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Abstract

This paper studies the problem of non-cooperative radio resource scheduling in a vehicle-to-vehicle

communication network. The technical challenges lie in high vehicle mobility and data traffic variations.

Over the discrete scheduling slots, each vehicle user equipment (VUE)-pair competes with other VUE-

pairs in the coverage of a road side unit (RSU) for the limited frequency to transmit queued packets. The

frequency allocation at the beginning of each slot by the RSU is regulated following a sealed second-

price auction. Each VUE-pair aims to optimize the expected long-term performance. Such interactions

among VUE-pairs are modelled as a stochastic game with a semi-continuous global network state space.

By defining a partitioned control policy, we transform the stochastic game into an equivalent game with

a global queue state space of finite size. We adopt an oblivious equilibrium (OE) to approximate the

Markov perfect equilibrium (MPE), which characterizes the optimal solution to the equivalent game.

The OE solution is theoretically proven to be with an asymptotic Markov equilibrium property. Due

to the lack of a priori knowledge of network dynamics, we derive an online algorithm to learn the

OE policies. Numerical simulations validate the theoretical analysis and show the effectiveness of the

proposed online learning algorithm.
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I. INTRODUCTION

The next generation vehicle-to-everything (V2X) technologies have been receiving increasing

attentions for enabling emerging vehicular services, such as traffic safety, congestion reporting

and in-vehicle infotainment [1]–[3]. In particular, vehicle-to-vehicle (V2V) communication, op-

erating in an ad hoc manner, provides more flexibility to render more attractive vehicle-related

applications [4]. This type of vehicular applications have an ontological feature of requiring

coordinations among the vehicles in close proximity [5]. However, the topology of a V2V

communication network changes dynamically across the time horizon because of the high vehicle

mobility. Without the support of an infrastructure, this in turn makes the design of radio resource

management (RRM) techniques extremely challenging [6].

In the literature, there are a number of works focusing on RRM in V2V communications. In

[7], Bai et al. proposed a low-complexity outage-optimal distributed channel allocation scheme

for V2V communications based on maximum matching. In [8], Sun et al. investigated RRM

for device-to-device based V2V communications, for which a separate resource block and

power allocation algorithm was proposed. Yao et al. proposed in [9] a loss differentiation

rate adaptation scheme to meet the stringent delay and reliability requirements for V2V safety

communications. In [10], Egea-Lopez et al. proposed a fair adaptive beaconing rate for the inter-

vehicular communications algorithm to solve the problem of beaconing rate control. Most of the

efforts have ignored the network dynamics in the transmission quality as well as the data traffic

variations, and hence fail to characterize the long-term RRM performance.

The framework of a Markov decision process (MDP) has been applied to formulate the

problem of RRM in vehicular networks with time-varying nature. In [11], Liu et al. formulated

the problem of power minimization with latency and reliability constraints and leveraged the

Lyapunov stochastic optimization to deal with the network dynamics. The same technique was

adopted to study the problem of joint power and resource allocation for ultra reliable low

latency communication in vehicular networks by Samarakoon et al. in [12]. The Lyapunov

stochastic optimization only constructs an approximately optimal solution. In [13], Zheng et al.

used a decentralized stochastic learning algorithm developed in [14] for the delay-aware radio

resource scheduling in a software-defined vehicular network. The proposed linear decomposition

technique neglects the coupling of decision makings among the participating agents. In [15], we

investigated the problem of non-cooperative RRM in a V2V communication network from an
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oblivious game-theoretic perspective and put forward an online learning algorithm to approach

the solution. However, our priori work does not take into account frequency resource sharing

among different groups of vehicle user equipment (VUE)-pairs, which is highly dependent on

the vehicular mobility characteristics.

In this paper, we are primarily concerned with the problem of non-cooperative radio resource

scheduling in a V2V communication network. Over an infinite discrete time horizon, each VUE-

pair competes with other VUE-pairs in the coverage of a road side unit (RSU) for the limited

frequency resource in order to transmit the queued data packets. The frequency resource alloca-

tion at the beginning of each scheduling slot is centralized at the RSU and is regulated by a sealed

second-price auction [16]1. The objective of a VUE-pair is to optimize the expected performance

according to the network dynamics over a long-run. Our major technical contributions from this

work are summarized as follows.

• We model the competitive interactions among the VUE-pairs as a stochastic game, where

each VUE-pair aims to optimize its own expected long-term performance.

• We define a partitioned control policy profile, based on which the stochastic game with

a semi-continuous global network state space can then be transformed into an equivalent

game with a global queue state space of finite size. The optimal solution to the equivalent

game can be characterized by a Markov perfect equilibrium (MPE).

• When the number of VUE-pairs in the V2V communication network is huge, we propose

to approximate the MPE by an oblivious equilibrium (OE) [17], [18] to combat the curse

of dimensionality in the global queue state space.

• We propose an online algorithm to learn the OE solution. The online learning algorithm

requires no a priori statistical knowledge of the network dynamics.

To the best of our knowledge, this work is the first to introduce the concept of a OE for radio

resource scheduling in V2V communications.

In following Section II, we introduce the considered V2V communication network model and

the assumptions made throughout this paper. In Section III, we formulate the non-cooperative

radio resource scheduling among the VUE-pairs as a stochastic game, and an equivalent game

is reformulated, the solution of which is characterized by a MPE under a partitioned control

policy profile. In Section IV, we approximate the MPE by a OE and derive an online learning

1The dominant policy for a VUE-pair is to bid truthfully for the frequency resource.



4

Building Building

Building Building

'
 0

LOS Link

WLOS Link

g Group Index

Road Side Unit

VUE Transmitter

VUE Receiver

1

2

2

3

3

1

3

Fig. 1. Illustration of a Manhattan grid vehicle-to-vehicle communication scenario (VUE: vehicle user equipment; LOS: line-

of-sight; WLOS: weak-line-of-sight.).

algorithm to find the OE solution. In Section V, we evaluate the proposed algorithm through

numerical simulations. Finally, we draw the conclusions in Section VI.

II. SYSTEM MODEL

As illustrated in Fig. 1, this work considers a Manhattan grid V2V communication scenario,

in which a set K = {1, · · · , K} of VUE-pairs2 (each being associated with a VUE-transmitter

(vTx) and a VUE-receiver (vRx)) compete for a common frequency resource within the coverage

L of a RSU, where L represents a two-dimensional Euclidean space. The whole system operates

over the discrete scheduling slots, each of which is of equal duration δ and is indexed by a

positive integer t ∈ N+. Let xt
k =

(

x
(1),t
k , x

(2),t
k

)

and yt
k =

(

y
(1),t
k , y

(2),t
k

)

be the Euclidean

coordinates of the vTx and the vRx of a VUE-pair k ∈ K at slot t. Over the time horizon, the

VUE-pairs move in the coverage L according to a Manhattan mobility model [20], and the vRxs

2It has been established that for a well defined road segment, the vehicle density approaches to be steady [19].
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always follow the vTxs with a fixed distance of ϕ. In order to mitigate the interference during

wireless transmissions and maximize the frequency utilization, the RSU clusters the VUE-pairs

into a set I of disjoint groups based on their geographical locations, where |I| > 1 with |I|

denoting the cardinality of the set I. Depending on whether the vTx and the vRx of a VUE-pair

k are in the same lane or in perpendicular lanes, the channel model during each scheduling slot

can be classified into: 1) line-of-sight (LOS) – both the vTx and the vRx are in the same lane;

2) weak-line-of-sight (WLOS) – the vTx and the vRx are in perpendicular lanes and at least

one of them is near the intersection within a distance of ϕ0; and otherwise, 3) none-line-of-sight

(NLOS). More specifically, the channel quality state gtk = νt
k ·H

t
k ∈ G experienced by VUE-pair

k during scheduling slot t includes a fast fading component νt
k of a Rayleigh distribution with a

unit scale parameter and a path loss H t
k that applies the following model for urban areas using

5.9 GHz carrier frequency [21],

H t
k =







ρ ·

(√
∣
∣
∣x

(1),t
k − x

(2),t
k

∣
∣
∣

2

+
∣
∣
∣y

(1),t
k − y

(2),t
k

∣
∣
∣

2
)−e

, when VUE-pair k in LOS;

ρ ·
(∣
∣
∣x

(1),t
k − x

(2),t
k

∣
∣
∣+
∣
∣
∣y

(1),t
k − y

(2),t
k

∣
∣
∣

)−e

, when VUE-pair k in WLOS;

ξ ·
(∣
∣
∣x

(1),t
k − x

(2),t
k

∣
∣
∣ ·
∣
∣
∣y

(1),t
k − y

(2),t
k

∣
∣
∣

)−e

, when VUE-pair k in NLOS,

(1)

where e is the path loss coefficient while ρ and ξ are the path loss exponents with ξ < ρ·(ϕ0/2)
e.

As in [11], we assume ϕ0 ≥ ϕ for analytical tractability, which indicates H t
k depends on ϕ only.

When ϕ0 < ϕ, deep reinforcement learning [22]–[24] can be adopted to address the explosion in

global partitioned network states under a partitioned control policy profile, which will be defined

later in Section III-C.

During each scheduling slot, the RSU allocates the single frequency resource to the |I| groups,

while in each group, we assume that the resource can be assigned to at most one vTx in order

not to cause intra-group interference. The centralized frequency resource allocation is regulated

by the RSU using a sealed second-price auction. Let Bt
k be the bid submitted by each VUE-pair

k ∈ K at the beginning of a scheduling slot t, and θtk be an auction winner indicator that equals

1 if VUE-pair k wins the frequency resource and otherwise, 0. The winners are determined

according to

max
{(θtk∈{0,1}:k∈K):

∑
k∈Ki

θt
k
≤1,∀i∈I}

∑

k∈K

θtk · B
t
k, (2)
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and the incurred payment to the RSU for each VUE-pair k ∈ Ki in a group i ∈ I at scheduling

slot t is calculated as

τ tk = θtk · max
k′∈Ki\{k}

Bt
k′ , (3)

which is resulted from the frequency access.

We assume that a data queue is maintained at the vTx of each VUE-pair k ∈ K to buffer

the arriving data packets but may be terminated with a probability of 1 − γ ∈ (0, 1) after

participating in the resource auction. The data packet arrivals at the vTx constitutes a sequence

of independent and random variables. The winners from the resource auction acquire the right

to access the frequency and proceed to transmit the queued data packets during the scheduling

slot. Let qtk and atk be the queue length and the random new packet arrivals at scheduling slot t,

respectively. The queue evolution for VUE-pair k can be expressed as

qt+1
k =







0, if the queue is terminated at slot t;

min
{
qtk − θtk ·D

t
k + atk, q

(max)
}
, otherwise,

(4)

where q(max) is the maximum queue length such that qtk ∈ Q =
{
0, · · · , q(max)

}
and Dt

k is

the scheduled number of packet departures during a scheduling slot t. To simplify the wireless

communication model, perfect channel state information is assumed. The required transmit power

for delivering θtk ·D
t
k error-free data packets can be computed as

ctk =
N + w · σ2

gtk
·

(

2
µ·θtk·Dt

k
w·δ − 1

)

, (5)

where N is the received aggregate interference due to inter-group frequency reuse, w is the

frequency bandwidth, σ2 is the power spectral density of additive background noise, and µ is

the constant size of a data packet. Let c(max) be the maximum transmit power for all vTxs, then

ctk ≤ c(max), ∀t.

III. PROBLEM DESCRIPTION

In this section, we formulate the problem of non-cooperative radio resource scheduling in the

considered V2V network as a stochastic game and discuss the MPE solution.

A. Network Dynamics

During each scheduling slot t, the local state of a VUE-pair k ∈ K can be described by

stk = (gtk, (x
t
k,y

t
k), q

t
k) ∈ S = G × L × Q, which includes the information of channel quality,
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geographical location and queue state, and st =
(
stk, s

t
−k

)
∈ SK is used to represent the global

network state. Herein, −k denotes all the other VUE-pairs in set K without the presence of

VUE-pair k. For the urban Manhattan area, we assume that the VUE-pairs play a symmetric

stationary control policy π =
(
π(f), π(p)

)
, which consists of the frequency resource auction

policy π(f) and the packet scheduling policy π(p). Note that π(p) is local network state dependent.

We let π(K) =
(

π
(f)
(K),π

(p)
(K)

)

denote the control policy vector where all K VUE-pairs choose

π. With π, after observing the global network state st at the beginning of scheduling slot

t, each VUE-pair k makes decisions, namely, submitting a bid Bt
k to the RSU for frequency

resource allocation and scheduling the packet transmissions based on the auction results. That is,

π(st) =
(
π(f)(st), π(p) (stk)

)
= (Bt

k, D
t
k). From the assumptions on the mobility of a VUE-pair,

the queue evolution and the packet arrivals, the randomness lying in {st : t ∈ N+} is Markovian

with the following controlled state transition probability

P

(

st+1|st, θt
(

π
(f)
(K)

(
st
))

,π
(p)
(K)

(
st
))

= (6)

∏

k∈K

P
(
gt+1
k |

(
xt+1
k ,yt+1

k

))
· P
((
xt+1
k ,yt+1

k

)
|
(
xt
k,y

t
k

))
· P
(

qt+1
k |q

t
k, θ

t
k

(

π
(f)
(K)

(
st
))

, π(p)
(
stk
))

,

where P(·) denotes the probability of an event and θ
t = (θtk : k ∈ K).

B. Stochastic Game Formulation

A payoff function is needed to reward a VUE-pair for winning the frequency resource auction.

The instantaneous payoff associated with each VUE-pair k ∈ K at each scheduling slot t is

chosen to be

ℓk
(
st, θtk, D

t
k

)
= uk

(
st, θtk, D

t
k

)
− τ tk, (7)

where the utility function

uk

(
st, θtk, D

t
k

)
= u

(1)
k

(
qtk
)
+ αku

(2)
k

(
ctk
)
+ u

(3)
k

(
otk
)
, (8)

with the packet overflows otk being given as follows

otk = max
{
qtk − θtk ·D

t
k + atk − q(max), 0

}
. (9)

Constrained by the finite buffer size at a vTx, the packet overflows occur when the arriving

data packets cannot be all accepted to the queue. In (8), αk > 0 is a weight that trades off

the importance of transmit power consumption, and u
(1)
k (·), u

(2)
k (·) and u

(3)
k (·) are the positive
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monotonically decreasing functions measuring the satisfactions of the queue length qtk at the

beginning of a scheduling slot, the transmit power consumption ctk during a scheduling slot and

the packet overflows otk in the end of a scheduling slot, respectively.

Due to the limited frequency resource and the stochastic nature in a V2V networking en-

vironment, we, therefore, formulate the problem of radio resource scheduling among the non-

cooperative VUE-pairs over the infinite time-horizon as a stochastic game, in which K VUE-

pairs are the competitive players and there are a set SK of global network states and a collection

of stationary control policies π(K). We define a generic expected long-term payoff function

Vk(s|π,π(K−1)) for a VUE-pair k ∈ K under the global network state stk = s = (gk, (xk,yk), qk)

at a current slot t, given that the other K − 1 competing VUE-pairs follow a common control

policy π while VUE-pair k follows π =
(
π(f), π(p)

)
. Specifically, we have

Vk

(
s|π,π(K−1)

)
= E(π,π(K−1))





T l
k∑

l=t

ℓk

(

sl, θlk

(

π(f)
(
sl
)
,π

(f)
(K−1)

(
sl
))

, π(p)
(
slk
))

|st = s



 , (10)

where T l
k ∈ N+ is the time that the data queue of VUE-pair k terminates after scheduling slot

t. Vk

(
s|π,π(K−1)

)
is also termed as the state value function of VUE-pair k in a global network

state s under a joint control policy
(
π,π(K−1)

)
. It can be found that T l

k is a geometric random

variable. We then equivalently express (10) as

Vk

(
s|π,π(K−1)

)
=

E(π,π(K−1))

[
∞∑

l=t

(γ)l−t+1 · ℓk

(

sl, θlk

(

π(f)
(
sl
)
,π

(f)
(K−1)

(
sl
))

, π(p)
(
slk
))

|st = s

]

, (11)

where (γ)l denotes γ to the l-th power. Within a MDP framework, γ can also be treated as

a discount factor. The aim of each VUE-pair k is to find an optimal control policy π that

maximizes Vk

(
s|π,π(K−1)

)
, ∀s ∈ SK .

C. Equivalent Game Reformulation

From the channel model applied in this paper, the channel quality state space G, where the

path loss depends on the VUE mobility, is semi-continuous [25]. Exploring the identical and

independently distributed nature in channel quality states under a given path loss model, we

utilize the notion of partitioned control policy below as in [26] to simply the non-cooperative

stochastic game of radio resource scheduling.
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Definition 1 (Partitioned Control Policy): Given a control policy π, we define for any VUE-

pair k ∈ K,

π(q) = {π(s)|(gk, (xk,yk)) ∈ G × L, ∀k ∈ K} , (12)

as the collection of decision makings for all possible channel quality realizations given the global

queue state q = (qk,q−k), where qk ∈ Q is the local queue state at VUE-pair k at a current

scheduling slot.

With a partitioned control policy, we can turn the original MDP with a semi-continuous

state space into a standard MDP with a finite state space. The equivalent state value function,

Vk

(
q|π,π(K−1)

)
, ∀q ∈ QK , of a VUE-pair k ∈ K can be given by

Vk

(
q|π,π(K−1)

)
=

E(π,π(K−1))

[
∞∑

l=t

(γ)l−t+1 · ℓ̄k

(

ql, θlk

(

π(f)
(
ql
)
,π

(f)
(K−1)

(
ql
))

, π(p)
(
qlk
))

|qt = q

]

, (13)

where ql =
(
qlk,q

l
−k

)
is the global queue state at a scheduling slot l and the corresponding

instantaneous payoff function ℓ̄k

(

ql, θlk

(

π(f)
(
ql
)
,π

(f)
(K−1)

(
ql
))

, π(p)
(
qlk
))

is given by

ℓ̄k

(

ql, θlk

(

π(f)
(
ql
)
,π

(f)
(K−1)

(
ql
))

, π(p)
(
qlk
))

=

E{(glk,(xl
k,y

l
k)):k∈K}

[

ℓk

(

sl, θlk

(

π(f)
(
sl
)
,π

(f)
(K−1)

(
sl
))

, π(p)
(
slk
))]

. (14)

Each VUE-pair k hence switches to focus on designing an optimal stationary partitioned control

policy π such that its own Vk

(
q|π,π(K−1)

)
is maximized, ∀q ∈ QK . In the equivalent radio

resource scheduling stochastic game, a MPE defines the joint partitioned control policy profile

π(K) that simultaneously maximizes the expected long-term payoff for every VUE-pair in the

network, given the partitioned control policies of the other VUE-pairs.

Definition 2 (Markov Perfect Equilibrium): The vector π(K) of stationary partitioned control

policies is a MPE in the equivalent radio resource scheduling stochastic game if ∀k ∈ K and

∀q ∈ QK , we have

Vk

(
q|π(K)

)
= max

π

Vk

(
q|π,π(K−1)

)
. (15)

The following theorem ensures the existence of a MPE.

Theorem 1: In the equivalent non-cooperative radio resource scheduling game, there always

exists a MPE [27].
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D. Solving the MPE

The problem in (15) is a typical infinite-horizon discounted MDP. Suppose that each VUE-

pair k ∈ K in the network can observe the global queue states and all the other VUE-pairs play

π(K−1), the partitioned control policy π of VUE-pair k satisfying (15) can be obtained from

solving the Bellman’s equation,

Vk

(
q|π(K)

)
= max

π(s)






γ · ℓ̄k

(

q, θk

(

π(f)(q) ,π
(f)
(K−1)(q)

)

, π(p)(qk)
)

+ γ ·
∑

q′∈QK

P

(

q′|q, θ
(

π(f)(q) ,π
(f)
(K−1)(q)

)

,
(

π(p)(qk) ,π
(p)
(K−1)(q−k)

))

· Vk

(
q′|π(K)

)






, (16)

where θ = (θk : k ∈ K) is the result from the frequency resource auction at the beginning of a

current scheduling slot, q′ = (q′k, q
′
−k) is the subsequent global queue state, and the global queue

state transition probability satisfies

P

(

q′|q, θ
(

π(f)(q) ,π
(f)
(K−1)(q)

)

,
(

π(p)(qk) ,π
(p)
(K−1)(q−k)

))

=

E{(gk,(xk,yk)):k∈K}

[

P

(

q′|s, θ
(

π
(f)
(K) (s)

)

,π
(p)
(K) (s)

)]

. (17)

The solution to (16) by a dynamic programming method [28] is in general computationally

challenging. The challenges lie in: 1) the number
(
1 + q(max)

)K
of global queue states, which

grows exponentially as the number K of VUE-pairs increases; and 2) the complete information

of local queue state dynamics from the VUE-pairs, which is infeasible to exchange in our

competitive networking environment.

IV. LEARNING THE OE POLICY

This section addresses the technical challenges in solving a MPE by an approximate OE and

theoretically quantifies the error between a MPE solution and a OE solution. Moreover, we

propose an online learning algorithm to approach the OE control policy.

A. Approximating MPE via OE

The challenges in solving a MPE for the equivalent stochastic game motivates our alternative

approach. Basically, the idea is that in a dense network, there are a large number of VUE-

pairs, and hence the impacts from competitions among the VUE-pairs on the frequency resource

allocation can be averaged out such that the local queue states at the competitors remain
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approximately unchanged across the scheduling slots. That is, as the number of VUE-pairs

increases, the effect from a single VUE-pair on the outcomes of the equivalent stochastic game

is negligible [17]. Under this setting, each VUE-pair can potentially behave nearly optimally

based only on the local queue states and the statistics of the long-term queue state distribution

of other competing VUE-pairs.

Definition 3 (Long-Term Queue State Distribution): From the perspective of a VUE-pair k ∈ K

playing π, the statistics of the long-term queue state distribution under
(
π,π(K−1)

)
is a mapping:

Π
(π,π(K−1))
k : S → [0, 1]. Specifically, ∀q ∈ Q,

Π
(π,π(K−1))
k (q) = E(π,π(K−1))



 lim
∆→∞

∑t+∆
l=t

∑

k′∈K\{k} 1{qlk′=q}

(∆ + 1) · (K − 1)



 , (18)

where 1{Υ} is a function that equals 1 if the condition Υ is satisfied and otherwise, 0.

As stated in Lemma 2, the stationary behaviours from the VUE-pairs in the V2V network

leads to a steady distribution over the global queue states.

Lemma 2: For the given stationary partitioned control policy profile
(
π,π(K−1)

)
following

which a VUE-pair k ∈ K plays π while all the other VUE-pairs play π(K−1), a steady long-term

queue state distribution as in (18) exists [29].

Therefore, in the following, we restrict a partitioned control policy π for a VUE-pair k ∈ K

to be oblivious. Using an oblivious partitioned control policy, VUE-pair k makes the frequency

auction and packet scheduling decisions only with the local information. Based on this intuition,

we propose to approximate the MPE by a OE solution. The corresponding oblivious state value

function for VUE-pair k can be defined as

Vk

(

qk|π,Π
(π,π(K−1))
k

)

= (19)

E(π,π(K−1))

[
∞∑

l=t

(γ)l−t+1 · ℓ̄k

(

ql, θlk

(

π(f)
(
qlk
)
,π

(f)
(K−1)

(
ql
−k

))

, π(p)
(
qlk
))

|qtk = qk,Π
(π,π(K−1))
k

]

,

∀qk ∈ Q. Slightly different from the literature, we keep using the VUE-pair index k for the sake

of deriving an online learning algorithm to solve the OE control policy in Section IV-C.

When all VUE-pairs play an optimal oblivious partitioned control policy profile π(K), each

VUE-pair k ∈ K conjectures Π
π(K)

k as the statistics of the long-term queue state distribution that

matches π(K). For notational convenience, we let Π = Π
π(K)

k , ∀k ∈ K. Then π(K) together with

Π define a OE.
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Definition 4 (Oblivious Equilibrium): A OE consists of a stationary oblivious partitioned

control policy profile π(K) and a long-term queue state distribution Π such that ∀k ∈ K,

Vk(qk) = max
π

Vk

(

qk|π,Π
(π,π(K−1))
k

)

, ∀qk ∈ Q, (20)

where Vk(qk) = Vk(qk|π,Π).

In the equivalent radio resource scheduling stochastic game, a OE exists as in the following

corollary.

Corollary 3: For the considered equivalent non-cooperative stochastic game of radio resource

scheduling, the existence of a OE is straightforward from the discussions in [17].

B. Solution Error Analysis

The aim in this subsection is to qualitatively analyze the error between a MPE and a OE

solutions to the equivalent non-cooperative radio resource scheduling stochastic game. We define

an asymptotic Markov equilibrium (AME) property [30] for a OE control policy as follows.

Definition 5 (Asymptotic Markov Equilibrium Property): A OE control policy π(K) is said to

possess the AME property if for each VUE-pair k ∈ K,

lim
K→∞

E
[
Vk

(
q|πk,π(K−1)

)
− Vk

(
q|π(K)

)]
= 0, (21)

where πk is a MPE control policy of VUE-pair k.

The AME property means that the expected long-term payoff performance gap achieved by

a VUE-pair k ∈ K from following a stationary OE control policy π instead of a MPE control

policy πk approaches zero when the number of VUE-pairs goes to infinity. As a main result

from this work, we verify in Theorem 4 the AME property of a OE.

Theorem 4: The AME property holds for the OE (π(K),Π).

Proof: For a control policy πk =
(

π
(f)
k , π

(p)
k

)

played by a VUE-pair k ∈ K, let us define,

∀q ∈ QK ,

∆Vk(q) = Vk

(
q|πk,π(K−1)

)
− Vk

(
q|π(K)

)
. (22)
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Without loss of generality, let ∆Vk(q) ≥ 0. The case in which ∆Vk(q) < 0 proceeds in a similar

way. We will establish that limK→∞ E[∆Vk(q)] = 0. ∀qk ∈ Q, define the expected long-term

payoff for VUE-pair k by

Vk

(

qk|πk,Π
(πk,π(K−1))
k

)

= (23)

E(πk,π(K−1))

[
∞∑

l=t

(γ)l−t+1 · ℓ̄k

(

ql, θlk

(

π
(f)
k

(
ql
)
,π

(f)
(K−1)

(
ql
−k

))

, π
(p)
k

(
qlk
))

|qtk = qk,Π
(πk,π(K−1))
k

]

,

under any stationary control policy πk =
(

π
(f)
k , π

(p)
k

)

while other VUE-pairs playing the obliv-

ious π(K−1). Then, ∀qk ∈ Q,

Vk

(

qk|πk,Π
(πk ,π(K−1))
k

)

≤ max
πk

Vk

(

qk|πk,Π
(πk,π(K−1))
k

)

(a)
= max

π

Vk

(

qk|π,Π
(π,π(K−1))
k

)

= Vk(qk), (24)

where (a) is from [18, Theorem 5.1]. ∆Vk(q) in (22) can be written as

∆Vk(q) = Vk

(
q|πk,π(K−1)

)
− Vk(qk) + Vk(qk)− Vk

(
q|π(K)

)

≤ Vk

(
q|πk,π(K−1)

)
− Vk

(

qk|πk,Π
(πk ,π(K−1))
k

)

︸ ︷︷ ︸

V
(1)
k

(q)

+ Vk(qk)− Vk

(
q|π(K)

)

︸ ︷︷ ︸

V
(2)
k

(q)

. (25)

Using the triangle inequality, ∀k ∈ K and ∀q ∈ QK , we deduce

E

[

V
(1)
k (q)

]

≤ (26)

E(πk ,π(K−1))






∞∑

l=t

(γ)l−t+1 ·

∣
∣
∣
∣
∣
∣
∣

ℓ̄k

(

ql, θlk

(

π
(f)
k

(
ql
)
,π

(f)
(K−1)

(
ql
))

, π
(p)
k

(
qlk
))

−

ℓ̄k

(

ql, θlk

(

π
(f)
k

(
qlk
)
,π

(f)
(K−1)

(
ql
−k

))

, π
(p)
k

(
qlk
))

∣
∣
∣
∣
∣
∣
∣

|qt = q,Π
(πk ,π(K−1))
k




,

and

E

[

V
(2)
k (q)

]

≤

Eπ(K)






∞∑

l=t

(γ)l−t+1 ·

∣
∣
∣
∣
∣
∣
∣

ℓ̄k

(

ql, θlk

(

π(f)
(
qlk
)
,π

(f)
(K−1)

(
ql
−k

))

, π(p)
(
qlk
))

−

ℓ̄k

(

ql, θlk

(

π
(f)
k

(
ql
)
,π

(f)
(K−1)

(
ql
))

, π
(p)
k

(
qlk
))

∣
∣
∣
∣
∣
∣
∣

|qt = q,Π




 . (27)

[17, Lemma 6] implies that both E[V
(1)
k (q)] and E[V

(2)
k (q)] approach to zero as K →∞, which

completes the proof. �
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C. Learning the OE

The Bellman’s optimality equation for the problem in (20) can be written as

Vk(qk) = max
π(qk)






γ · ℓ̄k

(

q, θk

(

π(f)(qk) ,π
(f)
(K−1)(q−k)

)

, π(p)(qk)
)

+ γ ·
∑

q′
k
∈Q

P

(

q′k|qk, θk

(

π(f)(qk) ,π
(f)
(K−1)(q−k)

)

, π(p)(qk)
)

· Vk(q
′
k)






, (28)

∀k ∈ K and ∀qk ∈ Q. After observing the local queue state qk at the beginning of every

scheduling slot, each VUE-pair k ∈ K strategically submits an auction bid Bk = π(f)(qk) to the

RSU, which is a true value of owning the single frequency resource. The following Theorem 5

gives the optimal design of Bk.

Theorem 5: When all VUE-pairs follow a joint partitioned control policy profile π(K), the

optimal auction bid Bk submitted by a VUE-pair k ∈ K at a current scheduling slot is of the

form as

Bk = uk(s, θk, Dk) +
∑

q′
k
∈Q

P(q′k|qk, θk, Dk) · Vk(q
′
k) , (29)

where θk is the optimal frequency resource allocation from the auction at the RSU and Dk =

π(p)(sk) is the optimal packet scheduling decision at a current scheduling slot.

Proof: Since a stationary oblivious control policy π is composed of the oblivious frequency

resource auction policy π(f) and the oblivious packet scheduling policy π(p), the Bellman’s

optimality equation in (28) for each VUE-pair k ∈ K can be restructured as

Bk = π(f)(qk) = argmax
Bk

E{(gk,(xk,yk)):k∈K}






ℓk
(
s, θk(Bk,B−k) , π

(p)(sk)
)

+
∑

q′
k
∈Q

P
(
q′k|qk, θk(Bk,B−k) , π

(p)(sk)
)
· Vk(q

′
k)






, (30)

where B−k = (Bk′ : k
′ ∈ K \ {k}) = π(K−1)(s−k) denotes the optimal frequency auction bids

from other VUE-pairs. From the winner determination (2) and the payment calculation (3) rules,

the optimal oblivious frequency auction policy for VUE-pair k is to bid truthfully across the

scheduling slots with the bid defined by (29). �

Directly calculating an auction bid at the beginning of a scheduling slot as in (29) remains

challenging due to the facts that the packet arrival statistics may not be easily known a priori. We
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define a post-decision queue state [22], [31], [32] for each VUE-pair based on the observation that

the packet arrivals are independent of the frequency resource auction and the packet scheduling

decision makings. At a current slot, the post-decision queue state of a VUE-pair k ∈ K is defined

as q̃k = qk − θk(B) ·Dk, where B = (Bk : k ∈ K). By introducing a post-decision queue state,

we hence factor the utility function given by (8) into two parts, namely, u
(1)
k (·)+αk ·u

(2)
k (·) and

u
(3)
k (·). The probability of the local queue state transition from qk to q′k can be then expressed

as

P(q′k|qk, θk(B), Dk) = P(q′k|q̃k) · P(q̃k|qk, θk(B), Dk)

= γ · P(ak) + (1− γ), (31)

where it is obvious that P(q̃k|qk, θk(B), Dk) = 1. We denote the optimal oblivious post-decision

queue state value function of VUE-pair k by Ṽk(q̃k), which can be expressed as

Ṽk(q̃k) = γ · u
(3)
k (ok) + γ ·

∑

q′
k
∈Q

P(q′k|q̃k) · Vk(q
′
k), (32)

where ok is the number of incurred packet overflows.

For each VUE-pair k ∈ K, we further define the right-hand-side of (28) as a Q-factor, that is,

Qk(qk, θk(Bk,B−k), Dk) = γ · ℓ̄k(q, θk(Bk,B−k), Dk)

+ γ ·
∑

q′k∈Q

P(q′k|qk, θk(Bk,B−k), Dk) · Vk(q
′
k), (33)

where Bk and Dk are, respectively, the resource auction bid and the packet scheduling decision

in the local queue state qk at a current scheduling slot following an any given partitioned control

policy π. Then the optimal oblivious queue state value function Vk(qk) can be derived from

Vk(qk) = max
Bk ,Dk

Qk(qk, θk(Bk,B−k), Dk) . (34)

Replacing Vk(q
′
k) in (32) with (34), we obtain

Ṽk(q̃k) = γ · u
(3)
k (ok) + γ ·

∑

q′
k
∈Q

P(q′k|q̃k) · max
B′

k,D
′
k

Qk(q
′
k, θk(B

′
k,B−k), D

′
k) . (35)

And in turn, the Q-factor defined by (33) can be given by

Qk(qk, θk(Bk,B−k), Dk) = γ ·
(

u
(1)
k (qk) + αk · u

(2)
k (ck)− τk

)

+ Ṽk(q̃k), (36)

where τk is the induced payment for VUE-pair k to the RSU from submitting a bid Bk and ck

is the power consumption for transmitting θk (Bk,B−k) ·Dk data packets.
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By substituting (31) and (35) back into (29), we eventually arrive at the auction bid for a

VUE-pair k ∈ K,

Bk = u
(1)
k (qk) + αk · u

(2)
k (ck) +

1

γ
· Ṽk(q̃k) , (37)

where the transmit power ck is consumed by VUE-pair k to deliver a number θk
(
π

(f)(q)
)
·π(p)(sk)

of data packets.

The number of packet arrivals by the end of a scheduling slot is unavailable beforehand and

so is the number of packet overflows at the slot. In this case, instead of computing the optimal

oblivious post-decision state value function using (35), we propose an online algorithm for each

VUE-pair k ∈ K to find the optimal oblivious post-decision queue state value function by ex-

ploring the conventional reinforcement learning techniques [32], [34]. Based on the observations

of local queue state qtk, frequency allocation result θtk from the auction at the RSU, number of

packet departures θtk ·D
t
k, consumed transmit power ctk, local post-decision queue state qtk−θ

t
k ·D

t
k,

number of new packet arrivals atk, number of packet overflows otk, payment τ tk to the RSU at

current scheduling slot t, and resulting local queue state qt+1
k at the next scheduling slot t + 1,

VUE-pair k updates the oblivious post-decision queue state value function on the fly according

to

Ṽ t+1
k

(
q̃tk
)
=
(
1− ζ t

)
· Ṽ t

k

(
q̃tk
)
+ ζ t · γ ·

(

u
(3)
k

(
otk
)
+ max

θ′k ,D
′
k

Qt
k

(
qt+1
k , θ′k, D

′
k

)
)

. (38)

where ζ t ∈ [0, 1) is the learning rate, the Q-factor is iterated following the rule below

Qt+1
k

(
qtk, θ

t
k, D

t
k

)
= γ ·

(

u
(1)
k

(
qtk
)
+ αk · u

(2)
k

(
ctk
)
− τ tk

)

+ Ṽ t+1
k

(
q̃tk
)
, (39)

and the number Dt
k of scheduled packet departures during slot t is determined by

Dt
k = argmax

Dk

Qt
k

(
qtk, θ

t
k, Dk

)
. (40)

The online algorithm for learning the optimal oblivious post-decision queue state value func-

tions for each VUE-pair k ∈ K in the V2V network is briefly summarized in Algorithm 1.

Theorem 6 ensures the convergence property of the online learning algorithm.

Theorem 6: For each VUE-pair k ∈ K,
{

Ṽ t
k (q̃k) : ∀t ∈ N+

}

converges to the optimal oblivious

post-decision queue state value function Ṽk(q̃k), ∀q̃k ∈ Q, if and only if the learning rate satisfies
∑∞

t=1 ζ
t =∞ and

∑∞
t=1(ζ

t)2 <∞.

Proof: The proof is similar to [33]. �
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Algorithm 1 Online Algorithm for Learning Optimal Oblivious Post-decision State Value

Functions of a VUE-pair k ∈ K

1: initialize the oblivious post-decision state value function Ṽ 1
k (q̃k) and Q-factor Q1

k(qk, θk, Dk)

for VUE-pair k, where q̃k, qk ∈ Q and (θk, Dk) ∈ {0, 1} ×Q.

2: repeat

3: At the beginning of each scheduling slot t, VUE-pair k observes the local queue state qtk,

calculates the auction bid Bt
k according to (37), and sends the information of [(xt

k,y
t
k) , B

t
k]

to the RSU, where Dt
k is determined according to (40).

4: VUE-pair k awaits the frequency resource allocation θtk and the payment τ tk, which are

calculated according to (2) and (3), respectively. Then the vTx of VUE-pair k proceed to

make packet scheduling decision Dt
k.

5: After transmitting θtk ·D
t
k packets, VUE-pair k observes the utilities u

(1)
k (qtk) and u

(2)
k (ctk)

regarding the queue length qtk and the transmit power consumption ctk, respectively, and

the resulting local post-decision queue state q̃tk = qtk − θtk ·D
t
k.

6: With the observation of atk new packet arrivals, VUE-pair k realizes u
(3)
k (otk) quantifying

the satisfaction of packet overflows at scheduling slot t and the local queue state transits

to qt+1
k = min

{
q̃tk + atk, q

(max)
}

during the following scheduling slot t + 1.

7: According to (38) and (39), VUE-pair k updates, respectively, the oblivious post-decision

queue state value function Ṽ t+1
k (q̃tk) and the Q-factor Qt+1

k (qtk, θ
t
k, D

t
k).

8: The scheduling slot index is updated by t← t + 1.

9: until A predefined stopping condition is satisfied.

V. SIMULATION RESULTS

We carry out numerical simulations to evaluate the performance achieved from our proposed

online learning algorithm for radio resource scheduling in a non-cooperative V2V communication

network, which is based on a 250 × 250 m2 Manhattan mobility model with nine intersections

as in [11]. In the model, a road consists of two lanes, each of which is in one direction and is

of width 4 m. The average vehicle speed is 40 km/h, and the vehicle grouping is performed by
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Fig. 2. Illustration of the convergence property of our proposed algorithm.

means of spectral clustering [35]. u
(1)
k (·), u

(2)
k (·) and u

(3)
k (·) in (8) are chosen to be

u
(1)
k

(
qtk
)
= exp

{
−qtk

}
, (41)

u
(2)
k

(
ctk
)
= exp

{
−ctk

}
, (42)

u
(3)
k

(
otk
)
= exp

{
−otk

}
. (43)

The packet arrivals at the vTx of a VUE-pair follow a Poisson arrival process with average rate

λ (in packets per scheduling slot). Other parameter values used in simulations are listed in Table

I.

For the purpose of performance comparisons, we simulate other three baseline algorithms as

well, which are specified as follows.

1) Channel-Aware: A VUE-pair evaluates the need of occupying the frequency resource for

packet transmissions based on the channel quality state at each scheduling slot and does

not take into account the queue state.

2) Queue-Aware: A VUE-pair announces at each scheduling slot the preference of obtaining

the frequency resource to maximize the expected long-term number of packets to be

transmitted [36].



19

TABLE I

PARAMETER VALUES IN SIMULATIONS.

Parameter Value

Path loss exponent ρ −68.5 dB

Path loss coefficient e 1.61

Distance ϕ0 30 m

Number of VUE-pair group |I| 15

Frequency bandwidth w 500 kHz

Aggregate interference N 2× 10
−12 W

Noise power spectral density σ2
3.98× 10

−21 W/Hz

Scheduling slot duration δ 9 ms

Queue termination probability γ 0.1

Weight of transmit power αk 6, ∀k ∈ K

Data packet size µ 5 kb

Maximum transmit power c(max)
2 W

3) Random: Implementing this algorithm, a VUE-pair randomly generates the bid of having

the frequency resource at each scheduling slot, which means that the VUE-pair does not

consider any dynamics from the network.

Using a Channel-Aware algorithm or a Random algorithm, the vTx of a winning VUE-pair

k ∈ K at each scheduling slot t transmits a maximum possible number D
(max),t
k of data packets

in the queue, namely,

D
(max),t
k = min






qtk,





δ · w · log2

(

1 +
gtk·c

(max)

N+w·σ2

)

µ











, (44)

where ⌊·⌋ means the floor function.

A. Convergence Property of the Proposed Algorithm

We first examine if the stochastic behaviour of a VUE-pair converges when all VUE-pairs

in the vehicular network behave according to the proposed online learning algorithm. In the

simulation, we select the number of VUE-pairs and the packet arrival rate as K = 28 and λ = 6,

respectively. The distance between the vTx and the vRx of each VUE-pair is fixed to be ϕ = 26

m, and the length limit of the queue at the vTx of a VUE-pair is assumed to be q(max) = 5.
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Fig. 3. Average queue length per VUE-pair across the time horizon versus VUE-pair distance ϕ: K = 36 and λ = 5.

Without loss of the generality, we plot the simulated variations in the post-decision state value

functions of VUE-pair 1,
{

Ṽ1(q̃1) : q̃1 ∈ {0, 1, · · · , 5}
}

, across the time horizon in Fig. 2, which

tells that the proposed learning algorithm converges within 600 scheduling slots.

B. Impact of ϕ

Next, we demonstrate the average performance per scheduling slot in terms of the average

queue length, the average transmit power consumption and the average packet drops under

different values of ϕ. We configure the parameter values in this simulation as: K = 36, λ = 5

and q(max) = 10. The results are depicted in Figs. 3, 4, 5 and 6. Fig. 3 illustrates the average

queue length per VUE-pair per scheduling slot. Fig. 4 illustrates the average transmit power

consumption per VUE-pair per scheduling slot. Fig. 5 illustrates the packet drops per VUE-pair

per scheduling slot. Fig. 6 illustrates the average utility per VUE-pair per scheduling slot.

Each plot compares the performance of the proposed online learning algorithm with the other

three baseline algorithms. It can be observed from Fig. 6 that the proposed algorithm achieves

significant utility performance improvements when the VUE-pair distance increases to a large

enough value, indicating that the proposed algorithm realizes a better trade-off between the queue
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Fig. 4. Average transmit power consumption per VUE-pair across the time horizon versus VUE-pair distance ϕ: K = 36 and

λ = 5.

length, the transmit power consumption and the packet drops. Similar observations can be made

from Fig. 4, which shows that the minimum average transmit power is consumed by the proposed

algorithm. As the distance between the vTx and the vRx of a VUE-pair increases, the channel

quality becomes worse. Hence transmitting the same number of data packets requires more

power consumption, resulting in increased average queue length (as shown in Fig. 3) and average

packet drops (as shown in Fig. 5). Interestingly, by deploying the proposed algorithm, the slight

increase/decrease in the transmit power consumption can be compensated by reducing/increasing

the average queue length and the average packet drops.

C. Impact of λ

We then exhibit the average queue length, the average transmit power consumption, the average

packet drops and the average utility per VUE-pair under various settings of the average packet

arrival rate in Figs. 7, 8, 9 and 10. During the simulation, we distribute K = 56 VUE-pairs in

the network and the distance between the vTx and the vRX of a VUE-pair is fixed to be ϕ = 28

m. Other parameter values are the same as the simulation in Section V-B. We can see from Fig.
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Fig. 5. Average packet drops per VUE-pair across the time horizon versus VUE-pair distance ϕ: K = 36 and λ = 5.

10 that as the average packet arrival rate increases, the VUE-pairs receive a smaller average

utility. With more arriving packets, the VUE-pairs consume more transmit power (as shown in

Fig. 9) to deliver the queued data packets in order to avoid possible packet drops. While the

increases in the average queue length (as shown in Fig. 7) and the average packet drops (as

shown in Fig. 8) are due to the maximum transmit power constraint at the vTx of a VUE-pair.

The simulations in this section and the previous Section V-B clearly illustrate that the proposed

algorithm is able to ensure better average utility performance for the VUE-pairs than the other

three baseline algorithms given worse channel qualities and heavier traffic demands.

D. Impact of K

It becomes natural to compare the performance from the proposed algorithm to the other three

baseline algorithms versus different numbers of VUE-pairs with relatively good transmission

qualities between the vTxs and the vRxs and light traffic demands at the vTxs. That is, we

simulate a V2V communication network in which the VUE-pair distance and the average packet

arrival rate are assumed to be ϕ = 20 m and λ = 3. Figs. 11, 12, 13 and 14 draw the curves
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Fig. 6. Average utility per VUE-pair across the time horizon versus VUE-pair distance ϕ: K = 36 and λ = 5.

of simulated average queue length, average transmit power consumption, average packet drops

and average utility per VUE-pair over the scheduling slots.

It is straightforward that more VUE-pairs means higher competition and hence less opportunity

for occupying the single frequency resource to transmit the queued data packets, which indicates

larger average queue length (as shown in Fig. 11), more average packet drops (as shown in

Fig. 12), smaller average transmit power consumption (as shown in Fig. 13) and worse utility

performance (as shown in Fig. 14) for all four algorithms. Note that for the Queue-Aware

algorithm, the average transmit power consumption first increases but then decreases. This

observation can be explained by the fact that with the Queue-Aware algorithm, each VUE-pair

bids for the frequency resource based on the queue status. The increase in average queue length

due to higher competition pushes the VUE-pairs to more actively participate in the frequency

resource auction. More importantly, we can easily find from Fig. 14 that when the number of

VUE-pairs appearing in the V2V network is small, the proposed online learning algorithm does

not outperform the other three baseline algorithms, which is consistent with the simulations

in Section V-B and Section V-C. However, when the number of VUE-pairs increases to a big

enough value, a significant improvement in average utility performance can be expected from
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Fig. 7. Average queue length per VUE-pair across the time horizon versus average packet arrival rate λ: K = 56 and ϕ = 28

m.

the proposed algorithm. This trend confirms Theorem 4.

VI. CONCLUSIONS

In this paper, we investigate the problem of radio resource scheduling in a non-cooperative

V2V communication network. The VUE-pairs compete with each other for the limited frequency

resource at the beginning of each scheduling slot, which is controlled by the RSU through a

sealed second-price auction mechanism. Under the assumptions of high vehicle mobility and

time-varying packet arrivals, the problem is originally formulated as a stochastic game. Using

the definition of a partitioned control policy profile, the stochastic game with a semi-continuous

global network state space is hence transformed into an equivalent game with a global queue

state space of finite size. The other challenge lies in the global queue state space explosion

that happens in a V2V network with a large number of VUE-pairs. Therefore, we adopt a OE

to approximate the MPE, which characterizes the optimal solution to the equivalent game. We

theoretically study the AME property of a OE solution. Without a priori statistics knowledge

of queue state transitions, we derive an online algorithm to approach the OE control policy.
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Fig. 8. Average transmit power consumption per VUE-pair across the time horizon versus average packet arrival rate λ: K = 56

and ϕ = 28 m.

From numerical simulations, significant gains in utility performance from the proposed learning

algorithm can be expected.
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