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ABSTRACT With the development of communication infrastructure in smart grids, cyber security rein-
forcement has become one of the most challenging issues for power system operators. In this paper,
an attacker is considered a participant in the virtual bidding procedure in the day-ahead (DA) and real-
time (RT) electricity markets to maximize its profit. The cyber attacker attempts to identify the optimal
power system measurements to attack along with the false data injected into measurement devices. Towards
the maximum profit, the attacker needs to specify the relation between manipulated meters, virtual power
traded in the markets, and electricity prices. Meanwhile, to avoid being detected by the system operator,
the attacker considers the physical power system constraints existing in the DA and RT markets. Then, a bi-
level optimization model is presented which combines the real electricity market state variables with the
attacker decision-variables. Using the mathematical problem with equilibrium constraints, the presented bi-
level model is converted into a single level optimization problem and the optimal decision variables for the
attacker are obtained. Finally, simulation results are provided to demonstrate the performance of the attacker,
which also provides insights for security improvement.

INDEX TERMS Cyber-security, electricity market, false data injection, mathematical programming with
equilibrium constraints.

I. INTRODUCTION
Smart grids are exposed to risk of cyber-attacks since the
heavily integration of communication devices into system.
Smart grids work based on different physical and cyber
levels of communication. Generally, measurements devices
in the field send the data to the closest data collector
device (IP-based router) using radio frequency signals. Then
using Supervisory Control And Data Acquisition (SCADA)
system, the collected data is transferred to central energy
management system. However, the SCADA system uses fire-
walls to secure the communication network, still there are
many cyber-attacks in different communication steps from
disrupting radio frequency devices to manipulating the fire-
wall systems. Thus, the cyber-security of electrical network

The associate editor coordinating the review of this manuscript and
approving it for publication was Giambattista Gruosso.

becomes increasingly challenging for electrical independent
system operators (ISOs) [1]. In this paper, it is aimed to
present a comprehensive model which indicates the pattern
of attacker’s behaviours.

A. CURRENT STATE OF ART
The research works on power system hacking can be catego-
rized into two types. The first type of cyber-attacks concen-
trates on any general damage to electrical system operation
and the second type of attacks focus on monetary issues in
electricity markets.

In the first type, the attacker desires to malfunction sys-
tem operation through injecting false data into the mea-
surement system. This may cause a wide range of possible
damages to power grid from a small amount of not-supplied
load to large generator control malfunction and Automatic
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Generation Control (AGC) unit failures [2]–[4]. To detect
such attacks, different methods have been presented. In [5],
using the Kalman filter, the residual value of the AGC system
is predicted for the next time step of the operation. Then
this value is used to obtain the Mahalanobis norm of residual
vector. Comparing theMahalanobis normwith the predefined
threshold the attack is determined. In [6], FDI attacks to
AGC are detected using load frequency control system of
generators.The major signal for the attack’s identification
process is area control error (ACE). Then different types
of attacks including over/under compensation and negative
compensation attacks are formulated. Adding all possible
formulations for the attacker, the author minimized the attack
duration possibility. In [7], the principle components anal-
ysis (PCA) and support vector machine (SVM) algorithms
are used to detect false data injection (FDI) attacks. In [8],
a statistic decentralize learning algorithm is presented. In [9],
by minimizing the residual value of power state estimator,
the authors attempt to find the optimal attack vector.

One of the most common issues in this type of cyber-
security investigation methods (first type) is to concentrate
on power system state estimation attacks. The FDI attack
against Alternative Current (AC) state estimator is discussed
in many studies [10]. In [11], cyber attacks toward wide-area
monitoring, protection and control (WAMPAC) system in
energy systems are investigated. The paper, presents common
attacks in WAMPAC and three different stages including
attack prevention, attack detection and attackmitigation com-
mon methods.

In [12], both FDI and jamming attacks are modeled via
a non-Bayesian approach with unknown information about
type or the time of attack. To detect the attacks, using the
Kalman filters, the system states are predicted and using
generalized likelihood ratio approach the attack parameters
are estimated. Considering low rank matrix of the measure-
ment and sparse Jacobian of the electricity system, three
different detection methods of FDI are compared in [13].
In this reference, augmented Lagrangian multipliers (ALM)
and low rank matrix factorization method as bench mark
algorithms to detect noisy measurements, are compared with
Go decomposition method. Basically, the authors changed
singular value decomposition in ALM with bilateral random
projection. The problem with this method is that the attacker
is consider to have the limited number of options and can pick
its desired Phase Measurement Unit (PMU) to attack.

In [14], a new dynamic state estimation model is pre-
sented to mitigate the risk level of cyber attacks and also
unknown inputs to power system. The authors used a lin-
earized state model of the system including power system
states, control variables and system parameters. Then, they
considered unknown inputs and cyber attacks as extra inputs
that effect on the state variables of power system (specifically
rotor speed and system frequency). In fact, unknown inputs,
cyber-attacks and detection filters are integrated into dynamic
state estimation formula. Finally, based on the presented
state estimation algorithm, the authors introduced a new risk

mitigationmethod to detect possible faultymeasurements and
maximize security-level.

Mousavian et al. [15] presented a probabilistic formula-
tion to model the probability of compromised measurement
devices (e.g. PMU). They model random variable to show
whether the PMU is attacked or not. Then, the probability
of a compromised PMU and also other influenced PMUs by
attacking a specific PMUs are presented using exponential
probabilistic models. Regarding these models, the threat level
of each PMUs is formulated which shows the probability
of detecting the specific compromised PMU after multiple
time intervals. Finally, an optimization problem is presented
to minimize the number of disabled PMUs in order to keep
power system observable and detect the affected PMUs.

In the second type of cyber-attacks, the attacker injects
malicious data into power system measurement devices to
obtain the monetary profit [16]. The main idea in exist-
ing literature is to increase the transmission line con-
gestion using deterministic or stochastic methods [17].
Esmalifalak et al. [18] target at the highest line congestion
to make profit from Financial Transmission Rights (FTRs).
In [19], within the zero sum game theory, the attacker max-
imizes transmission congestion while the system operator
aims to defend selected measurements.

FTR markets are not the only financial transactions that
can be influenced by the cyber-attacks. The virtual bidding
markets for the players whowants to invest on electricitymar-
kets, are the other types of markets can be manipulated by the
attackers. The virtual bidding problem as one of the newly-
emerged challenges in electricity markets is introduced [20].
Although the virtual bidding decreases the associated risk of
real-time pricing and improves the efficiency of the market
clearing process, the concerns of the electricity market’s
manipulation are still reported in [21]. Thus, to guarantee the
efficiency of virtual bidding mechanism, the FDI attack issue
within the virtual bidding market is of paramount importance
to be addressed. To this end, the attack through electricity
markets by considering the attacker as one of the virtual
bidders is not-well presented in the literature.

B. CONTRIBUTIONS
In this paper, to address FDI attacks in the virtual bidding
problem, a new optimization model is proposed. Each partic-
ipant in the virtual bidding process, buys (sells) electricity in
the DA market at cheap (expensive) prices and sells (buys)
electricity in the RT market at expensive (cheap) prices.
An attacker which participates in the virtual bidding injects
false data into electricity grid’s measurement devices (so
called remote terminal units (RTUs)) such that maximize its
profit. Meanwhile, the attacker aims to remain undetected by
the ISO. Better to say, the attacker replaces the real RTU’s
measurements with fake data so that the manipulated RTUs
look like the rests.

To avoid being detected by system operators, the proposed
method considers the actual physical constraints in power
system including load balance and power flow constraints
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within the attacker’s optimization problem. To reflect the
power system constraints in the attacker decision-making
problem, a bi-level programming model is presented. Then,
using a mathematical programming equilibrium constraint
(MPEC) model, sensitive measurements along with false data
values are obtained. Using the proposed method, ISOs can
identify vulnerable RTUs in the smart grids and strengthen
the security on those parts. In particular, to detect cyber-
sensitive parts in smart grid, an attacker is confronted with
two main questions: what is the optimal pair of traded power
and electricity price regarding the DA and RT markets,
and what is the relation between the pair of traded power-
electricity price and manipulated RTUs.

To be more specific, the contribution of this paper can be
summarized as below:
• A novel virtual bidding procedure for an attacker to
buy/sell electricity in the DA and RT markets is pre-
sented. The presented model consists of two levels: The
upper level consists of the attacker’s objective function
and the being undetected related constraints. The lower
level contains the physical layer of the power system
including power flow equations in the DA market and
incremental balance between generation and demand in
the RT market.

• The presented model depicts inter-correlation between
the DA and RT market electricity prices. Indeed, this
research marks on the relation between the DA and RT
electricity prices and how the attacker can alter them
by manipulating measurement devices (RTUs specifi-
cally). New equations are presented to show the effects
of malicious data on the DA and RT prices and power
flow directions in the electricity grid. These sets of new
equations are embedded into the power flow equations.

• Using MPEC modelling, the implicit relation between
the first and the second above-mentioned contributions
turn into set of explicit equations. Introducing some aux-
iliary variables in the presented model, the exact relation
between the DA and RT electricity market prices, traded
power in both markets by the attacker, the optimal RTU
to attack and the value of FDI are specified.

The rest of paper is organized as follows. Section II
explains the structures of DA and RT markets and how an
attacker can participate as a virtual bidder. Section III elabo-
rates methodology, presents the attack optimization problem,
and adopts the MPEC model towards the optimal attack.
Section IV depicts the simulation results, and Section V
draws the conclusion.

II. DA AND RT ELECTRICITY MARKET
Participating in the virtual bidding procedure, the attacker
needs to consider the procedure of the market clearing price
in order to create the optimal attack vector. Fig. 1 shows
the general idea where the attacker participates in a virtual
bidding procedure while compromising the selectedmeters to
change the output of market operator calculation (electricity
market state variables). Based on the Fig. 1, the attacker needs

TABLE 1. Nomenclature.

to select the optimal RTU to inject the false data instead
of true measured data at first. Specifically, the proposed
method considers systematic cyber-attacks against electrical
system measurements. Thus, the different process of data
encryption and communication infrastructure between PMUs
and RTUs are not the subject of proposed method. In other
word, the power system state estimator doesn’t consider the
difference between RTU or PMUs data. All the information
gathered by the measurement devices, are sent to data center
to run the state estimation. In this paper cyber-attacks to RTUs
are modeled since the RTUs are easier to manipulate and are
more common in smart grid measurement process.

Finding the optimal RTU or RTUs, is based on the objec-
tive function presented in Section III-C. Then, the attacker
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FIGURE 1. Inter-correlation of FDI and attacker’s profit as virtual bidder.

needs to know what is/are the value/values that must be
injected to selected RTU instead of actual measured value.
This value/values are modeled by the constraint presented in
Section III-D.

In brief, the attacker needs to find the optimal traded
power and price, both of which are the functions of the
measurement data (RTUs information). Thus, the relation
between RTUs and these two parameters (power and price)
must be clarified initially. To do so, the DA (section II-A)
and the RT (section II-B) procedures are required and in this
section, the general formulation for the DA and RT markets
are presented.

A. DAY-AHEAD MARKET
The aim of the ISO is to maximize social welfare and also
minimize total generation costs. Meanwhile, ISO must con-
sider the power system constraints and limitations. In the fol-
lowing optimization, pit and djt (MW ) are the generation and
demand for the ith and jth participants in the DA market with
theCit and Bjt prices ($/MWh) to sell and buy electricity. Bus
voltage angels are shown with θnt (rad) and transmission line
impedance between buses n and k as well as flow capacity are
introduced with Xnk (�) and Fnk (MW ). Therefore, the DA
market clearing price can be optimized as below;

min
λnt ,pit ,djt

CDA =

i=Ng∑
i=1

t=T∑
t=1

Citpit −
j=ND∑
j=1

t=T∑
t=1

Bjtdjt

 (1a)

s.t.
∑
i∈�n

pit−
∑
j∈�n

djt=
∑
k∈5n

(
θnt−θkt

Xnk

)
; ∀n ∈ Nbus,

(1b)∣∣∣∣θnt−θktXnk

∣∣∣∣≤Fnk ; ∀n, k ∈Nbus, (1c)

pmini ≤pit≤p
max
i ; ∀i∈NGen, (1d)

dminjt ≤djt≤d
max
jt ; ∀j∈Nd , (1e)

− π≤θnt≤π; η
max
nt , ∀n∈Nbus. (1f)

The problem in (1) shows the DA market mechanism.
Eq. (1a) shows the total system cost that the ISO aims
to minimize. In (1b), the power balance in each bus is
depicted. The difference between generated electricity and
consumed power is flowed into transmission lines. In (1c),
the limits of transmission lines in the network are presented.
In (1d) and (1e) the upper and lower bounds are represented
for generated electricity and traded demand in the DAmarket,
respectively. Finally, Eq. (1f) corresponds to the limitation of
each bus voltage angle.

B. REAL-TIME MARKET
To operate the RTmarket, the ISO needs to collect all the data
from different measurement devices in the network and min-
imize the incremental cost due to generation and load varia-
tions. Specifically, ISO attempts to minimize the difference
between the scheduled dispatch generation-demand set in the
DA market and the real-time measurements. Consequently,
the following RT market optimization problem is formulated
by the ISO [22].

min
λ′nt ,1pit ,1djt

CRT =

i=Ng∑
i=1

t=T∑
t=1

C ′it1pit−
j=ND∑
j=1

t=T∑
t=1

B′jt1djt


(2a)

s.t.
∑
i∈�n

1pit −
∑
j∈�n

1djt = 0; ∀n ∈ Nbus, (2b)

1pminit ≤ 1pit ≤ 1p
max
it ; ∀i ∈ Ng, (2c)

1dminjt ≤ 1djt ≤ 1d
max
jt ; ∀j ∈ Nd , (2d)

Nbus∑
n=1

GSFn−k (1pnt −1dnt) ≤ 0; ∀k ∈ Nline.

(2e)

Eq. (2a) declares the system incremental cost which
must be minimized. Eq. (2b) represents incremental balance
between the generation and demand in each bus. In (2c)
and (2d) the upper and lower bounds are determined for the
generation and load increments for the attacker and other
participants, respectively. In (2e), the line flow increment
constraint is presented. the ISO tries to keep flow increment
negative so that it prevents line congestion [23]. Regard-
ing both equations in the DA and RT (1a-1e,2a-2e), if the
attacker buys dit MW in the DA market at λnt $/MWh,
and after manipulating measurement data sells 1pit MW
at (λ′nt −

∑Nline
m GSFn−mξmt ) $/MWh, its profit would be[

λ′nt −
∑Nline

m GSFn−mξmt
]
1pit − λntdit $/h. The same sit-

uation exists when the attacker sells expensive electricity at
the DA market and buys cheap power at the RT market.
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Finally, the profit from participation in these two markets
(as the ith participant) can be given as (λRTnt = λ′nt −∑Nline

m GSFn−mξmt );

Ri =
∑
i∈�n

T∑
t

[(
λRTnt 1pit − λntdit

)
+

(
λntpit − λRTnt 1dit

)]

=

∑
i∈�n

T∑
t

[
λRTnt (1pit −1dit)+ λnt (pit − dit)

]
. (3)

III. OPTIMAL CYBER ATTACK ON ELECTRICITY MARKET
To obtain the optimal attack vector, the attacker needs to
know the relation between the traded power and electricity
price in the DA and RT markets with measurement data.
Noticing this relation, the attacker can create its attack model
and choose the meters that are required to be compromised.
Thus, except the problems in (1) and (2), an attacker needs
to take power system state estimator calculation as well as
real-time market clearing process [23] into account. For the
attack model, in subsection III-A, the power system state
estimation model is introduced briefly. Then, the attacker’s
decision variables and equations are presented in Subsec-
tion III-B. In the Subsection III-C, the attacker’s optimization
model is presented. Finally, Subsection III-D shows the linear
relation between the market state variables and the attackers’
decision-variables by embedding Subsection III-B into the
Subsection III-C via the MPEC model.

A. POWER SYSTEM STATE ESTIMATOR
In the electricity market, denote Z as measurement vector
and H as Jacobian matrix of linear power flow, and then
the state estimator is obtained as Z = HX + e, where X
is the power system state variable vector, e is the measure-
ment error. The error is considered to follow the Gaussian
distribution with zero mean and co-variance matrix C. The
aim of state estimator is to estimate the state vector as X̂ =
argminx̄ E

∥∥∥X− X̂
∥∥∥2
2
. Therefore, the optimal value for X̂ is

given by [19]

X̂ =
(
H′C−1H

)′
H′C−1Z = [M]Z. (4)

The residual value of state estimator is given by ‖r‖2 =∥∥∥Z−HX̂
∥∥∥
2
= ‖Z−HMZ‖2 ≤ threshold . Adding 1z to Z

changes residual value to [19]∥∥rnew∥∥2 = ‖Z+1z−HM (Z+1z)‖2
⇒
∥∥rnew∥∥2 = ‖r‖2 + ‖(I−HM)1z‖2. (5)

Therefore, to avoid being caught, the following constraint is
presented at the attacker ‖(I−HM)1z‖2 ≤ ε.

B. ATTACKING ELECTRICITY MARKET
Based on (4), the line flow changes in the RT market is due to
changes in loads or generations or both. So, the attacker needs
to decide which elements of1Z in (5) must be compromised
such that its profit in (3) can be maximized. Consequently,

the attacker has two choices: whether let the mth measure-
ments carry the real data1z1mt or compromise the mth meters
1z2mt . Mathematically speaking, the attacker has a binary
decision variable (umt )

umt =

{
1, the mth meter is hacked (1zmt=1z2mt ),
0, the mth meter is not-hacked (1zmt=1z1mt ).

(6)

Regarding (6), there can be two cases for the attacker as
following.
Case 1 (The mth Meter is Not Compromised): In this case,

the real data values can be estimated using

1z1mt=
Nbus∑
n=1

GSFn−m (1pnt−1dnt) ≤ 0; ξ
(1)
mt
′

∀m ∈ Nline.

(7)

Case 2 (The mth Meter is Compromised): In this case,
the injected false data must follow the physical constraints
of the power system. In other word, the mth line flow has
to be smaller than the difference between the maximum line
capacity and the scheduled line flow in the DA market, given
as

1z2mt+1z
1
mt+

θnt−θkt

Xm
−Fm≤0ξ

(2)
mt
′

, ∀m ∈ Nline. (8)

C. ATTACKING METHODOLOGY
The attacker needs a comprehensive model which maximizes
its profit in (3) and embeds the exact relation between the pair
of traded powers [pit , dit ], DA and RT prices [λnt , λRTnt ] and
malicious data (compromised RTUs) 1z2mt injected into the
Supervisory Control AndDataAcquisition (SCADA) system.
Let’s define XDA = [pit , djt , θnt ] as the DA market state
variables and XRT = [1pit ,1djt ] as the RT market state
variables, and then the corresponding attack model (bi-level
optimization problem) is given as

maxRAtt

=

∑
i∈�n

T∑
t

[
λRTnt (1pit−1dit)+λnt (pit−dit)

]
(9a)

s.t.



M∑
m=1

umt ≤ Ncomp, (9b)∥∥(I − HM)1z2mt∥∥2 ≤ 1ε, (9c)

(1pit − dit) = 0, (9d)

(1dit − pit) = 0, (9e)
(7) or (8) (9f)[
XDA, λnt ,XRT , λ′nt

]
∈ argminCDA + CRT (9g)

s.t.

{
(1b)− (1f)
(2b)− (2e)

(9h)

In the presented attack model, Eq. (9a) shows the attacker’s
objective function as the ith participant in the DA and RTmar-
kets (the upper level problem). Since, the attacker has limited
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resources to attack toward smart grid, Eq. (9b) is presented in
which the total number of compromised RTUs are restricted
to a predefined number (Ncomp). To control the injected false
data and avoid being detected by the ISO, the attacker needs
to keep FDI below a predefined value, corresponding to the
constraint in (9b) implies this constraint. In fact, to form
the attack model, the attacker should determine the number
of the RTUs (Ncomp) for injecting the malicious data. Then,
the corresponding compromised RTU will send the false data
(1z2mt ) to the SCADA system. Eq. (9b), helps the attacker
to decide which of the RTUs must be chosen based on the
specified number of attacked RTUs in (9b). Since the opti-
mization problem in Eq. (9) is run by the attacker, and (1z2mt )
is the false data injected, it is important for attacker to stay
below the thresholds to avoid being detected by the system
operator. In fact, the attacker knows that there are errors in
the measurement devices (RTUs errors) and wants to keep
the amount of manipulated data (change in the data) within
acceptable range. In (9b) 1ε emphasizes that the attacker
only cares about the resulted error caused by himself. This
error (1ε) will increase by increasing the number of manipu-
lated RTUs. Eqs. (9b) and (9b) also emphasize that amount
of the traded power in the DA market must be equal with
the traded power in the RT market. Eq. (9b) shows whether
the attacker choose to attack the mth RTU or not. Finally,
Eq. (9b) states the physical layer of the power system as it is
discussed in Sections II and III-B (the lower level problem).
In other word, the key to remain undetected by the ISO, is to
consider the ISO’s perspective by the attacker. To consider
the ISO’s perspective, the DA and the RT markets equations
must be considered. Thus, the attacker’s decision-making
problem turns into bi-level optimization problem. Using the
dual formulation of (9b) and the strong duality condition [24],
the set of equations in (9b) can be turned into the MPEC
problem that will be discussed in the next subsection.

D. CORRELATION BETWEEN MARKET AND
COMPROMISED DATA USING MPEC
Based on the presented model, the electricity state variables[
pit , dit , λnt ,1pit ,1dit , λRTnt

]
and the attacker’s decision-

variables
[
1z2mt , umt

]
are embedded into (9b). Replacing

the dual constraints (differentiating with respect to decision
variables) with the strong duality condition (at the optimal
point) of (9b) leads to a MPEC problem. It must be men-
tioned that the strong duality for the power system physical
constraints are already proven in [24], [25], and [29]. To be
specific first we need to introduce the Lagrangian multi-
pliers and Lagrangian function. In this respect, considering
0 =

[
λnt , ξ

t
nk , φ

max
it , φminit , µmaxit , µminit , η

max
nt , ηminnt

]
as the

dual variables for the DA constraints in (1b) to (1f) and
ϒ =

[
λRTnt , φ

max
it
′, φminit

′
, µmaxjt

′, µminjt
′
, ξ

(1)
mt
′

, ξ
(2)
mt
′
]
as the dual

variables for set of the RT constrains in (2b)-(2d), (7) and (8),
the corresponding Lagrangian function is given as

L = CDA + CRT + 0G+ ϒG′, (10)

where G and G′ are the sets of the DA and RT constraints,
respectively, as

G =



∑
i∈�n pit−

∑
j∈�n djt−

∑
k∈5n

(
θnt−θkt

Xnk

)
Fnk −

θnt−θkt

Xnk
pit − pmini
pmaxi − pit
djt − dminjt
dmaxjt − djt
θnt + π

π − θnt


, (11)

and

G′ =



∑
i∈�n 1pit −

∑
j∈�n 1djt

1pit −1pminit
1pmaxit −1pit
1djt −1dminjt
1dmaxjt −1djt

Nbus∑
n=1

GSFn−m (1pnt −1dnt)

1z2mt +1z
1
mt +

θnt − θkt

Xm
− Fm


. (12)

Since both G and G′ define a set of linear equations with
respect to the state variables and parameters, they can be
decomposed as fixed and variable parts as below;

G = Gvar +Gfix = Gvar

+

[
0 Fnk −pmini pmaxi −dminjt dmaxjt π π

]T
(13)

G′ = G′var +G′fix = G′var

+

[
0 −1pminit 1pmaxit −1dminjt 1dmaxjt 0 −Fm

]T
(14)

Since the sets in (9a) to (9b) induce convex regions, the cor-
responding MPEC problem for the set in (9) is as follows

maxRAtt (15a)

s.t.
[
XDA,XRT ,1z2mt , umt

]
∈ 4, (15b)

∇XDA,XRT L = 0, (15c)

CDA + CRT = 0Gfix + ϒG′fix, (15d)[
XDA,XRT ,1z2mt , umt

]
∈
{
G ∪ G′

}
. (15e)

In the presented problem, Eq. (15a) shows the attacker’s
objective function as the achieved profit. Eq. (15b) states the
upper level constraints in (9a) to (9b). Eq. (15c) represents the
dual constraints corresponding to (9b). In fact, the differential
of the Lagrangian function with respect to the DA and RT
variables XDA,XRT results in the dual constraints of (9b).
Eq. (15d) illustrates the duality constraint. Since the lower
level problem in (9b) is a linear problem, the strong duality
must be held at the optimal point. Mathematically, the primal
function (CDA + CRT ) must be equal with the dual function
(0Gfix + ϒG′fix). Finally, Eq. (15e) depicts the primal con-
straints (the DA and RT markets constraints in (1) and (2))
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corresponding to (9b). Furthermore, the attacker needs to add
its own constraints regarding the DA and RT market clearing
procedure to the MPEC problem. In fact, the attacker must
define the mathematical expression to show whether the mth

is compromised or not (choose between (7) and (8)). In this
respect, we have

0 ≤ ξ (1)mt
′

≤ M (1− umt) (16a)

−M (1− umu)

≤

Nbus∑
n=1

GSFn−m (1pnt −1dnt) ≤ 0, (16b)

0 ≤ ξ (2)mt
′

≤ M (umt) (16c)

−M (umt) ≤ 1z2mt +1z
1
mt +

θnt − θkt

Xm
− Fm ≤ 0. (16d)

Eqs in (16) show the relation between the attacker’s decision
variables and the electricity market state variables. If the
attacker chooses tomanipulate themthmeter’s data (umt = 1),
it means that Eqs. (16a) and (16b) are zero. Thus, the attacker
injects malicious data 1z2mt and its corresponding state vari-
able ξ (2)mt ’ into theMPEC formulation. Indeed, instead of valid
Eqs. in (16a) and (16b) for the RT market, faked Eqs. in (16c)
and (16d) are injected into the market clearing process.

FIGURE 2. Outline of presented algorithm.

Fig. 2 shows the step by step procedure to create the final
attack vector. Based on the proposed optimization model,
there are three steps to create the optimal attack model as
below;

1) The attacker needs to form the optimization problems
in (9a) to (9b). To form this bi-level optimization prob-
lem the attacker needs to consider some assumption
as follows. First, the attacker needs to specify the
threshold ε that depends on the system operator but
at most 5% error in the measurement is acceptable.
Second, the attacker needs to determine the number of
the RTUs that must be compromised. In this regard,
the total possible RTUs (in the result section named
as scenarios) can be considered. Third, the electricity
network parameters and demand data can be obtained

from online websites or the system operator annual
reports.

2) The attacker needs to replace (9b) in the first step
optimization problem with the corresponding MPEC
problem (15a) to (15e). In fact, this step only replace the
bi-level problem into the single level problem which is
easier to solve. So far, except the attacker anyone else in
the market can use this problem to maximize its profit.
In other word, the MPEC problem in (15a) to (15e) is
nothing but profit maximization problem for the smart
grid electricity market participants.

3) The attacker decision-variables and constraints in (16a)
to (16d) must be added to the second step to create the
optimal attack problem. In fact, the attacker optimiza-
tion problem is completed in this step. This step shows
the manipulation equations that must be added to profit
maximization problem. Basically, the attacker wants to
see if the mth RTU gets hacked with 1zm amount of
false data, how much the profit is gained. Thus, these
attacks equations are added to main problem.

Finally, the presented algorithm will show the best possible
solutions for the attacker to inject the false data into the RTUs.
The counter-measurement process in this paper is to reinforce
the weak points in the network (possible RTUs that can be
manipulated by the attacker) using physical guarding or hash-
ing methods to code and decode the signals from RTUs.

E. NASH EQUILIBRIUM (NE)
Before proceedings to the next section, in this part, the proof
of NE existence is presented.
Lemma 1: (Debreu - Fan - Glicksberg) In a non-

cooperative game with N player, Si strategy set for the ith

player and Ui(Si, S−i) as the ith player’s utility function (∀i ∈
N ), if Si,∀i ∈ N is compact and convex and Ui(Si, S−i) is
continuous and quasi-concave then the game has at least on
pure NE [26].
Lemma 2: If f (x) is a linear function, then it is quasi-

concave as well as quasi-convex. Using this theorem, we need
to prove that the objective function in (15a) is a linear func-
tion or equals to a linear function.

Using the KKT conditions of (15c), we have

∇XDA,XRT L ×
[
pit djt 1pit 1djt

]
= 0×

[
pit djt 1pit 1djt

]
, (17)

Further, Eq. (17) is rewritten as follows
pit × λnt

djt × (−λnt)

1pit ×
[
λ′nt −

∑Nline
m GSFn−mξ

(1)
mt

]
1djt ×

[
−λ′nt +

∑Nline
m GSFn−mξ

(1)
mt

]


=


pit ×

[
Cit + φmaxit − φ

min
it

]
djt ×

[
−Bjt + µmaxjt − µ

min
jt

]
1pit ×

[
Cit ′ + φmaxit

′
− φminit

′
]

1djt ×
[
−Bjt ′ + µmaxjt

′
− µminjt

′
]

 . (18)
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The right-hand side in (18) are nonlinear terms of objec-
tive function in (15a). If it can be proven that the left-
hand side terms are linear, Eq. (15a) meets the condition in
Lemma 2. To this end, since

[
Cit ,−Bjt ,Cit ′,−Bjt ′

]
are given,

and thus
[
Cit ,−Bjt ,Cit ′,−Bjt ′

]
×
[
pit , djt ,1pit ,1djt

]T is
linear term. Using complementary conditions, terms like[
(φmaxit − φ

min
it )× pit

]
are equal with

[
(φmaxit pmaxi − φminit pmini )

]
which are linear terms. Thus, it can be concluded that the non-
linear terms in (18) are equal with the terms in (19). Thus,
the terms in (18) are linear. Therefore, the objective function
is quasi-concave.Multiplying (19) by [1, 1, 1, 1] results in the
objective function.

pitCit + φmaxit pmaxi − φminit pmini
−Bjtdjt + µmaxjt dmaxjt − µ

min
jt dminjt

Cit ′1pit + φmaxit
′1pmaxit − φ

min
it
′
1pminit

−Bjt ′1djt + µmaxjt
′1dmaxjt − µ

min
jt
′
1dminjt

 (19)

Definition 1: The setX is compact if and only if it is closed
and bounded. Based on the definition, the set X is bounded
when there exists a scalar C such that ‖X‖ ≤ Cforallx ∈ X .
Also the set X is closed if it contains all of its upper and lower
limit points.

Since the MPEC problem constraints in the (15) meet the
required conditions in Definition 1, theMPEC set is compact.
Definition 2: A setC is convex if the line segment between

any two points in C lies in C, i.e., ∀x1, x2 ∈ C,∀m ∈ [0, 1];
mx1 + (1− m)x2 ∈ C.
Using Definition 2, lines, hyper-planes, half-spaces and

Euclidian balls (‖x − x0‖2 ≤ ε) are convex sets. So,
the MPEC problem in (15) fits the required conditions.

IV. SIMULATION RESULTS
In this section, the proposed method is applied on the 5 bus
Pennsylvania-Jersey-Maryland (PJM) system (see Fig. 3).
The proposed method can be extended to the bigger electrical
systems as far as mixed integer programming solvers can
handle the optimization problem in set of Eqs. in (15) (in this
paper CPLEX solver is used). The fact is that the attacker
does not have access to all measurement systems (including
RTUs and PMUs in the electrical system) to inject the false
data. Moreover, the power systems consist of different opera-
tion zones and different zones have different communication
systems to send data over system operator. Therefore, it is
almost impossible to attack an entire system. In other word,
the attacker’s possible targets are not wide and flexible and
are limited within each zone ( [27]). Meanwhile to run the
optimization problem in (15), the attacker needs to estimate
some network parameters including the transmission lines
parameters and thermal limits. However, this information can
be found publicly using IEEE standards or system operator’s
website. Increasing the network size to attack will lead to
estimating too many parameters which consequently cause
inaccurate solutions for the attacker. In fact, if the attacker
estimates too many parameters as inputs to run the optimiza-
tion problem in (15), the obtained FDI solutions might have

FIGURE 3. Outline of presented algorithm.

TABLE 2. Generation and load information for the DA and RT markets.

lots of errors. Therefore, considering all the aforementioned
problems, the FDI attacks usually are investigated within
each zone not entire system. The results for five different
scenarios are illustrated. In the first scenario the attacker just
manipulates the measurement devices on one transmission
line. Similarly, in theN th

c (N th
c = 2, 3, 4, 5) scenario, there are

Nc lines under attack. Table 2 shows the load and generation
information. It includes the maximum andminimum amounts
of power generated and consumed in the DA and RT markets
as well as bidding data. The information is common knowl-
edge that can be easily obtained using online information
provided by the ISO. Therefore, it is assumed that the attacker
has the access to these information. Meanwhile, the network
parameters including the transmission lines impedance and
thermal capacity are estimated based on the voltage level of
the network.

The network data including transmission lines capacity
and generation shift factors (GSF) are listed in Table 3.
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TABLE 3. Transmission line information.

FIGURE 4. Electricity prices for DA and RT markets at different buses.

FIGURE 5. Price of electricity at DA market at the individual bus under
attack.

To compute these factors, the attacker needs to estimate the
transmission line’s impedance based on the line capacity and
voltage level which are public information. The procedure
of obtaining GSFs from the lines’ impedance is explained
in [28].

A. BASELINE CASE-NO ATTACK TOWARD POWER SYSTEM
As a regular virtual bidder, if the attacker does not manipulate
any measurement system (Ncomp = 0), the electricity prices
for the DA and RT markets will be as Fig. 4. If there is no
attack in power system, line flows for the DA and RTmarkets
are as Table 4. In the RT market, line 6 is congested and since
line 6 is between buses 4 and 5 the electricity price difference
between these two buses increased in the RT market (as it is
shown in Fig. 4). The generation and demand powers for all

TABLE 4. Power Flow for the DA and RT markets (MW).

TABLE 5. Generation and demand without attack (MW).

participants (named as others in table 5) in the market and
also the virtual bidder (attacker) is depicted in Table 5. The
amount of required power for the RT market is assumed to be
45 MW. It means that in the RT market, generation and loads
must cover total amount of 45 MW.

Using Table 5 and Fig. 4, it indicates that when the attacker
participates in the virtual bidding process, as a regular partic-
ipant, it buys 24 MW in the DA market at $ 28.18 /MWh and
sells it in the RT market at two different prices respectively $
46.46 /MWh and $ 39.94 /MWh. Thus, the total profit for
attacker (virtual bidder) is $ 404.28 without attacking the
power system.

B. ATTACKING POWER SYSTEM MEASUREMENTS (RTUS)
The optimization problem in (15) to find FDI solutions,
is a mixed integer linear programming (MILP). The prob-
lem solved in GAMS using CPLEX solver. Since the real-
time markets are run with 15 minutes intervals, thus the
solver must return the results in less than 15 minutes. Using
CPLEX, even for big MILPs, the results would be pro-
duced within seconds. Specifically, for the proposed network,
the solver returns the results in less than one second (the
systemCPU configuration is Intel Xeon E5-1603 v3 2.8 GHz,
with 4 GB RAM).

In this section, different scenarios to attack power sys-
tem measurements are considered. Since the PJM network
consists of 6 lines, the number of potential lines with mea-
surement to be attacked is 5. Figs. 5 and 6 show the

27384 VOLUME 7, 2019



S. Ahmadian et al.: Modeling Cyber Attacks on Electricity Market Using Mathematical Programming

FIGURE 6. Electricity prices for RT market at different buses for different
scenarios.

FIGURE 7. Electricity price differences for the DA and RT markets at
different buses for different scenarios.

electricity prices for DA and RT under different assumptions
(NComp = 0 for no attack to NComp = 5 for 5 measurements
manipulation).

Generally, in the DA market, compromising more mea-
surements decreases prices at buses 1 and 2, and increases
price at bus 5. In other word, the path of network flow would
change from buses 1 and 2 to bus 5. In contrast to the DA
market, the attacker in the RT market tries to change the flow
path from bus 5 to buses 1 and 2. Thus, the electricity prices
at buses 1 and 2 are higher than buses 3, 4 and 5 in the RT
market. In other world, if the attacker wants to participates in
the DAmarket, he needs to buy electricity from buses 1 and 2
and sells the electricity to bus 5. In the RTmarket, the attacker
needs to sell more electricity in the buses 1 and 2 rather than
buses 3 to 5 and also buys electricity from bus 5 since the flow
direction is changed in this bus.

Fig. (6) shows manipulating more than two measurements
in the PJM system will not affect the RT prices a lot, however
it will rather influence on the attacker’s profit.

The electricity price differences between the DA and RT
markets for different scenarios are illustrated in Fig. 7. As it
is shown, buses 1, 2 and 3 have the highest variationswhen the
attacker injects false data into measurement systems. On the
other hand, smaller variation is observed under FDI attacks on
buses 3 and 4. Hence, it can be concluded that buses 1, 2 and 3

TABLE 6. Power flow for the DA and RT markets (MW) for different
scenarios.

TABLE 7. The attacker’s priority to compromise power flow data
([u1t , . . . , u6t ]).

need more protection compared with buses 3 and 4. The line
flows for the DA and RT markets under different scenarios
are depicted in Table 6.

For the first scenario (one measurement compromised),
lines 4 and 6 are congested in the RT market. For NComp = 2,
lines 3 and 4 are congested in the reverse direction with
respect to the DA line flows. This path reversion in flow
causes the largest difference between the DA and RT elec-
tricity prices which increases the attacker’s profit. When the
attacker decides to attack 3 measurement systems, lines 2,
3 and 4 are the best options to be congested. Compromising
more measurements, it is still lines 3 and 4 that are among the
congested lines. Thus based on table 6, it can be mentioned
that lines 3 and 4 are relatively ideal to congest so as to
increase the attacker’s profit. Table 7 shows the attackers’
priority ([u1t , . . . , u6t ]) in (6) considering different scenar-
ios. As implied in 6, the results in Table 7 confirms that
lines 3 and 4 are of the highest priorities for the attacker.
If the attacker intends to compromise more than 2 measure-
ments, lines 2 and 6 are of the second priorities for false data
injection. Thus, based on information provided by Table 7,
when the attacker knowledge and resources about network are
limited the best choice is to manipulate the measurements on
line 4 (first row in the table). In other word, by increasing the
power flow measurement (based on Table 8) to 4.349, line 4
gets congested which cause profit for the attacker in the RT
market.

The false data injected ([1z1t , . . . ,1z6t ] in (6)) into mea-
surement system for different scenarios are listed in Table 8.
The output generation power for the attacker in theDAmarket
and required demand in the RT market, considering different
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TABLE 8. False data injected into measurement system for different
scenarios.

FIGURE 8. Electricity power sold by the attacker as virtual bidder in the
DA market for different scenarios.

scenarios, are depicted in Figs. 8 and 9, respectively. Fig. 8
shows the electricity power sold by the attacker in the DA
market for different scenarios. First scenario is for FDI toward
one RTU and the last scenario is an attack toward five RTUs.
Generally, it shows that the attacker tends to sell the electricity
in the DA market at buses 3 and 5 for almost all scenarios.
For the first scenario, the attacker prefers to sell the most
power at bus 3 rather than 5. The reason is that based on
Fig. 7 for the first scenario, the RT price will be less than
the DA price. And the attacker would prefer to sell at higher
price in the DA and buy at lower price in the RT market. Due
to the same reason, in the fourth scenario, the most power
sold by the attacker is at buses 1 and 2 (0.21 MW together)
rather than bus 3 (0.04 MW). Also, for the first scenario,
the attacker tends to sell power at buses 1 and 2 most of the
time (respectively 0.04 and 0.17 MW). Furthermore, Fig. 9
depicts that in the RT market the attacker (virtual bidder)
tends to buy the electricity from buses 2 and 4. This happens
because the lines between buses 2 to 3 and bus 4 to 5 are
always congested due to FDI by the attacker. In other words,
the attacker practically divides the network into two zones
(cheap demands and expensive demands). The cheap zone
always is fed with local generation units and the attacker will
buy them (electricity demands 1 and 3 in the figure). The
expensive bus is fed through congested transmission lines
(which is because of the attack). In Fig. 9 the electricity
demand number 2 is the expensive demand to buy. It must
be emphasized that both the generations and demands have
reached their maximum limits (Eqs. (2c) and (2d)).

FIGURE 9. Electricity demand bought by the attacker as virtual bidder in
the RT markets for different scenarios.

FIGURE 10. The attacker profits for different scenarios.

C. COUNTER-MEASUREMENT ACTIONS
In order to secure the power system measurements, in this
section, the attacker profit for different scenarios is discussed.
In other word, the sensitive measurement parts as well as
the important state variables are introduced by analyzing the
attacker’s profit. Fig 10 shows the attacker profit compro-
mising different measurement devices. The maximum profit
occurs when the attacker compromises 4 measurement sys-
tems. In fact, based on network topology, the maximum total
difference between the DA and RT market prices happens
when 4 measurement devices are manipulated by the mali-
cious data. However, it is to hard to manipulate all 4 mea-
surements. It must be noted that the results are shown for the
rewritten equation in (9b) as the equality equation as below

M∑
m=1

umt = Ncomp. (20)

The attacker’s profit is resulted from the difference between
the DA and the RT prices by manipulating the RTUs data.
In fact, by changing the number of manipulated RTUs,
the inter-correlation between these two variables can be
altered. However, increasing the number of attacked mea-
surements (RTUs) generally causes more profit (based on the
Fig. 10), but the inner correlation between the DA and the RT
prices may affect this issue. To maximize profit, the attacker
needs to divide the network into two zones: cheap zone and
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expensive zone. Manipulating only one device, only leads
to congestion of transmission line between bus 4 and 5 and
doesn’t result in the full congestion. Fig. 10 shows the results
for the case of considering Eq. 20 as binding constraint.
It means if we force the attacker to only manipulate one
device, the question remains what is that RTU device? There-
fore, in this condition the profit becomes the second priority
for solver in order to meet the binding constraint (Eq. 20).
Moreover, when the attacker considers only one device to
attack, the amount of 1ε must be less than attacking toward
two or three compromised RTUs. Moreover, by manipulating
5 RTUs the profit would be less than 4 compromised RTUs
and that is because of the correlation between the DA and
RT prices for buses 1, 2 and 5. Comparing Figs. 4 and 5 by
attacking to 5RTUs the difference between theDA and the RT
prices has decreased (for buses 1 and 5 significantly and bus 2
a small value). This reason caused almost $3.5 less profit
regarding 4 compromised RTUs. Mathematically speaking,
by forcing the attacker to inject false data into all mea-
surement devices in the sample network, the optimization
problem leads to local minimum.

From Fig. 10 and Table 7, it can be seen that the attacker
can increase its profit by compromising 2 measurements.
Therefore, the best counter-measurement action is to increase
lines 3 and 4 cyber-security. Also considering Fig. 7, elec-
tricity prices at buses 1, 2 and 5 are the most vulnerable state
variables.

V. CONCLUSION
In this paper, a novel MPEC model to determine the optimal
cyber attacks toward power system state estimation is pro-
posed. The attacker participates in the DA and RT market
as a virtual bidder. Meanwhile, the aim of the attacker is
to inject false data into the measurement system so as to
maximize its profit by trading in the DA and RT markets.
The presented model considers the inter-correlation between
the DA and RT state variables and the injected false data. The
five bus PJM network is used to demonstrate the effectiveness
of the proposed model. The results reveal the vulnerable
lines and buses that are required to be more secure. Using a
sensitivity analysis over the possible RTUs, the best choices
for the attacker which exposes weak points of the power
system are introduced. The presented optimization problem
in this paper is deterministic and for the future studies,
the stochastic model of the proposed method may be investi-
gated. Due to uncertainty in the attacker’s estimation for the
network parameters and also, the DA and the RT electricity
demands, the stochastic aspect of the model can be either
two-stage stochastic optimization problem or robust meth-
ods (like chance constraint and Conditional Value at Risk
modelling). Moreover, the nonlinear state estimation effects
on the presented MPEC problem may be addressed. In fact,
if the attacker doesn’t consider the DC state estimation, then
the proposed optimization problem, in this paper, needs to be
modified to consider non-linearities in the decision-making
process to solve the FDI problem.
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