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ABSTRACT

Due to the ubiquitous mobile devices with embedded sensors and connectivity over the

internet, the Internet of things (IoT) has evolved. The IoT brings the explosive growth of

devices connected and controlled by the Internet. The enormous collection of connected

sensors and devices makes a significant contribution to the volume of data collected, which

brings us to the big data era. Intelligent system (IS) becomes an emerging paradigm for

integrating big data, analytics, privacy, and artificial intelligence. The IS is any formal or

informal system to manage data gathering, to obtain and process the data, to interpret the

data, and to provide reasoned judgments to decision makers as a basis for action. In order

to keep up with the continuous influx of data, machine learning is one of the best solutions

for big data analysis, which is fast evolving during the last decade. With the development

of machine learning technologies, it plays a critical role in IS. The IS, which integrates

computations, communications and decision making, interacts with humans through many

new modalities. However, privacy is an essential concern in IS since a large volume of users’

daily and sensitive data is used in constituting systems, and users become increasingly

concerned about the compromise of their personal information. Therefore, it is necessary to

develop innovative privacy preserving approaches to prevent users’ confidential information

from illegal revealing while efficiently utilizing massive data generated from users.

In fact, there are trade-offs between the effectiveness of privacy protection and the con-

venience of data collection, communications, and energy consumption, which need proper

considerations in system designs. The objectives of this dissertation are to develop effi-

cient and reliable data analysis methods in various IS applications and protect the data

privacy against malicious attacks through a combination of theoretical, simulation, and ex-

perimental studies. Given the challenge of privacy preservation and reliable data analysis,

this work endeavors to develop a series of privacy preserving data analytic and processing

methodologies through machine learning, optimization and differential privacy; and focuses

on effectively integrating the data analysis and data privacy preservation techniques to pro-

vide the most desirable solutions for the state-of-the-art IS with various application-specific

requirements.
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1 Introduction

With the rapid development of the intelligent system (IS), there is more and more data

available for data analysis tasks. In order to glean useful insights from huge data sets,

machine learning becomes one of the most promising solutions by unleashing the potential

of the big data generated in the IS environments. In IS, healthcare systems have been

a vital research area and deep learning holds great promise in improving healthcare and

medicine. Medical institutions hold various modalities of medical data, such as electronic

health records, biomedical images, and pathology test results. Based on medical data, deep

neural network models are trained to address necessary healthcare concerns [1]. Examples

include but not limited to: 1) deep learning models based on medical records outperformed

traditional clinical models for detecting patterns in health trends and risk factors [2]; 2) deep

learning model had high sensitivity and specificity for detecting diabetic retinopathy and

macular edema in retinal fundus photographs [3]; 3) a mammography-based deep learning

model was more accurate than traditional clinical models for predicting breast cancer risk

[4].

When training a machine learning model, it is certain that training data with large size

are yielding desirable results. Although huge amount of data is available and accessible in

the big data era, in the medical and healthcare systems, there is still not enough data for

training, thereby affecting the performance of the models. Generative adversarial network

(GAN), first proposed in [5] is a potential solution that addresses the data scarcity prob-

lem in fields with limited data because of its ability to generate data similar to real data.

Typically, GAN integrates deep learning and game theory to train two models, generator

and discriminator, so that the generator can generate high fidelity fake samples from latent

space, that are supposed to be indistinguishable from the real data samples. Despite the

solid fundamental theories and impressive empirical experiments, training the original GAN

is relatively tricky and improving the quality of generated images is still challenging. Deep

convolutional GAN (DCGAN) proposed in [6] first attempted to deal with this problem

by applying convolutional neural networks (CNNs) in GAN to enable stable training and
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improve the applicability of the generated images. GANs and its variants are being inves-

tigated to achieve effective results through data augmentation and overcome training data

insufficiency for the models.

However, the application of deep learning on sensitive datasets is confronted with pri-

vacy threats. Especially, in the healthcare systems, the medical records contain personal

private information like drug usage patterns of the individual patient. Medical institutions

also hold patients’ profile information such as home address, gender, age, etc. The private

information might be unwittingly leaked when the aforementioned data is used for train-

ing a deep learning model [7, 8]. For example, attribute inference attacks [7] can utilize

the trained model and incomplete information about a data point to infer the missing in-

formation for that point. The adversary could exploit such an attack to infer the target

private information according to partial information on medical records. Another instance

is model inversion attacks [9] that enable the image data used for classification inference to

be recovered based on the intermediate output of convolutional neural networks (CNNs).

The adversary could deploy model inversion attack to recover the medical images of any

target patient and infer private health conditions accordingly. The risk of privacy leakage

makes medical institutions increasingly less willing to share their data. This inevitably

slows down the research progress at the intersection of deep learning and healthcare. Thus,

it is necessary to evaluate the potential hazards of various attack models on medical data

and develop corresponding defenses on such attacks.

The last decade has witnessed the exploding growth in the quantity and capability of

consumer mobile devices such as smartphones, tablets, etc., and the proliferation of wireless

services. IS is often distributed broadly across wide geographic areas and typically collect

huge amounts of information for data analysis and decision making. Mobile IS that takes the

advantages and extend the application domains of IS is a kind of foundational techniques

to support the development of mobile and vehicular networking systems. The extended

mobile IS includes mobile crowdsensing (MCS) and transportation network company (TNC)

services.
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The MCS has become a novel sensing and computing paradigm, due to the development

of the GPS embedded mobile devices. The objective of MCS is to efficiently pair requested

tasks and interested workers, involve workers to contribute and analyze data collected by

their mobile devices, aggregate and utilize the reported data to reveal information for specific

purposes [10]. In the MCS platform, there are plenty of candidate workers, who are waiting

to accomplish tasks. When the task requesters send the task assignments to the MCS

server, a subset of appropriate workers will be chosen to participate. Such procedure, called

task allocation, is a significant problem that needs to be considered in MCS. Mostly, in task

allocation, the workers’ travel distance is referred as one of the most common utility metrics.

On the workers’ side, they prefer to participate in tasks located closer to themselves. On

the MCS servers’ side, longer travel distance means higher response latency and higher

incentive bonus to the workers, which is not desirable [11]. Therefore, based on the travel

distance, the tasks can be assigned to workers properly, hence enhancing the efficiency of

the MCS.

The TNC service has become an indispensable option of people’s daily commute. The

TNC provide the ridesharing services to solve the dilemma of the firstmile/last-mile problem

of public transit users and traffic congestion problem in urban areas. Such TNC services

(e.g., Uber, Lyft, Didi, etc.) can pair TNC users and TNC vehicles according to their

location information through the mobile apps in order to provide ridesharing [12]. With

TNC services, the users are able to save time by changing parking to TNC user loading

events. As TNC users can gain more time savings when using TNC services, it also provide

more job opportunities for drivers. In [13], the authors note that ridesharing scheduled by

TNC can occupy the capacity more efficiently than traditional taxicabs. In addition, due

to the development of technologies of self-driving cars, Google autonomous driving projects

Waymo has already been testing in Arizona. The reported status shows that TNC is

supposed to launch the self-driving car services sooner or later. Therefore, it is necessary to

have a new TNC vehicle scheduling scheme for both the ridesharing drivers and self-driving

vehicles with high efficiency and flexibility.

3



Despite the popularity of MCS and TNC services, the prerequisites of workers’ location

sharing raise serious privacy concern. Data breaches could potentially happen in any part of

the system, including the stages of data collection, data transmission, data operation, and

data storage. Due to its importance and rapid advances in computing technologies, mobile

IS and its communication networks inevitably become the targets of attackers and malicious

parties. With the exposure of workers’ location, the workers not only lose their privacy but

also are vulnerable to various attacks, even some serious physical attacks. For instance, in

August 2018, a violent robbery happened in Maryland. The victim is picked up by a fake

Uber driver and the driver demanded the victim’s wallet and cellphone with a handgun.

Instead of robbery, more serious crimes targeting particular victims, such as kidnapping,

sexual assault, etc., might happen because of the leakage of location information, since

malicious party could learn people’s life pattern through the disclosed locations.

To prevent the privacy leakage, in this dissertation, we leverage differential privacy [14],

which is widely applied to many research areas. Intuitively, it works by injecting random

noise to the data so that an adversary with arbitrary background knowledge cannot confi-

dently make any conclusions about the raw data. Since the differentially private noises bring

uncertainty to the data, in order to increase the data utility, we deploy several data-driven

technology such as conditional value at risk (CVaR), adaptive method, and ζ-structure

probability metric.

Specifically, we first illustrate the differential privacy preliminaries in Section 2. We

evaluate the inference attack models for deep learning on medical data in Section 3. Then,

in Section 4, we present an adaptive privacy preservation scheme on deep learning models.

Basically, we inject the linear decaying differentially private noises into the gradient during

each iteration to protect the training data while increase the utility of the model. In Sec-

tion 5, we investigate privacy-preserving schemes in generative adversarial networks (GAN),

where we add Laplace noises into the loss function of discriminator. As the generator is the

post-processing procedure of the discriminator in GAN, the overall GAN is differentially

4



private. In Section 6, we present task allocation optimization problem in mobile crowd-

sensing by considering the user’s location privacy. We proposed two differentially-privacy

based location protection shcemes, formulate the travel distance minimization problem, and

utilize the CVaR to solve the optimization problem. In Section 7, we develop a data-driven

method to schedule vehicles for the transportation network company with the considera-

tions of the drivers’ location privacy. At last, we present some possible future works to

where privacy and secure technology can be applied in Section 8.
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2 Differential Privacy Preliminaries

Differential privacy (DP) [14] that provides a strong standard privacy guarantee is

being widely applied to many research areas. Basically, it is used to protect data providers’

privacy when the statistical information of a database is publishing. Its wide acceptance is

based on its merits of effectively protecting the data providers’ privacy while publishing the

statistical information of the databases. DP indicates that the participation of one patient

in the training phase has an inconsiderable effect on the final deep network model. After

conducting a randomized algorithmM, the two probabilities, that from a query to the two

neighbor databases D and D̂ the returned values are the value o, is supposed to within a

bound of ε given a probability 1 − δ, where ε is the privacy confidence parameter and δ is

the broken probability. The definition of differential privacy is shown as follows.

Definition 2.1 (Differential Privacy) A randomized algorithmM satisfies (ε, δ)-differential

privacy if for any two adjacent datasets D and D̂ that differ in only a single record,

the absolute value of the privacy loss random variable of an output o ∈ Range(M),

Z(o) = log Pr[M(D)=o]

Pr[M(D̂)=o]
is bounded by ε, with probability at least 1− δ.

The privacy budget ε controls the privacy preservation level and δ is the broken prob-

ability, and if δ = 0, the randomized algorithm M is said to have ε-differential privacy. A

larger ε means lower privacy level, and implies that there is a higher possibility to distinguish

the outputs of the randomized algorithm M with two different input datasets. Intuitively,

smaller ε means higher privacy preservation level. δ is the broken probability.

Normally, the standard approach to achieve ε-differential privacy is through Laplace

mechanism defined as follows.

Definition 2.2 (Laplace Mechanism) Given a query function Q : X → R, the Laplace

mechanism that adds noise generated from the Laplace distribution Lap(∆
ε ) to the output

of query function Q enjoys ε-differential privacy, where ∆ is the l1-sensitivity of the query

Q, i.e., ∆ = supX∼X ′ ‖Q(X )−Q(X ′)‖1.

A generic method of achieving (ε, δ)-differential privacy is Gaussian mechanism [15]
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that adds Gaussian noise, calibrated to the query function’s sensitivity, to the output. The

sensitivity captures the maximum difference of the query function by a single record in the

worst case. We define the sensitivity as follows.

Definition 2.3 (l2-Sensitivity) The l2 sensitivity of a query function f(·) that takes as

input a dataset D is defined as

∆f = max
D,D̂
‖f(D)− f(D̂)‖2, (1)

where D and D̂ are any two neighboring datasets differing in at most one record.

In this paper, we consider the gradient perturbation method to provide privacy guarantee

of deep neural network. Thus, the query function f is the gradient of deep neural network.

We can easily enforce a specific sensitivity value ∆f by clipping the L2-norm of gradient

value. Based on the definition of sensitivity, we show the Gaussian mechanism in the

following theorem.

Theorem 1 (Gaussian Mechanism [15]) For a query function f : D → Rd with sensi-

tivity ∆f , the Gaussian Mechanism that adds noise generated from the Gaussian distribu-

tion N (0, σ2I) to the output of f satisfies (ε, δ)-differential privacy, where ε, δ ∈ (0, 1) and

σ ≥
√

2 ln(1.25/δ)∆f

ε .

When applying gradient perturbation method in training phase of deep neural network,

due to the large number of iterations, the composition property of differential privacy is

important to estimate the privacy loss. Hence, we adopt truncated concentrated differential

privacy (tCDP) [16], a new relaxation of differential privacy, to provide sharper and tighter

analysis on the privacy loss for multiple iterative computations compared to (ε, δ)-DP. The

definition of tCDP is defined as follows.

Definition 2.4 (tCDP) For all τ ∈ (1, ω), a randomized algorithm M is (ρ, ω)-tCDP if

for any neighboring datasets D and D̂ and all α > 1, we have

Dτ (M(x)||M(x′)) ≤ ρα, (2)
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where Dτ (·||·) is the the Rényi divergence of order τ defined as follows.

Given two distributions µ and ν on a Banach space (Z, ‖ · ‖), here, we consider the

Rényi divergence distance between them:

Definition 2.5 (Rényi Divergence [17]) Let 1 < α <∞ and µ, ν be measures with µ� ν.

The Rényi divergence of order α between µ and ν is defined as

Dτ (µ‖ν)
.
=

1

α− 1
ln

∫ (
µ(z)

ν(z)

)α
ν(z) dz. (3)

Here we follow the convention that 0
0 = 0. If µ 6� ν, we define the Rényi divergence to be

∞. Rényi divergence of orders α = 1,∞ is defined by continuity.

In this paper, we mainly utilize the following properties of tCDP, shown in [16].

Lemma 1 The Gaussian mechanism, in Theorem 1, satisfies (∆2
f/(2σ

2),∞)-tCDP.

Lemma 2 If randomized mechanisms M1 and M2 satisfy (ρ1, ω1)-tCDP, and (ρ2, ω2)-

tCDP, their composition defined as (M1,M2) is (ρ1 + ρ2,min(ω1, ω2))-tCDP.

Lemma 3 If a randomized mechanismM satisfies (ρ, ω)-tCDP, then for any δ ≥ 1/ exp((ω−

1)2ρ), M satisfies (ρ+ 2
√
ρ ln(1/δ), δ)-differential privacy.

Lemma 4 If a randomized mechanism M satisfies (ρ, ω)-tCDP, then for any n-element

dataset D, executing M on uniformly random sn entries ensures (13s2ρ, log(1/s)/(4ρ))-

tCDP, with ρ, s ∈ (0, 0.1], log(1/s) ≥ 3ρ(2 + log(1/ρ)) and ω ≥ log(1/s)/(2ρ).

Lemma 1 connects the Gaussian mechanism to the new differential privacy definition,

i.e., tCDP. It intuitively shows that by injecting the same Gaussian noise the differences

between (ε, δ)−DP and (ρ, ω)-tCDP. Lemma 2 indicates the composition theorem of two

randomized mechanisms under tCDP. Lemma 3 establishes the link between two differential

privacy criteria, and Lemma 4 provides the privacy amplification via random sampling.

These lemmas will serve as the basics for the proof of our adaptive random noise mechanism

in the later section.
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3 Evaluation of Inference Attack Models for Deep Learning

on Medical Data

3.1 Introduction

Deep learning has become increasingly popular in healthcare and medicine areas. Med-

ical institutions hold various modalities of medical data, such as electronic health records,

biomedical images, and pathology test results. Based on medical data, deep neural network

models are trained to address necessary healthcare concerns [1]. Examples include but

not limited to: 1) deep learning models based on medical records outperformed traditional

clinical models for detecting patterns in health trends and risk factors [2]; 2) deep learning

model had high sensitivity and specificity for detecting diabetic retinopathy and macular

edema in retinal fundus photographs [3]; 3) a mammography-based deep learning model

was more accurate than traditional clinical models for predicting breast cancer risk [4].

However, the application of deep learning in healthcare is confronted with privacy

threats. The medical records contain personal private information like drug usage pat-

terns of the individual patient. Medical institutions also hold patients’ profile information

such as home address, gender, age, etc. The private information might be unwittingly

leaked when the aforementioned data is used for training a deep learning model [7, 8]. For

example, attribute inference attacks [7] can utilize the trained model and incomplete infor-

mation about a data point to infer the missing information for that point. The adversary

could exploit such an attack to infer the target private information according to partial

information on medical records. Another instance is model inversion attacks that enable

the image data used for classification inference to be recovered based on the intermediate

output of convolutional neural networks (CNNs) [9]. The adversary could deploy model

inversion attack to recover the medical images of any target patient and infer private health

conditions accordingly.

The risk of privacy leakage makes medical institutions increasingly less willing to share

their data. This inevitably slows down the research progress at the intersection of deep
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learning and healthcare. Thus, it is necessary to evaluate the potential hazards of various

attack models on medical data and develop corresponding defenses on such attacks.

In this work, we attempt to implement two types of attack models on medical data, which

are shown in Figure 1. We use attribute inference attack to infer the sensitive attributes

in medical record data according to the rest attributes and class labels, when training a

deep learning model. We also employ model inversion attack to recover the medical image

data based on the intermediate inference output. Against those attacks, we present two

types of inference attack defense mechanisms. Label perturbation provides a way to add

noise into confidence scores and thus hinders the privacy leakage from model prediction.

Model perturbation is proposed to add noise into parameters of deep network models and

thus disturb the privacy disclosure in model inference. Experimental results show that both

attacks successfully disclose the private medical information used in training and inference

processes, and the attacks are not effective any more under the proposed inference attack

defense mechanisms.

The main contributions of this work are summarized as follows.

• We evaluate attribute inference attack and model inversion attack on medical data.

That demonstrates the privacy vulnerability of deep learning models, which limits

their applications in medical area. As far as we know, we are the first to evaluate the

model inversion attack on medical data.

• We present inference attack defenses based on label perturbation and model pertur-

bation. The mechanisms can significantly alleviate the privacy breaches of medical

data in both training phase and inference phase.

3.2 Related Work

There are different types of privacy attacks against training and inference data. These

attacks severely threaten patients’ privacy when deep learning is used in the healthcare

area. The first type is membership inference attacks [18, 8], which tries to infer whether a

target sample is contained in the dataset. The second type is model encoding attacks [19],
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the adversary who directly accesses to the training data can encode the sensitive data into

the trained model and then retrieve the encoded sensitive information. The third type is

attribute inference attack, given some attributes of the dataset, the adversary could infer

the sensitive attribute. The fourth type is model inversion attack, given a deep learning

model and some features of input data, the adversary could recover the rest of the features of

the input data. In this work, we choose two prominent inference attacks, namely attribute

inference attack and model inversion attack, which may reconstruct medical images and

clinical reports and be more threatening to patients’ privacy. We evaluate their attack

performance on medical records and medical images, and then propose defense methods

against these two inference attacks.

Attribute Inference Attack Attribute inference attack is studied in various areas.

Gong et al. [20, 21] studied attribute inference attacks to infer the users’ sensitive attribute

of social networks by integrating social friends and behavioral records. May et al. [22]

proposed a new framework for inference attacks in social networks, which smartly integrates

and modifies the existing state-of-the-art CNN models. Qian et al. [23] demonstrated that

knowledge graphs can strengthen de-anonymization and attribute inference attacks, and

thus increase the risk of privacy disclosure. However, few research evaluate the attribute

inference attacks in the healthcare area. In this work, we adopt the same attribute inference

attack in [7] which infers the sensitive attributes based on confident cores in predictions and

is conveniently deployed on healthcare data. We propose a label perturbation method to

effectually defend against the attribute inference attack.

Model inversion attack Model inversion attack is an outstanding attack to recover

the input data of deep neuron networks. He et al. [7] proposed a model inversion attack

to recover input images via the confidence score generated in the softmax model. He et

al. [9] proposed a model inversion attack to reconstruct input images via the intermediate

outputs of the neural network. Hitaj et al. [24] utilized Generative adversarial network

(GAN) to recover the image in a collaborative training system. In this work, we adopt the

same model inversion attack in [9] by considering the medical collaborative deep learning
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scenario, where two hospitals hold different parts of a deep neuron network and collaborate

to complete the training and inference via transmitting the intermediate output information.

As far as we know, we are the first to evaluate the model inversion attack on medical data

via intermediate output information. We propose an effective and convenient perturbation

method instead of using the defenses suggested in [9], i.e., combining Trust Execution

Environment and Homomorphic Encryption that requires special architecture support and

huge computational burden.

Other Attacks against Machine Learning Besides attribute inference attack and

membership inference attack, there exist numerous other types of attacks against ML models

[25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. A major attack type is adversarial

examples [34, 32, 33, 36]. In this setting, the adversary tries to carefully craft noise and add

them to the data samples aiming to mislead the target classifying. In addition, a similar

type of attack is backdoor attack, where the adversary tries to embed a trigger into a trained

model and to exploit when the model is deployed [27, 30, 35]. Another line of work is model

stealing attack, [37] proposed the first attack on inferring a model’s parameters and Other

related works focus on inferring a model’s hyperparameters [31, 38].

Possible Defenses To defend against the privacy attack, many researchers focused

on defense methods. Trust Execution Environment [40] is specialized hardware for secure

remote computation and data confidentiality protection against privileged adversaries. Ho-

momorphic Encryption [41] allows the training and inference operations on encrypted input

data, so the sensitive information will not be leaked. However, these methods require spe-

cial architecture support and a huge computational burden. Differential Privacy (DP) [42]

adds noise into the training model and there exits a trade-off between usability and privacy.

However, our attacks mainly focus on the inference phase rather than the training phase

and thus the DP methods are not suitable to defend against our attacks. We propose label

perturbation that adds noise in the predicted label to defend attribute inference attack and

mode perturbation that adds noise into the after-trained model to defend model inversion

attack. The proposed methods are effective and convenient for application. We also give
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the results of the trade-off between model accuracy and attack performance. These results

provide an intuitive guide for medical staff to adjust the defenses against the two inference

attacks.

(a) Attribute inference attack

(b) Model inversion attack

Figure 1: Inference attack models and defense approaches for medical deep learning.

3.3 Inference Attack Models

3.3.1 Vulnerability of Medical Deep Learning

Via the use of deep learning algorithms, medical institutions can improve the rate of

correct diagnosis [2]. In the training phase, deep neural networks are trained based on input

medical data and output diagnosis results to learn the inherent relationships between them.

In the inference phase, the after-trained deep neural networks can achieve high-accurate
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diagnosis results given new medical data as input. However, during the training phase

and inference phase, the adversary could adopt attack methods to infer or recover the input

medical data which contains sensitive information of patients. In this work, we evaluate two

prominent inference attacks, i.e., attribute inference attack and model inversion attack. As

for attribute inference attack, we assume that the adversary knows the attributes of all the

patients except the sensitive attributes when the patients’ medical records are used as input.

This assumption applies to the cases that the attacker can search the rest attributes such as

age and gender from the public database. The adversary utilizes the inherent relationships

among attributes and labels to recover the patients’ sensitive attributes of input medical

records. As for model inversion attack, we take the vulnerability of collaborative deep

learning as an example, which provides an efficient paradigm to accelerate the learning and

prediction process. The fundamental idea is to split a deep neural network into two parts.

For example as Figure 1b, in medical collaborative learning, the first few layers are stored

in Hospital A while the rest are kept in Hospital B. In the collaborative training mode

[43], Hospital A sends the outputs of the cut layer to Hospital B and then retrieve the

gradients of the cut layer. In the collaborative inference mode [9, 44], Hospital A sends the

outputs of the cut layer to Hospital B and retrieves the final results. The model training and

inference processes are collaboratively carried out without sharing the raw data. However,

the shared intermediate output information may be leaked during the transmission. Given

the information, the adversary could recover the raw data with model inversion attack and

thus compromise the data privacy of Hospital A.

3.3.2 Attribute Inference Attack

As shown in Figure 1a, attribute inference attack [7] enables an adversary to deduce

sensitive attributes in patients’ medical records. In this setting, the goal of the adversary

is to guess the value of the sensitive features of a data point, e.g., sex attribute, given only

some public knowledge about it and the model. Let (x, y) denote a data point where x

denotes the input patient information, and y is the patient outcome. We assume that a
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deep network f(x) takes the input x to predict the output y. The network’s parameters

are optimized by reducing the discrepancy between the predicted value f(x) and the true

outcome y measured by the cross-entropy loss. Let t be a sensitive variable in x that an

attacker wants to learn, given the rest of the values in x. We assume that the target t

is drawn from a finite set of possible values t1, ..., tm and the adversary has the ability to

obtain the marginal priors of each ti. For each ti, the adversary counterfactually assumes

that t = ti, and computes f(xi). It then computes the error between the true f(x) and

f(xi) with the Gaussian error function. The adversary can choose the value ti based on the

largest likelihood calculated with the Gaussian error and the marginal priors.

3.3.3 Model Inversion Attack

As shown in Figure 1b, model inversion attack [9] enables an adversary to recover an

input medical image x0 from the corresponding intermediate output v0 = fθ(x0), where fθ

is the former layers of the model in Hospital A. We consider the black box attack setting,

where the adversary does not know the structure or parameters θ of fθ but he could query

the black-box model, i.e., he could input the arbitrary data X into the model and observe

the intermediate outputs fθ(X). This assumption happens to the use case where Hospital

A releases its APIs to other medical entities as training and inference services. In this

setting, we build an inverse network model that learns the inverse mapping from output to

input without the original model information. Roughly, the inverse model gω ≈ f−1
θ can

be regarded as the approximated inverse function of fθ, where v = fθ(x) is input and x is

output.

Algorithm 1 shows the detailed model inversion attack consisting of four phases. In

the observation phase, the adversary uses a cluster of samples X = x1, · · · , xn as inputs to

query fθ and obtain V = fθ(x1), · · · , fθ(xn). Here the sample set X is assumed to follow

the same distribution of x0. The assumption applies to the case that the radiologic images

usually follows the same distribution. In the training phase, the adversary trains the inverse

network gω by using V as inputs and X as targets. We exploit the l2 norm in the pixel
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space as the loss function, which is given as

l(ω;X) =
1

n

n∑
i=1

∥∥gθ2(fθ1(xi)
)
− xi

∥∥2

2
. (4)

In particular, the structure of gω is not necessarily related to fθ. In our experiment, an en-

tirely different architecture is leveraged for the attack. In the recovery phase, the adversary

leverages the trained inverse model to recover the raw data from the intermediate value:

x′0 = gω(v0).

Algorithm 1 Model Inversion Attack Algorithm

Input: input data X = x1, x2, · · · , xn of the same distribution from target data x0, output
v0 of target data, batch size B, epoch number E, learning rate η
Output: recovered data x′0
1: query the model by input data V = fθ(X)
2: initialize ω0

3: for each epoch t ∈ T do
4: β ← (split V into batches of size B)
5: for each batch b ∈ β do
6: ωt+1 ← ωt − η∇l(ωt; b)
7: end for
8: end for
9: recover the target data x′0 = gθ(v0)

10: return x′0

3.4 Inference Attack Defense Mechanisms

3.4.1 Label Perturbation Based Protection

We apply randomized responses [45] to protect the learning model output labels of

each data sample. Intuitively, given a flipping probability p, for a binary classification, the

predicted label y will be flipped with p. Similarly, if there are C (c > 2) classes, there is p

probability that the predicted label yi will be replaced. If the predicted label yi is going to be

replaced, there is 1/(c−1) probability that the label yi will be substituted by the label yj for

all j 6= i. The inference accuracy of the attribute inference attack will deteriorate when the

adversary obtains the inaccurate predicted label. Although the training performance can

be influenced by the label perturbation, by controlling the flipping probability p carefully,
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we can still have an acceptable training model.

3.4.2 Model Perturbation Based Protection

To defend against model inversion attack, we adopt model perturbation in CNN model.

Different from the label perturbation that adds noise into predicted label, model perturba-

tion adds noise into model parameters θ (weights and bias) before the forward propagation

is implemented. Specifically, we use Gaussian mechanism with expectation 0 and variance

σ to generate noise and add it into model parameters, which is given as

θ = θ +N (0, σ2I). (5)

Accordingly, the output of the cut layer is perturbed in collaborative deep learning. Model

inversion attack becomes difficult to build an accurate mapping from the output to the

input image and thus the image recovery quality decreases.

3.5 Performance Evaluation

3.5.1 Attribute Inference Attack

Experiment Settings We evaluate attribute inference attack and label perturbation

approach on two public medical record datasets: cardiovascular disease dataset and heart

disease dataset. The cardiovascular disease dataset consists of 70, 000 records, 11 feature

attributes including sensitive information such as age and gender, and labels indicating

the presence or absence of cardiovascular disease. Heart disease dataset [46] contains 13

attributes, 303 instances, and labels referring to the presence of heart disease in individual

patients. We split the dataset into training set and testing set with 80% and 20%. Our

experiments use a neural network with 4 fully connected layers.

Evaluation Results As described in Section 3.3.2, in the experiments, we assume the

attacker can obtain other information of a patient except for only one attribute and the

marginal prior knowledge of the targeted attribute. We implement each experiment 10
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(a) Fasting blood sugar (b) Gender

Figure 2: Attribute attack performance on the “heart disease” dataset.

(a) Smoking (b) Alcohol intake

Figure 3: Attribute attack performance on the “cardiovascular disease” dataset.

times and show the mean value as the curve and the standard deviation as the error bar.

The flip probability denotes the defense level. The higher flip probability means better

defense. When the flip probability is equal to 0, it means no defense mechanism is applied.

Figure 2 and 3 demonstrates the attack and defense performance on two datasets. We

select two attributes from the “heart” dataset, fasting blood sugar and gender, as the

attacker’s targets. For the “cardiovascular” dataset, we choose smoking and alcohol intake

as the target attribute. We can observe that the attack accuracy reduces with higher flip

probability. Also, the testing accuracy degrades slightly, if the defense level is high.
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3.5.2 Model Inversion Attack

Experiment Settings We evaluate model inversion attack and model perturbation-based

defence on two public mammography datasets: MIAS [47] and CBIS-DDSM [48]. All the

images of MIAS dataset have been padded/clipped to 1024× 1024. A total of 280 samples

are obtained from MIAS for training (181 normal, 57 benign, 42 malignant) while 50 samples

are used for testing (26 normal, 12 benign, 12 malignant). We clip and compress all the

images of CBIS-DDSM to 256 × 256. A total of 2, 326 samples are obtained from CBIS-

DDSM for training (1, 263 benign, 1, 063 malignant) while 772 samples are used for testing

(419 benign, 353 malignant). We adopt an CNN with 6 convolution layers and 2 fully

connection layers on the two datasets. Each convolution layer has 32 channels and kernel

size is 3. There is a maxpool layer after every two convolution layers. The model is split

at 2nd, 4th, and 6th convolution layers. We select ADAM as our optimizer and set the

learning rate as 0.001.

Figure 4: Recovered MIA inputs via model inversion attack.
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Figure 5: Recovered CBIS-DDSM inputs via model inversion attack.

Table 1: MSE, PSNR, SSIM for model inversion attack with different split layers

MIAS DDSM
layer 2 layer 4 layer 6 layer 2 layer 4 layer 6

MSE 2.925 55.042 88.839 1.672 29.649 110.460

PSNR 44.162 31.039 28.995 46.385 33.962 28.269

SSIM 0.999 0.994 0.990 0.999 0.995 0.984

Evaluation Results Figure 4 and Figure 5 show the recovered images via model inversion

attack. When the split point is in a lower layer, the recovered images have high quality.

When the split point is in a deeper layer, the recovered images become relatively blurry

and lose certain details. But even if in the recovered image from the output of the 6th

layer, the details within the breasts can still be clearly identified. The attackers could

diagnose the patient’s breast health given the recovered mammography image with the help

of classification models or radiologists.

To quantify the attack results, we adopt three metrics, Mean-Square Error (MSE),

Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) [49], which are

shown in Table 1. MSE reflects pixel-wise similarity while PSNR measures the pixel-level

recovery quality of the image. SSIM measures the human perceptual similarity of two
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images by considering their luminance, contrast, and structure. It ranges from [0, 1], where

1 represents the most similar. When the split point is in a deeper layer, the recovered inputs

have higher MSE, PSNR, and lower SSIM, which means the attack becomes harder.

Figure 6 and Figure 7 show the defense performance of model perturbation with dif-

ferent noise scale when the split point is in the 4th layer. We experiment Gaussian noise

distributions with scale 0.02 to 0.05 and central 0. When the scale increases, the recovered

inputs become more blurry and lose more details.

Figure 6: Recovered MIAS inputs with and without model perturbation.

3.6 Conclusion

In this work, we have evaluated two types of inference attacks on medical images and

clinical records, and demonstrated that these attacks can infer sensitive attributes of med-

ical health records as well as recover medical images at high fidelity. Our research finding

exposes the risk of privacy leakage for using deep learning models in training medical data.

To circumvent this problem, we proposed inference attack defenses based on label perturba-

tion and model perturbation. Experimental results showed that the proposed defenses can
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Figure 7: Recovered CBIS-DDSM inputs with and without model perturbation.

effectively defend the malicious inference attacks while the deep learning performance can

still be preserved commendably. The experimental results and the approaches presented

help to raise awareness about the privacy issues of deploying deep learning networks in

medicine and potentially open up a new vista to ensure patients’ privacy and confiden-

tiality in the increasing adaptation of AI-enabled information infrastructure in healthcare

delivery and medical research.
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4 Adaptive Privacy Preserving Deep Learning Algorithms

for Medical Data

4.1 Introduction

Deep learning holds great promise in improving healthcare and medicine. Examples

include but not limited to: i) deep neural networks have exceeded expert performance on

referral recommendation of sight-threatening retinal diseases [50]; ii) convolutional neural

networks trained with more than 100,000 radiographs have shown competitive diagnostic

accuracy compared to six board-certified radiologists while being two orders of magnitude

faster [51]. Accenture estimates that artificial intelligence, in which deep learning is a

crucial component, could save the healthcare industry $150 billion annually by 2026. For

deep neural networks to work well, they need to be trained with a large number of examples.

Unfortunately, sensitive information, including patient images and electronic health records,

can be reconstructed with high fidelity from deep neural networks using privacy attacks

during or after the network training process. To make the situation worse, the common

strategy of data anonymization is not safe enough because adversarial parties can re-identify

individuals in anonymized datasets by combining the data with background information.

A notable experiment shows that combining public anonymized medical records and voter

registration records can successfully identify the personal health information of a former

Massachusetts governor, which is called linkage attack [52].

There are several popular types of attacks, such as (i) attribute attacks [53] which infer

sensitive pieces of information (e.g, whether a patient has cancer) given the patient’s public

record and the ability to query the machine learning model; (ii) membership inference

attacks [8] whose goal is to find out if a patient record is in the pool of the data used to

train the machine learning model; and (iii) model inversion attacks [7] which attempt to

reconstruct the entire patient data given only access to an intermediate layer of the deep

network. As the medical records contain patients’ sensitive data, realizing the full potential

of deep learning in healthcare requires an innovative approach for building and deploying
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deep neural networks without sacrificing patients’ privacy.

Differential privacy (DP) [14] as a golden standard of privacy provides strong guaran-

tees on the risk of compromising the sensitive users’ data in machine learning applications.

Intuitively, it works by adding random noise to the model parameters so that an adversary

with arbitrary background knowledge cannot confidently conclude whether a users’ data is

used in training a model or not. There are many papers focusing on designs for differen-

tially private machine learning algorithms including empirical risk minimization and deep

neural networks. The approaches to achieve private empirical risk minimization mainly

include: output perturbation [54, 55, 56, 57] (add DP noise to model parameter obtained

after the training), objective perturbation (add DP noise to objective function) [54, 58, 59],

and gradient perturbation [60, 61, 62, 63] (add DP noise to the gradient). Note that the

output and objective perturbation methods require the (strong) convexity of the objective

function, which makes them impossible to apply in deep learning problems. Hence, injecting

differentially private noise into gradient is a proper way to obtain a private deep learning

model. The first work employed gradient perturbation method to achieve differential pri-

vacy on deep learning is called differentially private stochastic gradient descent (DPSGD)

algorithm [64], which is also adopted by Google’s TensorFlow Privacy. Since the gradient

norm is usually unbounded in deep network optimization, gradient perturbation can be used

after manually clipping the gradients at each iteration. In [64], the authors utilized norm

gradient clipping to bound the effects of an individual data sample on the gradients, which is

required for generating noise in the gradient perturbation method. Then, the differentially

private noise is injected into the clipped gradient. As we can update the gradient of each

step differentially privately, it is guaranteed that the overall deep learning model is private.

Although [64] utilizes the moments accountant method to achieve a tight analysis of the

privacy loss over the large number of iterations, the classification performance of DPSGD

is still far inferior to the original SGD.

In this work, we aim to build an accurate deep learning model without compromising

medical data privacy. To be specific, we first clip the gradient with l2 norm and then inject
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linear decaying Gaussian noise to the gradient of each step. Our salient contributions are

summarized as follows.

• We propose a novel adaptive differentially private deep learning algorithm to protect

medical training data. Intuitively, compared with the DPSGD algorithm, the advan-

tages of the proposed algorithm include: a) We carefully adjust the scale of noise in

each iteration controlled by a decay rate to reduce the negative noise addition and

guarantee the convergence property of deep learning algorithm; b) instead of using the

moments accountant applied in DPSGD [64], we adopt the truncated concentrated

differential privacy (tCDP), which provides a simple, explicit, and tight privacy bound

analysis on adaptive noise injection while avoiding the numerical computation of log

moments. Moreover, tCDP can provide privacy amplification via random sampling

compared with zero concentrated differential Privacy (zCDP) [65].

• We evaluate the performance of the proposed adaptive DP deep learning algorithm

based on real-world chest radiographs. As far as we know, this is the first work focusing

on multi-label classification tasks on medical datasets. We compare the performance of

the proposed model with DPSGD on the same privacy preserving level. Our extensive

experimental results show that the convergence of the proposed model is faster and

the accuracy is higher. Moreover, our hyperparameter settings may pave the way for

further the application of differentially private deep learning in medical domains.

4.2 Related Work

4.2.1 Privacy threats in machine learning

Many attack models have been proposed in the literature. The membership inference

attack [8] is proposed to infer whether the training dataset consists of a specific data sample.

Fredrikson et al. introduced model inversion attack in [7], where the adversary can recon-

struct training samples with some known features and the access to the machine learning

model. In [66], the authors proposed a power side-channel attack model to recover the input
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data. Tramer et al. proposed the model stealing attack [37], where the adversary only has

the access to a target model but not has any other knowledge of the model, and aims to

generate a model that has similar performance of a target model. Moreover, other works

focus on inferring the hyperparameters of the learning model [31, 38].

4.2.2 Privacy preserving empirical risk minimization

Recently, many researchers focus on private empirical risk minimization (ERM) prob-

lems [67, 68]. In [69], the authors designed a differentially private algorithm for online

linear optimization problems with optimal regret bounds. The authors in [70] investigated

the relationships between learnability and stability and privacy and concluded that a prob-

lem is privately learnable only when existing a private algorithm that can asymptotically

minimize the empirical risk. [71] proposed private incremental regression and a private in-

cremental ERM problem combining continual release to analyze the utility bound of several

algorithms. In [72], the authors provided small excess risk in the generalized linear model

with sampling based method for entropy regularized ERM. There are also some papers tar-

geting at private ERM learning on high dimensional datasets. The authors in [73] provided

differentially private algorithms for sparse regression problems in high-dimensional settings.

Smith et al. [74] used an algorithm based on a sample efficiency test of stability to extend

and improve the results. In [75], the authors introduced Gaussian width of the parameter

space in the random projection to derive a risk bound by using a private compress learn-

ing method in ERM algorithms. In distributed machine learning, [62, 76, 77] proposed

differentially private alternating direction method of multipliers (ADMM) algorithms with

Gaussian mechanism.

4.2.3 Privacy preserving deep learning

As differential privacy can provide strong privacy guarantee, differentially private deep

learning models have attracted enormous attentions. Abadi et al. [64] proposed the dif-

ferentially private stochastic gradient descent (DPSGD) algorithm and adopted moments
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accountant (MA) to calculate the overall privacy budget. However, there is no closed-form

mathematical expression to estimate privacy budget. In order to improve the utility of the

DPSGD while preserving privacy, the authors in [65, 78] designed several adaptive differen-

tially private deep learning models by allocating different privacy budgets to each iteration

and employed zero-concentrated differential privacy (zCDP) to analyse the privacy loss dur-

ing the training. The difference between this paper and our proposed model is the design

of the decay function and the DP definition. In our work, we adopted tCDP for privacy

bound analysis. The tCDP is the relaxation of zCDP, which can provide privacy amplifica-

tion via random sampling compared with zCDP. In [79], the authors trained an ensemble

teacher model by combining a set of teacher models, which are trained over disjoint training

datasets and the author also trained the differentially private student model by querying

the ensemble teacher to label public data. Furthermore, Xie et al. [80] and Zhang et al. [81]

focused on achieving differential privacy on Generative Adversarial Nets (GAN). In [57, 81],

the authors injected differentially private noises to the loss function based on the functional

mechanism. However, none of these works provide utility guarantees for their algorithms.

4.3 Adaptive Differentially Private Deep Networks

4.3.1 Threat model

Before presenting the adaptive differentially private deep learning model, we first de-

scribe the threat model. As DP can provide strong privacy guarantee, it is a worst-case

notion of privacy. DP ensures that although attackers can have all information from the

training dataset except one data sample, they still cannot get this data sample after launch-

ing attacks [14]. Specifically, in this work, we consider the white-box attack [9] where the

adversary has the full knowledge of our deep networks, including their architectures and

parameters. In other words, attackers can access to the published model instead of the

training process. The goal of the proposed scheme is that even though the attackers have

the ability to obtain other data samples in the training dataset, they cannot infer the target

training data sample.
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4.3.2 Privacy preserving deep learning model

We assume there are m training data samples and each data sample is denoted by

{xi, yi}, where yi is the label. The loss function of the training model with parameter w is

defined as L(w, x). The gradient of the loss function ∇L(w, x) is updated by stochastic gra-

dient descent (SGD) during each iteration. In order to preserve privacy of the training data,

the differentially private noise is supposed to add to the gradient in each iteration. Based

on Theorem 1, when calculating how much noise needs to be injected into the gradient, it is

supposed to have the sensitivity of the gradient, which is difficult to characterize. Therefore,

we control the sensitivity by clipping the gradient in l2 norm. With a clipping threshold C,

we can replace the gradient gt of each step by 1
s

∑
i∈St

(
∇L(wt, xi, yi)/max(1, ||∇L(wt)||2

C )
)

,

where s is the batch size. Then, we can add Gaussian noise to the clipped gradient. Con-

sequently, each SGD step is considered as differentially private. Based on the composition

theorem of differential privacy, the overall model is supposed to be differentially private

with accumulated privacy budget.

When injecting Gaussian noise to the gradient, the privacy budget will be accumulated

due to the iterations within each epoch as described in Lemma 2. If the total privacy

budget is certain, we need to allocate it to each training step. The noise scale of Gaussian

mechanism is decided by the privacy budget allocated to each epoch, which influences the

final model accuracy. Our purpose is to achieve better accuracy of the differentially private

training model without compromising data privacy. Therefore, we propose the adaptive

differentially private deep learning model, which is inspired by the adaptive learning rate

strategy. During the practical training processes, the learning rate is recommended to be

decreased instead of fixed, in order to improve the model performance. Hence, in the DP

learning model, we propose to reduce the injected noise along with the training iterations. In

other words, in order to increase the accuracy, it is intended to add smaller and smaller noise

to the gradients through the training time. Therefore, we propose the adaptive differentially

private deep networks by injecting linear decaying Gaussian noise to the gradient during

the training.
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The overall procedure of our mechanism is shown in Algorithm 2. Note that we adopt

tCDP in our algorithm instead of approximately differential privacy since its composition

property is more straightforward for our adaptive noise addition. In each iteration of our

algorithm, a batch of examples St with size s is sampled from the training dataset, and

the algorithm computes the gradient of the loss on the examples in the batch and uses the

average in the gradient descent step. The gradient clipping bounds per-example gradients

by l2 norm clipping with a threshold C. After gradient clipping, the sensitivity of the

average gradient is 2C
s . We next inject linear decaying Gaussian noise to the gradients at

every training iteration with a decay rate R. This is in contrast to the mainstream approach

adopted by Google’s TensorFlow Privacy, which employs the same noise scale in each step of

the whole training process. Specifically, we apply the Gaussian mechanism to add random

noise following N (0, σ2
t I) distribution to the network’s gradients. The noise variance varies

with a linear decay model as σ2
t+1 = Rσ2

t , where R ∈ (0, 1). Moreover, by considering the

privacy composition between iterations and privacy amplification by sampling, the privacy

guarantee of Algorithm 2 is provided in the next section.

4.3.3 Privacy guarantee

We employ the composition theorem of Truncated Concentrated Differential Privacy

(tCDP) to analyze the cumulative privacy loss of differentially private stochastic gradient

descent (DPSGD), which was developed to accommodate a larger number of computations

and provides a sharper and tighter analysis of privacy loss than the strong composition

theorem of (ε, δ)-DP. One popular way to track the privacy loss of DPSGD is the Moments

Accountant (MA) method [64], which is adopted by Google’s TensorFlow Privacy. As for

the proposed approach, a Gaussian mechanism with a linearly decaying variance is applied

to DPSGD to improve the model accuracy.
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Theorem 2 Algorithm 2 provides (ε, δ)-differential privacy.

Proof. Since the utilization of Gaussian Mechanism, each iteration is ρt = 2C2/(s2σ2
t )-

tCDP (Lemma 1). By Lemma 2 and Lemma 41, and the decay rate R of noise scale, we

derive that the total privacy loss is (ρtotal, ωtotal)-tCDP with

ρtotal =
13(s/m)2C2(1−RT )

2σ2
0(RT−1 −RT )

(6)

and

ωtotal =
log(m/s)σ2

0R
T

2C2
, (7)

where s is the batch size, m is the total number of private training dataset, C is the

clipping threshold. By utilizing Lemma 3, we can say that our algorithm satisfies (ρtotal +

2
√
ρtotal log (1/δ), δ)-DP, which means ε = ρtotal + 2

√
ρtotal log (1/δ).

Algorithm 2 Adaptive Differentially Private Deep Learning

1: Input: Private training dataset {xi, yi}mi=1, loss function L, learning rate η, gradient
norm bound C, decay rate R ∈ (0, 1), batch size s.

2: Output: Differentially private model wT .
3: Initialize w0, σ2

0.
4: t = 0.
5: for t = 0, · · · , T − 1 do
6: Randomly take a batch of data samples St from the training dataset with |St| = s.
7: Compute the gradient with gradient clipping

gt = 1
s

∑
i∈St

(
∇L(wt, xi, yi)/max(1, ||∇L(wt)||2

C )
)

.

8: Add adaptive Gaussian noise gt = gt +N (0, σ2
t I) with σ2

t+1 = Rσ2
t .

9: Update the model parameter wt+1 = wt − ηgt.
10: end for

Compared with MA, our proposed approach provides an explicit closed-form mathemat-

ical expression to approximately estimate the privacy loss. It is easy to compute and can be

useful when the users would like to decide proper training time, noise scale, and sampling

ratio during the planning phase.

1Several conditions for privacy amplification via sampling (Lemma 4) are required.
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(a) Atelectasis (b) Cardiomegaly

(c) Consolidation (d) Edema

(e) Pleural effusion

Figure 8: Comparison between non-private model, DPSGD and our adaptive DP model.
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4.4 Performance Evaluation

In this section, we demonstrate the experimental results of our proposed scheme on one

medical dataset CheXpert, and two popular image datasets MNIST, and CIFAR10.

4.4.1 Experiment settings

CheXpert. We conduct experiments on the CheXpert dataset [82], which is a large

dataset containing 224,316 chest X-rays of 65,240 patients. There are 5 classes correspond-

ing to different thoracic pathologies: (a) Atelectasis, (b) Cardiomegaly, (c) Consolidation,

(d) Edema, and (e) Pleural Effusion. The images with size 320×320 pixels are fed into

the pre-trained DenseNet-121. We only re-initialize the fully connected layer and fix the

other convolutional layers, which will not have influences on the privacy leakage [64]. For

illustrative purposes, we use 10,000 radiographs for training and 234 for testing. We use

the test set provided by Stanford CheXpert to make our results comparable to those in

the literature. The test set is small because each sample requires manual annotations by

3 board-certified radiologists to create the ground truth label. For this reason, we cannot

mix up noisy labels from the training set with well-validated labels from the test set [82].

Here, we introduce the default values of different parameters in the proposed adaptive

differentially private deep learning model. We set the batch size s as 100, and the sample

rate s
m = 0.01. We assume that the gradient norm clipping threshold C is 1, the initial noise

scale σ0 is 2.8, the noise decay rate R is 0.99, and the broken probability δ is 10−4. Recall

the analysis in Section 4.3.3, we can obtain the relationship between these parameters and

the privacy with equations (6) and (7). As long as we have fixed the privacy budget ε, we

can easily calculate the other parameters with these equations. We employ the area under

the curve (AUC) to evaluate the non-private and private deep learning models.

MNIST The handwritten digits dataset [83] consists of 60000 training images and

10000 testing images, which are 28×28 gray scale images. We stack two convolutional layers

with max-pooling and two fully-connected layers. Instead of using ReLU as the activation

functions, we use tanh in the MNIST model as suggested in [84], which can provide better
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(a) decay rate (Fixed parameters: σ = 2.8, C = 1, δ = 10−4).

(b) initial noise scale (Fixed parameters: R = 0.99, C = 1, δ = 10−4).

(c) clip threshold (Fixed parameters: R = 0.99, σ = 2.8, δ = 10−4).

Figure 9: The impact of parameters on the training model performance (Red curve is tesing
AUC, black curve is training AUC and the blue curve is epoch number).

performance.

CIFAR10 The CIFAR10 [85] dataset consists of 10 classes 32×32 color images. There

are 50000 training examples and 10000 testing examples. We use the pretrained ResNet18

as the training model for this dataset and re-initialize the fully connected layer. Then, we

train the model with the proposed mechanism.

4.4.2 Experiment results

CheXpert. As introduced in section 4.4.1, there are 5 labels of each data sample in the

dataset. Hence, we show five figures for each experiment. Firstly, we compare the testing

AUC of the proposed adaptive model with DPSGD and non-private model in Figure 8. In

the experiment, we set the epoch number as 8. The privacy budget ε varies according to
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different initial noise scales in the DPSGD and the proposed adaptive DP model. The figure

shows that with a higher epsilon value, the model accuracy is lower, since a larger epsilon

means less noise injected to the gradient. We can also observe that our proposed adaptive

DP model outperforms the DPSGD model for all thoracic conditions across different privacy

budgets. More specifically, with the same privacy budget ε = 2 and 8, the adaptive DP

model can reach the average of 80% testing AUC for all of the five labels, while the DPSGD

only can achieve approximately 60% testing AUC. We can conclude that with adaptive DP

model, the performance will not drop too much and the patient’s privacy is preserved.

In Figure 9, we demonstrate the impact of different parameter settings of the proposed

adaptive differentially private deep learning model. We explore the influences of four param-

eters, noise decay rate R, initial noise scale σ0, and clipping threshold C on the performance

of the adaptive DP model. In the experiments, we keep the privacy budget fixed as ε = 8.

When the experiment is focusing on a specific parameter, we only vary values of this pa-

rameter and adjust the number of epochs to maintain the fixed privacy budget. In other

words, only the discussed parameter and epoch number change in each experiment. With

a larger noise decay rate, a higher initial noise scale, or a lower clipping threshold, it costs

less privacy budget during each iteration. Therefore, we can achieve more epochs during

training as shown as the blue solid curve in Figure 9. Moreover, we can observe that the

model performance is better with a higher decay rate, a higher initial noise scale, and a

smaller clip threshold, since the privacy budget spends slower as the number of training

epochs increases.

MNIST and CIFAR10. We repeat the experiments on MNIST and CIFAR10 datasets

and the experimental results are shown in Table 2. We compare the test accuracy by

applying DPSGD and the proposed adaptive model. We first train the DPSGD model under

a desired epoch number, keep the privacy budget ε value and calculate the parameters of

the adaptive model with equations (6) and (7). For MNIST dataset, the test accuracy of

non-private model can reach 99%. With the privacy budget ε equal to 1.19, 3.01, and 7.1,

test accuracy of the proposed adaptive model is 1.09%, 0.25% and 0.2% higher than that of
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Table 2: Summary results on MNIST and CIFAR10.

Dataset
Privacy Accuracy

Budget (ε, δ) DPSGD Proposed

MNIST

Non-Private 99%
(1.19, 10−5) 96.61% 97.7%
(3.01, 10−5) 97.82% 98.07%
(7.1, 10−5) 97.97% 98.17%

CIFAR10
Non-Private 88.67%
(3.02, 10−5) 77.16% 83.15%
(7.03, 10−5) 81.42% 84.3%

DPSGD. For CIFAR10 dataset, the non-private model can get to 88.67% test accuracy in

90 epochs. Compared with the DPSGD model, with the privacy budget ε of 3.02 and 7.03,

test accuracy of the proposed adaptive model is promoted by 5.99% and 2.88%.

4.5 Conclusion

In this work, we propose the adaptive differentially private deep learning model. Intu-

itively, we first clip the gradient to bound the sensitivity, inject differentially private noise

with a specific decay rate based on the Gaussian mechanism into the clipped gradient, and

update the gradient with SGD. The proposed algorithm is easy to implement and signif-

icantly improve the performances on various well-known datasets. Because of the large

number of iterations in deep learning model, we adopt tCDP to obtain a tight bound of

privacy leakage, since tCDP can provide a tighter and closed-form mathematical expression

to estimate privacy budget compared with MA. Furthermore, tCDP can provide privacy

amplification via random sampling compared with zCDP. We also conduct experiments on

the public CheXpert dataset to verify the effectiveness of our adaptive differentially private

deep learning model. We aim to explore the potential of adaptive differentially private deep

learning applications in medicine. Moreover, we used the CheXpert that is a multi-label

classification task. As far as we know, there are no works focusing on medical datasets with

multi-label classification tasks.
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5 Differentially Private Functional Mechanism for Genera-

tive Adversarial Networks

5.1 Introduction

With the rapid development in cyber-physical systems and IoT systems, there is more

and more data available for data analysis tasks providing opportunities for new innovations.

In order to glean useful insights from huge data sets, many statistical models such as data

mining, machine learning etc., have been developed. With the statistical models being

developed and analyzed, it is certain that training data with large size are yielding desirable

results. Although huge amount of data is available and accessible in the big data era, there

are still some domains that have limited data for training, thereby affecting the performance

of the models. For instance, in the medical field, there is lack of data availability to train

a promising deep learning model on a particular disease, as it is impossible to access all

patients’ medical records to get the training data samples while obeying the privacy terms

and conditions.

Generative adversarial network (GAN), first proposed in [5] is a potential solution that

addresses the data scarcity problem in fields with limited data because of its ability to gen-

erate data similar to real data. Typically, GAN integrates deep learning and game theory

to train two models, generator and discriminator, so that the generator can generate high fi-

delity fake samples from latent space, that are supposed to be indistinguishable from the real

data samples. Despite the solid fundamental theories and impressive empirical experiments,

training the original GAN is relatively tricky and improving the quality of generated images

is still challenging. Deep convolutional GAN (DCGAN) proposed in [6] first attempted to

deal with this problem by applying convolutional neural networks (CNNs) in GAN to en-

able stable training and improve the applicability of the generated images. GANs and its

variants are being investigated to achieve effective results through data augmentation and

overcome training data insufficiency for the models.

Enormous synthetic data generated closer to real data by GANs, along with the deep
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learning algorithms is helpful in extracting meaningful information from data sets. GANs

can easily remember the training samples due to the high model complexity of deep neural

networks, since the density of learned generative distribution concentrates on the training

data points. Therefore, GANs without privacy considerations can have undesired drawbacks

and critical concerns, especially when training a model with sensitive data such as patients’

health records. For example, Arjovsky et al. in [86] presented that the training samples

could be recovered by repeatedly sampling from the distribution, and through active in-

ference attacks adversaries can learn the training samples from the generated high quality

data [24]. Thus, the data privacy problem in machine learning, especially the privacy of

the training datasets, is attracting more research attention since personal data is a valuable

asset in the data era.

To protect personal data, privacy preserving data publishing techniques should be im-

plemented, and models should be trained on such datasets with utility maximization as the

objective. Differential privacy is a state-of-the-art privacy preservation mechanism, which

can measure the difference in the output of an algorithm due to the presence/absence of a

single element in the original dataset. Therefore, it can ensure that the adversary cannot

infer any sensitive information. Papernot et al. in [87] employed teacher student model in

deep learning to provide privacy guarantee for training data. Nevertheless, the privacy loss

is proportional to the number of data in the public data set, which needs to be labelled. Xie

et al. in [80] proposed a differentially private GAN (DPGAN), where the Gaussian noise is

injected into the gradient of discriminator during the training procedure. This method is

proved to be powerful in [88]. However, the privacy budget accumulates with the training

steps, which implies that the data privacy will be disclosed due to the number of training

steps, hence existing designs are not a desirable solution.

To address these challenges of privacy leakage when publishing the original training

model and the privacy budget, we propose a novel Privacy Preserving Generative Adversial

Network (PPGAN) in this work. In the proposed PPGAN based on differential privacy, we

inject Laplace noise into the objective function of discriminator to protect the training data.
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As we inject Laplace noise into the objective function instead of perturbing the gradients,

the privacy budget will therefore not be affected by the amount of generated data and

the number of discriminator training steps. Our salient contributions are summarized as

follows:

• We propose a Privacy Preserving Generative Adversarial Network (PPGAN), where

the privacy of training data is guaranteed by the notion of differential privacy.

• To preserve the differential privacy, we leverage the functional mechanism to perturb

the objective function in the GAN. Specifically, we first approximate the objective

function of discriminator to a polynomial form by utilizing the Taylor Expansion.

Then we inject the Laplace noise into the coefficients of objective function. As we

leverage perturbed objective function during the training process, the privacy budget

becomes unaffected by the cardinality of the training set and also doesn’t accumulate

in each generator learning step.

• In performance evaluation, we conduct simulations to explore the efficacy of our pro-

posed PPGAN on benchmark dataset MNIST. The simulation results illustrate that

our PPGAN is supposed to generate real-like fake images under reasonable privacy

guarantee. In addition, comparing to the DPGAN proposed in [80], our proposed

PPGAN outperforms significantly.

5.2 Preliminaries

5.2.1 Generative Adversarial Networks

In generative adversarial networks (GANs) [5], two neural networks defined as discrim-

inator (D) and generator (G) are trained simultaneously to model a zero-sum game. The

generator aims to map from a random distribution pz in latent space to the real data distri-

bution pdata, hence the results of generator are supposed to be real-like fake samples. While

the discriminator is a classifier trying to distinguish whether an input is a real sample or a
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sample produced by the generator. Based on the feedback from the discriminator, the gen-

erator intends to generate better fake samples in order to deceive the discriminator, until

it produces closest real-like fake samples. Then, the learning of GAN comprises of find-

ing an optimal parameter y∗ for the generator by solving the following minimax objective

function,

min
y

max
w

f(y, w) := Ex∼pdata [log(Dw(x))] + Ez∼pz [log(1−Dw(Gy(z)))], (8)

where w is a discriminator parameter and y is a generator parameter. The output of

the discriminator D spans {0, 1} i.e., Dw(x) = 1, Dw(x) = 0, which indicates that the

discriminatorD classifies the sample x to be a real sample and generated sample respectively.

This learning ends with a generator parameter y that best approximates the optimal y∗.

5.2.2 Discriminator learning

The discriminator D updates the parameter w, given a fixed generator Gy. The objective

is to find the parameter w which maximizes f(y, w) with a fixed y. The loss function used

to learn the discriminator is presented as

fdisc(Lr, Lg) :=
1

m

∑
x∈Lr

log(Dw(x)) +
1

m

∑
z∈Lg

log(1−Dw(Gy(z))), (9)

where Lr is a batch of m real data randomly sampled from the training dataset and Lg is

a batch of m random vectors generated from the noise distribution pz. As shown in [5], a

gradient ascent optimizer is used to solve the above loss function fdisc.

5.2.3 Generator learning

The generator G updates the parameter y, given the new discriminator parameter w.

A gradient descent optimizer is used to solve the following generator loss function fgen over
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Figure 10: The framework of PPGAN.

the generator parameter y,

fgen(Lg) =
1

m

∑
z∈Lg

log(1−Dw(Gy(z))), (10)

where Lg is a new batch of m random vectors generated from the noise distribution pz.

5.2.4 Functional Mechanism

Functional mechanism [89] is an extension of the Laplace mechanism that injects differ-

entially private noise into the objective function of regression analysis. Directly publishing

the model parameter w in regression analysis compromises the privacy of data [88], due

to the relationship among model parameter w, objective function f(w) and data x. In

functional mechanism, the objective function f(w) is first represented in polynomial forms

through Taylor Expansion and then the Laplace noise is injected into the polynomial coef-

ficients of the expansion, providing a way for privacy preserving data publishing. Conse-

quently through functional mechanism, we can publish the noisy model parameter w derived

from the noisy objective function f(w) without disclosing data privacy.

The model parameter w is a vector containing several values wi . . . wd. We assume that

the product of model parameter values is φ(w) = wc11 w
c2
2 . . . wcdd , where c1 . . . cd ∈ N, and
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the set of the product φ(w) is Φj , where j is the order of the product φ(w) from a set

J = 1, . . . , j, . . . , J . Therefore, the polynomial representation of objective function f(w)

can be expressed as

f(w) =
∑
j∈J

∑
φ∈Φj

∑
x∈X

λφxφ(w), (11)

where λφx is polynomial coefficients. The Laplace noise is added to polynomial coefficients

of the Taylor expansion representation of f(w) as λφ =
∑

x∈X λφx + Lap(∆
ε ) and the noisy

objective function is denoted as

f(w) =
∑
j∈J

∑
φ∈Φj

λφφ(w), (12)

where ∆ = 2 maxx
∑

j∈J
∑

φ∈Φj
‖λφx‖1 [89]. Therefore, the model parameter w that mini-

mizes the noisy objective function f(w) satisfies ε-differential privacy.

5.3 Problem Description and Methodology

5.3.1 Problem Description

In this work, we suppose that a data provider would like to publish a database D with-

out compromising the privacy. Specifically, each row in the database D consists of public

variables Y and private variables X (X ∈ Y ). The goal is to generate a good representa-

tion X̂ of X that guarantees differential privacy. To this end, we propose a novel Privacy

Preserving GAN (PPGAN), a promising solution to learn a differentially private represen-

tation X̂ with desirable data utility. The architecture of PPGAN is shown in Figure 10.

The generator cannot directly access the real data X in the learning process, however, the

sensitive information is able to be propagated to the generator through gradients of the

discriminator. In order to protect the privacy of training data, in PPGAN, Laplace noise is

injected to the loss function of GAN. Consequently, sensitive data X is fed into the discrim-

inator D with a differentially private loss function. This discriminator is used to train a
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differentially private generator G to generate realistic data samples with privacy guarantee.

The main innovation of our work stems from achieving differentially private discriminator

learning based on functional mechanism.

Algorithm 3 Privacy Preserving Generative Adversarial Networks (PPGAN)

1: Input: privacy parameters (ε, δ), batch Lr and Lg with size m, total number of training
data M , number of generator iterations ng, number of discriminator iterations per
generation iteration nd, learning rates of discriminator and generator ηd, ηg.

2: Output: Differentially private generator G.
3: Initialization of discriminator parameter w and generator parameter y.
4: for ng iterations do
5: Take a random batch Lg of noise samples {zi}mi=1 from pz
6: Take a random batch Lr of real data samples {xi}mi=1 from pdata
7: for nd iterations do
8: Construct Taylor Expansion of the objective function as (15)
9: Inject Laplace noise into the coefficients to construct differentially private loss func-

tion f(w) (16)
10: Compute gradient ascent to update the discriminator:

w ← w + ηd∇f(w)
11: end for
12: Take another random batch of noise samples {zi}mi=1 from pz
13: Compute gradient descent to update the generator:

y ← y − ηg∇f(y)
14: end for
15: return y

5.3.2 Privacy Preserving Generative Adversarial Network

To achieve this goal, we first approximate the loss function of discriminator to polyno-

mial forms by utilizing Taylor Expansion. Then, we inject Laplace noise into polynomial

coefficients to reconstruct a perturbed loss function and derive a differentially private dis-

criminator to minimize this perturbed loss function.

Since the discriminator D is a neural network, we apply stacking operation to stack all

the hidden layers {h(1), h(2), · · · , h(k)} of the discriminator, denoted as h. Thus, we have
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the following expression of the discriminator loss function,

fdisc(Lr, Lg) =
1

m

∑
x∈Lr

log(Dw(x)) +
1

m

∑
z∈Lg

log(1−Dw(Gy(z))),

= − 1

m

m∑
i=1

(log(1 + e−hxiw
T

) + log(1 + ehziw
T

)),

= − 1

m

m∑
i=1

F1(H1(i, w)) + F2(H2(i, w)), (13)

where xi is i-th real data samples in batch Lr and zi is i-th noise samples in batch Lg. Here,

we assume F1(b) = log(1+e−b), F2(b) = log(1+eb), H1(i, w) = hxiw
T and H2(i, w) = hziw

T .

Based on Taylor Expansion, we derive the polynomial approximation of fdisc(Lr, Lg) as

f̂disc(Lr, Lg) = − 1

m

m∑
i=1

2∑
j=1

∞∑
k=0

F
(k)
j (aj)

k!
(Hj(i, w)− aj)k. (14)

Let aj = 0, we can derive F
(0)
1 (0) = log 2, F

(0)
2 (0) = log 2, F

(1)
1 (0) = −1

2 , F
(1)
2 (0) = 1

2 ,

F
(2)
1 (0) = 1

4 and F
(2)
2 (0) = 1

4 . Therefore, Equation 14 can be simplified as

f̂disc(Lr, Lg) = − 1

m

m∑
i=1

2∑
k=0

∑
x∈{xi}∪{zi}

λ(k)
x (hxw

T )k, (15)

where we consider an approximate approach to reduce the degree of the summation, i.e., k =

0, 1, 2. Given the above polynomial approximation, we perturb f̂disc(Lr, Lg) by injecting the

Laplace noise 1
mLap(

∆f

ε ) into its polynomial coefficients λ
(k)
x , and the noisy coefficients can

be represented as λ
(k)
x . With the perturbed coefficients, we can construct the differentially

private loss function as

fdisc(Lr, Lg) = − 1

m

m∑
i=1

2∑
k=0

∑
x∈{xi}∪{zi}

λ
(k)
x (hxw

T )k. (16)
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5.3.3 Privacy Analysis of PPGAN

To validate that the proposed PPGAN indeed provides differential privacy guarantee,

we show that the parameters y of the generator G (through the parameters w of the dis-

criminator D) guarantee differential privacy with regard to the sampled training data. In

order to prove the privacy guarantees, we provide the sensitivity ∆f of the polynomial

approximation of fdisc(Lr, Lg) in the following lemma.

Lemma 5 (l1-Sensitivity of objective function) Let Lr and L′r be any two adjacent

batches differing in at most one record. Let f̂disc(Lr, Lg) and f̂disc(L
′
r, Lg) be the loss func-

tions on Lr and L′r, then we have the following inequality,

∆f =
2∑

k=0

‖
m∑
i=1

λ(k)
xi −

m∑
i=1

λ
(k)
x′i
‖1 ≤

1

4
|h|2 − |h|, (17)

where |h| is the number of neurons in last hidden layer.

Proof. Assume that Lr and L′r differ in the last element xm and x′m. We have

∆f =
2∑

k=0

‖
m∑
i=1

λ(k)
xi −

m∑
i=1

λ
(k)
x′i
‖1 =

2∑
k=0

‖λ(k)
xm − λ

(k)
x′m
‖1.

We can show that λ
(0)
xm = log 2 and λ

(0)
x′m

= log 2. Therefore, we have

∆f =

2∑
k=0

‖λ(k)
xm − λ

(k)
x′m
, ‖1 =

2∑
k=1

‖λ(k)
xm − λ

(k)
x′m
‖1,

≤
2∑

k=1

‖λ(k)
xm‖1 + ‖λ(k)

x′m
‖1,

≤ 2 max
xm

2∑
k=1

‖λ(k)
xm‖1,

≤ 2 max
xm

1

2

|h(k)|∑
e=1

hexm(k) +
1

8

∑
e,g

hexm(k)hgxm(k)

 ,

≤ 1

4
|h|2 + |h|,

where hexm(k) is the state of e-th hidden neuron in h(k).
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Using Lemma 5, we are able to demonstrate that the perturbed loss function fdisc(Lr, Lg)

is ε-differentially private in the following lemma.

Lemma 6 In each generator update, the loss function of discriminator fdisc(Lr, Lg) satisfies

ε-differential privacy with respect to the sampled training data.

Proof. We assume there are two neighboring batches Lr and L′r, which only differ in the

last element xm and x′m.

Pr(fdisc(Lr, Lg))

Pr(fdisc(L
′
r, Lg))

=

∏2
k=0 exp (

ε‖
∑m
i=1 λ

(k)
xi
−λ(k)‖1

∆f
)

∏2
k=0 exp

(ε‖
∑m
i=1 λ

(k)

x′
i
−λ(k)‖1

∆f
)

≤
2∏

k=0

exp(
ε

∆f
‖

m∑
i=1

λ(k)
xi −

m∑
i=1

λ
(k)
x′i
‖1)

=
2∏

k=0

exp(
εf
∆
‖λ(k)

xm − λ
(k)
x′m
‖1)

= exp(
ε

∆f

2∑
k=0

‖λ(k)
xm − λ

(k)
x′m
‖1)

≤ exp(
ε

∆f
2 max

xm

2∑
k=0

‖λ(k)
xm‖1)

≤ exp(
ε

∆f
(
1

4
|h|2 + |h|))

= exp (ε)

Therefore, the calculation of fdisc(Lr, Lg) satisfies ε-differential privacy.

Finally this illustrates the privacy guarantee of the parameters y of the generator G.

Theorem 3 Given the sampling probability γ = m
M , the number of generator iterations ng

and δ′ > 0, the output generator G in Algorithm 3 guarantees (ε′, δ′)-differential privacy

with ε′ = 4γ2ε2ng + 2
√
γεng ln(1/δ′).

Proof. The proof depends on applying the post-processing theorem in Lemma 7 where the

discriminator corresponds to the mechanism M which takes outputs in Y (in our case this
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corresponds to the parameters of the discriminator), and the generator corresponds to the

function F which maps from Y to Z (which corresponds to the weights of the generator).

Due to the random sampling in Line 6, we ensure the generator is 2γε-differentially private

by using Lemma 8. To conclude the proof, we apply advanced composition in Lemma 9

with ε = 2γε and T = ng.

Lemma 7 (Post-processing [90]) If a mechanism M : X → Y is (ε, δ)-differentially pri-

vate and F : Y → Z is any randomized function, then F(M) : X → Z is (ε, δ)-differentially

private

Lemma 8 (Privacy amplification via sampling [60]) If an algorithm A is ε-differentially

private, then for any n-element dataset D, executing A on uniformly random γn entries

ensures 2γε-differential privacy.

Lemma 9 (Advanced composition [91]) Let ε, δ′ ≥ 0. The class of ε-differentially

private algorithms satisfies (ε′, δ′)-differential privacy under T -fold adaptive composition

for ε′ = Tε2 +
√

2Tε ln(1/δ′).

5.4 Performance Evaluation

5.4.1 Experiment Settings

In the simulation, we used handwritten digit images from MNIST dataset as the training

data to evaluate our PPGAN. There are 60000 training images in MNIST dataset with size

of 28 × 28. We train the PPGAN with none labeled training images and map noise to

these MNIST digits. The learning rates ηd and ηg are set to 5× 10−5. The batch size L is

64, hence the sample rate γ is 64/60000 = 1.1 × 10−3. The noise dimension is set to 100.

The DCGAN architecture is used in the experiment and the Laplace noise is added to the

objective function.
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5.4.2 Simulation Results

We firstly investigate the quality of generated images by PPGAN with different ε values.

The MNIST images shown in Figure 11 are original MNIST image, PPGAN generated

images with δ = 10−5, ε = 10, 5 and 1 respectively. Here, the privacy budget ε is calculated

by Theorem 3, where the training steps of generator ng is set to 25000 in the experiment.

Recall that with larger ε value, the noise added is smaller and privacy level is lower. From

the results shown in Figure 11 with original MNIST image as reference, it is obvious that

the proposed PPGAN can generate quite similar images to the training images but not

the same images. Moreover, if the privacy budget ε is higher, PPGAN can generate much

higher quality fidelity fake images. It is evident from Figure 11b that when the value of

ε = 10, the quality of PPGAN generated image is high. With smaller privacy budget,

the generated images are blurrier. Therefore, given a desired privacy budget, PPGAN can

generate high fidelity fake images similar to the training images, and doesn’t memorize the

training images during this generation. In other words, PPGAN can effectively protect the

privacy of training data.

Additionally, in order to quantify the quality of generated images, the Inception Score

is calculated in the experiment. The Inception Score was first exploited in [92] based on

Inception v3 network model. To calculate Inception Score, the input is a list of generated

images and the output is the mean and variance score of the list of images. Basically, the

result indicates two major characteristics of the generated images. The first determines the

diversity of generated images, and the second determines whether the GAN can generate

meaningful images. Therefore, a higher Inception Score indicates that the quality of the

generated image is higher. The comparison of Inception Score with different GANs is

shown in Table 3. It is obvious that with ε = 10, the Inception score is high and close to

the training images. With decreasing privacy budget, the Inception Score decreases as well.

But considering the same privacy budget, it is evident that the inception scores of PPGAN

are much higher than DPGAN. Therefore, the proposed PPGAN is effective in generating

high quality fake images without compromising the sensitive data during the generation.
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(a) Original training image (b) ε = 10, δ = 10−5

(c) ε = 5, δ = 10−5 (d) ε = 1, δ = 10−5

Figure 11: Performance comparison between original training image and generated images
with PPGAN.

Table 3: Inception scores with different settings

Dataset Setting (ε, δ) Score

MNIST

real - 1.98± 0.29
DCGAN - 1.93± 0.28
PPGAN (10, 10−5) 1.90± 0.30
PPGAN (5, 10−5) 1.84± 0.31
PPGAN (1, 10−5) 1.73± 0.21
DPGAN (20, 10−5) 1.83± 0.42
DPGAN (15, 10−5) 1.65± 0.23
DPGAN (10, 10−5) 1.59± 0.31
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5.5 Conclusion

In our work, we have investigated functional mechanism based differentially private

GANs, which can effectively protect the privacy of the published data by adding noise

to the coefficients of the objective function in latent space, thereby reducing the overall

information loss while guaranteeing privacy. Through extensive simulations, we have shown

that the proposed model is reliable to generate real-like synthetic data samples of good

quality without disclosing the sensitive information in the training dataset.
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6 Location Differentially Private Task Allocation Optimiza-

tion in Mobile Crowdsensing

6.1 Introduction

With the explosive popularity of the global positioning system (GPS) enabled and var-

ious sensors embedded mobile devices such as cellphones and tablets, mobile crowdsensing

(MCS) has become a novel sensing and computing paradigm. For instance, the GPS naviga-

tion software, Waze, can be considered as a MCS platform, which monitors traffic condition

based on the collected data like driving speed from the users. The objective of MCS is to

efficiently pair requested tasks and interested workers, involve workers to contribute and

analyze data collected by their mobile devices, aggregate and utilize the reported data to

reveal information for specific purposes [10]. Therefore, it is obvious that the MCS service

has a high demand for workers to sense and gather data from the surrounding environment.

There are two types of MCS, participatory crowdsensing and opportunistic crowdsensing,

which are classified by different types of participants [93]. The former is that workers par-

ticipate to fulfill tasks by an incentive, and the latter is that the sensed data collected

by mobile device embedded sensors are gathered by the MCS server without the workers’

knowledge. Briefly, MCS brings a new method to perceive the world and extends the service

of Internet of things (IoT).

In the MCS platform, there are plenty of candidate workers, who are waiting to ac-

complish tasks. When the task requesters send the task assignments to the MCS server,

a subset of appropriate workers will be chosen to participate. Such procedure, called task

allocation, is a significant problem that needs to be considered in MCS. Mostly, in task

allocation, the workers’ travel distance is referred as one of the most common utility met-

rics. On the workers’ side, they prefer to participate in tasks located closer to themselves.

On the MCS servers’ side, longer travel distance means higher response latency and higher

incentive bonus to the workers, which is not desirable [11]. Therefore, based on the travel

distance, the tasks can be assigned to workers properly, hence enhancing the efficiency of
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the MCS. As the MCS requires workers’ location, the geocoding system can be considered

to represent workers’ spatial information, since it can provide the ideal visualization, which

is helpful for the MCS server to make decisions for task allocation. For instance, geohash is

a public domain geocoding system, which can encode location into a short string of digits

by dividing the world map into grids. With geohash, locations can be stored in a database

with only one index instead of traditional two joint indexes (i.e., latitude and longitude).

The queries for one index are much faster and more efficient than these for two joint indexes.

The normal MCS assumes that the workers’ location should be reported to the server

in order to provide optimal task allocation by pairing tasks and adjacent workers. Never-

theless, it also raises serious privacy concerns, especially when there is a dishonest MCS

server. Furthermore, in task allocation procedure, only a subset of participatory workers

are assigned tasks owing to the travel distance. There is no compensation for the location

information disclosure of the workers who are not selected for any tasks. Even though the

selected workers can obtain an incentive bonus, it cannot offset the privacy leakage. With

the exposure of locations, the dishonest server and the malicious party could learn workers’

living habits and life patterns, which makes the workers vulnerable to various attacks, even

some serious physical attacks. For instance, in August 2018, a violent robbery happened

in Maryland. The victim is picked up by a fake Uber driver and the driver demanded the

victim’s wallet and cellphone with a handgun. Instead of robbery, more serious crimes tar-

geting particular victims, such as kidnapping, sexual assault, etc, might happen because of

the leakage of location information, since malicious party could learn people’s life pattern

through the disclosed locations. Furthermore, as the MCS aims to make MCS workers com-

plete requested tasks efficiently and effectively, it also requires satisfactory service quality.

However, it is always challenging to have efficient task allocation, while preserving user’s

privacy [11, 94].

To address those issues, it is worthy to protect the location data from the dishonest

MCS service providers or eavesdroppers. To thwart the dishonest service provider or eaves-

dropper, we propose two novel differentially private geocoding (DPG) schemes inspired by
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1. Task Request
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Private Noise
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6. Report Collected Data

4. Return Obfuscated Locations

Figure 12: System overview of the MCS task allocation scheme.

gray code and Geohash system to perturb workers’ locations. Moreover, we develop the

optimal MCS task allocation based on the obfuscated workers’ locations, while minimizing

the total travel distance of all workers. However, with the DPG location privacy preserva-

tion mechanism, a worker’s location is perturbed by differential noise. Hence, there comes

a challenge that the travel distance of each worker is uncertain now due to the introduced

differential noises. Aiming to address those challenges, we leverage the conditional value at

risk (CVaR) [95] to characterize the travel distance uncertainty brought by the DPG scheme.

Then, we provide optimal MCS task allocation with consideration of quantitatively ana-

lyzing the service quality by minimizing the total travel distance under the uncertainty,

while preserving MCS workers’ location privacy by differential privacy settings. Our salient

contributions are summarized as follows:

• In order to optimize task allocation in MCS while protecting the workers’ location
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privacy, we formulate the travel distance minimization problem based on the work-

ers’ obfuscated locations. On the MCS workers’ side, they are trying to fulfill their

interested tasks without disclosing the location privacy. On the MCS server’s side,

the target is to make the best use of the MCS workers’ obfuscated location data, and

meanwhile effectively allocate the mobile crowdsensing tasks.

• We propose two novel differentially private geocoding (DPG) mechanisms based on

local differential privacy in geocoding system according to Geohash system and gray

code. We first encode the workers’ location data with predefined geocoding system. In

order to improve the utility, the geocode of each grid only differs by one single bit with

the horizontal and vertical adjacent grids and differs by two bits with the diagonal

adjacent grids. Then, the ε-differentially private noise is injected to the geocode of

each worker to protect workers’ location privacy.

• The formulated travel distance minimization problem is basically an integer linear

programming (ILP) problem. However, it is difficult to solve the problem, because

the distance between workers and task locations is a random variable due to the

injected differentially private noise. Therefore, we develop a heuristic algorithm based

on CVaR to give a feasible solution to the optimization problem.

• Based on the real-world datasets for taxi cabs in Rome, we conduct extensive simula-

tions to verify the effectiveness of the proposed location differential privacy preserving

MCS scheme.

6.2 Related Work

As a novel sensing and computing paradigm, MCS gained tremendous popularity [96,

11, 97]. In [96], the authors design two incentive mechanisms for MCS based on Stackelberg

game and reverse auction. Therefore, the utility is maximized and the computational com-

plexity is reduced in the reverse auction-based incentive mechanism. The authors in [11], for-

mulated the task allocation optimization problem into a mixed-integer linear-programming
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problem and provided feasible solution. Similar to task allocation problem, in ridesharing,

when pairing the drivers and passengers, the traveling distance is supposed to be small too.

For instance, in [98], the authors deploy differential privacy to protect users’ location privacy

while minimizing the total cruising distance of ridesharing drivers during the scheduling.

Compared to this work, we leverage the CVaR and give a feasible solution to our formulated

traveling distance minimization problem under the characterization of uncertainty, which

is brought by differentially private noise.

With the proliferation of location-based services, many works focus on location privacy

preservation schemes recently, where the service provider is considered to be honest-but-

curious. The location protection approaches can be divided into three categories. The

first one is obfuscation-based method, which is also called dummy-based method [99, 100].

In this case, users send dummy requests together with the true request, and hence the

attacker cannot distinguish the real location from the dummy locations. In [101], the au-

thors proposed a dummy location generation scheme in location-based services by reported

movement locations from users. However, this kind of approaches will compromise the

quality of service because of the inaccuracy of the location data and the computational

complexity is pretty high. The second category is collaboration-based methods, where each

user sends a time or space obscure cloak region to the servers instead of the true loca-

tion [102, 103, 104]. In [102], the authors proposed a user-collaborative privacy-preserving

approach that LBS users can seek information directly from their nearby peers and when

the users cannot obtain the information from peers, they would query the LBS. Generally

speaking, in collaboration-based methods, it may need additional high cost preprocessing

of the data which may further incur high communication cost. The last kind of methods

is identity and location anonymity. The mix-zone model [105, 106] is first proposed to be

used in location privacy preservation in [107]. A mix-zone indicates that when users enter

the mix-zone, they can change their pseudonym to prevent adversary from tracking their

locations. Furthermore, some schemes belonging to this category often put the true loca-

tion together with another k − 1 dummy locations in an area from historical data or other
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users’ location to guarantee k-anonymity [108]. The main concern in this category is that

a trustworthy anonymizer is required to construct the anonymity settings, nevertheless the

anonymizer can also be the malicious party.

6.3 Network Model and Preliminaries

In this section, we describe our network model for MCS task allocation, and introduce

the differential privacy preliminaries and the applications in location privacy.

6.3.1 System Description

In MCS, there consists of three parts, the MCS server, task requesters and workers.

Mobile crowdsensing is a technique that the server is capable to aggregate and analyze

data collected by workers’ sensor and GPS embedded mobile devices in order to reveal

information for some specific tasks. In our work, in order to protect the MCS users’ location

privacy, a differential privacy based location privacy preservation scheme, called DPG, is

designed, which will be introduced in Section 6.4.1. As the worker’s location is obfuscated

by the DPG scheme, the true travel distance between the worker and the task is uncertain.

Therefore, CVaR is employed to characterize the distance uncertainty.

As shown in Figure 12, in our architecture, a number of requesters will first send task

requests to the MCS server. For example, city government or other organizations can be

a task requester that asks to monitor air quality of a specific area. Next, after the server

receives the request, it will publish the task on the MCS platform. The workers who are

interested in the task will share their location information with the MCS server. However,

as talked in Section 6.1, the workers’ location privacy might be compromised during this

step as the malicious parties have many opportunities to obtain the workers’ location data,

and especially sometimes the MCS server could be dishonest. Therefore, in our work, the

workers will only send the obfuscated location generated by applying a differential privacy

based location privacy preservation mechanism to the MCS server. The MCS server will

generate a geocoding map for a specific area, such as the map shown in Figure 13, and send
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the map to each worker. Then, the workers will encode their location with the geocoding

system and inject differentially private noise to the encoded location. According to the

obfuscated locations reported by the workers, the MCS server will allocate requested tasks

to interested workers in accordance with the distance between the workers’ obfuscated

locations and the location of the task. The MCS server then can formulate a travel distance

minimization problem and find the optimal task allocation solution. We assume that the

set of workers is W = {w1, · · · , wi, · · · , wn} with the size of n. The set of the task can

be represented with T = {t1, · · · , tj , · · · , tm} with the size of m. The location of a worker

and a task can be denoted as Lwi and Ltj , and the obfuscated locations are L′wi and L′tj

respectively. The distance between a worker and a task is expressed as d(wi, tj).

6.3.2 Threat Model

During the MCS task allocation, the server will pair workers with tasks. Our target is to

protect workers’ location privacy during the task allocation procedure since the MCS server

can obtain workers’ location information continuously before they accept tasks. Moreover,

the workers who are not assigned any tasks are also required to share their location infor-

mation and the privacy sacrifice cannot be compensated. We assume the attackers want to

learn workers’ private location data and either the MCS server, a participatory worker or

the third party identity can be considered as attackers. However, data pollution attacks,

that malicious workers would modify their location and try to affect the overall task allo-

cation results, are beyond the scope of this work. We suppose that the attackers are able

to obtain side information or arbitrary background knowledge of workers. Our objective is

to hide the workers’ true location despite the prior knowledge of adversaries.

6.3.3 Location Differential Privacy Preliminaries

In centralized DP, it is assumed that the database or data aggregator is trustworthy.

Therefore, local differential privacy (LDP) is defined without relying on a trustworthy third

party. LDP is basically developed on the Warner’s randomization response model [45].
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Similar to the centralized DP, the definition of local differential privacy is shown as follows.

Definition 6.1 (Local Differential Privacy [109]) With a privacy confidence parameter

ε ≥ 0, a randomized algorithm A satisfies ε-local differential privacy, when given two inputs

x and x′,

Pr[A(x) = z]

Pr[A(x′) = z]
≤ eε,

where z is the secure view of the input.

Definition 6.2 (Local d-Privacy [110]) With a privacy confidence parameter ε ≥ 0, a

randomized algorithm A satisfies local d-privacy, when given two inputs x and x′,

Pr[A(x) = z]

Pr[A(x′) = z]
≤ eε·d(x,x′),

where z is the secure view of the input and d(·, ·) is a distance metric.

In this definition, the distance metric d(·, ·) is supposed to satisfy three properties:

d(x, x) = 0, d(x, x′) = d(x′, x) and d(x, x′) + d(x′, x′′) ≥ d(x, x′′), ∀x, x′, x′′. Based on

different practical scenarios, we can choose different distance metrics. For instance, in

location-based systems, Euclidean distance is suitable, while in database applications, ham-

ming distance is suitable. The well-known location differentially private scheme, geo-

indistinguishability [111, 112], is defined based on the local d-privacy concept, where Eu-

clidean distance is used as the distance metric. The geo-indistinguishability scheme can

protect location privacy in despite of side information known by the attackers.

6.4 Travel Distance Minimization Problem and Differentially Private Geocod-

ing Scheme

In this section, we propose two novel DPG location privacy preservation mechanisms and

formulate the travel distance minimization problem with MCS workers’ obfuscated location

data. We give a feasible solution to the problem by exploiting CVaR to characterize the

uncertainty of workers’ location.
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Figure 13: The DPG coding example.

6.4.1 Geocoding Based Location Differential Privacy Preserving Schemes

For the traditional differential privacy setting, a trusted third party database is required.

However, in reality, sometimes even some MCS servers are not trust-worthy. Therefore, we

leverage local differential privacy to protect each worker’s location privacy. Intuitively,

each worker can inject DP noises to his/her true location locally and report the obfuscated

location to the MCS server, hence the MCS server is not able to access to the worker’s

true location. Moreover, geocodes can provide a proper method for the MCS server to

check the eligibility of task assignments by a clear visualization. Consequently, the MCS

server can quickly inform and make decisions for task allocation. Therefore, in our work,

we propose two differentially private geocoding (DPG) schemes inspired by gray code and

Geohash system based on locally differential privacy (LDP) definition without relying on a

trust-worthy third party.

6.4.2 Gray code DPG

For the gray code DPG, rooting from the gray code, the targeted area can be first divided

into a number of macro grids. Then, each macro grid is subdivided into several micro grids.

All the geographical points in one grid can be grouped and encoded by a code with a string
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of digits. Each code has a prefix with fixed length to represent the macro grid and a suffix

with four digits to represent the located micro grid in which the location lies. For example,

as shown in Figure 13, the map is first divided into four macro grids and each macro grid is

subdivided into sixteen micro grids like the red region. The worker encodes his/her location

according to the geocoding map into a code c. For instance, the red micro grid at the right

bottom corner can be encoded with 111010, where the prefix of 11 indicates that the grid

is belonging to the bottom right macro grid and the suffix of 1010 marks that the grid is

located at the southeast corner micro grid. The MCS server is able to control the size and

quantity of macro grids for the targeted area with different length of the prefix. If the MCS

server requires higher resolution of the divided grid, it can further divide the area with a

larger number of macro grids with a longer prefix. Moreover, we assume the MCS server is

responsible for generating this geocoding system for the workers. In general, the worker will

first download the generated geocoding map from the MCS server and encode his/her true

location with such geocoding system into a micro grid. As we are using geocoding system

to present physical world locations, we need to consider the proximity problem. Therefore,

inspired by gray code, in our geocoding system, the code of each micro grid only differs by

one bit with the horizontal and vertical neighboring micro grids, and differs by two bits with

the diagonal neighboring micro grids, which can also represent the distance in the physical

world.

To preserve the privacy of the encoded locations, we randomize the code of each location

by injecting differentially private noises. In gray DPG scheme, we only perturb the suffix

code of each worker and keep the prefix code the same in order to enhance the utility of

the data. The code of the worker’s located micro grid will be perturbed by injecting locally

differentially private noises. Based on the gray code DPG scheme, the worker’s obfuscated

micro grid is supposed to be in the same macro grid as the true micro grid that he/she is

belonging to.

We assume the suffix of each grid can be represented with s, a binary string with the

length of g (g ∈ {20, 21, 22, . . . }). For instance, we assume g = 4, then one suffix can be
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denoted as s = [1, 0, 1, 0]. Each perturbed bit of the suffix can be defined as s′[k](k ∈ [g]).

The probability of turning the real suffix bit s[k] to the obfuscated suffix bit s′[k] is defined

as:

∀k∈[g]P (s′[k] = 0) =


p = e

ε
g

e
ε
g +1

,when s[k] = 0,

q = 1

e
ε
g +1

,when s[k] = 1,

(18)

∀k∈[g]P (s′[k] = 1) =


p = e

ε
g

e
ε
g +1

,when s[k] = 1,

q = 1

e
ε
g +1

,when s[k] = 0.

(19)

In other words, the probability of bit flipping is 1

e
ε
g +1

for a g-bit suffix.

Theorem 4 With the privacy budget ε ≥ 0, for any two location codes c1 and c2 with the

same prefix and any two suffixes s1 and s2, the gray DPG scheme satisfies ε-local differential

privacy.

Proof. For any two location codes c1 and c2 with two suffix codes s1 and s2 including four

digits and an obfuscated location code z, we have

P [A(c1) = z]

P [A(c2) = z]
=
P [A(s1) = z]

P [A(s2) = z]
=
P (z | s1)

P (z | s2)

=
Πg
i=0P (z[i] | s1[i])

Πg
i=0P (z[i] | s2[i])

≤
(
P (z[0] | s1[0])

P (z[0] | s2[0])

)g
≤
(
p

q

)g
= eε.

Therefore, it is satisfying the definition of local differential privacy.
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6.4.3 Geohash DPG

The other DPG that we propose is based on the Geohash system, where each location

can be encoded with a string of binary digits. Similar to the gray code DPG, as shown in

Figure 13, the MCS server can generate the geocoding map by dividing the area into small

grids, give a code c to each grid and share the geocoding map to all participated workers.

Then, the workers are able to encode their location into the Geohash code. In order to

protect the workers’ location privacy, the workers can obscure the true locations within a

range of some grids. We assume that each worker’s true location is hidden in h grids, h

is within the set of {20, 21, 22, . . . } and h is supposed to smaller than the total number of

divided grids. The MCS server will choose the value of h and send to all workers. We can

set h as the radix to represent the Geohash code. For instance, a Geohash code can be

expressed as (011011)2 in binary system with base 2 and the same code can be represented

as (1B)16 in hexadecimal system with radix 16. Then, the last digit c[v] of the Geohash

code can be perturbed by the following probability,

∀a∈[h]P (c′[v] = a) =


p = eε

eε+h−1 ,when c[v] = a,

q = 1
eε+h−1 ,when c[v] 6= a.

(20)

Theorem 5 With the privacy budget ε ≥ 0, for any two Geohash codes c1 and c2 with the

same prefix and the last bits for them are c1[v] and c2[v], the Geohash DPG scheme satisfies

ε-local differential privacy.

Proof. For any two Geohash codes c1 and c2 with the same prefix and an obfuscated Geohash

code z, we have

P [A(c1) = z]

P [A(c2) = z]
=
P (z | c1)

P (z | c2)
=
P (z[v] | c1[v])

P (z[v] | c2[v])
≤
(
p

q

)
= eε.

Therefore, it satisfies the definition of local differential privacy.

After randomization, the worker will send the obfuscated code back to the MCS server.
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Then, according to the obfuscated code, the MCS server will optimize the task allocation,

which is discussed in Subsection 6.4.4.

6.4.4 MCS Travel Distance Minimization with Workers’ Location Privacy Preser-

vation

So far, the DPG scheme is introduced and hence in this subsection, we will give the for-

mulation of MCS travel distance minimization problem with location privacy preservation.

As we described before, the MCS workers’ location data is obfuscated by the DPG

scheme. With the obscure location data, the distance d(wi, tj) between each worker’s real

location Lwi and the location of a task Ltj is uncertain. The sanitized distance between

L′wi and L′tj is denoted by d̃(wi, tj). According to the sanitized distance, the MCS server

could make decisions to pair workers and tasks efficiently and effectively. In order to select

workers for a particular task, we denote

xij =


1, if worker wi is chosen for task tj ,

0, otherwise.

(21)

Consenquently, the travel distance minimization problem for MCS can be formulated as

follows,

min
x

n∑
i=1

m∑
j=1

xij d̃(wi, tj), (22)

s.t.:

xij = {1, 0}, (23)

m∑
j=1

xij ≤ 1, ∀i, (24)

n∑
i=1

xij = 1, ∀j. (25)

In the formulation, the integer xij is the optimization variable. The inequality (24) indicates
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that each worker cannot be assigned more than one task. The equation (25) shows that

each task must be finished by a worker. The formulated travel distance minimization

problem is an integer linear programming (ILP) problem if the travel distance d̃(wi, tj) is

fixed. However, due to the DPG scheme, the obfuscated distance d̃(wi, tj) is uncertain,

which makes the optimization problem difficult to be solved. Therefore, we utilize CVaR

to characterize the distance uncertainty and then solve the converted ILP problem.

6.4.5 Solutions to the Proposed Optimization

In order to evaluate the uncertainty, we leverage conditional value at risk (CVaR) [95]

to achieve high reliability. By incorporating the CVaR into the proposed optimization

problem, the risk brought by the uncertainty can be minimized. Moreover, β-CVaR can be

defined as the conditional expectation of travel distance not exceeding the amount α with

a probability level of β. Normally, β is also called confidence level and can be set as 90%,

95%, and 99%. In our problem, since the obfuscated location for each worker is generated

by equation (18), (19), and (20), we can construct the travel distance distribution in R of

each worker. Because the travel distance is not normally distributed, it is difficult to apply

value at risk (VaR) approach to solve the problem. We assume the total travel distance

can be defined as f(x, d̃) =
∑n

i=1

∑m
j=1 xij d̃(wi, tj). In our formulation, xij is the decision

parameter and d̃(wi, tj) is the random variable with density p(d), so f(x, d̃) is also a random

variable caused by the distribution of d̃(wi, tj). Consequently, VaRβ and CVaRβ for the

travel distance minimization problem can be written as

αβ(x) = min{α ∈ R :

∫
f(x,d̃)≤α

p(d)dd ≥ β} (26)

and

φβ(x) =
1

1− β

∫
f(x,d̃)≥αβ(x)

f(x, d̃)p(d)dd. (27)
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The equation (27) indicates that the probability of f(x, d̃) ≥ αβ(x) is equal to 1 − β.

According to the distribution of d̃, we can define a function Fβ as

Fβ(x, α) = α+
1

1− β
E[f(x, d̃)− α]+, (28)

where [y]+ = max{y, 0} and E is the expected value respect to the density p(d).

Lemma 10 The CVaRβ of the optimization problem with the decision parameter x can be

determined as

φβ(x) = min
α∈R

Fβ(x, α). (29)

The defined function Fβ(x, α) is convex and continuously differentiable with the parameter

α. [95]

Lemma 11 The minimization of CVaRβ with respect to x is equivalent to the minimization

of the defined function Fβ(x, α) of all combination of (x, α), which can be expressed as [95]

min
x
φβ(x) = min

(x,α)
Fβ(x, α). (30)

In other words, a pair (x∗, α∗) achieves the minimum of the defined function Fβ(x, α) if and

only if x∗ achieves the minimum of CVaRβ. As the travel distance minimization problem

is convex, the CVaRβ with the parameter x is convex and the defined function Fβ(x, α) is

also convex with respect to (x, α).

Moreover, the expected value of CVaR can be approximated by sampling. The samples

d1, . . . , dk, . . . , dq are generated according to the travel distance distribution d̃ based on the

density p(d). The approximation of CVaR can be represented as

˜CVaRβ(x, α) = min
α
α+

1

q(1− β)

q∑
k=1

[f(x, dk)− α]+. (31)

Moreover, the approximation (31) is convex with respect to (x, d̃).
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With CVaR, the fat-tail events can be detected in the total travel distance distribution.

In addition, CVaR inherits superior properties. For instance, the formulated travel distance

minimization problem is an ILP problem, the converted optimization problem based on

CVaR is still an ILP problem. Accordingly, we can reformulate our problem with CVaR as

min
(x,α)

α+
1

q(1− β)

q∑
k=1

[f(x, dk)− α]+, (32)

s.t.:

xij = {1, 0}, (33)

m∑
j=1

xij ≤ 1, ∀i, (34)

n∑
i=1

xij = 1, ∀j, (35)

α ∈ R. (36)

Due to the presence of the integer parameter xij , any feasible solution to the reformulated

problem comes from a subset of vertices. Therefore, to solve the ILP problem is equal to

find out the minimum vertex cover, which is a typical NP-hard problem [113, 114]. In order

to reduce the complexity, we can first relax the binary variable xij ∈ {0, 1} to real numbers

in [0, 1] [115]. With the relaxed optimization variables, we can calculate a lower bound for

the formulated problem as the benchmark. Therefore, the ILP problem is converted into

the LP problem. It is obvious that the complexity is reduced and the problem can be solved

in polynomial time.

The overall procedure of the relax-and-fix heuristic algorithm is shown in Algorithm 4.

The binary variables xij are first relaxed to decimal values between 0 and 1. Accordingly,

the ILP problem is converted to an LP problem. We can solve the LP problem and obtain

xij values between 0 and 1. A set Xij can be constructed consisting of all the xij values. If

there is not any xij larger than 0.5, we can set the minimum xij to 0. Otherwise, we will

fix the maximum xij to 1. The fixed xij will be taken out of the set Xij . Next, we can

find the feasible solution for the problem again with the fixed xij and the remaining relaxed
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Algorithm 4 Relex-and-Fix Heuristic Algorithm

1: Input: xij LP feasible values.
2: Output: fixed xij-values.
3: Xij ← set of all xij with decimal values;
4: while Xij 6= ∅ do
5: if all fractional values in Xij < 0.5 then
6: fix the minimum xij to 0;
7: Xij \ xij ;
8: reformulate and solve the new relaxed LP problem with fixed x-variables;
9: else

10: fix the maximum xij to 1;
11: Xij \ xij ;
12: reformulate and solve the new relaxed LP problem with fixed x-variables;
13: end if
14: end while
15: return all fixed xij-values;

variables. Similarly, we can fix all the xij values by iterations until the set Xij is empty.

So far we can feasibly solve the travel distance minimization problem and obtain all fixed

integer values of xij .

The computational complexity of solving the optimization problem is extremely high due

to the binary parameter xij . The possible combinations of xij reaches to 2nm. As discussed

before, after relaxing the binary parameter xij , the ILP can be converted to an LP problem.

In [116], the intrinsic computational complexity of an LP problem is O(A3 · L). Here, L

is the storage cost for the data of the proposed problem, and A is the larger value of the

number of constraints and the number variables in the problem. In the relaxed problem, we

will have the number of mn variables. Therefore, the computational complexity of solving

the LP problem with the number of mn variables is equal to O((mn)3 · L). Consequently,

the computational complexity of solving the original problem can be represented as O(2nm ·

(mn)3 ·L). As we relax and fix each binary variable xij by iterations, the complexity for the

iteration is O(mn), hence the total computational complexity for the heuristic algorithm is

O((mn)4 · L), which is smaller than that of the original problem.
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Figure 14: Taxi density at downtown of Rome.

6.5 Simulation Results

In this section, we demonstrate our simulation results of the proposed gray DPG and

Geohash DPG on a real-world taxi cab dataset. We first give a clear visualization and

evaluate the performance of the proposed schemes. Next, we investigate the impact of

different parameters in the given feasible solutions. We employ the geo-indistinguishability

mechanism, which is introduced in Section 6.3.3, as the benchmark and give a comparison

of the results of the travel distance minimization problem. We conduct the simulations

by Matlab with Gurobi optimization solver on a PC with Intel Core i7 CPU and 16.0 GB

memory size.

6.5.1 Dataset and Simulation Setup

6.5.2 Dataset

All the simulation results are based on the public location dataset of taxi, which com-

prises the trajectories of taxi cabs in Rome [117]. Every taxi driver periodically records its

GPS locations (latitude and longitude) and sends it with its driver ID to a central server.

The total dataset contains the recorded locations about 320 taxi cabs collected over one
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(a) True Geocoding map.
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(b) Gray DPG map with ε = 2.
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(c) Gray DPG map with ε = 5.
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(d) Geohash DPG map with ε = 2.

41.87 41.88 41.89 41.9 41.91 41.92

12.44

12.45

12.46

12.47

12.48

12.49

12.5

12.51

12.52

12.53

12.54

0

2

4

6

8

10

12

14

16

18

20

(e) Geohash DPG map with ε = 4.
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(f) Geohash DPG map with ε = 5.

Figure 15: Geocoding map of the two DPG schemes.

month. The density of all taxis’ recorded locations in Figure 14 show the unevenly distribu-

tion of taxi cabs over the downtown area of the city. The GPS coordinate of each location

sample can be mapped into the region (i.e., the macro grid and micro grid) it falls into

based on the geocode map. It is obvious that most of the taxi cabs are at the center of

the downtown area. In the simulation, we assume that all the tasks are located within the

latitude (41.87, 42.93) and longitude (12.44, 12.54). In the simulation, for convenience, we

calculate the distance between any two locations with kilometers instead of longitude and

latitude.

6.5.3 Simulation Setup

In the simulations, we randomly select 100 workers from the dataset and the task lo-

cations are generated uniformly in the specific area. Each worker can only apply for one

task that is closest to him/her. We investigate the impacts of several key parameters when

solving the travel distance minimization problem. The number of task assignments m is one
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Figure 16: Impact of DP level ε to the accuracy of the density map.

of the key paramters. In the two proposed DPG schemes, the privacy level ε is the signifi-

cant parameter. In the literature, typically we can choose ε between 0.1 and 10 [118, 119].

The CVaR is employed to characterize the uncertainty brought by the differentially private

noises. There are two important paramters in CVaR, the confidence level β and the number

of samples q. The default values for these parameters are m = 10, ε = 5, β = 0.9 and

q = 500.

The evaluation metric for the task allocation efficiency is the Mean Travel Distance

(MTD) of the selected workers and their assigned task locations

MTD =
1

m

n∑
i=1

m∑
j=1

xijd(wi, tj), (37)

where n is the number of workers, m is the number of task assignments, and d(wi, tj) is the

distance between selected worker wi and the task tj .

We compare our mechanism DPG w/ CVaR with other two benchmarks.

• No-Privacy: The worker selection mechanism when each worker reports its real

location to the MCS sever.

• Geo-indistinguishability (Geo-I) mechanism: As introduced in Section 6.3.3, the

high dimensional Laplace noise is injected to the worker’s true location. To compare

the performance, we use Geo-I to protect worker’s location privacy and solve the same
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Figure 17: Comparison results with different parameters.

optimization problem illustrated in Section 6.4.4 with CVaR.

6.5.4 Performance Evaluation

We first investigate the workers density map of the downtown area at Rome. The

generated density map with true locations is shown in Figure 15a. It is obvious that the

geocoding system can provide a clear visualization for the MCS server to check how many

workers are in a specific grid. The density map is generated by a number of 100 locations

randomly selected from the overall dataset. To simplify the simulation, we divide the area

into 64 grids. According to the distribution of the geocoding grids, the density map can

be obtained. Each true location is obfuscated by the two DPG schemes. The true location

is first encoded with geocoding system into a code c and locally differentially private noise

with privacy budget ε is injected to the code c. In gray DPG, we set the length g of the

suffix as 4. In other words, we perturb the original location data with different values of

bit flipping probability 1

e
ε
4 +1

. In Geohash DPG, we set the hidden range h as 16. The

comparison of worker density maps with different privacy level ε values are shown in the

figure. Generally, we can find that when the privacy level ε is higher, the density map is

more similar to that generated by workers’ true location data. To give an intuitive view, we

quantify the performance of the two DPG schemes with mean square error (MSE) between

the obfuscated worker density map and the true worker density map. As shown in Figure 16,

with higher ε value, the MSE is smaller and the performance of Geohash DPG is better

than gray DPG.
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Figure 18: Impact of the β values under different number of samples.

In our work, we formulate a travel distance minimization problem. Because of the

uncertainty brought by the location privacy preservation schemes, it is difficult to solve

the optimization problem. Therefore, we leverage CVaR to characterize the uncertainty.

Figure 17 demonstrates the performance comparison on the mean travel distance (MTD)

under different parameters when applying the proposed two DPG schemes to protect work-

ers’ location privacy. In the simulations for Figure 17, when we are discussing the impact

of one parameter, we control the other parameters with default values. Recall that in the

default setting, we have 100 workers, 10 task assignments, confidence level β as 0.9, the

number of samples in CVaR as 500 and the privacy level ε as 5. Figure 17a depicts the

MTD of two proposed DPG schemes and the No-privacy scheme against the number of

samples when approximating CVaR. As discussed in Section 6.4.5, CVaR is approximated

by the equation (31). We can find that with more samples, the MTD of the two DPG

schemes decreases and closer to that of No-privacy scheme, because with more samples the

approximated value is supposed to approach the true CVaR value. Figure 17b illustrates

the MTD of two proposed DPG schemes and the No-privacy scheme against the confidence

level β. It shows that when confidence value increases, the MTD of the two DPG schemes

increases since higher confidence level means that the confidence intervals would include the

71



2 3 4 5
0

2

4

6

8

M
T

D
 (

k
m

)

Gray DPG

Geohash DPG

Geo-indistinguishability

No-privacy

Figure 19: Impact of differential privacy level ε.

true travel distance with higher probability. Figure 17c indicates the MTD of two proposed

DPG schemes and the No-privacy scheme against the number of task assignments. We can

see that the trend of the three schemes are similar and the correlation between the number

of tasks and MTD is not very high, as other elements may influence the results such as the

distribution of task locations. Overall, Figure 17 shows that the MTD of the two proposed

DPG schemes is always larger than that of No-privacy scheme and the Geohash DPG has a

lower MTD than gray code DPG. The location privacy of workers is protected while sacri-

ficing the task allocation efficiency. In Figure 18, we present the influence of the confidence

level under different number of samples on the MTD with the gray code DPG. It reveals

that with more sample to approximate CVaR the gaps between different confidence levels

are shrinking. According to Figure 17 and 18, we can observe that in order to achieve a

lower MTD, we can have more samples to approximate the CVaR and downsize the con-

fidence level. Figure 19 plots the MTD of the two proposed DPG schemes and the other

two benchmark schemes against different values of ε. We can find that the two proposed

DPG schemes outperforms Geo-I scheme. With loosening the privacy budget ε, the MTD

decreases. Moreover, when ε = 5, the MTD of Geohash DPG is much smaller than the

other two schemes and very close to the MTD of No-privacy scheme.
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6.6 Conclusion

In this work, we studied an optimal MCS task allocation problem by minimizing workers’

travel distance without compromising workers’ location privacy. Hence, a novel approach

called differentially private geocoding scheme (DPG) is proposed to protect workers’ location

privacy regardless of adversaries’ prior knowledge, without relying on any trustful third-

party. We develop two DPG schemes based on different geocoding systems. Moreover,

we use conditional value at risk (CVaR) to mitigate the negative effect induced by DPG.

We conduct comprehensive rigorous analysis based on the real-world dataset for taxi cabs.

The impact of specific parameters in CVaR is discussed. The evaluation results verify the

effectiveness of the two proposed DPG mechanisms.
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7 Data-Driven Vehicle Scheduling with Users’ Location Pri-

vacy

7.1 Introduction

The last decade has witnessed the exploding growth in the quantity and capability of

consumer mobile devices such as smartphones, tablets, etc., and the proliferation of wireless

services. With the advance and commercial use of global positioning system (GPS) tech-

nology, smartphones and tablets feature sensors that can pinpoint users’ locations, which

can allow the transportation network company (TNC) services to use users’ whereabouts

for ridesharing. Such TNC services (e.g., Uber, Lyft, Didi, etc.) can pair TNC users and

TNC vehicles according to their location information through the mobile apps in order to

provide ridesharing [12]. With TNC services, the users are able to save time by changing

parking to TNC user loading events. As TNC users can gain more time savings when using

TNC services, it also provide more job opportunities for drivers. In [13], the authors note

that ridesharing scheduled by TNC can occupy the capacity more efficiently than tradi-

tional taxicabs. In addition, due to the development of technologies of self-driving cars,

Google autonomous driving projects Waymo has already been testing in Arizona. The re-

ported status shows that TNC is supposed to launch the self-driving car services sooner or

later. Therefore, it is necessary to have a new TNC vehicle scheduling scheme for both the

ridesharing drivers and self-driving vehicles with high efficiency and flexibility.

The explosive growth of usage of ridesharing services has created a new vehicle schedul-

ing problem for TNC with high service guarantee. The TNC users’ demands in different

areas are supposed to change due to time, weather, events and etc. It is challenging to

schedule TNC vehicles under the uncertainty of users’ demand. In addition, the purpose

of TNC is providing good service quality, hence vehicle supply should satisfy the users’

demands in a specific area. There is always an assumption that the uncertain users’ de-

mands follow a carefully selected distribution that can fit the historical data in traditional

stochastic optimization problem. However, the selected distribution cannot represent the
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true demands distribution owing to the limited amount of historical data.

Although users can gain benefits from TNC services, they also raise serious privacy

concerns. Currently, most TNC services require the user’s hand-held device to get the user’s

location from GPS, and periodically report the location information to the service provider,

and the location data will be stored in the database/servers of the TNC service provider.

Following this mechanism, a dishonest third-party service provider may have chances to

leverage the user’s reported locations and analyze the rich trace files of the user. With

the exposure of locations, the users not only lose their privacy but also are vulnerable to

various attacks, even some serious physical attacks [98]. For instance, if a celebrity registers

for some dishonest services, he/she can be easily tracked by the paparazzi in the digital

world. Correspondingly, his/her next location can be inferred, so that his/her privacy in

the real world will be invaded. Another example is that, in August 2018, a violent robbery

happened in Maryland. The victim is picked up by a fake Uber driver and the driver

demanded the victim’s wallet and cellphone with a handgun. In other words, the fake

Uber driver is able to access to the users’ location data. Besides robbery, it is not hard to

imagine that there might be more serious crimes such as sexual assault, kidnapping, murder,

assassination, etc. targeting specific victims at selected locations, due to the disclosure of

users’ location information. Additionally, as the TNC aims to pair TNC users and TNC

vehicles efficiently and effectively, it also requires the high service quality. However, it is

always challenging to have good service quality, while preserving user’s privacy [111, 120].

To avoid those issues, it is worthy to protect the location data from the dishonest service

providers or eavesdroppers. To thwart the dishonest service provider or eavesdropper, we

exploit the geo-indistinguishability scheme [111] to add differential noise on users’ location,

which satisfies the “paradoxical” requirements of TNC users with location privacy. More-

over, we need to develop a new TNC vehicle scheduling scheme to satisfy users by reducing

the waiting time. Therefore, it is necessary to innovate a TNC vehicle scheduling scheme

to preserve users’ location privacy without compromising the quality of services. However,

with the geo-indistinguishability location privacy preservation method, users’ location is
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perturbed by differential noise, hence there comes a challenge that the demand distribution

uncertainty stems from two parts, the distance between the real demand distribution and

the constructed reference distribution, and the differential noises introduced by location

privacy preservation scheme. Therefore, we leverage three distance measurement metrics,

Kantorovich metric, Fortet-Mourier metric and uniform metric to characterize the uncer-

tainty. Aiming to address those challenges, we integrate geo-indistinguishability scheme

and risk-averse two-stage data-driven optimization approach [121] to provide TNC vehicle

scheduling with consideration of quantitatively analyzing the service quality, maximizing

the TNC revenue under the uncertainty of users’ demand, and preserving TNC users’ loca-

tion privacy by differential privacy settings. Our salient contributions are summarized as

follows:

• We integrate geo-indistinguishability scheme based on differential privacy with data-

driven optimization approach in the TNC service scenario. With geo-indistinguishability,

on the TNC users’ side, the TNC users’ exact locations can be hidden in a range with

radius r according to the privacy level. Additionally, on the TNC’s side, data-driven

optimization method is deployed to efficiently and effectively schedule the TNC ve-

hicles’ cruising plan. Therefore, a total revenue maximization problem is formulated

with the consideration of reducing TNC users’ waiting time, which means the quality

of TNC services can be guaranteed. In this work, we aim to take better advantage of

the TNC users’ obfuscated location data, and meanwhile the location privacy can be

protected with the concept of differential privacy.

• Because of the limited amount of historical data and the noise generated by location

privacy preservation scheme, the users’ demand distribution is uncertain. Therefore,

risk-averse two-stage data-driven approach is deployed to characterize the data un-

certainty. We assume the TNC constructs the ridesharing demand distribution P0 of

a location range, which is the dashed yellow curve (the private reference distribution)

shown in Figure 20, according to the obfuscated TNC users’ location information.

The ambiguous distribution P is the blue curve in Figure 20, which is unknown. The
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Figure 20: Reference distribution.

uncertainty of the demand is characterized by distance between the ambiguous dis-

tribution P and the private reference demand probability P0. Consequently, we can

solve the risk-averse two-stage revenue maximization problem. In the first stage, TNC

schedules the vehicles to go to a particular location range. In the second stage, in

order to reduce the waiting time of each user and guarantee the QoS, when the true

demand of an area is higher, other vehicles will be sent to the particular area.

• The formulated revenue maximization problem can be converted into a risk-averse

two-stage stochastic problem (RA-SP). In other words, we maximize the total revenue

in a worst-case condition, which is different from other distribution-free scheduling

approaches. The the proposed problem is solved with three different distribution

distance metrics under ζ-structure for robustness.

• We conduct simulations with the real public data from Didi ridesharing company to

verify the effectiveness of the proposed scheme.

The rest of work is organized as follows. We review the related work on location privacy

and TNC services in Section 7.2. In Section 7.3, we present the overview of our system and

describe the preliminaries. In Section 7.4, we give the formulation of the revenue maximiza-

tion problem, apply data-driven methodology to feasibly solve the problem. In Section 7.5,

we analyze the performance evaluation. Finally, we draw conclusions in Section 7.6.
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Table 4: Notation List

Symbol Definition

K Set of TNC vehicles

ck Cost for a driver

X The number of other vehicles sent to fulfill the demand

qx Cost for each available vehicle sent later

D(ξ) Private demand distribution of a specific area

P0 Reference distribution of demand

P Ambiguous true distribution of demand

ε DP privacy budget

D Confidence set

η Confidence level

dζ Distribution distance under ζ-structure probability metric

θ Convergence rate

Ω The sample space of ξ

∅ The dimension of Ω

7.2 Related Work

As the ridesharing services provide significant benefits to the transportation system

and environment and the technology of self-driving vehicles become mature, TNC vehicle

scheduling gained tremendous popularity [122, 123, 124]. In [123], the authors proposed a

large-scale taxi scheduling and formulated a dynamic ridesharing problem in order to reduce

the total cruising distance of drivers. Therefore, the satisfactory ratio can be guaranteed.

Moreover, as the self-driving technology becomes mature, a new public transportation sys-

tem based on autonomous vehicles is proposed in [124]. The aim of the work is to decide

the most economical schedules for self-driving cars in order to maximize the total revenue.

This admission and scheduling control problem is formulated into a mixed-integer linear

program and the authors give a feasible solutions with the real Boston Taxi data. While

the TNC users are using the ridesharing services, their private location information is dis-

closed. In [98], the authors deploy differential privacy to protect users’ location privacy
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while minimizing the total cruising distance of TNC drivers during the ridesharing schedul-

ing. Compared to this work, we give a more robust solution to our formulated ridesharing

revenue maximization problem under the worst-case with a limited historical data set.

With the proliferation of ridesharing services and location-based services (LBS), many

works focus on location privacy preservation schemes recently, where the TNC and LBS

provider are considered to be honest-but-curious. The location protection approaches can

be divided into three categories. The first one is obfuscation-based method, which is also

called dummy-based method [125, 100]. In this case, users send dummy requests together

with the true request, and and hence the attacker cannot distinguish the real location

from the dummy locations. In [11], the authors obfuscated the workers’ location privacy

in mobile crowdsensing application under the differential private setting, while minimizing

the workers’ total travel distance. However, this kind of approaches will compromise the

quality of service because of the inaccuracy of the location data. Moreover, in [126], the

authors proposed an attack model which can bound a users in a specific area despite the

obfuscation with dummy queries. The second category is collaboration-based methods,

where each user sends a time or space obscure cloak region to the servers instead of the

true location [102, 103, 104]. In [102], the authors proposed a user-collaborative privacy-

preserving approach that LBS users can seek information directly from their nearby peers

and when the users cannot obtain the information from peers, they would query the LBS.

The authors in [127] proposed a SafeBox scheme based on spario-temporal generalization to

protect user’s location in a nonsensitive geographical area and a time interval, while keep the

utility of LBS. Generally speaking, in collaboration-based methods, it may need additional

high cost preprocessing of the data which may further incur high communication cost. The

last kind of methods is identity and location anonymity. The mix-zone model [105, 106] is

first proposed to be used in location privacy preservation in [107]. A mix-zone indicates that

when users enter the mix-zone, they can change their pseudonym to prevent adversary from

tracking their locations. Furthermore, some schemes belonging to this category often put

the true location together with another k − 1 dummy locations in an area from historical
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data or other users’ location to guarantee k-anonymity [108]. The main concern in this

category is that a trustworthy anonymizer is required to construct the anonymity settings,

nevertheless the anonymizer can also be the malicious party. To address this concern,

differential privacy is leveraged in the location privacy preservation schemes, which have

been studied in [111, 128]. In our work, since we protect users’ location privacy with

differential privacy mechanism, a trustworthy third party is not required in our system.

Moreover, we utilize data-driven optimization to characterize the uncertainty brought by

the differential private noise, hence the quality of service can be guaranteed.

7.3 Network Model and Preliminaries

In this section, we describe our network model for TNC vehicle scheduling and then

introduce the differential privacy based geo-indistinguishability scheme.

7.3.1 System Description

The purpose of TNC services is to pair the users and vehicles including ridesharing and

self-driving vehicles via mobile apps. It is supposed to provide ride-sourcing services that can

serve the users best, which means that the provided service can reduce TNC users’ waiting

time and schedule the TNC vehicles’ cruising plan effectively and efficiently. In our work, we

propose an efficient TNC vehicle scheduling scheme and formulate the revenue maximization

problem. Moreover, in order to protect the TNC users’ location privacy, a differential pri-

vacy based location privacy preservation scheme called geo-indistinguishability is exploited,

which will be introduced in Section 7.3.2. With the obfuscated location data, the demand

of hailing vehicles in an area can be predicted. As the TNC users’ location is obfuscated by

the scheme, the demand of vehicles in a certain location range is uncertain. Therefore, the

data-driven methodology is employed to characterize the demand uncertainty.

In our architecture, the TNC users report their obfuscated location to the TNC server.

In order to protect TNC users’ location privacy, the geo-indistinguishability is applied to

obfuscate a TNC user’s true location. There are several vehicles cruising nearby and the
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TNC users can hail a vehicle through the TNC mobile apps or websites. The TNC server

will construct a reference demand distribution P0 based on the users’ obfuscated location.

According to the predicted demand, several TNC vehicles can be scheduled to a specific

region. As the true demand of each region is uncertain, the scheduled vehicles may not

meet the demand of all TNC users. In this kind of situation, other vehicles is required to

be sent to the area so as to meet the current demand. Therefore, users’ wait time can be

reduced and the QoS is assured.

7.3.2 Geo-indistinguishability Preliminaries

Geo-indistinguishability scheme [111, 112] is defined based on the differential privacy

concept, which can protect location privacy in despite of side information known by the

attackers. The main purpose of the scheme is to obfuscate the user’s location in an area

with radius r ≥ 0, and hence εr-location privacy can be guaranteed applying the scheme. As

ε is the privacy budget of differential privacy that represents the privacy level, the location

privacy level can be defined as l which means that in user’s concerned location range within

the radius r, l privacy level is needed to meet the user’s privacy satisfactory. In other words,

within range r, the geo-indistinguishability scheme can guarantee l-privacy with l = εr. We

assume that the attackers have the side information, which can be defined as the prior

distribution π on the users’ frequent location set X . The randomized mechanism satisfies

A(x) ∈ Z, where Z is the private location set. We represent the probability that the

randomized output of x in the location set Z as A(x)(Z). The posterior distribution can

be calculated by σ(x) = Bayes(π,A,Z) = A(x)(Z)π(x)∑
x′∈X A(x′)(Z)π(x′) . The multiplicative distance

between two distribution on set S is denoted as dm(σ1, σ2) = supS⊆S | lnσ1(S)/σ2(S)|.

Intuitively, the definition of geo-indistinguishability can be modified from Definition 2.1,

which can be described as follows.

Definition 7.1 (Geo-indistinguishability [111]) With a privacy confidence parameter

ε ≥ 0, a randomized algorithmA satisfies ε-geo-indistinguishability, when given two different

81



locations x and x′, in the following condition,

dm(A(x),A(x′)) ≤ εd(x, x′),

s.t.,

A(x) ∈ Z,A(x′) ∈ Z,

where d(·, ·) is the Euclidean distance.

To achieve l-privacy within an area with radius r, given two different locations x and

x′, the outputs from the randomized algorithm should be indistinguishable. The definition

forces that the distance between two locations x and x′ is not larger than r.

7.3.3 Threat Model

During the TNC scheduling, the server will pair users with vehicles. The server can

obtain users location information continuously when they are using the services. In addition,

some apps run in the background may still upload users’ location information to the server.

These circumstances could cause privacy disclosure. We assume that the attacker could be

an outside entity or the dishonest TNC server. In other words, the adversaries have the

access to the users’ location data and have the ability to infer other information according

to the true location data. We consider that the adversary may have users’ arbitrary side

information. Therefore, in our work, we focus on protecting users’ location privacy before

they are paired with vehicles. To prevent information leakage after pairing is out of our

scope, because a user and a paired vehicle will reveal information to each other. We also

assume there is a secure communication channel between a user and a specific paired vehicle.

7.4 Data-Driven TNC Revenue Maximization Optimization Problem with

Differential Privacy

In Section 7.3.2, the main purpose and definition are introduced. In this section, we

formulate the revenue maximization problem with differential private TNC users’ location
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data in a RA-SP model. We give a feasible solution to the problem by exploiting data-driven

methodology.

7.4.1 Protecting Location Privacy with Differential Privacy

In general, in order to achieve this l-privacy guarantee, the probability of obfuscated

location of true location x0 should exponentially decrease along the radius r. In other

words, the probability of generated the obfuscated location close to true location x0 is

higher. According to the Laplace distribution with the probability density function (pdf),

the probability to generate the obfuscated location distributes is ε
2e
−ε|x−µ|. In our scenario,

the Laplace noise is added on location data. Therefore, a two-dimensional Laplace distribu-

tion is supposed to be employed. The pdf of two-dimensional Laplace distribution can be

derived from the linear one by replacing |x− µ| with the distance d(x, x0), which is shown

as

Dε(x0)(x) =
ε2

2π
re−εd(x0,x). (38)

It is obvious that the distance between x0 and x is the only parameter in the pdf of high

dimensional Laplace distribution. Therefore, converting the Cartesian coordinates to polar

coordinates with original at x0 should be convenient and intuitive [111]. The pdf of high

dimensional Laplace distribution in polar coordinate can be represented as

Dε(r, θ) =
ε2

2π
re−rε. (39)

The pdf clearly show that the two random variables r and θ are independent. Therefore, the

pdf can be decomposed into two parts with the two random variables. The representations

are shown as

Dε,R(r) =

∫ 2π

0
Dε(r, θ)dθ = ε2re−rε (40)
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and

Dε,Θ(θ) =

∫ ∞
0

Dε(r, θ)dr = 1/2π. (41)

Due to the independence of the two random variables, the Laplace noise can be generated

separately with r and θ. The distribution of Θ is a constant, and hence the noise added to

angle can be uniformly choose from the interval [0, 2π). In order to generate the noise added

on the distance, we first calculate the cumulative distribution function (cdf) of r shown as

Cε(r) =

∫ r

0
Dε,R(ρ)dρ = 1− (1 + rε)e−rε. (42)

This cdf denotes the probability of the random point drawn between 0 and r. Here, r is

supposed to be C−1
ε (p), where p is uniformly selected from the interval [0, 1). Here, we

have C−1
ε (p) = −1

ε (W−1

(p−1
e

)
+ 1), where W−1 is the Lambert W function with −1 branch.

In this case, the noise (r, θ) can be randomly selected with the high dimensional Laplace

distribution. Therefore, we can get the obfuscated location z from the original location

x0 by adding noise (r, θ) from polar coordinate, which can be represented as z = x0+ <

r cos θ, r sin θ >.

Due to the finite precision of the machine, when generating the Laplace noise, it is

discretized. Therefore, we need to provide noise compensations for the influences of this

discretization. In [111], the authors showed that with double precision, the noise compensa-

tion is negligible. To satisfy ε-geo-indistinguishability with the discretized mechanism, [111]

provided truncation mechanism to generate obfuscated location within a specified finite re-

gion. If the obfuscated location is outside this region, it will be remapped to the closest

point in the predefined specified finite region. This is the full mechanism with discretization

and truncation, which satisfies the definition of ε-geo-indistinguishability.
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Figure 21: Comparison of two metrics.

7.4.2 Data-driven Analysis of Demand Prediction

In practice, the number of rider demand in a location at a specific time is unknown

and with uncertainty. In order to guarantee the quality of TNC services and maintain the

scheduling scheme reliability, in our work, we employ data-driven risk-averse stochastic pro-

gram (RA-SP) approach to making a decision to schedule the vehicles under the uncertainty

of predicting the demand. In other words, we consider the worst-case probability distribu-

tion of the demand and our solution to this TNC vehicle scheduling problem is feasible and

robust.

As it is hard to get the true probability distribution of a real-life random variable

because of the limited available historical data, in [129], the authors propose the RA-SP

optimization approach to characterize the distribution ambiguity. A confidence set D is

used to describe that with a certain confidence level the true probability distribution is

supposed to be in the confidence set D. The confidence set can be constructed by the

distance measure between two distributions. The distance between two distributions under

ζ-structure can be represented as dζ(P0,P), where P0 is the private reference distribution

generated from the historical data and P is the ambiguous distribution of the demand of

hailing vehicles in a specific area. The confidence set D and distance measure under the
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ζ-structure probability metrics can be defined as

D = {Pi : dζ(P0,P) ≤ θ} (43)

and

dζ(P0,P) = sup
h∈H

∣∣∣∣∫
Ω
hdP0 −

∫
Ω
hdP

∣∣∣∣ , (44)

where θ is the tolerance level which is decided by the amount of historical data, and H is a

real-valued bounded measurable functions family on Ω (the sample space on ζ). Therefore,

with higher amount of historical data, the confidence set D should be tighter and the

distance between P0 and P should be smaller.

As we illustrated before, H is a real-valued bounded measurable functions family. We

employ three different metrics, Kantorovich metric, Fortet-Mourier metric and uniform

metric, in the family H to solve the proposed optimization problem. For a random variable

x, the distribution can be represented as P = L(x). The distance between two random

variables x and y is set as ρ(x, y).

• Kantorovich metric is first derived to relax the formulation of the transportation problem

and solve the problem to find the optimal allocation of resources [130]. The distri-

bution distance is represented as dK(P0,P), H = {h : ||h||L ≤ 1}, where ||h||L :=

sup{h(x) − h(y)/ρ(x, y) : x 6= y in Ω}. When Ω = R, the Wasserstein metric

is the same as Kantorovich metric because of the Kantorovich-Rubinstein thoreo.

The distribution distance under Wasserstin metric can be denoted as dw(P0,P) =∫ +∞
−∞ |F (x)−G(x)|dx, where F and G are the distribution function derived from P0

and P respectively, which is demonstrated in Figure 21a.

• In [131], the authors exploited Fortet-Mourier metric to reduce the scenarios when

solving a convex stochastic programming problem. The distribution distance mea-

sure of this metric is defined as dFM (P0,P), H = {h : ||h||C ≤ 1}, where ||h||C :=
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sup{h(x)−h(y)/c(x, y) : x 6= y in Ω} and c(x, y) = ρ(x, y) max{1, ρ(x, a)p−1, ρ(y, a)p−1}

for p ≥ 1 and a ∈ Ω. Kantorovich metric is a special case of Fortet-Mourier metric

when p = 1. Therefore, it is also widely employed on the transportation problem. The

relationship between the two metrics [121] is represented as

dFM (P,Q) ≤ Λ · dK(P,Q), (45)

where Λ = max{1,∅p−1} and ∅ is the diameter of Ω.

• In Uniform metric, the distance measure is defined as dU (P0,P), H = {I(−∞,t], t ∈

Rn}, which is shown in Figure 21b. According to the definition, we have dU (P0,P) =

supt |P0(x ≤ t),P(x ≤ t)|.

According to the description of each metrics under ζ-structure, we need to figure out the

value of tolerance level θ, which can also be used to quantify the convergence rate. For the

uniform metric, the convergence rate can be derived from the Dvoretzky-Kiefer-Wolfowitz

inequality [132], which is shown as (i.e., n = 1),

P (dU (P0,P) ≤ θ) ≥ 1− 2e−2Qθ2 , (46)

where Q is the number of historical data.

In [121], the converge rate of the Kantorovich metric for a general dimension case (i.e.,

n ≥ 1) is defined as

P (dK(P0,P) ≤ θ) ≥ 1− exp

(
− θ2Q

2∅2

)
. (47)

Consequently, due to the relationships between the Kantorovich metric and the Fortet-

Mourier metric, the convergence rates of the two metrics can be calculated accordingly.

Corollary 1 For a general dimension (i.e., n ≥ 1), we have

P (dFM (P0
i ,Pi) ≤ θ) ≥ 1− exp

(
− θ2Q

2∅2Λ2

)
. (48)
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With the knowledge of distribution distance measure and the convergence rates, the

value of tolerance level θ can be calculated. We have the confidence level is set to η that is

represented as P(dK(P0
i ,Pi) ≤ θ) ≥ 1 − exp(− θ2

2∅2Q) = η. The value of θ can be obtained

as θ = ∅
√

2log(1/(1− η))/Q.

7.4.3 TNC Revenue Maximization Problem with Location Privacy Preserva-

tion

So far, the geo-indistinguishability scheme is introduced and the data-driven RA-SP

approach is described. In this subsection, we will give the formulation of TNC revenue

maximization problem with location privacy preservation. As we describe before, the TNC

users’ location data is obfuscated by the geo-indistinguishability scheme. The map is divided

into several small regions r, which in a setR = {1, · · · , r, · · · , R}. With the obscure location

data, the demand of hailing vehicles in a specific area r can be predicted and the private

reference demand distribution can be constructed as Pr0. As the demand map is generated

from TNC users’ obfuscated location data, data-driven methodology is employed to solve

the uncertainty problem. Moreover, the demand of hailing vehicles corresponding to the

location data can be represented as Dr(ξ). The TNC server will make decisions to send

yr vehicles to go to the particular area according to the average cost for sending vehicles

to the specific region which is represented by cr. Here, the average cost cr is based on the

average fare fr of each trip. As the private reference demand distribution is constructed

by the obfuscated location data, data-driven methodology is applied to characterize the

uncertainty of the distribution. In order to provide better service to the TNC users, the

waiting time of each user should be reduced. Therefore, when the TNC server observes a

high-demand scenario such as the morning rush hour, the true demand of such a region is

high and yr vehicles are not enough for this situation, hence the TNC server decides to send

another xr vehicles to satisfy the demand with a surge cost βcr. The revenue maximization

problem for TNC can be formulated as follows,
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max
y

R∑
r=1

−cryr + min
P∈D

EP max
x

[fr min(xr + yr, Dr(ξ))− βcrxr], (49)

s.t.,

xr ≥ 0, yr ≥ 0, ∀r. (50)

In the formulation, yr and xr are integer variables, which are supposed to be positive

numbers. Since the TNC users’ injected noises to their location data, the distribution of

real demand is ambiguous. Therefore, we construct the confident set D with ζ−struction

probability metrics introduced in 7.4.2, and let P ∈ D so as to maximize the total revenue

under the worst-case distribution realization in D.

7.4.4 Solution to the Proposed Optimization Problem

In order to solve the proposed revenue maximization problem, assuming the sample

space with N scenarios as Ω = {ξ1, ξ2, · · · , ξN}, we reformulate the problem according to

the ζ-structure metrics shown as follows,

max
y

R∑
r=1

−cryr + min
pi

N∑
i=1

pi max
x

[fr min(xr + yr, Dr(ξ
i))− βcrxr], (51)

s.t.: (50),

N∑
n=1

pi = 1, (52)

max
hi

N∑
i=1

hip
0
i −

N∑
i=1

hipi ≤ θ,∀hi : ||h||ζ ≤ 1, (53)

where θ is the tolerance level. According to definition of different ζ-structure metrics, |h||ζ

is defined according to different metrics. For the Kantorovich metric, |hi − hj | ≤ ρ(ξi, ξj).

For the Fortet-Mourier metric, |hi − hj | ≤ ρ(ξi, ξj) max{1, ρ(ξi, a)p−1, ρ(ξj , a)p−1}. The

constraints (53) can be summarized as
∑N

i=1 aijhi ≤ bj , j = 1, · · · , J . To reformulate the
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constraints, we consider the following problem,

max
hi

N∑
i=1

hip
0
i −

N∑
i=1

hipi, (54)

s.t.
N∑
i=1

aijhi ≤ bj , j = 1, · · · , J. (55)

The dual problem can be formulated with a dual variable u, which is shown as follows,

min
u

J∑
j=1

bjuj , (56)

s.t.
J∑
j=1

aijuj ≥ p0
i − pi,∀i = 1, · · · , N. (57)

Accordingly, the problem can be reformulated as follows under ζ-structure metrics Kan-

torovich metric and Fortet-Mourier metric,

max
y

R∑
r=1

−cryr + min
pi

N∑
i=1

pi max
x

[fr min(xr + yr, Dr(ξ
i))− βcrxr], (58)

s.t. (50), (52)

J∑
j=1

bjuj ≤ θ, (59)

J∑
j=1

aijuj ≥ p0
i − pi, ∀i = 1, · · · , N, (60)

Based on the definition of Uniform metric, the problem can be reformulated as follows,

max
y

R∑
r=1

−cryr + min
pi

N∑
i=1

pi max
x

[fr min(xr + yr, Dr(ξ
i))− βcrxr], (61)

s.t. (50), (52)∣∣∣∣∣
j∑
i=1

(
p0
i − pi

)∣∣∣∣∣ ≤ θ,∀j. (62)

Consequently, the proposed revenue maximization problem can be feasibly solved by the

reformulations based on the three different ζ-structure metrics. The procedures to solve the
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proposed optimization problem can be summarized in Algorithm 5.

Algorithm 5 Solutions to the revenue maximization problem

1: Input: User’s obfuscated historical location data, the confident level η.
2: Output: Objective value of the expected revenue.
3: Construct the private reference distribution P0 based on the noisy location data
4: Calculate the tolerance level θ with the confidence level η under different ζ-structure

metrics
5: if Under Kantorovich metric or Fortet-Mourier metric then
6: Solve the reformulated problem (58)
7: Stop and return objective value
8: else
9: Solve the reformulated problem (61) under Uniform metric

10: Return the objective value.
11: end if

7.4.5 Security Analysis

In our work, we exploit the geo-indistinguishability to protect TNC users’ location

privacy. During the TNC users’ location reporting phase, instead of uploading the true

location, the obfuscated location is reported to the TNC server. Each user adds high

dimensional Laplace noise to the true location. According to the geo-indistinguishability

definition, the obfuscated location distribution is close to each other. In other words, with

the same output obfuscated location, attackers cannot distinguish whether the input true

location is x or x′ even though the attackers have users’ side information. We assume the

attacker knows the users’ frequent location set N ⊆ X . In order to measure information

leakage of the scheme, we can compare the prior and posterior distributions. The prior

distribution of x in N can be represented as π(x|N) and the posterior distribution can be

represented by σ(x|N). The maximum distance between any two locations in the set N

is denoted as d(N). Recall that the multiplicative distance between two distribution on

set S is denoted as dm(σ1, σ2) = supS⊆S | lnσ1(S)/σ2(S)|. If a randomized mechanism A

satisfies the ε-geo-indistinguishability definition, the following inequality is supposed to be
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Figure 22: Total revenue in Chengdu under different metrics.

guaranteed,

dm(π(x|N), σ(x|N)) ≤ εd(N).

This inequality can be derived from the ε-indistinguishability definition, which is first in-

formed in [15]. It illustrates that although the attacker knows all the other input data

except x, he cannot obtain any information from x in spite of any side information of x.

This inequality also represents that the adversary’s obtained information is dependent on

the range d(N), in spite of the prior knowledge π(x|N). Here, d(N) represents the accu-

racy of adversary’s side information. A small value of d(N) means that the adversary has

some accuracy of the users’ location. When d(N) is small, the distance between the prior

and posterior distribution is also small, which means the adversary is hard to improve the

accuracy of his knowledge. The performance of geo-indistinguishability will be discussed in

Section 7.5.2.
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Figure 23: Total revenue in Xi’an under different metrics.

7.5 Performance Evaluation

In this section, we demonstrate our simulation results of the proposed scheme. We

conduct the simulation by Matlab and GUROBI on a PC with Intel Core i7 CPU and 16.0

GB memory size.

7.5.1 Dataset and Simulation Setup

In the simulation, we implement our scheme with the public real location data from

Didi transportation company during October and November 2016 in two cities, Chengdu

and Xi’an [133]. The database contains each TNC driver’s encrypted ID, the order ID,

timestamp, longitude, and latitude. We investigate the proposed scheme in the downtown

area in the two cities and during the morning rush hour from 8am to 9am. We randomly

select 1000 users in the downtown area of each city. We divide the area into 5 × 5 grids

and aggregate the demand of each region during the provided two months. To simplify

the simulation, we select two grid of the two cities to conduct the experiment. We employ
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Figure 24: TNC vehicle demand distributions of two regions in Chengdu.
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Figure 25: TNC vehicle demand distributions of two regions in Xi’an.

geo-indistinguishability introduced in Section 7.4.1 to protect users’ location privacy. As

demonstrated in [111], since we use double precision, the noise compensation can be ne-

glected. Similar to the settings in [111], we set the radius of the specified finite region of the

truncation mechanism as 100km. We consider the geo-indistinguishability scheme can pro-

tect users’ location privacy within radius r = 2.5km. Then, we evaluate the privacy budget

ε = [1, 1.5]km−1. We construct the confidence set D with confidence level η = 0.9 and three

distribution distance measurement metrics, Kantorovich metric (K metic), Fortet-Mourier

metric (FM metric) and uniform metric (U metric). We use the random scheduling as

baseline for comparison in the simulation. In this scheduling method, we assume that the
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Figure 26: Performance comparison in Chengdu of differential privacy under different met-
rics.
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Figure 27: Performance comparison in Xi’an of differential privacy under different metrics.

TNC server will schedule a random number of vehicles to a specific region based on the

true demand distribution. Similar to our proposed revenue maximization problem, if this

random number cannot satisfy the high demand scenario, the TNC server will send the

required amount of vehicles later.

7.5.2 Performance evaluation

As described in Section 7.5.1, we investigate the TNC vehicle demand of the downtown

areas of two cities. We randomly choose 1000 users of each city and we divide the downtown

areas of the two cities into 5 × 5 grids. We add the high dimensional Laplace noise with

differential privacy budget ε to the original location data. The private reference distribution

P0 of TNC vehicle demand can be constructed according to the noisy location data. As

described in Section 7.5.1, to simplify the simulation, we conduct simulations based on the
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demand distributions of the two chosen grids from each city. We conduct 50 independent

runs of our scheme and show the average revenue values in Figure 22 and 23, which represent

the performance of the expected total revenue under the three different metrics. We can

observe that the obtained objective values returned by each metric are getting closer to the

optimal results with more historical data, because with a larger amount of historical data,

the tolerance rate θ is smaller, which makes the confident set tighter to the real demand

distribution. In our simulation, we only have 60-day TNC order data, which is limited,

and hence the results obtained by the ζ-structure metrics are not converged to the optimal

result, especially with the U metric. In other words, with enough amount of historical data,

the performance can show the convergence better and the TNC vehicle demand distribution

can be more accurate. Moreover, the total revenue of TNC with FM metric is closest to the

optimal values in both cities. We provide random scheduling as a baseline for comparisons.

Since we assume that in random scheduling, a random number of vehicles will be scheduled

to the small regions according to the true demand distribution, the total revenue of the

random scheduling is not dependent on the historical data. Therefore, it is a straight line.

If there is limited historical data, the random scheduling method may perform better than

the uniform metric. When we have enough historical data, all the three metrics outperform

the random scheduling.

Here, we investigate the performance of the two cities with different privacy budget ε.

The TNC vehicle demand distributions in two cities are shown in Figure 24 and 25. The

demand distributions are generated by the collected obfuscated location information. Then,

we select two grids in each city to show the vehicle demand distributions. Generally, we

can find that although there is a certain distance between the true demand distribution

and the noisy demand distribution, the overall distributions are similar to each other. In

Figure 24, with a higher ε value, which means lower privacy level, the demand distributions

are much closer to the true demand distributions in Chengdu. The expectations of the

two regions in Chengdu are approximately 129 without geo-indistinguishability, 117 with

ε = 1km−1 and 128 with ε = 1.5km−1. We can find that with a higher ε value, the demand
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expectation is much closer to the real one. In Figure 25, the relationship between ε value

and the demand distribution is not obvious in Xi’an. The expectations of the two regions

in Xi’an are approximately 69 without geo-indistinguishability, 63 with ε = 1km−1 and 64

with ε = 1.5km−1. We can observe that the expectation value with higher ε value is slightly

closer to the real value. The differences between the real demand expectations and the

expectations with geo-indistinguishability also have influences on performances of revenue.

In Figure 26 and 27, we show the performance comparisons with the privacy budget ε

set to 1 and 1.5km−1 under three different metrics. Each data point is the average total

revenue and the vertical error bar of each data point is calculated by the standard deviation.

We can observe that the average total revenue without preserving privacy is closer to the

optimal value than the revenue with differentially private noise. Moreover, with a higher ε

value, the average revenue is higher and closer to the average revenue without adding noise.

Furthermore, the value of error bar (i.e. standard deviation) reduces with more historical

data. In the random scheduling method, the standard deviation is higher and the mean

total revenue is smaller when we have enough historical data. We can also find that although

with a smaller size of historical data, the objective values calculated under FM metric and

K metric are still very close to the optimal value. As described in Subsection 7.4.2, the

distribution distance measures of FM metric and K metric are tighter than the distance

measure of U metric. Furthermore, in Figure 26, the revenue with ε = 1.5km−1 is almost

equal to the revenue without privacy protection under three metrics. However, in Figure 27,

there is distance between the revenue with ε = 1.5km−1 and the revenue without privacy

protection, which is because of the expectations of the real demand distributions and the

privacy protected demand distribution.

7.6 Conclusion

In this work, we integrate the geo-indistinguishability scheme based on differential pri-

vacy technology to obscure TNC users’ location in TNC services and formulate a revenue

maximization problem. Because of the uncertainty of the demand of hailing a vehicle in
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a particular location range, data-driven approach employed to optimize the problem based

on the obfuscated location data. In addition, we develop an algorithm to feasibly solve the

proposed problem. We conduct simulations on the public real-world dataset from Didi to

show the effectiveness of the proposed scheme and illustrate the trade-off between privacy

and utility.
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8 Future Work

In my future research, I will continue my investigation on cybersecurity, data analysis

and machine learning with emphasis on real world applications. I expect to transfer part of

my research outcomes into practical applications by building proof-of-concept software and

hardware testbeds. With my extensive experience in cybersecurity and machine learning, I

plan to conduct future research in the following directions:

• Investigation on Cyber Threats and Defenses towards Machine Learning

Algorithms. The rising popularity of machine learning-based real world applications

is putting the learning pipelines at risk of cyber threats more than ever before. The

high capacity of deep neural networks is the main reason behind privacy loss. Sen-

sitive information in the training data can be unintentionally memorized by a deep

network. For instance, the medical records contain personal private information like

drug usage patterns of the individual patient. Adversarial parties can extract that

information given the ability to access or query the network. However, the common

strategy of data anonymization is not safe enough because adversarial parties can re-

identify individuals in anonymized datasets by combining the data with background

information. Under this observation, I plan to explore the potential attacks and the

corresponding defense strategies, by investigating these challenges from both theoret-

ical and experimental aspects.

• Reliable, Secure and Efficient Data Aggregation in Cyber-Physical Sys-

tems. Security is a common key challenge in CPS, since such large-scale systems

consist of a large volume of users’ daily and sensitive data. Moreover, more and more

mobile CPS applications involve users’ participation, and users become increasingly

concerned about the leakage of their personal information. In fact, there are trade-offs

between the effectiveness of privacy protection and the convenience of data aggrega-

tion, communications, and energy consumption, which need proper considerations in
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system designs. Hence, secure data collection and efficient data utilization is the prob-

lem I will tackle. For the intermediate entity, I mainly consider how to design the

privacy preservation scheme and exploit the knowledge of the private-preserving data

in order to achieve reliable accuracy for a wide range of tasks.

• Location Privacy Preserving Participant Recruitment in Mobile Crowd-

sensing. Mobile crowdsensing has emerged as a promising paradigm where location-

based sensing tasks are outsourced to mobile participants carrying sensor-equipped

devices. A critical issue of crowdsensing is to guarantee the sensing coverage by ap-

propriately recruiting participants, which requires participants’ precise locations and

thus raises privacy concerns. Based on this motivation, I will study the participant

recruitment optimization problem with the consideration of participants’ location pri-

vacy. Since the privacy preservation scheme may bring uncertainty to the location

data, I will develop an uncertainty-aware participant recruitment framework integrat-

ing a randomized algorithm with constant-factor approximation guarantee, which can

be tolerant of the existence and deletion of biased sensing data incurred by location

obfuscation.
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