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ABSTRACT

A single degree-of-freedom viscously damped system
with bilinear, nonsymmetric restoring force is analyzed.
The differential equations.governing the motion of the
system are solved in closed form by matching the solutions
for the positive and negative parts of a cycle. The fourth
order Runge-Kutta method is also employed to solve the
system numerically. Steady-state response curves are plotted
for several ratios of the spring constants and damping.

Both force and motion inputs are considered.
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CHAPTER I
INTRODUCTION

Since Duffing's [l]l classical work in 1918, problems
in vibrations of mechanical systems with ﬁonlinear-restoring
forces have received considerable attention. Other pioneers
in the field include Martiénssen, Ludeke, Den Hartog,
Raucher, and Jacobsen.

Duffing and Ludeke [2] studied a nonlinear restoring
force as shown in Fig. 1(e,f). Den Hartog along with
Heiles [3] and Mikina [4] studied various combinations of
linear spriﬁgs as shown in Fig. 1l(a,b,c,d). But their
work was chiefly limited to symmetrical restoring forces.
Jacobsen and Jesperson [5] extended an analytical method
due to Den Hartog [6] and a graphical method due to Mar-
tienssen for solving symmetric as well as unsymmetric non-
linear restoring force problems. Raucher [7] used a
different analytical ﬁethod for problems having nonsymmetric
restoring forces. Most of the nonlinear symmetric spring
forces treated by earlier investigators are similar to the
types shownAin Fig. 1.

Various analytical methods have been developed over

the years for solving nonlinear problems.

INumbers in brackets refer to the Bibliography at
the end of the thesis.
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The purpose of this thesis is to study analytically
the response of a single-degree-of-freedom system possessing

the spring characteristics shown in Fig. 2.

/

/

(a) (b) ()

@ (e) (£)

Fig. 1. Symmetric Restoring Forces

W B
/ % . =
{(a) (b)

Fig. 2. Unsymmetric Restoring Forces
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Jacobsen and Jesperson [5] gave an analytical expres-

sion for the steady-state response of system with the res-
toring force shown in Fig. 2(a), using a two term
approximation. But they have neither considered damping nor
given response curves. They studied such a system with base
excitation in connection with the use of nonlinear springs
in safeguarding buildings against seismic disturbances.

| The motivation for the present problem lies in a
practical situation. When a certain heavy mass is suspended
by a cable fixed on a heaving ship or floating platform, the
cable has an equivalent spring characteristic of the type
shown in Fig. 2(b). In order to simplify the problem, the
restoring force of the type shown in Fig. 2(a) is considered.
The mass is acted upon by a sinusoidal force and it is
constrained to oscillate in a horizontal direction. It éhould
be noted that the spring characteristic shown in Fig. 2(b)
is a special case of that shown in Fig. 2(a). Later the
case of a vertically oscillating mass with motion input is
studied. Although in practice the mass which may be sus-
pended in the sea experiences quadratic damping, the problem
has been studied for viscous damping. The reason for this
is to focus attention on the effects of the spring non—.
linearities on the response of the system. The method

for dealing with quadratic damping is explained later.
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In Chapter II, the differential equations governing
the response and their solutions are given. In Chapter III,
displacement vs. time and amplitude vs. frequency curves
are presented. Chapter IV contains discussion of results
and conclusions. Appendix I contains the solution of
equations for a vertically oscillating mass. Appendix II
gives a listing of fhe Fortran IV program statements used

in obtaining the response.



CHAPTER IT

DIFFERENTIAL EQUATIONS OF MOTION

GOVERNING THE RESPONSE

CASE I: Mass Oscillating Horizontally

With Force Input

7
; X
j Ki K
/ WWAN—— | [rsinwt
/ |
-_—l
¢ c
/

77777777777 /7777 S S S

Fig. 3. Horizontally Oscillating System

The spring characteristic -for the above system is

as follows:

E®

Ky

Ka

Fig. 4. Spring Characteristic for the System

Shown in Fig. 3.
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The differential equations of motion are

MX +cx + Kx = FSinwt,-j‘on x>0 ('1)

MX +cex ¥ K% = F Smawt, fon x<0 (2)
These equations being linear over a range can be solved
analytically. Consider fipst Eq. (1), i.e., the differen-
tial equation governing the motion in the region X »o .

This equation has the familiar complementary solution

-ct
2™
X, = e [Al Sinwyt + B, Cos wd.l—:l (3)
and the particular solution
X, = B Sinwt + Q, Cos wl (4)

where Ay and By are arbitrary constants which depend on the

initial conditions, and

“0 = fe-u

ﬁ - F (KI—M“)L)

(k- Mw? ] (cw)*

Q - ~-Fecw
! [K, =M% Cew)™

The complete solution is, therefore:

“Er
2m

X=& [A, Sin Wyt B, Cos wat]

+ R Sinwkt + Q, Coswt (5)



It has been assumed in deriving Eq. (5) that
2.
(f%) (K , i.e., the system is under-damped.
™ .
When X is less than zero, the governing equation is
MX + ¢%x+ Ky X = F Sinwt (2)

which has the solution

ES 2-

-cr
2m
Xx= C [AZ. Sin wdt <+ '32. Cos wdﬁ_’]

+ B Snet + Q, Cos wl (6)

where A, and B, are arbitrary constants, and

= Ke e V™
“o, T V4 (&)
Pz = E..[_.______..__Kz - M oo"]
[K;- M=)t 4 Cew)™
“-FCwW

- [K,_—— ™M to‘] L+ (cw)"

The solution is different from (6) when K,=0.

F 3

The response to sinusoidal exciting force is obtained
as follows. At t=20 | let X=X, and X = ko. Using these
initial conditions, the arbitrary constants Ay and B, in Eq.
(5) are evaluated. This equation is used to evaluate X andx
at time o0+ 4t ., Then if x Yo , a new value for X and X is
computed from Eq. (5) for t:2zal. Assume now that X becomes
zero when C=t, . At this instant let the velocity X (&)
be VYo . This velocity and the condition x:6 constitute the
initial conditions for evaluating the constants A, and B,

in Eq. (6). Then new values of X and X are computed at t= t+al



using Eq. (6). Similarly, more time steps are taken until
X~0 . Again, the new velocity X correspcnding to the new f
and X=X %0 are used as initial conditions to cémpute the A;
and By in Eq. (5). The values of x and X are subsequently
computed for time c+ab from Eq. (5) and the process is
continued. It should be noted that the instant (=0is a
special case of €= f . It is therefore necessary to deter-
mine the constants Ay, By, A, and B, for general initial
conditions, i.e., X=Xy and %=V, at L= £, , including

the case =0, The evaluation of the constants for +the three
different cases is given below:

(a) When €:=0, X= X4 and X = Vo

Differentiating Eq. (5), one obtains

By
- :_M
X = e _C Sinw w Cosw E1lA

l:{ 2™ d, M d,o A4, }‘

-—{C Coswt.;-w Smwt’ ’5]

+ Fiw Cos wlb - Q wSme (7)
At t-0, let X=X, and Xx= Y, . Substituting in
Eqs. (5) and (7) and solving for A; and

Bl, one has
5, = XO - Q] (8)

(Vo'l‘_g B\——P,w)/wd (9)



(b)

(e)

When t:Ce, X=%Xo , X=Vs and X720

Let T, = B Sinwbt, + QCoswlo
5=
To: (x-T) €
(10)
TS : (P Cos wlo = QL &in wle) :
Tﬁ = OOA Cos wdltb _ <
! S\'n o%"bo ZM

. Substituting (b) into Egs. (5) and (7) and

using Eq. (10), one finds for Ay and Bj,

1
(-Od)

. 7=z G
B, - f__ﬂ_ci"i [Tz-—rAr - (Ve -Ty) € } (11)
A) = (Tz - 8|Cosboa‘ro>/3in O\)afo €12)

When t'=t.’°) K=Xo, 7.('-‘\/5 ond X<O

When K, is sufficiently large such that

2- . 1
%%.)(f%) » the constants A, and B, in Eg.
(6) are evaluated in the same way as in the
previous case. It is sufficient to replace
in Eqs. (11) and (12) Py by Py, Q3 by Q

and <, by g to obtain

Sin & £ ECT{CO]
B, = 't e [’EJ} -(Vvo-T3) € J (13)
wo\L .
A, - (T, - B, Cos wo\bt'o)'/ Sin ey o (1)

where Qﬁlz [é%,_(%%}‘



CASE II: Vertically Oscillating Mass

With Motion Input

KI,K2 %

ch l;

TZ = h Sinwt

TRRTEERERR
Fig. 5 Vertically Oscillating System
The spring characteristic is shown in Fig. 2. The
differential equations of motion are
M\3+c7'+ 4 Cy-2) = F | —fo)z, (3-2))0 (15)
Mg . Cj F K, Cy-2) = F {om Cj.z)<(o (16)

Eqs. (15) and (16) are solved analytically and the
response is calculated in the same way as done in Case I.
The solutions of Egs. (15) and (16) are given in Appendix
I. While applying Egs. (15) and (16) to a mass suspended
from a floating platform by a cable and cscillating in
sea water, M is the dynamic mass, (mass of the body plus
virtual mass of water) and F is the weight of the mass in

water.

10
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CASE IIT: A Sphere Suspended by Cable

Supported to a Floating Platform

Oscillating Sinusoidally

I"zl": hsinwt

L ]

IY
Fig. 6 Quadratically Damped System
Let L be the free length of the cable in feet,
m the mass of sphere in slugs,
R the radius of sphere in feet,
h the amplitude of excitation at the top in feet,
Cp the drag coefficient
€ the density of water in 1bs/ft3

D the damping coefficient

A the cross sectional area of the cable in square. inches.
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E Young's Modulus of Elasticity for the cable in 1b/in?
M the dynamic mass,
= Mass of sphere + Virtual Mass of water accelerating
with it.
F the weight of sphere in water

K the stiffness of cable

Then
D = CD xTTRZ. €
32:2 x2
K = AE Ib/re
L
3
M = 'm+—|-.4_‘-T[Rx ¢
z 3 322

The equations of Motion are
My +D|9[§ + wCy-2) = F fon (y-2) 0 (17)
Mj' +ZD,;),;) = F fon (y-2) <0 (18)

J

Egqs. (17) and (18) can be solved numerically using
Runge-Kutta method. They can also be solved analytically
if the damping is linearized and an equivalent viscous
damping coefficient is used.

As shown by Thompson (8], the equivalent viscous

damping coefficient in the present case is

C = i‘w xD’X
Y 37 A
where X is the amplitude of a linear system with the same

parameters. Using C’b, Egs. (17) and (18) become:

M'j + C%gt + K(y-2)= F ) -Fon.. Cy-zyy0
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and My + cvbj F F, o (y-2) <0

However, in the present study, greater emphasis is
placed on the effects of the bilinear, nonsymmetric spring
characteristic (Fig.2.a,b) than on the effects of quadratic
damping. Using viscous damping Eqs. (17) and (18) become
identical to those of Case II with K,=0, and they are

subsequently solved in the manner shown there.



CHAPTER IIT
RESULTS

CASE I:

The system shown in Fig. 3 was studied for various
values of the ratio §%<:l, keeping Kj constant and reducing
Ko. In all the results shown in Figs. 7 to 19, the
parameters used are: M=1 slug, Ky= 1b/ft, F=215.

The steady-state amplitude response curves for various

. K . . .
values of the ratio Kg were plotted in nondimensional form.

The amplitudes were nindimensionalized by dividing by
x% = F/K; and plotted vs. the frequency ratioig- where
w 1is the frequency of the forcing function and P:\ﬂgz

In order to note the effect of damping, for a given
ratio of i}iﬂ, the damping par*ameterz'= C/ZMP was varied from
0.127 to 0?25. These curves were derived directly from
the displacement vs. time curves which were obtained by
means of the computer program explained in Chapfer IT.
The displacement was computed as a function of time up
to 100 sec. for higher frequencies and up to 200 sec. for
lower frequencies. This is equivalent to at least ten

cycles. The actual computations showed that this is

sufficient for steady-state conditions to be reached.
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Two methods can be used in plotting the amplitude
response cﬁrves. In order to bring out the effect of
asymmetry of the spring characteristic, Raucher [7]
recommended that the amplitudes on the positive side and
the corresponding amplitudes on the negative side vs.
frequency be plotted above and below the frequency axis
respectively.” But other investigators, like Jacobsen [5]
adopted the method of using the average of the maximum
positive and negative displacements as amplitude. In the
present study the two amplitudes, the positive and the
negative, have been plotted separately in Figs. 7 to 10,
and the average amplitudes are plotted in Figs. 11 to 1Uu.

Figs. 15 to 19 give displacement vs. time curves,
at various frequencies for the last two cycles before the
runs were discontinued, to show the variation of displace-
ment with time and that steady-state is reached. These

curves correspond to-%;=0.3 andZ%: 0.127.
)

CASE II:

Figs. 20 to 23 give the response curves for the
vertically oscillating mass under sinusoidal motion of the
support. Here, the average of the maximum positive and
negative displacements 1s plotted vs. frequency. The

parameters used for this system are: M=1 slug, F=2 lbs.,
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K1= 3 1b/ft, za=0.2. These parameters were picked to
-correspond to the physical system described previously in
Case IIT.
The results obtained using the semi-analytical method
given in Chapter II were in good agreement with the results

obtained using the fourth order Runge-Kutta method.
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CHAPTER IV
DISCUSSION OF RESULTS AND CONCLUSIONS

Since thé spring is softer on one side and harder on
the other, it is obvious that the ‘mass should spend more
time in the part of .the cycle which corresponds to the softer
side than that corresponding to the harder side. Also, the
maximum displacement on the softer side should be greater
than that on the harder side. This, in fact, is the case
and it is demonstrated by the displacement vs. time curves
in Figs. 15 to 19.

In order to note the effect of the spring nonlinearity
Figs. 7 to 13 cdan be compared with the classical response
curves for a linear system. With the decrease of fhe'ratio

Kz

Y the point of resonance, or maximum amplitude shifts
to the left.

At smaller value of gi , for certain values of the
ratio %%71_, the period of the response becomes twice that
of the exciting force (see Fig. 18), At such points, a
hump is observed on the aﬁplitude vs. frequency curves.
Such a phenomenon is due to what is called subharmonic res-
ponse of order two, and the jump in amplitude is due to

subharmonic resonance. This phenomenon has been observed

in systems governed by Duffing's equation [9],[10] and also
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in self-excited systems. At larger values of‘za(vﬂﬂsuch
subharmonics are not observed. For the same ratio Xz

K
i
an increase in Z&also results in shifting the point of resonance

?

to the left. It is observed that as %% decreases, the
region of subharmonic response shifts t; the left. The
effect becomes more significant with a decrease of K.

w
For Kz . 0-6 , the curves are almost similar to the cla;sical

K
ones,'except for the fact that the amplitude on the negative
side is greater than that on the positive side.

At lower frequencies, again there is a jump in the
amplitude. Such a jump has been observed by Jacobsen and
Jesperson [5] and Wylie [11]. They called such a jump
"pseudo-resonance." In both references no proper physical
interpretation for such a phenomenon was given. Perhaps it
might be due to higher order harmonics attaining resonance.
This jump becomes more significant at smaller values of the
ratio Xz .

Ky
The case 535 0o 1s not studied in the case of a

%
horizontally osciliating system, since here, in general, the
mass will oscillate harmonically either only in the positive
region or only in the negative region, depending on the condi-
tions imposed. When the mass enters the negative region from
the positive, the energy of the system, instead of being

converted, at least partly, to potential energy, like in

ordinary systems, is totally dissipated in damping. However,
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this is not true in the case of a vertically oscillating
mass.

The curves plotted for the vertically oscillating
system show certain similar features. Here again, the point
of resonance shifts to the left as the ratio ‘4%&ldecreases.
Here a subharmonic of order two is generated for 5;: 0-1, 007,
and zero. The effect of subhérmonic resonance occ&rring at
%g ﬁ;F15 becomes much more significant than the natural
resonance occurring at %;:;OV’ , for K,zO(see Fig. 23). At
low frequencies it is observed that the mass oscillates
harmonically completely within the positive region. In the
physical system of Case III, it can be predicted that the
cable may not buckle under certain conditions. These are:
(a) low frequency, (b) low amplitude of excitation and
sufficiently large initial extension, (c¢) very low damping.
It should be noted that no pseudo-resonance was observed in
Case II, which indicates that the oscillations are linear in
that range, i.e., no buckling occurred for the conditions
used in obtaining the curves shown in Figs. 20 to 23.

It was found in the present study that the amplitude-
frequency curve for both types of systems is a single-valued
curve. The jump phenomena associated with many nonlinear

systems do not occur in the present case. Such type of

single-valued relationship between amplitude and frequency
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has been observed in the case of bilinear hysteresis by

Caughey [12] and Iwan [13].

At frequencies higher than the resonaﬁt, subharmonics
might be generated at low damping and large nonlinearity.
Most of the analysis found in textbooks [14], [15], [16]
on this subject is pertaining to Duffing's equation. A
generalized analytical explanation for the reasons of genera-
tion of such subharmonics pertaining to this case has to be
carried out. There seems to be a lack of physical interpreta-
tion of what has been called pseudo-resonance [51, [111

and this phenomenon, perhaps, should be investigated further.
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APPENDIX I

The differential equations of motion are:

My + ¢y + K (y-2)

F, -fcn (3-Z) >o

i

M§j+<~_j+\<acn—z) F .gon.Cg-z)<O

Let Y-Z = X where Z = h Sin ol
Then j=>'<+i and 5: XJ\—Z
Substituting into (15) and (16)
Mx 4+ Cx+ Kyx= F + Mw*h Sinwl - cwh Cos wit

Mx+cka Kyx = F 4+ Mwh Sia b L cooh Cosool”
Solution of Eq. (19) is:

A = [A Smwt‘-%-.BCosw(‘]

¥ R %l‘nwt"’@) Coswtﬁ—_}:—;

k,
and -&

. om
Xz e [A{C«Smwt-(-wCoswﬁ'}

—-6{‘-’- CoaQU+w S\ﬂ&)@."-}:l

+ ‘Pl w Coswl - Q,w Sin wl

where A1 and Bl are arbitrary constants and,

RN CRESE

(15)

(16)

(19)

(20)

(21)

(22)
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P = kL tkome) et - Cew]
[(K,—Mw")z+ (Cw)z]

QJ = —hca k/CCKl—sz)z+ (Cw)z]

Solution of Eq. (20) is similar to that of Eq. (19)
when Ko# 0. In such a case:
. -ct
M
XK= €& {AZSm C"dzt' + BZ Cos wdzk}

+ £, Sin F  + @, Cos wl ~ F/Kz A(23)
and
. -c t .
. an
= € -2 Sn O F W Cos w,
s [Az{ ZMSn 4, N 4, > d"}
- B ¢ Cos o, b + w, Sinowot
z{?l"\ ° d?- da. d“' }
¥ 'PZ o (os wbl - Q&w Sin o™ (2'4)

where A, and B, are arbitrary constants and

i F N
wd; = J% ) CE{M)

p, = hl(Ke-men) M cewr]
(K, - M),

@z - ~hcew l(z‘/[c K, — ™M (,QL)L-‘]» (Cw)’j
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However, the solution of Eq. (20) is entirely different when

K,=0 . In such a case solution is:

-ttt
M
K= Az + B3€ - hSinwt +_cEl:' (25)
. Y
and X:—BBP_@_ — hwCswl + F . (26)
M c

where A; and B3 are arbitrary constants.

Using the above analytical solutions, the fesponse of
the system shown in Fig. 5 is obtained in the same way as
described in Chapter II, with respect to Eqs. (5) and (6).

The evaluation of constants for the different cases
is given below:

(a) When k-0, » = Xs and X= Vo .

Substituting conditions (a) into Egs. (21) and
(22), one obtains,

81 = xO-‘Q"“F/Kl

(lVB4—£;‘B'-—1%tO;/QUH,

(b) When £=¢t,, x= %o

and A,

1l

X =2 No and x>0

Let I, = F Sin wls + Q,Cos wk ¥k,
T, - (% -T) ez%. to (27)
T5 - co( T Cos wlo — & Sin “’t;)
1;_ = anCbsthQ _ <

S owy bte EX
Substituting conditions (b) into Eqs. (21) and

(22) and using Eqs. (27) one finds A; and Bj as:

= 6
B, = [Tz T+ " (- VO:] Sin 20 b
o , . wy



A
(c)

(d)

1

= (Tz, “Bn Cos wd'to) Sin ué to (28)

1

When t:to)x:xoj;(=\/o))(<0

and K, £0

The values of the constants Az and By in such
a case are identical to those of Ay and B3
obtained in case (b) with wol' » P1 and Q
being replaced by QJJL » Pp and Qy in

Egs. (27) and (28).

When t: Co ) xX= KO ;(:. Vo K(o)

and K, =0

Substituting conditions (d) into Egs. (25)

and (26) one obtains Az and By as:
op

- (-v. — t E "M
Bs-<Vo hm(’oa_wo—)—c)(t) e

-c

A, - Xo- G 4 hSawh - F
L3 C
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.APPENDIX IT

The computer programs are written in Fortran IQ and
a listing of the statements is incluaed at the end of this
Appendix. The first program computes the response using
analytical solutions of the diffefential equations of
motion, as shown in Chapter II, and the second program
obtains the solution using a fourth order Runge-Kutta
method. Although the programs furnished here are for the
case of a horizontally oscillating system, very similar
programs have been used in the case of a vertically oscil-

lating system.
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