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A simplified form of the stability equation appropriate for liquids of small viscosity undergoing nearly
spherically symmetric flow is derived on the basis of earlier results. This equation is then applied to the
analysis of the stability characteristics of the spherical shape for growing and collapsing cavitation bubbles.
It is found that viscosity does not remove the well-known instability associated with the collapse process,
although it does delay the growth of higher order modes. This feature explains the relatively small

number of microbubbles to which a cavitation bubble gives rise upon fragmentation.

I. INTRODUCTION

The stability of the spherical shape for an expanding
or collapsing cavitation bubble in an unbounded liquid
of negligible viscosity has been the object of a number
of studies.'™ On the basis of the linear approxima-
tion'™® it is possible to conclude that the growth process
is substantially stable (in the sense that the perturbation
amplitude remains bounded) whereas the collapse pro-
cess is highly unstable. In this case the amplitude of
the distortions of the spherical shape is found to oscil-
late with increasing frequency and amplitude as the bub-
ble radius decreases. This behavior leads to the ex-
pectation of the eventual fragmentation of the bubble.
This conjecture, which is in agreement with experi-
ment, has also been confirmed by the fully nonlinear
study of Chapman and Plesset. *

The corresponding problem for viscous fluids has
received little attention® because of the lack of an ap-
propriate perturbation equation. This equation has
recently been made available,® but because of its com-
plex mathematical structure it does not easily lend it-
self to investigation in the general case. Therefore,
in the present study we limit our considerations to a
slightly viscous liquid for which a substantial simplifi-

cation becomes possible. It is found that the addition
of viscosity leads to only a2 minor modification of the
collapse instability essentially consisting of delaying
the growth of higher-order distortions. More strongly
affected is the growth process: The initial behavior
may cease to be oscillatory, and the perturbation am-
plitude tends to zero instead of to a finite quantity as the
bubble radius increases.

{l. THE STABILITY EQUATION

The equation to be obtained in this section has already
been presented without proof in Ref, 7; additional de-
tails are available in Refs. 6 and 8.

We take a spherical polar coordinate system (7, 6, ¢)
centered at the centroid of the bubble. The shape of the
free surface is specified as

/rs(eyd); t):R(t)+a,,(t)Y:,"(9, ¢)9 (1)

where R(¢) is the average radius, Y7(6, ¢) is a spherical
harmonic, and a,({) is the amplitude of the nth order
distortion. In the linearized approximation the equation
for a,(t) does not depend on the degree m of the spherical
harmonie,"*® and is found to be®
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Here, v is the kinematic viscosity, p is the liquid den-
sity, and ¢ is the surface tension, The quantity T(r, )
is the toroidal component of the vorticity field w which
is expressed as

W=VX(TY#)+VxVx(SYIE),
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where ¥ is the unit vector in the radial direction and
S(r,t) is the poloidal component of w. The function
T(r,t) is found to satisfy the following equation, which
is a direct consequence of the linearized vorticity equa-
tion for the flow®

92T oT & [(R\%dR ] v
Vot~ at'ar[<r> ar [ ~nln+DZT=0. (3

The condition of vanishing tangential stress at the bub-
ble surface » = R(¢) requires that T(r, ) satisfy®
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Although the kinematic viscosity v can be canceled from
both sides of this equation, it has been left in to empha-
size the fact that this condition is to be applied only for
a viscous fluid,

(4

This equation shows that, when v >0, vorticity is
continuously generated at the free surface and prop-
agates into the body of the liquid by diffusion and con-
vection according to Eq. (3). If the initial vorticity
vanishes, the free surface is the only source of vorticity
and from the form of Eq. (3) we may draw the follow-
ing qualitative picture of the behavior of the function
T(r,t). Suppose first that the bubble has a constant
radius so that dR/dt=0. Then, it is evident from the
parabolic nature of the equation that T(v, #) will be ap-
reciable only in a layer of thickness of the order of
(vt)*/? adjacent to the bubble surface. If we now allow
for a nonzero radial velocity, we expect that this layer
is stretched and becomes thinner when dR/dt >0, where-
as it becomes thicker when dR/dt < 0. In conclusion,
we may expect that in the case of small viscosity and
moderate decrease of the bubble radius, the integrals
containing T(7, {) in Egqs. (2) and (4) play a minor role
in the behavior of the amplitude. We shall examine this
matter in greater detail in Sec. V. Here, let us pro-
ceed to eliminate T[R(f), ] between (2) and (4) disre-
garding the integral terms to find the following approxi-
mate perturbation equation for spherically symmetric,
slightly viscous flows

2
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This equation embodies several known results which
will be briefly mentioned. For instance, for n=1 and
R = const one obtains Levich’s well-known expression
for the drag force on a translating bubble of fixed ra-
dius.? Similarly, for the case of translation in an in-
viscid liquid, it implies R*()da,/dt = const, which is an
expression of the conservation of liguid momentum
(Ref. 10, Sec. 92; Ref. 11, Sec. 11). Both of these
results are independent of the assumed smallness of the
coefficient a; once the hypothesis of spherical shape has
been made. Finally, for constant radius, one can read
from (5) the expression for the natural frequency and
damping constant of small oscillations given by Lamb
(Ref. 10, p. 475 and p. 641). The stability equation
given by Plesset' can be obtained by setting v=0.

The evolution in time of the mean radius R(?), to the
present approximation, can be obtained from the well-
known Rayleigh-Plesset equation”'?

d®R 3 (dR\* 1 20) vdR
R 2(dt) ’p(pi"’“‘R “4r (6)
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in which p; is the internal cavity pressure and p. is

the ambient pressure, which will be taken to be a con-
stant. Since in this study we are dealing with the dy-
namics of cavitation bubbles, namely, of vapor bubbles
in a relatively cold liquid, we shall neglect vaporization
and condensa.tmn effects and we shall take p, = const in

(6)."

It will be convenient in the following to deal with non-
dimensional quantities and write

R* =i, ap=9n, 4= (o, ~p)/o|"H/Ro,
RO ay (,7)
v 20
= T A NTATE, ST s -
Ryl(p, —-p)/pl Ip; =Ry

The reference guantities Ry and ¢, will be taken as the
initial values of R and q,, respectively. From here on
we shall use only these variables, although the aster-
isks will be dropped for convenience. Expressed in
these terms Egs. (6) and (5) take the form
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R:i—zf?+2(dt> “Ip,~p-l R S+aN (8
2
%F‘L [g‘fﬁ+2(n+2)(2n+1) ]%%‘%(n—l)

1d°R N drR
[(n+1)(n+2)ﬁ R dt2+2(n+2)'Rg‘§Et—:| —0.
(9)
With the following change in the dependent variable

t
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0
the last equation becomes
d%,/dt*+G(t)b,=0, (11)

where
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11l. COLLAPSING CAVITIES

In Fig. 1 the numerical solution of the Rayleigh-
Plesset equation (8) is shown for a collapsing cavity
with initial conditions R(0)=1, dR(0)/dt=0. The pa-
rameters S and N have the value S = 10~° (corresponding,
for instance, to a dimensional initial radius of 0.14 cm
in water) and N=0. The solution is found to be indepen-
dent of the actual values of S and N, if chosen within a
realistic range for collapse in slightly viscous liquids.

Before illustrating the results obtained by the numer-
ical integration of the perturbation equation (9), it is
interesting to analytically investigate the asymptotic
behavior of a, as R~ 0. To this end we shall neglect
the viscous term in Eq. (8) to integrate once with the
result’

(dR/dt)*=2(R*-1)+SRYR?-1); (13)

a vanishing initial velocity has been assumed for sim-
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FIG. 1. The dimensionless time and velocity are shown as
functions of the dimensionless radius for a collapsing cavity
with R(0)=1, dR(0)/dt=0, $=107% and N=0. For R—0 the
total collapse time approaches the value ¢ =0, 915 given by
Rayleigh.!%? The curves for N=10"? are indistinguishable
from those shown.

plicity. From (13) and (12) the following approximate
expression for G(¢) is readily obtained

G(t)= - 3(S+2mR7+3(S+ )/ ¥n+2)NR/?
—(n+2)%(2n+1)’°N?R™*+ O(R™). (14)

Notice that the viscous correction which tends to oppose
the unstable behavior brought about by the first term is
O(R!/?) smaller. Therefore we do not expect the in-
stability to be suppressed by viscosity. Indeed, with
the change of variables

% =M+ 2)(2n+ NS+ B IRY (15a)
b,=Rc,, (15b)
Eq. (11) becomes
2 1 p 12
(fl—t%l+ <—Z+;+i‘—;7“’—') c,=0, (16)

where the approximate form (14) of G(¢) has been used
and

B=302n+ 1), ui=—6n-1)+1. (17

Equation (16) is the standard form of Whittaker’s equa-
tion'® and its solution may be written as

co=e B A B (S -k, 1420, %)
+Bx1/z_uF(é_“-—k;l_zu;x)]y (18)

where A, and B are integration constants and F(a, c, x)
is the confluent hypergeometric function. A noteworthy
feature of this result is its independence of the viscous
constant N which has been eliminated by means of the
transformations (15a) and (10). Recalling that F(a,c, 0)
=1, we readily obtain the leading order behavior of the
solutions as x - 0 from (18). In terms of the original
variables one has

a,,~R'“4exp{ii[6(n -1)-11"%10gR

—(n+2)(2n+ 1)Nf0tR'zdt} , (19)
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FIG. 2. The dimensionless quantity a,/R versus the dimen-
sionless radius for a collapsing cavity with S= 1078, N=0,
1074, 1073, The curves corresponding to the first two values
of N are indistinguishable.

which, for N=0, coincides with the result for the in-
viscid case.?® Since the integral in (19) is a finite
quantity, it is seen that viscosity does not remove the
R™'/* singularity. However, the instant at which the
singular behavior starts to dominate is determined by
a competition between this integral and the R™'/* term.
It is clear therefore that the beginning of the growth of
the nth order distortion of the spherical shape is delayed
by an amount which increases exponentially with 2n°N.
In practice, this feature leads to a suppression of the
higher-order modes. Indeed, by the time they start to
grow, the bubble will already have fragmented owing

to the instability of the lower order modes. This ob-
servation may explain why collapsing bubbles are found
to give rise to only a small number of microbubbles
upon fragmentation (see, e.g., Ref. 14, Fig, 11, and
Ref. 15), a feature which cannot be explained by the
inviscid theory. Indeed, the increase in the oscillation
frequency with » and the independence of n of the growth
rate predicted by that theory makes the breakup into a
very large number of fragments much more probable.
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FIG. 3. The dimensionless quantity ag/R versus the dimen-
sionless radius for a collapsing cavity with $§=1073, N=0, 107,
10, The curves corresponding to the first two values of N
are indistinguishable.
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FIG. 4. The dimensionless radius and radial velocity are
shown as functions of the dimensionless time for a growing
bubble with R(0)=1, dR(0)/df=0.01, S=1, N=0, and N=90.12,
For Iialrge times the velocity approaches the asymptotic value’
(2/3)1/2,

The results of the numerical integration of the stability
equation (9) for n=2 and n =6 are shown in Figs, 2 and
3. The initial conditions for R are those of Fig. 1, and
for the perturbation amplitude a,(0) =1, da,{0)/dt=0.

In these figures a,/R, which is the significant quantity
governing bubble breakup, is plotted versus the radius
for the inviscid case, N=0, and for N=10"* and N=10".
In water, these values would correspondtoinitial dimen-
sional radii of 0.1 and 0.01 c¢m, respectively if p,-p,
=1 atm. For the lowest order mode, n=2, itis seen
that the results are affected very little by viscosity:

for N=107* they are indistinguishable from the inviscid
ones, while for N= 107% small differences appear. The
effect is somewhat greater for n=6, but again viscosity
introduces appreciable differences only for the largest
value of N. The shape of the curve shows that this dif-
ference consists mainly in a delay of the growth, as
had been anticipated.

IV. GROWING CAVITIES

Figure 4 shows numerical solutions of the Rayleigh-
Plesset equation for a growing cavity. Again, the initial
radius, assumed equal to the equilibrium value,” has
been taken as the reference length so that R(0)=1, S=1.
An initial velocity dR(0)/dt=0.01 has also been taken,
Curves are shown for the inviscid case (N =0) and for
N=0.12, which would correspond to an initial dimen-
sional radius of 0,83x10™* em for p, ~p.=1atm in
water. Notice that viscosity merely increases the dura-
tion of the so-called latency stage, with negligible con-
sequences on the later phases of the growth.

Also for this case, it is useful to have some analytical
estimates of the behavior of the solutions of (9). The
first integral of (8) obtainable for N =0 takes the form’

(dR/d1Z=R>3Uy+2(1-R¥ -SR"{1-R™?, (20)

where Uy=dR(0)/dt. Let us consider the initial, sur-
face-tension dominated, stage of the growth first, In
terms of the new variables
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z:fotR'zdt, (21a)
d,=R'"%q,, (21b)
Eq. (9) takes the form
Lz—zd—_glJr 2n+2)(2n+ l)N(;—dzL
+ {5 r -+ Dn+2)S+F(t)]d,=0, (22)

where

F(t) = 1S(n - 1)+ 1)+ 2)(R = 1) - 3(n+ NR %’7‘

2 2
(%) - pre LR (29)

As Fig. 4 shows, during the initial stages the growth
is very slow; therefore, the function F(¢) differs little
from zero, and Eq. (22) describes a slowly modulated
damped oscillatory motion. Oscillations will actually
be present, however, only if the viscosity parameter
satisfies the approximate inequality

1 [ (n=1)n+ 1):|1/2
< -
N”2n+1[2s ’

n+2
and hence, for fixed N, only a finite number of modes
may have an oscillatory behavior, the remaining ones
being overdamped.

(24)

It is also possible to obtain the limiting behavior for
large R; a straightforward computation leads to

a,~RYCR*+DR™), (25)

where C and D are constants and the quantitiy p is de-
fined as

p=[1-8n+2)n-1)N]2, (286)

For N =0 the well known result a¢,—~ const is recovered.
For finite N, however, Eq. (25) entails that a,~ 0, as
was to be expected. Further, it is apparent from (25)
and (26) that the decrease in the distortion amplitude is
monotonic only for sufficiently small values of n, being
oscillatory for larger values.

The numerical solution of (9) for n=2, S=1, a,(0) =1,
da»(0)/dt =0 is shown in Fig. 5. The curve correspond-
ing to the inviscid result is seen to exhibit slightly
damped oscillations first, which turn into the aperiodic
phase shortly after the beginning of the rapid radial
growth., The oscillations become much more rapidly
damped for N=0.05 (the corresponding dimensional
initial radius in water is 2x10™* e¢m, for D; —Pw=1atm),
and are nearly absent for N=0.12, which is just below
the critical value given by (24).

A similar behavior is exhibited by the mode »n =6,
which is illustrated in Fig. 6. As is clear from Eq.
(22) the initial oscillations are much more rapid now
and only the first and the last ones are shown in the
figure, along with the envelopes of the maxima and min-
ima in the intermediate stage. Again, the damping of
the oscillations in correspondence of the rapid growth
is visible. The solution for N =0.05 exhibits a much
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FIG. 5. The dimensionless amplitude a, versus dimensionless
time for a growing bubble with a,(0)=1, da,(0)/dt=0, S=1,
N=0.05 and 0.12, The initial conditions for R are the same
as in Fig. 4.

faster damping, which practically extinguishes the dis-
tortion before the beginning of the growth.

V. DISCUSSION

Two obvious sources of error in the preceding re-
sults are the use of the linearized approximation, and
the neglect of the integrals in Eqs. (2) and (4). Re-
garding the first point we may rely on the results of the
nonlinear calculation performed by Chapman and Ples-
set! to be confident that the linearized approximation
has a much wider domain of validity than could be ex-
pected. The nonlinear coupling with the other distor-
tion modes introduces an additional factor of damping
which, however, does not alter the behavior of the
amplitudes too much.

Of greater relevance in the present context is per-
haps the second point. It is possible to show that the
procedure used to derive the approximate equation (5)
is equivalent to using the irrotational, inviscid solution
of Plesset' to evaluate the dissipation function in the
way explained in Ref. 10, p. 639.!® This procedure
tends to over-estimate the velocity gradients and the
effect of viscosity on the phenomenon is thus also over-
estimated.

A very rough estimate of the conditions of validity of
our approximation can be obtained if it is assumed that
T(7,t) = T[R(¢), t] in the layer R<» <R+ & and T(r,£)=0
elsewhere.® With this approximation it is possible to
evaluate the integrals appearing in (2) and (4). In this
way one finds an equation which reduces to (5) provided
that

nd <R,
v> &*R|dR/dt | .

(27a)
(27b)

The thickness 6 can be estimated to be of the order of
the diffusion length (v#5)'/% where ¢, is an appropriate
time scale for vorticity generation at the bubble sur-
face. For the growth case ¢y can be takenas the inverse
of the frequency of surface oscillations, hence ¢,~(pR%/
n%)'/2. With this choice for t, the first condition (27a)
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FIG. 6. The dimensionless amplitude a; versus dimensionless
time for a growing bubble with a4(0) =1, dag(0)/dt=0, S=1,
N=0, 0,05, The initial conditions on R are the same as in
Fig. 4. For the curve labeled N=0 only the first and the last
oscillations are shown, along with the envelopes of maxima
and minima (dashed lines),

results in R > n1%p/o, which in general will be satisfied
for a range of n by most growing bubbles in slightly
viscous liquids. The second condition will also be met
since, as Figs. 5 and 6 show, there is a significant
vorticity generation only as long as the radial velocity
is small. Less satisfactory is the situation for the
collapse case. Here, both conditions (27) will eventual-
ly be violated as R~ 0. Nevertheless, for the reasons
already mentioned, it is expected that the error intro-
duced by the present procedure results in an over-esti-
mation of the effect of viscosity on the collapse insta-
bility.

Finally, we wish to notice that with our estimate
6~ (vto)*/ %, the second inequality (27b) would seem to
impose a condition which is independent of vy, Actually,
the physical meaning of (27b) is essentially the require-
ment that the vortical boundary layer adjacent to the
bubble be not excessively distorted by the primary
radial flow. Clearly, this requirement is meaningless
when »=0, because then there is no boundary layer.
On the other hand, when viscosity is not small, 6
~(vte)'/? is no longer an accurate estimate of the thick-
ness of the boundary layer which will then be influenced
in a complicated way by the geometry and the primary
flow. In this case, inserting a better estimate of § in-
to (27b), one would find a condition which becomes in-
dependent of y only in the limit y -0,
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