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Abstract

Programming for large-scale computing requires programming models carefully de-

signed for that purpose. MPI is often the model of choice for distributed systems,

but writing MPI program is time-consuming and complicated to maintain and debug

as the program size gets larger. Moreover, MPI does not exploit some of the poten-

tial benefits of shared memory systems. Using a hybrid model also requires a high

level of programmer expertise. Designing algorithms in terms of tasks potentially

reduces the development effort and has many performance-related advantages. In

addition, directive-based programming styles have made parallel programming and

migration of serial code to multicore chips easier than ever. Although directive-

based tasking models have paved the way to distributed systems, they still lack

capabilities necessary for efficient large-scale computing.

TagHit is an API proposed by the HPCTools group in the Department of Com-

puter Science at the University of Houston. Targeted for exascale computing,

TagHit combines the benefits of task-based programming models with the sim-

plicity of directive-based programming styles. This thesis tackles task creation and

scheduling in TagHit. First, I present an overview of six existing task-based pro-

gramming models. Next, I propose an experimental runtime design of TagHit’s task

creation and scheduling modules and then describe in detail a prototype implemen-

tation of the runtime. The goal of this work is to guide the definition of TagHit’s

concept and semantics and to assess the implementation cost and challenges of cre-

ating and scheduling tasks in TagHit. Finally, I present two TagHit benchmarks

with results that show the design and implementation have supported the general

concept of TagHit with good speedup and scheduling behavior.
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Chapter 1

Introduction

1.1 Background and Motivation

Exascale computing will require programming models prepared for systems with

hundreds of thousand nodes and thousands of cores per node [5, 26]. MPI is the

de-facto standard for parallel programming in distributed systems. However, ex-

pressing parallelism in MPI is often time-consuming and complicated to maintain

and debug. Furthermore, as the number of cores per node increase, MPI alone does

not sufficiently exploit the potential benefits of share-memory parallelism. Thus,

finding a software solution that exploits the computation power of such a massive

scale is a critical task. One current popular solution is hybrid programming, which

uses a combination of inter-node and intra-node programming models, such as MPI

with OpenMP. However, this makes the programming task even more complex and

requires a high-level of programmer expertise to adopt two programming styles to
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solve a single problem.

Task-based programming allows programmers to divide computation into inde-

pendent sets of asynchronous tasks to execute in parallel. This has many advantages

over the conventional thread-based approach. Task-based programming allows for-

ward scaling, as the number of tasks can scale with the size of the problem. Tasks

can be created dynamically to allow a high degree of parallelism as if there are an

infinite number of processors and then to scale when more resources are available

[19]. Tasking also prevents deadlocks and data races among working threads, an

essential advantage for efficient scalability. Furthermore, the runtime system of

a tasking model is usually responsible for minimizing the overhead and executing

tasks efficiently [19]. Generally, the runtime system creates a customizable num-

ber of threads, in which tasks are scheduled, which may be used over and over

again to eliminate the overhead of creating and deleting a thread for each com-

putation task. With a smart scheduling mechanism, such as work stealing, tasks

are also distributed among threads for efficient, load-balanced execution. Although

directive-based tasking models have paved the way to distributed systems, they still

lack capabilities necessary for efficient large-scale computing.

TagHit is a directive-based tasking API proposed by the High Performance

Computing Tools group (HPCTools) in the Department of Computer Science at

the University of Houston. Targeted for exascale computing, TagHit combines the

benefits of task-based programming models with the simplicity of directive-based

programming style as found in OpenMP. TagHit programmers can create dynamic

tasks using directives, and the TagHit runtime system will take care of the rest
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by scheduling and executing tasks efficiently in a distributed environment. TagHit

will ultimately support other features necessary for large-scale computing such as

tasks with different levels of granularity, data distribution mechanisms, data flow

dependencies, and heterogeneous systems support.

1.2 Contributions

The following are the main contributions of this thesis:

• I explored six existing task-based models and described their key features.

• I proposed an experimental runtime design of TagHit’s task creation and

scheduling modules and described its different aspects to guide the definition

of TagHit concept and semantics.

• I implemented a prototype of the runtime to create, execute, and synchronize

TagHit tasks. I also contributed to TagHit’s future development by describing

the compiler translation of TagHit task creation directive to its runtime code.

• I further improved the prototype implementation with a work-stealing schedul-

ing mechanism to migrate and load-balance tasks between processing re-

sources.

1.3 Organization

The rest of this thesis report is organized as follows:
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Chapter 2 presents an overview of six existing tasking models. It describes

their key features and some observations about each one. Chapter 3 describes the

basic TagHit API and more specifically the syntax of the directives for creating

and synchronizing tasks. Chapter 4 defines the general design goals of TagHit

and accordingly proposes an experiential runtime design of TagHit’s task creation

and scheduling modules. Chapter 5 details a prototype implementation of the

runtime to create, execute, and synchronize TagHit tasks. Additionally, Chapter 5

discusses task scheduling and the adopted work-stealing mechanism to migrate and

load-balance tasks between processing resources. Chapter 6 presents two TagHit

benchmarks. The first section of this chapter examines the performance of a TagHit

program to compute PI and investigates the scheduler’s behavior. The second

section demonstrates our prototype’s functional behavior for handling synchronized

nested tasks. Finally, Chapter 7 summarizes this work and my conclusions.
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Chapter 2

Related Work

Various distributed tasking models have been developed to achieve specific tasking

goals. Although they are based on the same idea, they differ in many design choices

and in the features they provide to users. In fact, this makes direct comparison

hard. This section, however, describes six key task-based models, which are recent

and have received the most focus. Other models, however, are older but still have

similar execution models. It is worth mentioning now that all models described in

this section are not directive-based, except for XcalableMP, which is described in

section 2.5.

2.1 Open Community Runtime (OCR)

OCR [22] is a low-level runtime for writing task-based applications. The basic idea

of OCR is to write applications as a directed acyclic graph of event-driven tasks.
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The OCR programming model is based on three concepts: Event Driven Tasks

(EDTs), events, and Data Blocks (DBs).

The current reference implementation of OCR was developed by Rice University

and Intel. Although it supports the entire OCR standard, it was developed as a

proof of concept and still focuses on correctness, rather than performance. OCR-

Vx [14] is another implementation of OCR. Two versions of OCR-Vx are available;

one for distributed memory systems and another for shared memory. This imple-

mentation only shows good scalability in a small-scale environment. P-OCR [20],

however, is a more recent implementation, which is described as high performance,

optimized, and more scalable than the first two.

2.1.1 Tasks Execution and Flow Control

In OCR, EDTs are data structures representing computational units (tasks). An

EDT is defined as a template that is linked with a task function and is created by

passing required arguments. EDTs can be associated with events, which are OCR

objects used to signal the completion of a task or the availability of data. The

execution of an EDT is controlled by its events and will only execute when all of

its events are completed (satisfied). Thus, EDTs and events can be used together

to compose a dynamic computational graph. DBs, however, are objects that hold

data. DBs are the only way to share data between tasks in OCR. They are also

used to satisfy events that indicate the availability of data.

Once all events associated with a task are satisfied, the task and any resources

required for its execution are submitted to a worker, which will schedule and execute
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the task. When a task completes execution, it will release any associated DBs and

trigger its post event, which may enable other tasks.

2.1.2 Task Scheduling

The OCR standard does not specify how tasks are exactly scheduled across process-

ing elements. In addition, it does not specify how waiting EDTs are stored within

a processing element. However, the OCR runtime is responsible for dynamically

managing tasks and data. EDTs can be migrated during runtime across process-

ing elements for better load balancing, but before they are assigned resources and

scheduled for execution [20]. P-OCR, for example, performs work-stealing to load-

balance tasks within a node, and users can either specify the node on which a task

must run, or leave the decision to the runtime to also perform work-stealing across

nodes [20].

2.1.3 Observations

DBs can only be accessed by passing them to tasks. That is, there is no API

call in OCR to access a data block by knowing its reference (i.e., GUID in OCR).

This restriction would introduce complexity in terms of application implementation.

Additionally, events in OCR are difficult to handle when they are compared to

future objects as found in HPX. An event that represents a task completion is

destroyed and cannot be used once triggered (satisfied), requiring the set up of all

dependent tasks before running that task to ensure correct execution behavior [22].
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This, in fact, further complicates implementing OCR applications as it requires

additional synchronization when an immediately ready task is created before its

dependent tasks. On the other hand, a future object represents data regardless of

whether or not it is ready at the creation of a dependent task, which makes coding

task dependencies easy to use. Finally, although OCR is low-level and intended

to support higher-level programming models such as TagHit, it is evolving and

available implementations are still in an early stage of development.

2.2 ParalleX (HPX)

ParalleX is an execution model available in two implementations: HPX-3, from

Louisiana State University, and HPX-5, from Indiana University [17]. The basic

semantic mechanisms of ParalleX are as follows [29]:

• Global Name Space: makes actions and data globally accessible

• Threading: threads are lightweight and exist within a single locality (comput-

ing element)

• Parcel: a data structure that is sent to another locality to trigger a thread to

execute

• Local Control Objects: synchronization primitives managed by the runtime

• Parallel Processes: contain many threads on multiple localities

The ParalleX goal is to address the challenges of efficiency, scalability, and
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sustained performance with conventional parallel programming such as MPI [17].

ParalleX improves efficiency by basically reducing scheduling and synchronization

overhead. It improves scalability by using data-directed computing and lightweight

synchronizations. The performance will consequently be improved as a result of

improving efficiency and scalability.

2.2.1 Task Creation and Execution

A task in HPX executes a function along with its arguments and returns a future

object (LCO) that represents the data returned by the function. Generally, a future

object acts as a proxy for a result that will be available at some time during the

program execution but is initially unknown [17]. A parcel, which represents a task

during communication, is generated and sent whenever a task must be executed in

a remote locality. When it reaches its destination, the parcel creates a PX-thread

to work on the associated task. PX-threads are implemented as user threads, and a

thread manager schedules them to operate on top of one OS thread [17]. A running

PX-thread will not be preempted until it finishes execution. When a task is finished,

the result is sent to its corresponding future because the parcel that represents it

carries the ID of the future as its continuation.

2.2.2 Task Scheduling

HPX has several available scheduling policies. It also has an API to write custom

schedulers. By default, each OS thread operates on a separate FIFO priority queue
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where the thread manager inserts PX-threads (tasks). OS threads can steal tasks

from queues of other OS threads to facilitate on-node load balancing. The thread

manager also gathers both the machine topology information and the number of

OS threads mapped to the allocated resources. As a default behavior, the thread

manager will use all available cores, assigning one OS thread per core.

All scheduling policies in HPX use two queues to manage tasks [15]. A task is

first created as a PX-thread description and then placed in a staged queue. Since

these threads have not been allocated yet, they can easily be moved to other lo-

calities, if necessary. The thread manager will then allocate a stack for the staged

PX-thread and place it in a pending queue. The PX-thread will be active when it

is running. PX-threads can suspend waiting for resources or data. When they do,

they will be placed back in the pending queue, allowing other threads to run. A

PX-thread will be terminated after it completes execution.

2.2.3 Task Flow Control

Tasks in HPX archive synchronization and control of parallelization via local con-

trol objects (LCOs). LCOs organize the execution flow and are designed to replace

global barriers, such as barriers in MPI that might impede parallelism and, conse-

quently, performance [18]. HPX provides traditional concurrency controls but also

provides both future objects and dataflow objects. All concurrency controls in HPX

are exposed as LCOs.

Futures, on which threads can wait, suspend any PX-thread (task) that must

access their values when the data is not available yet. The future itself resumes all
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suspended PX-threads that are waiting. Dataflow objects, on the other hand, can

be used to construct and manage data dependencies. A dataflow object waits for

a set of futures launches the associated task when the data of all futures becomes

available.

2.2.4 Observations

With today’s architectures, even though PX-threads are lightweight, allocating,

context-switching, and releasing them for each task adds overhead, especially in

situations where millions of tasks must be executed. For future work, however, the

latency hiding and data locality control [18] in HPX are potential mechanisms for

TagHit to improve application scalability.

2.3 Legion

Legion is a dynamicly distributed tasking model [2]. Legion’s key feature is its

logical regions. Legion programmers should define how data is grouped into regions.

They can also divide regions into subregions. Parallelism in Legion is expressed by

specifying if these regions are shared or private so that tasks that operate on private

regions are independent tasks [28].
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2.3.1 Task Creation and Execution

Tasks are created by specifying the task function and passing the required argu-

ments. When all dependencies of a task are satisfied and the task is safe to run,

it will be placed on a ready queue. To identify whether the dependencies are sat-

isfied, a dependence analysis process must be performed. Section 2.2.3 provides a

high-level description of this complex process. While tasks are in the ready queue,

a processor might permit remote processors to steal them. The Legion scheduler

will then map the tasks to run locally or remotely based on the location of the

associated regions. Finally, tasks on a processor group (i.e., a node) are placed in

a queue from which processors pull when they are ready to execute a task [3].

2.3.2 Task Scheduling

A software out-of-order processor (SOOP) is used to schedule tasks [2]. The SOOP

is distributed such that each processor runs an instance of it. The SOOP performs

dependence analysis to determine which task to run. This process is divided into

three stages. The first stage analyzes the task dependencies, identifying which

tasks must run before the current task. When dependencies are satisfied, the task

is placed in a ready queue. During this time, another processor might steal the

task and place it in its ready queue. The second stage distributes the task and

decides whether it should run locally or remotely on another processor. This stage

basically depends on the target processor for the task (i.e., CPU, GPU, etc.) and

location of its data. The third stage performs more analysis of the dependent tasks,

ensuring that the data the task requires is valid and up to date. When all the above
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operations have finished, the task is launched. When a running task launches a child

task, the SOOP instance on the process where it is launched, will be used to perform

the same scheduling steps as its parent.

2.3.3 Task Flow Control

To determine dependent and independent tasks in Legion, regions that are accessed

by tasks provide initial but useful locality information. Because logical regions in

Legion can be partitioned into separate or overlapping subregions, the way regions

are partitioned provides information to identify dependencies. Furthermore, privi-

leges in Legion (e.g., read-only, read-write, and atomic) specify how a task accesses

its region [2]. These privileges provide data-dependence information as well. For

example, if two tasks access a region with read-only, the tasks are independent and

can execute in parallel.

Legion also supports future objects, which represent a return value of a task that

will become available at some point during the program execution. Futures can be

waited on or passed as arguments to other tasks [3]. However, Legion programmers

should not rely on waiting on futures as they block tasks and prevent the runtime

from exposing additional work. In addition, storing futures in logical regions is not

permitted
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2.3.4 Observations

We noticed a steep learning curve associated with Legion. Although suitable for

special (non-trivial) problems, we attribute this to the complexity of using logical

regions to manage application data. Thus, using Legion tasks in TagHit would

cause an overhead in creating tasks using directives, requiring the user to always

use logical region. Otherwise, the compiler would be responsible to map task data

to logical regions, which would consequently add a layer of complexity. Similarly,

the Legion SOOP scheduler depends heavily on logical regions and is constrained

by their dependencies [2].

2.4 PaRSEC (DAGuE)

PaRSEC is the more pronounceable successor of DAGuE. DAGuE is a Direct Acyclic

Graph (DAG) scheduling framework, where the edges are data and the nodes are

tasks [8]. PaRSEC runtime can be invoked via parameterized task graphs (PTGs),

which a programmer can manually write or generate via the compiler. PaRSEC has

been used to build DPLASMA [7], which is an implementation of a dense linear-

algebra package for distributed systems.

2.4.1 PaRSEC Environment

In addition to a runtime environment, PaRSEC consists of tools to build, analyze,

and generate a DAG task-based program. The PaRSEC library includes the runtime
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environment and the program-specific generated codes. The runtime library consists

of a distributed scheduler, a communication engine, and a data dependency engine.

PaRSEC application is essentially an MPI application. However, it combines with

PaRSEC functionalities generated using the PaRSEC tool chain. Ultimately, the

end user of a PaRSEC program does not have to use PaRSEC, because all of

PaRSEC’s functionalities are embedded in the program [8].

2.4.2 Tasks and Data Flow

The input format of the PaRSEC framework is job data flow (JDF), a representation

of task(s) and the dataflow between them [11]. The task body is written in regular

C code and the dependencies are separately defined by algebraic conditions. The

programmer can add a task priority function, which hints to the PaRSEC scheduling

engine to set task priorities.

The JDF is then compiled to C code. The generated code is basically a C

function that the programmer can call to construct and execute the tasks. The code

generated is totally separate and independent of the problem size. The programmer

can package the generated code to set up the data required for commutation and

then call the generated function to pass data to tasks. When running a PaRSEC

program, the PaRSEC engine moves data between processors, if necessary, and a

task can only be executed when all of its input data are local [8].
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2.4.3 Task Scheduling

The PaRSEC scheduler is distributed such that all nodes run the scheduling engine,

eliminating the need for a centralized scheduler [8]. The scheduling engine also

allows work stealing to load balance tasks between threads. The work stealing

implemented with the PaRSEC engine focuses on improving cache locality.

PaRSEC binds threads to cores. Each thread alternates between executing tasks

and executing calls to the scheduler. Tasks are stored in queues local to threads.

When a thread completes a task, it invokes the scheduler to decide which task to

run next.

To execute a new task by thread, the scheduler gets a task from that local

queue based on the priority function the user has defined in the JDF. A thread will

attempt to steal a task from another thread when its queue is empty. A thread will

try to steal from a thread on a close core first to provide efficient cache and memory

locality [8]. PaRSEC achieves this work-stealing behavior by utilizing the hwloc

framework [9] to gather information about the NUMA architecture of the machine.

2.4.4 Observations

PaRSEC is innovative in terms of separating parallelism from control flow and data

distribution. However, writing a PaRSEC program is usually a three-phase process.

A small modification to the JDF file would require recompiling both JDF and the

main C code. Furthermore, writing a PaRSEC application requires the programmer

to adopt two programming syntaxes. Because the JDF file syntax is uncommon,

16



many programmers would find it hard to write and maintain. Although the PaRSEC

tool chain includes a PTG code generator, it is still immature and almost always

requires the programmer to be involved and modify the generated code. For these

reasons, PaRSEC would have a steep learning curve for many programmers as well

as being complex to write, maintain, and debug.

Finally, the task scheduling in PaRSEC is fully distributed. Because this schedul-

ing mechanism has many performance benefits, we studied the PaRSEC scheduler

and adopted some of its scheduling concepts. Our TagHit scheduler is distributed

as well. And similar to PaRSEC, it also allows a processing element to steal tasks

when it exhausts all tasks in its own queue. However, because our TagHit imple-

mentation is a prototype, our scheduler can be optimized, especially in terms of the

victim selection strategy to extract more performance. Section 5.6 discusses our

TagHit scheduler in more detail.

2.5 XcalableMP (XMP)

XcalableMP enables parallelizing sequential code on a distributed environment us-

ing directives [21]. The XcalableMP design principle is performance-awareness, in

which directives take all actions. The execution model allows combining MPI and

OpenMP into XcalableMP for complicated and tuned parallel codes or for shared

memory-thread programming (hybrid model) [32].

Data in an XcalableMP program can be global or local. Programmers can

define how to distribute global data, and data in remote memory can be accessed
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by explicit communication.

2.5.1 Tasks and Loops Execution

Each node, which might have multiple cores, starts executing the same main routine

until it encounters an XcalableMP construct. When a node encounters a loop, array,

or task construct and is specified by the directive’s ”on” clause, it executes the body

of the construct. An executing node set is a set of nodes that executes a loop or

block [32]. The loop construct executes a loop in parallel by mapping its iterations

to nodes holding specified data. The array construct, an alternative to the loop,

performs a parallel execution of an array assignment in which each node (determined

by the on clause) executes element assignment and operation. The task construct,

on the other hand, assigns an amount of work to a specified node set.

2.5.2 Scheduling

It is the user’s responsibility to specify where to execute loop iterations and tasks.

The loop and task constructs specify a node set by using the on clause.

2.5.3 Observations

Although the on clause adds performance benefits on highly heterogeneous sys-

tems, it could complicate the programming effort by forcing users to direct the

parallel execution on specific node sets. This approach also restricts loop iterations

and task scheduling in cases where idle resources are available but not specified by
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the on clause. A scheduling system that uses the underlying resources efficiently

would overcome this issue. Furthermore, XcalableMP does not support depen-

dencies, which leaves the programmer with synchronization constructs only. Task

dependencies provide many performance benefits by lowering the execution over-

head when compared to conventional synchronization points. Finally, a node in

XcalableMP is mapped to multiple hardware resources. In TagHit, however, we

look for a mechanism to dynamically map a processing-element to any hardware

resources (i.e., node, CPU, or single core). This will give users more flexibility to

map processing elements to the appropriate hardware resources and extract more

performance with different kinds of applications.

2.6 Argobots

Argobots supports two levels of parallelism: execution streams (ESs) and work units

(WUs) [27]. WUs are execution units that can be either user-level threads (ULTs)

or tasklets. However, ES is a sequential execution stream containing one or more

WUs and bound to hardware resources. Thus, WUs can be associated with an ES,

and WUs in different ESs can be executed concurrently.

2.6.1 ULTs and Tasklets

User-level threads (ULTs) and tasklets offer an abstraction for fine-grained paral-

lelism. ULTs are excellent for expressing parallelism whose flow of control pauses

and resumes. Unlike traditional OS threads, ULTs are not intended to be preempted
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but yield control to the scheduler. Tasklets in Argobots, on the other hand, are

work units with dependence only on their input data. Tasklets do not yield control

but run to completion before returning control to the scheduler.

2.6.2 Work Units Scheduling

Argobots has schedulers that control the execution order of scheduling units (WUs),

and each scheduler can be associated with an ES. Thus, each ES can use a differ-

ent scheduler [27]. Argobots provides basic schedulers, but users can also define

their own schedulers. Furthermore, users can change the scheduler for the ES dur-

ing runtime. WUs are scheduled by context switching. Thus, when a work unit

completes its execution, it context switches to the scheduler, which then chooses

another scheduling unit to execute.

2.6.3 Observations

Argobots is similar to Qthreads [31] or QUARK [33]. However, Argobots is an

advanced threading infrastructure with customizable scheduling capabilities. Ar-

gobots alone does not expand for distributed-memory environments but it can be

integrated with other distributed models to support this. We have chosen to present

Argobots in this section to explore its applicability for building TagHit.

To support massive on-node parallelism, Argobots can be integrated with TagHit

to schedule tasks on a node basis and create ES, for example, on each processing el-

ement. However, we still need a mechanism to schedule tasks across multiple nodes.

20



Our prototype implementation of TagHit does not use Argobots in its underlying

system but, for simplicity, we used conventional POSIX Threads to express paral-

lelism on shared memory. Also, we implemented our own scheduler to distribute

tasks across nodes. For future work, Argobots, or similar frameworks [31, 33], can

be considered for an improved implementation of TagHit that supports massive

on-node parallelism.
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Chapter 3

Basic TagHit API

TagHit is a directive-based programming interface that combines the benefits of

task-based programming with the simplicity of directive-based programming style.

Tasks are created dynamically using minimal modification with simple OpenMP-

like directives. The underlying system is then responsible for efficiently scheduling

and executing tasks. In this chapter, we discuss the TagHit API. Specifically, we

describe the basic TagHit task creation construct and the task synchronization

construct. Our description of these constructs is for C/C++ as pragma directives.

In future, the TagHit API will possibly add other constructs as well as clauses to

the task creation construct to enable necessary features for large scale computing,

but they are out of the scope of this thesis work.
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3.1 TagHit Terminologies

A processing element in TagHit can be a complete compute node, CPU socket, or

single core. Also, as this report later describes, processing elements can run one or

more threads (execution threads). We use the term TagHit process to represent

this concept throughout this report.

Furthermore, data environment is basically a set of variables referenced

within the structured block of a task. They are defined before the task construct

and may have been initialized with values. We also use the terms data item and

data items to refer to one or more variables of this set. One or more data items

could be a task input or output.

3.2 Task Creation Construct

To create a TagHit task, the task construct is used. The syntax of the construct

is as follows:

#pragma t a g h i t task new-line

structured-block

When a TagHit process encounters a task construct, it generates a task for the

associated structured block. The task’s data environment depends on the variables

referenced within the structured block, and initially takes the values before using

the construct. The task is then scheduled for execution by the encountering TagHit
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process and may be executed by the same process or sent to another for remote

task execution.

Using the task-synchronization construct discussed in section 3.3 can ensure

completion of the task. After using the task-synchronization construct, user can

safely access the result. If a task construct is encountered during the execution of

another task, a child task, independent of its parent, is generated.

3.3 Task Synchronization Construct

To wait for the completion of TagHit tasks, the taskwait construct is used. The

syntax is as follows:

#pragma t a g h i t taskwai t new-line

The task-synchronization construct waits for child tasks to finish. At the taskwait

construct, the current task is suspended until all previously generated child tasks

complete.

3.4 Compiler Assumptions

Because TagHit is a directive-based API, the compiler will be involved in translating

TagHit constructs into their corresponding TagHit runtime functions. The compiler

implementation of these constructs is out of the scope of this thesis. However, to

24



1 int main ( int argc , char∗∗ argv ) {
2
3 int x = 1 , int y = 2 , int z ;
4 #pragma t a g h i t task
5 {
6 z = x + y ;
7 }
8 }

Listing 3.1: TagHit Program

ensure that future work complies with the runtime, we provide a simple example in

which a TagHit task construct, Listing 3.1, is translated into a runtime version, as

seen in Listing 3.2.

As in Listing 3.2, we assumed that the compiler implementation of TagHit con-

structs would be able to achieve the following for each task construct appearing in

the program:

• Determine the number of data items of a TagHit task construct and their

data types. Similarly, in OpenMP the compiler detects the visible variables

in OpenMP constructs to determine data-sharing attributes. The number and

the types of the variables perform the additional compiler work, as discussed

in the next points.

• Determine the MPI data types that correspond to each data item. As Chapter

5 explains, to ensure portability and heterogeneous systems support, the MPI

data types are passed to the MPI routines when TagHit processes need to

send or receive data.

• If task data are not primitive data types, such as C structs, the compiler

25



1 task meta t a g h i t t a s k s l o o k u p t a b l e [ 1 ] = {
2 {
3 . tag = 0 ,
4 . t a s k f u n c t i o n = &t a g h i t t a s k 0 1 ,
5 . input count = 3 ,
6 . i nput da ta type s =
7 ( MPI Datatype [ ] ) {MPI INT , MPI INT , MPI INT} ,
8 . i n p u t d a t a l e n g t h s = ( int [ ] ) {1 , 1 , 1}
9 }

10 } ;
11
12 void t a g h i t t a s k 0 1 ( void∗∗ input ) {
13 int x = ∗ ( ( int ∗) input [ 0 ] ) ;
14 int y = ∗ ( ( int ∗) input [ 1 ] ) ;
15 int z = ∗ ( ( int ∗) input [ 2 ] ) ;
16
17 // s t r u c t u r e d b l o c k o f the t a g h i t t a s k
18 z = x + y ;
19
20 ∗ ( ( int ∗) input [ 0 ] ) = x ;
21 ∗ ( ( int ∗) input [ 1 ] ) = y ;
22 ∗ ( ( int ∗) input [ 2 ] ) = z ;
23 }
24
25 int main ( int argc , char∗∗ argv ) {
26
27 t a g h i t i n i t (&argc , &argv , t a g h i t t a s k s l o o k u p t a b l e ) ;
28
29 int x = 1 ;
30 int y = 2 ;
31 int z ;
32
33 void∗∗ inputs = mal loc ( s izeof ( void ∗) ∗ 3 ) ;
34 inputs [ 0 ] = &x ;
35 inputs [ 1 ] = &y ;
36 inputs [ 2 ] = &z ;
37
38 t a g h i t c r e a t e t a s k (0 , inputs ) ;
39 }

Listing 3.2: TagHit Program (Runtime Version)
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implements a solution to parse any complex data types and generate either

their corresponding derived MPI data types or provide the MPI data type of

each and every element in the data structure.

• Encapsulate TagHit task structured-blocks in special TagHit functions that

return nothing (i.e., void) and take an array of pointers in which task data

are referenced. Listing 3.2 (line 12) shows the TagHit task function signature.

The compiler must encapsulate a TagHit task structured-block in a TagHit

function even if it consists of only a single line of code. The body of the

function consists of three main parts. It begins by dereferencing task-data

pointers into their actual values and assigning them to variables of the same

type as in Listing 3.2 (line 13 to 15), and ends by assigning the task-data values

again to the pointer array (line 20 to 22). The TagHit task structured-block

is then placed as it is, as seen in Listing 3.2 (line 18).

• Construct a task data pointer array that consists of all addresses of variables

referenced in a TagHit task construct, as seen in Listing 3.2 (line 33 to 36).

This array is passed to the TagHit runtime call that creates a new TagHit

task, as in line 35. Chapter 5 discusses task creation and execution in more

details.

• Create a task-lookup table consisting of all task definitions using the informa-

tion extracted for each task in the previous points. Lines 1 to 10 of Listing 3.2

show an example of the lookup table. The compiler also passes the lookup ta-

ble to the TagHit runtime, as seen in line 27. Chapter 5 explains the purpose

of the task-lookup table.
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Chapter 4

TagHit Experimental Runtime

Design: Task Execution and

Scheduling

This chapter describes an experimental runtime design for TagHit. It begins by

discussing the design goals of the TagHit-runtime system. It then presents the

architecture design of the runtime and describes its various components.

4.1 TagHit Runtime Design Goals

The TagHit-runtime system design goals should be precisely defined because they

are essential to validate the correctness of the TagHit-runtime design and implemen-

tation. This stage focuses on implementing the runtime to create tasks and schedule
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them; however, the TagHit runtime must be well designed to accommodate future

development efforts such as data distribution and tasks dependencies.

A task is the fundamental unit of work in TagHit. Tasks may have input data

on which to work and from which they may produce results. They are issued in

program order, exactly as they are written via directives; yet they are asynchronous

and dynamic to execute until completion on any available TagHit process.

When a task is created, the TagHit runtime system decides where to execute

it. The runtime system also migrates tasks between different TagHit processes if

necessary. Furthermore, to minimize memory consumption, the runtime does not

duplicate tasks, and possibly their data, unless it is a necessity, as in the case of an

adoption of a fault-tolerance mechanism requiring duplication of tasks.

To decide where to execute a TagHit task, a proper scheduler distributes tasks

across TagHit processes based on a certain scheduling mechanism. However, the

TagHit scheduler distributes tasks fairly and load balances them across all available

TagHit processes in a way that ensures correct execution of both parent and child

tasks.

Finally, TagHit is a directive-based model. The TagHit-runtime design does not

conflict in anyway with this goal such that tasks shall be created via directives,

specifically #pragma in C, and the runtime system takes care of the rest by

scheduling and executing them as described earlier.
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Figure 4.1: TagHit runtime architecture to create, schedule, and execute tasks in a distributed
environment. It consists of four main components: TagHit porgram, TagHit scheduler, Task
Queue, and Execution Threads. These components are distributed, and an instance of each
component resides on every TagHit process.

4.2 Proposed Architecture Design

This section discusses our proposed architecture design of the TagHit runtime sys-

tem. The design conforms to the design goals discussed in the previous section.

We tried to make it simple yet fixable to accommodate future work and any pos-

sible enhancements to the API. Figure 4.1 demonstrates the general design and its

various components.

The design of TagHit runtime is modular. Each design component defines a set

of roles and functionalities in which the coupling between them is set to minimum.
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This would make any further changes, improvements, or addition of new compo-

nents easy as long as the new component defines a set of new roles and the way it

interacts with the other components is clearly described. As Figure 4.1 shows, the

TagHit runtime consists of four main components that define the basic semantics

and mechanisms to create, schedule, and execute tasks in a distributed environment.

These components are distributed, and an instance of each component resides on

every TagHit process. This is essential for scalability, because centralized compo-

nents usually create bottlenecks and increase contentions during the execution of a

TagHit program. The roles of each component are described as follows.

4.2.1 TagHit Program

The TagHit program encapsulates the application code, which uses TagHit con-

structs, and all the runtime functionalities. The TagHit program is distributed

across all TagHit processes. Only a master TagHit process, process 0 in Figure 3.1,

executes the main routine, while other TagHit processes initially suspend and waits

for tasks to be received for execution. The purpose of distributing TagHit programs

across all processes is to make the runtime fully distributed and to facilitate direct

access to tasks on every TagHit process. In fact, other mechanisms such as dynamic

loading [4] would dynamically load tasks to processes, but the cost associated with

dynamic loading at runtime makes our approach preferable. In addition, our ap-

proach simplifies the implementation of the TagHit runtime as well as the usage

and implementation of TagHit applications by avoiding any restrictions imposed by

other methods.
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4.2.2 TagHit Scheduler

This component is mainly responsible for deciding where to execute a task. Schedul-

ing in TagHit is fully distributed, and every TagHit process runs an instance of this

component. When a TagHit process encounters a new task construct during the

program execution, it creates a task and invokes the TagHit scheduler. The TagHit

scheduler will then either schedule the task to run locally or send it to a remote

TagHit process. If the task is sent to a remote process, the TagHit scheduler on

that process will receive the task and schedule it for execution. Similarly, when a

child task is launched during the execution of a task, the TagHit scheduler of the

process that launches the child task will be invoked to decide where to execute it,

eliminating the need to send it to a centralized scheduler.

The scheduling mechanism depends on the specific implementation of this com-

ponent. The implementation of this component can range from a trivial round

robin scheduling of tasks across TagHit processes to a more complex scheduling

mechanism such as work stealing. Chapter 5 discusses this component’s prototype

implementation.

4.2.3 Task Queue

Task queues are FIFO queues that hold ready-to-run tasks. Each TagHit process

operates on its own task queue, and the TagHit scheduler of that process pushes

tasks into the task queue. A task queue in one TagHit process is not shared with

any other process. This is essential to minimize both contentions and network
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communications between TagHit processes while pushing tasks or consuming them

from queues. In addition, this approach uses the memory of TagHit processes

efficiently by allowing tasks to be distributed across different processes where they

are scheduled to run, rather than residing only on one process.

Furthermore, task queues are not entirely locked by any kind of operation. This

is necessary to allow concurrent access in the same TagHit process to different

parts of the task queue and thus to extract more performance. For instance, a

TagHit scheduler can push tasks directly to the task queue while other operations

are accessing tasks in the same queue.

4.2.4 Execution Threads

Execution threads, which execute TagHit tasks, are key in our TagHit runtime

design to exploit the potential benefits of shared memory parallelism to extract

more performance. Each TagHit process runs one or more execution threads. An

execution thread pulls tasks from the task queue of the process on which it is running

and executes them.

4.3 Design Enhancement for Future Work

A global address space that spans all TagHit processes would further enhance the

TagHit runtime. Exposing data globally would efficiently enable different (future)

TagHit functions such as data distribution and task dependence. It would also allow

tasks to be received asynchronously on a remote TagHit process without the need
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to actively wait for them. Combining this scheme with task queues allows overlap of

communication with computation to extract more performance. Follow-on studies,

however, will lead to a broader understanding of how TagHit would achieve these

features.
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Chapter 5

TagHit Runtime Prototype

Implementation: Task Execution

and Scheduling

In this chapter, we discussed different TagHit runtime functions to create and sched-

ule tasks. These functions implement (as a prototype) the experimental runtime

design discussed in the previous chapter. The runtime prototype is implemented

in C. The chapter first discusses the underlying libraries of the TagHit runtime

and then describes the implementation of task creation, execution, and synchro-

nization. Finally, the chapter discusses task scheduling and presents the approach

implemented.
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5.1 Underlying Libraries: MPI

Discussion of the TagHit experimental runtime design in Chapter 4 demonstrated

that TagHit programs must be distributed across all TagHit processes to directly

access task functions on every TagHit process. Furthermore, TagHit schedulers

must send and receive TagHit tasks to achieve task execution on remote processes.

These aspects of the design can be realized via MPI.

MPI [23] is the most common mechanism for expressing parallelism on dis-

tributed environments today. It is standardized, portable, and available on leading

platforms. MPI also has several well-tested and efficient implementations, some of

which are open source. Furthermore, the MPI standard has evolved to support de-

rived data types, non-blocking collective communication, multithreading support,

and remote memory access (one-sided) operations. These capabilities have made

MPI a powerful system that enable a wide range of users, not only to write high-

performance programs but also to build other platforms and runtime systems in C,

C++, and Fortran.

The prototype uses MPI as the fundamental building block of the runtime sys-

tem. We used MPI to launch TagHit processes and distribute the TagHit program.

MPI is also used to facilitate communication and send and receive TagHit tasks

between TagHit processes. In addition to these reasons for using MPI, the follow-

ing subsections describe more powerful capabilities that make MPI preferable for

implementing the TagHit runtime system.
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5.1.1 Using MPI Data Types for Heterogeneous Systems

To achieve task execution on multiple TagHit processes, the processes must ex-

change task info with other process such as task input and output data of any type.

MPI requires users to specify the type of data that need to be sent and received

and uses special MPI data types for that purpose.

MPI data types are not just intended to show the type of the data at the send

and receive times; it is also a powerful tool to ensure consistency of the data layout

in different architectures. MPI data types allow the underlying MPI system to per-

form data representation conversion between source and destination machines [23].

Consequently, specifying MPI data types is crucial to prevent erroneous operations

that might occur on heterogeneous systems. One concrete example of the advantage

of using MPI data types is sending an integer from a machine that uses little-endian

representation to another that uses big-endian. The bits can then be rearranged in

the receiving machine to preserve the integer’s original value.

5.1.1.1 The Challenge of Dynamically Determining MPI Data Types

Because TagHit is directive-based and the input and output data of tasks could

be of any type, dynamically determining the correct MPI data type without user

involvement is a challenge. The problem becomes even more complex when the

data is a complex structure, such as C structs that may require building and using

derived MPI data types.

A trivial solution for sending any data type via MPI is to serialize the data
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into bytes and use MPI BYTE as the MPI data type. However, MPI BYTE

prevents MPI from performing any type of data conversion [23], thus losing the

benefit of using other MPI data types to support portability.

Another solution is to urge TagHit users (as an option) to specify the MPI data

types of the task input and output data in the task creation constructs as they would

do if they used the standard MPI routines. If the user does not specify the MPI

data types, the runtime should serialize the data to bytes and use MPI BYTE as

a default option.

Alternatively, the compiler would assist in solving this issue. In fact, we decided

to go with this solution for our runtime implementation. We assumed the compiler

could extract the types of task data, match them with their corresponding MPI data

types, and then provide them to the TagHit runtime system. Chapter 3 discusses

the compiler assumptions.

5.1.2 MPI in Multithreaded Environments

One important feature of MPI is the support of multithreaded communication.

MPI facilitates requesting a certain level of thread support (single , funneled ,

serialized , and multiple). The multiple level allows an arbitrary number of

threads to make MPI calls, simultaneously.

Multithreaded communication in MPI would potentially improve the perfor-

mance of the TagHit runtime system. In TagHit, multiple execution threads may

run to execute tasks. When a task completes its execution in a remote process,
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the results must be sent to the original process that created it. Using multi-

threaded communications would facilitate this behavior by allowing multiple ex-

ecution threads in one TagHit process to invoke MPI calls concurrently (via the

TagHit scheduler), sending task results back to other TagHit processes. Further-

more, a TagHit scheduler could also independently receive messages from other

TagHit processes by running on its own thread and without blocking execution

threads from exposing additional work.

5.1.2.1 MPI Init thread to Support Multithreaded Communication

Making MPI calls directly in multithreaded applications without the required setup

might cause a deadlock. The underlying system might generate a warning if the

MPI library does not support such behavior. In fact, this deadlock might cause the

runtime to degrade performance as well. To solve this problem, MPI has a provi-

sion to request a certain level of thread support by calling the MPI Init thread

routine. Because the TagHit runtime uses threads to make MPI calls, as described

above, MPI must be initialized with MPI Init thread instead of MPI Init .

Unfortunately, however, some MPI implementations do not include multithreaded

communication support by default. OpenMPI, for example, does not include this

support if it has not been configured with the –enable-mpi-thread-multiple con-

figure switch during installation. Another important point is that multithreaded

communication support has only been lightly tested in OpenMPI at the time of

writing this report. It likely does not work for thread-intensive applications. Other

implementations of MPI such as MPICH and MVAPICH, however, have been sup-

porting multithreaded communication for much longer and thus can be used to
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ensure robustness.

5.2 Underlying Libraries: Pthreads

The discussion of the TagHit experimental runtime design in Chapter 4 demon-

strated that TagHit processes may run one or more execution threads. Our proto-

type implementation utilized POSIX Threads [10], or Pthreads, to implement the

execution threads. Based on the number of execution threads the user requests,

each TagHit process launches a number of Pthreads at the runtime initialization

stage. Basically, each Pthread is implemented as a loop that waits for tasks to

be pushed into the task queue and is then triggered by the scheduler to pull one

by one for execution. Once a Pthread pulls a task from the queue, it binds the

task as its context by assigning the task instance to its thread-specific value. This

will facilitate accessing different task information within the thread while execut-

ing, scheduling, or synchronizing the task. Furthermore, binding a context to the

Pthread would easily enable task switching, which 5.5.1 discusses.

For future work, we recommend improving the TagHit runtime to extract even

more performance by enhancing the implementation of the shared memory paral-

lelism. For example, utilizing other frameworks such as Argobots, as Chapter 2

describes, would achieve massive on-node parallelism with dynamic and customiz-

able on-node scheduling capabilities.
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5.3 Tasks-Lookup Table

As we discussed in Chapter 3, the compiler encapsulates structured block of a

TagHit task construct in a task functions. Thus, a pointer to the task’s function

must be known by the process that is going to execute it. In the case of executing

a task on a TagHit process different from the one that has generated it, passing

the task function pointer to that process is meaningless because TagHit processes

do not share the same memory address space. In fact, as discussed in previous

sections, each TagHit process has an instance of the TagHit program and thus the

task function should be accessible to the remote process, but the pointer must be

locatable. Moreover, other information about the data environment of the task,

such as the number of data items and their types, must be available for the process

to send or receive it.

We adopted a task lookup approach to facilitate finding a task definition, includ-

ing both a pointer to the task functions and information about its data environment,

in any TagHit process. As Chapter 3 explained, the compiler should construct a

task lookup table when translating TagHit constructs into runtime code and pass it

to the runtime system. Because each TagHit process has an instance of the TagHit

program, which also encapsulates the runtime functionalities, the task-lookup table

is available for all processes. As in Listing 3.2, the task-lookup table consists of all

task definitions, each of which has fields as follows:

• Task tag: a unique identifier of the task definition and its index in the

lookup table. Tags are exchanged and used by TagHit processes to look up
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task definitions.

• Task function: a pointer to the task function. TagHit processes find the

task function and execute it by using this field.

• Input count: the number of data items that make up the data environment

of the task. This number is used to determine the number of data items to

be sent or received.

• Input data types: an array of MPI data types, each corresponding to one

data item of the task. They are passed to the MPI routines to ensure data

portability on heterogeneous systems, as discussed in section 5.1.

• Input data length: an array of integers where each is the length of one data

item of the task. They are also passed to the MPI routines to determine the

length of each data item to be sent or received.

As the task-lookup table is available for all processes with the above fields, any

TagHit process can retrieve a task definition by receiving its tag and, if necessary,

receive the task’s data environment, execute the task, and send it to another TagHit

process.

5.4 Task Creation and Execution

TagHit tasks are created by the taghit create task runtime function, which is a

result of translating the task constructs into runtime code. This function accepts

two arguments as follows:

42



• Task tag: the unique identifier of the task definition and its index in the

lookup table.

• Input: an array of pointers that consists of all addresses of data items (vari-

ables) referenced in the task structured block.

A call to this function creates a task with a set of information necessary to

execute it, synchronize it with other tasks, and track its location and status. This

information is organized in a data structure, named task info, consisting of the

following:

• Task id: keeps track of the task when sent and received between TagHit

processes.

• Origin process: the rank of the process that has created the task.

• Executing process: the rank of the process that has been assigned to exe-

cute the task.

• Status: the execution status of the task, which initially is set to WAIT-

ING and changed during the task’s lifetime to either RUNNING or FIN-

ISHED .

• Task definition: a pointer to the task definition item in the task lookup

table of the process where the task resides.

• Input data: the pointer array that has been passed to the taghit create task

runtime function and consists of all addresses of the task’s data items.
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• Parent task: a pointer to the parent of the task.

• Child tasks: an array of pointers to the current task’s children.

• Task lock: a mutex to provide a locking mechanism to ensure mutual exclu-

sion of the task.

When the task (i.e., task info) is first allocated, the task definition and input

data members are assigned. Then, the runtime assigns an ID to the task and sets

its status to WAITING and its origin process to the rank of the current process

that has created it. If the task has a parent, a reference to the parent, which

is the context of the execution thread that has generated it, is assigned to the

task. Otherwise, the task will be assigned a default root task representing the main

routine.

The TagHit scheduler is then invoked, passing the newly created task. The task

is scheduled for execution locally or on a remote TagHit process according to the

scheduling mechanism implemented in the scheduler. Either way, the scheduler will

assign to the task the rank of the process that is going to execute it, then push

it into the local queue to keep its reference. If the scheduler has chosen a remote

TagHit process to execute the task, the scheduler will send the tag of the task to

the remote process along with its ID and data environment. The scheduler running

on the receiving process would then allocate a new task, assign the appropriate

information to it, and then push the task into the task queue. However, it depends

on the scheduling mechanism in place. Work stealing, for example, would initially

schedule the task to execute on the process that has created it and allow other

processes to steal it. Section 5.6 discusses the adopted scheduling mechanism.
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When tasks are pushed into a task queue, the scheduler triggers the execution

threads to pull it. An execution thread does not lock the entire task queue during

the consumption or execution of any task. However, an execution thread only locks

the task that is trying to pull to execute few simple instructions to check its status

and then unlock it. This approach allows different execution threads to consume

tasks without much overhead and without affecting other operations that may access

other parts of the task queue or push tasks to it concurrently. Once a thread pulls

a task from the queue, it changes its status to RUNNING, binds the task as its

specific value, and executes its associated task function.

If a child task is generated during the execution of a certain task, an independent

child task that is not part of its parent is created and scheduled. However, a

reference to the child task is added to the parent’s array of child tasks so that the

parent can wait on its child tasks or perform a task switch to them. Both task

synchronization and task switching are discussed in the next section.

Finally, when a task completes execution, its status will be changed to FIN-

ISHED . The execution thread that has finished executing a task will attempt to

pull another task from the task queue.

5.5 Task Synchronization

When a task hits a synchronization point, the taghit taskwait runtime function is

called. This function will go though that task’s array of child tasks and make sure

all are executed. If the main routine hits the synchronization point, the child task
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array of the root task, which represents the main routine, is used. The following

subsection discusses aspects of task synchronization.

5.5.1 Synchronized Nested Tasks

At first glance, nested tasks appear to be easily scheduled and executed on any

TagHit process. However, having a synchronization point adds internal dependen-

cies between child and parent tasks in the task queues. Inefficient scheduling of

parent and child tasks might lead to a deadlock.

The problem can be better understood as demonstrated in Figure 5.1. Suppose

we have two tasks, Task 1 and Task 2, scheduled on the queue of process N. Also

suppose that Task 1 generated Task 3, which happened to be scheduled on the

same process as Task 1, as shown in Figure 5.1. Now, if Task 1 encounters a task

synchronization point, it will suspend waiting for its child task (Task 3) to finish.

However, because queues execute tasks in a FIFO fashion, Task 3 will not execute

until Tasks 1 and 2 are finished, which consequently prevents the queue on process

N from further progressing.

Similarly, suppose process X generated a child task T and decided to schedule it

on a remote process Y. If process Y is also waiting on child tasks that are scheduled

on other processes including process X, a cyclic dependency occurs on a large scale

and between different TagHit processes.

The main trick here is that the TagHit synchronization point should not only

suspend a task waiting for its child tasks. In fact, it should invoke a scheduling
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Figure 5.1: Example of a deadlock situation caused by nested tasks. Task 1, Task 2, and Task 3
are scheduled on the queue of process N. Task 3 is a child task of Task 1. If Task 1 encounters a
synchronization point, it will suspend waiting for Task 3 to finish. However, because task queues
are FIFO, Task 3 will not execute until Tasks 1 and 2 are finished.

point where it switches from executing the current task to executing other tasks

found in the queue. This is, in fact, similar to what is known as task switching

in OpenMP: the act of a thread switching from executing of one task to another,

which normally happens at certain scheduling points, one of which is #pragma

omp taswait .

5.6 Task Scheduling

To implement a scheduling mechanism, we must consider the two main, yet chal-

lenging, design goals of TagHit runtime:

• Tasks should be fairly balanced between TagHit processes.

• Network communication between TagHit processes should be minimized.
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Based on our experimental runtime design, scheduling in TagHit is also dis-

tributed where every TagHit process runs an instance of the scheduler. Thus, a

centralized scheduling mechanism, such as work sharing or a centralized task queue,

would violate this design. Furthermore, task scheduling in a distributed environ-

ment involves network activities, which are time-consuming operations and should

be kept to a minimum. This section examines different scheduling mechanisms and

specifies a preferred approach..

5.6.1 Trivial Task Scheduler

Round-robin or random task distributions between TagHit processes are the most

trivial scheduling mechanisms to implement. In a round-robin scheduling mech-

anism, for example, when a TagHit process generates a new task, it invokes the

TagHit scheduler running on that process to select a process in a round-robin fash-

ion to execute the task. These scheduling mechanisms potentially cause unfair task

distribution or unbalanced workload between processes.

5.6.2 Work-Stealing Scheduler

Work stealing [6, 1] is a distributed load-balancing mechanism whereby processors

pull tasks from other processes. When a thief processor finds a victim with tasks,

it steals a portion of the victim’s task queue and then is able to continue executing

tasks. That is, a process does not send generated tasks to other processes, but other

(thief) processes pull them. A thief process does not attempt to steal tasks from
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others until it exhausts all tasks in its own queue.

Work stealing can be done in a two-sided or one-sided manner [13, 30, 12]. Work

stealing is efficient and scalable at utilizing one-sided communication, as shown in

[30, 12]. However, considering the amount of modification to our runtime implemen-

tation and the complexity of managing data locks, the one-sided approach would

require much more implementation effort. For this reason, we have implemented

work stealing in two-sided manner. We reduce the performance overhead of this im-

plementation by using MPI asynchronous operations and a multithreaded solution,

as the next subsection describes.

5.6.2.1 Sending and Receiving Tasks

Communications in our TagHit runtime prototype are generated in the sender and

receiver parts of the scheduler. Tasks are sent asynchronously via the scheduler uti-

lizing MPI asynchronous communication. This would not block execution threads

that invoke the scheduler, and thus they are able to expose more work. However, the

scheduler receives tasks (and possibly other scheduling data) in a separate receiver

thread, allowing tasks to be received and pushed to the queue without interrupting

ongoing work in execution threads. In future work, if one-sided solution is adopted,

it would eliminate the need for a receiver thread as it requires only one process to

transfer data.
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Figure 5.2: Work-stealing algorithm in TagHit. When a thief (process M) exhausts all tasks in its
queue, it will steal tasks by randomly selecting a victim (process N). Process N will send half of
the waiting tasks in its queue to process N.

5.6.2.2 The Work-Stealing Algorithm

The work-stealing algorithm is demonstrated in Figure 5.2 and described by the

following sequence of steps (we divided the sequence into parts to distinguish the

steps performed by the thief or the victim process).

During thief process:

1. A process will attempt to steal tasks when it exhausts all tasks in its queue.

One of the execution threads will invoke the scheduler when it does not find

more task to execute.

2. If (1) is true, the process selects a victim randomly or goes through other pro-

cesses in a round-robin fashion. The second option is currently implemented

for simplicity.
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3. The process sends a steal request message to the victim process asyn-

chronously. Then the execution thread that invoked the schedule suspends,

waiting for tasks to be available.

During victim process:

4. When a victim process receives a steal request, it checks its steal candidates

counter if it is greater than 1. Steal candidates are tasks waiting for execution.

5. If (4) is true, the victim process calculates the number of tasks to steal by

dividing the steal candidates counter by 2 (stealing half of the victim’s work

is an optimal strategy as demonstrated in [6]). Otherwise it sends a steal

abort response message to the thief process.

6. Starting from the tail of the victim’s task queue, the process checks if the

task’s current status is WAITING.

7. If (6) is true, it locks the task and then changes its status from WAITING

to STOLEN . Then it unlocks it and stores its index. Otherwise, it moves

to the next task from the tail of the queue.

8. The process repeats (6) to (7) until the number of tasks to steal is satisfied

or the task’s current status is RUNNING, which means that it has reached

the head of the queue.

9. The process decrements the steal candidate’s counter by the number of stolen

tasks.

10. The process then asynchronously sends stolen tasks to the thief process one

by one.
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During thief process:

11. The thief process receives either a steal abort or tasks as a response to its

steal request.

12. If the thief process received a steal abort response, it repeats steps (2) to (12).

Otherwise, it pushes the received tasks to the tasks queue so that execution

threads can continue executing tasks.
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Chapter 6

TagHit Experiments

In this chapter, we describe two benchmarks developed using our TagHit implemen-

tation. We have implemented a benchmark to compute PI and another to calculate

the Fibonacci sequence of a given number as a recursive algorithm.

6.1 Environment Setup

Our experiment was performed using the Crill cluster at the University of Houston.

This cluster has the following node and network specifications:

• NLE Systems nodes with the following configuration:

– Four 2.2 GHz 12-core AMD Opteron processors (48 cores total)

– 64 GB main memory

– Two dual-port 4xDDR Infiniband HCAs
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• Network Interconnect with the following configuration:

– 144 port 4xInfiniband DDR Voltaire Grid Director ISR 2012 switch

6.2 Experimental Results

In the compute PI benchmark, we discussed the program scalability and the sched-

uler behavior. In the second, we demonstrated the functional nature of the runtime

to handle synchronized nested tasks.

6.2.1 Compute PI

This benchmark calculates PI based on a mathematical approximation of

∫ 1

0

4

(1 + x2)
dx = π

We can approximate the integral as a sum of rectangles as follows:

n∑
i=0

F (x)∆x ≈ π

The width of each rectangle is ∆x and its height is F (x), as shown in Figure

6.1. A pseudocode to compute PI serially is shown in Listing 6.1. Executing a serial

program to compute PI in Crill takes about 26 seconds.
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Figure 6.1: PI function. PI value is approximated as a sum of rectangles. The width of each
rectangle is ∆x and its height is F (x) = 4/(1 + x2)

1
2 x , pi , sum = 0 . 0 ;
3 s tep = 1 .0 / num steps ;
4 num steps = 1000000000;
5
6 for ( i =0; i < num steps ; i++)
7 {
8 x = ( i + 0 . 5 ) ∗ s tep ;
9 sum = sum + 4.0 / ( 1 .0 + x∗x ) ;

10 }
11
12 p i = step ∗ sum ;

Listing 6.1: Compute PI Pseudocode

We have created a TagHit version of this program to calculate PI in parallel by

dividing the loop, as in the above pseudocode (line 6), into a set of 64 TagHit tasks.

The average execution time of running the TagHit version using one, two, four, and

eight processes is shown in Table 6.1.
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TagHit Processes Execution Time in Seconds

1 25.8
2 12.9
4 6.5
8 3.2

Table 6.1: TagHit compute PI execution times.

Figure 6.2: Speedup and parallel efficiency of the TagHit compute PI program. Using one, two,
four, and eight processes, the program scales linearly and provides almost 100% efficiency with
each run instance.

As in Figure 6.2, computing PI in parallel using TagHit provided the expected

speedup ratio and efficiency. The program scales linearly as the speedup grows by a

factor of 2 as the number of processes increases. In addition, how effectively TagHit

processes are utilized defines the efficiency. Figure 6.2 shows almost 100% parallel

efficiency with each run instance.

To study the behavior of the TagHit scheduler, Table 6.2 illustrates how tasks

are distributed between TagHit processes. For all run instances using one, two,
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Number of
TagHit Processes

Rank
0

Rank
1

Rank
2

Rank
3

Rank
4

Rank
5

Rank
6

Rank
7

1 64 - - - - - - -
2 32 32 - - - - - -
4 16 16 16 16 - - - -
8 8 8 8 8 8 8 8 8

Table 6.2: Number of tasks executed by each process of the TagHit compute PI program.

TagHit Process Rank Aborted Steals Successful Steals Total Steal Request

0 1 1 2
1 2 3 5
2 9 3 12
3 27 3 30
4 7 5 12
5 13 5 18
6 16 6 22
7 1 1 2

Average 10 3 13

Table 6.3: Number of aborted and successful steals made by each process when running the TagHit
compute PI program with eight processes.

four, and eight TagHit processes, the number of tasks executed by each process is

shown. In the table, we used Rank 0, Rank 1, Rank 2, and so on to name each

TagHit process.

In all run instances, Table 6.2 shows that our work stealing scheduler success-

fully balances the load between available processes. And because all tasks in our

implementation do the same amount of work, tasks are evenly distributed between

TagHit processes.

Furthermore, to study the work-stealing behavior of the scheduler, we counted
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Figure 6.3: Successful and aborted steals request of the TagHit compute PI program. The figure
shows a comparison between the number of successful and aborted steals made by each process
when running the program with eight processes.

the total number of steal requests and the number of aborted steals (before receiving

the last successful steal) each TagHit process made. Table 6.3 shows these numbers

when running the program with eight TagHit processes. Figure 6.3 provides a

comparison between the number of successful steals and aborted steals.

To analyze these numbers, we considered the average of aborted steals and the

average of successful ones made by each process, shown in Table 6.3: 10 and 3

respectively. In other words, each process sent 10 failed requests and 3 successful

ones on average. That is, each process approximately tried three times before each

successful request. We beleive this is not optimal for such small scale and indicates

that our victim-selection strategy, as well as the number of tasks to steal with each

request, should be well studied and enhanced. In fact, several researches [30, 16,

25, 24] have discussed victim and work-size selection strategies for work-stealing

schedulers. Locality-aware and hierarchical work-stealing are potential strategies
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to consider for TagHit.

6.2.2 Fibonacci: A Recursive Algorithm

The Fibonacci series can be calculated by use of the formula

F (n) = F (n− 1) + F (n− 2)

This can be archived by a recursive algorithm as in Listing 6.2 .

1
2 int Fibonacc i ( int n)
3 {
4 i f ( n < 2 )
5 return n ;
6 else
7 return ( Fibonacc i (n−1) + Fibonacc i (n−2)) ;
8 }

Listing 6.2: Fibonacci Pseudocode

We created a TagHit program to calculate the Fibonacci series. Listing 6.3

shows the directive-based code. It creates two tasks to compute the recursive calls,

fibonacci(n-2) and fibonacci(n-1), and waits for them before computing the

sum of their return values.

The Fibonacci recursive algorithm would achieve little to no parallelism. We

also note that this is not the fastest way to compute Fibonacci using parallel tasks.

However, we created this program to demonstrate the functional nature of TagHit

to handle synchronized nested tasks.
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Figure 6.4: Screenshot of the TagHit Fibonacci program execution. The program calculates the
20th Fibonacci number, using one, two, three, four, and five processes.

1 long f i b o n a c c i ( long n) {
2 long i , j ;
3 i f (n < 2)
4 return n ;
5 else {
6 #pragma t a g h i t ta sk ing
7 i = f i b o n a c c i (n−1);
8 #pragma t a g h i t ta sk ing
9 j = f i b o n a c c i (n−2);

10 #pragma t a g h i t taskwai t
11 return i + j ;
12 }
13 }

Listing 6.3: Fibonacci TagHit Code

Figure 6.4 shows screenshot of the program execution to calculate the 20th Fi-

bonacci number, using one, two, three, four, and five TagHit processes. As shown,

the TagHit runtime has been able to handle the parallel nested tasks in the Fibonacci

algorithm and managed the synchronization exposed between them to produce cor-

rect results.
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Chapter 7

Conclusion and Future Work

The first part of this thesis reviewed a set of tasking models. The second part

discussed an experimental design and prototype implementation of the task creation

and scheduling modules of the TagHit runtime. It described different aspects of the

runtime and then detailed a prototype implementation of task creation and task

synchronization directives.

Chapter 2 provided overview of six related task-based models, including their

key features and our observations of them. Chapter 3 discussed the TagHit API,

particularly the basic TagHit task creation construct and the task synchronization

construct. The TagHit API may eventually include other constructs as well as

clauses in the task creation construct, but they are out of the scope of this thesis.

Chapter 4 defined the design goals of the TagHit runtime and then proposed an

experimental design accordingly. Chapter 4 also includes a detailed discussion of
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different aspects of the runtime design, including the architecture and its differ-

ent components. The runtime design consists of four main components: TagHit

program, TagHit scheduler, task queue, and execution threads. The runtime com-

ponents are distributed such that each process runs an instance of the scheduler

and has it own queue. In addition, The TagHit runtime exploits the potential ben-

efits of shared memory systems by running a customizable number of threads per

processing element.

Chapter 5 described how the prototype, which is implemented in C, creates and

schedules TagHit tasks. Specifically, the chapter began by discussing the under-

lying libraries that we used to implement the runtime system, namely MPI and

Pthreads. Then, the chapter described the technical implementation details to

create, schedule, execute and synchronize tasks. Chapter 5 also presented the dis-

tributed work-stealing scheduling mechanism adopted to migrate and load balance

tasks among processing resources.

Finally, Chapter 6 presented a study of two TagHit benchmarks. The chapter

discussed the scalability and scheduler behavior of the first benchmark, which is a

TagHit program to compute PI using 64 tasks. The result shows that the program

provides good speedup and scalability using two, four, and eight TagHit processes.

However, although the tasks were distributed nicely between TagHit processes, the

behavior of the scheduler shows that the victim and work-size selection strategies are

not optimal and should be studied further and enhanced. The second benchmark,

however, is a TagHit recursive algorithm to calculate the Fibonacci series, which we

used to demonstrate the functional nature of the runtime to handle synchronized
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nested tasks.

The work presented in this thesis is an experimental runtime of the baseline

functionalities of the TagHit API. Future development of TagHit, however, is re-

quired to build a complete solution that is targeted for exascale. TagHit should

ultimately support other features such as tasks with different levels of granularity,

data distribution mechanisms, and task dependencies. The TagHit API may be

extended with other directives as well as clauses to the task creation directive to

enable these features.

In addition, possible enhancements may be applied to our TagHit runtime de-

sign and implementation. An implementation of a global address space that spans

all TagHit processes may further enhance the TagHit runtime and efficiently enable

different TagHit functions. Work-stealing in TagHit can also be enhanced by imple-

menting the one-sided approach and explore better strategies for victim selection.

Because TagHit is a directive-based API, the compiler will be involved in trans-

lating TagHit constructs into their corresponding TagHit runtime functions. Once a

feature-complete TagHit runtime is in place, the compiler implementation of these

constructs is required. We discussed the compiler assumptions in section 3.4 to

contribute to the future development of the compiler and ensure it complies with

our runtime.

Overall, although the experimental design and prototype discussed in this thesis

have proven the general concept of TagHit as a potential API, we have assessed

implementation costs and challenges to execute, synchronize, and schedule tasks.

This work is not a complete solution for TagHit, but we expect it to guide the
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definition of TagHit concept and semantics for further research and development.
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