that outliers with significant error level appears for both training 

dataset and testing dataset, future stochastic analysis can be performed to infer the 

possibility of overestimation and underestimation to calibrate the CNN model. 

In terms of training data selection, the naïve strategy uses an exhaustive method by 

sweeping different number of training data for CNN model training to find the optimal 

training dataset size. This method seems to be not practical as it still needs the heating 
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results from large number of simulations. PCA analysis is introduced to provide a standard 

of what best performance a training dataset can achieve with the same size as the highest-

ranked PCs. One advantage of it is that no simulations are needed before the analysis so 

that the number of simulations can be determined by the analysis which will save a lot of 

time for running majority of simulations.  

Overall, the implementation of MRI RF-induced heating prediction using Neural 

Network method is proposed. Acceptable network convergence and data correlation are 

observed for in-vitro and in-vivo scenario. PCA analysis is used for determining the 

appropriate training dataset size as an a priori method which can reduce the time and 

computational burden. In the future, potential study includes the PCA analysis for in-vivo 

heating prediction and cross human model heating prediction applications. Also, the 

prediction performance on worst-case heating needs to be investigated in the future. 
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